MCIMX6S1AVM10AB [NXP]

i.MX 6Solo/6DualLite Applications Processors for Consumer Products;
MCIMX6S1AVM10AB
型号: MCIMX6S1AVM10AB
厂家: NXP    NXP
描述:

i.MX 6Solo/6DualLite Applications Processors for Consumer Products

文件: 总169页 (文件大小:3175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX6SDLCEC  
Rev. 9, 11/2018  
NXP Semiconductors  
Data Sheet: Technical Data  
MCIMX6SxExxxxxB MCIMX6SxDxxxxxB  
MCIMX6SxExxxxxC MCIMX6SxDxxxxxC  
MCIMX6SxExxxxxD MCIMX6SxDxxxxxD  
MCIMX6UxExxxxxB MCIMX6UxDxxxxxB  
MCIMX6UxExxxxxC MCIMX6UxDxxxxxC  
MCIMX6UxExxxxxD MCIMX6UxDxxxxxD  
i.MX 6Solo/6DualLite  
Applications Processors  
for Consumer Products  
Package Information  
Plastic Package  
BGA Case 2240 21 x 21 mm, 0.8 mm pitch  
Ordering Information  
See Table 1 on page 3  
1
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . .3  
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5  
1.3 Updated Signal Naming Convention . . . . . . . . . . . .9  
Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Modules List. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11  
3.1 Special Signal Considerations . . . . . . . . . . . . . . . .21  
3.2 Recommended Connections for Unused Analog  
Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
1 Introduction  
The i.MX 6Solo/6DualLite processors represent the  
latest achievement in integrated multimedia-focused  
products offering high performance processing with  
lower cost, as well as optimization for low power  
consumption.  
2
3
4
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .23  
4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . .23  
4.2 Power Supplies Requirements and Restrictions . .33  
4.3 Integrated LDO Voltage Regulator Parameters . . .34  
4.4 PLL’s Electrical Characteristics . . . . . . . . . . . . . . .36  
4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . .38  
4.6 I/O DC Parameters. . . . . . . . . . . . . . . . . . . . . . . . .39  
4.7 I/O AC Parameters. . . . . . . . . . . . . . . . . . . . . . . . .44  
4.8 Output Buffer Impedance Parameters . . . . . . . . . .49  
4.9 System Modules Timing. . . . . . . . . . . . . . . . . . . . .52  
4.10 General-Purpose Media Interface (GPMI) Timing .64  
4.11 External Peripheral Interface Parameters . . . . . . .72  
Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . .134  
5.1 Boot Mode Configuration Pins . . . . . . . . . . . . . . .134  
5.2 Boot Device Interface Allocation . . . . . . . . . . . . .135  
Package Information and Contact Assignments . . . . . .136  
6.1 Updated Signal Naming Convention . . . . . . . . . .136  
6.2 21x21 mm Package Information. . . . . . . . . . . . . .137  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163  
The processors feature advanced implementation of  
®
®
single/dual Arm Cortex -A9 core, which operates at  
speeds of up to 1 GHz. They include 2D and 3D graphics  
processors, 1080p video processing, and integrated  
power management. Each processor provides a 32/64-bit  
DDR3/DDR3L/LPDDR2-800 memory interface and a  
number of other interfaces for connecting peripherals,  
®
such as WLAN, Bluetooth , GPS, hard drive, displays,  
and camera sensors.  
5
6
7
The i.MX 6Solo/6DualLite processors are specifically  
useful for applications such as:  
Web and multimedia tablets  
Web and multimedia tablets  
NXP Reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products  
Introduction  
Color eReaders  
IPTV  
Human Machine Interfaces (HMI)  
Portable medical  
IP phones  
Home energy management systems  
The i.MX 6Solo/6DualLite applications processors feature:  
Applications processors—The processors enhance the capabilities of high-tier portable  
applications by fulfilling the ever increasing MIPS requirements of operating systems and games.  
The Dynamic Voltage and Frequency Scaling (DVFS) provides significant power reduction,  
allowing the device to run at lower voltage and frequency with sufficient MIPS for tasks, such as  
audio decode.  
Multilevel memory system—The multilevel memory system of each processor is based on the L1  
instruction and data caches, L2 cache, and internal and external memory. The processors support  
many types of external memory devices, including DDR3, DDR3L, LPDDR2, NOR Flash,  
PSRAM, cellular RAM, NAND Flash (MLC and SLC), OneNAND™, and managed NAND,  
including eMMC up to rev 4.4/4.41.  
Smart speed technology—The processors have power management throughout the IC that enables  
the rich suite of multimedia features and peripherals to consume minimum power in both active  
and various low power modes. Smart speed technology enables the designer to deliver a  
feature-rich product, requiring levels of power far lower than industry expectations.  
Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices  
by scaling the voltage and frequency to optimize performance.  
Multimedia powerhouse—The multimedia performance of each processor is enhanced by a  
multilevel cache system, NEON™ MPE (Media Processor Engine) co-processor, a multi-standard  
hardware video codec, an image processing unit (IPU), a programmable smart DMA (SDMA)  
controller, and an asynchronous sample rate converter.  
Powerful graphics acceleration—Each processor provides two independent, integrated graphics  
processing units: an OpenGL ES 2.0 3D graphics accelerator with a shader and a 2D graphics  
accelerator.  
®
Interface flexibility—Each processor supports connections to a variety of interfaces: LCD  
controller for up to two displays (including parallel display, HDMI1.4, MIPI display, and LVDS  
display), dual CMOS sensor interface (parallel or through MIPI), high-speed USB on-the-go with  
PHY, high-speed USB host with PHY, multiple expansion card ports (high-speed MMC/SDIO host  
and other), 10/100/1000 Mbps Gigabit Ethernet controller two CAN ports, ESAI audio interface,  
2
2
and a variety of other popular interfaces (such as UART, I C, and I S serial audio, and PCIe-II).  
Eink Panel Display Controller—The processors integrate EPD controller that supports E-INK  
color and monochrome with up to 1650x2332 resolution and 5-bit grayscale (32-levels per color  
channel).  
Advanced security—The processors deliver hardware-enabled security features that enable secure  
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
2
NXP Semiconductors  
Introduction  
software downloads. The security features are discussed in detail in the i.MX 6Solo/6DualLite  
Security Reference Manual (IMX6DQ6SDLSRM).  
Integrated power management—The processors integrate linear regulators and internally generate  
voltage levels for different domains. This significantly simplifies system power management  
structure.  
1.1  
Ordering Information  
Table 1 provides examples of orderable part numbers covered by this data sheet. Table 1 does not include  
all possible orderable part numbers. The latest part numbers are available on the web page  
nxp.com/imx6series. If the desired part number is not listed in Table 1, go to nxp.com/imx6series or  
contact a NXP representative for details.  
Table 1. Example Orderable Part Numbers  
i.MX6 CPU  
Solo/  
DualLite  
Speed Temperature  
Part Number  
Options  
Package  
Grade1  
Grade  
MCIMX6U8DVM10AB DualLite With VPU, GPU, EPDC, MLB  
2x Arm Cortex-A9 64-bit DDR  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
MCIMX6U8DVM10AC DualLite With VPU, GPU, EPDC, MLB  
2x Arm Cortex-A9 64-bit DDR  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
MCIMX6U8DVM10AD DualLite With VPU, GPU, EPDC, MLB  
2x Arm Cortex-A9 64-bit DDR  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
MCIMX6U5DVM10AB DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
MCIMX6U5DVM10AC DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
MCIMX6U5DVM10AD DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
SCIMX6U5DVM10CB DualLite HDCP enabled with VPU, GPU, MLB, no  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
EPDC  
2x Arm Cortex-A9 64-bit DDR  
SCIMX6U5DVM10CC DualLite HDCP enabled with VPU, GPU, MLB, no  
1 GHz  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
EPDC  
2x Arm Cortex-A9 64-bit DDR  
SCIMX6U5DVM10CD DualLite HDCP enabled with VPU, GPU, MLB, no  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
EPDC  
2x Arm Cortex-A9 64-bit DDR  
MCIMX6U5EVM10AB DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
1 GHz  
1 GHz  
1 GHz  
Extended 21 mm x 21 mm,  
Commercial 0.8 mm pitch, MAPBGA  
MCIMX6U5EVM10AC DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
Extended 21 mm x 21 mm,  
Commercial 0.8 mm pitch, MAPBGA  
MCIMX6U5EVM10AD DualLite With VPU, GPU, MLB, no EPDC  
2x Arm Cortex-A9 64-bit DDR  
Extended 21 mm x 21 mm, 0.8 mm  
Commercial pitch, MAPBGA  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
3
Introduction  
Table 1. Example Orderable Part Numbers (continued)  
i.MX6 CPU  
Solo/  
DualLite  
Speed Temperature  
Part Number  
Options  
Package  
Grade1  
Grade  
MCIMX6S8DVM10AB  
MCIMX6S8DVM10AC  
MCIMX6S8DVM10AD  
MCIMX6S5DVM10AB  
MCIMX6S5DVM10AC  
MCIMX6S5DVM10AD  
SCIMX6S5DVM10CB  
Solo  
Solo  
Solo  
Solo  
Solo  
Solo  
Solo  
With VPU, GPU, MLB, EPDC  
1x Arm Cortex-A9 32-bit DDR  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, EPDC  
1x Arm Cortex-A9 32-bit DDR  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, EPDC  
1x Arm Cortex-A9 32-bit DDR  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
HDCP enabled with VPU, GPU, MLB, no  
EPDC  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
1x Arm Cortex-A9 32-bit DDR  
SCIMX6S5DVM10CC  
SCIMX6S5DVM10CD  
Solo  
Solo  
HDCP enabled with VPU, GPU, MLB, no  
EPDC  
1x Arm Cortex-A9 32-bit DDR  
1 GHz  
1 GHz  
Commercial 21 mm x 21 mm,  
0.8 mm pitch, MAPBGA  
HDCP enabled with VPU, GPU, MLB, no  
EPDC  
Commercial 21 mm x 21 mm, 0.8 mm  
pitch, MAPBGA  
1x Arm Cortex-A9 32-bit DDR  
MCIMX6S5EVM10AB  
MCIMX6S5EVM10AC  
MCIMX6S5EVM10AD  
Solo  
Solo  
Solo  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
1 GHz  
1 GHz  
1 GHz  
Extended 21 mm x 21 mm,  
Commercial 0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
Extended 21 mm x 21 mm,  
Commercial 0.8 mm pitch, MAPBGA  
With VPU, GPU, MLB, no EPDC  
1x Arm Cortex-A9 32-bit DDR  
Extended 21 mm x 21 mm, 0.8 mm  
Commercial pitch, MAPBGA  
1
If a 24 MHz input clock is used (required for USB), then the maximum SoC speed is limited to 996 MHz.  
Figure 1 describes the part number nomenclature to identify the characteristics of a specific part number  
(for example, cores, frequency, temperature grade, fuse options, and silicon revision).  
The primary characteristic that differentiates which data sheet applies to a specific part is the temperature  
grade (junction) field. The following list describes the correct data sheet to use for a specific part:  
The i.MX 6Solo/6DualLite Automotive and Infotainment Applications Processors data sheet  
(IMX6SDLAEC) covers parts listed with an “A (Automotive temp)”  
The i.MX 6Solo/6DualLite Applications Processors for Consumer Products data sheet  
(IMX6SDLCEC) covers parts listed with a “D (Commercial temp)” or “E (Extended Commercial  
temp)”  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
4
NXP Semiconductors  
Introduction  
The i.MX 6Solo/6DualLite Applications Processors for Industrial Products data sheet  
(IMX6SDLIEC) covers parts listed with “C (Industrial temp)”  
For more information go to nxp.com/imx6series or contact a NXP representative for details.  
MC  
IMX6 X @  
+
VV  
$$ % A  
Silicon revision1  
A
B
Qualification level  
MC  
Rev 1.1  
Prototype Samples  
Mass Production  
Special  
PC  
MC  
SC  
Rev 1.2 (Maskset ID: 2N81E)  
Rev 1.3 (Maskset ID: 3N81E)  
C
Rev 1.4 (Maskset ID: 4N81E)  
D
Fusing  
%
A
Part # series  
X
Default settings  
HDCP enabled  
i.MX 6DualLite  
2x ARM Cortex-A9, 64-bit DDR  
U
C
i.MX 6Solo  
S
Frequency  
$$  
1x ARM Cortex-A9, 32-bit DDR  
800 MHz2  
1 GHz3  
08  
10  
Part differentiator  
@
RoHS  
Package type  
Consumer  
Industrial  
VPU  
VPU  
VPU  
VPU  
GPU  
GPU  
GPU  
GPU  
GPU  
EPDC  
MLB  
8
7
6
5
4
1
MAPBGA 21 x 21 0.8mm  
VM  
Temperature Tj  
+
Commercial: 0 to + 95°C  
D
Automotive  
Consumer  
Automotive  
Automotive  
MLB  
MLB  
MLB  
MLB  
Extended commercial: -20 to + 105°C  
Industrial: -40 to +105°C  
E
C
A
Automotive: -40 to + 125°C  
1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.  
2. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 792 MHz.  
3. If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.  
Figure 1. Part Number Nomenclature—i.MX 6Solo and 6DualLite  
Figure 2. Example Part Marking  
1.2  
Features  
The i.MX 6Solo/6DualLite processors are based on Arm Cortex-A9 MPCore Platform, which has the  
following features:  
The i.MX 6Solo supports single Arm Cortex-A9 MPCore (with TrustZone)  
The i.MX 6DualLite supports dual Arm Cortex-A9 MPCore (with TrustZone)  
The core configuration is symmetric, where each core includes:  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
5
Introduction  
— 32 KByte L1 Instruction Cache  
— 32 KByte L1 Data Cache  
— Private Timer and Watchdog  
— Cortex-A9 NEON MPE (Media Processing Engine) Co-processor  
The Arm Cortex-A9 MPCore complex includes:  
General Interrupt Controller (GIC) with 128 interrupt support  
Global Timer  
Snoop Control Unit (SCU)  
512 KB unified I/D L2 cache:  
— Used by one core in i.MX 6Solo  
— Shared by two cores in i.MX 6DualLite  
Two Master AXI bus interfaces output of L2 cache  
Frequency of the core (including NEON and L1 cache), as per Table 8.  
NEON MPE coprocessor  
— SIMD Media Processing Architecture  
— NEON register file with 32x64-bit general-purpose registers  
— NEON Integer execute pipeline (ALU, Shift, MAC)  
— NEON dual, single-precision floating point execute pipeline (FADD, FMUL)  
— NEON load/store and permute pipeline  
The SoC-level memory system consists of the following additional components:  
— Boot ROM, including HAB (96 KB)  
— Internal multimedia / shared, fast access RAM (OCRAM, 128 KB)  
— Secure/non-secure RAM (16 KB)  
External memory interfaces: The i.MX 6Solo/6DualLite processors support latest, high volume,  
cost effective handheld DRAM, NOR, and NAND Flash memory standards.  
— 16/32-bit LP-DDR2-800, 16/32-bit DDR3-800 and DDR3L-800 in i.MX 6Solo; 16/32/64-bit  
LP-DDR2-800, 16/32/64-bit DDR3-800 and DDR3L-800, supporting DDR interleaving mode  
for 2x32 LPDDR2-800 in i.MX 6DualLite  
— 8-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,  
BA-NAND, PBA-NAND, LBA-NAND, OneNAND™ and others. BCH ECC up to 40 bit.  
— 16/32-bit NOR Flash. All WEIMv2 pins are muxed on other interfaces.  
— 16/32-bit PSRAM, Cellular RAM  
Each i.MX 6Solo/6DualLite processor enables the following interfaces to external devices (some of them  
are muxed and not available simultaneously):  
Displays—Total of five interfaces available. Total raw pixel rate of all interfaces is up to 450  
Mpixels/sec, 24 bpp. Up to two interfaces may be active in parallel (excluding EPDC).  
— One Parallel 24-bit display port, up to 225 Mpixels/sec (for example, WUXGA at 60 Hz or dual  
HD1080 and WXGA at 60 Hz)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
6
NXP Semiconductors  
Introduction  
— LVDS serial ports—One port up to 165 Mpixels/sec or two ports up to 85 MP/sec (for example,  
WUXGA at 60 Hz) each  
— HDMI 1.4 port  
— MIPI/DSI, two lanes at 1 Gbps  
— EPDC, Color, and monochrome E-INK, up to 1650x2332 resolution and 5-bit grayscale  
Camera sensors:  
— Two parallel Camera ports (up to 20 bit and up to 240 MHz peak)  
— MIPI CSI-2 Serial port, supporting from 80 Mbps to 1 Gbps speed per data lane. The CSI-2  
Receiver core can manage one clock lane and up to two data lanes. Each i.MX 6Solo/6DualLite  
processor has two lanes.  
Expansion cards:  
— Four MMC/SD/SDIO card ports all supporting:  
– 1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104  
mode (104 MB/s max)  
– 1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 52 MHz in both SDR  
and DDR modes (104 MB/s max)  
USB:  
— One high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy  
— Three USB 2.0 (480 Mbps) hosts:  
– One HS host with integrated High Speed Phy  
– Two HS hosts with integrated HS-IC USB (High Speed Inter-Chip USB) Phy  
Expansion PCI Express port (PCIe) v2.0 one lane  
— PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint  
operations. Uses x1 PHY configuration.  
Miscellaneous IPs and interfaces:  
— SSI block is capable of supporting audio sample frequencies up to 192 kHz stereo inputs and  
2
outputs with I S mode  
2
— ESAI is capable of supporting audio sample frequencies up to 260 kHz in I S mode with 7.1  
multi channel outputs  
— Five UARTs, up to 5.0 Mbps each:  
– Providing RS232 interface  
– Supporting 9-bit RS485 multidrop mode  
– One of the five UARTs (UART1) supports 8-wire while others four supports 4-wire. This is  
due to the SoC IOMUX limitation, since all UART IPs are identical.  
— Four eCSPI (Enhanced CSPI)  
2
— Four I C, supporting 400 kbps  
1
— Gigabit Ethernet Controller (IEEE1588 compliant), 10/100/1000 Mbps  
1. The theoretical maximum performance of 1 Gbps ENET is limited to 470 Mbps (total for Tx and Rx) due to internal bus  
throughput limitations. The actual measured performance in optimized environment is up to 400 Mbps. For details, see the  
ERR004512 erratum in the i.MX 6Solo/6DualLite errata document (IMX6SDLCE).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
7
Introduction  
— Four Pulse Width Modulators (PWM)  
— System JTAG Controller (SJC)  
— GPIO with interrupt capabilities  
— 8x8 Key Pad Port (KPP)  
— Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx  
— Two Controller Area Network (FlexCAN), 1 Mbps each  
— Two Watchdog timers (WDOG)  
— Audio MUX (AUDMUX)  
— MLB (MediaLB) provides interface to MOST Networks (MOST25, MOST50, MOST150)  
with the option of DTCP cipher accelerator  
The i.MX 6Solo/6DualLite processors integrate advanced power management unit and controllers:  
Provide PMU, including LDO supplies, for on-chip resources  
Use Temperature Sensor for monitoring the die temperature  
Support DVFS techniques for low power modes  
Use SW State Retention and Power Gating for Arm and MPE  
Support various levels of system power modes  
Use flexible clock gating control scheme  
The i.MX 6Solo/6DualLite processors use dedicated hardware accelerators to meet the targeted  
multimedia performance. The use of hardware accelerators is a key factor in obtaining high performance  
at low power consumption numbers, while having the CPU core relatively free for performing other tasks.  
The i.MX 6Solo/6DualLite processors incorporate the following hardware accelerators:  
VPU—Video Processing Unit  
IPUv3H—Image Processing Unit version 3H  
GPU3Dv5—3D Graphics Processing Unit (OpenGL ES 2.0) version 5  
GPU2Dv2—2D Graphics Processing Unit (BitBlt)  
PXP—PiXel Processing Pipeline. Off loading key pixel processing operations are required to  
support the EPD display applications.  
ASRC—Asynchronous Sample Rate Converter  
Security functions are enabled and accelerated by the following hardware:  
Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)  
SJC—SystemJTAGController. ProtectingJTAGfromdebugportattacks by regulating or blocking  
the access to the system debug features.  
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash  
engines, 16 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).  
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock  
CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be  
configured during boot and by eFUSEs and will determine the security level operation mode as  
well as the TZ policy.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
8
NXP Semiconductors  
Introduction  
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:  
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.  
NOTE  
The actual feature set depends on the part numbers as described in Table 1,  
"Example Orderable Part Numbers," on page 3. Functions, such as video  
hardware acceleration, and 2D and 3D hardware graphics acceleration may  
not be enabled for specific part numbers.  
1.3  
Updated Signal Naming Convention  
The signal names of the i.MX6 series of products have been standardized to better align the signal names  
within the family and across the documentation. Some of the benefits of these changes are as follows:  
The names are unique within the scope of an SoC and within the series of products  
Searches will return all occurrences of the named signal  
The names are consistent between i.MX 6 series products implementing the same modules  
The module instance is incorporated into the signal name  
This change applies only to signal names. The original ball names have been preserved to prevent the need  
to change schematics, BSDL models, IBIS models, etc.  
Throughout this document, the updated signal names are used except where referenced as a ball name  
(such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal  
name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to  
map the signal names used in older documentation to the new standardized naming conventions.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
9
Architectural Overview  
2 Architectural Overview  
The following subsections provide an architectural overview of the i.MX 6Solo/6DualLite processor  
system.  
2.1  
Block Diagram  
Figure 3 shows the functional modules in the i.MX 6Solo/6DualLite processor system.  
MIPI  
Raw / ONFI 2.2  
NAND Flash  
LPDDR2/DDR3  
400 MHz (DDR800)  
NOR Flash  
PSRAM  
Battery Ctrl  
Device  
2x Camera  
1 / 2 LVDS  
1 / 2 LCD  
Displays  
HDMI 1.4  
Display  
Display  
Parallel/MIPI (WUXGA+)  
Application Processor  
Domain (AP)  
CSI2/MIPI LDB  
HDMI  
DSI/MIPI  
External  
Memory I/F  
Digital  
Audio  
GPMI  
MMDC  
EIM  
Internal  
RAM  
(144 KB)  
E-INK  
Display  
Image Processing  
Subsystem  
1
EPDC  
PxP  
IPUv3H  
Boot  
ROM  
(96 KB)  
2xCAN i/f  
PCIe Bus  
Arm Cortex A9  
MPCore Platform  
Smart DMA  
(SDMA)  
Debug  
DAP  
TPIU  
CTIs  
SJC  
1x/2x A9-Core  
L1 I/D Cache  
Timer, WDOG  
SPBA  
MMC/SD  
eMMC/eSD  
AP Peripherals  
uSDHC (4)  
512K L2 cache  
SCU, Timer  
MMC/SD  
SDXC  
AUDMUX  
Shared Peripherals  
PTM’s CTI’s  
GPS  
2
I C(4)  
Security  
Video  
Proc. Unit  
(VPU + Cache)  
eCSPI (4)  
ESAI  
SSI (3)  
PWM (4)  
OCOTP_CTRL  
IOMUXC  
KPP  
CAAM  
(16KB Ram)  
5xFast-UART  
SPDIF Rx/Tx  
Modem IC  
SNVS  
(SRTC)  
ASRC  
Audio,  
Power  
Mngmnt.  
3D Graphics  
Proc. Unit  
(GPU3D)  
CSU  
Power Management  
GPIO  
Fuse Box  
Unit (LDOs)  
CAN(2)  
Keypad  
1-Gbps ENET  
MLB 150  
DTCP  
Clock and Reset  
2D Graphics  
Proc. Unit  
(GPU2D)  
Timers/Control  
WDOG (2)  
GPT  
PLL (8)  
CCM  
Crystals  
& Clock sources  
GPC  
HSI/MIPI  
Ethernet  
10/100/1000  
Mbps  
EPIT (2)  
SRC  
Temp Monitor  
USB OTG +  
3 HS Ports  
XTALOSC  
OSC32K  
OTG PHY1  
Host PHY2  
2xHSIC  
PHY  
USB OTG  
(dev/host)  
JTAG  
(IEEE1149.6)  
MLB/Most  
Network  
Bluetooth  
WLAN  
1
2
144 KB RAM including 16 KB RAM inside the CAAM.  
For i.MX 6Solo, there is only one A9-core platform in the chip; for i.MX 6DualLite, there are two A9-core platforms.  
Figure 3. i.MX 6Solo/6DualLite System Block Diagram  
NOTE  
The numbers in brackets indicate number of module instances. For example,  
PWM (4) indicates four separate PWM peripherals.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
10  
NXP Semiconductors  
Modules List  
3 Modules List  
The i.MX 6Solo/6DualLite processors contain a variety of digital and analog modules. Table 2 describes  
these modules in alphabetical order.  
Table 2. i.MX 6Solo/6DualLite Modules List  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
APBH-DMA  
NAND Flash and BCH  
ECC DMA controller  
System Control  
Peripherals  
DMA controller used for GPMI2 operation  
Arm  
Arm Platform  
Arm  
The Arm Core Platform includes 1x (Solo) Cortex-A9  
core for i.MX 6Solo and 2x (Dual) Cortex-A9 cores for  
i.MX 6DualLite. It also includes associated sub-blocks,  
such as the Level 2 Cache Controller, SCU (Snoop  
Control Unit), GIC (General Interrupt Controller), private  
timers, watchdog, and CoreSight debug modules.  
ASRC  
Asynchronous Sample  
Rate Converter  
Multimedia  
Peripherals  
The Asynchronous Sample Rate Converter (ASRC)  
converts the sampling rate of a signal associated to an  
input clock into a signal associated to a different output  
clock. The ASRC supports concurrent sample rate  
conversion of up to 10 channels of about -120dB  
THD+N. The sample rate conversion of each channel is  
associated to a pair of incoming and outgoing sampling  
rates. The ASRC supports up to three sampling rate  
pairs.  
AUDMUX  
Digital Audio Mux  
Multimedia  
Peripherals  
The AUDMUX is a programmable interconnect for voice,  
audio, and synchronous data routing between host  
serial interfaces (for example, SSI1, SSI2, and SSI3)  
and peripheral serial interfaces (audio and voice  
codecs). The AUDMUX has seven ports with identical  
functionality and programming models. A desired  
connectivity is achieved by configuring two or more  
AUDMUX ports.  
BCH40  
CAAM  
Binary-BCH ECC  
Processor  
System Control  
Peripherals  
The BCH40 module provides up to 40-bit ECC for  
NAND Flash controller (GPMI)  
Cryptographic  
accelerator and  
assurance module  
Security  
CAAM is a cryptographic accelerator and assurance  
module. CAAM implements several encryption and  
hashing functions, a run-time integrity checker, and a  
Pseudo Random Number Generator (PRNG). The  
pseudo random number generator is certified by  
Cryptographic Algorithm Validation Program (CAVP) of  
National Institute of Standards and Technology (NIST).  
Its DRBG validation number is 94 and its SHS validation  
number is 1455.  
CAAM also implements a Secure Memory mechanism.  
In i.MX 6Solo/6DualLite processors, the security  
memory provided is 16 KB.  
CCM  
GPC  
SRC  
Clock Control Module,  
GeneralPowerController,  
System Reset Controller  
Clocks, Resets, and These modules are responsible for clock and reset  
Power Control  
distribution in the system, and also for the system power  
management.  
CSI  
MIPI CSI-2 i/f  
Multimedia  
Peripherals  
The CSI IP provides MIPI CSI-2 standard camera  
interface port. The CSI-2 interface supports from 80  
Mbps to 1 Gbps speed per data lane.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
11  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
CSU  
Central Security Unit  
Security  
The Central Security Unit (CSU) is responsible for  
setting comprehensive security policy within the i.MX  
6Solo/6DualLite platform.  
CTI-0  
CTI-1  
CTI-2  
CTI-3  
CTI-4  
Cross Trigger Interfaces  
Debug / Trace  
Debug / Trace  
Cross Trigger Interfaces allows cross-triggering based  
on inputs from masters attached to CTIs. The CTI  
module is internal to the Cortex-A9 Core Platform.  
CTM  
Cross Trigger Matrix  
Debug Access Port  
Cross Trigger Matrix IP is used to route triggering events  
between CTIs. The CTM module is internal to the  
Cortex-A9 Core Platform.  
DAP  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-A9  
Core Platform.  
DCIC-0  
DCIC-1  
Display Content Integrity  
Checker  
Automotive IP  
The DCIC provides integrity check on portion(s) of the  
display. Each i.MX 6Solo/6DualLite processor has two  
such modules.  
DSI  
DTCP  
MIPI DSI i/f  
DTCP  
Multimedia  
Peripherals  
The MIPI DSI IP provides DSI standard display port  
interface. The DSI interface support 80 Mbps to 1 Gbps  
speed per data lane.  
Multimedia  
Peripherals  
Provides encryption function according to Digital  
Transmission Content Protection standard for traffic  
over MLB150.  
eCSPI1-4  
ENET  
Configurable SPI  
Ethernet Controller  
Connectivity  
Peripherals  
Full-duplex enhanced Synchronous Serial Interface. It is  
configurable to support Master/Slave modes, four chip  
selects to support multiple peripherals.  
Connectivity  
Peripherals  
The Ethernet Media Access Controller (MAC) is  
designed to support 10/100/1000 Mbps Ethernet/IEEE  
802.3 networks. An external transceiver interface and  
transceiver function are required to complete the  
interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the  
ENET chapter of the reference manual for details.  
Note: The theoretical maximum performance of 1 Gbps  
ENET is limited to 470 Mbps (total for Tx and Rx) due to  
internal bus throughput limitations. The actual  
measured performance in optimized environment is up  
to 400 Mbps. For details, see the ERR004512 erratum  
in the i.MX 6Solo/6DualLite errata document  
(IMX6SDLCE).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
12  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The EPDC is a feature-rich, low power, and  
high-performance direct-drive, active matrix EPD  
controller. It is specifically designed to drive E-INK™  
EPD panels, supporting a wide variety of TFT  
backplanes. It is available in both i.MX 6DualLite and  
i.MX 6Solo.  
EPDC  
Electrophoretic Display  
Controller  
Peripherals  
EPIT-1  
EPIT-2  
Enhanced Periodic  
Interrupt Timer  
Timer Peripherals  
Each EPIT is a 32-bit “set and forget” timer that starts  
counting after the EPIT is enabled by software. It is  
capable of providing precise interrupts at regular  
intervals with minimal processor intervention. It has a  
12-bit prescaler for division of input clock frequency to  
get the required time setting for the interrupts to occur,  
and counter value can be programmed on the fly.  
ESAI  
Enhanced Serial Audio  
Interface  
Connectivity  
Peripherals  
The Enhanced Serial Audio Interface (ESAI) provides a  
full-duplex serial port for serial communication with a  
variety of serial devices, including industry-standard  
codecs, SPDIF transceivers, and other processors.  
The ESAI consists of independent transmitter and  
receiver sections, each section with its own clock  
generator. All serial transfers are synchronized to a  
clock. Additional synchronization signals are used to  
delineate the word frames. The normal mode of  
operation is used to transfer data at a periodic rate, one  
word per period. The network mode is also intended for  
periodic transfers; however, it supports up to 32 words  
(time slots) per period. This mode can be used to build  
time division multiplexed (TDM) networks. In contrast,  
the on-demand mode is intended for non-periodic  
transfers of data and to transfer data serially at high  
speed when the data becomes available.  
The ESAI has 12 pins for data and clocking connection  
to external devices.  
FlexCAN-1  
FlexCAN-2  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN protocol was primarily, but not only, designed  
to be used as a vehicle serial data bus, meeting the  
specific requirements of this field: real-time processing,  
reliable operation in the Electromagnetic interference  
(EMI) environment of a vehicle, cost-effectiveness and  
required bandwidth. The FlexCAN module is a full  
implementation of the CAN protocol specification,  
Version 2.0 B, which supports both standard and  
extended message frames.  
512x8 Fuse Box  
Electrical Fuse Array  
Security  
Electrical Fuse Array. Enables to setup Boot Modes,  
Security Levels, Security Keys, and many other system  
parameters.  
The i.MX 6Solo/6DualLite processors consist of  
512x8-bit fuse fox accessible through OCOTP_CTRL  
interface.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
13  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
GPIO-1  
GPIO-2  
GPIO-3  
GPIO-4  
GPIO-5  
GPIO-6  
GPIO-7  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports 32 bits of I/O.  
GPMI  
General Purpose  
Media Interface  
Connectivity  
Peripherals  
The GPMI module supports up to 8x NAND devices.  
40-bit ECC encryption/decryption for NAND Flash  
controller (GPMI2). The GPMI supports separate DMA  
channels per NAND device.  
GPT  
General Purpose Timer  
Timer Peripherals  
Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
GPU3Dv5  
GPU2Dv2  
Graphics Processing  
Unit, ver.5  
Multimedia  
Peripherals  
The GPU3Dv5 provides hardware acceleration for 3D  
graphics algorithms with sufficient processor power to  
run desktop quality interactive graphics applications on  
displays up to HD1080 resolution. The GPU3D provides  
OpenGL ES 2.0, including extensions, OpenGL ES 1.1,  
and OpenVG 1.1  
Graphics Processing  
Unit-2D, ver 2  
Multimedia  
Peripherals  
The GPU2Dv2 provides hardware acceleration for 2D  
graphics algorithms, such as Bit BLT, stretch BLT, and  
many other 2D functions.  
HDMI Tx  
HSI  
HDMI Tx i/f  
MIPI HSI i/f  
I2C Interface  
Multimedia  
Peripherals  
The HDMI module provides HDMI standard i/f port to an  
HDMI 1.4 compliant display.  
Connectivity  
Peripherals  
The MIPI HSI provides a standard MIPI interface to the  
applications processor.  
I2C provide serial interface for external devices. Data  
rates of up to 400 kbps are supported.  
I2C-1  
I2C-2  
I2C-3  
I2C-4  
Connectivity  
Peripherals  
IOMUXC  
IOMUX Control  
System Control  
Peripherals  
This module enables flexible IO multiplexing. Each IO  
pad has default and several alternate functions. The  
alternate functions are software configurable.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
14  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
IPUv3H enables connectivity to displays and video  
sources, relevant processing and synchronization and  
control capabilities, allowing autonomous operation.  
The IPUv3H supports concurrent output to two display  
ports and concurrent input from two camera ports,  
through the following interfaces:  
IPUv3H  
Image Processing Unit,  
ver.3H  
Multimedia  
Peripherals  
• Parallel Interfaces for both display and camera  
• Single/dual channel LVDS display interface  
• HDMI transmitter  
• MIPI/DSI transmitter  
• MIPI/CSI-2 receiver  
The processing includes:  
• Image conversions: resizing, rotation, inversion, and  
color space conversion  
• A high-quality de-interlacing filter  
• Video/graphics combining  
• Image enhancement: color adjustment and gamut  
mapping, gamma correction, and contrast  
enhancement  
• Support for display backlight reduction  
KPP  
LDB  
Key Pad Port  
Connectivity  
Peripherals  
KPP Supports 8x8 external key pad matrix. KPP  
features are:  
• Open drain design  
• Glitch suppression circuit design  
• Multiple keys detection  
• Standby key press detection  
LVDS Display Bridge  
Connectivity  
Peripherals  
LVDS Display Bridge is used to connect the IPU (Image  
Processing Unit) to External LVDS Display Interface.  
LDB supports two channels; each channel has following  
signals:  
• One clock pair  
• Four data pairs  
Each signal pair contains LVDS special differential pad  
(PadP, PadM).  
MLB150  
MMDC  
MediaLB  
Connectivity /  
Multimedia  
Peripherals  
The MLB interface module provides a link to a MOST®  
data network, using the standardized MediaLB protocol  
(up to 6144 fs).  
The module is backward compatible to MLB-50.  
Multi-Mode DDR  
Controller  
Connectivity  
Peripherals  
DDR Controller has the following features:  
• Supports 16/32-bit DDR3-800 (LV) or LPDDR2-800  
in i.MX 6Solo  
• Supports 16/32/64-bit DDR3-800 (LV) or  
LPDDR2-800 in i.MX 6DualLite  
• Supports 2x32 LPDDR2-800 in i.MX 6DualLite  
• Supports up to 4 GByte DDR memory space  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
15  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
OCOTP_CTRL  
OTP Controller  
Security  
The On-Chip OTP controller (OCOTP_CTRL) provides  
an interface for reading, programming, and/or overriding  
identification and control information stored in on-chip  
fuse elements. The module supports  
electrically-programmable poly fuses (eFUSEs). The  
OCOTP_CTRL also provides a set of volatile  
software-accessible signals that can be used for  
software control of hardware elements, not requiring  
non-volatility. The OCOTP_CTRL provides the primary  
user-visible mechanism for interfacing with on-chip fuse  
elements. Among the uses for the fuses are unique chip  
identifiers, mask revision numbers, cryptographic keys,  
JTAG secure mode, boot characteristics, and various  
control signals, requiring permanent non-volatility.  
OCRAM  
On-Chip Memory  
controller  
Data Path  
Clocking  
The On-Chip Memory controller (OCRAM) module is  
designed as an interface between system’s AXI bus and  
internal (on-chip) SRAM memory module.  
In i.MX 6Solo/6DualLite processors, the OCRAM is  
used for controlling the 128 KB multimedia RAM through  
a 64-bit AXI bus.  
OSC32KHz  
PCIe  
OSC32KHz  
Generates 32.768 KHz clock from external crystal.  
The PCIe IP provides PCI Express Gen 2.0 functionality.  
PCI Express 2.0  
Connectivity  
Peripherals  
PMU  
Power-Management  
functions  
Data Path  
Integrated power management unit. Used to provide  
power to various SoC domains.  
PWM-1  
PWM-2  
PWM-3  
PWM-4  
Pulse Width Modulation  
Connectivity  
Peripherals  
The pulse-width modulator (PWM) has a 16-bit counter  
and is optimized to generate sound from stored sample  
audio images and it can also generate tones. It uses  
16-bit resolution and a 4x16 data FIFO to generate  
sound.  
PXP  
PiXel Processing Pipeline Display Peripherals A high-performance pixel processor capable of 1  
pixel/clock performance for combined operations, such  
as color-space conversion, alpha blending,  
gamma-mapping, and rotation. The PXP is enhanced  
with features specifically for gray scale applications. In  
addition, the PXP supports traditional pixel/frame  
processing paths for still-image and video processing  
applications, allowing it to interface with the integrated  
EPD.  
RAM  
128 KB  
Internal RAM  
Secure/non-secure RAM  
Boot ROM  
Internal Memory  
Internal RAM, which is accessed through OCRAM  
memory controller.  
RAM  
16 KB  
Secured Internal  
Memory  
Secure/non-secure Internal RAM, interfaced through  
the CAAM.  
ROM  
96KB  
Internal Memory  
Supports secure and regular Boot Modes. Includes read  
protection on 4K region for content protection.  
ROMCP  
ROM Controller with  
Patch  
Data Path  
ROM Controller with ROM Patch support  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
16  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
The SDMA is multi-channel flexible DMA engine. It  
helps in maximizing system performance by off-loading  
the various cores in dynamic data routing. It has the  
following features:  
SDMA  
Smart Direct Memory  
Access  
System Control  
Peripherals  
• Powered by a 16-bit Instruction-Set micro-RISC  
engine  
• Multi-channel DMA supporting up to 32 time-division  
multiplexed DMA channels  
• 48 events with total flexibility to trigger any  
combination of channels  
• Memory accesses including linear, FIFO, and 2D  
addressing  
• Shared peripherals between Arm and SDMA  
• Very fast Context-Switching with 2-level priority  
based preemptive multi-tasking  
• DMA units with auto-flush and prefetch capability  
• Flexible address management for DMA transfers  
(increment, decrement, and no address changes on  
source and destination address)  
• DMA ports can handle unit-directional and  
bi-directional flows (copy mode)  
• Up to 8-word buffer for configurable burst transfers  
• Support of byte-swapping and CRC calculations  
• Library of Scripts and API is available  
SJC  
System JTAG Controller  
System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX  
6Solo/6DualLite processors use JTAG port for  
production, testing, and system debugging. In addition,  
the SJC provides BSR (Boundary Scan Register)  
standard support, which complies with IEEE1149.1 and  
IEEE1149.6 standards.  
The JTAG port must be accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX 6Solo/6DualLite SJC  
incorporates three security modes for protecting against  
unauthorized accesses. Modes are selected through  
eFUSE configuration.  
SNVS  
SPDIF  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine, Master Key  
Control, and Violation/Tamper Detection and reporting.  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. Has Transmitter  
and Receiver functionality.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
17  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
I2S/SSI/AC97 Interface  
Subsystem  
Brief Description  
SSI-1  
SSI-2  
SSI-3  
Connectivity  
Peripherals  
The SSI is a full-duplex synchronous interface, which is  
used on the AP to provide connectivity with off-chip  
audio peripherals. The SSI supports a wide variety of  
protocols (SSI normal, SSI network, I2S, and AC-97), bit  
depths (up to 24 bits per word), and clock / frame sync  
options.  
The SSI has two pairs of 8x24 FIFOs and hardware  
support for an external DMA controller in order to  
minimize its impact on system performance. The  
second pair of FIFOs provides hardware interleaving of  
a second audio stream that reduces CPU overhead in  
use cases where two time slots are being used  
simultaneously.  
TEMPMON  
Temperature Monitor  
System Control  
Peripherals  
The Temperature sensor IP is used for detecting die  
temperature. The temperature read out does not reflect  
case or ambient temperature. It reflects the temperature  
in proximity of the sensor location on the die.  
Temperature distribution may not be uniformly  
distributed, therefore the read out value may not be the  
reflection of the temperature value of the entire die.  
TZASC  
Trust-Zone Address  
Space Controller  
Security  
The TZASC (TZC-380 by Arm) provides security  
address region control functions required for intended  
application. It is used on the path to the DRAM  
controller.  
UART-1  
UART-2  
UART-3  
UART-4  
UART-5  
UART Interface  
Connectivity  
Peripherals  
Each of the UARTv2 modules support the following  
serial data transmit/receive protocols and  
configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx  
supporting auto-baud  
• IrDA 1.0 support (up to SIR speed of 115200 bps)  
• Option to operate as 8-pins full UART, DCE, or DTE  
USBOH3  
USB 2.0 High Speed  
OTG and 3x HS Hosts  
Connectivity  
Peripherals  
USBOH3 contains:  
• One high-speed OTG module with integrated HS  
USB PHY  
• One high-speed Host module with integrated HS  
USB PHY  
• Two identical high-speed Host modules connected to  
HSIC USB ports.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
18  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
i.MX 6Solo/6DualLite specific SoC characteristics:  
All four MMC/SD/SDIO controller IPs are identical and  
are based on the uSDHC IP. They are:  
• Conforms to the SD Host Controller Standard  
Specification version 3.0.  
uSDHC-1  
uSDHC-2  
uSDHC-3  
uSDHC-4  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card / Secure Digital Host  
Controller  
Connectivity  
Peripherals  
• Fully compliant with MMC command/response sets  
and Physical Layer as defined in the Multimedia Card  
System Specification, v4.2/4.3/4.4/4.41 including  
high-capacity (size > 2 GB) cards HC MMC.  
• Fully compliant with SD command/response sets and  
Physical Layer as defined in the SD Memory Card  
Specifications, v3.0 including high-capacity SDHC  
cards up to 32 GB and SDXC cards up to 2 TB.  
• Fully compliant with SDIO command/response sets  
and interrupt/read-wait mode as defined in the SDIO  
Card Specification, Part E1, v3.0  
All four ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s  
max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for  
MMC cards up to 52 MHz in both SDR and DDR  
modes (104 MB/s max)  
However, the SoC level integration and I/O muxing logic  
restrict the functionality to the following:  
• Instances #1 and #2 are primarily intended to serve  
as external slots or interfaces to on-board SDIO  
devices. These ports are equipped with “Card  
detection” and “Write Protection” pads and do not  
support hardware reset.  
• Instances #3 and #4 are primarily intended to serve  
interfaces to embedded MMC memory or interfaces  
to on-board SDIO devices. These ports do not have  
“Card detection” and “Write Protection” pads and do  
support hardware reset.  
• All ports can work with 1.8 V and 3.3 V cards. There  
are two completely independent I/O power domains  
for Ports #1 and #2 in four bit configuration (SD  
interface). Port #3 is placed in his own independent  
power domain and port #4 shares power domain with  
some other interfaces.  
VDOA  
VPU  
VDOA  
Multimedia  
Peripherals  
Video Data Order Adapter (VDOA): used to re-order  
video data from the “tiled” order used by the VPU to the  
conventional raster-scan order needed by the IPU.  
Video Processing Unit  
Multimedia  
Peripherals  
A high-performing video processing unit (VPU), which  
covers many SD-level and HD-level video decoders and  
SD-level encoders as a multi-standard video codec  
engine as well as several important video processing,  
such as rotation and mirroring.  
See the i.MX 6Solo/6DualLite Reference Manual  
(IMX6SDLRM) for complete list of VPU’s  
decoding/encoding capabilities.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
19  
Modules List  
Table 2. i.MX 6Solo/6DualLite Modules List (continued)  
Block Mnemonic  
Block Name  
Subsystem  
Brief Description  
WDOG-1  
Watch Dog  
Timer Peripherals  
The Watch Dog Timer supports two comparison points  
during each counting period. Each of the comparison  
points is configurable to evoke an interrupt to the Arm  
core, and a second point evokes an external event on  
the WDOG line.  
WDOG-2  
(TZ)  
Watch Dog (TrustZone)  
Timer Peripherals  
The TrustZone Watchdog (TZ WDOG) timer module  
protects against TrustZone starvation by providing a  
method of escaping normal mode and forcing a switch  
to the TZ mode. TZ starvation is a situation where the  
normal OS prevents switching to the TZ mode. Such  
situation is undesirable as it can compromise the  
system’s security. Once the TZ WDOG module is  
activated, it must be serviced by TZ software on a  
periodic basis. If servicing does not take place, the timer  
times out. Upon a time-out, the TZ WDOG asserts a TZ  
mapped interrupt that forces switching to the TZ mode.  
If it is still not served, the TZ WDOG asserts a security  
violation signal to the CSU. The TZ WDOG module  
cannot be programmed or deactivated by a normal  
mode SW.  
WEIM  
NOR-Flash /PSRAM  
interface  
Connectivity  
Peripherals  
The WEIM NOR-FLASH / PSRAM provides:  
• Support 16-bit (in muxed IO mode only) PSRAM  
memories (sync and async operating modes), at slow  
frequency  
• Support 16-bit (in muxed IO mode only) NOR-Flash  
memories, at slow frequency  
• Multiple chip selects  
XTALOSC  
Crystal Oscillator I/F  
Clocks, Resets, and The XTALOSC module enables connectivity to external  
Power Control  
crystal oscillator device. In a typical application  
use-case, it is used for 24 MHz oscillator to provide USB  
required frequency.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
20  
Modules List  
3.1  
Special Signal Considerations  
Table 3 lists special signal considerations for the i.MX 6Solo/6DualLite processors. The signal names are  
listed in alphabetical order.  
The package contact assignments can be found in Section 6, “Package Information and Contact  
Assignments.” Signal descriptions are provided in the i.MX 6Solo/6DualLite Reference Manual  
(IMX6SDLRM).  
Table 3. Special Signal Considerations  
Signal Name  
Remarks  
CLK1_P/CLK1_N  
CLK2_P/CLK2_N  
Two general purpose differential high speed clock Input/outputs are provided.  
Any or both of them could be used:  
• To feed external reference clock to the PLLs and further to the modules inside SoC, for example  
as alternate reference clock for PCIe, Video/Audio interfaces, etc.  
• To output internal SoC clock to be used outside the SoC as either reference clock or as a  
functional clock for peripherals, for example it could be used as an output of the PCIe master  
clock (root complex use)  
See the i.MX 6Solo/6DualLite reference manual for details on the respective clock trees.  
The clock inputs/outputs are LVDS differential pairs compatible with TIA/EIA-644 standard, the  
maximum frequency range supported is 0...600 MHz.  
Alternatively one may use single ended signal to drive CLKx_P input. In this case corresponding  
CLKx_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.  
Termination should be provided in case of high frequency signals.  
See LVDS pad electrical specification for further details.  
After initialization, the CLKx inputs/outputs could be disabled (if not used). If unused any or both of  
the CLKx_N/P pairs may remain unconnected.  
XTALOSC_RTC_XTALI/ If the user wishes to configure XTALOSC_RTC_XTALI and RTC_XTALO as an RTC oscillator, a  
RTC_XTALO  
32.768 kHz crystal, (100 kΩ ESR, 10 pF load) should be connected between  
XTALOSC_RTC_XTALI and RTC_XTALO. Remember that the capacitors implemented on either  
side of the crystal are about twice the crystal load capacitor. To hit the exact oscillation frequency,  
the board capacitors need to be reduced to account for board and chip parasitics. The integrated  
oscillation amplifier is self biasing, but relatively weak. Care must be taken to limit parasitic leakage  
from XTALOSC_RTC_XTALI and RTC_XTALO to either power or ground (>100 MΩ). This will  
debias the amplifier and cause a reduction of startup margin. Typically XTALOSC_RTC_XTALI and  
RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into XTALOSC_RTC_XTALI the RTC_XTALO  
pin must remain unconnected or driven with a complimentary signal. The logic level of this forcing  
clock must not exceed VDD_SNVS_CAP level and the frequency must be <100 kHz under typical  
conditions.  
XTALI/XTALO  
• A 24.0 MHz crystal should be connected between XTALI and XTALO level and the frequency  
should be <32 MHz under typical conditions. See the Hardware Development Guide  
(IMX6DQ6SDLHDG), Design Checklist chapter, for details on crystal selection.  
• NXP BSP (board support package) software requires 24 MHz on XTALI/XTALO.  
• The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALI must be directly driven by the external oscillator and XTALO remains unconnected.  
• The XTALI signal level must swing from ~0.8 x NVCC_PLL_OUT to ~0.2 V. If this clock is used  
as a reference for USB and PCIe, then there are strict frequency tolerance and jitter  
requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
21  
Modules List  
Table 3. Special Signal Considerations (continued)  
Remarks  
Signal Name  
DRAM_VREF  
When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the  
NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a  
1 kΩ 0.5% resistor to GND and a 1 kΩ 0.5% resistor to NVCC_DRAM. Shunt each resistor with a  
closely-mounted 0.1 µF capacitor.  
To reduce supply current, a pair of 1.5 kΩ 0.1% resistors can be used. Using resistors with  
recommended tolerances ensures the 2% DDR_VREF tolerance (per the DDR3 specification) is  
maintained when four DDR3 ICs plus the i.MX 6Solo/6DualLite are drawing current on the resistor  
divider.  
It is recommended to use regulated power supply for “big” memory configurations (more that eight  
devices).  
ZQPAD  
DRAM calibration resistor 240 Ω 1% used as reference during DRAM output buffer driver  
calibration should be connected between this pad and GND.  
NVCC_LVDS_2P5  
The DDR pre-drivers share the NVCC_LVDS_2P5 ball with the LVDS interface. This ball can be  
shorted to VDD_HIGH_CAP on the circuit board.  
VDD_FA  
FA_ANA  
These signals are reserved for NXP manufacturing use only. User must tie both connections to  
GND.  
GPANAIO  
Analog output for NXP use only. This output must remain unconnected.  
JTAG_nnnn  
The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated  
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
must be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX 6Solo/6DualLite reference manual. Both  
names refer to the same signal. JTAG_MOD must be externally connected to GND for normal  
operation. Termination to GND through an external pull-down resistor (such as 1 kΩ) is allowed.  
JTAG_MOD set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard.  
JTAG_MOD set to low configures the JTAG interface for common SW debug adding all the system  
TAPs to the chain.  
NC  
These signals are not functional and must remain unconnected by the user.  
This cold reset negative logic input resets all modules and logic in the IC.  
SRC_POR_B  
ONOFF  
In normal mode may be connected to ON/OFF button (De-bouncing provided at this input).  
Internally this pad is pulled up. Short connection to GND in OFF mode causes internal power  
management state machine to change state to ON. In ON mode short connection to GND  
generates interrupt (intended to SW controllable power down). Long above ~5s connection to GND  
causes “forced” OFF.  
TEST_MODE  
PCIE_REXT  
TEST_MODE is for NXP factory use. This signal is internally connected to an on-chip pull-down  
device. This signal must either be tied to Vss or remain unconnected.  
The impedance calibration process requires connection of reference resistor 200 Ω 1% precision  
resistor on PCIE_REXT pad to ground.  
CSI_REXT  
DSI_REXT  
MIPI CSI PHY reference resistor. Use 6.04 KΩ 1% resistor connected between this pad and GND  
MIPI DSI PHY reference resistor. Use 6.04 KΩ 1% resistor connected between this pad and GND  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
22  
Electrical Characteristics  
Table 4. JTAG Controller Interface Summary  
I/O Type  
JTAG  
On-Chip Termination  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
47 kΩ pull-up  
47 kΩ pull-up  
47 kΩ pull-up  
Keeper  
Input  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
47 kΩ pull-up  
100 kΩ pull-up  
Input  
3.2  
Recommended Connections for Unused Analog Interfaces  
The recommended connections for unused analog interfaces can be found in the section, “Unused analog  
interfaces,” of the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of  
Applications Processors (IMX6DQ6SDLHDG).  
4 Electrical Characteristics  
This section provides the device and module-level electrical characteristics for the i.MX 6Solo/6DualLite  
processors.  
4.1  
Chip-Level Conditions  
This section provides the device-level electrical characteristics for the IC. See Table 5 for a quick reference  
to the individual tables and sections.  
Table 5. i.MX 6Solo/6DualLite Chip-Level Conditions  
For these characteristics, …  
Absolute Maximum Ratings  
Topic appears …  
on page 24  
on page 25  
on page 26  
on page 28  
on page 29  
on page 30  
on page 32  
on page 32  
BGA Case 2240 Package Thermal Resistance  
Operating Ranges  
External Clock Sources  
Maximum Supply Currents  
Low Power Mode Supply Currents  
USB PHY Current Consumption  
PCIe 2.0 Power Consumption  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
23  
Electrical Characteristics  
4.1.1  
Absolute Maximum Ratings  
CAUTION  
Stresses beyond those listed under Table 6 may cause permanent damage to  
the device. These are stress ratings only. Functional operation of the device  
at these or any other conditions beyond those indicated under  
“recommended operating conditions” is not implied. Exposure to  
absolute-maximum-rated conditions for extended periods may affect device  
reliability.  
Table 6 shows the absolute maximum operating ratings.  
Table 6. Absolute Maximum Ratings  
Parameter Description  
Symbol  
Min  
Max  
Unit  
Core supply input voltage (LDO enabled)  
VDD_ARM_IN  
VDD_SOC_IN  
-0.3  
1.6  
V
Core supply input voltage (LDO bypass)  
Core supply output voltage (LDO enabled)  
VDD_ARM_IN  
VDD_SOC_IN  
-0.3  
-0.3  
1.4  
1.4  
V
V
VDD_ARM_CAP  
VDD_SOC_CAP  
VDD_PU_CAP  
VDD_HIGH_IN supply voltage (LDO enabled)  
VDD_HIGH_CAP supply output voltage  
DDR I/O supply voltage  
VDD_HIGH_IN  
VDD_HIGH_CAP  
NVCC_DRAM  
-0.3  
-0.3  
-0.4  
3.7  
2.85  
1.975 (See note 1)  
V
V
V
GPIO I/O supply voltage  
NVCC_CSI  
NVCC_EIM  
NVCC_ENET  
NVCC_GPIO  
NVCC_LCD  
NVCC_NAND  
NVCC_SD  
-0.5  
3.7  
V
NVCC_JTAG  
HDMI and PCIe high PHY VPH supply voltage  
HDMI and PCIe low PHY VP supply voltage  
LVDS and MIPI I/O supply voltage (2.5V supply)  
HDMI_VPH  
PCIE_VPH  
-0.3  
-0.3  
-0.3  
2.85  
1.4  
V
V
V
HDMI_VP  
PCIE_VP  
NVCC_LVDS_2P5  
NVCC_MIPI  
2.85  
PCIe PHY supply voltage  
RGMII I/O supply voltage  
PCIE_VPTX  
NVCC_RGMII  
VDD_SNVS_IN  
-0.3  
-0.5  
-0.3  
1.4  
2.725  
3.4  
V
V
V
SNVS IN supply voltage  
(Secure Non-Volatile Storage and Real Time Clock)  
USB I/O supply voltage  
USB_H1_DN  
USB_H1_DP  
USB_OTG_DN  
USB_OTG_DP  
USB_OTG_CHD_B  
-0.3  
3.73  
V
USB VBUS supply voltage  
USB_H1_VBUS  
USB_OTG_VBUS  
5.35  
V
V
Vin/Vout input/output voltage range (non-DDR pins)  
Vin/Vout  
-0.5  
OVDD+0.3 (See note 2)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
24  
Electrical Characteristics  
Table 6. Absolute Maximum Ratings (continued)  
Parameter Description  
Symbol  
Min  
Max  
Unit  
Vin/Vout input/output voltage range (DDR pins)  
ESD immunity (HBM)  
Vin/Vout  
Vesd_HBM  
Vesd_CDM  
Tstorage  
-0.5 OVDD+0.4 (See notes 1 & 2)  
V
V
2000  
500  
ESD immunity (CDM)  
V
Storage temperature range  
-40  
150  
°C  
1
The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the  
allowed signal overshoot must be derated if NVCC_DRAM exceeds 1.575V.  
2
OVDD is the I/O supply voltage.  
4.1.2  
Thermal Resistance  
NOTE  
Per JEDEC JESD51-2, the intent of thermal resistance measurements is  
solely for a thermal performance comparison of one package to another in a  
standardized environment. This methodology is not meant to and will not  
predict the performance of a package in an application-specific  
environment.  
4.1.2.1  
BGA Case 2240 Package Thermal Resistance  
Table 7 displays the thermal resistance data.  
Table 7. Thermal Resistance Data  
Rating  
Test Conditions  
Symbol  
Value  
Unit  
Junction to Ambient1  
Single-layer board (1s); natural convection2  
Four-layer board (2s2p); natural convection2  
RθJA  
RθJA  
38  
23  
oC/W  
oC/W  
Junction to Ambient1  
Single-layer board (1s); airflow 200 ft/min2,3  
Four-layer board (2s2p); airflow 200 ft/min2,3  
RθJA  
RθJA  
30  
20  
oC/W  
oC/W  
Junction to Board1,4  
RθJB  
RθJC  
ΨJT  
14  
6
oC/W  
oC/W  
oC/W  
Junction to Case1,5  
Junction to Package Top1,6  
Natural convection  
2
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2
Per JEDEC JESD51-2 with the single layer board horizontal. Thermal test board meets JEDEC specification for the specified  
package.  
3
4
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
25  
Electrical Characteristics  
4.1.3  
Operating Ranges  
Table 8 provides the operating ranges of the i.MX 6Solo/6DualLite processors. For details on the chip's  
power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6Solo/6DualLite Reference  
Manual (IMX6SDLRM).  
Table 8. Operating Ranges  
Parameter  
Description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment2  
Run mode: LDO  
enabled  
VDD_ARM_IN  
1.3503  
1.5  
V
LDO Output Set Point (VDD_ARM_CAP) =  
1.225 V minimum for operation up to 996MHz.  
1.2753  
1.253  
1.5  
1.5  
1.5  
V
V
V
LDO Output Set Point (VDD_ARM_CAP) =  
1.150 V minimum for operation up to 792MHz.  
LDO Output Set Point (VDD_ARM_CAP) =  
1.125 V minimum for operation up to 396MHz.  
VDD_SOC_IN  
VDD_ARM_IN  
1.2753,4  
VPU 328 MHz, VDD_SOC and VDD_PU  
LDO outputs (VDD_SOC_CAP and  
VDD_PU_CAP) = 1.225 V6 maximum and  
1.15 V minimum.  
Run mode: LDO  
bypassed  
1.250  
1.150  
1.125  
1.1505  
0.9  
1.3  
1.3  
V
V
V
V
V
LDO bypassed for operation up to 996 MHz  
LDO bypassed for operation up to 792 MHz  
LDO bypassed for operation up to 396 MHz  
LDO bypassed for operation VPU 328 MHz  
1.3  
1.216  
VDD_SOC_IN  
VDD_ARM_IN  
Standby/DSM mode  
1.3  
Refer to Table 11, "Stop Mode Current and  
Power Consumption," on page 30.  
VDD_SOC_IN  
VDD_HIGH_IN  
0.9  
2.8  
1.2256  
3.3  
V
V
VDD_HIGH internal  
regulator  
Must match the range of voltages that the  
rechargeable backup battery supports.  
Backupbatterysupply  
range  
VDD_SNVS_IN7  
2.9  
3.3  
V
Should be supplied from the same supply as  
VDD_HIGH_IN if the system does not require  
keeping real time and other data on OFF  
state.  
USB supply voltages  
USB_OTG_VBUS  
USB_H1_VBUS  
NVCC_DRAM  
4.4  
4.4  
5.25  
5.25  
1.3  
V
V
V
V
V
V
DDR I/O supply  
voltage  
1.14  
1.425  
1.283  
1.15  
1.2  
1.5  
1.35  
LPDDR2  
1.575  
1.45  
2.625  
DDR3  
DDR3L  
Supply for RGMII I/O  
power group8  
NVCC_RGMII  
1.15 V–1.30 V in HSIC 1.2 V mode  
1.43 V–1.58 V in RGMII 1.5 V mode  
1.70 V–1.90 V in RGMII 1.8 V mode  
2.25 V–2.625 V in RGMII 2.5 V mode  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
26  
Electrical Characteristics  
Table 8. Operating Ranges (continued)  
Parameter  
Description  
Symbol  
Min  
Typ  
Max1  
Unit  
Comment2  
GPIO supply  
NVCC_CSI,  
NVCC_EIM,  
NVCC_ENET,  
NVCC_GPIO,  
NVCC_LCD,  
NVCC_NANDF,  
NVCC_SD1,  
NVCC_SD2,  
NVCC_SD3,  
NVCC_JTAG  
1.65  
1.8,  
2.8,  
3.3  
3.6  
V
voltages8  
NVCC_LVDS_2P59  
NVCC_MIPI  
2.25  
2.5  
2.75  
V
HDMI supply voltages  
PCIe supply voltages  
HDMI_VP  
HDMI_VPH  
PCIE_VP  
0.99  
2.25  
1.1  
2.5  
1.1  
2.5  
1.1  
1.3  
V
V
V
V
V
2.75  
1.21  
2.75  
1.21  
105  
1.023  
2.325  
1.023  
-20  
PCIE_VPH  
PCIE_VPTX  
T
Junction temperature  
Extended commercial  
oC See i.MX 6Solo/6DualLite Product Lifetime  
Usage Estimates Application Note, AN4725,  
for information on product lifetime for this  
processor.  
J
T
J
Junction temperature  
Standard commercial  
0
95  
oC See i.MX 6Solo/6DualLite Product Lifetime  
Usage Estimates Application Note, AN4725,  
for information on product lifetime for this  
processor.  
1
2
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.  
See the Hardware Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors  
(IMX6DQ6SDLHDG) for bypass capacitors requirements for each of the *_CAP supply outputs.  
3
4
VDD_ARM_IN and VDD_SOC_IN must be 125 mV higher than the LDO Output Set Point for correct regulator supply voltage.  
In LDO enabled mode, the internal LDO output set points must be configured such that the:  
VDD_ARM LDO output set point does not exceed the VDD_SOC LDO output set point by more than 100 mV.  
VDD_SOC LDO output set point is equal to the VDD_PU LDO output set point.  
The VDD_ARM LDO output set point can be lower than the VDD_SOC LDO output set point, however, the minimum output set  
points shown in this table must be maintained.  
5
6
In LDO bypassed mode, the external power supply must ensure that VDD_ARM_IN does not exceed VDD_SOC_IN by more  
than 100 mV. The VDD_ARM_IN supply voltage can be lower than the VDD_SOC_IN supply voltage. The minimum voltages  
shown in this table must be maintained.  
When using VDD_SOC_CAP to supply the PCIE_VP and PCIE_VPTX, the maximum setting is 1.175V. If VDD_SOC_CAP  
requires setting to 1.2V or higher, the PCIE_VP and PCIE_VPTX must use an external supply to guarantee not to exceed the  
1.21V maximum operating voltage.  
7
8
9
While setting VDD_SNVS_IN voltage with respect to Charging Currents and RTC, refer to Hardware Development Guide for i.MX  
6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).  
All digital I/O supplies (NVCC_xxxx) must be powered under normal conditions whether the associated I/O pins are in use or not  
and associated IO pins need to have a pull-up or pull-down resistor applied to limit any non-connected gate current.  
This supply also powers the pre-drivers of the DDR IO pins, hence, it must be always provided, even when LVDS is not used.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
27  
Electrical Characteristics  
4.1.4  
External Clock Sources  
Each i.MX 6Solo/6DualLite processor has two external input system clocks: a low frequency  
(RTC_XTALI) and a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
NOTE  
The internal RTC oscillator does not provide an accurate frequency and is  
affected by process, voltage, and temperature variations. NXP strongly  
recommends using an external crystal as the RTC_XTALI reference. If the  
internal oscillator is used instead, careful consideration must be given to the  
timing implications on all of the SoC modules dependent on this clock.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 9 shows the interface frequency requirements.  
Table 9. External Input Clock Frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX 6Dual, 6Quad, 6Solo, 6DualLite Families of Applications Processors (IMX6DQ6SDLHDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
The typical values shown in Table 9 are required for use with NXP BSPs to ensure precise time keeping  
and USB operation. For XTALOSC_RTC_XTALI operation, two clock sources are available.  
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:  
— Approximately 25 µA more Idd than crystal oscillator  
— Approximately 50ꢀ tolerance  
— No external component required  
— Starts up quicker than 32 kHz crystal oscillator  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
— If no external crystal is present, then the ring oscillator is used  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
28  
NXP Semiconductors  
Electrical Characteristics  
The choice of a clock source must be based on real-time clock use and precision timeout.  
4.1.5  
Maximum Supply Currents  
The Power Virus numbers shown in Table 10 represent a use case designed specifically to show the  
maximum current consumption possible. All cores are running at the defined maximum frequency and are  
limited to L1 cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a  
very limited practical use case, if at all, and be limited to an extremely low duty cycle unless the intention  
was to specifically show the worst case power consumption.  
The NXP power management IC, MMPF0100xxxx, which is targeted for the i.MX 6 series processor  
family, supports the power consumption shown in Table 10, however a robust thermal design is required  
for the increased system power dissipation.  
See the i.MX 6Solo/6DualLite Power Consumption Measurement Application Note (AN4576) for more  
details on typical power consumption under various use case definitions.  
Table 10. Maximum Supply Currents  
Power Line  
VDD_ARM_IN  
Conditions  
Max Current  
Unit  
i.MX 6DualLite: 996 MHz Arm clock based on  
Power Virus operation  
2200  
mA  
i.MX 6Solo: 996 MHz Arm clock based on Power  
Virus operation  
1320  
mA  
VDD_SOC_IN  
VDD_HIGH_IN  
VDD_SNVS_IN  
996 MHz Arm clock  
1260  
1251  
2752  
253  
mA  
mA  
μA  
USB_OTG_VBUS/  
mA  
USB_H1_VBUS (LDO 3P0)  
Primary Interface (IO) Supplies  
4
NVCC_DRAM  
NVCC_ENET  
NVCC_LCD  
NVCC_GPIO  
NVCC_CSI  
N=10  
N=29  
N=24  
N=20  
N=53  
N=6  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
Use maximum IO equation5  
NVCC_EIM  
NVCC_JTAG  
NVCC_RGMII  
NVCC_SD1  
NVCC_SD2  
NVCC_SD3  
NVCC_NANDF  
N=6  
N=6  
N=6  
N=11  
N=26  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
29  
Electrical Characteristics  
Table 10. Maximum Supply Currents (continued)  
Conditions  
Power Line  
Max Current  
Unit  
NVCC_LVDS2P56  
NVCC_LVDS2P5 is connected to  
VDD_HIGH_CAP at the board level.  
VDD_HIGH_CAP is capable of  
handing the current required by  
NVCC_LVDS2P5.  
MISC  
DDR_VREF  
1
mA  
1
The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the  
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS_2P5, NVCC_MIPI, or  
HDMI and PCIe VPH supplies).  
2
Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown in Table 10. The maximum  
VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal  
to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of  
sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.  
3
4
This is the maximum current per active USB physical interface.  
The DRAM power consumption is dependent on several factors, such as external signal termination. DRAM power calculators  
are typically available from the memory vendors. They take in account factors, such as signal termination. See the i.MX  
6Solo/DualLite Power Consumption Measurement Application Note (AN4576) for examples of DRAM power consumption  
during specific use case scenarios.  
5
General equation for estimated, maximum power consumption of an IO power supply:  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
6
NVCC_LVDS2P5 is supplied by VDD_HIGH_CAP (by external connection) so the maximum supply current is included in the  
current shown for VDD_HIGH_IN. The maximum supply current for NVCC_LVDS2P5 has not been characterized separately.  
4.1.6  
Low Power Mode Supply Currents  
Table 11 shows the current core consumption (not including I/O) of i.MX 6Solo/6DualLite processors in  
selected low power modes.  
Table 11. Stop Mode Current and Power Consumption  
Mode  
Test Conditions  
Supply  
Typical1  
Units  
WAIT  
• Arm, SoC, and PU LDOs are set to 1.225  
• HIGH LDO set to 2.5 V  
• Clocks are gated.  
• DDR is in self refresh.  
• PLLs are active in bypass (24MHz)  
• Supply Voltages remain ON  
VDD_ARM_IN (1.4V)  
VDD_SOC_IN (1.4V)  
VDD_HIGH_IN (3.0V)  
Total  
4.5  
23  
mA  
13.5  
79  
mW  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
30  
Electrical Characteristics  
Table 11. Stop Mode Current and Power Consumption (continued)  
Mode  
STOP_ON  
Test Conditions  
• Arm LDO set to 0.9V  
• SoC and PU LDOs set to 1.225 V  
• HIGH LDO set to 2.5 V  
• PLLs disabled  
Supply  
Typical1  
Units  
VDD_ARM_IN (1.4V)  
VDD_SOC_IN (1.4V)  
VDD_HIGH_IN (3.0V)  
Total  
4
22  
mA  
mW  
mA  
8.5  
61.9  
4
• DDR is in self refresh.  
STOP_OFF  
STANDBY  
• Arm LDO set to 0.9V  
• SoC LDO set to: 1.225 V  
• PU LDO is power gated  
• HIGH LDO set to 2.5 V  
• PLLs disabled  
VDD_ARM_IN (1.4V)  
VDD_SOC_IN (1.4V)  
VDD_HIGH_IN (3.0V)  
Total  
13.5  
7.5  
47  
mW  
mA  
• DDR is in self refresh  
• Arm and PU LDOs are power gated  
• SoC LDO is in bypass  
• HIGH LDO is set to 2.5V  
• PLLs are disabled  
• Low Voltage  
• Well Bias ON  
VDD_ARM_IN (0.9V)  
VDD_SOC_IN (0.9V)  
VDD_HIGH_IN (3.0V)  
Total  
0.1  
5
5
19.6  
mW  
• Crystal oscillator is enabled  
Deep Sleep Mode  
(DSM)  
• Arm and PU LDOs are power gated  
• SoC LDO is in bypass  
• HIGH LDO is set to 2.5V  
• PLLs are disabled  
• Low Voltage  
• Well Bias ON  
VDD_ARM_IN (0.9V)  
VDD_SOC_IN (0.9V)  
VDD_HIGH_IN (3.0V)  
Total  
0.1  
2
mA  
0.5  
3.4  
mW  
• Crystal oscillator and bandgap are disabled  
SNVS only  
• VDD_SNVS_IN powered  
• All other supplies off  
• SRTC running  
VDD_SNVS_IN (2.8V)  
Total  
41  
μA  
115  
mW  
1
The typical values shown here are for information only and are not guaranteed. These values are average values measured  
on a typical wafer at 25°C.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
31  
Electrical Characteristics  
4.1.7  
USB PHY Current Consumption  
4.1.7.1  
Power Down Mode  
In power down mode, everything is powered down, including the USB_VBUS valid detectors in typical  
condition. Table 12 shows the USB interface current consumption in power down mode.  
Table 12. USB PHY Current Consumption in Power Down Mode  
VDD_USB_CAP (3.0 V)  
VDD_HIGH_CAP (2.5 V)  
NVCC_PLL_OUT (1.1 V)  
Current  
5.1 μA  
1.7 μA  
<0.5 μA  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level shifters.  
4.1.8  
PCIe 2.0 Power Consumption  
Table 13 provides PCIe PHY currents under certain Tx operating modes.  
Table 13. PCIe PHY Current Drain  
Mode  
Test Conditions  
Supply  
Max Current  
Unit  
P0: Normal Operation  
5G Operations  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
PCIE_VP (1.1 V)  
PCIE_VPTX (1.1 V)  
PCIE_VPH (2.5 V)  
40  
20  
mA  
21  
2.5G Operations  
5G Operations  
2.5G Operations  
27  
20  
20  
P0s: Low Recovery Time  
Latency, Power Saving State  
30  
mA  
2.4  
18  
20  
2.4  
18  
P1: Longer Recovery Time  
Latency, Lower Power State  
12  
mA  
mA  
2.4  
12  
Power Down  
1.3  
0.18  
0.36  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
32  
Electrical Characteristics  
4.1.9  
HDMI Power Consumption  
Table 14 provides HDMI PHY currents for both Active 3D Tx with LFSR15 data and power-down modes.  
Table 14. HDMI PHY Current Drain  
Mode  
Test Conditions  
Supply  
Max Current  
Unit  
Active  
Bit rate 251.75 Mbps  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
HDMI_VPH  
HDMI_VP  
14  
4.1  
14  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
μA  
Bit rate 279.27 Mbps  
Bit rate 742.5 Mbps  
Bit rate 1.485 Gbps  
Bit rate 2.275 Gbps  
Bit rate 2.97 Gbps  
4.2  
17  
7.5  
17  
12  
16  
17  
19  
22  
Power-down  
49  
1100  
μA  
4.2  
Power Supplies Requirements and Restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
4.2.1  
Power-Up Sequence  
The restrictions that follow must be observed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
The SRC_POR_B signal controls the processor POR and must be immediately asserted at  
power-up and remain asserted until the VDD_ARM_CAP, VDD_SOC_CAP, and VDD_PU_CAP  
supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either order with no  
restrictions.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
33  
Electrical Characteristics  
NOTE  
Ensure that there is no back voltage (leakage) from any supply on the board  
towards the 3.3 V supply (for example, from the external components that  
use both the 1.8 V and 3.3 V supplies).  
NOTE  
USB_OTG_VBUS and USB_H1_VBUS are not part of the power supply  
sequence and may be powered at any time.  
4.2.2  
Power-Down Sequence  
No special restrictions for i.MX 6Solo/6DualLite IC.  
4.2.3  
Power Supplies Usage  
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package Information  
and Contact Assignments.”  
NOTE  
When the PCIE interface is not used, the PCIE_VP, PCIE_VPH, and  
PCIE_VPTX supplies must be powered or grounded. The input and output  
supplies for the remaining ports (PCIE_REXT, PCIE_RX_N, PCIE_RX_P,  
PCIE_TX_N, and PCIE_TX_P) can remain unconnected. It is  
recommended not to turn the PCIE_VPH supply OFF while the PCIE_VP  
supply is ON, as it may lead to excessive power consumption. If boundary  
scan test is used, PCIE_VP, PCIE_VPH, and PCIE_VPTX must remain  
powered.  
4.3  
Integrated LDO Voltage Regulator Parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use  
only and should not be used to power any external circuitry. See the i.MX 6Solo/6DualLite Reference  
Manual (IMX6SDLRM) for details on the power tree scheme.  
NOTE  
The *_CAP signals must not be powered externally. These signals are  
intended for internal LDO or LDO bypass operation only.  
4.3.1  
Digital Regulators (LDO_ARM, LDO_PU, LDO_SOC)  
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because  
of their construction). The advantages of the regulators are to reduce the input supply variation because of  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
34  
NXP Semiconductors  
Electrical Characteristics  
their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for  
the on-chip logics.  
These regulators have three basic modes:  
Bypass. The regulation FET is switched fully on passing the external voltage, to the load unaltered.  
The analog part of the regulator is powered down in this state, removing any loss other than the IR  
drop through the power grid and FET.  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV  
steps.  
For additional information, see the i.MX 6Solo/6DualLite reference manual.  
4.3.2  
Regulators for Analog Modules  
LDO_1P1  
4.3.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 8 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V  
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, LVDS Phy, HDMI  
Phy, MIPI Phy, and PLLs. A programmable brown-out detector is included in the regulator that can be used  
by the system to determine when the load capability of the regulator is being exceeded to take the necessary  
steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.  
Active-pull-down can also be enabled for systems requiring this feature.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors  
(IMX6DQ6SDLHDG).  
For additional information, see the i.MX 6Solo/6DualLite reference manual (IMX6SDLRM).  
4.3.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 8 for minimum and maximum input requirements). Typical Programming Operating Range is  
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB Phy, LVDS Phy,  
HDMI Phy, MIPI Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the  
regulator that can be used by the system to determine when the load capability of the regulator is being  
exceeded, to take the necessary steps. Current-limiting can be enabled to allow for in-rush current  
requirements during start-up, if needed. Active-pull-down can also be enabled for systems requiring this  
feature. An alternate self-biased low-precision weak-regulator is included that can be enabled for  
applications needing to keep the output voltage alive during low-power modes where the main regulator  
driver and its associated global bandgap reference module are disabled. The output of the weak-regulator  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
35  
Electrical Characteristics  
is not programmable and is a function of the input supply as well as the load current. Typically, with a 3 V  
input supply the weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors  
(IMX6DQ6SDLHDG).  
For additional information, see the i.MX 6Solo/6DualLite reference manual.  
4.3.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the  
USB_OTG_VBUS and USB_H1_VBUS voltages (4.4 V–5.25 V) to produce a nominal 3.0 V output  
voltage. A programmable brown-out detector is included in the regulator that can be used by the system to  
determine when the load capability of the regulator is being exceeded, to take the necessary steps. This  
regulator has a built in power-mux that allows the user to select to run the regulator from either  
USB_VBUS supply, when both are present. If only one of the USB_VBUS voltages is present, then, the  
regulator automatically selects this supply. Current limit is also included to help the system meet in-rush  
current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors  
(IMX6DQ6SDLHDG).  
For additional information, see the i.MX 6Solo/6DualLite reference manual.  
4.4  
PLL’s Electrical Characteristics  
4.4.1  
Audio/Video PLL’s Electrical Parameters  
Table 15. Audio/Video PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
<11250 reference cycles  
4.4.2  
528 MHz PLL  
Table 16. 528 MHz PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
528 MHz PLL output  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
36  
Electrical Characteristics  
Table 16. 528 MHz PLL’s Electrical Parameters (continued)  
Parameter  
Value  
Reference clock  
Lock time  
24 MHz  
<11250 reference cycles  
4.4.3  
4.4.4  
4.4.5  
Ethernet PLL  
Table 17. Ethernet PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
500 MHz  
24 MHz  
<11250 reference cycles  
480 MHz PLL  
Table 18. 480 MHz PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
<383 reference cycles  
MLB PLL  
The MediaLB PLL is necessary in the MediaLB 6-Pin implementation to phase align the internal and  
external clock edges, effectively tuning out the delay of the differential clock receiver and is also  
responsible for generating the higher speed internal clock, when the internal-to-external clock ratio is  
not 1:1.  
Table 19. MLB PLL’s Electrical Parameters  
Parameter  
Value  
Lock time  
<1 ms  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
37  
Electrical Characteristics  
4.4.6  
Arm PLL  
Table 20. Arm PLL’s Electrical Parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~ 1.3 GHz  
24 MHz  
<2250 reference cycles  
4.5  
On-Chip Oscillators  
OSC24M  
4.5.1  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL_OUT.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.5.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when  
VDD_HIGH_IN is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz  
clock will automatically switch to the internal ring oscillator.  
CAUTION  
The internal RTC oscillator does not provide an accurate frequency and is  
affected by process, voltage, and temperature variations. NXP strongly  
recommends using an external crystal as the RTC_XTALI reference. If the  
internal oscillator is used instead, careful consideration must be given to the  
timing implications on all of the SoC modules dependent on this clock.  
The OSC32k runs from VDD_SNVS_CAP supply, which comes from VDD_HIGH_IN/VDD_SNVS_IN.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
38  
NXP Semiconductors  
Electrical Characteristics  
Table 21. OSC32K Main Characteristics  
Characteristic  
Min  
Typ  
Max  
Comments  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K will work as well.  
Current consumption  
4 μA  
The 4 μA is the consumption of the oscillator alone (OSC32k). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 μA when ring oscillator is inactive, 20 μA  
when the ring oscillator is running. Another 1.5 μA is drawn from vdd_rtc  
in the power_detect block. So, the total current is 6.5 μA on vdd_rtc when  
the ring oscillator is not running.  
Bias resistor  
14 MΩ  
This the integrated bias resistor that sets the amplifier into a high gain  
state. Any leakage through the ESD network, external board leakage, or  
even a scope probe that is significant relative to this value will debias the  
amp. The debiasing will result in low gain, and will impact the circuit's ability  
to start up and maintain oscillations.  
Crystal Properties  
Cload  
ESR  
10 pF  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
50 kΩ  
100 kΩ Equivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.6  
I/O DC Parameters  
This section includes the DC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes  
LVDS I/O  
MLB I/O  
NOTE  
The term ‘OVDD’ in this section refers to the associated supply rail of an  
input or output.  
ovdd  
pmos (Rpu)  
Voh min  
1
Vol max  
or  
0
pdat  
pad  
Predriver  
nmos (Rpd)  
ovss  
Figure 4. Circuit for Parameters Voh and Vol for I/O Cells  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
39  
Electrical Characteristics  
4.6.1  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
Table 22 shows the DC parameters for the clock inputs.  
Table 22. XTALI and RTC_XTALI DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Input capacitance  
Vih  
Vil  
0.8 x NVCC_PLL  
5
NVCC_PLL  
0.2V  
1.11  
V
V
0
0.8  
0
Vih  
Vil  
V
0.2  
V
CIN  
Simulated data  
pF  
μA  
XTALI input leakage current at startup IXTALI_STARTUP  
Power-on startup for  
0.15msec with a driven  
24 MHz clock at 1.1 V.2  
600  
DC input current  
IXTALI_DC  
2.5  
μA  
1
2
This voltage specification must not be exceeded and, as such, is an absolute maximum specification.  
This current draw is present even if an external clock source directly drives XTALI. The 24 MHz oscillator cell is powered from  
NVCC_PLL_OUT.  
NOTE  
The Vil and Vih specifications only apply when an external clock source is  
used. If a crystal is used, Vil and Vih do not apply.  
4.6.2  
General Purpose I/O (GPIO) DC Parameters  
Table 23 shows DC parameters for GPIO pads. The parameters in Table 23 are guaranteed per the  
operating ranges in Table 8, unless otherwise noted.  
Table 23. GPIO DC Parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
VOH  
Ioh= -0.1mA (DSE=001,010)  
Ioh= -1mA  
OVDD - 0.15  
V
(DSE=011,100,101,110,111)  
Low-level output voltage1  
VOL  
Iol= 0.1mA (DSE=001,010)  
Iol= 1mA  
0.15  
V
(DSE=011,100,101,110,111)  
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7 × OVDD  
OVDD  
V
0
0.3 × OVDD  
V
Input Hysteresis (OVDD= 1.8V) VHYS_LowVDD  
OVDD=1.8V  
OVDD=3.3V  
250  
mV  
mV  
mV  
Input Hysteresis (OVDD=3.3V  
Schmitt trigger VT+2,3  
VHYS_HighVDD  
VTH+  
250  
0.5 × OVDD  
Schmitt trigger VT-2,3  
VTH-  
0.5 × OVDD mV  
Pull-up resistor (22_kΩ PU)  
Pull-up resistor (22_kΩ PU)  
Pull-up resistor (47_kΩ PU)  
RPU_22K  
RPU_22K  
RPU_47K  
Vin=0V  
Vin=OVDD  
Vin=0V  
212  
1
uA  
uA  
uA  
100  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
40  
Electrical Characteristics  
Table 23. GPIO DC Parameters (continued)  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Units  
Pull-up resistor (47_kΩ PU)  
Pull-up resistor (100_kΩ PU)  
Pull-up resistor (100_kΩ PU)  
Pull-down resistor (100_kΩ PD)  
Pull-down resistor (100_kΩ PD)  
Input current (no PU/PD)  
RPU_47K  
RPU_100K  
RPU_100K  
RPD_100K  
RPD_100K  
IIN  
Vin=OVDD  
Vin=0V  
1
48  
1
uA  
uA  
uA  
uA  
uA  
uA  
kΩ  
Vin=OVDD  
Vin=OVDD  
48  
1
Vin=0V  
VI = 0, VI = OVDD  
VI = 0.3 × OVDD, VI = 0.7 × OVDD  
-1  
1
Keeper Circuit Resistance  
R_Keeper  
105  
175  
1
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,  
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be  
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.  
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.6.3  
DDR I/O DC Parameters  
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.  
4.6.3.1 LPDDR2 Mode I/O DC Parameters  
For details on supported DDR memory configurations, see Section 4.9.4, “Multi-Mode DDR Controller  
(MMDC).  
1
Table 24. LPDDR2 I/O DC Electrical Parameters  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
Low-level output voltage  
VOH  
VOL  
Ioh= -0.1mA  
0.9 × OVDD  
0.1 × OVDD  
0.51 × OVDD  
OVDD  
Vref-0.13  
Note2  
V
V
V
V
V
Iol= 0.1mA  
Input Reference Voltage  
Vref  
0.49 × OVDD  
Vref+0.13  
OVSS  
0.26  
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Pull-up/Pull-down Impedance Mismatch  
240 Ω unit calibration resolution  
Keeper Circuit Resistance  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Mmpupd  
Rres  
Note3  
-15  
-0.26  
15  
%
Ω
10  
Rkeep  
Iin  
110  
175  
kΩ  
μA  
Input current (no pull-up/down)  
VI = 0, VI = OVDD  
-2.5  
2.5  
1
2
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
41  
Electrical Characteristics  
3
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
4.6.3.2  
DDR3/DDR3L Mode I/O DC Parameters  
The parameters in Table 25 are guaranteed per the operating ranges in Table 8, unless otherwise noted. For  
details on supported DDR memory configurations, see Section 4.9.4, “Multi-Mode DDR Controller  
(MMDC).  
1
Table 25. DDR3/DDR3L I/O DC Electrical Characteristics  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level output voltage  
VOH  
Ioh= -0.1mA  
Voh (for DSE=001)  
0.8 × OVDD2  
V
Low-level output voltage  
High-level output voltage  
Low-level output voltage  
VOL  
VOH  
VOL  
Iol= 0.1mA  
Vol (for DSE=001)  
0.8 × OVDD  
0.2 × OVDD  
V
V
V
Ioh= -1mA  
Voh (for all except DSE=001)  
Iol= 1mA  
Vol (for all except DSE=001)  
0.2 × OVDD  
Input Reference Voltage  
DC High-Level input voltage  
DC Low-Level input voltage  
Differential Input Logic High  
Differential Input Logic Low  
Termination Voltage  
Vref  
Vih_DC  
Vil_DC  
Vih_diff  
Vil_diff  
Vtt  
0.49 × OVDD 0.51 × OVDD  
V
V
Vref3+0.1  
OVDD  
Vref-0.1  
See Note4  
-0.2  
OVSS  
V
0.2  
V
See Note3  
V
Vtt tracking OVDD/2  
0.49 × OVDD 0.51 × OVDD  
V
Pull-up/Pull-down Impedance Mismatch Mmpupd  
-10  
10  
10  
%
Ω
240 Ω unit calibration resolution  
Keeper Circuit Resistance  
Rres  
Rkeep  
Iin  
105  
-2.9  
165  
2.9  
kΩ  
μA  
Input current (no pull-up/down)  
VI = 0,VI = OVDD  
1
2
3
4
Note that the JEDEC DDR3 specification (JESD79_3D) supersedes any specification in this document.  
OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)  
Vref – DDR3/DDR3L external reference voltage.  
The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as  
the limitations for overshoot and undershoot.  
4.6.4  
RGMII I/O 2.5V I/O DC Electrical Parameters  
The RGMII interface complies with the RGMII standard version 1.3. The parameters in Table 26 are  
guaranteed per the operating ranges in Table 8, unless otherwise noted.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
42  
NXP Semiconductors  
Electrical Characteristics  
1
Table 26. RGMII I/O 1.8V and 2.5V mode DC Electrical Characteristics  
Parameters  
Symbol  
Test Conditions  
Min  
Max  
Unit  
High-level Output Voltage1  
VOH  
Ioh= -0.1mA (DSE=001,010)  
OVDD-0.15  
V
Ioh= -1mA (DSE=011,100,101,110,111)  
Low-level Output Voltage1  
VOL  
Iol= 0.1mA (DSE=001,010)  
0.15  
V
Iol= 1mA (DSE=011,100,101,110,111)  
Input Reference Voltage  
High-Level Input Voltage2 3  
Low-Level Input Voltage2 3  
Vref  
VIH  
0.49 × OVDD 0.51 × OVDD  
V
V
0.7 × OVDD  
OVDD  
0.3 × OVDD  
VIL  
0
V
Input Hysteresis  
(OVDD=1.8V)  
VHYS_HighVDD  
OVDD=1.8V  
250  
mV  
Input Hysteresis  
(OVDD=2.5V)  
VHYS_HighVDD  
OVDD=2.5V  
250  
mV  
+
Schmitt Trigger VT+3 4  
Schmitt Trigger VT-3 4  
VTH  
0.5 × OVDD  
mV  
mV  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
-
VTH  
-—  
0.5 × OVDD  
Pull-up Resistor (22 kΩ PU)  
Pull-up Resistor (22 kΩ PU)  
Pull-up Resistor (47 kΩ PU)  
Pull-up Resistor (47 kΩ PU)  
Pull-up Resistor (100 kΩ PU)  
Pull-up Resistor (100 kΩ PU)  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
RPU_100K  
RPU_100K  
RPD_100K  
Vin=0V  
212  
1
Vin=OVDD  
Vin=0V  
100  
1
Vin=OVDD  
Vin=0V  
48  
1
Vin=OVDD  
Vin=OVDD  
Pull-down Resistor (100 kΩ  
48  
PD)  
Pull-down Resistor (100 kΩ  
RPD_100K  
Vin=0V  
1
μA  
PD)  
Keeper Circuit Resistance  
Rkeep  
Iin  
105  
-2.9  
165  
2.9  
kΩ  
μA  
Input Current (no  
pull-up/down)  
VI = 0, VI = OVDD  
1
Input Mode Selection "SW_PAD_CTL_GRP_DDR_TYPE_RGMII"='10' (1.8V Mode)  
"SW_PAD_CTL_GRP_DDR_TYPE_RGMII"='11' (2.5V Mode).  
2
Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6  
V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must  
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other  
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.  
3
4
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, VIL or VIH. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled (register  
IOMUXC_SW_PAD_CTL_PAD_RGMII_TXC[HYS]= 0).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
43  
Electrical Characteristics  
4.6.5  
LVDS I/O DC Parameters  
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,  
Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
Table 27 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.  
Table 27. LVDS I/O DC Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Output Differential Voltage  
Output High Voltage  
Output Low Voltage  
Offset Voltage  
VOD  
VOH  
VOL  
VOS  
Rload-100 Ω Diff  
IOH = 0 mA  
IOL = 0 mA  
250  
1.25  
0.9  
350  
1.375  
1.025  
1.2  
450  
1.6  
mV  
V
1.25  
1.375  
V
1.125  
V
4.6.6  
MLB I/O DC Parameters  
The MLB interface complies with Analog Interface of 6-pin differential Media Local Bus specification  
version 4.1. See 6-pin differential MLB specification v4.1, “MediaLB 6-pin interface Electrical  
Characteristics” for details.  
NOTE  
The MLB 6-pin interface does not support speed mode 8192 fs.  
Table 28 shows the Media Local Bus (MLB) I/O DC parameters.  
Table 28. MLB I/O DC Characteristics  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Output Differential Voltage  
Output High Voltage  
Output Low Voltage  
VOD  
VOH  
VOL  
Rload-50Ω Diff  
Rload-50Ω Diff  
Rload-50Ω Diff  
Rload-50Ω Diff  
300  
1.25  
0.75  
1
500  
1.75  
1.25  
1.5  
mV  
V
V
Common-mode output voltage  
((Vpadp*+Vpadn*)/2)  
Vocm  
V
Differential output impedance  
Zo  
1.6  
kΩ  
4.7  
I/O AC Parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes  
LVDS I/O  
MLB I/O  
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 5 and  
Figure 6.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
44  
NXP Semiconductors  
Electrical Characteristics  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 5. Load Circuit for Output  
OVDD  
80%  
80%  
20%  
0 V  
20%  
tr  
Output (at pad)  
tf  
Figure 6. Output Transition Time Waveform  
4.7.1  
General Purpose I/O AC Parameters  
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30,  
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the  
IOMUXC control registers.  
Table 29. General Purpose I/O AC Parameters 1.8 V Mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, DSE=111)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.72/2.79  
1.51/1.54  
Output Pad Transition Times, rise/fall  
(High Drive, DSE=101)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.20/3.36  
1.96/2.07  
ns  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, DSE=100)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.64/3.88  
2.27/2.53  
Output Pad Transition Times, rise/fall  
(Low Drive. DSE=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
4.32/4.50  
3.16/3.17  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
45  
Electrical Characteristics  
Parameter  
Table 30. General Purpose I/O AC Parameters 3.3 V Mode  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, DSE=101)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall  
(High Drive, DSE=011)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, DSE=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall  
(Low Drive. DSE=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
4.7.2  
DDR I/O AC Parameters  
Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode. For details on supported  
DDR memory configurations, see Section 4.9.4, “Multi-Mode DDR Controller (MMDC).  
1
Table 31. DDR I/O LPDDR2 Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vref + 0.22  
OVDD  
Vref - 0.22  
V
V
AC input logic low  
0
0.44  
AC differential input high voltage2  
AC differential input low voltage  
Input AC differential cross point voltage3  
Over/undershoot peak  
Vidh(ac)  
Vidl(ac)  
Vix(ac)  
Vpeak  
V
Relative to Vref  
0.44  
V
-0.12  
0.12  
V
0.35  
V
Over/undershoot area (above OVDD  
or below OVSS)  
Varea  
400 MHz  
0.3  
V-ns  
tsr  
50 Ω to Vref.  
5 pF load.  
Drive impedance = 40 Ω  
30%  
1.5  
1
3.5  
2.5  
0.1  
Single output slew rate, measured between  
Vol(ac) and Voh(ac)  
V/ns  
ns  
50 Ω to Vref.  
5pF load.Drive  
impedance = 60 Ω  
30%  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
1
2
Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.  
Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp  
is the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
46  
NXP Semiconductors  
Electrical Characteristics  
3
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.  
1
Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters  
Parameter  
AC input logic high  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Vih(ac)  
Vil(ac)  
Vid(ac)  
Vix(ac)  
Vpeak  
Varea  
Vref + 0.175  
OVDD  
Vref - 0.175  
V
V
AC input logic low  
0
0.35  
AC differential input voltage2  
Input AC differential cross point voltage3, 4  
Over/undershoot peak  
Relative to Vref  
V
Vref - 0.15  
Vref + 0.15  
0.4  
V
V
Over/undershoot area (above OVDD  
or below OVSS)  
400 MHz  
0.5  
V-ns  
Single output slew rate, measured between  
Vol(ac) and Voh(ac)  
tsr  
Driver impedance = 34 Ω  
2.5  
5
V/ns  
ns  
Skew between pad rise/fall asymmetry + skew  
caused by SSN  
tSKD  
clk = 400 MHz  
0.1  
1
2
Note that the JEDEC JESD79_3C specification supersedes any specification in this document.  
Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is  
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).  
3
4
The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)  
indicates the voltage at which differential input signal must cross.  
Extended range for Vix is only allowed for the clock and when the single-ended clock input signals CK and CK# are:  
monotonic with a single-ended swing VSEL/VSEH of at least VDD/2 250 mV, and  
the differential slew rate of CK - CK# is larger than 3 V/ns  
4.7.3  
LVDS I/O AC Parameters  
The differential output transition time waveform is shown in Figure 7.  
padp  
V
OH  
0V  
0V  
0V (Differential)  
padn  
V
OL  
80%  
80%  
0V  
VDIFF  
VDIFF = {padp} - {padn}  
20%  
20%  
t
t
THL  
TLH  
Figure 7. Differential LVDS Driver Transition Time Waveform  
Table 33 shows the AC parameters for LVDS I/O.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
47  
Electrical Characteristics  
Parameter  
Table 33. I/O AC Parameters of LVDS Pad  
Symbol Test Condition  
Min  
Typ  
Max  
Unit  
Differential pulse skew1  
Transition Low to High Time2  
Transition High to Low Time2  
Operating Frequency  
tSKD  
0.25  
0.5  
Rload = 100 Ω,  
tTLH  
ns  
Cload = 2 pF  
tTHL  
0.5  
f
600  
800  
150  
MHz  
mV  
Offset voltage imbalance  
Vos  
1
tSKD = | tPHLD - tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and  
the negative going edge of the same channel.  
2
Measurement levels are 20-80% from output voltage.  
4.7.4  
MLB I/O AC Parameters  
The differential output transition time waveform is shown in Figure 8.  
padp  
V
OH  
0V  
0V  
0V (Differential)  
padn  
V
OL  
80%  
80%  
0V  
VDIFF  
VDIFF = {padp} - {padn}  
20%  
20%  
t
t
THL  
TLH  
Figure 8. Differential MLB Driver Transition Time Waveform  
A 4-stage pipeline is utilized in the MLB 6-pin implementation in order to facilitate design, maximize  
throughput, and allow for reasonable PCB trace lengths. Each cycle is one ipp_clk_in* (internal clock from  
MLB PLL) clock period. Cycles 2, 3, and 4 are MLB PHY related. Cycle 2 includes clock-to-output delay  
of Signal/Data sampling flip-flop and Transmitter, Cycle 3 includes clock-to-output delay of Signal/Data  
clocked receiver, Cycle 4 includes clock-to-output delay of Signal/Data sampling flip-flop.  
MLB 6-pin pipeline diagram is shown in Figure 9.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
48  
NXP Semiconductors  
Electrical Characteristics  
Figure 9. MLB 6-Pin Pipeline Diagram  
Table 34 shows the AC parameters for MLB I/O.  
4.8  
Output Buffer Impedance Parameters  
Table 34. I/O AC Parameters of MLB PHY  
Parameter  
Symbol Test Condition Min  
Typ  
Max  
Unit  
Differential pulse skew1  
tSKD  
tTLH  
0.1  
1
Rload = 50 Ω  
between padp  
and padn  
Transition Low to High Time2  
ns  
Transition High to Low Time  
tTHL  
1
MLB external clock Operating Frequency  
MLB PLL clock Operating Frequency  
fclk_ext  
fclk_pll  
102.4  
307.2  
MHz  
MHz  
1
tSKD = | tPHLD - tPLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and  
the negative going edge of the same channel.  
2
Measurement levels are 20-80% from output voltage.  
This section defines the I/O impedance parameters of the i.MX 6Solo/6DualLite processors for the  
following I/O types:  
General Purpose I/O (GPIO)  
Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes  
LVDS I/O  
MLB I/O  
NOTE  
GPIO and DDR I/O output driver impedance is measured with “long”  
transmission line of impedance Ztl attached to I/O pad and incident wave  
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that  
defines specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 10).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
49  
Electrical Characteristics  
OVDD  
PMOS (Rpu)  
Ztl Ω, L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
Vin (do)  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd – Vref1  
Vref1  
Rpu =  
Rpd =  
× Ztl  
× Ztl  
Vref2  
Vovdd – Vref2  
Figure 10. Impedance Matching Load for Measurement  
4.8.1  
GPIO Output Buffer Impedance  
Table 35 shows the GPIO output buffer impedance (OVDD 1.8 V).  
Table 35. GPIO Output Buffer Average Impedance (OVDD 1.8 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
260  
130  
90  
60  
50  
Output Driver  
Impedance  
Rdrv  
Ω
40  
33  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
50  
Electrical Characteristics  
Table 36 shows the GPIO output buffer impedance (OVDD 3.3 V).  
Table 36. GPIO Output Buffer Average Impedance (OVDD 3.3 V)  
Parameter  
Symbol  
Drive Strength (DSE)  
Typ Value  
Unit  
001  
010  
011  
100  
101  
110  
111  
150  
75  
50  
37  
30  
25  
20  
Output Driver  
Impedance  
Rdrv  
Ω
4.8.2  
DDR I/O Output Buffer Impedance  
For details on supported DDR memory configurations, see Section 4.9.4, “Multi-Mode DDR Controller  
(MMDC).  
Table 37 shows DDR I/O output buffer impedance of i.MX 6Solo/6DualLite processors.  
Table 37. DDR I/O Output Buffer Impedance  
Typical  
Test Conditions DSE  
NVCC_DRAM=1.5 V  
(DDR3)  
NVCC_DRAM=1.2 V  
(LPDDR2)  
Parameter  
Symbol  
Unit  
(Drive Strength)  
DDR_SEL=11  
DDR_SEL=10  
000  
001  
010  
011  
100  
101  
110  
111  
Hi-Z  
240  
120  
80  
60  
48  
Hi-Z  
240  
120  
80  
60  
48  
Output Driver  
Impedance  
Rdrv  
Ω
40  
34  
40  
34  
Note:  
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.  
2. Calibration is done against 240 Ω external reference resistor.  
3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs.  
4.8.3  
LVDS I/O Output Buffer Impedance  
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,  
Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
51  
Electrical Characteristics  
4.8.4  
MLB I/O Differential Output Impedance  
Table 38 shows MLB I/O differential output impedance of the i.MX 6Solo/6DualLite processors.  
Table 38. MLB I/O Differential Output Impedance  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
Differential Output Impedance  
Zo  
1.6  
kΩ  
4.9  
System Modules Timing  
This section contains the timing and electrical parameters for the modules in each i.MX 6Solo/6DualLite  
processor.  
4.9.1  
Reset Timings Parameters  
Figure 11 shows the reset timing and Table 39 lists the timing parameters.  
SRC_POR_B  
(Input)  
CC1  
Figure 11. Reset Timing Diagram  
Table 39. Reset Timing Parameters  
ID  
Parameter  
Min Max  
Unit  
CC1  
Duration of SRC_POR_B to be qualified as valid.  
1
XTALOSC_RTC_XTALI cycle  
4.9.2  
WDOG Reset Timing Parameters  
Figure 12 shows the WDOG reset timing and Table 40 lists the timing parameters.  
WDOG1_B  
(Output)  
CC3  
Figure 12. WDOG1_B Timing Diagram  
Table 40. WDOG1_B Timing Parameters  
ID  
Parameter  
Duration of WDOG1_B Assertion  
Min  
Max  
Unit  
CC3  
1
XTALOSC_RTC_XTALI cycle  
NOTE  
XTALOSC_RTC_XTALI is approximately 32 kHz.  
XTALOSC_RTC_XTALI cycle is one period or approximately 30 μs.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
52  
NXP Semiconductors  
Electrical Characteristics  
NOTE  
WDOG1_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the  
IOMUXC chapter of the i.MX 6Solo/6DualLite Reference Manual  
(IMX6SDLRM).  
4.9.3  
External Interface Module (EIM)  
The following subsections provide information on the EIM. Maximum operating frequency for EIM data  
transfer is 104 MHz. Two system clocks are used with the EIM:  
ACLK_EIM_SLOW_CLK_ROOT is used to clock the EIM module.  
The maximum frequency for CLK_EIM_SLOW_CLK_ROOT is 132 MHz.  
ACLK_EXSC is also used when the EIM is in synchronous mode.  
The maximum frequency for ACLK_EXSC is 104 MHz.  
Timing parameters in this section that are given as a function of register settings.  
4.9.3.1 EIM Interface Pads Allocation  
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.  
Table 41 provides EIM interface pads allocation in different modes.  
1
Table 41. EIM Internal Module Multiplexing  
Multiplexed  
Non Multiplexed Address/Data Mode  
Address/Data mode  
Setup  
8 Bit  
16 Bit  
32 Bit  
16 Bit  
32 Bit  
MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 0, MUM = 1, MUM = 1,  
DSZ = 100 DSZ = 101 DSZ = 110 DSZ = 111 DSZ = 001 DSZ = 010 DSZ = 011 DSZ = 001 DSZ = 011  
EIM_ADDR  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_AD  
[15:00]  
EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_ADDR EIM_DATA  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
[25:16]  
EIM_DATA EIM_AD  
[07:00] [07:00]  
[25:16]  
[09:00]  
EIM_DATA EIM_DATA  
[07:00],  
EIM_EB0_B  
EIM_DATA  
[07:00]  
EIM_AD  
[07:00]  
[07:00]  
EIM_DATA  
[15:08],  
EIM_EB1_B  
EIM_DATA  
[15:08]  
EIM_DATA  
[15:08]  
EIM_DATA EIM_AD  
EIM_AD  
[15:08]  
[15:08]  
[15:08]  
EIM_DATA  
[23:16],  
EIM_EB2_B  
EIM_DATA  
[23:16]  
EIM_DATA EIM_DATA  
[23:16] [23:16]  
EIM_DATA  
[07:00]  
EIM_DATA  
[31:24],  
EIM_DATA  
[31:24]  
EIM_DATA EIM_DATA  
[31:24] [31:24]  
EIM_DATA  
[15:08]  
EIM_EB3_B  
1
For more information on configuration ports mentioned in this table, see the i.MX 6Solo/6DualLite reference manual.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
53  
Electrical Characteristics  
4.9.3.2  
General EIM Timing-Synchronous Mode  
Figure 13, Figure 14, and Table 42 specify the timings related to the EIM module. All EIM output control  
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge  
according to corresponding assertion/negation control fields.  
,
WE2  
...  
WE3  
EIM_BCLK  
WE1  
WE4  
WE6  
WE5  
WE7  
WE9  
EIM_ADDRxx  
EIM_CSx_B  
WE8  
WE10  
WE12  
EIM_WE_B  
EIM_OE_B  
EIM_EBx_B  
WE11  
WE13  
WE15  
WE17  
WE14  
WE16  
EIM_LBA_B  
Output Data  
Figure 13. EIM Outputs Timing Diagram  
EIM_BCLK  
WE18  
Input Data  
WE19  
WE20  
EIM_WAIT_B  
WE21  
Figure 14. EIM Inputs Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
54  
Electrical Characteristics  
4.9.3.3  
Examples of EIM Synchronous Accesses  
1
Table 42. EIM Bus Timing Parameters  
BCD = 0  
BCD = 1  
BCD = 2  
Max  
BCD = 3  
ID  
Parameter  
Min  
Max  
Min  
Max  
Min  
Min  
Max  
WE1 EIM_BCLK Cycle  
time2  
t
2 x t  
3 x t  
4 x t  
WE2 EIM_BCLK Low  
Level Width  
0.4 x t  
0.4 x t  
0.8 x t  
0.8 x t  
1.2 x t  
1.2 x t  
1.6 x t  
1.6 x t  
WE3 EIM_BCLK High  
Level Width  
WE4 Clock rise to  
address valid3  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 -t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE5 Clock rise to  
address invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE6 Clock rise to  
EIM_CSx_B valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE7 Clock rise to  
EIM_CSx_B invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE8 Clock rise to  
EIM_WE_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE9 Clock rise to  
EIM_WE_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE10 Clock rise to  
EIM_OE_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE11 Clock rise to  
EIM_OE_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE12 Clock rise to  
EIM_EBx_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE13 Clock rise to  
EIM_EBx_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE14 Clock rise to  
EIM_LBA_B Valid  
-0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
1.25  
1.25  
WE15 Clock rise to  
EIM_LBA_B Invalid  
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE16 Clock rise to Output -0.5 x t - -0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -  
Data Valid 1.25 1.25  
-1.5 x t  
+1.75  
-2 x t - -2 x t + 1.75  
1.25  
WE17 Clock rise to Output 0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25  
Data Invalid  
t + 1.75 1.5 x t - 1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75  
1.25  
WE18 Input Data setup  
time to Clock rise  
2
2
2
2
4
2
4
2
WE19 Input Data hold time  
from Clock rise  
WE20 EIM_WAIT_B setup  
time to Clock rise  
WE21 EIM_WAIT_B hold  
time from Clock rise  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
55  
Electrical Characteristics  
1
t is the maximum EIM logic (ACLK_EXSC) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed  
latency configuration, whereas the maximum allowed EIM_BCLK frequency is:  
—Fixed latency for both read and write is 104 MHz.  
—Variable latency for read only is 104 MHz.  
—Variable latency for write only is 52 MHz.  
In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz.Write BCD = 1 and  
104 MHz ACLK_EXSC, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other  
buses are impacted which are clocked from this source. See the CCM chapter of the i.MX 6Solo/6DualLite Reference Manual  
(IMX6SDLRM) for a detailed clock tree description.  
2
EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is  
defined as 50% as signal value.  
3
For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.  
Figure 15 to Figure 18 provide few examples of basic EIM accesses to external memory devices with the  
timing parameters mentioned previously for specific control parameters settings.  
EIM_BCLK  
WE4  
WE6  
WE5  
WE7  
EIM_ADDRxx  
Address v1  
Last Valid Address  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
WE14  
WE10  
WE12  
WE15  
WE18  
WE11  
WE13  
EIM_OE_B  
EIM_EBx_B  
EIM_DATAxx  
D(v1)  
WE19  
Figure 15. Synchronous Memory Read Access, WSC=1  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
56  
Electrical Characteristics  
EIM_BCLK  
WE5  
WE4  
EIM_ADDRxx  
Last Valid Address  
Address V1  
WE7  
WE6  
WE8  
EIM_CSx_B  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE9  
WE14  
WE15  
WE13  
WE12  
WE16  
EIM_EBx_B  
WE17  
EIM_DATAxx  
D(V1)  
Figure 16. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0  
EIM_BCLK  
WE16  
WE17  
WE5  
WE4  
EIM_ADDRxx/  
EIM_ADxx  
Write Data  
Last Valid Address  
Address V1  
WE6  
WE7  
WE9  
EIM_CSx_B  
EIM_WE_B  
WE8  
WE14  
WE15  
EIM_LBA_B  
EIM_OE_B  
WE10  
WE11  
EIM_EBx_B  
Figure 17. Muxed Address/Data (A/D) Mode, Synchronous Write Access, WSC=6,ADVA=0, ADVN=1, and  
ADH=1  
NOTE  
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the  
data bus.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
57  
Electrical Characteristics  
EIM_BCLK  
WE4  
Valid Address  
WE6  
WE5  
Address V1  
WE19  
WE18  
EIM_ADDRxx/  
EIM_ADxx  
Last  
Data  
EIM_CSx_B  
EIM_WE_B  
WE7  
WE15  
WE10  
WE14  
WE12  
EIM_LBA_B  
EIM_OE_B  
WE11  
WE13  
EIM_EBx_B  
Figure 18. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0  
4.9.3.4  
General EIM Timing-Asynchronous Mode  
Figure 19 through Figure 23, and Table 43 help you determine timing parameters relative to the chip  
select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the  
timing parameters mentioned above.  
Asynchronous read & write access length in cycles may vary from what is shown in Figure 19 through  
Figure 22 as RWSC, OEN and CSN is configured differently. See the i.MX 6Solo/6DualLite Reference  
Manual (IMX6SDLRM) for the EIM programming model.  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
EIM_ADDRxx/  
EIM_ADxx  
WE31  
WE32  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
WE39  
WE40  
WE36  
WE38  
WE35  
WE37  
EIM_OE_B  
EIM_EBx_B  
WE44  
MAXCO  
EIM_DATAxx[7:0]  
D(V1)  
WE43  
MAXDI  
Figure 19. Asynchronous Memory Read Access (RWSC = 5)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
58  
Electrical Characteristics  
end of  
access  
start of  
access  
INT_CLK  
MAXCSO  
EIM_CSx_B  
MAXDI  
WE31  
EIM_ADDRxx/  
EIM_ADxx  
D(V1)  
Addr. V1  
WE32A  
WE44  
EIM_WE_B  
EIM_LBA_B  
WE40A  
WE39  
WE35A  
WE37  
WE36  
WE38  
EIM_OE_B  
EIM_EBx_B  
MAXCO  
Figure 20. Asynchronous A/D Muxed Read Access (RWSC = 5)  
EIM_CSx_B  
EIM_ADDRxx  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE31  
Last Valid Address  
WE33  
WE32  
WE34  
WE40  
Next Address  
Address V1  
WE39  
WE45  
WE41  
WE46  
EIM_EBx_B  
WE42  
EIM_DATAxx  
D(V1)  
Figure 21. Asynchronous Memory Write Access  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
59  
Electrical Characteristics  
EIM_CSx_B  
WE41A  
WE31  
EIM_ADDRxx/  
EIM_DATAxx  
D(V1)  
Addr. V1  
WE32A  
WE42  
WE33  
WE39  
WE34  
EIM_WE_B  
WE40A  
EIM_LBA_B  
EIM_OE_B  
WE45  
WE46  
EIM_EBx_B  
Figure 22. Asynchronous A/D Muxed Write Access  
EIM_CSx_B  
WE31  
WE32  
EIM_ADDRxx  
Next Address  
Last Valid Address  
Address V1  
EIM_WE_B  
EIM_LBA_B  
EIM_OE_B  
WE39  
WE35  
WE37  
WE40  
WE36  
WE38  
EIM_EBx_B  
WE44  
D(V1)  
EIM_DATAxx[7:0]  
EIM_DTACK_B  
WE43  
WE48  
WE47  
Figure 23. DTACK Mode Read Access (DAP=0)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
60  
Electrical Characteristics  
EIM_CSx_B  
WE31  
WE32  
WE34  
WE40  
EIM_ADDRxx  
EIM_WE_B  
Next Address  
Last Valid Address  
Address V1  
WE33  
WE39  
EIM_LBA_B  
EIM_OE_B  
EIM_EBx_B  
WE45  
WE41  
WE46  
WE42  
EIM_DATAxx  
D(V1)  
WE48  
EIM_DTACK_B  
WE47  
Figure 24. DTACK Mode Write Access (DAP=0)  
Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select  
Determination by  
Ref No.  
Parameter  
Synchronous measured  
Min  
Max  
Unit  
parameters1  
WE31  
WE32  
EIM_CSx_B valid to  
Address Valid  
WE4 - WE6 - CSA2  
WE7 - WE5 - CSN3  
3 - CSA  
3 - CSN  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Address Invalid to  
EIM_CSx_B invalid  
WE32A EIM_CSx_B valid to  
(muxed A/D Address Invalid  
t4 + WE4 - WE7 + (ADVN5 +  
ADVA6 + 1 - CSA)  
-3 + (ADVN +  
ADVA + 1 - CSA)  
WE33  
WE34  
WE35  
EIM_CSx_B Valid to  
EIM_WE_B Valid  
WE8 - WE6 + (WEA - WCSA)  
WE7 - WE9 + (WEN - WCSN)  
WE10 - WE6 + (OEA - RCSA)  
WE10 - WE6 + (OEA + RADVN  
3 + (WEA - WCSA)  
3 - (WEN_WCSN)  
3 + (OEA - RCSA)  
3 + (OEA +  
EIM_WE_B Invalid to  
EIM_CSx_B Invalid  
EIM_CSx_B Valid to  
EIM_OE_B Valid  
WE35A EIM_CSx_B Valid to  
(muxed A/D) EIM_OE_B Valid  
-3 + (OEA +  
+ RADVA + ADH + 1 - RCSA) RADVN+RADVA+ RADVN+RADVA+ADH  
ADH+1-RCSA)  
+1-RCSA)  
WE36  
WE37  
EIM_OE_B Invalid to  
EIM_CSx_B Invalid  
WE7 - WE11 + (OEN - RCSN)  
WE12 - WE6 + (RBEA - RCSA)  
3 - (OEN - RCSN)  
ns  
ns  
EIM_CSx_B Valid to  
EIM_EBx_B Valid  
(Read access)  
3 + (RBEA - RCSA)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
61  
Electrical Characteristics  
Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select (continued)  
Determination by  
Synchronous measured  
parameters1  
Ref No.  
Parameter  
Min  
Max  
Unit  
WE38  
EIM_EBx_B Invalid to  
EIM_CSx_B Invalid (Read  
access)  
WE7 - WE13 + (RBEN - RCSN)  
3 - (RBEN- RCSN)  
ns  
WE39  
WE40  
EIM_CSx_B Valid to  
EIM_LBA_B Valid  
WE14 - WE6 + (ADVA - CSA)  
WE7 - WE15 - CSN  
3 + (ADVA - CSA)  
3 - CSN  
ns  
ns  
EIM_LBA_B Invalid to  
EIM_CSx_B Invalid (ADVL is  
asserted)  
WE40A EIM_CSx_B Valid to  
(muxed A/D) EIM_LBA_B Invalid  
WE14 - WE6 + (ADVN + ADVA +  
1 - CSA)  
-3 + (ADVN + 3 + (ADVN + ADVA + 1 ns  
ADVA + 1 - CSA)  
- CSA)  
WE41  
EIM_CSx_B Valid to Output  
Data Valid  
WE16 - WE6 - WCSA  
3 - WCSA  
ns  
WE41A EIM_CSx_B Valid to Output  
(muxed A/D) Data Valid  
WE16 - WE6 + (WADVN +  
WADVA + ADH + 1 - WCSA)  
3+(WADVN+WADVA ns  
+ ADH + 1 - WCSA)  
WE42  
Output Data Invalid to  
EIM_CSx_B Invalid  
WE17 - WE7 - CSN  
3 - CSN  
ns  
MAXCO Output maximum delay from  
internal driving  
10  
ns  
EIM_ADDRxx/control FFs to  
chip outputs  
MAXCSO Output maximum delay from  
CSx internal driving FFs to CSx  
out  
10  
5
ns  
ns  
ns  
MAXDI EIM_DATAxx maximum delay  
from chip input data to its  
internal FF  
WE43  
Input Data Valid to EIM_CSx_B MAXCO - MAXCSO + MAXDI  
Invalid  
MAXCO -  
MAXCSO +  
MAXDI  
WE44  
WE45  
EIM_CSx_B Invalid to Input  
Data invalid  
0
0
ns  
ns  
EIM_CSx_B Valid to  
EIM_EBx_B Valid (Write  
access)  
WE12 - WE6 + (WBEA - WCSA)  
3 + (WBEA - WCSA)  
WE46  
EIM_EBx_B Invalid to  
EIM_CSx_B Invalid (Write  
access)  
WE7 - WE13 + (WBEN - WCSN)  
10  
-3 + (WBEN - WCSN) ns  
MAXDTI MAXIMUM delay from  
EIM_DTACK_B to its internal FF  
+ 2 cycles for synchronization  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
62  
Electrical Characteristics  
Table 43. EIM Asynchronous Timing Parameters Table Relative Chip to Select (continued)  
Determination by  
Synchronous measured  
parameters1  
Ref No.  
Parameter  
Min  
Max  
Unit  
WE47  
EIM_DTACK_B Active to  
EIM_CSx_B Invalid  
MAXCO - MAXCSO + MAXDTI  
MAXCO -  
MAXCSO +  
MAXDTI  
ns  
WE48  
EIM_CSx_B Invalid to  
EIM_DTACK_B Invalid  
0
0
ns  
1
2
3
4
5
6
For more information on configuration parameters mentioned in this table, see the i.MX 6Solo/6DualLite reference manual.  
In this table, CSA means WCSA when write operation or RCSA when read operation.  
In this table, CSN means WCSN when write operation or RCSN when read operation.  
t is ACLK_EIM_SLOW_CLK_ROOT cycle time.  
In this table, ADVN means WADVN when write operation or RADVN when read operation.  
In this table, ADVA means WADVA when write operation or RADVA when read operation.  
4.9.4  
Multi-Mode DDR Controller (MMDC)  
The Multi-Mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM.  
4.9.4.1  
MMDC Compatibility with JEDEC-compliant SDRAMs  
The i.MX 6Solo/6DualLite MMDC supports the following memory types:  
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009  
DDR3/DDR3L SDRAM compliant to JESD79-3D DDR3 JEDEC standard release April, 2008  
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to  
the DDR design and layout requirements stated in the Hardware Development Guide for i.MX 6Quad,  
6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).  
4.9.4.2  
MMDC Supported DDR3/DDR3L/LPDDR2 Configurations  
Table 44 and Table 45 show the supported DDR3/DDR3L/LPDDR2 configurations.  
Table 44. i.MX 6Solo Supported DDR3/DDR3L/LPDDR2 Configurations  
Parameter  
LPDDR2  
DDR3  
DDR3L  
Clock frequency  
Bus width  
400 MHz  
16/32-bit  
Single  
2
400 MHz  
16/32-bit  
Single  
2
400 MHz  
16/32-bit  
Single  
2
Channel  
Chip selects  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
63  
Electrical Characteristics  
Parameter  
Table 45. i.MX 6DualLite Supported DDR3/DDR3L/LPDDR2 Configurations  
LPDDR2  
LPDDR2  
DDR3  
DDR3L  
(Dual channel)  
(Single channel)  
Clock frequency  
Bus width  
400 MHz  
32-bit per channel  
Dual  
400 MHz  
16/32-bit  
Single  
2
400 MHz  
16/32/64-bit  
Single  
400 MHz  
16/32/64-bit  
Single  
Channel  
Chip selects  
2 per channel  
2
2
4.10 General-Purpose Media Interface (GPMI) Timing  
The i.MX 6Solo/6DualLite GPMI controller is a flexible interface NAND Flash controller with 8-bit data  
width, up to 200 MB/s I/O speed and individual chip select.  
It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing  
mode separately described in the following subsections.  
4.10.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 25 through Figure 28  
depicts the relative timing between GPMI signals at the module level for different operations under  
asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 25. Command Latch Cycle Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
64  
NXP Semiconductors  
Electrical Characteristics  
NF1  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 26. Address Latch Cycle Timing Diagram  
NF1  
.!.$?#,%  
.!.$?#%ꢀ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
.!.$?!,%  
NF8  
Data to NF  
NF9  
.!.$?$!4!XX  
Figure 27. Write Data Latch Cycle Timing Diagram  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF15  
NF13  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 28. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢀ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 29. Read Data Latch Cycle Timing Diagram (EDO Mode)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
65  
Electrical Characteristics  
1
Table 46. Asynchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CE0_B setup time  
NAND_CE0_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
(AS + DS) × T - 0.12 [see 2,3  
DH × T - 0.72 [see 2]  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(AS + DS + 1) × T [see 3,2  
(DH+1) × T - 1 [see 2]  
DS × T [see 2]  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) × T - 0.49 [see 3,2  
(DH × T - 0.42 [see 2]  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) × T [see 3,2  
]
DS × T [see 2]  
(DS + DH) × T [see 2]  
DH × T [see 2]  
tRC  
NF15 NAND_RE_B high hold time  
NF16 Data setup on read  
NF17 Data hold on read  
tREH  
tDSR  
tDHR  
(DS × T -0.67)/18.38 [see 5,6  
]
0.82/11.83 [see 5,6  
]
1
GPMI’s Async Mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075ns (half of maximum p-p jitter).  
NF12 is guaranteed by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 28), NF16/NF17 are different from the definition in non-EDO mode (Figure 27).  
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them  
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will  
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay  
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX  
6Solo/6DualLite reference manual). The typical value of this control register is 0x8 at 50 MT/s EDO mode.  
But if the board delay is big enough and cannot be ignored, the delay value should be made larger to  
compensate the board delay.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
66  
NXP Semiconductors  
Electrical Characteristics  
4.10.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)  
Figure 30 to Figure 32 show the write and read timing of Source Synchronous Mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 30. Source Synchronous Mode Command and Address Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
67  
Electrical Characteristics  
NF19  
NF18  
.!.$?#%ꢀ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢁꢂꢀ=  
NF28  
NF28  
.!.$?$1;ꢁꢂꢀ=  
Output enable  
Figure 31. Source Synchronous Mode Data Write Timing Diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢃ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢁꢂꢀ=  
.!.$?$!4!;ꢁꢂꢀ=  
/UTPUT ENABLE  
Figure 32. Source Synchronous Mode Data Read Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
68  
Electrical Characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢁꢂꢀ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 33. NAND_DQS/NAND_DQ Read Valid Window  
1
Table 47. Source Synchronous Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
2
NF18 NAND_CE0_B access time  
NF19 NAND_CE0_B hold time  
tCE  
tCH  
CE_DELAY × T - 0.79 [see ]  
0.5 × tCK - 0.63 [see 2]  
0.5 × tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 × tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
PRE_DELAY × T - 0.29 [see 2]  
POST_DELAY × T - 0.78 [see 2]  
0.5 × tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 × tCK - 0.37  
T - 0.41 [see 2]  
0.25 × tCK - 0.35  
NF29 Data write hold  
0.25 × tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
2.06  
1.95  
NF31 NAND_DQS/NAND_DQ read hold skew  
1
2
GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY,GPMI_TIMING_PREAMBLE_DELAY,GPMI_TIMING2_POST_DELAY.ThisACtimingdepends  
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).  
For DDR Source sync mode, Figure 33 shows the timing diagram of NAND_DQS/NAND_DATAxx read  
valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI  
will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which  
can be provided by an internal DPLL. The delay value can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX  
6Solo/6DualLite reference manual). Generally, the typical delay value of this register is equal to 0x7 which  
means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay  
value should be made larger to compensate the board delay.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
69  
Electrical Characteristics  
4.10.3 Samsung Toggle Mode AC Timing  
4.10.3.1 Command and Address Timing  
NOTE  
Samsung Toggle Mode command and address timing is the same as ONFI  
1.0 compatible Async mode AC timing. See Section 4.10.1, “Asynchronous  
Mode AC Timing (ONFI 1.0 Compatible),” for details.  
4.10.3.2 Read and Write Timing  
DEV?CLK  
.!.$?#%X?"  
.!.$?#,%  
.!.$?!,%  
.!.$?7%?"  
.!.$?2%?"  
.!.$?$13  
.&ꢇꢉ  
.&ꢇꢈ  
ꢀꢅꢆ T#+  
ꢀꢅꢆ T#+  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 34. Samsung Toggle Mode Data Write Timing  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
70  
Electrical Characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢄꢊ  
.!.$?#,%  
.!.$?!,%  
ꢄ T #+  
.&ꢇꢉ  
.!.$?7%?"  
.!.$?2%?"  
ꢄ T #+  
.& ꢇꢈ  
ꢄ T #+  
ꢄ T #+  
ꢄ T #+  
.!.$?$13  
.!.$?$!4!;ꢁꢂꢀ=  
Figure 35. Samsung Toggle Mode Data Read Timing  
1
Table 48. Samsung Toggle Mode Timing Parameters  
Timing  
T = GPMI Clock Cycle  
Min  
ID  
Parameter  
Symbol  
Unit  
Max  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) × T - 0.12 [see 2,3  
DH × T - 0.72 [see 2]  
(AS + DS) × T - 0.58 [see 3,2  
DH × T - 1 [see 2]  
]
]
tCH  
tWP  
tALS  
tALH  
DS × T [see 2]  
(AS + DS) × T - 0.49 [see 3,2  
DH × T - 0.42 [see 2]  
DS × T - 0.26 [see 2]  
DH × T - 1.37 [see 2]  
]
NF8 Command/address NAND_DATAxx setup time tCAS  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
tCAH  
tCE  
CE_DELAY × T [see 4,2  
]
ns  
ns  
ns  
ns  
tCK  
NF23 preamble delay  
tPRE  
PRE_DELAY × T [see 5,2  
]
NF24 postamble delay  
tPOST POST_DELAY × T +0.43 [see 2]  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
71  
Electrical Characteristics  
1
Table 48. Samsung Toggle Mode Timing Parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min  
Max  
NF28 Data write setup  
NF29 Data write hold  
tDS6  
tDH6  
0.25 × tCK - 0.32  
ns  
ns  
0.25 × tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
tDQSQ7  
tQHS7  
3.18  
3.27  
1
The GPMI toggle mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
5
6
7
PRE_DELAY+1) (AS+DS).  
Shown in Figure 34, Samsung Toggle Mode Data Write Timing diagram.  
Shown in Figure 33, NAND_DQS/NAND_DQ Read Valid Window.  
For DDR Toggle mode, Figure 33 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will  
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is  
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX  
6Solo/6DualLite reference manual). Generally, the typical delay value is equal to 0x7 which means 1/4  
clock cycle delay expected. But if the board delay is big enough and cannot be ignored, the delay value  
should be made larger to compensate the board delay.  
4.11 External Peripheral Interface Parameters  
The following subsections provide information on external peripheral interfaces.  
4.11.1 AUDMUX Timing Parameters  
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between  
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of  
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI  
electrical specifications found within this document.  
4.11.2 ECSPI Timing Parameters  
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing  
parameters for master and slave modes.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
72  
NXP Semiconductors  
Electrical Characteristics  
4.11.2.1 ECSPI Master Mode Timing  
Figure 36 depicts the timing of ECSPI in master mode. Table 49 lists the ECSPI master mode timing  
characteristics.  
ECSPIx_RDY_B  
ECSPIx_SS_B  
CS10  
CS5  
CS2  
CS6  
CS3  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MOSI  
ECSPIx_MISO  
CS2  
CS3  
CS7  
CS9  
CS8  
Note: ECSPIx_MOSI is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be  
connected between a single master and a single slave.  
Figure 36. ECSPI Master Mode Timing Diagram  
Table 49. ECSPI Master Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
CS3 ECSPIx_SCLK Rise or Fall1  
tRISE/FALL  
tCSLH  
1
ns  
ns  
ns  
ns  
ns  
ns  
CS4 ECSPIx_SS_B pulse width  
Half ECSPIx_SCLK period  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)  
tSCS  
Half ECSPIx_SCLK period - 4  
tHCS  
Half ECSPIx_SCLK period - 2  
tPDmosi  
tSmiso  
-1  
CS8 ECSPIx_MISO Setup Time  
18  
CS9 ECSPIx_MISO Hold Time  
tHmiso  
tSDRY  
0
5
ns  
ns  
CS10 RDY to ECSPIx_SS_B Time2  
1
2
See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”  
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
73  
Electrical Characteristics  
4.11.2.2 ECSPI Slave Mode Timing  
Figure 37 depicts the timing of ECSPI in slave mode. Table 50 lists the ECSPI slave mode timing  
characteristics.  
ECSPIx_SS_B  
CS5  
CS6  
CS2  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MISO  
CS2  
CS9  
CS8  
CS7  
ECSPIx_MOSI  
Note: ECSPIx_MISO is always driven (not tri-stated) between actual data transmissions. This limits the ECSPI to be con-  
nected between a single master and a single slave.  
Figure 37. ECSPI Slave Mode Timing Diagram  
Table 50. ECSPI Slave Mode Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
CS4 ECSPIx_SS_B pulse width  
tCSLH  
tSCS  
Half ECSPIx_SCLK period  
19  
ns  
ns  
ns  
ns  
ns  
ns  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Setup Time  
5
5
4
4
4
tHCS  
tSmosi  
tHmosi  
tPDmiso  
CS8 ECSPIx_MOSI Hold Time  
CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
74  
Electrical Characteristics  
4.11.3 Enhanced Serial Audio Interface (ESAI) Timing Parameters  
The ESAI consists of independent transmitter and receiver sections, each section with its own clock  
generator. Table 51 shows the interface timing values. The number field in the table refers to timing  
signals found in Figure 38 and Figure 39.  
Table 51. Enhanced Serial Audio Interface (ESAI) Timing Parameters  
No.  
Characteristics1,2  
Symbol Expression2 Min  
Max Condition3 Unit  
62 Clock cycle4  
tSSICC  
4 × T  
4 × T  
30.0  
30.0  
i ck  
i ck  
ns  
c
c
63 Clock high period:  
ns  
• For internal clock  
• For external clock  
2 × T 9.0  
6
15  
c
2 × T  
c
64 Clock low period:  
• For internal clock  
• For external clock  
ns  
2 × T 9.0  
6
15  
c
2 × T  
c
65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high  
17.0  
7.0  
x ck  
i ck a  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low  
17.0  
7.0  
x ck  
i ck a  
67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr)  
high5  
19.0  
9.0  
x ck  
i ck a  
68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5  
69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high  
70 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low  
19.0  
9.0  
x ck  
i ck a  
16.0  
6.0  
x ck  
i ck a  
17.0  
7.0  
x ck  
i ck a  
71 Data in setup time before ESAI_RX_CLK (SCK in  
synchronous mode) falling edge  
12.0  
19.0  
x ck  
i ck  
72 Data in hold time after ESAI_RX_CLK falling edge  
3.5  
9.0  
x ck  
i ck  
73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK  
falling edge5  
2.0  
12.0  
x ck  
i ck a  
74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK  
falling edge  
2.0  
12.0  
x ck  
i ck a  
75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling  
edge  
2.5  
8.5  
x ck  
i ck a  
78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high  
18.0  
8.0  
x ck  
i ck  
79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low  
20.0  
10.0  
x ck  
i ck  
80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr)  
high5  
20.0  
10.0  
x ck  
i ck  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
75  
Electrical Characteristics  
Table 51. Enhanced Serial Audio Interface (ESAI) Timing Parameters (continued)  
Characteristics1,2 Symbol Expression2 Min Max Condition3 Unit  
No.  
81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5  
82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high  
83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low  
22.0  
12.0  
x ck  
i ck  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
19.0  
9.0  
x ck  
i ck  
20.0  
10.0  
x ck  
i ck  
84 ESAI_TX_CLK rising edge to data out enable from high  
impedance  
22.0  
17.0  
x ck  
i ck  
86 ESAI_TX_CLK rising edge to data out valid  
18.0  
13.0  
x ck  
i ck  
87 ESAI_TX_CLK rising edge to data out high impedance 67  
21.0  
16.0  
x ck  
i ck  
89 ESAI_TX_FS input (bl, wr) setup time before  
ESAI_TX_CLK falling edge5  
2.0  
18.0  
x ck  
i ck  
90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK  
falling edge  
2.0  
18.0  
x ck  
i ck  
91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling  
edge  
4.0  
5.0  
x ck  
i ck  
95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle  
2 x TC  
15  
ns  
ns  
96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK  
output  
18.0  
97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK  
output  
18.0  
ns  
1
i ck = internal clock  
x ck = external clock  
i ck a = internal clock, asynchronous mode  
(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)  
i ck s = internal clock, synchronous mode  
(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)  
2
3
bl = bit length  
wl = word length  
wr = word length relative  
ESAI_TX_CLK(SCKT pin) = transmit clock  
ESAI_RX_CLK(SCKR pin) = receive clock  
ESAI_TX_FS(FST pin) = transmit frame sync  
ESAI_RX_FS(FSR pin) = receive frame sync  
ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock  
ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock  
4
5
For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.  
The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync  
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the  
second-to-last bit clock of the first word in the frame.  
6
Periodically sampled and not 100% tested.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
76  
NXP Semiconductors  
Electrical Characteristics  
62  
63  
64  
ESAI_TX_CLK  
(Input/Output)  
78  
79  
ESAI_TX_FS  
(Bit)  
82  
83  
Out  
ESAI_TX_FS  
(Word)  
86  
84  
86  
Out  
87  
First Bit  
Last Bit  
Data Out  
89  
91  
ESAI_TX_FS  
(Bit) In  
91  
90  
ESAI_TX_FS  
(Word) In  
Figure 38. ESAI Transmitter Timing  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
77  
Electrical Characteristics  
62  
63  
64  
ESAI_RX_CLK  
(Input/Output)  
65  
66  
ESAI_RX_FS  
(Bit)  
Out  
69  
70  
ESAI_RX_FS  
(Word)  
Out  
72  
71  
Data In  
Last Bit  
First Bit  
75  
73  
ESAI_RX_FS  
(Bit)  
In  
74  
75  
ESAI_RX_FS  
(Word)  
In  
Figure 39. ESAI Receiver Timing  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
78  
Electrical Characteristics  
4.11.4 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
Timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single  
Data Rate) timing, eMMC4.4/4.41 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.  
4.11.4.1 SD/eMMC4.3 (Single Data Rate) AC Timing  
Figure 40 depicts the timing of SD/eMMC4.3, and Table 52 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 40. SD/eMMC4.3 Timing  
Table 52. SD/eMMC4.3 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD -6.6  
3.6  
ns  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
79  
Electrical Characteristics  
Table 52. SD/eMMC4.3 Interface Timing Specification (continued)  
Parameter Symbols Min  
uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx (Reference to CLK)  
ID  
Max  
Unit  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.11.4.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing  
Figure 41 depicts the timing of eMMC4.4/4.41. Table 53 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 41. eMMC4.4/4.41 Timing  
Table 53. eMMC4.4/4.41 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock1  
SD1 Clock Frequency (eMMC4.4/4.41 DDR)  
SD1 Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SDx_CMD, SDx_DATAx (Reference to CLK)  
SD2 uSDHC Output Delay tOD 2.8 6.8  
uSDHC Input / Card Outputs SDx_CMD, SDx_DATAx (Reference to CLK)  
ns  
SD3 uSDHC Input Setup Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
SD4 uSDHC Input Hold Time  
1
1 Clock duty cycle will be in the range of 47% to 53%.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
80  
Electrical Characteristics  
4.11.4.3 SDR50/SDR104 AC Timing  
Figure 42 depicts the timing of SDR50/SDR104, and Table 54 lists the SDR50/SDR104 timing  
characteristics.  
Figure 42. SDR50/SDR104 Timing  
Table 54. SDR50/SDR104 Interface Timing Specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
4.8  
ns  
ns  
ns  
0.46 × tCLK  
0.46 × tCLK  
0.54 × tCLK  
0.54 × tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD –3  
uSDHC Output/Card Inputs SDx_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
SD5 uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
1
ns  
ns  
SD6 uSDHC Input Setup Time  
SD7 uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
uSDHC Input/Card Outputs SDx_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
SD8 Card Output Data Window  
tODW  
0.5 × tCLK  
ns  
1Data window in SDR100 mode is variable.  
4.11.4.4 Bus Operation Condition for 3.3 V and 1.8 V Signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are  
identical to those shown in Table 23, "GPIO DC Parameters," on page 40.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
81  
Electrical Characteristics  
4.11.5 Ethernet Controller (ENET) AC Electrical Specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
4.11.5.1 ENET MII Mode Timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.11.5.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1ꢀ. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.  
Figure 43 shows MII receive signal timings. Table 55 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 43. MII Receive Signal Timing Diagram  
Table 55. MII Receive Signal Timing  
ID  
Characteristic1  
Min  
Max  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
5
ns  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
82  
NXP Semiconductors  
Electrical Characteristics  
4.11.5.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1ꢀ.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET_TX_CLK frequency.  
Figure 44 shows MII transmit signal timings. Table 56 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 44. MII Transmit Signal Timing Diagram  
Table 56. MII Transmit Signal Timing  
ID  
Characteristic1  
Min  
Max  
Unit  
M5  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
ns  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.11.5.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)  
Figure 45 shows MII asynchronous input timings. Table 57 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 45. MII Async Inputs Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
83  
Electrical Characteristics  
Table 57. MII Asynchronous Inputs Signal Timing  
ID  
M91  
Characteristic  
ENET_CRS to ENET_COL minimum pulse width  
Min  
Max  
Unit  
1.5  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
4.11.5.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 46 shows MII asynchronous input timings. Table 58 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 46. MII Serial Management Channel Timing Diagram  
Table 58. MII Serial Management Channel Timing  
ID  
M10  
Characteristic  
Min  
Max  
Unit  
ENET_MDC falling edge to ENET_MDIO output invalid (min.  
propagation delay)  
0
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid (max.  
propagation delay)  
5
ns  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
84  
Electrical Characteristics  
4.11.5.2 RMII Mode Timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz 50 ppm continuous reference  
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include  
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.  
Figure 47 shows RMII mode timings. Table 59 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 47. RMII Mode Signal Timing Diagram  
Table 59. RMII Signal Timing  
ID  
M16  
Characteristic  
Min  
Max  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
M17  
M18  
M19  
M20  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
15  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to  
ENET_CLK setup  
4
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold  
2
ns  
4.11.5.3 Signal Switching Specifications  
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver  
devices.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
85  
Electrical Characteristics  
1
Table 60. RGMII Signal Switching Specifications  
Symbol  
Description  
Min  
Max  
Unit  
2
Tcyc  
Clock cycle duration  
7.2  
-500  
1
8.8  
500  
2.6  
55  
ns  
ps  
ns  
%
3
3
TskewT  
Data to clock output skew at transmitter  
Data to clock input skew at receiver  
Duty cycle for Gigabit  
TskewR  
Duty_G4  
Duty_T4  
Tr/Tf  
45  
Duty cycle for 10/100T  
40  
60  
%
Rise/fall time (20–80%)  
0.75  
ns  
1
The timings assume the following configuration:  
DDR_SEL = (11)b  
DSE (drive-strength) = (111)b  
2
3
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
2'-))?48# ꢋAT TRANSMITTERꢌ  
4SKEW4  
2'-))?48$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
2'-))?48?#4,  
48%.  
48%22  
4SKEW2  
2'-))?48# ꢋAT RECEIVERꢌ  
Figure 48. RGMII Transmit Signal Timing Diagram Original  
2'-))?28# ꢋAT TRANSMITTERꢌ  
4SKEW4  
2'-))?28$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
2'-))?28?#4,  
28$6  
28%22  
4SKEW2  
2'-))?28# ꢋAT RECEIVERꢌ  
Figure 49. RGMII Receive Signal Timing Diagram Original  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
86  
NXP Semiconductors  
Electrical Characteristics  
)NTERNAL DELAY  
2'-))?28# ꢋSOURCE OF DATAꢌ  
2'-))?28$N ꢋN ꢍ ꢀ TO ꢈ ꢌ  
4SETUP 4  
4 HOLD 4  
28$6  
28%22  
2'-))?28?#4,  
4 SETUP 2  
4 HOLD 2  
2'-))?28# ꢋAT RECEIVERꢌ  
Figure 50. RGMII Receive Signal Timing Diagram with Internal Delay  
4.11.6 Flexible Controller Area Network (FLEXCAN) AC Electrical  
Specifications  
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing  
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules  
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See  
the IOMUXC chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM) to see which pins  
expose Tx and Rx pins; these ports are named FLEXCAN_TX and FLEXCAN_RX, respectively.  
4.11.7 HDMI Module Timing Parameters  
4.11.7.1 Latencies and Timing Information  
Power-up time (time between TX_PWRON assertion and TX_READY assertion) for the HDMI 3D Tx  
PHY while operating with the slowest input reference clock supported (13.5 MHz) is 3.35 ms.  
Power-up time for the HDMI 3D Tx PHY while operating with the fastest input reference clock supported  
(340 MHz) is 133 μs.  
4.11.7.2 Electrical Characteristics  
The table below provides electrical characteristics for the HDMI 3D Tx PHY. The following three figures  
illustrate various definitions and measurement conditions specified in the table below.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
87  
Electrical Characteristics  
Figure 51. Driver Measuring Conditions  
Figure 52. Driver Definitions  
($-)?48?$!4!;ꢇꢂꢀ=?0  
($-)?48?#,+?0  
($-)?48?$!4!;ꢇꢂꢀ=?.  
($-)?48?#,+?.  
Figure 53. Source Termination  
Table 61. Electrical Characteristics  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Operating conditions for HDMI  
avddtmds Termination supply voltage  
3.15  
45  
3.3  
50  
3.45  
55  
V
RT  
Termination resistance  
Ω
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
88  
Electrical Characteristics  
Table 61. Electrical Characteristics (continued)  
Symbol  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
TMDS drivers DC specifications  
VOFF  
Single-ended standby voltage RT = 50 Ω  
avddtmds 10 mV  
mV  
mV  
For measurement conditions  
and definitions, see the first  
two figures above.  
VSWING Single-ended output swing  
voltage  
400  
600  
Compliance point TP1 as  
defined in the HDMI  
specification, version 1.3a,  
section 4.2.4.  
VH  
Single-ended output high  
voltage  
For definition, see the second  
figure above  
If attached sink supports  
TMDSCLK < or = 165 MHz  
avddtmds 10 mV  
mV  
mV  
mV  
mV  
Ω
If attached sink supports  
TMDSCLK > 165 MHz  
avddtmds  
- 200 mV  
avddtmds  
+ 10 mV  
VL  
Single-ended output low  
voltage  
For definition, see the second  
figure above  
If attached sink supports  
TMDSCLK < or = 165 MHz  
avddtmds  
- 600 mV  
avddtmds  
- 400mV  
If attached sink supports  
TMDSCLK > 165 MHz  
avddtmds  
- 700 mV  
avddtmds  
- 400 mV  
RTERM  
Differential source termination  
load (inside HDMI 3D Tx PHY)  
Although the HDMI 3D Tx  
PHY includes differential  
source termination, the  
50  
200  
user-defined value is set for  
each single line (for  
illustration, see Figure 53).  
Note: RTERM can also be  
configured to be open and not  
present on TMDS channels.  
Hot plug detect specifications  
HPDVH Hot plug detect high range  
VHPD  
2.0  
0
5.3  
0.8  
V
V
Hot plug detect low range  
VL  
HPD  
Hot plug detect input  
10  
kΩ  
Z
impedance  
HPD  
Hot plug detect time delay  
100  
µs  
t
4.11.8 Switching Characteristics  
Table 62 describes switching characteristics for the HDMI 3D Tx PHY. Figure 54 to Figure 58 illustrate  
various parameters specified in table.  
NOTE  
All dynamic parameters related to the TMDS line drivers’ performance  
imply the use of assembly guidelines.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
89  
Electrical Characteristics  
P
HDMI_TX_CLK  
0
ꢆꢀꢎ  
T#0,  
T#0(  
Figure 54. TMDS Clock Signal Definitions  
Figure 55. Eye Diagram Mask Definition for HDMI Driver Signal Specification at TP1  
4-$3$!4!0  
ꢇ  
637).'  
AVDDTMDS ꢏ  
ꢋTYPꢌ  
4-$3$!4!.  
T 3+ ꢋPꢌ  
)NTRAꢏPAIR SKEW  
Figure 56. Intra-Pair Skew Definition  
0REVIOUS CYCLE ;Nꢏꢄ=  
#URRENT CYCLE ;N=  
Bꢀ;N= Bꢄ;N=  
Bꢐ;Nꢏꢄ=  
Bꢐ;Nꢏꢄ=  
Bꢊ;Nꢏꢄ=  
Bꢊ;Nꢏꢄ=  
Bꢁ;Nꢏꢄ=  
Bꢁ;Nꢏꢄ=  
4-$3$!4!;ꢀ=  
4-$3$!4!;ꢄ=  
Bꢄ;N=  
Bꢄ;N=  
Bꢀ;N=  
Bꢀ;N=  
4-$3$!4!;ꢇ=  
Bꢊ;Nꢏꢄ=  
Bꢁ;Nꢏꢄ=  
Bꢐ;Nꢏꢄ=  
T3+ ꢋPPꢌ  
)NTERꢏPAIR SKEW  
Figure 57. Inter-Pair Skew Definition  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
90  
Electrical Characteristics  
Figure 58. TMDS Output Signals Rise and Fall Time Definition  
Table 62. Switching Characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
TMDS Drivers Specifications  
Maximum serial data rate  
TMDSCLK frequency  
TMDSCLK period  
25  
3.4  
340  
40  
Gbps  
MHz  
ns  
F
On TMDSCLKP/N outputs  
TMDSCLK  
TMDSCLK  
P
RL = 50 Ω  
See Figure 54.  
2.94  
t
= t  
/ P  
t
TMDSCLK duty cycle  
40  
50  
60  
%
CDC  
CPH  
TMDSCLK  
CDC  
RL = 50 Ω  
See Figure 54.  
t
TMDSCLK high time  
TMDSCLK low time  
RL = 50 Ω  
4
4
5
5
6
6
UI1  
UI1  
CPH  
See Figure 54.  
t
RL = 50 Ω  
See Figure 54.  
CPL  
TMDSCLK jitter2  
RL = 50 Ω  
0.25  
0.15  
UI1  
UI1  
t
Intra-pair (pulse) skew  
RL = 50 Ω  
See Figure 56.  
SK(p)  
t
Inter-pair skew  
RL = 50 Ω  
1
UI1  
ps  
SK(pp)  
See Figure 57.  
tR  
Differential output signal rise  
time  
20–80%  
RL = 50 Ω  
See Figure 58.  
75  
0.4 UI  
tF  
Differential output signal fall time  
20–80%  
RL = 50 Ω  
See Figure 58.  
75  
0.4 UI  
ps  
Differential signal overshoot  
Differential signal undershoot  
Referred to 2x VSWING  
Referred to 2x VSWING  
15  
25  
%
%
1
2
UI means TMDS clock unit.  
Relative to ideal recovery clock, as specified in the HDMI specification, version 1.4a, section 4.2.3.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
91  
Electrical Characteristics  
4.11.9 I2C Module Timing Parameters  
2
2
This section describes the timing parameters of the I C module. Figure 59 depicts the timing of I C  
2
module, and Table 63 lists the I C module timing characteristics.  
IC11  
IC9  
IC10  
I2Cx_SDA  
I2Cx_SCL  
IC7  
IC4  
IC2  
IC3  
IC8  
IC10  
IC6  
IC11  
STOP  
START  
START  
START  
IC5  
IC1  
2
Figure 59. I C Bus Timing  
2
Table 63. I C Module Timing Parameters  
Standard Mode  
Fast Mode  
ID  
Parameter  
Unit  
Min  
Max  
Min  
Max  
IC1  
IC2  
I2Cx_SCL cycle time  
10  
4.0  
4.0  
01  
2.5  
0.6  
0.6  
01  
µs  
µs  
µs  
Hold time (repeated) START condition  
Set-up time for STOP condition  
IC3  
IC4  
Data hold time  
3.452  
0.92 µs  
IC5  
HIGH Period of I2Cx_SCL Clock  
LOW Period of the I2Cx_SCL Clock  
Set-up time for a repeated START condition  
Data set-up time  
4.0  
4.7  
4.7  
250  
4.7  
0.6  
1.3  
0.6  
1003  
1.3  
µs  
µs  
µs  
ns  
µs  
IC6  
IC7  
IC8  
IC9  
Bus free time between a STOP and START condition  
Rise time of both I2Cx_SDA and I2Cx_SCL signals  
Fall time of both I2Cx_SDA and I2Cx_SCL signals  
Capacitive load for each bus line (Cb)  
4
IC10  
IC11  
IC12  
1000  
300  
400  
20 + 0.1Cb 300 ns  
4
20 + 0.1Cb 300 ns  
400 pF  
1
A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling  
edge of I2Cx_SCL.  
2
3
The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.  
A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)  
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.  
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line  
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)  
before the I2Cx_SCL line is released.  
4
Cb = total capacitance of one bus line in pF.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
92  
NXP Semiconductors  
Electrical Characteristics  
4.11.10 Image Processing Unit (IPU) Module Parameters  
The purpose of the IPU is to provide comprehensive support for the flow of data from an image sensor  
and/or to a display device. This support covers all aspects of these activities:  
Connectivity to relevant devicescameras, displays, graphics accelerators, and TV encoders.  
Related image processing and manipulation: sensor image signal processing, display processing,  
image conversions, and other related functions.  
Synchronization and control capabilities, such as avoidance of tearing artifacts.  
4.11.10.1 IPU Sensor Interface Signal Mapping  
The IPU supports a number of sensor input formats. Table 64 defines the mapping of the Sensor Interface  
Pins used for various supported interface formats.  
Table 64. Camera Input Signal Cross Reference, Format, and Bits Per Cycle  
RGB565  
8 bits  
2 cycles  
RGB5652  
8 bits  
3 cycles  
RGB6663 RGB888  
YCbCr4 RGB5655 YCbCr6  
YCbCr7  
16 bits  
1 cycle  
YCbCr8  
20 bits  
1 cycle  
Signal  
Name1  
8 bits  
8 bits  
8 bits  
16 bits  
1 cycle  
16 bits  
1 cycle  
3 cycles  
3 cycles 2 cycles  
IPUx_CSIx_  
DATA00  
0
C[0]  
C[1]  
C[2]  
C[3]  
C[4]  
C[5]  
C[6]  
C[7]  
C[8]  
C[9]  
Y[0]  
Y[1]  
Y[2]  
IPUx_CSIx_  
DATA01  
0
IPUx_CSIx_  
DATA02  
C[0]  
C[1]  
C[2]  
C[3]  
C[4]  
C[5]  
C[6]  
C[7]  
0
IPUx_CSIx_  
DATA03  
IPUx_CSIx_  
DATA04  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
G[0]  
G[1]  
G[2]  
G[3]  
C[0]  
C[1]  
C[2]  
C[3]  
C[4]  
C[5]  
C[6]  
C[7]  
Y[0]  
IPUx_CSIx_  
DATA05  
IPUx_CSIx_  
DATA06  
IPUx_CSIx_  
DATA07  
IPUx_CSIx_  
DATA08  
IPUx_CSIx_  
DATA09  
IPUx_CSIx_  
DATA10  
IPUx_CSIx_  
DATA11  
0
IPUx_CSIx_ B[0], G[3] R[2],G[4],B[2] R/G/B[4]  
DATA12  
R/G/B[0]  
Y/C[0]  
Y[0]  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
93  
Electrical Characteristics  
Table 64. Camera Input Signal Cross Reference, Format, and Bits Per Cycle (continued)  
RGB565  
8 bits  
2 cycles  
RGB5652  
8 bits  
3 cycles  
RGB6663 RGB888  
YCbCr4 RGB5655 YCbCr6  
YCbCr7  
16 bits  
1 cycle  
YCbCr8  
20 bits  
1 cycle  
Signal  
Name1  
8 bits  
8 bits  
8 bits  
16 bits  
1 cycle  
16 bits  
1 cycle  
3 cycles  
3 cycles 2 cycles  
IPUx_CSIx_ B[1], G[4] R[3],G[5],B[3] R/G/B[5]  
DATA13  
R/G/B[1]  
R/G/B[2]  
R/G/B[3]  
R/G/B[4]  
R/G/B[5]  
R/G/B[6]  
R/G/B[7]  
Y/C[1]  
Y/C[2]  
Y/C[3]  
Y/C[4]  
Y/C[5]  
Y/C[6]  
Y/C[7]  
G[4]  
G[5]  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
Y[8]  
Y[9]  
IPUx_CSIx_ B[2], G[5] R[4],G[0],B[4] R/G/B[0]  
DATA14  
IPUx_CSIx_  
DATA15  
B[3], R[0] R[0],G[1],B[0] R/G/B[1]  
IPUx_CSIx_  
DATA16  
B[4], R[1] R[1],G[2],B[1] R/G/B[2]  
IPUx_CSIx_ G[0], R[2] R[2],G[3],B[2] R/G/B[3]  
DATA17  
IPUx_CSIx_ G[1], R[3] R[3],G[4],B[3] R/G/B[4]  
DATA18  
IPUx_CSIx_ G[2], R[4] R[4],G[5],B[4] R/G/B[5]  
DATA19  
1
IPUx_CSIx stands for IPUx_CSI0 or IPUx_CSI1.  
2
3
4
5
The MSB bits are duplicated on LSB bits implementing color extension.  
The two MSB bits are duplicated on LSB bits implementing color extension.  
YCbCr, 8 bits—Supported within the BT.656 protocol (sync embedded within the data stream).  
RGB 16 bits—Supported in two ways: (1) As a “generic data” input, with no on-the-fly processing; (2) With on-the-fly  
processing, but only under some restrictions on the control protocol.  
6
7
8
YCbCr 16 bits—Supported as a “generic-data” input, with no on-the-fly processing.  
YCbCr 16 bits—Supported as a sub-case of the YCbCr, 20 bits, under the same conditions (BT.1120 protocol).  
YCbCr, 20 bits—Supported only within the BT.1120 protocol (syncs embedded within the data stream).  
4.11.10.2 Sensor Interface Timings  
There are three camera timing modes supported by the IPU.  
4.11.10.2.1 BT.656 and BT.1120 Video Mode  
Smart camera sensors, which include imaging processing, usually support video mode transfer. They use  
an embedded timing syntax to replace the IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals. The  
timing syntax is defined by the BT.656/BT.1120 standards.  
This operation mode follows the recommendations of ITU BT.656/ ITU BT.1120 specifications. The only  
control signal used is IPUx_CSIx_PIX_CLK. Start-of-frame and active-line signals are embedded in the  
data stream. An active line starts with a SAV code and ends with a EAV code. In some cases, digital  
blanking is inserted in between EAV and SAV code. The CSI decodes and filters out the timing-coding  
from the data stream, thus recovering IPUx_CSIx_VSYNC and IPUx_CSIx_HSYNC signals for internal  
use. On BT.656 one component per cycle is received over the IPUx_CSIx_DATA_EN bus. On BT.1120  
two components per cycle are received over the IPUx_CSIx_DATA_EN bus.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
94  
NXP Semiconductors  
Electrical Characteristics  
4.11.10.2.2 Gated Clock Mode  
The IPUx_CSIx_VSYNC, IPUx_CSIx_HSYNC, and IPUx_CSIx_PIX_CLK signals are used in this  
mode. See Figure 60.  
4UBSUꢀPGꢀ'SBNF  
OUIꢀGSBNF  
OꢂꢁUIꢀGSBNF  
"DUJWFꢀ-JOF  
*16Y@$4*Y@@74:/$  
*16Y@$4*Y@@)4:/$  
*16Y@$4*Y@@1*9@$-,  
*16Y@$4*Y@@%"5"YY  
JOWBMJE  
JOWBMJE  
ꢁTUꢀCZUF  
ꢁTUꢀCZUF  
Figure 60. Gated Clock Mode Timing Diagram  
A frame starts with a rising edge on IPUx_CSIx_VSYNC (all the timings correspond to straight polarity  
of the corresponding signals). Then IPUx_CSIx_HSYNC goes to high and hold for the entire line. Pixel  
clock is valid as long as IPUx_CSIx_HSYNC is high. Data is latched at the rising edge of the valid pixel  
clocks. IPUx_CSIx_HSYNC goes to low at the end of line. Pixel clocks then become invalid and the CSI  
stops receiving data from the stream. For the next line, the IPUx_CSIx_HSYNC timing repeats. For the  
next frame, the IPUx_CSIx_VSYNC timing repeats.  
4.11.10.2.3 Non-Gated Clock Mode  
The timing is the same as the gated-clock mode (described in Section 4.11.10.2.2, “Gated Clock Mode,”)  
except for the IPUx_CSIx_HSYNC signal, which is not used (see Figure 61). All incoming pixel clocks  
are valid and cause data to be latched into the input FIFO. The IPUx_CSIx_PIX_CLK signal is inactive  
(states low) until valid data is going to be transmitted over the bus.  
Start of Frame  
n+1th frame  
nth frame  
IPUx_CSIx_VSYNC  
IPUx_CSIx_PIX_CLK  
invalid  
invalid  
IPUx_CSIx_DATA_EN[19:0]  
1st byte  
1st byte  
Figure 61. Non-Gated Clock Mode Timing Diagram  
The timing described in Figure 61 is that of a typical sensor. Some other sensors may have a slightly  
different timing. The CSI can be programmed to support rising/falling-edge triggered  
IPUx_CSIx_VSYNC; active-high/low IPUx_CSIx_HSYNC; and rising/falling-edge triggered  
IPUx_CSIx_PIX_CLK.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
95  
Electrical Characteristics  
4.11.10.3 Electrical Characteristics  
Figure 62 depicts the sensor interface timing. IPUx_CSIx_PIX_CLK signal described here is not  
generated by the IPU. Table 65 lists the sensor interface timing characteristics.  
IPUx_CSIx_PIX_CLK  
(Sensor Output)  
1/IP1  
IP2  
IP3  
IPUx_CSIx_DATA_EN,  
IPUx_CSIx_VSYNC,  
IPUx_CSIx_HSYNC  
Figure 62. Sensor Interface Timing Diagram  
Table 65. Sensor Interface Timing Characteristics  
ID  
Parameter  
Symbol  
Fpck  
Min  
Max  
Unit  
MHz  
IP1  
IP2  
IP3  
Sensor output (pixel) clock frequency  
Data and control setup time  
0.01  
2
180  
Tsu  
Thd  
ns  
ns  
Data and control holdup time  
1
4.11.10.4 IPU Display Interface Signal Mapping  
The IPU supports a number of display output video formats. Table 66 defines the mapping of the Display  
Interface Pins used during various supported video interface formats.  
Table 66. Video Signal Cross-Reference  
i.MX 6Solo/6DualLite  
LCD  
RGB/TV Signal Allocation (Example)  
Comment1,2  
RGB,  
Signal  
Name  
Port Name  
(x=0, 1)  
16-bit 18-bit 24 Bit  
8-bit  
16-bit 20-bit  
RGB RGB RGB YCrCb3 YCrCb YCrCb  
(General)  
IPUx_DISPx_DAT00  
IPUx_DISPx_DAT01  
IPUx_DISPx_DAT02  
IPUx_DISPx_DAT03  
IPUx_DISPx_DAT04  
IPUx_DISPx_DAT05  
IPUx_DISPx_DAT06  
DAT[0]  
DAT[1]  
DAT[2]  
DAT[3]  
DAT[4]  
DAT[5]  
DAT[6]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
G[0]  
G[1]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
G[0]  
B[0]  
B[1]  
B[2]  
B[3]  
B[4]  
B[5]  
B[6]  
Y/C[0]  
Y/C[1]  
Y/C[2]  
Y/C[3]  
Y/C[4]  
Y/C[5]  
Y/C[6]  
C[0]  
C[1]  
C[2]  
C[3]  
C[4]  
C[5]  
C[6]  
C[0]  
C[1]  
C[2]  
C[3]  
C[4]  
C[5]  
C[6]  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
96  
Electrical Characteristics  
Table 66. Video Signal Cross-Reference (continued)  
i.MX 6Solo/6DualLite  
LCD  
RGB/TV Signal Allocation (Example)  
Comment1,2  
RGB,  
Port Name  
(x=0, 1)  
Signal  
Name  
(General)  
16-bit 18-bit 24 Bit  
8-bit  
16-bit 20-bit  
RGB RGB RGB YCrCb3 YCrCb YCrCb  
IPUx_DISPx_DAT07  
IPUx_DISPx_DAT08  
IPUx_DISPx_DAT09  
IPUx_DISPx_DAT10  
IPUx_DISPx_DAT11  
IPUx_DISPx_DAT12  
IPUx_DISPx_DAT13  
IPUx_DISPx_DAT14  
IPUx_DISPx_DAT15  
IPUx_DISPx_DAT16  
IPUx_DISPx_DAT17  
IPUx_DISPx_DAT18  
IPUx_DISPx_DAT19  
IPUx_DISPx_DAT20  
IPUx_DISPx_DAT21  
IPUx_DISPx_DAT22  
IPUx_DISPx_DAT23  
DIx_DISP_CLK  
DAT[7]  
DAT[8]  
G[2]  
G[3]  
G[4]  
G[5]  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
B[7]  
G[0]  
G[1]  
G[2]  
G[3]  
G[4]  
G[5]  
G[6]  
G[7]  
R[0]  
R[1]  
R[2]  
R[3]  
R[4]  
R[5]  
R[6]  
R[7]  
PixCLK  
Y/C[7]  
C[7]  
Y[0]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
C[7]  
C[8]  
C[9]  
Y[0]  
Y[1]  
Y[2]  
Y[3]  
Y[4]  
Y[5]  
Y[6]  
Y[7]  
Y[8]  
Y[9]  
DAT[9]  
DAT[10]  
DAT[11]  
DAT[12]  
DAT[13]  
DAT[14]  
DAT[15]  
DAT[16]  
DAT[17]  
DAT[18]  
DAT[19]  
DAT[20]  
DAT[21]  
DAT[22]  
DAT[23]  
DIx_PIN1  
DIx_PIN2  
DIx_PIN3  
May be required for anti-tearing  
HSYNC  
VSYNC  
VSYNC out  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
97  
Electrical Characteristics  
i.MX 6Solo/6DualLite  
Table 66. Video Signal Cross-Reference (continued)  
LCD  
RGB/TV Signal Allocation (Example)  
Comment1,2  
RGB,  
Port Name  
(x=0, 1)  
Signal  
Name  
(General)  
16-bit 18-bit 24 Bit  
8-bit  
16-bit 20-bit  
RGB RGB RGB YCrCb3 YCrCb YCrCb  
DIx_PIN4  
DIx_PIN5  
DIx_PIN6  
DIx_PIN7  
DIx_PIN8  
DIx_D0_CS  
DIx_D1_CS  
Additional frame/row synchronous  
signals with programmable timing  
Alternate mode of PWM output for  
contrast or brightness control  
DIx_PIN11  
DIx_PIN12  
DIx_PIN13  
DIx_PIN14  
DIx_PIN15  
DIx_PIN16  
DIx_PIN17  
Register select signal  
Optional RS2  
DRDY/DV  
Data validation/blank, data enable  
Q
Additional data synchronous  
signals with programmable  
features/timing  
1
Signal mapping (both data and control/synchronization) is flexible. The table provides examples.  
2
Restrictions for ports IPUx_DISPx_DAT00 through IPUx_DISPx_DAT23 are as follows:  
• A maximum of three continuous groups of bits can be independently mapped to the external bus. Groups must not overlap.  
• The bit order is expressed in each of the bit groups, for example, B[0] = least significant blue pixel bit.  
This mode works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line  
start, and line end) are embedded in the 8-bit data bus. Only video data is supported, transmission of non-video related data  
during blanking intervals is not supported.  
3
NOTE  
Table 66 provides information for both the DISP0 and DISP1 ports.  
However, DISP1 port has reduced pinout depending on IOMUXC  
configuration and therefore may not support all the above configurations.  
See the IOMUXC chapter of the i.MX 6Solo/6DualLite Reference Manual  
(IMX6SDLRM).  
4.11.10.5 IPU Display Interface Timing  
The IPU Display Interface supports two kinds of display accesses: synchronous and asynchronous. There  
are two groups of external interface pins to provide synchronous and asynchronous controls accordantly.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
98  
NXP Semiconductors  
Electrical Characteristics  
4.11.10.5.1 Synchronous Controls  
The synchronous control changes its value as a function of a system or of an external clock. This control  
has a permanent period and a permanent wave form.  
There are special physical outputs to provide synchronous controls:  
The IPP_DISP_CLK is a dedicated base synchronous signal that is used to generate a base display  
(component, pixel) clock for a display.  
The IPUx_DIx_PIN01—IPUx_DIx_PIN07 are general purpose synchronous pins, that can be used  
to provide HSYNC, VSYNC, DRDY or any other independent signal to a display.  
The IPU has a system of internal binding counters for internal events (such as, HSYNC/VSYNC)  
calculation. The internal event (local start point) is synchronized with internal DI_CLK. A suitable control  
starts from the local start point with predefined UP and DOWN values to calculate control’s changing  
points with half DI_CLK resolution. A full description of the counters system can be found in the IPU  
chapter of the i.MX 6Solo/6DualLite Reference Manual (IMX6SDLRM).  
4.11.10.5.2 Asynchronous Controls  
The asynchronous control is a data-oriented signal that changes its value with an output data according to  
additional internal flags coming with the data.  
There are special physical outputs to provide asynchronous controls, as follows:  
The IPUx_DIx_D0_CS and IPUx_DIx_D1_CS pins are dedicated to provide chip select signals to  
two displays.  
The IPUx_DIx_PIN11—IPUx_DIx_PIN17 are general purpose asynchronous pins, that can be  
used to provide WR. RD, RS or any other data oriented signal to display.  
NOTE  
The IPU has independent signal generators for asynchronous signals  
toggling. When a DI decides to put a new asynchronous data in the bus, a  
new internal start (local start point) is generated. The signals generators  
calculate predefined UP and DOWN values to change pins states with half  
DI_CLK resolution.  
4.11.10.6 Synchronous Interfaces to Standard Active Matrix TFT LCD Panels  
4.11.10.6.1 IPU Display Operating Signals  
The IPU uses four control signals and data to operate a standard synchronous interface:  
IPP_DISP_CLK—Clock to display  
HSYNC—Horizontal synchronization  
VSYNC—Vertical synchronization  
DRDY—Active data  
All synchronous display controls are generated on the base of an internally generated “local start point”.  
The synchronous display controls can be placed on time axis with DI’s offset, up and down parameters.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
99  
Electrical Characteristics  
The display access can be whole number of DI clock (Tdiclk) only. The IPP_DATA can not be moved  
relative to the local start point. The data bus of the synchronous interface is output direction only.  
4.11.10.6.2 LCD Interface Functional Description  
Figure 63 depicts the LCD interface timing for a generic active matrix color TFT panel. In this figure,  
signals are shown with negative polarity. The sequence of events for active matrix interface timing is:  
DI_CLK internal DI clock is used for calculation of other controls.  
IPP_DISP_CLK latches data into the panel on its negative edge (when positive polarity is selected).  
In active mode, IPP_DISP_CLK runs continuously.  
HSYNC causes the panel to start a new line. (Usually IPUx_DIx_PIN02 is used as HSYNC.)  
VSYNC causes the panel to start a new frame. It always encompasses at least one HSYNC pulse.  
(Usually IPUx_DIx_PIN03 is used as VSYNC.)  
DRDY acts like an output enable signal to the CRT display. This output enables the data to be  
shifted onto the display. When disabled, the data is invalid and the trace is off.  
(DRDY can be used either synchronous or asynchronous generic purpose pin as well.)  
VSYNC  
HSYNC  
LINE 1  
LINE 2  
LINE 3  
LINE 4  
LINE n-1 LINE n  
HSYNC  
DRDY  
1
2
3
m-1  
m
IPP_DISP_CLK  
IPP_DATA  
Figure 63. Interface Timing Diagram for TFT (Active Matrix) Panels  
4.11.10.6.3 TFT Panel Sync Pulse Timing Diagrams  
Figure 64 depicts the horizontal timing (timing of one line), including both the horizontal sync pulse and  
the data. All the parameters shown in the figure are programmable. All controls are started by  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
100  
NXP Semiconductors  
Electrical Characteristics  
corresponding internal events—local start points. The timing diagrams correspond to inverse polarity of  
the IPP_DISP_CLK signal and active-low polarity of the HSYNC, VSYNC, and DRDY signals.  
IP13o  
IP7  
IP5  
IP5o  
IP8o  
IP8  
DI clock  
IPP_DISP_ CLK  
VSYNC  
HSYNC  
DRDY  
IPP_DATA  
Dn  
D0  
D1  
IP9o  
IP10  
IP9  
IP6  
Figure 64. TFT Panels Timing Diagram—Horizontal Sync Pulse  
Figure 65 depicts the vertical timing (timing of one frame). All parameters shown in the figure are  
programmable.  
End of frame  
Start of frame  
IP13  
VSYNC  
HSYNC  
DRDY  
IP11  
IP15  
IP14  
IP12  
Figure 65. TFT Panels Timing Diagram—Vertical Sync Pulse  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
101  
Electrical Characteristics  
Table 67 shows timing characteristics of signals presented in Figure 64 and Figure 65.  
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level)  
ID  
IP5  
IP6  
Parameter  
Display interface clock period Tdicp  
Display pixel clock period  
Symbol  
Value  
Description  
Unit  
(1)  
Display interface clock. IPP_DISP_CLK  
ns  
ns  
Tdpcp DISP_CLK_PER_PIXEL Time of translation of one pixel to display,  
× Tdicp  
DISP_CLK_PER_PIXEL—number of pixel  
components in one pixel (1.n). The  
DISP_CLK_PER_PIXEL is virtual  
parameter to define Display pixel clock  
period.  
TheDISP_CLK_PER_PIXELisreceivedby  
DC/DI one access division to n  
components.  
IP7  
Screen width time  
Tsw  
(SCREEN_WIDTH)  
SCREEN_WIDTH—screen width in,  
interface clocks. horizontal blanking  
included.  
ns  
× Tdicp  
The SCREEN_WIDTH should be built by  
suitable DI’s counter2.  
IP8  
IP9  
HSYNC width time  
Thsw  
Thbi1  
(HSYNC_WIDTH)  
HSYNC_WIDTH—Hsync width in DI_CLK  
with 0.5 DI_CLK resolution. Defined by DI’s  
counter.  
ns  
ns  
Horizontal blank interval 1  
BGXP × Tdicp  
BGXP—width of a horizontal blanking  
before a first active data in a line (in  
interface clocks). The BGXP should be built  
by suitable DI’s counter.  
IP10 Horizontal blank interval 2  
IP12 Screen height  
Thbi2  
Tsh  
(SCREEN_WIDTH -  
BGXP - FW) × Tdicp  
Width a horizontal blanking after a last  
active data in a line (in interface clocks)  
FW—with of active line in interface clocks.  
The FW should be built by suitable DI’s  
counter.  
ns  
(SCREEN_HEIGHT)  
SCREEN_HEIGHTscreenheight in lines ns  
with blanking.  
The SCREEN_HEIGHT is a distance  
between 2 VSYNCs.  
× Tsw  
The SCREEN_HEIGHT should be built by  
suitable DI’s counter.  
IP13 VSYNC width  
Tvsw  
Tvbi1  
Tvbi2  
Todicp  
VSYNC_WIDTH  
VSYNC_WIDTH—Vsync width in DI_CLK  
with 0.5 DI_CLK resolution. Defined by DI’s  
counter  
ns  
ns  
ns  
ns  
IP14 Vertical blank interval 1  
IP15 Vertical blank interval 2  
IP5o Offset of IPP_DISP_CLK  
BGYP × Tsw  
BGYP—width of first Vertical  
blanking interval in line. The BGYP should  
be built by suitable DI’s counter.  
(SCREEN_HEIGHT -  
BGYP - FH) × Tsw  
Width of second Vertical  
blanking interval in line. The FH should be  
built by suitable DI’s counter.  
DISP_×CLTKd_icOlkFFSET  
DISP_CLK_OFFSET—offset of  
IPP_DISP_CLK edges from local start  
point, in DI_CLK×2  
(0.5 DI_CLK Resolution).  
Defined by DISP_CLK counter  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
102  
Electrical Characteristics  
Table 67. Synchronous Display Interface Timing Characteristics (Pixel Level) (continued)  
ID  
Parameter  
Symbol  
Value  
Description  
Unit  
IP13o Offset of VSYNC  
IP8o Offset of HSYNC  
IP9o Offset of DRDY  
Tovs  
VSYNC_OFFSET  
VSYNC_OFFSET—offset of Vsync edges  
from a local start point, when a Vsync  
should be active, in DI_CLK×2  
(0.5 DI_CLK Resolution). The  
VSYNC_OFFSET should be built by  
suitable DI’s counter.  
ns  
× Tdiclk  
Tohs  
HSYNC_OFFSET  
HSYNC_OFFSET—offset of Hsync edges  
from a local start point, when a Hsync  
should be active, in DI_CLK×2  
(0.5 DI_CLK Resolution). The  
HSYNC_OFFSET should be built by  
suitable DI’s counter.  
ns  
ns  
× Tdiclk  
Todrdy  
DRDY_OFFSET  
DRDY_OFFSET—offset of DRDY edges  
from a suitable local start point, when a  
corresponding data has been set on the  
bus, in DI_CLK×2  
× Tdiclk  
(0.5 DI_CLK Resolution).  
The DRDY_OFFSET should be built by  
suitable DI’s counter.  
1
Display interface clock period immediate value.  
DISP_CLK_PERIOD  
----------------------------------------------------  
DISP_CLK_PERIOD  
DI_CLK_PERIOD  
T
×
,
for integer ----------------------------------------------------  
diclk  
DI_CLK_PERIOD  
Tdicp =  
DISP_CLK_PERIOD  
----------------------------------------------------  
DISP_CLK_PERIOD  
T
floor  
+ 0.5 0.5 ,  
for fractional ----------------------------------------------------  
diclk  
DI_CLK_PERIOD  
DI_CLK_PERIOD  
DISP_CLK_PERIOD—number of DI_CLK per one Tdicp. Resolution 1/16 of DI_CLK.  
DI_CLK_PERIOD—relation of between programing clock frequency and current system clock frequency  
Display interface clock period average value.  
DISP_CLK_PERIOD  
----------------------------------------------------  
Tdicp = T  
×
DI_CLK_PERIOD  
diclk  
2
DI’s counter can define offset, period and UP/DOWN characteristic of output signal according to programed parameters of the  
counter. Same of parameters in the table are not defined by DI’s registers directly (by name), but can be generated by  
corresponding DI’s counter. The SCREEN_WIDTH is an input value for DI’s HSYNC generation counter. The distance  
between HSYNCs is a SCREEN_WIDTH.  
The maximum accuracy of UP/DOWN edge of controls is:  
Accuracy = (0.5 × T  
) 0.62ns  
diclk  
The maximum accuracy of UP/DOWN edge of IPP_DATA is:  
Accuracy = T  
0.62ns  
diclk  
The DISP_CLK_PERIOD, DI_CLK_PERIOD parameters are programmed through the registers.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
103  
Electrical Characteristics  
Figure 66 depicts the synchronous display interface timing for access level. The DISP_CLK_DOWN and  
DISP_CLK_UP parameters are set through the Register. Table 68 lists the synchronous display interface  
timing characteristics.  
IP20o IP20  
VSYNC  
HSYNC  
DRDY  
other controls  
IPP_DISP_CLK  
Tdicd  
Tdicu  
IP18  
IPP_DATA  
IP16  
IP17  
IP19  
local start point  
Figure 66. Synchronous Display Interface Timing Diagram—Access Level  
Table 68. Synchronous Display Interface Timing Characteristics (Access Level)  
ID  
Parameter  
Symbol  
Min  
Typ1  
Max  
Unit  
IP16  
Display interface clock low Tckl  
time  
Tdicd-Tdicu-1.24  
Tdicd2-Tdicu3  
Tdicd-Tdicu+1.24  
ns  
IP17  
Display interface clock  
high time  
Tckh  
Tdicp-Tdicd+Tdicu-1.24 Tdicp-Tdicd+Tdicu Tdicp-Tdicd+Tdicu+1.2  
ns  
IP18  
IP19  
IP20o  
Data setup time  
Data holdup time  
Tdsu  
Tdhd  
Tocsu  
Tdicd-1.24  
Tdicu  
ns  
ns  
ns  
Tdicp-Tdicd-1.24  
Tocsu-1.24  
Tdicp-Tdicu  
Tocsu  
Control signals offset  
Tocsu+1.24  
times (defines for each pin)  
IP20  
Control signals setup time Tcsu  
to display interface clock  
(defines for each pin)  
Tdicd-1.24-Tocsu%Tdicp Tdicu  
ns  
1The exact conditions have not been finalized, but will likely match the current customer requirement for their specific display.  
These conditions may be chip specific.  
2
Display interface clock down time  
2 × DISP_CLK_DOWN  
1
2
-----------------------------------------------------------  
Tdicd = -- T  
diclk  
× ceil  
DI_CLK_PERIOD  
3
Display interface clock up time where CEIL(X) rounds the elements of X to the nearest integers towards infinity.  
2 × DISP_CLK_UP  
1
2
------------------------------------------------  
Tdicu = -- T  
diclk  
× ceil  
DI_CLK_PERIOD  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
104  
Electrical Characteristics  
4.11.11 LVDS Display Bridge (LDB) Module Parameters  
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD  
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits”.  
Table 69. LVDS Display Bridge (LDB) Electrical Specification  
Parameter  
Symbol  
Test Condition  
100 Ω Differential load  
Min  
Max  
Units  
Differential Voltage Output Voltage  
Output Voltage High  
VOD  
Voh  
250  
450  
1.6  
mV  
V
100 Ω differential load (0 V Diff—Output High  
Voltage static)  
1.25  
Output Voltage Low  
Offset Static Voltage  
Vol  
100 Ω differential load (0 V Diff—Output Low  
0.9  
1.25  
V
V
Voltage static)  
VOS  
Two 49.9 Ω resistors in series between N-P  
terminal, with output in either Zero or One state, the  
voltage measured between the 2 resistors.  
1.15  
1.375  
VOS Differential  
VOSDIFF Difference in VOS between a One and a Zero state  
ISA ISB With the output common shorted to GND  
-50  
-24  
247  
50  
24  
mV  
mA  
mV  
Output short circuited to GND  
VT Full Load Test  
VTLoad 100 Ω Differential load with a 3.74 kΩ load between  
454  
GND and IO Supply Voltage  
4.11.12 MIPI D-PHY Timing Parameters  
This section describes MIPI D-PHY electrical specifications, compliant with MIPI CSI-2 version 1.0,  
D-PHY specification Rev. 1.0 (for MIPI sensor port x2 lanes) and MIPI DSI Version 1.01, and D-PHY  
specification Rev. 1.0 (and also DPI version 2.0, DBI version 2.0, DSC version 1.0a at protocol layer) (for  
MIPI display port x2 lanes).  
4.11.12.1 Electrical and Timing Information  
Table 70. Electrical and Timing Information  
Symbol  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
Input DC Specifications - Apply to DSI_CLK_P/DSI_CLK_N and DSI_DATA_P/DSI_DATA_N inputs  
VI  
Input signal voltage range  
Input leakage current  
Transient voltage range is  
limited from -300 mV to  
1600 mV  
-50  
-10  
1350  
10  
mV  
mA  
VLEAK  
VGNDSH(min) = VI =  
VGNDSH(max) +  
VOH(absmax)  
Lane module in LP Receive  
Mode  
VGNDSH  
Ground Shift  
-50  
50  
mV  
V
VOH(absmax)  
Maximum transient output  
voltage level  
1.45  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
105  
Electrical Characteristics  
Symbol  
Table 70. Electrical and Timing Information (continued)  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
tvoh(absmax)  
Maximum transient time  
above VOH(absmax)  
20  
ns  
HS Line Drivers DC Specifications  
|VOD  
|
HS Transmit Differential  
output voltage magnitude  
80 Ω<= RL< = 125 Ω  
140  
200  
270  
10  
mV  
mV  
Δ|VOD  
|
Change in Differential output  
voltage magnitude between  
logic states  
80 Ω<= RL< = 125 Ω  
VCMTX  
Steady-state common-mode  
output voltage.  
80 Ω<= RL< = 125 Ω  
80 Ω<= RL< = 125 Ω  
150  
200  
250  
5
mV  
mV  
ΔVCMTX(1,0)  
Changes in steady-state  
common-modeoutputvoltage  
between logic states  
VOHHS  
ZOS  
HS output high voltage  
80 Ω<= RL< = 125 Ω  
360  
mV  
Single-ended output  
impedance.  
40  
50  
62.5  
Ω
ΔZOS  
Single-ended output  
impedance mismatch.  
10  
%
LP Line Drivers DC Specifications  
VOL  
Output low-level SE voltage  
-50  
1.1  
50  
1.3  
mV  
V
VOH  
ZOLP  
Output high-level SE voltage  
1.2  
Single-ended output  
impedance.  
110  
Ω
ΔZOLP(01-10)  
Single-ended output  
impedance mismatch driving  
opposite level  
20  
5
%
%
ΔZOLP(0-11)  
Single-ended output  
impedance mismatch driving  
same level  
HS Line Receiver DC Specifications  
VIDTH  
Differential input high voltage  
threshold  
-70  
70  
mV  
mV  
mV  
mV  
mV  
VIDTL  
Differential input low voltage  
threshold  
VIHHS  
Single ended input high  
voltage  
460  
VILHS  
Single ended input low  
voltage  
-40  
70  
VCMRXDC  
Input common mode voltage  
330  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
106  
Electrical Characteristics  
Table 70. Electrical and Timing Information (continued)  
Symbol  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
ZID  
Differential input impedance  
80  
125  
Ω
LP Line Receiver DC Specifications  
VIL  
VIH  
Input low voltage  
Input high voltage  
Input hysteresis  
920  
25  
550  
mV  
mV  
mV  
VHYST  
Contention Line Receiver DC Specifications  
Input low fault threshold 200  
VILF  
450  
mV  
4.11.12.2 MIPI D-PHY Signaling Levels  
The signal levels are different for differential HS mode and single-ended LP mode. Figure 67 shows both  
the HS and LP signal levels on the left and right sides, respectively. The HS signaling levels are below  
the LP low-level input threshold such that LP receiver always detects low on HS signals.  
VOH,MAX  
LP  
VOL  
VOH,MIN  
VIH  
LP  
VIH  
LP Threshold  
Region  
VIL  
VOHHS  
Max VOD  
VCMTX,MAX  
LP VIL  
HS Vout  
Range  
HS Vcm  
Range  
VGNDSH,MA  
VCMTX,MIN  
VOLHS  
Min VOD  
X
LP VOL  
GND  
VGNDSH,MIN  
HS Differential Signaling  
LP Single-ended Signaling  
Figure 67. D-PHY Signaling Levels  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
107  
Electrical Characteristics  
4.11.12.3 MIPI HS Line Driver Characteristics  
Ideal Single-Ended High Speed Signals  
VDN  
VCMTX = (VDP + VDN)/2  
VOD(0)  
VOD(1)  
VDP  
Ideal Differential High Speed Signals  
VOD(1)  
0V  
(Differential)  
VOD(0)  
VOD = VDP - VDN  
Figure 68. Ideal Single-ended and Resulting Differential HS Signals  
4.11.12.4 Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals  
VOD/2  
Δ
V
OD (SE HS Signals)  
Δ
VDN  
VOD (1)  
VCM TX  
VOD(0)  
VDP  
VOD /2  
Δ
Static VCMTX (SE HS Signals)  
VDN  
Δ
VCMTX  
VDP  
VOD(0)  
Dynamic VCMTX (SE HS Signals)  
Δ
VDN  
VCM TX  
VDP  
Figure 69. Possible ΔVCMTX and ΔVOD Distortions of the Single-ended HS Signals  
4.11.12.5 MIPI D-PHY Switching Characteristics  
Table 71. Electrical and Timing Information  
Symbol  
Parameters  
Test Conditions  
Min  
Typ  
Max  
Unit  
HS Line Drivers AC Specifications  
Maximum serial data rate (forward  
direction)  
On DATAP/N outputs.  
80 Ω <= RL <= 125 Ω  
80  
1000  
Mbps  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
108  
Electrical Characteristics  
Table 71. Electrical and Timing Information (continued)  
Symbol  
Parameters  
DDR CLK frequency  
Test Conditions  
Min  
Typ  
Max  
Unit  
FDDRCLK  
PDDRCLK  
tCDC  
On DATAP/N outputs.  
40  
2
500  
25  
MHz  
ns  
DDR CLK period  
80 Ω<= RL< = 125 Ω  
DDR CLK duty cycle  
tCDC = tCPH / PDDRCLK  
50  
1
%
tCPH  
DDR CLK high time  
UI  
tCPL  
DDR CLK low time  
1
UI  
DDR CLK / DATA Jitter  
Intra-Pair (Pulse) skew  
Data to Clock Skew  
75  
0.075  
ps pk–pk  
UI  
tSKEW[PN]  
tSKEW[TX]  
tr  
0.350  
150  
150  
0.650  
0.3UI  
0.3UI  
15  
UI  
Differential output signal rise time  
Differential output signal fall time  
20% to 80%, RL = 50 Ω  
20% to 80%, RL = 50 Ω  
ps  
tf  
ps  
ΔVCMTX(HF)  
ΔVCMTX(LF)  
Common level variation above 450 MHz 80 Ω<= RL< = 125 Ω  
mVrms  
mVp  
Common level variation between 50  
MHz and 450 MHz.  
80 Ω<= RL< = 125 Ω  
25  
LP Line Drivers AC Specifications  
trlp, flp  
t
Single ended output rise/fall time  
15% to 85%, CL<70 pF  
30% to 85%, CL<70 pF  
15% to 85%, CL<70 pF  
0
25  
35  
ns  
ns  
treo  
δV/δtSR  
CL  
Signal slew rate  
120  
70  
mV/ns  
pF  
Load capacitance  
HS Line Receiver AC Specifications  
tSETUP[RX]  
tHOLD[RX]  
Data to Clock Receiver Setup time  
Clock to Data Receiver Hold time  
0.15  
0.15  
UI  
UI  
ΔVCMRX(HF)  
Common mode interference beyond  
450 MHz  
200  
mVpp  
ΔVCMRX(LF)  
Common mode interference between  
50 MHz and 450 MHz.  
-50  
50  
60  
mVpp  
pF  
CCM  
Common mode termination  
LP Line Receiver AC Specifications  
eSPIKE  
TMIN  
VINT  
fINT  
Input pulse rejection  
300  
Vps  
ns  
Minimum pulse response  
Pk-to-Pk interference voltage  
Interference frequency  
50  
400  
mV  
MHz  
450  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
109  
Electrical Characteristics  
Symbol  
Table 71. Electrical and Timing Information (continued)  
Parameters Test Conditions Min  
Model Parameters used for Driver Load switching performance evaluation  
Typ  
Max  
Unit  
CPAD  
Equivalent Single ended I/O PAD  
capacitance.  
1
2
pF  
pF  
CPIN  
Equivalent Single ended Package +  
PCB capacitance.  
LS  
RS  
RL  
Equivalent wire bond series inductance  
Equivalent wire bond series resistance  
Load resistance  
80  
1.5  
0.15  
125  
nH  
Ω
100  
Ω
4.11.12.6 High-Speed Clock Timing  
#,+P  
#,+N  
ꢄ$ATA "IT 4IME ꢍ ꢄ5)  
ꢄ$ATA "IT 4IME ꢍ ꢄ5)  
5)).34 ꢋꢄꢌ  
5)).34 ꢋꢇꢌ  
5)).34 ꢋꢄꢌ ꢑ 5)).34 ꢋꢇꢌ  
ꢄ $$2 #LOCK 0ERIOD ꢍ  
Figure 70. DDR Clock Definition  
4.11.12.7 Forward High-Speed Data Transmission Timing  
The timing relationship of the DDR Clock differential signal to the Data differential signal is shown in  
Figure 71:  
2EFERENCE 4IME  
43%450  
4(/,$  
ꢀꢅꢆ5)).34  
43+%7  
#,+P  
#,+N  
ꢄ 5)).34  
4#,+P  
Figure 71. Data to Clock Timing Definitions  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
110  
Electrical Characteristics  
4.11.12.8 Reverse High-Speed Data Transmission Timing  
4
4$  
.2: $ATA  
#,+?.  
#,+?0  
#LOCK TO $ATA  
3KEW  
ꢇ5)  
ꢇ5)  
Figure 72. Reverse High-Speed Data Transmission Timing at Slave Side  
4.11.12.9 Low-Power Receiver Timing  
2*TLPX  
2*TLPX  
eSPIKE  
VIH  
VIL  
Input  
eSPIKE  
TMIN-RX  
TMIN-RX  
Output  
Figure 73. Input Glitch Rejection of Low-Power Receivers  
4.11.13 HSI Host Controller Timing Parameters  
This section describes the timing parameters of the HSI Host Controller which are compliant with  
High-speed Synchronous Serial Interface (HSI) Physical Layer specification version1.01.  
4.11.13.1 Synchronous Data Flow  
&IRST BIT OF  
FRAME  
,AST BIT OF  
FRAME  
,AST BIT OF  
FRAME  
&IRST BIT OF  
FRAME  
T.OM"IT  
(3)?$!4!  
(3)?&,!'  
.ꢏBITS &RAME  
.ꢏBITS &RAME  
(3)?2%!$9  
2ECEIVER HAS  
DETECTED THE START  
OF THE &RAME  
2ECEIVER HAS CAPTURED  
AND STORED A COMPLETE &RAME  
Figure 74. Synchronized Data Flow READY Signal Timing (Frame and Stream Transmission)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
111  
Electrical Characteristics  
4.11.13.2 Pipelined Data Flow  
&IRST BIT OF  
FRAME  
,AST BIT OF &IRST BIT OF  
FRAME FRAME  
,AST BIT OF  
FRAME  
,AST BIT OF  
FRAME  
T .OM"IT  
$!4!  
&,!'  
.ꢏBITS &RAME  
.ꢏBITS &RAME  
2%!$9  
"ꢅ 2EADY SHALL NOT  
CHANGE TO ZERO  
!ꢅ 2EADY CAN CHANGE  
#ꢅ 2EADY CAN CHANGE  
$ꢅ 2EADYꢒ SHALL  
%ꢅ 2EADY &ꢅ2EADY  
'ꢅ2EADY  
CAN  
SHALL  
CAN CHANGE  
MAINTAIN ZERO IF  
RECEIVER DOES NOT  
HAVE FREE SPACE  
CHANGE MAINTAIN  
ITS VALUE  
Figure 75. Pipelined Data Flow Ready Signal Timing (Frame Transmission Mode)  
4.11.13.3 Receiver Real-Time Data Flow  
&IRST BIT OF  
FRAME  
,AST BIT OF  
FRAME  
&IRST BIT OF  
FRAME  
,AST BIT OF  
FRAME  
T.OM"IT  
$!4!  
&,!'  
.ꢏBITS &RAME  
.ꢏBITS &RAME  
2%!$9  
2ECEIVER HAS CAPTURED A  
COMPLETE &RAME  
2ECEIVER HAS DETECTED THE  
START OF THE &RAME  
Figure 76. Receiver Real-Time Data Flow READY Signal Timing  
4.11.13.4 Synchronized Data Flow Transmission with Wake  
"
#
$
!
!
48 STATE  
0(9 &RAME  
0(9 &RAME  
$!4!  
&,!'  
ꢈꢅ &IRST BIT  
RECEIVED  
2%!$9  
ꢉꢅ 2ECEIVED  
FRAME STORED  
ꢇꢅ2ECEIVER IN ACTIVE  
ꢓꢅ 2ECEIVER CAN NO  
LONGER RECEIVE DATE  
START STATE  
ꢆꢅ TRANSMITTER HAS  
NO MORE DATA TO  
TRANSMIT  
7!+%  
ꢄꢅ4RANSMITTER HAS  
DATA TO TRANSMIT  
"
!
#
$
!
28 STATE  
!ꢂ 3LEEP STATE  
"ꢂ 7AKEꢏUP STATE  
#ꢂ !CTIVE STATE  
$ꢂ $ISABLE 3TATE  
ꢋ.O COMMUNICATION ABILITYꢌ  
ꢋNONꢏOPERATIONALꢌ  
ꢋFULL OPERATIONALꢌ  
Figure 77. Synchronized Data Flow Transmission with WAKE  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
112  
Electrical Characteristics  
4.11.13.5 Stream Transmission Mode Frame Transfer  
#HANNEL  
$ESCRIPTION  
BITS  
0AYLOAD $ATA "ITS  
$!4!  
&,!'  
#OMPLETE .ꢏBITS &RAME  
#OMPLETE .ꢏBITS &RAME  
2%!$9  
Figure 78. Stream Transmission Mode Frame Transfer (Synchronized Data Flow)  
4.11.13.6 Frame Transmission Mode (Synchronized Data Flow)  
&RAME  
#HANNEL  
$ESCRIPTION  
BITS  
START BIT  
0AYLOAD $ATA "ITS  
$!4!  
&,!'  
#OMPLETE .ꢏBITS &RAME  
#OMPLETE .ꢏBITS &RAME  
2%!$9  
Figure 79. Frame Transmission Mode Transfer of Two Frames (Synchronized Data Flow)  
4.11.13.7 Frame Transmission Mode (Pipelined Data Flow)  
&RAME  
START BIT  
#HANNEL  
$ESCRIPTION  
BITS  
0AYLOAD  
$ATA "ITS  
$!4!  
&,!'  
#OMPLETE .ꢏBITS &RAME  
#OMPLETE .ꢏBITS &RAME  
2%!$9  
Figure 80. Frame Transmission Mode Transfer of Two Frames (Pipelined Data Flow)  
4.11.13.8 DATA and FLAG Signal Timing Requirement for a 15 pF Load  
Table 72. DATA and FLAG Timing  
Parameter  
Description  
1 Mbit/s  
100 Mbit/s 200 Mbit/s  
tBit, nom  
Nominal bit time  
Minimum allowed rise and fall time  
1000 ns  
2.00 ns  
10.0 ns  
2.00 ns  
5.00 ns  
1.00 ns  
tRise, min and  
tFall, min  
tTxToRxSkew, maxfq Maximum skew between transmitter and receiver package pins  
50.0 ns  
0.5.0 ns  
0.25 ns  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
113  
Electrical Characteristics  
Parameter  
Table 72. DATA and FLAG Timing (continued)  
Description 1 Mbit/s  
100 Mbit/s 200 Mbit/s  
tEageSepTx, min  
Minimum allowed separation of signal transitions at transmitter  
package pins, including all timing defects, for example, jitter  
and skew, inside the transmitter.  
400 ns  
4.00 ns  
2.00 ns  
tEageSepRx, min  
Minimum separation of signal transitions, measured at the  
receiver package pins, including all timing defects, for example,  
jitter and skew, inside the receiver.  
350 ns  
3.5 ns  
1.75 ns  
T%DGE3EP4X  
ꢊꢀꢎ  
ꢆꢀꢎ  
.OTE ꢄ  
ꢆꢀꢎ  
$!4!  
ꢋ48ꢌ  
T2ISE  
.OTE ꢇ  
ꢊꢀꢎ  
ꢇꢀꢎ  
ꢊꢀꢎ  
ꢆꢀꢎ  
&,!'  
ꢋ48ꢌ  
ꢇꢀꢎ  
ꢇꢀꢎ  
T"IT  
T&ALL  
T%DGE3EP2X  
T4X4O2X3KEW  
ꢆꢀꢎ  
ꢊꢀꢎ  
ꢆꢀꢎ  
.OTE ꢄ  
$!4!  
ꢋ28ꢌ  
.OTE ꢇ  
ꢆꢀꢎ  
&,!'  
ꢋ28ꢌ  
ꢇꢀꢎ  
1
This case shows that the DATA signal has slowed down more compared to the FLAG signal  
This case shows that the FLAG signal has slowed down more compared to the DATA signal.  
2
Figure 81. DATA and FLAG Signal Timing  
4.11.14 MediaLB (MLB) Characteristics  
4.11.14.1 MediaLB (MLB) DC Characteristics  
Table 73 lists the MediaLB 3-pin interface electrical characteristics.  
Table 73. MediaLB 3-Pin Interface Electrical DC Specifications  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Maximum input voltage  
Low level input threshold  
High level input threshold  
Low level output threshold  
High level output threshold  
Input leakage current  
VIL  
VIH  
VOL  
VOH  
IL  
3.6  
0.7  
V
V
See Note1  
IOL = 6 mA  
IOH = -6 mA  
0 < Vin < VDD  
1.8  
V
0.4  
V
2.0  
V
10  
μA  
1
Higher VIH thresholds can be used; however, the risks associated with less noise margin in the system must be  
evaluated and assumed by the customer.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
114  
NXP Semiconductors  
Electrical Characteristics  
Table 74 lists the MediaLB 6-pin interface electrical characteristics.  
Table 74. MediaLB 6-Pin Interface Electrical DC Specifications  
Parameter  
Symbol  
Test Conditions  
Min  
Max  
Unit  
Driver Characteristics  
Differential output voltage  
(steady-state):  
VOD  
See Note1  
300  
-50  
500  
50  
mV  
mV  
I VO+ - VO-  
I
Difference in differential output  
voltage between (high/low)  
steady-states:  
ΔVOD  
I VOD, high - VOD, low  
I
Common-mode output voltage:  
(VO+ - VO-) / 2  
VOCM  
1.0  
-50  
1.5  
50  
V
Difference in common-mode  
output between (high/low)  
steady-states:  
ΔVOCM  
mV  
I VOCM, high - VOCM, low  
I
Variations on common-mode  
output during a logic state  
transitions  
VCMV  
See Note2  
150  
mVpp  
Short circuit current  
|IOS  
|
See Note3  
43  
mA  
Differential output impedance  
ZO  
1.6  
kΩ  
Receiver Characteristics  
Differential clock input:  
• logic low steady-state  
• logic high steady-state  
• hysteresis  
See Note4  
VILC  
VIHC  
VHSC  
50  
-25  
-50  
25  
mV  
mV  
mV  
Differential signal/data input:  
• logic low steady-state  
• logic high steady-state  
VILS  
VIHS  
50  
-50  
mV  
mV  
Signal-ended input voltage  
(steady-state):  
• MLB_SIG_P, MLB_DATA_P  
• MLB_SIG_N, MLB_DATA_N  
VIN+  
VIN-  
0.5  
0.5  
2.0  
2.0  
V
V
1
2
The signal-ended output voltage of a driver is defined as VO+ on MLB_CLK_P, MLB_SIG_P, and MLB_DATA_P. The  
signal-ended output voltage of a driver is defined as VO- on MLB_CLK_N, MLB_SIG_N, and MLB_DATA_N.  
Variations in the common-mode voltage can occur between logic states (for example, during state transitions) as a result of  
differences in the transition rate of VO+ and VO-  
.
3
4
Short circuit current is applicable when VO+ and VO- are shorted together and/or shorted to ground.  
The logic state of the receiver is undefined when -50 mV < VID < 50 mV.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
115  
Electrical Characteristics  
4.11.14.2 MediaLB (MLB) Controller AC Timing Electrical Specifications  
This section describes the timing electrical information of the MediaLB module. Figure 82 show the  
timing of MediaLB 3-pin interface, and Table 75 and Table 76 lists the MediaLB 3-pin interface timing  
characteristics.  
-,"?3)'ꢀ  
-,"?$!4!  
VALID  
RECEIVERꢌ  
TPROP  
TDHMCF  
TMCKF  
TDSMCF  
TMCKR  
TMCKH  
TMCKL  
-,"?#,+  
-,"?3)'ꢀ  
TDELAY  
TMCFDZ  
VALID  
-,"?$!4!  
TRANSMITTERꢌ  
TMDZH  
-,"?3)'ꢀ  
-,"?$!4!  
BUS STATEꢌ  
VALID  
Figure 82. MediaLB 3-Pin Timing  
Ground = 0.0 V; Load Capacitance = 60 pF; MediaLB speed = 256/512 Fs; Fs = 48 kHz; all timing  
parameters specified from the valid voltage threshold as listed below; unless otherwise noted.  
Table 75. MLB 256/512 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Max  
Unit  
Comment  
MLB_CLK operating frequency1  
fmck  
11.264  
MHz  
256xFs at 44.0 kHz  
512xFs at 50.0 kHz  
25.6  
MLB_CLK rise time  
MLB_CLK fall time  
MLB_CLK low time2  
tmckr  
tmckf  
tmckl  
3
3
ns  
ns  
ns  
VIL TO VIH  
VIH TO VIL  
30  
14  
256xFs  
512xFs  
MLB_CLK high time  
tmckh  
tdsmcf  
tdhmcf  
tmcfdz  
tmdzh  
30  
14  
ns  
ns  
ns  
ns  
ns  
256xFs  
512xFs  
MLB_SIG/MLB_DATA receiver input valid to  
MLB_CLK falling  
1
tmdzh  
0
MLB_SIG/MLB_DATA receiver input hold  
from MLB_CLK low  
3
MLB_SIG/MLB_DATAoutputhighimpedance  
from MLB_CLK low  
tmckl  
Bus Hold from MLB_CLK low  
4
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
116  
Electrical Characteristics  
Table 75. MLB 256/512 Fs Timing Parameters (continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
Comment  
MLB_SIG/MLB_DATA output valid from  
transition of MLB_CLK (low to high)  
tdelay  
10  
ns  
Transmitter MLBSIG (MLBDAT) output valid  
from transition of MLBCLK (low-to-high)  
tdelay  
10.75  
ns  
1
The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a runt  
pulse can occur on MLB_CLK.  
2
3
MLB_CLK low/high time includes the pulse width variation.  
The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the  
final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum  
load capacitance listed.  
Ground = 0.0 V; load capacitance = 40 pF; MediaLB speed = 1024 Fs; Fs = 48 kHz; all timing  
parameters specified from the valid voltage threshold as listed in Table 76; unless otherwise noted.  
Table 76. MLB 1024 Fs Timing Parameters  
Parameter  
Symbol  
Min  
Max  
Unit  
Comment  
MLB_CLK Operating Frequency1  
fmck  
45.056  
51.2  
MHz  
1024xfs at 44.0 kHz  
1024xfs at 50.0 kHz  
MLB_CLK rise time  
MLB_CLK fall time  
MLB_CLK low time  
MLB_CLK high time  
tmckr  
tmckf  
tmckl  
1
ns  
ns  
ns  
ns  
ns  
VIL TO VIH  
1
VIH TO VIL  
2
6.1  
9.3  
1
tmckh  
tdsmcf  
MLB_SIG/MLB_DATA receiver input valid to  
MLB_CLK falling  
MLB_SIG/MLB_DATA receiver input hold  
from MLB_CLK low  
tdhmcf  
tmcfdz  
tmdzh  
0
ns  
ns  
3
MLB_SIG/MLB_DATA output high  
impedance from MLB_CLK low  
tmckl  
Bus Hold from MLB_CLK low  
tmdzh  
tdelay  
2
7
ns  
ns  
MLB_SIG/MLB_DATA output valid from  
transition of MLB_CLK (low to high)  
Transmitter MLBSIG (MLBDAT) output valid  
from transition of MLBCLK (low-to-high)  
tdelay  
6
ns  
1
The controller can shut off MLB_CLK to place MediaLB in a low-power state. Depending on the time the clock is shut off, a  
runt pulse can occur on MLB_CLK.  
2
3
MLB_CLK low/high time includes the pulse width variation.  
The MediaLB driver can release the MLB_DATA/MLB_SIG line as soon as MLB_CLK is low; however, the logic state of the  
final driven bit on the line must remain on the bus for tmdzh. Therefore, coupling must be minimized while meeting the maximum  
load capacitance listed.  
Table 77 lists the MediaLB 6-pin interface timing characteristics, and Figure 83 shows the MLB 6-pin  
delay, setup, and hold times.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
117  
Electrical Characteristics  
Table 77. MLB 6-Pin Interface Timing Parameters  
Parameter  
Symbol Min  
Max  
Unit  
Comment  
Cycle-to-cycle system jitter  
tjitter  
600  
1.3  
ps  
ns  
Transmitter MLB_SIG_P/_N (MLB_DATA_P/_N) output valid  
from transition of MLB_CLK_P/_N (low-to-high)1  
tdelay  
0.6  
Disable turnaround time from transition of MLB_CLK_P/_N  
(low-to-high)  
tphz  
tplz  
tsu  
0.6  
0.6  
3.5  
5.6  
ns  
ns  
ns  
Enable turnaround time from transition of MLB_CLK_P/_N  
(low-to-high)  
MLB_SIG_P/_N (MLB_DATA_P/_N) valid to transition of  
MLB_CLK_P/_N (low-to-high)  
0.05  
0.6  
MLB_SIG_P/_N (MLB_DATA_P/_N) hold from transition of  
MLB_CLK_P/_N (low-to-high)2  
thd  
1
tdelay, tphz, tplz, tsu, and thd may also be referenced from a low-to-high transition of the recovered clock for 2:1 and 4:1 recov-  
ered-to-external clock ratios.  
2
The transmitting device must ensure valid data on MLB_SIG_P/_N (MLB_DATA_P/_N) for at least thd(min) following the rising  
edge of MLB_CLK_P/N; receivers must latch MLB_SIG_P/_N (MLB_DATA_P/_N) data within thd(min) of the rising edge of ML-  
B_CLK_P/_N.  
0HYSICAL #HANNEL  
BOUNDARY  
-,"?#,+?0ꢃ.  
2ECOVERED  
CLOCK ꢋꢉꢂꢄꢌ  
ꢈX4ꢉꢂꢄ  
ꢇX4ꢉꢂꢄ  
4ꢉꢂꢄ  
TDELAY  
ꢈX4ꢉꢂꢄ  
TDELAY  
#MD  
TDELAY  
#MD  
TDELAY  
#MD  
TDELAY  
#MD  
-,"?3)'?0ꢃ.  
ꢋTRANSMITTERꢌ  
#MD  
;ꢓ=  
#MD  
;ꢇ=  
#!;ꢀ=  
;ꢁ=  
;ꢆ=  
;ꢉ=  
;ꢈ=  
#ONTROLLERꢂ #HANNELꢃ!DDRESS  
4X $EVICEꢂ #OMMAND  
TPROP  
TPROP  
TPROP  
TPROP  
TRANSMITTER ENABLEDꢒ  
$ATA NOT VALID  
THD  
TSU  
TSU THD  
TSU THD  
TSU THD  
-,"?3)'?0ꢃ.  
ꢋRECEIVERꢌ  
#MD  
;ꢁ=  
#MD  
;ꢓ=  
#MD  
;ꢆ=  
#MD  
;ꢉ=  
#MD  
;ꢈ=  
#MD  
;ꢇ=  
#!;ꢀ=  
#ONTROLLERꢂ #HANNELꢃ!DDRESS  
4X $EVICEꢂ #OMMAND  
Figure 83. MLB 6-Pin Delay, Setup, and Hold Times  
4.11.15 PCIe PHY Parameters  
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0  
standard.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
118  
NXP Semiconductors  
Electrical Characteristics  
4.11.15.1 PCIE_REXT Reference Resistor Connection  
The impedance calibration process requires connection of reference resistor 200 Ω. 1ꢀ precision resistor  
on PCIE_REXT pads to ground. It is used for termination impedance calibration.  
4.11.16 Pulse Width Modulator (PWM) Timing Parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
Figure 84 depicts the timing of the PWM, and Table 78 lists the PWM timing parameters.  
0ꢄ  
0ꢇ  
07-N?/54  
Figure 84. PWM Timing  
Table 78. PWM Output Timing Parameters  
ID  
Parameter  
Min  
Max  
Unit  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
ipg_clk  
MHz  
ns  
P1  
P2  
15  
15  
ns  
4.11.17 SCAN JTAG Controller (SJC) Timing Parameters  
Figure 85 depicts the SJC test clock input timing. Figure 86 depicts the SJC boundary scan timing.  
Figure 87 depicts the SJC test access port. Signal parameters are listed in Table 79.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 85. Test Clock Input Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
119  
Electrical Characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 86. Boundary Scan (JTAG) Timing Diagram  
JTAG_TCK  
(Input)  
VIH  
VIL  
SJ8  
Input Data Valid  
SJ9  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 87. Test Access Port Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
120  
Electrical Characteristics  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 88. JTAG_TRST_B Timing Diagram  
Table 79. JTAG Timing  
All Frequencies  
ID  
Parameter1,2  
Unit  
Min  
Max  
1
SJ0  
SJ1  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
JTAG_TCK cycle time in crystal mode  
2
SJ2  
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
SJ3  
SJ4  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
5
40  
40  
44  
44  
SJ5  
24  
SJ6  
SJ7  
SJ8  
5
SJ9  
25  
SJ10  
SJ11  
SJ12  
SJ13  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
1
2
T
= target frequency of SJC  
DC  
VM = mid-point voltage  
4.11.18 SPDIF Timing Parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 80 and Figure 89 and Figure 90 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
121  
Electrical Characteristics  
Table 80. SPDIF Timing Parameters  
Symbol  
Timing Parameter Range  
Characteristics  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
ns  
ns  
SPDIF_OUT output (Load = 30pf)  
1.5  
13.6  
18.0  
• Skew  
• Transition rising  
• Transition falling  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
srckph  
VM  
SPDIF_SR_CLK  
VM  
(Output)  
Figure 89. SPDIF_SR_CLK Timing Diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 90. SPDIF_ST_CLK Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
122  
Electrical Characteristics  
4.11.19 SSI Timing Parameters  
This section describes the timing parameters of the SSI module. The connectivity of the serial  
synchronous interfaces are summarized in Table 81.  
Table 81. AUDMUX Port Allocation  
Port  
Signal Nomenclature  
Type and Access  
AUDMUX port 1  
AUDMUX port 2  
AUDMUX port 3  
AUDMUX port 4  
AUDMUX port 5  
AUDMUX port 6  
AUDMUX port 7  
SSI 1  
SSI 2  
AUD3  
AUD4  
AUD5  
AUD6  
SSI 3  
Internal  
Internal  
External—AUD3 I/O  
External—EIM or CSPI1 I/O through IOMUXC  
External—EIM or SD1 I/O through IOMUXC  
External—EIM or DISP2 through IOMUXC  
Internal  
NOTE  
The terms WL and BL used in the timing diagrams and tables refer to  
Word Length (WL) and Bit Length (BL).  
4.11.19.1 SSI Transmitter Timing with Internal Clock  
Figure 91 depicts the SSI transmitter internal clock timing and Table 82 lists the timing parameters for  
the SSI transmitter internal clock.  
.
SS1  
SS5  
SS4  
SS3  
SS2  
AUDx_TXC  
(Output)  
SS8  
SS6  
AUDx_TXFS (bl)  
(Output)  
SS10  
SS12  
AUDx_TXFS (wl)  
(Output)  
SS14  
SS17  
SS15  
SS16  
SS18  
AUDx_TXD  
(Output)  
SS43  
SS42  
SS19  
AUDx_RXD  
(Input)  
Note: AUDx_RXD input in synchronous mode only  
Figure 91. SSI Transmitter Internal Clock Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
123  
Electrical Characteristics  
Table 82. SSI Transmitter Timing with Internal Clock  
ID  
Parameter  
Internal Clock Operation  
Min  
Max  
Unit  
SS1  
SS2  
AUDx_TXC/AUDxRXC clock period  
81.4  
36.0  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDxRXC clock high period  
AUDx_TXC/AUDxRXC clock low period  
SS4  
SS6  
AUDx_TXC high to AUDx_TXFS (bl) high  
AUDx_TXC high to AUDx_TXFS (bl) low  
AUDx_TXC high to AUDx_TXFS (wl) high  
AUDx_TXC high to AUDx_TXFS (wl) low  
AUDx_TXC/AUDxRXC Internal AUDx_TXFS rise time  
AUDx_TXC/AUDxRXC Internal AUDx_TXFS fall time  
AUDx_TXC high to AUDx_TXD valid from high impedance  
AUDx_TXC high to AUDx_TXD high/low  
15.0  
15.0  
15.0  
15.0  
6.0  
SS8  
SS10  
SS12  
SS14  
SS15  
SS16  
SS17  
SS18  
6.0  
15.0  
15.0  
15.0  
AUDx_TXC high to AUDx_TXD high impedance  
Synchronous Internal Clock Operation  
SS42  
SS43  
AUDx_RXD setup before AUDx_TXC falling  
AUDx_RXD hold after AUDx_TXC falling  
10.0  
0.0  
ns  
ns  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
124  
Electrical Characteristics  
4.11.19.2 SSI Receiver Timing with Internal Clock  
Figure 92 depicts the SSI receiver internal clock timing and Table 83 lists the timing parameters for the  
receiver timing with the internal clock.  
SS1  
SS3  
SS5  
SS4  
SS2  
AUDx_TXC  
(Output)  
SS9  
SS7  
AUDx_TXFS (bl)  
(Output)  
SS11  
SS13  
AUDx_TXFS (wl)  
(Output)  
SS20  
SS21  
AUDx_RXD  
(Input)  
SS51  
SS50  
SS47  
SS49  
SS48  
AUDx_RXC  
(Output)  
Figure 92. SSI Receiver Internal Clock Timing Diagram  
Table 83. SSI Receiver Timing with Internal Clock  
ID  
Parameter  
Min  
Max  
Unit  
Internal Clock Operation  
SS1  
SS2  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
AUDx_RXC high to AUDx_TXFS (bl) high  
AUDx_RXC high to AUDx_TXFS (bl) low  
AUDx_RXC high to AUDx_TXFS (wl) high  
AUDx_RXC high to AUDx_TXFS (wl) low  
AUDx_RXD setup time before AUDx_RXC low  
AUDx_RXD hold time after AUDx_RXC low  
SS3  
6.0  
SS4  
36.0  
SS5  
6.0  
15.0  
15.0  
15.0  
15.0  
SS7  
SS9  
SS11  
SS13  
SS20  
SS21  
10.0  
0.0  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
125  
Electrical Characteristics  
Table 83. SSI Receiver Timing with Internal Clock (continued)  
ID  
Parameter  
Min  
Max  
Unit  
Oversampling Clock Operation  
SS47  
SS48  
SS49  
SS50  
SS51  
Oversampling clock period  
Oversampling clock high period  
15.04  
6.0  
ns  
ns  
ns  
ns  
ns  
Oversampling clock rise time  
Oversampling clock low period  
Oversampling clock fall time  
3.0  
6.0  
3.0  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
126  
Electrical Characteristics  
4.11.19.3 SSI Transmitter Timing with External Clock  
Figure 93 depicts the SSI transmitter external clock timing and Table 84 lists the timing parameters for  
the transmitter timing with the external clock.  
SS22  
SS23  
SS25  
SS26  
SS24  
AUDx_TXC  
(Input)  
SS27  
SS29  
AUDx_TXFS (bl)  
(Input)  
SS33  
SS31  
AUDx_TXFS (wl)  
(Input)  
SS39  
SS37  
SS38  
AUDx_TXD  
(Output)  
SS45  
SS44  
AUDx_RXD  
(Input)  
SS46  
Note: AUDx_RXD Input in Synchronous mode only  
Figure 93. SSI Transmitter External Clock Timing Diagram  
Table 84. SSI Transmitter Timing with External Clock  
ID  
Parameter  
External Clock Operation  
Min  
Max  
Unit  
SS22  
SS23  
SS24  
SS25  
SS26  
SS27  
SS29  
SS31  
SS33  
SS37  
SS38  
SS39  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
6.0  
36.0  
6.0  
15.0  
AUDx_TXC high to AUDx_TXFS (bl) high  
AUDx_TXC high to AUDx_TXFS (bl) low  
AUDx_TXC high to AUDx_TXFS (wl) high  
AUDx_TXC high to AUDx_TXFS (wl) low  
AUDx_TXC high to AUDx_TXD valid from high impedance  
AUDx_TXC high to AUDx_TXD high/low  
AUDx_TXC high to AUDx_TXD high impedance  
-10.0  
10.0  
-10.0  
10.0  
15.0  
15.0  
15.0  
15.0  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
127  
Electrical Characteristics  
Table 84. SSI Transmitter Timing with External Clock (continued)  
ID  
Parameter  
Min  
Max  
Unit  
Synchronous External Clock Operation  
SS44  
SS45  
SS46  
AUDx_RXD setup before AUDx_TXC falling  
10.0  
2.0  
ns  
ns  
ns  
AUDx_RXD hold after AUDx_TXC falling  
AUDx_RXD rise/fall time  
6.0  
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
4.11.19.4 SSI Receiver Timing with External Clock  
Figure 94 depicts the SSI receiver external clock timing and Table 85 lists the timing parameters for the  
receiver timing with the external clock.  
SS22  
SS26  
SS25  
SS24  
SS23  
AUDx_TXC  
(Input)  
SS30  
SS28  
AUDx_TXFS (bl)  
(Input)  
SS32  
SS35  
SS34  
AUDx_TXFS (wl)  
(Input)  
SS41  
SS36  
SS40  
AUDx_RXD  
(Input)  
Figure 94. SSI Receiver External Clock Timing Diagram  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
128  
Electrical Characteristics  
Table 85. SSI Receiver Timing with External Clock  
ID  
Parameter  
Min  
Max  
Unit  
External Clock Operation  
SS22  
SS23  
SS24  
SS25  
SS26  
SS28  
SS30  
SS32  
SS34  
SS35  
SS36  
SS40  
SS41  
AUDx_TXC/AUDx_RXC clock period  
81.4  
36  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AUDx_TXC/AUDx_RXC clock high period  
AUDx_TXC/AUDx_RXC clock rise time  
6.0  
AUDx_TXC/AUDx_RXC clock low period  
AUDx_TXC/AUDx_RXC clock fall time  
36  
6.0  
15.0  
AUDx_RXC high to AUDx_TXFS (bl) high  
AUDx_RXC high to AUDx_TXFS (bl) low  
AUDx_RXC high to AUDx_TXFS (wl) high  
AUDx_RXC high to AUDx_TXFS (wl) low  
AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time  
AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time  
AUDx_RXD setup time before AUDx_RXC low  
AUDx_RXD hold time after AUDx_RXC low  
-10  
10  
-10  
10  
15.0  
6.0  
6.0  
10  
2
NOTE  
All the timings for the SSI are given for a non-inverted serial clock  
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync  
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have  
been inverted, all the timing remains valid by inverting the clock signal  
AUDx_TXC/AUDx_RXC and/or the frame sync  
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.  
All timings are on Audiomux Pads when SSI is being used for data  
transfer.  
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).  
For internal Frame Sync operation using external clock, the frame sync  
timing is same as that of transmit data (for example, during AC97 mode  
of operation).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
129  
Electrical Characteristics  
4.11.20 UART I/O Configuration and Timing Parameters  
4.11.20.1 UART RS-232 I/O Configuration in Different Modes  
The i.MX 6Solo/6DualLite UART interfaces can serve both as DTE or DCE device. This can be  
configured by the DCEDTE control bit (default 0—DCE mode). Table 86 shows the UART I/O  
configuration based on the enabled mode.  
Table 86. UART I/O Configuration vs. Mode  
DTE Mode  
Description  
DCE Mode  
Description  
Port  
Direction  
Direction  
UARTx_RTS_B  
UARTx_CTS_B  
UARTx_DTR_B  
UARTx_DSR_B  
UARTx_DCD_ B  
UARTx_RI_B  
Output  
Input  
RTS from DTE to DCE  
CTS from DCE to DTE  
DTR from DTE to DCE  
DSR from DCE to DTE  
DCD from DCE to DTE  
RING from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
Input  
Output  
Input  
RTS from DTE to DCE  
CTS from DCE to DTE  
DTR from DTE to DCE  
DSR from DCE to DTE  
DCD from DCE to DTE  
RING from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
Output  
Input  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
UARTx_TX_DATA  
UARTx_RX_DATA  
Input  
Output  
4.11.20.2 UART RS-232 Serial Mode Timing  
The following sections describe the electrical information of the UART module in the RS-232 mode.  
4.11.20.2.1 UART Transmitter  
Figure 95 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit  
format. Table 87 lists the UART RS-232 serial mode transmit timing characteristics.  
Possible  
UA1  
UA1  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 95. UART RS-232 Serial Mode Transmit Timing Diagram  
Table 87. RS-232 Serial Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1 Transmit Bit Time  
tTbit  
1/Fbaud_rate1 - Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
130  
NXP Semiconductors  
Electrical Characteristics  
4.11.20.2.2 UART Receiver  
Figure 96 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 88 lists  
serial mode receive timing characteristics.  
Possible  
Parity  
Bit  
UA2  
UA2  
Bit 3  
Next  
Start  
Bit  
Start  
Bit  
UARTx_RX_DATA  
(input)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 96. UART RS-232 Serial Mode Receive Timing Diagram  
Table 88. RS-232 Serial Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + 1/(16 x Fbaud_rate  
Unit  
UA2  
Receive Bit Time1  
tRbit  
1/Fbaud_rate2 - 1/(16 x Fbaud_rate  
)
)
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
4.11.20.2.3 UART IrDA Mode Timing  
The following subsections give the UART transmit and receive timings in IrDA mode.  
UART IrDA Mode Transmitter  
Figure 97 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 89 lists  
the transmit timing characteristics.  
UA3  
UA4  
UA3  
UA3  
UA3  
UARTx_TX_DATA  
(output)  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 97. UART IrDA Mode Transmit Timing Diagram  
Table 89. IrDA Mode Transmit Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
2
UA3 Transmit Bit Time in IrDA mode  
UA4 Transmit IR Pulse Duration  
tTIRbit  
1/Fbaud_rate1 - Tref_clk  
1/Fbaud_rate + Tref_clk  
tTIRpulse (3/16) x (1/Fbaud_rate) - Tref_clk  
(3/16) x (1/Fbaud_rate) + Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
131  
Electrical Characteristics  
UART IrDA Mode Receiver  
Figure 98 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 90 lists  
the receive timing characteristics.  
UA5  
UA6  
UA5  
UA5  
UA5  
UARTx_RX_DATA  
(input)  
Start  
Bit  
STOP  
BIT  
Bit 0  
Bit 1  
Possible  
Parity  
Bit  
Bit 2  
Bit 3  
Bit 4  
Bit 5  
Bit 6  
Bit 7  
Figure 98. UART IrDA Mode Receive Timing Diagram  
Table 90. IrDA Mode Receive Timing Parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA5 Receive Bit Time1 in IrDA mode  
UA6 Receive IR Pulse Duration  
tRIRbit  
1/Fbaud_rate2 - 1/(16 x Fbaud_rate  
)
1/Fbaud_rate + 1/(16 x Fbaud_rate  
)
tRIRpulse  
1.41 μs  
(5/16) x (1/Fbaud_rate  
)
1
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
4.11.21 USB HSIC Timings  
This section describes the electrical information of the USB HSIC port.  
NOTE  
HSIC is DDR signal, following timing spec is for both rising and falling  
edge.  
4.11.21.1 Transmit Timing  
Tstrobe  
USB_H_STROBE  
Todelay  
Todelay  
USB_H_DATA  
Figure 99. USB HSIC Transmit Waveform  
Table 91. USB HSIC Transmit Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
4.166  
550  
4.167  
1350  
2
ns  
ps  
Todelay data output delay time  
Measured at 50% point  
Averaged from 30% – 70% points  
Tslew  
strobe/data rising/falling time  
0.7  
V/ns  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
132  
Electrical Characteristics  
4.11.21.2 Receive Timing  
Tstrobe  
USB_H_STROBE  
USB_H_DATA  
Thold  
Tsetup  
Figure 100. USB HSIC Receive Waveform  
1
Table 92. USB HSIC Receive Parameters  
Name  
Parameter  
Min  
Max  
Unit  
Comment  
Tstrobe strobe period  
4.166  
300  
365  
0.7  
4.167  
ns  
ps  
Thold  
Tsetup  
Tslew  
data hold time  
Measured at 50% point  
data setup time  
ps  
Measured at 50% point  
strobe/data rising/falling time  
2
V/ns  
Averaged from 30% – 70% points  
1
The timings in the table are guaranteed when:  
—AC I/O voltage is between 0.9x to 1x of the I/O supply  
—DDR_SEL configuration bits of the I/O are set to (10)b  
4.11.22 USB PHY Parameters  
This section describes the USB-OTG PHY and the USB Host port PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG, USB Host with the amendments below (On-The-Go and Embedded Host Supplement to the USB  
Revision 2.0 Specification is not applicable to Host port).  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
133  
Boot Mode Configuration  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
5 Boot Mode Configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
5.1  
Boot Mode Configuration Pins  
Table 93 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX  
6Solo/6DualLite Fuse Map document and the System Boot chapter in i.MX 6Solo/6DualLite Reference  
Manual (IMX6SDLRM).  
Table 93. Fuses and Associated Pins Used for Boot  
Pin  
Direction at Reset  
eFuse Name  
Boot Mode Selection  
BOOT_MODE1  
BOOT_MODE0  
Input  
Input  
N/A  
N/A  
Boot Options1  
EIM_DA0  
EIM_DA1  
EIM_DA2  
EIM_DA3  
EIM_DA4  
EIM_DA5  
EIM_DA6  
EIM_DA7  
EIM_DA8  
EIM_DA9  
EIM_DA10  
EIM_DA11  
EIM_DA12  
EIM_DA13  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
BOOT_CFG1[0]  
BOOT_CFG1[1]  
BOOT_CFG1[2]  
BOOT_CFG1[3]  
BOOT_CFG1[4]  
BOOT_CFG1[5]  
BOOT_CFG1[6]  
BOOT_CFG1[7]  
BOOT_CFG2[0]  
BOOT_CFG2[1]  
BOOT_CFG2[2]  
BOOT_CFG2[3]  
BOOT_CFG2[4]  
BOOT_CFG2[5]  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
134  
Boot Mode Configuration  
Table 93. Fuses and Associated Pins Used for Boot (continued)  
Pin  
Direction at Reset  
eFuse Name  
EIM_DA14  
EIM_DA15  
EIM_A16  
EIM_A17  
EIM_A18  
EIM_A19  
EIM_A20  
EIM_A21  
EIM_A22  
EIM_A23  
EIM_A24  
EIM_WAIT  
EIM_LBA  
EIM_EB0  
EIM_EB1  
EIM_RW  
EIM_EB2  
EIM_EB3  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
BOOT_CFG2[6]  
BOOT_CFG2[7]  
BOOT_CFG3[0]  
BOOT_CFG3[1]  
BOOT_CFG3[2]  
BOOT_CFG3[3]  
BOOT_CFG3[4]  
BOOT_CFG3[5]  
BOOT_CFG3[6]  
BOOT_CFG3[7]  
BOOT_CFG4[0]  
BOOT_CFG4[1]  
BOOT_CFG4[2]  
BOOT_CFG4[3]  
BOOT_CFG4[4]  
BOOT_CFG4[5]  
BOOT_CFG4[6]  
BOOT_CFG4[7]  
1
Pin value overrides fuse settings for BT_FUSE_SEL = ‘0’. Signal Configuration as Fuse Override Input at Power  
Up. These are special I/O lines that control the boot up configuration during product development. In production,  
the boot configuration can be controlled by fuses.  
5.2  
Boot Device Interface Allocation  
Table 94 lists the interfaces that can be used by the boot process in accordance with the specific boot  
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 94. Interface Allocation During Boot  
Interface  
IP Instance  
Allocated Pads During Boot  
Comment  
SPI  
ECSPI-1  
EIM_D17, EIM_D18, EIM_D16, EIM_EB2, EIM_D19,  
EIM_D24, EIM_D25  
SPI  
SPI  
ECSPI-2  
ECSPI-3  
CSI0_DAT10, CSI0_DAT9, CSI0_DAT8, CSI0_DAT11,  
EIM_LBA, EIM_D24, EIM_D25  
DISP0_DAT2, DISP0_DAT1, DISP0_DAT0,  
DISP0_DAT3,DISP0_DAT4,DISP0_DAT5,DISP0_DAT6  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
135  
Package Information and Contact Assignments  
Table 94. Interface Allocation During Boot (continued)  
Interface  
IP Instance  
Allocated Pads During Boot  
Comment  
SPI  
ECSPI-4  
EIM_D22, EIM_D28, EIM_D21, EIM_D20, EIM_A25,  
EIM_D24, EIM_D25  
EIM  
EIM  
EIM_DA[15:0], EIM_D[31:16], CSI0_DAT[19:4],  
CSI0_DATA_EN, CSI0_VSYNC  
Used for NOR, OneNAND boot  
Only CS0 is supported  
NAND Flash  
GPMI  
NANDF_CLE, NANDF_ALE, NANDF_WP_B,  
SD4_CMD, SD4_CLK, NANDF_RB0, SD4_DAT0,  
NANDF_CS0, NANDF_CS1, NANDF_CS2,  
NANDF_CS3, NANDF_D[7:0]  
8 bit  
Only CS0 is supported  
SD/MMC  
SD/MMC  
SD/MMC  
SD/MMC  
USDHC-1  
USDHC-2  
USDHC-3  
USDHC-4  
SD1_CLK, SD1_CMD, SD1_DAT0, SD1_DAT1,  
SD1_DAT2, SD1_DAT3, GPIO_1, NANDF_D0,  
NANDF_D1, NANDF_D2, NANDF_D3, KEY_COL1  
1, 4, or 8 bit  
1, 4, or 8 bit  
1, 4, or 8 bit  
1, 4, or 8 bit  
SD2_CLK, SD2_CMD, SD2_DAT0, SD2_DAT1,  
SD2_DAT2, SD2_DAT3, GPIO_4, NANDF_D4,  
NANDF_D5, NANDF_D6, NANDF_D7, KEY_ROW1  
SD3_CLK, SD3_CMD, SD3_DAT0, SD3_DAT1,  
SD3_DAT2, SD3_DAT3, SD3_DAT4, SD3_DAT5,  
SD3_DAT6, SD3_DAT7, SD3_RST, GPIO_18  
SD4_CLK, SD4_CMD, SD4_DAT0, SD4_DAT1,  
SD4_DAT2, SD4_DAT3, SD4_DAT4, SD4_DAT5,  
SD4_DAT6, SD4_DAT7, NANDF_ALE, NANDF_CS1  
I2C  
I2C  
I2C-1  
I2C-2  
I2C-3  
EIM_D28, EIM_D21  
EIM_D16, EIM_EB2  
EIM_D18, EIM_D17  
I2C  
USB  
USB-OTG  
PHY  
USB_OTG_DP  
USB_OTG_DN  
USB_OTG_VBUS  
6 Package Information and Contact Assignments  
This section includes the contact assignment information and mechanical package drawing.  
6.1  
Updated Signal Naming Convention  
The signal names of the i.MX6 series of products have been standardized to better align the signal names  
within the family and across the documentation. Some of the benefits of these changes are as follows:  
The names are unique within the scope of an SoC and within the series of products  
Searches will return all occurrences of the named signal  
The names are consistent between i.MX 6 series products implementing the same modules  
The module instance is incorporated into the signal name  
This change applies only to signal names. The original ball names have been preserved to prevent the need  
to change schematics, BSDL models, IBIS models, etc.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
136  
NXP Semiconductors  
Package Information and Contact Assignments  
Throughout this document, the updated signal names are used except where referenced as a ball name  
(such as the Functional Contact Assignments table, Ball Map table, and so on). A master list of the signal  
name changes is in the document, IMX 6 Series Signal Name Mapping (EB792). This list can be used to  
map the signal names used in older documentation to the new standardized naming conventions.  
6.2  
21x21 mm Package Information  
6.2.1  
Case 2240, 21 x 21 mm, 0.8 mm Pitch, 25 x 25 Ball Matrix  
Figure 101 shows the top, bottom, and side views of the 21×21 mm BGA package.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
137  
Package Information and Contact Assignments  
Figure 101. 21 x 21 mm BGA, Case 2240 Package Top, Bottom, and Side Views  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
138  
Package Information and Contact Assignments  
Table 95 shows the 21 × 21 mm BGA package details.  
Table 95. 21 x 21, 0.8 mm BGA Package Details  
Common Dimensions  
Parameter  
Symbol  
Minimum  
Normal  
Maximum  
Total Thickness  
Stand Off  
A
A1  
A2  
A3  
D
1.6  
0.36  
0.46  
Substrate Thickness  
Mold Thickness  
Body Size  
0.26 REF  
0.7 REF  
21 BSC  
21 BSC  
0.5  
E
Ball Diameter  
Ball Opening  
0.4  
Ball Width  
b
0.44  
0.64  
Ball Pitch  
e
0.8 BSC  
624  
Ball Count  
n
Edge Ball Center to Center  
D1  
E1  
SD  
SE  
aaa  
bbb  
ddd  
eee  
fff  
19.2 BSC  
19.2 BSC  
Body Center to Contact Ball  
Package Edge Tolerance  
Mold Flatness  
0.1  
0.2  
Coplanarity  
0.15  
Ball Offset (Package)  
Ball Offset (Ball)  
0.15  
0.08  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
139  
Package Information and Contact Assignments  
6.2.2  
21 x 21 mm Supplies Contact Assignments and Functional Contact  
Assignments  
Table 96 shows supplies contact assignments for the 21 x 21 mm package.  
Table 96. 21 x 21 mm Supplies Contact Assignments  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
CSI_REXT  
DRAM_VREF  
DSI_REXT  
GND  
D4  
AC2  
G4  
A4, A8, A13, A25, B4, C1, C4, C6, C10, D3, D6, D8, E5,  
E6, E7, F5, F6, F7, F8, G3, G10, G19, H8, H12, H15,  
H18, J2, J8, J12, J15, J18, K8, K10, K12, K15, K18, L2,  
L5, L8, L10, L12, L15, L18, M8, M10, M12, M15, M18,  
N8, N10, N15, N18, P8, P10, P12, P15, P18, R8, R12,  
R15, R17, T8, T11, T12, T15, T17, T19, U8, U11, U12,  
U15, U17, U19, V8, V19, W3, W7, W8, W9, W10, W11,  
W12, W13, W15, W16, W17, W18, W19, Y5, Y24, AA7,  
AA10, AA13, AA16, AA19, AA22, AB3, AB24, AD4,  
AD7, AD10, AD13, AD16, AD19, AD22, AE1, AE25  
HDMI_REF  
HDMI_VP  
J1  
L7  
M7  
N7  
HDMI_VPH  
NVCC_CSI  
NVCC_DRAM  
Supply of the camera sensor interface  
R18, T18, U18, V9, V10, V11, V12, V13, V14, V15, V16, Supply of the DDR interface  
V17, V18  
NVCC_EIM  
NVCC_ENET  
NVCC_GPIO  
NVCC_JTAG  
NVCC_LCD  
K19, L19, M19  
Supply of the EIM interface  
R19  
P7  
Supply of the ENET interface  
Supply of the GPIO interface  
Supply of the JTAG tap controller interface  
Supply of the LCD interface  
J7  
P19  
V7  
NVCC_LVDS2P5  
Supply of the LVDS display interface and DDR  
pre-drivers  
NVCC_MIPI  
K7  
Supply of the MIPI interface  
NVCC_NANDF  
G15  
Supply of the raw NAND Flash memories  
interface  
NVCC_PLL_OUT  
NVCC_RGMII  
NVCC_SD1  
E8  
G18  
G16  
G17  
G14  
Supply of the ENET interface  
Supply of the SD card interface  
Supply of the SD card interface  
Supply of the SD card interface  
NVCC_SD2  
NVCC_SD3  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
140  
Package Information and Contact Assignments  
Table 96. 21 x 21 mm Supplies Contact Assignments (continued)  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
PCIE_REXT  
PCIE_VP  
A2  
H7  
G7  
G8  
G9  
PCIE_VPH  
PCI PHY supply  
PCI PHY supply  
PCIE_VPTX  
VDD_SNVS_CAP  
Secondary supply for the SNVS (internal  
regulator output—requires capacitor if internal  
regulator is used)  
VDD_SNVS_IN  
VDDARM_CAP  
G11  
Primary supply for the SNVS regulator  
H11, H13, J11, J13, K11, K13, L11, L13, M11, M13,  
N11, N13, P11, P13, R11, R13  
Secondary supply for core (internal regulator  
output—requires capacitor if internal regulator  
is used)  
VDDARM_IN  
H14, J14, K9, K14, L9, L14, M9, M14, N9, N14, P9,  
P14, R9, R14, T9, U9  
Primary supply for the Arm core’s regulator  
VDDHIGH_CAP  
H10, J10  
Secondary supply for the 2.5 V domain  
(internal regulator output—requires capacitor  
if internal regulator is used)  
VDDHIGH_IN  
VDDPU_CAP  
H9, J9  
Primary supply for the 2.5 V regulator  
H17, J17, K17, L17, M17, N17, P17  
Secondary supply for VPU and GPUs  
(internal regulator output—requires capacitor  
if internal regulator is used)  
VDDSOC_CAP  
R10, T10, T13, T14, U10, U13, U14  
Secondary supply for SoC and PU regulators  
(internal regulator output—requires capacitor  
if internal regulator is used)  
VDDSOC_IN  
H16, J16, K16, L16, M16, N16, P16, R16, T16, U16  
F9  
Primary supply for SoC and PU regulators  
VDDUSB_CAP  
Secondary supply for the 3 V Domain (internal  
regulator output—requires capacitor if internal  
regulator is used)  
USB_H1_VBUS  
USB_OTG_VBUS  
HDMI_DDCCEC  
D10  
E9  
Primary supply for the 3 V regulator  
Primary supply for the 3 V regulator  
K2  
Analog Ground (Ground reference for the Hot  
Plug Detect signal)  
FA_ANA  
A5  
C8  
GPANAIO  
Analog output for NXP use only. This output  
must remain unconnected.  
VDD_FA  
B5  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
141  
Package Information and Contact Assignments  
Table 96. 21 x 21 mm Supplies Contact Assignments (continued)  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
ZQPAD  
AE17  
Connect ZQPAD to an external 240 Ω 1%  
resistor to GND. This is a reference used  
during DRAM output buffer driver calibration.  
NC  
For i.MX 6DualLite:  
A12, A14, B12, B14, C14, E1, E2, F1, F2, G12, G13,  
N12  
These signals are not functional and must  
remain unconnected by the user.  
For i.MX 6Solo:  
A12, A14, B12, B14, C14, E1, E2, F1, F2, G12, G13,  
N12, W25, Y17, Y18, Y19, Y20, Y21, Y22, Y23, Y25,  
AA17, AA18, AA20, AA21, AA23, AA24, AA25, AB18,  
AB19, AB20, AB21, AB22, AB23, AB25, AC18, AC19,  
AC20, AC21, AC22, AC23, AC24, AC25, AD18, AD20,  
AD21, AD23, AD24, AD25, AE18, AE19, AE20, AE21,  
AE22, AE23, AE24  
Table 97 shows an alpha-sorted list of functional contact assignments for the 21 x 21 mm package.  
Table 97. 21 x 21 mm Functional Contact Assignments  
Out of Reset Condition1  
Default  
Ball Name  
Ball  
Power Group  
Ball Type  
Mode  
(Reset  
Mode)  
Input/  
Output  
Default Function  
Value2  
BOOT_MODE0  
BOOT_MODE1  
CLK1_N  
C12  
F12  
C7  
D7  
C5  
D5  
F4  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_CSI  
GPIO  
GPIO  
ALT0  
ALT0  
SRC_BOOT_MODE0  
SRC_BOOT_MODE1  
CLK1_N  
Input 100 kΩ pull-down  
Input 100 kΩ pull-down  
CLK1_P  
CLK1_P  
CLK2_N  
CLK2_N  
CLK2_P  
CLK2_P  
CSI_CLK0M  
CSI_CLK0P  
CSI_D0M  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
GPIO  
CSI_CLK_N  
CSI_CLK_P  
CSI_DATA0_N  
CSI_DATA0_P  
CSI_DATA1_N  
CSI_DATA1_P  
GPIO5_IO28  
GPIO5_IO29  
GPIO5_IO30  
GPIO5_IO31  
GPIO6_IO00  
GPIO6_IO01  
GPIO6_IO02  
F3  
E4  
E3  
D1  
D2  
M1  
M3  
M2  
L1  
CSI_D0P  
CSI_D1M  
CSI_D1P  
CSI0_DAT10  
CSI0_DAT11  
CSI0_DAT12  
CSI0_DAT13  
CSI0_DAT14  
CSI0_DAT15  
CSI0_DAT16  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
NVCC_CSI  
GPIO  
NVCC_CSI  
GPIO  
NVCC_CSI  
GPIO  
M4  
M5  
L4  
NVCC_CSI  
GPIO  
NVCC_CSI  
GPIO  
NVCC_CSI  
GPIO  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
142  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
CSI0_DAT17  
CSI0_DAT18  
CSI0_DAT19  
CSI0_DAT4  
L3  
M6  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_CSI  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO03  
GPIO6_IO04  
GPIO6_IO05  
GPIO5_IO22  
GPIO5_IO23  
GPIO5_IO24  
GPIO5_IO25  
GPIO5_IO26  
GPIO5_IO27  
GPIO5_IO20  
GPIO5_IO19  
GPIO5_IO18  
GPIO5_IO21  
GPIO4_IO16  
GPIO4_IO17  
GPIO4_IO18  
GPIO4_IO19  
GPIO4_IO20  
GPIO4_IO21  
GPIO4_IO22  
GPIO4_IO31  
GPIO5_IO05  
GPIO5_IO06  
GPIO5_IO07  
GPIO5_IO08  
GPIO5_IO09  
GPIO5_IO10  
GPIO5_IO11  
GPIO5_IO12  
GPIO5_IO13  
GPIO4_IO23  
GPIO5_IO14  
GPIO5_IO15  
GPIO5_IO16  
GPIO5_IO17  
GPIO4_IO24  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
L6  
N1  
CSI0_DAT5  
P2  
CSI0_DAT6  
N4  
CSI0_DAT7  
N3  
CSI0_DAT8  
N6  
CSI0_DAT9  
N5  
CSI0_DATA_EN  
CSI0_MCLK  
CSI0_PIXCLK  
CSI0_VSYNC  
DI0_DISP_CLK  
DI0_PIN15  
P3  
P4  
P1  
N2  
N19  
N21  
N25  
N20  
P25  
P24  
P22  
R21  
T23  
T24  
R20  
U25  
T22  
T21  
U24  
V25  
U23  
P23  
U22  
T20  
V24  
W24  
P21  
DI0_PIN2  
DI0_PIN3  
DI0_PIN4  
DISP0_DAT0  
DISP0_DAT1  
DISP0_DAT10  
DISP0_DAT11  
DISP0_DAT12  
DISP0_DAT13  
DISP0_DAT14  
DISP0_DAT15  
DISP0_DAT16  
DISP0_DAT17  
DISP0_DAT18  
DISP0_DAT19  
DISP0_DAT2  
DISP0_DAT20  
DISP0_DAT21  
DISP0_DAT22  
DISP0_DAT23  
DISP0_DAT3  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
143  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
DISP0_DAT4  
DISP0_DAT5  
DISP0_DAT6  
DISP0_DAT7  
DISP0_DAT8  
DISP0_DAT9  
DRAM_A0  
P20  
R25  
NVCC_LCD  
NVCC_LCD  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO4_IO25  
GPIO4_IO26  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Low  
R23  
NVCC_LCD  
GPIO4_IO27  
Input  
R24  
NVCC_LCD  
GPIO4_IO28  
Input  
R22  
NVCC_LCD  
GPIO4_IO29  
Input  
T25  
NVCC_LCD  
GPIO4_IO30  
Input  
AC14  
AB14  
AA15  
AC12  
AD12  
AC17  
AA12  
Y12  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DRAM_ADDR00  
DRAM_ADDR01  
DRAM_ADDR10  
DRAM_ADDR11  
DRAM_ADDR12  
DRAM_ADDR13  
DRAM_ADDR14  
DRAM_ADDR15  
DRAM_ADDR02  
DRAM_ADDR03  
DRAM_ADDR04  
DRAM_ADDR05  
DRAM_ADDR06  
DRAM_ADDR07  
DRAM_ADDR08  
DRAM_ADDR09  
DRAM_CAS  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Input  
DRAM_A1  
Low  
DRAM_A10  
DRAM_A11  
DRAM_A12  
DRAM_A13  
DRAM_A14  
DRAM_A15  
DRAM_A2  
Low  
Low  
Low  
Low  
Low  
Low  
AA14  
Y14  
Low  
DRAM_A3  
Low  
DRAM_A4  
W14  
AE13  
AC13  
Y13  
Low  
DRAM_A5  
Low  
DRAM_A6  
Low  
DRAM_A7  
Low  
DRAM_A8  
AB13  
AE12  
AE16  
Y16  
Low  
DRAM_A9  
Low  
DRAM_CAS  
DRAM_CS0  
DRAM_CS1  
DRAM_D0  
DRAM_D1  
DRAM_D10  
DRAM_D11  
DRAM_D12  
DRAM_D13  
DRAM_D14  
DRAM_D15  
DRAM_D16  
DRAM_D17  
DRAM_D18  
Low  
DRAM_CS0  
Low  
AD17  
AD2  
AE2  
DRAM_CS1  
Low  
DRAM_DATA00  
DRAM_DATA01  
DRAM_DATA10  
DRAM_DATA11  
DRAM_DATA12  
DRAM_DATA13  
DRAM_DATA14  
DRAM_DATA15  
DRAM_DATA16  
DRAM_DATA17  
DRAM_DATA18  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Input  
AA6  
Input  
AE7  
Input  
AB5  
Input  
AC5  
AB6  
Input  
Input  
AC7  
AB7  
Input  
Input  
AA8  
Input  
AB9  
Input  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
144  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
DRAM_D19  
DRAM_D2  
Y9  
AC4  
Y7  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_DATA19  
DRAM_DATA02  
DRAM_DATA20  
DRAM_DATA21  
DRAM_DATA22  
DRAM_DATA23  
DRAM_DATA24  
DRAM_DATA25  
DRAM_DATA26  
DRAM_DATA27  
DRAM_DATA28  
DRAM_DATA29  
DRAM_DATA03  
DRAM_DATA30  
DRAM_DATA31  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
DRAM_D20  
DRAM_D21  
DRAM_D22  
DRAM_D23  
DRAM_D24  
DRAM_D25  
DRAM_D26  
DRAM_D27  
DRAM_D28  
DRAM_D29  
DRAM_D3  
Y8  
AC8  
AA9  
AE9  
Y10  
AE11  
AB11  
AC9  
AD9  
AA5  
AD11  
AC11  
DRAM_D30  
DRAM_D31  
Note: DRAM_D32 to DRAM_D63 are only available for i.MX 6DualLite chip; for i.MX 6Solo chip, these pins are NC.  
DRAM_D32  
DRAM_D33  
DRAM_D34  
DRAM_D35  
DRAM_D36  
DRAM_D37  
DRAM_D38  
DRAM_D39  
DRAM_D40  
DRAM_D41  
DRAM_D42  
DRAM_D43  
DRAM_D44  
DRAM_D45  
DRAM_D46  
DRAM_D47  
DRAM_D48  
DRAM_D49  
DRAM_D50  
DRAM_D51  
AA17  
AA18  
AC18  
AE19  
Y17  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_DATA32  
DRAM_DATA33  
DRAM_DATA34  
DRAM_DATA35  
DRAM_DATA36  
DRAM_DATA37  
DRAM_DATA38  
DRAM_DATA39  
DRAM_DATA40  
DRAM_DATA41  
DRAM_DATA42  
DRAM_DATA43  
DRAM_DATA44  
DRAM_DATA45  
DRAM_DATA46  
DRAM_DATA47  
DRAM_DATA48  
DRAM_DATA49  
DRAM_DATA50  
DRAM_DATA51  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Y18  
AB19  
AC19  
Y19  
AB20  
AB21  
AD21  
Y20  
AA20  
AE21  
AC21  
AC22  
AE22  
AE24  
AC24  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
145  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
DRAM_D52  
DRAM_D53  
DRAM_D54  
DRAM_D55  
DRAM_D56  
DRAM_D57  
DRAM_D58  
DRAM_D59  
DRAM_D60  
DRAM_D61  
DRAM_D62  
DRAM_D63  
DRAM_D4  
AB22  
AC23  
AD25  
AC25  
AB25  
AA21  
Y25  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDRCLK  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
DRAM_DATA52  
DRAM_DATA53  
DRAM_DATA54  
DRAM_DATA55  
DRAM_DATA56  
DRAM_DATA57  
DRAM_DATA58  
DRAM_DATA59  
DRAM_DATA60  
DRAM_DATA61  
DRAM_DATA62  
DRAM_DATA63  
DRAM_DATA04  
DRAM_DATA05  
DRAM_DATA06  
DRAM_DATA07  
DRAM_DATA08  
DRAM_DATA09  
DRAM_DQM0  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Low  
Input  
Input  
Input  
Input  
Input  
Y22  
Input  
AB23  
AA23  
Y23  
Input  
Input  
Input  
W25  
AC1  
Input  
Input  
DRAM_D5  
AD1  
Input  
DRAM_D6  
AB4  
Input  
DRAM_D7  
AE4  
Input  
DRAM_D8  
AD5  
Input  
DRAM_D9  
AE5  
Input  
DRAM_DQM0  
DRAM_DQM1  
DRAM_DQM2  
DRAM_DQM3  
DRAM_DQM4  
DRAM_DQM5  
DRAM_DQM6  
DRAM_DQM7  
DRAM_RAS  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
AC3  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
AC6  
DRAM_DQM1  
Low  
AB8  
DRAM_DQM2  
Low  
AE10  
AB18  
AC20  
AD24  
Y21  
DRAM_DQM3  
Low  
DRAM_DQM4  
Low  
DRAM_DQM5  
Low  
DRAM_DQM6  
Low  
DRAM_DQM7  
Low  
AB15  
Y6  
DRAM_RAS  
Low  
DRAM_RESET  
DRAM_SDBA0  
DRAM_SDBA1  
DRAM_SDBA2  
DRAM_SDCKE0  
DRAM_SDCKE1  
DRAM_SDCLK0_P  
DRAM_SDCLK0_N  
DRAM_SDCLK1_P  
Low  
AC15  
Y15  
Low  
Low  
AB12  
Y11  
Low  
Low  
AA11  
Low  
DRAM_SDCLK_0 AD15  
DRAM_SDCLK_0_B AE15  
DRAM_SDCLK_1 AD14  
Low  
DDRCLK  
ALT0  
Output  
Low  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
146  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
DRAM_SDCLK_1_B AE14  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_MIPI  
NVCC_EIM  
DDR  
ALT0  
ALT0  
ALT0  
DRAM_SDCLK1_N  
DRAM_ODT0  
Output  
Output  
Input  
Low  
Low  
Hi-Z  
DRAM_SDODT0  
DRAM_SDODT1  
DRAM_SDQS0  
DRAM_SDQS0_B  
DRAM_SDQS1  
DRAM_SDQS1_B  
DRAM_SDQS2  
DRAM_SDQS2_B  
DRAM_SDQS3  
AC16  
AB17  
AE3  
DDR  
DRAM_ODT1  
DDRCLK  
DRAM_SDQS0_P  
DRAM_SDQS0_N  
DRAM_SDQS1_P  
DRAM_SDQS1_N  
DRAM_SDQS2_P  
DRAM_SDQS2_N  
DRAM_SDQS3_P  
DRAM_SDQS3_N  
DRAM_SDQS4_P  
DRAM_SDQS4_N  
DRAM_SDQS5_P  
DRAM_SDQS5_N  
DRAM_SDQS6_P  
DRAM_SDQS6_N  
DRAM_SDQS7_P  
DRAM_SDQS7_N  
DRAM_SDWE  
AD3  
AD6  
AE6  
DDRCLK  
ALT0  
Input  
Hi-Z  
AD8  
AE8  
DDRCLK  
ALT0  
Input  
Hi-Z  
AC10  
DDRCLK  
ALT0  
Input  
Hi-Z  
DRAM_SDQS3_B AB10  
DRAM_SDQS4 AD18  
DRAM_SDQS4_B AE18  
DRAM_SDQS5 AD20  
DRAM_SDQS5_B AE20  
DRAM_SDQS6 AD23  
DRAM_SDQS6_B AE23  
DRAM_SDQS7 AA25  
DRAM_SDQS7_B AA24  
DDRCLK  
ALT0  
Input  
Hi-Z  
DDRCLK  
ALT0  
Input  
Hi-Z  
DDRCLK  
ALT0  
Input  
Hi-Z  
DDRCLK  
ALT0  
Input  
Hi-Z  
DRAM_SDWE  
DSI_CLK0M  
DSI_CLK0P  
DSI_D0M  
DSI_D0P  
DSI_D1M  
DSI_D1P  
EIM_A16  
EIM_A17  
EIM_A18  
EIM_A19  
EIM_A20  
EIM_A21  
EIM_A22  
EIM_A23  
EIM_A24  
EIM_A25  
AB16  
H3  
DDR  
ALT0  
Output  
Low  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
ANALOG  
GPIO  
DSI_CLK_N  
H4  
DSI_CLK_P  
G2  
DSI_DATA0_N  
DSI_DATA0_P  
DSI_DATA1_N  
DSI_DATA1_P  
EIM_ADDR16  
G1  
H2  
H1  
H25  
G24  
J22  
G25  
H22  
H23  
F24  
J21  
F25  
H19  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
Low  
NVCC_EIM  
GPIO  
EIM_ADDR17  
NVCC_EIM  
GPIO  
EIM_ADDR18  
NVCC_EIM  
GPIO  
EIM_ADDR19  
NVCC_EIM  
GPIO  
EIM_ADDR20  
NVCC_EIM  
GPIO  
EIM_ADDR21  
NVCC_EIM  
GPIO  
EIM_ADDR22  
NVCC_EIM  
GPIO  
EIM_ADDR23  
NVCC_EIM  
GPIO  
EIM_ADDR24  
NVCC_EIM  
GPIO  
EIM_ADDR25  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
147  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
EIM_BCLK  
EIM_CS0  
EIM_CS1  
EIM_D16  
EIM_D17  
EIM_D18  
EIM_D19  
EIM_D20  
EIM_D21  
EIM_D22  
EIM_D23  
EIM_D24  
EIM_D25  
EIM_D26  
EIM_D27  
EIM_D28  
EIM_D29  
EIM_D30  
EIM_D31  
EIM_DA0  
EIM_DA1  
EIM_DA10  
EIM_DA11  
EIM_DA12  
EIM_DA13  
EIM_DA14  
EIM_DA15  
EIM_DA2  
EIM_DA3  
EIM_DA4  
EIM_DA5  
EIM_DA6  
EIM_DA7  
EIM_DA8  
EIM_DA9  
EIM_EB0  
N22  
H24  
J23  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
EIM_BCLK  
EIM_CS0  
Output  
Output  
Output  
Input  
Low  
High  
EIM_CS1  
High  
C25  
F21  
D24  
G21  
G20  
H20  
E23  
D25  
F22  
G22  
E24  
E25  
G23  
J19  
GPIO3_IO16  
GPIO3_IO17  
GPIO3_IO18  
GPIO3_IO19  
GPIO3_IO20  
GPIO3_IO21  
GPIO3_IO22  
GPIO3_IO23  
GPIO3_IO24  
GPIO3_IO25  
GPIO3_IO26  
GPIO3_IO27  
GPIO3_IO28  
GPIO3_IO29  
GPIO3_IO30  
GPIO3_IO31  
EIM_AD00  
EIM_AD01  
EIM_AD10  
EIM_AD11  
EIM_AD12  
EIM_AD13  
EIM_AD14  
EIM_AD15  
EIM_AD02  
EIM_AD03  
EIM_AD04  
EIM_AD05  
EIM_AD06  
EIM_AD07  
EIM_AD08  
EIM_AD09  
EIM_EB0  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Input  
Input  
Input  
Input  
Input  
Input 100 kΩ pull-down  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
J20  
H21  
L20  
J25  
Input 100 kΩ pull-down  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
High  
M22  
M20  
M24  
M23  
N23  
N24  
L21  
K24  
L22  
L23  
K25  
L25  
L24  
M21  
K21  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
148  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
EIM_EB1  
EIM_EB2  
K23  
E22  
F23  
K22  
J24  
K20  
M25  
U21  
V20  
V23  
V22  
W23  
W21  
W22  
V21  
U20  
W20  
T5  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_EIM  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
HDMI  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
EIM_EB1  
GPIO2_IO30  
GPIO2_IO31  
EIM_LBA  
Output  
Input  
Input  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
High  
100 kΩ pull-up  
100 kΩ pull-up  
High  
EIM_EB3  
EIM_LBA  
EIM_OE  
EIM_OE  
High  
EIM_RW  
EIM_RW  
High  
EIM_WAIT  
ENET_CRS_DV  
ENET_MDC  
ENET_MDIO  
ENET_REF_CLK3  
ENET_RX_ER  
ENET_RXD0  
ENET_RXD1  
ENET_TX_EN  
ENET_TXD0  
ENET_TXD1  
GPIO_0  
EIM_WAIT  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
GPIO1_IO25  
GPIO1_IO31  
GPIO1_IO22  
GPIO1_IO23  
GPIO1_IO24  
GPIO1_IO27  
GPIO1_IO26  
GPIO1_IO28  
GPIO1_IO30  
GPIO1_IO29  
GPIO1_IO00  
GPIO1_IO01  
GPIO7_IO11  
GPIO7_IO12  
GPIO7_IO13  
GPIO4_IO05  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
GPIO1_IO05  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
HDMI_TX_CLK_N  
HDMI_TX_CLK_P  
HDMI_TX_DATA0_N  
HDMI_TX_DATA0_P  
HDMI_TX_DATA1_N  
Input 100 kΩ pull-down  
GPIO_1  
T4  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
GPIO_16  
R2  
GPIO_17  
R1  
GPIO_18  
P6  
GPIO_19  
P5  
GPIO_2  
T1  
GPIO_3  
R7  
GPIO_4  
R6  
GPIO_5  
R4  
GPIO_6  
T3  
GPIO_7  
R3  
GPIO_8  
R5  
GPIO_9  
T2  
HDMI_CLKM  
HDMI_CLKP  
HDMI_D0M  
HDMI_D0P  
HDMI_D1M  
J5  
J6  
HDMI  
K5  
HDMI  
K6  
HDMI  
J3  
HDMI  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
149  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
HDMI_D1P  
HDMI_D2M  
J4  
K3  
K4  
K1  
H6  
H5  
G5  
G6  
C3  
C2  
W5  
U7  
W6  
U5  
T6  
HDMI  
HDMI_TX_DATA1_P  
HDMI_TX_DATA2_N  
HDMI_TX_DATA2_P  
HDMI_TX_HPD  
JTAG_MODE  
JTAG_TCK  
HDMI  
HDMI_D2P  
HDMI  
HDMI_HPD  
HDMI  
JTAG_MOD  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
NVCC_LVDS2P5  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
47 kΩ pull-up  
47 kΩ pull-up  
Low  
JTAG_TCK  
JTAG_TDI  
JTAG_TDI  
JTAG_TDO  
JTAG_TDO  
JTAG_TMS  
JTAG_TMS  
47 kΩ pull-up  
47 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
JTAG_TRSTB  
KEY_COL0  
JTAG_TRSTB  
GPIO4_IO06  
KEY_COL1  
GPIO4_IO08  
KEY_COL2  
GPIO4_IO10  
KEY_COL3  
GPIO4_IO12  
KEY_COL4  
GPIO4_IO14  
KEY_ROW0  
KEY_ROW1  
KEY_ROW2  
KEY_ROW3  
KEY_ROW4  
LVDS0_CLK_N  
LVDS0_CLK_P  
LVDS0_TX0_N  
LVDS0_TX0_P  
LVDS0_TX1_N  
LVDS0_TX1_P  
LVDS0_TX2_N  
LVDS0_TX2_P  
LVDS0_TX3_N  
LVDS0_TX3_P  
LVDS1_CLK_N  
LVDS1_CLK_P  
LVDS1_TX0_N  
LVDS1_TX0_P  
LVDS1_TX1_N  
LVDS1_TX1_P  
V6  
U6  
W4  
T7  
GPIO4_IO07  
GPIO4_IO09  
GPIO4_IO11  
GPIO4_IO13  
V5  
V4  
V3  
U2  
U1  
U4  
U3  
V2  
V1  
W2  
W1  
Y3  
Y4  
Y1  
Y2  
GPIO4_IO15  
Input 100 kΩ pull-down  
LVDS0_CLK_N  
LVDS0_CLK_P  
LVDS0_TX0_N  
LVDS0_TX0_P  
LVDS0_TX1_N  
LVDS0_TX1_P  
LVDS0_TX2_N  
LVDS0_TX2_P  
LVDS0_TX3_N  
LVDS0_TX3_P  
LVDS1_CLK_N  
LVDS1_CLK_P  
LVDS1_TX0_N  
LVDS1_TX0_P  
LVDS1_TX1_N  
LVDS1_TX1_P  
Input  
Keeper  
ALT0  
ALT0  
Input  
Keeper  
ALT0  
Input  
Keeper  
ALT0  
Input  
Keeper  
ALT0  
Input  
Keeper  
ALT0  
Input  
Keeper  
ALT0  
Input  
Keeper  
AA2 NVCC_LVDS2P5  
AA1 NVCC_LVDS2P5  
ALT0  
Input  
Keeper  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
150  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
LVDS1_TX2_N  
LVDS1_TX2_P  
LVDS1_TX3_N  
LVDS1_TX3_P  
MLB_CN  
AB1 NVCC_LVDS2P5  
AB2 NVCC_LVDS2P5  
AA3 NVCC_LVDS2P5  
AA4 NVCC_LVDS2P5  
LVDS1_TX2_N  
LVDS1_TX2_P  
LVDS1_TX3_N  
LVDS1_TX3_P  
MLB_CLK_N  
MLB_CLK_P  
MLB_DATA_N  
MLB_DATA_P  
MLB_SIG_N  
MLB_SIG_P  
GPIO6_IO08  
GPIO6_IO07  
GPIO6_IO11  
GPIO6_IO14  
GPIO6_IO15  
GPIO6_IO16  
GPIO2_IO00  
GPIO2_IO01  
GPIO2_IO02  
GPIO2_IO03  
GPIO2_IO04  
GPIO2_IO05  
GPIO2_IO06  
GPIO2_IO07  
GPIO6_IO10  
GPIO6_IO09  
SRC_ONOFF  
PCIE_RX_N  
PCIE_RX_P  
PCIE_TX_N  
PCIE_TX_P  
Input  
ALT0  
Keeper  
ALT0  
Input  
Keeper  
A11  
B11  
B10  
A10  
A9  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
VDDHIGH_CAP  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
VDD_SNVS_IN  
PCIE_VPH  
MLB_CP  
MLB_DN  
MLB_DP  
MLB_SN  
MLB_SP  
B9  
NANDF_ALE  
NANDF_CLE  
NANDF_CS0  
NANDF_CS1  
NANDF_CS2  
NANDF_CS3  
NANDF_D0  
NANDF_D1  
NANDF_D2  
NANDF_D3  
NANDF_D4  
NANDF_D5  
NANDF_D6  
NANDF_D7  
NANDF_RB0  
NANDF_WP_B  
ONOFF  
A16  
C15  
F15  
C16  
A17  
D16  
A18  
C17  
F16  
D17  
A19  
B18  
E17  
C18  
B16  
E15  
D12  
B1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
PCIE_RXM  
PCIE_RXP  
PCIE_TXM  
PCIE_TXP  
B2  
PCIE_VPH  
A3  
PCIE_VPH  
B3  
PCIE_VPH  
PMIC_ON_REQ  
D11  
VDD_SNVS_IN  
GPIO  
ALT0  
SNVS_PMIC_ON_REQ Output Open drain with  
PU(100K) enable  
PMIC_STBY_REQ F11  
VDD_SNVS_IN  
VDD_SNVS_IN  
NVCC_RGMII  
GPIO  
GPIO  
DDR  
ALT0  
ALT0  
ALT5  
CCM_PMIC_STBY_REQ Output  
Low  
POR_B  
C11  
C24  
SRC_POR_B  
GPIO6_IO25  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
RGMII_RD0  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
151  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
RGMII_RD1  
RGMII_RD2  
RGMII_RD3  
RGMII_RX_CTL  
RGMII_RXC  
RGMII_TD0  
RGMII_TD1  
RGMII_TD2  
RGMII_TD3  
RGMII_TX_CTL  
RGMII_TXC  
RTC_XTALI  
RTC_XTALO  
SD1_CLK  
B23  
B24  
D23  
D22  
B25  
C22  
F20  
E21  
A24  
C23  
D21  
D9  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
NVCC_RGMII  
VDD_SNVS_CAP  
VDD_SNVS_CAP  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
NVCC_SD3  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO6_IO27  
GPIO6_IO28  
GPIO6_IO29  
GPIO6_IO24  
GPIO6_IO30  
GPIO6_IO20  
GPIO6_IO21  
GPIO6_IO22  
GPIO6_IO23  
GPIO6_IO26  
GPIO6_IO19  
RTC_XTALI  
RTC_XTALO  
GPIO1_IO20  
GPIO1_IO18  
GPIO1_IO16  
GPIO1_IO17  
GPIO1_IO19  
GPIO1_IO21  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO15  
GPIO1_IO14  
GPIO1_IO13  
GPIO1_IO12  
GPIO7_IO03  
GPIO7_IO02  
GPIO7_IO04  
GPIO7_IO05  
GPIO7_IO06  
GPIO7_IO07  
GPIO7_IO01  
GPIO7_IO00  
GPIO6_IO18  
GPIO6_IO17  
GPIO7_IO08  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Input 100 kΩ pull-down  
Input 100 kΩ pull-down  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
Input 100 kΩ pull-down  
Input 100 kΩ pull-down  
C9  
D20  
B21  
A21  
C20  
E19  
F18  
C21  
F19  
A22  
E20  
A23  
B22  
D14  
B13  
E14  
F14  
A15  
B15  
D13  
C13  
E13  
F13  
D15  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
SD1_CMD  
SD1_DAT0  
SD1_DAT1  
SD1_DAT2  
SD1_DAT3  
SD2_CLK  
SD2_CMD  
SD2_DAT0  
SD2_DAT1  
SD2_DAT2  
SD2_DAT3  
SD3_CLK  
SD3_CMD  
SD3_DAT0  
SD3_DAT1  
SD3_DAT2  
SD3_DAT3  
SD3_DAT4  
SD3_DAT5  
SD3_DAT6  
SD3_DAT7  
SD3_RST  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
152  
Package Information and Contact Assignments  
Table 97. 21 x 21 mm Functional Contact Assignments (continued)  
Out of Reset Condition1  
Default  
Mode  
(Reset  
Mode)  
Ball Name  
Ball  
Power Group  
Ball Type  
Input/  
Default Function  
Output  
Value2  
SD4_CLK  
SD4_CMD  
E16  
B17  
D18  
B19  
F17  
A20  
E18  
C19  
B20  
D19  
E11  
E12  
F10  
E10  
B8  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
NVCC_NANDF  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDDUSB_CAP  
VDDUSB_CAP  
VDDUSB_CAP  
VDDUSB_CAP  
VDDUSB_CAP  
NVCC_PLL_OUT  
NVCC_PLL_OUT  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
GPIO7_IO10  
GPIO7_IO09  
GPIO2_IO08  
GPIO2_IO09  
GPIO2_IO10  
GPIO2_IO11  
GPIO2_IO12  
GPIO2_IO13  
GPIO2_IO14  
GPIO2_IO15  
SNVS_TAMPER  
TCU_TEST_MODE  
USB_H1_DN  
USB_H1_DP  
USB_OTG_CHD_B  
USB_OTG_DN  
USB_OTG_DP  
XTALI  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
100 kΩ pull-up  
SD4_DAT0  
SD4_DAT1  
SD4_DAT2  
SD4_DAT3  
SD4_DAT4  
SD4_DAT5  
SD4_DAT6  
SD4_DAT7  
TAMPER  
Input 100 kΩ pull-down  
Input 100 kΩ pull-down  
TEST_MODE  
USB_H1_DN  
USB_H1_DP  
USB_OTG_CHD_B  
USB_OTG_DN  
USB_OTG_DP  
XTALI  
B6  
A6  
A7  
XTALO  
B7  
XTALO  
1
2
The state immediately after reset and before ROM firmware or software has executed.  
Variance of the pull-up and pull-down strengths are shown in the tables as follows:  
Table 23, "GPIO DC Parameters," on page 40  
Table 24, "LPDDR2 I/O DC Electrical Parameters," on page 41  
Table 25, "DDR3/DDR3L I/O DC Electrical Characteristics," on page 42  
3
ENET_REF_CLK is used as a clock source for MII and RGMII modes only. RGMII mode uses either GPIO_16 or  
RGMII_TX_CTL as a clock source. For more information on these clocks, see the device Reference Manual and the Hardware  
Development Guide for i.MX 6Quad, 6Dual, 6DualLite, 6Solo Families of Applications Processors (IMX6DQ6SDLHDG).  
Table 98. Signals with Differing Before Reset and After Reset States  
Before Reset State  
Ball Name  
Input/Output  
Value  
EIM_A16  
EIM_A17  
EIM_A18  
EIM_A19  
Input  
Input  
Input  
Input  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
153  
Package Information and Contact Assignments  
Table 98. Signals with Differing Before Reset and After Reset States (continued)  
Before Reset State  
Ball Name  
Input/Output  
Value  
EIM_A20  
EIM_A21  
EIM_A22  
EIM_A23  
EIM_A24  
EIM_A25  
EIM_DA0  
EIM_DA1  
EIM_DA2  
EIM_DA3  
EIM_DA4  
EIM_DA5  
EIM_DA6  
EIM_DA7  
EIM_DA8  
EIM_DA9  
EIM_DA10  
EIM_DA11  
EIM_DA12  
EIM_DA13  
EIM_DA14  
EIM_DA15  
EIM_EB0  
EIM_EB1  
EIM_EB2  
EIM_EB3  
EIM_LBA  
EIM_RW  
EIM_WAIT  
GPIO_17  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
PD (100K)  
Drive state unknown (x)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
154  
Package Information and Contact Assignments  
Table 98. Signals with Differing Before Reset and After Reset States (continued)  
Before Reset State  
Ball Name  
Input/Output  
Value  
GPIO_19  
Output  
Output  
Drive state unknown (x)  
Drive state unknown (x)  
KEY_COL0  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
155  
Package Information and Contact Assignments  
6.2.3  
21 x 21 mm, 0.8 mm Pitch Ball Map  
Table 99 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6Solo.  
Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
156  
NXP Semiconductors  
Package Information and Contact Assignments  
Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
157  
Package Information and Contact Assignments  
Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
158  
Package Information and Contact Assignments  
Table 99. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo (continued)  
Table 100 shows the 21 x 21 mm, 0.8 mm pitch ball map for the i.MX 6DualLite.  
Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
159  
Package Information and Contact Assignments  
Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
160  
Package Information and Contact Assignments  
Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
161  
Package Information and Contact Assignments  
Table 100. 21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite (continued)  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
162  
Revision History  
7 Revision History  
Table 101 provides the current revision history for this data sheet. Table 102 provides a revision history for  
previous revisions.  
Table 101. i.MX 6Solo/6DualLite Data Sheet Document Rev. 9 History  
Rev.  
Number  
Date  
Substantive Changes  
9
10/2018 Changes to Revision 9 include the following:  
Table 3, "Special Signal Considerations," on page 21: Corrected,  
– Row: NC, from “These signals are No Connected …” to read, “These signals are not functional and  
must remain unconnected by the user.”  
Table 8, "Operating Ranges," on page 26: Corrected footnote 6:  
– Changed from: “When VDD_SOC_IN does not supply… then maximum setting can be 1.3V.”  
– Changed to: “When using VDD_SOC_CAP to supply the PCIE_VP and PCIE_VPTX, the maximum  
setting is 1.175V. …”  
Table 53, "eMMC4.4/4.41 Interface Timing Specification," on page 80,  
– Row: SD2, uSDHC Output Delay: Changed tOD from 2.5ns minimum to 2.8ns and 7.1ns maximum to  
6.8ns.  
Table 96, "21 x 21 mm Supplies Contact Assignments," on page 140: Corrected,  
– Last row: NC, from “—” to read, These signals are not functional and must remain unconnected by the  
user.  
8
09/2017 • Replaced ipp_dse with DSE throughout.  
Section 1, “Introduction: Replaced text “low voltage DDR3” with “DDR3L” in the features list of i.MX  
6Solo/6DualLite applications processors.  
Table 1, "Example Orderable Part Numbers," on page 3: Added orderable part numbers.  
Figure 1: Updated to include Rev 1.4 in Silicon Revision section.  
Section 2.1, “Block Diagram: Updated WEIM with EIM in the block diagram.  
Table 2, "i.MX 6Solo/6DualLite Modules List," on page 11: Rearranged alphabetically.  
Table 6, "Absolute Maximum Ratings," on page 24:  
– Removed VDD_HIGH_IN supply voltage (LDO bypass) parameter.  
– Max. value of VDD_HIGH_CAP supply output voltage corrected to 2.85V.  
Table 22: Updated test condition of “XTALI input leakage current at startup” parameter; replaced 32KHz RTC  
with 24MHz.  
• Added Section 4.6.4, “RGMII I/O 2.5V I/O DC Electrical Parameters.  
Section 4.8.2, “DDR I/O Output Buffer Impedance: Modified introductory text.  
• Corrected Figure 22, "Asynchronous A/D Muxed Write Access," on page 60.  
Table 53, "eMMC4.4/4.41 Interface Timing Specification," on page 80:  
– Added the following footnote to Card Input Clock section: 1 Clock duty cycle will be in the range of 47% to  
53%.  
– Min. value of uSDHC Input Setup Time reduced to 1.7ns.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
163  
Revision History  
Table 102. i.MX 6Solo/6DualLite Data Sheet Document Past Revision Histories  
Date Substantive Changes  
Rev.  
Number  
7
10/2016 • Figure 1, "Part Number Nomenclature—i.MX 6Solo and 6DualLite," on page 5: Added to Silicon  
Revision block: Revision 1.2 and 1.3 and associated Mask ID.  
Table 6, "Absolute Maximum Ratings," on page 24:  
– NVCC_DRAM maximum value changed to 1.975 V.  
– Included footnote to NVCC_DRAM maximum value regarding maximum voltage allowance.  
– Added row to Vin/Vout I/O supply voltage, separating DDR pins and non-DDR pins and included  
footnote regarding maximum voltage allowance.  
Table 8, "Operating Ranges," on page 26: Added footnotes within the Comments column for the Run  
Mode, LDO Enabled row; VDD_SOC_IN maximum values.  
Section 4.6.3, “DDR I/O DC Parameters: Added reference for more DDR details to see the MMDC  
section.  
Moved JEDEC standard information to footnote.  
Section 4.7.2, “DDR I/O AC Parameters: Added reference for more DDR details to see the MMDC  
section.  
Moved JEDEC standard information to footnote.  
Table 44, "i.MX 6Solo Supported DDR3/DDR3L/LPDDR2 Configurations," on page 63: Changed  
LPDDR2 Channel column from “Dual” to “Single.”  
Table 45, "i.MX 6DualLite Supported DDR3/DDR3L/LPDDR2 Configurations," on page 64: Added  
LPDDR2 Dual Channel column.  
Table 95, "21 x 21, 0.8 mm BGA Package Details," on page 139: Correction to package total thickness.  
Table 97, "21 x 21 mm Functional Contact Assignments," on page 142: DRAM_SDCKLn rows, reverted  
to “Low” rather than “0” in the Value column.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
164  
NXP Semiconductors  
Revision History  
Table 102. i.MX 6Solo/6DualLite Data Sheet Document Past Revision Histories (continued)  
Rev.  
Number  
Date  
Substantive Changes  
6
8/2016 • Changed throughout:  
- LVDDR3 to DDR3L  
- Changed terminology from “floating” to “not connected”.  
Table 2, "i.MX 6Solo/6DualLite Modules List," on page 11:  
- uSDHC1–4, SD/MMC and SDXC Enhanced Multi-Media Card/Secure Digital Host Controller row:  
Added new bullet at top: “Conforms to the SD Host Controller…”.  
- eCSPI1-4 row: removed from the Brief Description column, “with data rate up to 52Mbit/s.”  
- BCH row, removed from Brief Description column, “encryption/decryption”.  
Table 3, "Special Signal Considerations," on page 21:  
- GPANAIO row, modified remarks to be NXP use only.  
- SRC_POR_B row: removed reference to internal POR which is not supported on device.  
- TEST_MODE row: modified remarks to be NXP use only and added tie to Vss or remain unconnected.  
Table 6, "Absolute Maximum Ratings," on page 24” throughout table: clarified parameter descriptions  
including adding LDO state. Clarified symbol names.  
- Added row, RGMII I/O supply voltage.  
- Added VDD_HIGH_CAP supply voltage row for LDO output.  
- Added to USB supply voltage row: USB_OTG_CHD_B.  
- All maximum voltages increased (improved).  
Section 4.1.2, “Thermal Resistance: added NOTE.  
Table 8, "Operating Ranges," on page 26: Changed minimum parameter of Run mode: LDO enabled  
from 1.175 to 1.25 V.  
Section 4.2.1, “Power-Up Sequence”: Removed references to the internal POR function. Internal POR  
is not supported. Removed fourth and fifth bullets.  
Section 4.2.3, “Power Supplies Usage”: Added NOTE, “When the PCIE interface is not used…”.  
Section 4.5.2, “OSC32K”: Removed battery resistor (coin cell) calculation.  
Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters”:  
- Added 3 rows: Input capacitance; Startup current; and DC input current.  
- Added footnote to RTC_XTALI high-level DC input voltage at the Max parameter.  
- Added NOTE following table: “The Vil and Vih only apply when external clock source is used…”.  
Section 4.9.4, “Multi-Mode DDR Controller (MMDC)”: this new section added, replacing the original  
section 4.9.4 “DDR SRAM Specific Parameters (DDR3/DDR3L and LPDDR2)”.  
Figure 36, "ECSPI Master Mode Timing Diagram," on page 73: Added note, “ECSPI_MOSI always…”.  
Figure 37, "ECSPI Slave Mode Timing Diagram," on page 74: Added note, “ECSPI_MOSI always  
driven…”.  
Figure 42, "SDR50/SDR104 Timing," on page 81: Aligned SD4 and SD5.  
Table 54, "SDR50/SDR104 Interface Timing Specification," on page 81:  
- Corrected Clock High Time ID to SD3.  
- Changed SD2 and SD3 Min and max values to 0.46 and 0.54.  
- Changed SD5 Max to 0.74.  
Table 64, "Camera Input Signal Cross Reference, Format, and Bits Per Cycle," on page 93: Changed  
RGB565 column heading from 2 to 1 cycle.  
Table 97, "21 x 21 mm Functional Contact Assignments," on page 142:  
- Table row: DRAM_SDCLK0 and DRAM_SDCLK1 changed Out of Reset Condition from Low to 0.  
- Added to ZQPAD row: requirement to add resistor to GND.  
5
6/2015 • Table 8, “Operating Ranges,” Run mode: LDO enabled row; Changed comments for VDD_ARM_IN,  
from “1.05V minimum for operation up to 396MHz” to “1.125V minimum for operation up to 396MHz”.  
Table 3, “Special Signal Considerations,” XTALI/XTALO row: Changed from “The crystal must be  
rated...”, to “See Hardware Development Guide”.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
165  
Revision History  
Table 102. i.MX 6Solo/6DualLite Data Sheet Document Past Revision Histories (continued)  
Rev.  
Number  
Date  
Substantive Changes  
Rev. 4 12/2014 • Table 1, "Example Orderable Part Numbers," on page 3: Speed Grade footnote added as follows:  
If a 24 MHz input clock is used (required for USB), the maximum SoC speed is limited to 996 MHz.  
Table 1, "Example Orderable Part Numbers," on page 3: Added (4) devices; SCIMX6U5DVM10BC/CC  
and SCIMX6S5DVM10BC/CC.  
Figure 1, “Part Number Nomenclature—i.MX 6Solo and 6DualLite”: Added Silicon Rev 1.3. to diagram  
Table 2, Modules List, UART 1–5 Description changed: baud rate up from 5MHz to 5Mbps.  
• Added Figure 2, "Example Part Marking," on page 5.  
Section 1.2, “Features”: under, Miscellaneous IPs and interfaces: Changed UARTs bullet, from “up to  
4.0 Mbps”, to “up to 5.0 Mbps”.  
Table 8, “Operating Ranges,” on page 29:  
— Changed Run mode: VDD_ARM_IN minimum value from 1.05 to 1.125V; for operation up to 396  
MHz. and changed LDO bypassed maximum value from 1.225V to 1.21V; for VDD_SOC_IN.  
— Changed PCIe supply voltages; PCIE_VP/PCIE_VPTX maximum value from 1.225V to 1.21V  
Table 10, "Maximum Supply Currents," on page 29;  
— Changed VDD_ARM_IN from single condition to include DualLite and Solo conditions with Maximum  
current values of 2200 and 1320 mA, respectively.  
— Added footnote for NVCC_LVDS2P5 supply.  
Table 38, “Reset Timing Parameters”: Removed footnote regarding SRC_POR_B rise and fall times.  
Section 4.9.3, “External Interface Module (EIM)”: Changed first paragraph to describe two systems  
clocks used with EIM: ACLK_EIM_SLOW_CLK_ROOT and ACLK_EXSC (for synchronous mode).  
Table 31, “DDR I/O DDR3/DDR3L Mode AC Parameters”; Added footnote about extended range for Vix.  
Table 48, “DDR3/DDR3L Timing Parameter Table,” on page 76; Added DDR0, tCK(avg) and parameter  
values. Changed symbol names DDR1 through DDR7 to include avg or base; changed minimum  
parameter values for DDR4–DDR7. Added footnote about tIS and tIH base values.  
Figure 25, “DDR3 Command and Address Timing Parameters,” on page 76; Added DDR0.  
Table 49, “DDR3/DDR3L Write Cycle,” on page 77; Changed symbol names of DDR17 and DDR18 to  
include base(AC150/DC100); Changed Units from tCK to tCK(avg).  
Table 46, “LPDDR2 Write Cycle,” on page 64; Changed LP21 min/max parameter values from  
-0.25/+0.25 to 0.75/1.25.  
Table 42, "EIM Bus Timing Parameters," on page 55: Changed footnotes regarding the system clocks  
used with EIM: from axi_clk to ACLK_EXSC or ACLK_EIM_SLOW_CLK_ROOT.  
Table 49, “DDR3/DDR3L Write Cycle,” on page 77: Changed DDR17 minimum value from 420 ps to  
125 ps and DDR18 from 345 ps to 150 ps.  
Table 49, “DDR3/DDR3L Write Cycle,” on page 77: Added footnote 4.  
Table 69, "LVDS Display Bridge (LDB) Electrical Specification," on page 105: Corrected Units for Output  
Voltage High and Output Voltage Low from mV to V.  
Table 71, "Electrical and Timing Information," on page 108: Moved rows tSETUP[RX] and tHOLD[RX]  
to be directly under HS Line Receiver AC Specifications heading row.  
Table 96, "21 x 21 mm Supplies Contact Assignments," on page 140: Removed A1 pin.  
Table 97, "21 x 21 mm Functional Contact Assignments," on page 142: Moved rows DRAM_4,  
DRAM_5, and DRAM_6 out of the i.MX 6DualLite section (shaded gray) to the i.MX 6Solo section above  
DRAM_7 and (unshaded).  
Table 99, "21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6Solo," on page 156: Removed “NC” from A1 pin  
location.  
Table 100, "21 x 21 mm, 0.8 mm Pitch Ball Map i.MX 6DualLite," on page 159: Removed “NC” from A1  
pin location.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
166  
NXP Semiconductors  
Revision History  
Table 102. i.MX 6Solo/6DualLite Data Sheet Document Past Revision Histories (continued)  
Rev.  
Number  
Date  
Substantive Changes  
Rev. 3 02/2014 • Updates throughout for Silicon revision C, including:  
- Figure 1 Part number nomenclature diagram  
- Table 1 Example Orderable Part Numbers  
• Feature descriptions updated for:  
- Camera sensors: updated from one to two ports at up to 240 MHz peak.  
- Miscellaneous IPs and interfaces; SSI and ESAI.  
Table 2, Modules List, uSDHC 1–4 description change: including SDXC cards up to 2 TB.  
Table 2, Modules List, UART 1–5 description change: programmable baud rate up to 5 MHz.  
Table 3, Special Signal Considerations: XTALOSC_RTC_XTALI/RTC_XTALO: ending paragraph  
removed. Was: “In case when high accuracy real time clock are not required system may use internal  
low frequency ring oscillator. It is recommended to connect XTALOSC_RTC_XTALI to GND and keep  
RTC_XTALO floating.”  
Table 8, Operating Ranges for Run mode LDO bypassed: Added footnote regarding alternate maximum  
voltage on VDD_SOC_IN … this maximum can be 1.3V.  
Table 8, Operating Ranges Standby/DSM mode: Added footnote regarding alternate maximum voltage  
on VDD_SOC_IN … this maximum can be 1.3V.  
Table 8, Operating Ranges GPIO supply voltages: Corrected supply name to NVCC_NANDF  
Table 8, Operating ranges: updated table footnotes for clarity.  
• Removed table “On-Chip LDOs and their On-Chip Loads.”  
Section 4.1.4, External Clock Sources; added Note, “The internal RTC oscillator does not...”.  
Section 4.1.5, Maximum Supply Currents: Reworded second paragraph about the power management  
IC to explain that a robust thermal design is required for the increased system power dissipation.  
Table 10, Maximum Supply Currents: NVCC_RGMII Condition value corrected to N=6.  
Table 10, Maximum Supply Currents: Corrected supply name NVCC_NANDF.  
Table 10, Maximum Supply currents: Added row NVCC_LVDS2P5  
Section 4.2.1, Power-Up Sequence: Clarified wording of third bulleted item regarding POR control.  
Section 4.2.1, Power-Up Sequence: Removed Note.  
Section 4.2.1, Power-Up Sequence: Corrected bullet regarding VDD_ARM_CAP / VDD_SOC_CAP  
difference from 50 mV to 100 mV.  
Section 4.5.2, OSC32K, second paragraph reworded to describe OSC32K automatic switching.  
Section 4.5.2, OSC32K, added Note following second paragraph to caution use of internal oscillator.  
Table 23, XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih minimum value to 0.8.  
Table 23, XTALI and RTC_XTALI DC parameters; changed RTC_XTALI Vih maximum value to 1.1.  
Table 39, Reset Timing Parameters; removed rise/fall time requirement  
Section 4.9.3, External Interface Module; enhanced wording to first paragraph to describe operating  
frequency for data transfers, and to explain register settings are valid for entire range of frequencies.  
Rev. 3  
continued  
2/2014 • Table 42, EIM Bus Timing Parameters; reworded footnotes for clarity.  
Table 42, EIM Asynchronous Timing Parameters; removed comment from the Max heading cell.  
Figure 60, Gated Clock Mode Timing Diagram: Corrected HSYNC trace behavior  
Table 66, Video Signal Cross-Reference: Corrected naming of HSYNC and VSYNC  
Section 4.11.22, USB PHY Parameters: Updated Battery Charging Specification bullet  
Table 95, BGA Package Details: Corrected to read “21 x 21, 0.8 mm”.  
Table 96, Supplies Contact Assignments: Corrected supply name NVCC_NANDF  
Table 96, Supplies Contact Assignments: Updated NC rows to show i.MX 6DualLite vs. i.MX 6Solo  
Table 97, Functional Contact Assignments: ALT5 Default function signal names corrected  
Table 97, Functional Contact Assignments: PMIC_ON_REQ Out of Reset value corrected to “Open  
Drain with PU (100K) enabled”  
Table 97, Functional Contact Assignments: TEST_MODE row included  
Table 97, Functional Contact Assignments: VDD_ARM_IN and ZQPAD row removed  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
NXP Semiconductors  
167  
Revision History  
Table 102. i.MX 6Solo/6DualLite Data Sheet Document Past Revision Histories (continued)  
Rev.  
Number  
Date  
Substantive Changes  
Rev. 2.2 8/2013 • 21x21 functional contact table: changed from NAND to NANDF  
• System Timing Parameters Table 39, Reset timing parameter, CC1 description, change from:  
“Duration of SRC_POR_B to be qualified as valid (<= 5 ns)” to:  
“Duration of SRC_POR_B to be qualified as valid”  
and added a footnote to the parameter with the following text:  
“SRC_POR_B rise and fall times must be 5 ns or less.”  
Rev. 2.1 5/2013 Substantive changes throughout this document are as follows:  
• Incorporated standardized signal names. This change is extensive throughout.  
• Added reference to EB792, i.MX Signal Name Mapping.  
• Figures updated to align to standardized signal names.  
• Updated references to eMMC standard to include 4.41.  
• Added MediaLB (MLB) feature and DTCP module to the commercial temperature grade version.  
Figure 1 Part Number Nomenclature: Updates to Part differentiator section to align with Table 1.  
Table 1 “Orderable Part Numbers,” added Arm core information to the Options column:  
2x “Arm Cortex-A9” 64-bit to 6DualLite  
1x “Arm Cortex -A9” 32-bit to 6Solo  
Table 2 Changed reference to Global Power Controller to read General Power Controller.  
Table 8 “Operating Ranges,” added reference for information on product lifetime: i.MX 6Dual/6Quad  
Product Usage Lifetime Estimates Application Note, AN4725.  
Table 10 “Maximum Supply Currents,” updated footnote 2.  
Table 11 Stop Mode Current and Power Consumption: Added SNVS Only mode.  
Table 60 RGMII parameter TskewT minimum and maximum values corrected.  
Table 60 RGMII parameter TskewR units corrected.  
Table 97 Clarification of ENET_REF_CLK naming.  
• Added Table 98, "Signals with Differing Before Reset and After Reset States," on page 153.  
• Removed section, EIM Signal Cross Reference. Signal names are now aligned with reference manual.  
• Removed table from Section 3.2, “Recommended Connections for Unused Analog Interfaces and  
referenced the Hardware Development Guide.  
Section 1.2, “Features added bulleted item regarding the SOC-level memory system.  
Section 1.2, “Features Camera sensors: Changed Camera port to be up to 180 MHz peak.  
• Added Section 1.3, “Updated Signal Naming Convention  
Section 4.2.1, “Power-Up Sequence” updated wording.  
Section 4.3.2, “Regulators for Analog Modules” section updates.  
• Added Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters.”  
Section 4.10, “General-Purpose Media Interface (GPMI) Timing” figures replaced, tables revised.  
i.MX 6Solo/6DualLite Applications Processors for Consumer Products, Rev. 9, 11/2018  
168  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for  
any particular purpose, nor does NXP assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. “Typical” parameters that may be provided in NXP data  
sheets and/or specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be validated for each  
customer application by customer’s technical experts. NXP does not convey any license under  
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and  
conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks associated  
with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C?5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C?Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore,  
Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in  
the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,  
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are  
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word  
marks and the Power and Power.org logos and related marks are trademarks and service marks  
licensed by Power.org.  
© 2012-2018 NXP B.V.  
Document Number: IMX6SDLCEC  
Rev. 9  
11/2018  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY