MCM69L818CZP8.5R [NXP]

256KX18 LATE-WRITE SRAM, 8.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119;
MCM69L818CZP8.5R
型号: MCM69L818CZP8.5R
厂家: NXP    NXP
描述:

256KX18 LATE-WRITE SRAM, 8.5ns, PBGA119, 14 X 22 MM, 1.27 MM PITCH, PLASTIC, BGA-119

信息通信管理 静态存储器 内存集成电路
文件: 总20页 (文件大小:1590K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
MOTOROLA  
SEMICONDUCTOR TECHNICAL DATA  
Order this document  
by MCM69L736C/D  
MCM69L736C  
MCM69L818C  
4M Late Write HSTL  
The MCM69L736C/818C is a 4M–bit synchronous late write fast static RAM  
designed to provide high performance in secondary cache and ATM switch,  
Telecom, and other high speed memory applications. The MCM69L818C  
(organized as 256K words by 18 bits) and the MCM69L736C (organized as 128K  
words by 36 bits) are fabricated in Motorola’s high performance silicon gate  
BiCMOS technology.  
The differential clock (CK) inputs control the timing of read/write operations of  
theRAM. AttherisingedgeofCK, alladdresses, writeenables, andsynchronous  
selects are registered. An internal buffer and special logic enable the memory to  
accept write data on the rising edge of CK, a cycle after address and control  
signals. Read data is available at the falling edge of CK.  
ZP PACKAGE  
PBGA  
CASE 999–02  
The RAM uses HSTL inputs and outputs. The adjustable input trip–point (V  
)
ref  
and output voltage (V  
) gives the system designer greater flexibility in  
DDQ  
optimizing system performance.  
The synchronous write and byte enables allow writing to individual bytes or  
the entire word.  
The impedance of the output buffers is programmable, allowing the outputs to  
match the impedance of the circuit traces which reduces signal reflections.  
Byte Write Control  
Single 3.3 V +10%, –5% Operation  
HSTL — I/O (JEDEC Standard JESD8–6 Class I Compatible)  
HSTL — User Selectable Input Trip–Point  
HSTL — Compatible Programmable Impedance Output Drivers  
Register to Latch Synchronous Operation  
Asynchronous Output Enable  
Boundary Scan (JTAG) IEEE 1149.1 Compatible  
Differential Clock Inputs  
Optional x18 or x36 Organization  
MCM69L736C/818C–5.5 = 5..5 ns  
MCM69L736C/818C–6.5 = 6.5 ns  
MCM69L736C/818C–7.5 = 7.5 ns  
MCM69L736C/818C–8.5 = 8.5 ns  
Sleep Mode Operation (ZZ Pin)  
119–Bump, 50 mil (1.27 mm) Pitch, 14 mm x 22 mm Plastic Ball Grid Array  
(PBGA) Package  
REV 1  
8/10/99  
Motorola, Inc. 1999  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
FUNCTIONAL BLOCK DIAGRAM  
DATA IN  
REGISTER  
ADDRESS  
REGISTERS  
MEMORY  
ARRAY  
SA  
DQ  
DATA OUT  
LATCH  
SW  
SW  
REGISTERS  
CONTROL  
LOGIC  
SBx  
CK  
G
SS  
SS  
REGISTERS  
PIN ASSIGNMENTS  
TOP VIEW  
MCM69L736C  
MCM69L818C  
1
2
3
4
5
6
7
1
2
3
4
5
6
7
A
B
C
D
E
A
B
C
D
E
V
SA  
NC  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
SA  
V
V
SA  
NC  
SA  
SA  
SA  
SA  
NC  
NC  
SA  
SA  
SA  
SA  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
NC  
NC  
NC  
NC  
NC  
SA  
V
NC  
NC  
V
SA  
NC  
NC  
DD  
DD  
DQc  
DQc  
DQc  
DQc  
DQc  
V
ZQ  
V
DQb DQb  
DQb DQb  
DQb  
NC  
NC  
DQb  
NC  
V
ZQ  
SS  
G
V
DQa  
NC  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
SS  
V
V
SS  
G
V
V
V
V
V
V
V
V
DQa  
F
F
V
DQb  
V
V
DQa  
NC  
V
DDQ  
DDQ  
DDQ  
DDQ  
G
G
DQc  
DQc SBc  
DQc  
NC  
NC  
SBb  
DQb DQb  
DQb DQb  
NC  
DQb SBb  
NC  
NC  
DQa  
H
H
DQc  
V
V
DQb  
NC  
V
DQa  
NC  
SS  
SS  
SS  
J
K
L
J
K
L
V
V
V
V
V
V
V
DDQ  
DD  
DQd  
DQd SBd  
ref  
DD  
ref  
DD DDQ  
V
V
V
V
V
V V  
DD DDQ  
DDQ  
DD  
ref  
SS  
SS  
SS  
SS  
SS  
DD  
ref  
DQd  
V
CK  
V
DQa DQa  
DQa DQa  
NC  
DQb  
V
V
V
V
V
CK  
CK  
SW  
SA  
SA  
V
NC  
DQa  
NC  
SS  
SS  
SS  
DQb  
NC  
DQb  
NC  
SBa  
DQa  
NC  
DQd  
CK  
SW  
SA  
SA  
SBa  
M
N
P
M
N
P
V
DQd  
DQd  
DQd  
V
V
V
V
V
V
DQa  
V
V
V
V
V
V
DDQ  
SS  
SS  
SS  
SS  
SS  
SS  
DDQ  
DDQ  
SS  
SS  
SS  
DDQ  
DQd  
DQa DQa  
DQa DQa  
DQb  
DQa  
NC  
NC  
DQd  
NC  
NC  
NC  
DQb  
DQa  
NC  
ZZ  
R
T
R
T
NC  
NC  
SA  
NC  
V
V
V
SA  
NC  
NC  
NC  
ZZ  
SA  
SA  
V
V
V
SA  
SA  
NC  
DD  
DD  
SS  
DD  
DD  
NC  
TCK  
SS  
SA  
TDO  
SA  
SA  
SA  
SA  
U
U
V
TMS  
TDI  
TCK  
TDO  
V
V
TMS  
TDI  
V
DDQ  
DDQ  
DDQ  
DDQ  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
2
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
MCM69L736C PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in, and control input register clock. Active high.  
Address, data in, and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6K, 7K, 6L, 7L, 6M, 6N, 7N, 6P, 7P  
(b) 6D, 7D, 6E, 7E, 6F, 6G, 7G, 6H, 7H  
(c) 1D, 2D, 1E, 2E, 2F, 1G, 2G, 1H, 2H  
(d) 1K, 2K, 1L, 2L, 2M, 1N, 2N, 1P, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C, 6C,  
4N, 4P, 2R, 6R, 3T, 4T, 5T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 5G, 3G, 3L  
(a), (b), (c), (d)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
TDO  
TMS  
ZQ  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
Output Test Data Out (JTAG).  
2U  
Input  
Input  
Input  
Test Mode Select (JTAG).  
4D  
Programmable Output Impedance: Programming pin.  
Enables sleep mode, active high.  
7T  
4C, 2J, 4J, 6J, 4R, 3R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
3J, 5J  
ZZ  
V
DD  
Supply Core Power Supply.  
V
DDQ  
Supply Output Power Supply: Provides operating power for output buffers.  
Supply Input Reference: Provides reference voltage for input buffers.  
Supply Ground.  
V
ref  
3D, 5D, 3E, 5E, 3F, 5F, 3H, 5H, 3K, 5K,  
3M, 5M, 3N, 5N, 3P, 5P, 5R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C, 4G, 4H,  
1R, 7R, 1T, 2T, 6T, 6U  
NC  
No Connection: There is no connection to the chip.  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
3
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
MCM69L818C PIN DESCRIPTIONS  
PBGA Pin Locations  
Symbol  
CK  
Type  
Input  
Input  
I/O  
Description  
4K  
4L  
Address, data in, and control input register clock. Active high.  
Address, data in, and control input register clock. Active low.  
Synchronous Data I/O.  
CK  
(a) 6D, 7E, 6F, 7G, 6H, 7K, 6L, 6N, 7P  
(b) 1D, 2E, 2G, 1H, 2K, 1L, 2M, 1N, 2P  
DQx  
4F  
G
Input  
Input  
Output Enable: Asynchronous pin, active low.  
2A, 3A, 5A, 6A, 3B, 5B, 2C, 3C, 5C, 6C,  
4N, 4P, 2R, 6R, 2T, 3T, 5T, 6T  
SA  
Synchronous Address Inputs: Registered on the rising clock edge.  
5L, 3G  
(a), (b)  
SBx  
Input  
Synchronous Byte Write Enable: Enables writes to byte x in  
conjunction with the SW input. Has no effect on read cycles, active  
low.  
4E  
SS  
Input  
Input  
Synchronous Chip Enable: Registered on the rising clock edge, active  
low.  
4M  
SW  
Synchronous Write: Registered on the rising clock edge, active low.  
Writes all enabled bytes.  
4U  
TCK  
TDI  
TDO  
TMS  
ZQ  
Input  
Input  
Test Clock (JTAG).  
Test Data In (JTAG).  
3U  
5U  
Output Test Data Out (JTAG).  
2U  
Input  
Input  
Input  
Test Mode Select (JTAG).  
4D  
Programmable Output Impedance: Programming pin.  
Enables sleep mode, active high.  
7T  
4C, 2J, 4J, 6J, 4R, 3R  
1A, 7A, 1F, 7F, 1J, 7J, 1M, 7M, 1U, 7U  
3J, 5J  
ZZ  
V
DD  
Supply Core Power Supply.  
V
DDQ  
Supply Output Power Supply: Provides operating power for output buffers.  
Supply Input Reference: Provides reference voltage for input buffers.  
Supply Ground.  
V
ref  
3D, 5D, 3E, 5E, 3F, 5F, 5G, 3H, 5H, 3K,  
5K, 3L, 3M, 5M, 3N, 5N, 3P, 5P, 5R  
V
SS  
4A, 1B, 2B, 4B, 6B, 7B, 1C, 7C, 2D, 7D,  
1E, 6E, 2F, 1G, 4G, 6G, 2H, 4H, 7H, 1K,  
6K, 2L, 7L, 6M, 2N, 7N, 1P, 6P, 1R, 7R,  
1T, 4T, 6U  
NC  
No Connection: There is no connection to the chip.  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
4
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
ABSOLUTE MAXIMUM RATINGS (Voltages Referenced to V , See Note)  
SS  
This device contains circuitry to protect the  
inputs against damage due to high static volt-  
ages or electric fields; however, it is advised  
that normal precautions be taken to avoid  
application of any voltage higher than maxi-  
mum rated voltages to this high–impedance  
circuit.  
This BiCMOS memory circuit has been  
designed to meet the dc and ac specifications  
shown in the tables, after thermal equilibrium  
has been established.  
Rating  
Core Supply Voltage  
Symbol  
Value  
Unit  
V
V
DD  
–0.5 to 4.6  
Output Supply Voltage  
Voltage On Any Pin  
V
– 0.5 to V  
+ 0.5  
V
DDQ  
DD  
V
in  
– 0.5 to V  
+ 0.5  
V
DD  
Input Current (per I/O)  
Output Current (per I/O)  
Operating Temperature  
Temperature Under Bias  
Storage Temperature  
I
±50  
mA  
mA  
°C  
°C  
°C  
in  
I
±70  
out  
T
0 to 70  
A
This device contains circuitry that will ensure  
the output devices are in High–Z at power up.  
T
–10 to 85  
bias  
T
stg  
–55 to 125  
NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are  
exceeded. Functional operation should be restricted to RECOMMENDED OPER-  
ATING CONDITIONS. Exposure to higher than recommended voltages for  
extended periods of time could affect device reliability.  
PBGA PACKAGE THERMAL CHARACTERISTICS  
Rating  
Symbol  
Max  
53  
38  
22  
14  
5
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
1, 2  
Junction to Ambient (Still Air)  
R
θJA  
R
θJA  
R
θJA  
R
θJB  
R
θJC  
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board (Bottom)  
Junction to Case (Top)  
Single–Layer Board  
Four–Layer Board  
1, 2  
3
4
NOTES:  
1. Junction temperature is a function of on–chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2. Per SEMI G38–87.  
3. Indicates the average thermal resistance between the die and the printed circuit board.  
4. Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC–883  
Method 1012.1).  
CLOCK TRUTH TABLE  
K, CLK  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
L – H  
X
ZZ  
L
SS  
L
SW  
H
L
SBa  
X
SBb  
X
SBc  
X
SBd  
X
DQ (n)  
DQ (n+1)  
Mode  
D
0 – 35  
X
Read Cycle All Bytes  
Write Cycle 1st Byte  
Write Cycle 2nd Byte  
Write Cycle 3rd Byte  
Write Cycle 4th Byte  
Write Cycle All Bytes  
Abort Write Cycle  
Deselect Cycle  
out  
L
L
L
H
H
H
High–Z  
D
0 – 8  
In  
L
L
L
H
L
H
H
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
High–Z  
D
9 – 17  
In  
L
L
L
H
H
L
H
D
18 – 26  
27 – 35  
0 – 35  
In  
In  
L
L
L
H
H
H
L
D
L
L
L
L
L
L
L
D
In  
L
L
L
H
H
H
H
High–Z  
X
L
H
X
X
X
X
X
X
X
H
X
X
X
X
High–Z  
Sleep Mode  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
5
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
DC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
RECOMMENDED OPERATING CONDITIONS (See Notes 1 through 4)  
Max  
Max  
–6.5  
Max  
–7.5  
Max  
–8.5  
–5.5  
Parameter  
Symbol  
Min  
3.135  
1.4  
Max  
3.6  
2.0  
Unit  
V
Notes  
Core Power Supply Voltage  
V
DD  
Output Driver Supply Voltage  
V
V
DDQ  
DD1  
Active Power Supply Current (Device Selected,  
All Outputs Open, Freq = Max, V = Max,  
= Max). Includes Supply Currents  
I
795  
775  
750  
750  
mA  
5
6
DD  
V
DDQ  
for V  
.
DD  
Quiescent Active Power Supply Current  
(Device Selected, All Outputs Open, Freq = 0,  
I
540  
540  
540  
540  
mA  
DD2  
V
= Max, V  
= Max). Includes Supply  
DD  
Currents for V  
DDQ  
.
DD  
Active Standby Power Supply Current  
(Device Deselected, Freq = Max, V  
I
I
400  
390  
400  
390  
400  
390  
400  
390  
mA  
mA  
7
SB1  
= Max,  
DD  
V
= Max)  
DDQ  
CMOS Standby Supply Current (Device  
Deselected, Freq = 0, V = Max,  
6, 7  
SB2  
DD  
= Max, All Inputs Static at  
V
DDQ  
CMOS Levels)  
Sleep Mode Current (ZZ = V , Freq = Max,  
IH  
I
100  
100  
100  
100  
mA  
V
6
8
ZZ  
V
= Max, V  
= Max)  
DD  
DDQ  
Input Reference DC Voltage  
V
(dc)  
0.6  
1.1  
ref  
NOTES:  
1. All data sheet parameters specified to full range of V  
bumps.  
unless otherwise noted. All voltages are referenced to voltage applied to V  
SS  
DD  
2. Supply voltage applied to V  
3. Supply voltage applied to V  
connections.  
DD  
connections.  
DDQ  
4. All power supply currents measured with outputs open or deselected.  
5. All inputs are zero.  
6. CMOS levels for I/Os are V V  
+ 0.2 V or V  
– 0.2 V. CMOS levels for other inputs are V V  
+ 0.2 V or V – 0.2 V.  
DD  
IC SS  
DDQ  
in SS  
7. Device deselected as defined by the Clock Truth Table.  
8. Although considerable latitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak–to–peak ac compo-  
ref  
nent superimposed on V may not exceed 5% of the dc component of V  
ref  
.
ref  
DC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
+ 0.1  
Max  
+ 0.3  
DD  
Unit  
V
Notes  
DC Input Logic High  
DC Input Logic Low  
V
(dc)  
(dc)  
V
ref  
V
IH  
V
–0.5  
V
ref  
– 0.1  
V
IL  
Input Leakage Current  
Clock Input Signal Voltage  
I
±5  
µA  
V
1
lkg(1)  
V
in  
–0.3  
0.1  
V
V
+ 0.3  
+ 0.6  
DD  
Clock Input Differential Voltage (See Figure 3)  
Clock Input Common Mode Voltage Range (See Figure 3)  
NOTES:  
V
DIF  
V
CM  
(dc)  
(dc)  
V
2
3
DD  
0.6  
1.1  
V
1. 0 V V V  
for all pins.  
in DD  
2. Minimum instantaneous differential input voltage required for differential input clock operation.  
3. Maximum rejectable common mode input voltage variation.  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
6
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
DC OUTPUT BUFFER CHARACTERISTICS — PROGRAMMABLE IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(V  
DD  
= 3.3 V, V  
= 1.5 V, T = 70°C, See Notes 1 and 2)  
DDQ  
A
Parameter  
Symbol  
Min  
/2) /  
Max  
/2) /  
Unit  
Notes  
Output Logic Low  
Output Logic High  
I
(V  
DDQ  
(V  
DDQ  
A
3
OL  
[(RQ/5) + 30%]  
[(RQ/5) – 15%]  
I
(V /2) /  
DDQ  
[(RQ/5) + 30%]  
(V /2) /  
[(RQ/5) – 15%]  
A
4
OH  
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
NOTES:  
V
1
V
0.2  
V
V
5
6
OL  
SS  
V
OH  
1
V
– 0.2  
V
DDQ  
DDQ  
1. The impedance controlled mode is expected to be used in point–to–point applications, driving high–impedance inputs.  
2. The ZQ pin is connected through RQ to V for the controlled impedance mode.  
SS  
3. V  
4. V  
5. I  
OL  
6. | I  
= V  
/2.  
OL  
OH  
DDQ  
= V  
/2.  
DDQ  
100 µA.  
| 100 µA.  
OH  
DC OUTPUT BUFFER CHARACTERISTICS — MINIMUM IMPEDANCE PUSH–PULL OUTPUT BUFFER MODE  
(0°C T 70°C, ZQ = V , See Notes 1 and 2)  
A
DD  
Parameter  
Symbol  
Min  
Max  
Unit  
V
Notes  
Output Logic Low  
Output Logic High  
V 2  
OL  
V
SS  
0.4  
3
4
5
6
V
OH  
2
V
V
– 0.4  
V
DDQ  
V
DDQ  
Light Load Output Logic Low  
Light Load Output Logic High  
NOTES:  
V 3  
OL  
V
SS  
0.2  
V
V
OH  
3
– 0.2  
V
DDQ  
V
DDQ  
1. The push–pull output mode is expected to be used in bussed applications and may be series or parallel terminated. Conforms to the JEDEC  
Standard JESD8–6 Class I.  
2. The ZQ pin is connected to V  
to enable the minimum impedance mode.  
DD  
3. I  
4. I  
5. I  
6.  
– 8 mA .  
8 mA.  
100 µA.  
OL  
OH  
OL  
I
100 µA.  
OH  
CAPACITANCE (f = 1.0 MHz, dV = 3.0 V, 0°C T 70°C, Periodically Sampled Rather Than 100% Tested)  
A
Characteristic  
Symbol  
Typ  
4
Max  
Unit  
pF  
Input Capacitance  
C
5
7
7
in  
Input/Output Capacitance  
CK, CK Capacitance  
C
C
7
pF  
I/O  
4
pF  
CK  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
7
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0.25 to 1.25 V  
Clock Input Timing Reference Level . . . . . . Differential Cross–Point  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . 0.75 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . 0.75 V  
ZQ for 50 Impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250 Ω  
R
Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . TBD  
θJA  
READ/WRITE CYCLE TIMING  
69L736C–5.5  
69L818C–5.5  
69L736C–6.5  
69L818C–6.5  
69L736C–7.5  
69L818C–7.5  
69L736C–8.5  
69L818C–8.5  
Parameter  
Cycle Time  
Symbol  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Min  
5.5  
2.2  
2.2  
Max  
Min  
6
Max  
Min  
7
Max  
7.5  
3
Min  
8
Max  
t
KHKH  
Clock High Pulse Width  
Clock Low Pulse Width  
t
2.4  
2.4  
0.7  
1
2.8  
2.8  
0.7  
1
3.2  
3.2  
0.7  
1
KHKL  
KLKH  
KHQV  
t
Clock High to Output Valid  
Clock Low to Output Valid  
Clock Low to Output Hold  
Clock Low to Output Low–Z  
Clock High to Output High–Z  
t
5.5  
2.5  
6.5  
2.5  
8.5  
3.5  
t
KLQV  
KLQX  
t
0.7  
0.7  
0.7  
0.5  
3
1
t
1, 2  
1, 2  
KLQX1  
t
2.5  
1
2.5  
1
1
3.5  
KHQZ  
GLQX  
Output Enable Low to Output  
Low–Z  
t
0.5  
0.5  
0.5  
Output Enable Low to Output  
Valid  
t
2.3  
2.5  
3
3.5  
ns  
GLQV  
Output Enable to Output Hold  
t
0.5  
0.5  
0.5  
3
0.5  
ns  
ns  
GHQX  
Output Enable High to Output  
High–Z  
t
2.3  
2.5  
2.3  
1, 2  
GHQZ  
ZZ High to Sleep Mode  
ZZ Low to Recovery  
t
200  
0.5  
50  
200  
0.5  
50  
200  
0.5  
50  
200  
0.5  
50  
ns  
ns  
ns  
ZZE  
t
ZZR  
Setup Times:  
Hold Times:  
NOTES:  
Address  
t
AVKH  
t
DVKH  
SVKH  
Data In  
Chip Select  
Write Enable  
t
t
WVKH  
Address  
Data In  
t
t
1
1
1
1
ns  
KHAX  
KHDX  
t
KHSX  
Chip Select  
Write Enable  
t
KHWX  
1. This parameter is sampled and not 100% tested.  
2. Measured at ± 200 mV from steady state.  
TIMING LIMITS  
The table of timing values shows either a mini-  
mum or a maximum limit for each parameter. Input  
requirementsare specified from the external system  
point of view. Thus, address setup time is shown as  
a minimum since the system must supply at least  
that much time. On the other hand, responses from  
the memory are specified from the device point of  
view. Thus, the access time is shown as a maximum  
since the device never provides data later than that  
time.  
0.75 V  
V
/2  
DDQ  
V
ref  
50  
DEVICE  
UNDER  
TEST  
50  
250  
ZQ  
Figure 1. AC Test Load  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
8
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
AC INPUT CHARACTERISTICS  
Parameter  
Symbol  
Min  
Max  
Notes  
AC Input Logic High (See Figure 4)  
AC Input Logic Low (See Figures 2 and 4)  
Input Reference Peak–to–Peak AC Voltage  
Clock Input Differential Voltage  
NOTES:  
V
(ac)  
(ac)  
(ac)  
(ac)  
V
ref  
+ 200 mV  
1
2
3
4
IH  
V
V
– 200 mV  
IL  
ref  
V
ref  
5% V (dc)  
ref  
V
dif  
400 mV  
V
DDQ  
+ 600 mV  
1. Inputs may overshoot to V  
DD  
– 1 V for 30% t  
and V  
+ 1.5 V peak overshoot.  
KHKH  
– 1 V for 30% t  
DD  
and V – 1.5 V peak undershoot.  
SS  
2. Inputs may undershoot to V  
SS  
KHKH  
3. Although considerable latitude in the selection of the nominal dc value (i.e., rms value) of V is supported, the peak–to–peak ac compo-  
ref  
nent superimposed on V may not exceed 5% of the dc component of V  
.
ref ref  
4. Minimum instantaneous differential input voltage required for differential input clock operation.  
V
OH  
V
SS  
50%  
100%  
20% t  
KHKH  
Figure 2. Undershoot Voltage  
V
DDQ  
V
TR  
CROSSING POINT  
V
DIF  
V
*
V
CM  
CP  
V
SS  
* V , the Common Mode Input Voltage, equalsV  
CM  
– [(V  
TR  
– V )/2].  
CP  
TR  
Figure 3. Differential Inputs/Common Mode Input Voltage  
V (ac)  
IH  
V
ref  
V (ac)  
IL  
Figure 4. AC Input Conditions  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
9
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
REGISTER LATCH READ–WRITE–READ CYCLES  
t
t
KHKH  
KHKL  
CK  
SA  
t
t
AVKH  
KLKH  
t
KHAX  
A1  
A0  
A2  
A3  
A4  
t
SVKH  
t
KHSX  
SS  
t
WVKH  
t
KHWX  
SW  
SBx  
G
t
KLQX  
Q1  
t
t
KHQV  
KHQZ  
t
t
DVKH  
t
t
KLQV  
t
KHQZ  
KLQX1  
Q4  
t
KHDX  
KLQX1  
DQ  
Q0  
READ  
D2  
WRITE  
Q3  
READ  
READ  
READ  
DESELECT (HIGH–Z)  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
10  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
REGISTER LATCH READ–WRITE–READ CYCLES  
(G Controlled)  
CK  
SA  
A0  
A1  
A2  
A3  
A4  
SS  
SW  
SBx  
G
t
GLQV  
t
t
GHQX  
GLQX  
t
GHQZ  
DQ  
Q0  
READ  
Q1  
READ  
D2  
WRITE  
Q3  
READ DESELECT (HIGH–Z)  
Q4  
READ  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
11  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
MCM69L736CMCM69L818C  
12  
MOTOROLA FAST SRAM  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
occur, but the outputs will be deselected as in a normal write  
cycle.  
FUNCTIONAL OPERATION  
READ AND WRITE OPERATIONS  
LATE WRITE  
All control signals except G are registered on the rising  
edge of the CK clock. These signals must meet the setup  
and hold times shown in the AC Characteristics table. On the  
falling edge of the current cycle, the output latch becomes  
transparent and data is available. The output data is latched  
on the rising edge of the next clock. The output data is avail-  
The write address is sampled on the first rising edge of  
clock, and write data is sampled on the following rising edge.  
The late write feature is implemented with single stage  
write buffering. Write buffering is transparent to the user. A  
comparator monitors the address bus and, when necessary,  
routes buffer contents to the outputs to ensure coherent  
operation. This occurs in all cases, whether there is a byte  
write or a full word is written.  
able at the output at t  
or t  
, whichever is later.  
KLQV  
is the internal latency of the device. During this same  
KHQV  
t
KHQV  
cycle, a new read address can be applied to the address  
pins.  
A write cycle can occur on the next cycle as long as  
PROGRAMMABLE IMPEDANCE OPERATION  
t
and t  
are met. Read cycles may follow write  
KHQZ  
cycles immediately.  
DVKH  
The designer can program the RAMs output buffer imped-  
ance by terminating the ZQ pin to V  
through a precision  
SS  
G, SS, and SW control output drive. Chip deselect via a  
high on SS at the rising edge of the CK clock has its effect on  
the output drivers immediately. SW low deselects the output  
drivers immediately (on the same cycle). Output selecting via  
a low on SS and high on SW at a rising CK clock has its  
resistor (RQ). The value of RQ is five times the output imped-  
ance desired. For example, a 250 resistor will give an out-  
put impedance of 50 .  
Impedance updates occur continuously and the frequency  
of the update is based on the subdivided CK clock. Note that  
if the K clock stops, so does the impedance update.  
The actual change in the impedance occurs in small incre-  
ments and is monotonic. There are no significant distur-  
bances that occur on the output because of this smooth  
update method.  
The impedance update is not related to any particular type  
of cycle because the impedance is updated continuously and  
is based on the CK clock. Updates occur regardless of  
whether the device is performing a read, write, or a deselect  
cycle and does not depend on the state of G.  
At power up or recovery from sleep mode, the output  
impedance defaults to approximately 50 . It will take 4,000  
to 16,000 cycles for the impedance to be completely updated  
if the programmed impedance is much higher or lower than  
50 .  
effect on the output drivers at t  
. Output drive is also  
KLQX  
controlled directly by output enable (G). G is an asynchro-  
nous input. No clock edges are required to enable or disable  
the output with G.  
Output data will be valid at t  
, t , or t  
GLQV KHQV KLQV,  
which is even later. Outputs will begin driving at t  
Outputs will hold previous data until t  
t
.
KLQX1  
, or  
or t  
KLQX  
in the case of a write following a read.  
GHQX  
KHQZ  
WRITE AND BYTE WRITE FUNCTIONS  
Note that in the following discussion the term “byte” refers  
to nine bits of the RAM I/O bus. In all cases, the timing  
parameters described for synchronous write input (SW)  
apply to each of the byte write enable inputs (SBa, SBb,  
etc.).  
Byte write enable inputs have no effect on read cycles.  
This allows the system designer not interested in performing  
byte writes to connect the byte enable inputs to active low  
The output buffers can also be programmed in a minimum  
impedance configuration by connecting ZQ to V  
.
DD  
(V ). Reads of all bytes proceed normally and write cycles,  
SS  
POWER UP AND INITIALIZATION  
activated via a low on SW and the rising edge of CK, write  
the entire RAM I/O width. This way the designer is spared  
having to drive multiple write input buffer loads.  
Byte writes are performed using the byte write enable  
inputs in conjunction with the synchronous write input (SW).  
It is important to note that writing any one byte will inhibit a  
read of all bytes at the current address. The RAM can not  
simultaneously read one byte and write another at the same  
address. A write cycle initiated with none of the byte write  
enable inputs active, is neither a read or a write. No write will  
The following supply voltage application sequence is  
recommended: V , V , then V . Please note, per  
SS DD  
DDQ  
DDQ  
+ 0.5 V, whatever the instantaneous value of V  
the Absolute Maximum Ratings table, V  
is not to exceed  
V
.
DD  
DD  
Once supplies have reached specification levels, a minimum  
dwell of 1.0 ms with CK clock inputs cycling is required  
before beginning normal operations. At power up the output  
impedance will be set at approximately 50 as stated  
above.  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
13  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
SLEEP MODE  
No Read/Write Allowed  
During the period of time just prior to sleep and during  
This device is equipped with an optional sleep or low  
power mode. The sleep mode pin is asynchronous and  
active high. During normal operation, the ZZ pin is pulled low.  
When ZZ is pulled high, the chip will enter sleep mode where  
the device will meet the lowest possible power conditions.  
The Sleep Mode Timing diagram shows the following modes  
of operation: Normal Operation, No Read/Write Allowed, and  
Sleep Mode.  
recovery from sleep, the assertion of any write or read signal  
is not allowed. If a write or read operation occurs during  
these periods, the memory array may be corrupted. Validity  
of data out from the RAM can not be guaranteed immediately  
after ZZ is asserted (prior to being in sleep). During sleep  
mode recovery, the output impedance must be given  
additional time above and beyond t  
desired impedance (see explanation in Output Impedance  
Circuitry paragraph).  
in order to match  
ZZR  
Sleep Mode  
Normal Operation  
The RAM automatically deselects itself. The RAM discon-  
nects its internal clock buffer. The external clock may con-  
All inputs must meet setup and hold times prior to sleep  
and t  
nanoseconds after recovering from sleep. Clock  
tinue to run without impacting the RAMs sleep current (I ).  
ZZR  
ZZ  
(CK) must also meet cycle high and low times during these  
periods. Two cycles prior to sleep, initiation of either a read or  
write operation is not allowed.  
All outputs will remain in a High–Z state while in sleep mode.  
All inputs are allowed to toggle. The RAM will not be  
selected, and perform any reads or writes.  
SERIAL BOUNDARY SCAN TEST ACCESS PORT OPERATION  
OVERVIEW  
1149.1 compliant TAPs. The TAP operates using conven-  
tional JEDEC Standard 8–1B low voltage (3.3 V) TTL/CMOS  
logic level signaling.  
The serial boundary scan test access port (TAP) on this  
RAM is designed to operate in a manner consistent with  
IEEE standard 1149.1–1990 (commonly referred to as  
JTAG), but does not implement all of the functions required  
for IEEE 1149.1 compliance. Certain functions have been  
modified or eliminated because their implementation places  
extra delays in the RAMs critical speed path. Nevertheless,  
the RAM supports the standard TAP controller architecture.  
The TAP controller is the state machine that controls the TAP  
operation and can be expected to function in a manner that  
does not conflict with the operation of devices with IEEE  
DISABLING THE TEST ACCESS PORT  
It is possible to use this device without utilizing the TAP. To  
disable the TAP controller without interfering with normal  
operation of the device, TCK must be tied to V  
to preclude  
SS  
mid–level inputs. TDI and TMS are designed so an undriven  
input will produce a response identical to the application of a  
logic 1, and may be left unconnected. But they may also be  
tied to V  
nected.  
through a 1 k resistor. TDO should be left uncon-  
DD  
TAP DC OPERATING CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Parameter  
Symbol  
Min  
2.0  
–0.3  
Max  
V + 0.3  
DD  
Unit  
V
Notes  
Logic Input Logic High  
Logic Input Logic Low  
Logic Input Leakage Current  
CMOS Output Logic Low  
CMOS Output Logic High  
TTL Output Logic Low  
TTL Output Logic High  
NOTES:  
V
IH  
1
V 1  
IL  
0.8  
±5  
V
I
µA  
V
1
2
3
4
5
lkg  
V 1  
OL  
0.2  
V
1
2
V
– 0.2  
V
OH  
DD  
V
0.4  
V
OL  
V
OH  
2
2.4  
V
1. 0 V ± V ± V  
2. I 1 100 µA @ V  
OL OL  
for all logic input pins.  
= 0.2 V. Sampled, not 100% tested.  
– 0.2 V. Sampled, not 100% tested.  
= 0.4 V.  
in DDQ  
3.  
I
1
100 µA @ V  
OH  
OL  
DDQ  
4. I 2 8 mA @ V  
5.  
OL  
8 mA @ V  
I
2
= 2.4 V.  
OH  
OH  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
14  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
TAP AC OPERATING CONDITIONS AND CHARACTERISTICS  
(0°C T 70°C, Unless Otherwise Noted)  
A
Input Pulse Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 to 3.0 V  
Output Test Load . . . . . 50 Parallel Terminated T–Line with 20 pF  
Input Rise/Fall Time . . . . . . . . . . . . . . . . . . . . . . 1 V/ns (20% to 80%)  
Input Timing Measurement Reference Level . . . . . . . . . . . . . . . 1.5 V  
Output Timing Reference Level . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 V  
Receiver Input Capacitance  
Test Load Termination Supply Voltage (V ) . . . . . . . . . . . . . . . 1.5 V  
T
TAP CONTROLLER TIMING  
Parameter  
Symbol  
Min  
100  
40  
40  
10  
10  
10  
10  
10  
10  
0
Max  
20  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Notes  
Cycle Time  
t
THTH  
Clock High Time  
Clock Low Time  
TMS Setup  
t
THTL  
t
TLTH  
t
MVTH  
THMX  
TMS Hold  
t
TDI Valid to TCK High  
TCK High to TDI Don’t Care  
Capture Setup  
t
DVTH  
THDX  
t
t
1
1
CS  
Capture Hold  
t
CH  
TCK Low to TDO Unknown  
TCK Low to TDO Valid  
NOTE:  
t
t
TLQX  
TLOV  
1. t + t  
CS CH  
defines the minimum pause in RAM I/O pad transitions to ensure accurate pad data capture.  
AC TEST LOAD  
1.5 V  
50  
DEVICE  
UNDER  
TEST  
50  
TAP CONTROLLER TIMING DIAGRAM  
t
THTH  
t
TLTH  
TEST CLOCK  
(TCK)  
t
THTL  
t
THMX  
t
MVTH  
TEST MODE SELECT  
(TMS)  
t
THDX  
t
DVTH  
TEST DATA IN  
(TDI)  
t
t
TLQV  
TLQX  
TEST DATA OUT  
(TDO)  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
15  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
BOUNDARY SCAN REGISTER  
TEST ACCESS PORT PINS  
The boundary scan register is identical in length to the  
number of active input and I/O connections on the RAM (not  
counting the TAP pins). This also includes a number of place  
holder locations (always set to a logic 1) reserved for density  
upgrade address pins. There are a total of 70 bits in the case  
of the x36 device and 51 bits in the case of the x18 device.  
The boundary scan register, under the control of the TAP  
controller, is loaded with the contents of the RAM I/O ring  
when the controller is in capture–DR state and then is placed  
between the TDI and TDO pins when the controller is moved  
to shift–DR state. Several TAP instructions can be used to  
activate the boundary scan register.  
The Bump/Bit Scan Order tables describe which device  
bump connects to each boundary scan register location. The  
first column defines the bit’s position in the boundary scan  
register. The shift register bit nearest TDO (i.e., first to be  
shifted out) is defined as bit 1. The second column is the  
name of the input or I/O at the bump and the third column is  
the bump number.  
TCK — TEST CLOCK (INPUT)  
Clocks all TAP events. All inputs are captured on the rising  
edge of TCK and all outputs propagate from the falling edge  
of TCK.  
TMS — TEST MODE SELECT (INPUT)  
The TMS input is sampled on the rising edge of TCK. This  
is the command input for the TAP controller state machine.  
An undriven TMS input will produce the same result as a  
logic 1 input level.  
TDI — TEST DATA IN (INPUT)  
The TDI input is sampled on the rising edge of TCK. This is  
the input side of the serial registers placed between TDI and  
TDO. The register placed between TDI and TDO is deter-  
mined by the state of the TAP controller state machine and  
the instruction that is currently loaded in the TAP instruction  
register (see Figure 6). An undriven TDI pin will produce the  
same result as a logic 1 input level.  
IDENTIFICATION (ID) REGISTER  
TDO — TEST DATA OUT (OUTPUT)  
The ID register is a 32–bit register that is loaded with a  
device and vendor specific 32–bit code when the controller is  
put in capture–DR state with the IDCODE command loaded  
in the instruction register. The code is loaded from a 32–bit  
on–chip ROM. It describes various attributes of the RAM as  
indicated below. The register is then placed between the TDI  
and TDO pins when the controller is moved into shift–DR  
state. Bit 0 in the register is the LSB and the first to reach  
TDO when shifting begins.  
Output that is active depending on the state of the TAP  
state machine (see Figure 6). Output changes in response to  
the falling edge of TCK. This is the output side of the serial  
registers placed between TDI and TDO.  
TRST — TAP RESET  
This device does not have a TRST pin. TRST is optional in  
IEEE 1149.1. The test–logic–reset state is entered while  
TMS is held high for five rising edges of TCK. Power–on  
reset circuitry is included internally. This type of reset does  
not affect the operation of the system logic. The reset affects  
test logic only.  
ID Register Presence Indicator  
Bit No.  
Value  
0
1
TEST ACCESS PORT REGISTERS  
OVERVIEW  
Motorola JEDEC ID Code (Compressed Format, per  
IEEE Standard 1149.1–1990)  
Bit No. 11  
Value  
10  
9
8
7
6
5
4
3
2
1
The various TAP registers are selected (one at a time) via  
the sequences of 1s and 0s input to the TMS pin as the TCK  
is strobed. Each of the TAP registers are serial shift registers  
that capture serial input data on the rising edge of TCK and  
push serial data out on the subsequent falling edge of TCK.  
When a register is selected, it is “placed” between the TDI  
and TDO pins.  
0
0
0
0
0
0
0
1
1
1
0
Reserved For Future Use  
Bit No.  
Value  
17  
16  
15  
14  
13  
12  
x
x
x
x
x
x
Device Width  
Configuration  
128K x 36  
Bit No.  
Value  
Value  
22  
0
21  
20  
1
19  
0
18  
0
INSTRUCTION REGISTER  
0
0
The instruction register holds the instructions that are  
executed by the TAP controller when it is moved into the run  
test/idle or the various data register states. The instructions  
are 3 bits long. The register can be loaded when it is placed  
between the TDI and TDO pins. The instruction register is  
automatically preloaded with the IDCODE instruction at  
power up or whenever the controller is placed in test–logic–  
reset state.  
256K x 18  
0
0
1
1
Device Depth  
Configuration  
Bit No.  
Value  
Value  
27  
0
26  
0
25  
1
24  
0
23  
1
128K x 36  
256K x 18  
0
0
1
1
0
Revision Number  
BYPASS REGISTER  
Bit No.  
Value  
31  
30  
29  
28  
The bypass register is a single bit register that can be  
placed between TDI and TDO. It allows serial test data to be  
passed through the RAMs TAP to another device in the scan  
chain with as little delay as possible.  
x
x
x
x
Figure 5. ID Register Bit Meanings  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
16  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
MCM69L736C Bump/Bit Scan Order  
MCM69L818C Bump/Bit Scan Order  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
Bit  
No.  
Signal  
Name  
Bump  
ID  
1
M2  
SA  
5R  
4P  
4T  
6R  
5T  
7T  
6P  
7P  
6N  
7N  
6M  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
SA  
NC  
3B  
2B  
3A  
3C  
2C  
2A  
2D  
1D  
2E  
1E  
2F  
2G  
1G  
2H  
1H  
3G  
4D  
4E  
4G  
4H  
4M  
3L  
1
M2  
SA  
5R  
6T  
4P  
6R  
5T  
7T  
7P  
6N  
6L  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
SBb  
ZQ  
3G  
4D  
4E  
4G  
4H  
4M  
2K  
1L  
2
2
3
SA  
SA  
3
SA  
SS  
4
SA  
SA  
4
SA  
NC  
5
SA  
SA  
5
SA  
NC  
6
ZZ  
SA  
6
ZZ  
SW  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
7
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
DQc  
SBc  
ZQ  
7
DQa  
DQa  
DQa  
DQa  
SBa  
CK  
8
8
9
9
2M  
1N  
2P  
3T  
2R  
4N  
2T  
3R  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
7K  
5L  
4L  
7L  
CK  
4K  
4F  
6H  
7G  
6F  
7E  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
3B  
2B  
3A  
3C  
2C  
2A  
1D  
2E  
2G  
1H  
SA  
6K  
7K  
5L  
G
SA  
DQa  
DQa  
DQa  
DQa  
DQa  
SA  
SA  
M1  
4L  
CK  
4K  
4F  
5G  
7H  
6H  
7G  
6G  
6F  
7E  
6E  
7D  
6D  
6A  
6C  
5C  
5A  
6B  
5B  
SS  
G
NC  
SBb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
DQb  
SA  
NC  
SW  
SBd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
DQd  
SA  
SA  
SA  
1K  
2K  
1L  
SA  
NC  
SA  
2L  
SA  
2M  
1N  
2N  
1P  
2P  
3T  
2R  
4N  
3R  
NC  
SA  
SA  
SA  
SA  
SA  
SA  
DQb  
DQb  
DQb  
DQb  
SA  
SA  
NC  
SA  
35  
SA  
M1  
NOTES:  
1. TheNC pads listed in this table are indeed no connects, but are represented in the boundary scan register by a “place holder” bit that is forced  
to logic one. These pads are reserved for use as address inputs on higher density RAMs that follow this pad out and scan order standard.  
2. In scan mode, differential inputs CK and CK are referenced to each other and must be at opposite logic levels for reliable operation.  
3. ZQ, M1, and M2 are not ordinary inputs and may not respond to standard I/O logic levels. ZQ, M1, and M2 must be driven to within 100 mV  
of a V  
or V  
supply rail to ensure consistent results.  
SS  
DD  
4. ZZ must remain at V during boundary scan to ensure consistent results.  
IL  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
17  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
expected. RAM input signals must be stabilized for long  
enough to meet the TAPs input data capture setup plus hold  
time (t plus t ). The RAMs clock inputs need not be  
TAP CONTROLLER INSTRUCTION SET  
OVERVIEW  
CS  
CH  
paused for any other TAP operation except capturing the I/O  
ring contents into the boundary scan register.  
There are two classes of instructions defined in IEEE Stan-  
dard 1149.1–1990, the standard (public) instructions and  
device specific (private) instructions. Some public instruc-  
tions are mandatory for IEEE 1149.1 compliance. Optional  
public instructions must be implemented in prescribed ways.  
Although the TAP controller in this device follows the IEEE  
1149.1 conventions, it is not IEEE 1149.1 compliant because  
some of the mandatory instructions are not fully imple-  
mented. The TAP on this device may be used to monitor all  
input and I/O pads, but can not be used to load address,  
data, or control signals into the RAM or to preload the I/O  
buffers. In other words, the device will not perform IEEE  
1149.1 EXTEST, INTEST, or the preload portion of the  
SAMPLE/PRELOAD command.  
When the TAP controller is placed in capture–IR state, the  
two least significant bits of the instruction register are loaded  
with 01. When the controller is moved to the shift–IR state,  
the instruction register is placed between TDI and TDO. In  
this state, the desired instruction is serially loaded through  
the TDI input (while the previous contents are shifted out at  
TDO). For all instructions, the TAP executes newly loaded  
instructions only when the controller is moved to update–IR  
state. The TAP instruction sets for this device are listed in the  
following tables.  
Moving the controller to shift–DR state then places the  
boundary scan register between the TDI and TDO pins.  
Because the PRELOAD portion of the command is not  
implemented in this device, moving the controller to the  
update–DR state with the SAMPLE/PRELOAD instruction  
loaded in the instruction register has the same effect as the  
pause–DR command. This functionality is not IEEE 1149.1  
compliant.  
EXTEST  
EXTEST is an IEEE 1149.1 mandatory public instruction. It  
is to be executed whenever the instruction register, whatever  
length it may be in the device, is loaded with all logic 0s.  
EXTEST is not implemented in this device. Therefore, this  
device is not IEEE 1149.1 compliant. Nevertheless, this RAM  
TAP does respond to an all 0s instruction, as follows. With  
the EXTEST (000) instruction loaded in the instruction  
register, the RAM responds just as it does in response to the  
SAMPLE/PRELOAD instruction described above, except the  
DQ pins are forced to High–Z any time the instruction is  
loaded.  
IDCODE  
STANDARD (PUBLIC) INSTRUCTIONS  
BYPASS  
The IDCODE instruction causes the ID ROM to be loaded  
into the ID register when the controller is in capture–DR  
mode and places the ID register between the TDI and TDO  
pins in shift–DR mode. The IDCODE instruction is the default  
instruction loaded in at power up and any time the controller  
is placed in the test–logic–reset state.  
The BYPASS instruction is loaded in the instruction regis-  
ter when the bypass register is placed between TDI and  
TDO. This occurs when the TAP controller is moved to the  
shift–DR state. This allows the board level scan path to be  
shortened to facilitate testing of other devices in the scan  
path.  
DEVICE SPECIFIC (PUBLIC) INSTRUCTION  
SAMPLE–Z  
SAMPLE/PRELOAD  
If the SAMPLE–Z instruction is loaded in the instruction  
register, all DQ pins are forced to an inactive drive state  
(High–Z) and the boundary scan register is connected  
between TDI and TDO when the TAP controller is moved to  
the shift–DR state.  
SAMPLE/PRELOAD is an IEEE 1149.1 mandatory public  
instruction. When the SAMPLE/PRELOAD instruction is  
loaded in the instruction register, moving the TAP controller  
into the capture–DR state loads the data in the RAMs input  
and I/O buffers into the boundary scan register. Because the  
RAM clock(s) are independent from the TAP clock (TCK), it is  
possible for the TAP to attempt to capture the I/O ring con-  
tents while the input buffers are in transition (i.e., in a metast-  
able state). Although allowing the TAP to sample metastable  
inputs will not harm the device, repeatable results can not be  
DEVICE SPECIFIC (PRIVATE) INSTRUCTION  
NO OP  
Do not use these instructions; they are reserved for future  
use.  
MCM69L736CMCM69L818C  
MOTOROLA FAST SRAM  
18  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
STANDARD (PUBLIC) INSTRUCTION CODES  
Instruction  
EXTEST  
Code*  
Description  
000  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
DQ pins to High–Z state. NOT IEEE 1149.1 COMPLIANT.  
IDCODE  
001**  
100  
Preloads ID register and places it between TDI and TDO. Does not affect RAM operation.  
SAMPLE/PRELOAD  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Does not  
affect RAM operation. Does not implement IEEE 1149.1 PRELOAD function. NOT IEEE 1149.1  
COMPLIANT.  
BYPASS  
111  
010  
Places bypass register between TDI and TDO. Does not affect RAM operation.  
SAMPLE–Z  
Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Forces all  
DQ pins to High–Z state.  
*Instruction codes expressed in binary; MSB on left, LSB on right.  
**Default instruction automatically loaded at power up and in test–logic–reset state.  
STANDARD (PRIVATE) INSTRUCTION CODES  
Instruction  
NO OP  
Code*  
Description  
011  
Do not use these instructions; they are reserved for future use.  
NO OP  
NO OP  
101  
110  
Do not use these instructions; they are reserved for future use.  
Do not use these instructions; they are reserved for future use.  
* Instruction codes expressed in binary, MSB on left, LSB on right.  
TEST–LOGIC  
RESET  
1
0
1
RUN–TEST/  
IDLE  
SELECT  
DR–SCAN  
SELECT  
IR–SCAN  
1
1
0
0
0
1
1
CAPTURE–DR  
CAPTURE–IR  
0
0
SHIFT–IR  
1
SHIFT–IR  
1
0
0
1
1
EXIT1–DR  
0
EXIT1–IR  
0
PAUSE–DR  
1
PAUSE–IR  
1
0
0
0
0
EXIT2–DR  
1
EXIT2–IR  
1
UPDATE–DR  
UPDATE–IR  
1 0  
1
0
NOTE: The value adjacent to each state transition represents the signal present at TMS at the rising edge of TCK.  
Figure 6. TAP Controller State Diagram  
MCM69L736CMCM69L818C  
19  
MOTOROLA FAST SRAM  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2007  
ORDERING INFORMATION  
(Order by Full Part Number)  
69L736C  
MCM  
69L818C XX  
X
X
Motorola Memory Prefix  
Part Number  
R = Tape and Reel, Blank = Tray  
Speed (5.5 = 5.5 ns, 6.5 = 6.5 ns,  
7.5 = 7.5 ns, 8.5 = 8.5 ns)  
Package (ZP = PBGA)  
Full Part Numbers —MCM69L736CZP5.5  
MCM69L818CZP5.5  
MCM69L736CZP6.5  
MCM69L818CZP6.5  
MCM69L736CZP7.5  
MCM69L818CZP7.5  
MCM69L736CZP8.5  
MCM69L818CZP8.5  
MCM69L736CZP5.5R  
MCM69L818CZP5.5R  
MCM69L736CZP6.5R MCM69L736CZP7.5R MCM69L736CZP8.5R  
MCM69L818CZP6.5R MCM69L818CZP7.5R MCM69L818CZP8.5R  
PACKAGE DIMENSIONS  
ZP PACKAGE  
7 X 17 BUMP PBGA  
CASE 999–02  
0.20  
4X  
119X  
b
B
M
0.3  
A
A
B C  
E
C
M
0.15  
7
6 5 4 3 2 1  
A
B
C
D
E
F
G
H
J
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
2. ALL DIMENSIONS IN MILLIMETERS.  
3. DIMENSION b IS THE MAXIMUM SOLDER BALL  
DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY  
THE SPHERICAL CROWNS OF THE SOLDER  
BALLS.  
D
D1  
D2  
K
L
M
N
P
R
T
16X e  
MILLIMETERS  
U
DIM  
A
A1  
A2  
A3  
D
D1  
D2  
E
E1  
E2  
b
MIN  
–––  
0.50  
1.30  
0.80  
22.00 BSC  
20.32 BSC  
19.40 19.60  
14.00 BSC  
7.62 BSC  
MAX  
2.40  
0.70  
1.70  
1.00  
6X  
e
E2  
TOP VIEW  
A3  
E1  
BOTTOM VIEW  
0.25  
A
A
0.35  
11.90  
0.60  
1.27 BSC  
12.10  
0.90  
0.20  
A
A2  
e
A
SEATING  
PLANE  
SIDE VIEW  
A1  
A
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
P.O. Box 5405, Denver, Colorado, 80217. 1-303-675-2140 or 1-800-441-2447 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1-602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
– US & Canada ONLY 1-800-774-1848 2 Dai King Street, Tai Po Industrial Estate, Tao Po, N.T., Hong Kong.  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
Motorola Fax Back System  
– http://sps.motorola.com/mfax/  
852-26668334  
HOME PAGE: http://motorola.com/sps/  
CUSTOMER FOCUS CENTER: 1-800-521-6274  
MCM69L736C/D  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY