MIMX8MM4CVTLZCA [NXP]

i.MX 8M Mini Applications Processor Datasheet for Consumer Products;
MIMX8MM4CVTLZCA
型号: MIMX8MM4CVTLZCA
厂家: NXP    NXP
描述:

i.MX 8M Mini Applications Processor Datasheet for Consumer Products

文件: 总92页 (文件大小:1676K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMX8MMCEC  
Rev. 1, 07/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMX8MM6DVTLZAA MIMX8MM5DVTLZAA  
MIMX8MM5DVTLZCA MIMX8MM5DVTLZDA  
MIMX8MM4DVTLZAA MIMX8MM3DVTLZAA  
MIMX8MM2DVTLZAA MIMX8MM1DVTLZAA  
i.MX 8M Mini Applications  
Processor Datasheet for  
Consumer Products  
Package Information  
Plastic Package  
FCBGA 14 x 14 mm, 0.5 mm pitch  
Ordering Information  
See Table 2 on page 6  
1 i.MX 8M Mini introduction  
The i.MX 8M Mini applications processor represents  
NXP’s latest video and audio experience combining  
1. i.MX 8M Mini introduction . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6  
2. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
2.1. Recommended connections for unused input/output 12  
3. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 14  
3.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 14  
3.2. Power supplies requirements and restrictions . . . 23  
3.3. PLL electrical characteristics . . . . . . . . . . . . . . . . 26  
3.4. On-chip oscillators . . . . . . . . . . . . . . . . . . . . . . . . 27  
3.6. I/O AC parameters . . . . . . . . . . . . . . . . . . . . . . . 29  
3.5. General purpose I/O (GPIO) DC parameters . . . 28  
3.7. Output buffer impedance parameters . . . . . . . . . 30  
3.8. System modules timing . . . . . . . . . . . . . . . . . . . . 32  
3.9. External peripheral interface parameters . . . . . . 33  
4. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 68  
4.1. Boot mode configuration pins . . . . . . . . . . . . . . . 68  
4.2. Boot device interface allocation . . . . . . . . . . . . . . 69  
5. Package information and contact assignments . . . . . . . 70  
5.1. 14 x 14 mm package information . . . . . . . . . . . . 70  
5.2. DDR pin function list . . . . . . . . . . . . . . . . . . . . . . 87  
6. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91  
state-of-the-art  
media-specific  
features  
with  
high-performance processing while optimized for lowest  
power consumption.  
The i.MX 8M Mini family of processors features  
®
advanced implementation of a quad Arm  
Cor-  
®
tex -A53 core, which operates at speeds of up to  
®
1.8 GHz. A general purpose Cortex -M4 400 MHz  
core processor is for low-power processing. The DRAM  
controller supports 32-bit/16-bit LPDDR4, DDR4, and  
DDR3L memory. A wide range of audio interfaces are  
available, including I2S, AC97, TDM, and S/PDIF.  
There are a number of other interfaces for connecting  
peripherals, such as USB, PCIe, and Ethernet.  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
i.MX 8M Mini introduction  
Table 1. Features  
Subsystem  
Features  
Arm Cortex-A53 MPCore platform  
Quad symmetric Cortex-A53 processors  
• 32 KB L1 Instruction Cache  
• 32 KB L1 Data Cache  
• Media Processing Engine (MPE) with NEON technology supporting the Advanced  
Single Instruction Multiple Data architecture:  
• Floating Point Unit (FPU) with support of the VFPv4-D16 architecture  
Support of 64-bit Armv8-A architecture  
512 KB unified L2 cache  
Arm Cortex-M4 core platform  
Low power microcontroller available for customer application:  
• low power standby mode  
• IoT features including Weave  
• Manage IR or Wireless Remote  
Cortex M4 CPU:  
• 16 KB L1 Instruction Cache  
• 16 KB L1 Data Cache  
• 256 KB tightly coupled memory (TCM)  
Connectivity  
One PCI Express (PCIe)  
• Single lane supporting PCIe Gen2  
• Dual mode operation to function as root complex or endpoint  
• Integrated PHY interface  
• Support L1 low power sub-state  
Two USB 2.0 OTG controllers with integrated PHY interfaces:  
• Spread spectrum clock support  
Three Ultra Secure Digital Host Controller (uSDHC) interfaces:  
• MMC 5.1 compliance with HS400 DDR signaling to support up to 400 MB/sec  
• SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100  
MB/sec  
• Support for SDXC (extended capacity)  
One Gigabit Ethernet controller with support for Energy Efficient Ethernet (EEE),  
Ethernet AVB, and IEEE 1588  
Four Universal Asynchronous Receiver/Transmitter (UART) modules  
Four I2C modules  
Three ECSPI modules  
On-chip memory  
Boot ROM (256 KB)  
On-chip RAM (256 KB + 32 KB)  
GPIO and pin multiplexing  
Power management  
General-purpose input/output (GPIO) modules with interrupt capability  
Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
Temperature sensor with programmable trip points  
Flexible power domain partitioning with internal power switches to support efficient  
power management  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
2
i.MX 8M Mini introduction  
Table 1. Features (continued)  
Features  
Subsystem  
External memory interface  
32/16-bit DRAM interfaces:  
• LPDDR4 (up to 1.5 GHz)  
• DDR4-2400  
• DDR3L-1600  
8-bit NAND-Flash, including support for Raw MLC/SLC devices, BCH ECC up to  
62-bit, and ONFi3.2 compliance (clock rates up to 100 MHz and data rates up to 200  
MB/sec)  
eMMC 5.1 Flash (2 interfaces, uSDHC1 and uSDHC3)  
SPI NOR Flash (3 interfaces)  
FlexSPI with support for XIP (for ME in low-power mode) and parallel read mode of  
two identical FLASH devices  
Multimedia  
Video Processing Unit:  
• 1080p60 VP9 Profile 0, 2 (10-bit)  
• 1080p60 HEVC/H.265 Decoder  
• 1080p60 AVC/H.264 Baseline, Main, High decoder  
• 1080p60 VP8  
• 1080p60 AVC/H.264 Encoder  
• 1080p60 VP8  
• TrustZone support  
Graphic Processing Unit:  
• GCNanoUltra for 3D acceleration  
• GC320 for 2D acceleration  
LCDIF Display Controller:  
• Support up to 2 layers of overlay  
• Support up to 1080p60 display through MIPI DSI  
MIPI Interface:  
• 4-lane MIPI CSI interface  
• 4-lane MIPI DSI interface  
Audio:  
• S/PDIF input and output, including a new Raw Capture input mode  
• Five synchronous audio interface (SAI) modules supporting I2S, AC97, TDM,  
codec/DSP, and DSD interfaces, including one SAI with 8 Tx and 8 Rx lanes, one  
SAI with 4 Tx and 4 Rx lanes, two SAI with 2 Tx and 2 Rx lanes, and one SAI with  
1 Tx and 1Rx lane. Support over 20 channels of audio subject to I/O limitations.  
• 8-Channel Pulse Density Modulation (PDM) input  
System debug  
Arm CoreSight debug and trace architecture  
Trace Port Interface Unit (TPIU) to support off-chip real-time trace  
Embedded Trace FIFO (ETF) with 4 KB internal storage to provide trace buffering  
Unified trace capability for Quad Cortex-A53 and Cortex-M4 CPUs  
Cross Triggering Interface (CTI)  
Support for 5-pin (JTAG) debug interface  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
3
i.MX 8M Mini introduction  
Table 1. Features (continued)  
Features  
Subsystem  
Security  
Resource Domain Controller (RDC) supports four domains and up to eight regions of  
DDR  
Arm TrustZone (TZ) architecture:  
• Support Arm Cortex-A53 MPCore TrustZone  
On-chip RAM (OCRAM) secure region protection using OCRAM controller  
High Assurance Boot (HAB)  
Cryptographic acceleration and assurance (CAAM) module and Assurance Module:  
• Support Widevine and PlayReady content protection  
• Public Key Cryptography (PKHA) with RSA and Elliptic Curve (ECC) algorithms  
• Real-time integrity checker (RTIC)  
• DRM support for RSA, AES, 3DES, DES  
• Side channel attack resistance  
• True random number generation (RNG)  
• Manufacturing protection support  
Secure non-volatile storage (SNVS):  
• Secure real-time clock (RTC)  
Secure JTAG controller (SJC)  
NOTE  
The actual feature set depends on the part numbers as described in Table 2.  
Functions such as display and camera interfaces, and connectivity  
interfaces, may not be enabled for specific part numbers.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
4
NXP Semiconductors  
i.MX 8M Mini introduction  
1.1  
Block diagram  
Figure 1 shows the functional modules in the i.MX 8M Mini applications processor system.  
Security  
Main CPU Platform  
Connectivity and I/O  
1 GB Ethernet  
TrustZone  
Quad Cortex-A53  
(IEEE1588, EEE, and AVB)  
DRM Ciphers  
Secure Clock  
32 KB I-cache  
NEON  
32 KB D-cache  
FPU  
S/PDIF Rx and Tx  
5x I2S/SAI  
eFuse Key Storage  
Random Number  
512 KB L2 Cache  
2x USB 2.0 OTG and PHY  
1x PCIe 2.0 (1-lane)  
Low Power, Security CPU  
32 KB Secure RAM  
Cortex-M4  
4x UART  
4x I2C, 3x ECSPI  
PDM  
System Control  
16 KB D-cache  
256 KB TCM  
16 KB I-cache  
3x Smart DMA  
XTAL  
PLLs  
Multimedia  
3D Graphics: GC NanoUltra  
External Memory  
3x Watchdog  
4x PWM  
6x Timer  
LPDDR4/DDR4/DDR3L  
2D Graphics: GC320  
1080p60 H265, VP9 decoder  
1080p60 H264, VP8 decoder  
2x eMMC 5.1/3x SD 3.0  
NAND CTL (BCH62)  
1x FlexSPI  
1080p60 H.264, VP8 encoder  
Secure JTAG  
4-lane MIPI-CSI Interface  
4-lane MIPI-DSI Interface  
Temperature Sensor  
Figure 1. i.MX 8M Mini system block diagram  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
5
i.MX 8M Mini introduction  
1.2  
Ordering information  
Table 2 shows examples of orderable sample part numbers covered by this data sheet. This table does not  
include all possible orderable part numbers. If your desired part number is not listed in the table, or you  
have questions about available parts, contact your NXP representative.  
Table 2. Orderable part numbers  
Cortex-A53  
CPU speed  
grade  
Qualification Temperat  
Family  
Part number  
Part differentiator  
Package  
tier  
ure Tj (C)  
i.MX 8M Mini MIMX8MM6DVTLZAA 4x A53, M4, GPU, VPU  
Quad  
1.8 GHz  
1.8 GHz  
1.8 GHz  
Consumer  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM5DVTLZAA  
QuadLite  
4x A53, M4, GPU  
Consumer  
Consumer  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM5DVTLZCA  
QuadLite  
4x A53, M4, GPU,  
Immersiv3D with Dolby  
ATMOS support1  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM5DVTLZDA  
QuadLite  
4x A53, M4, GPU,  
Immersiv3D with Dolby  
ATMOS and DTS  
support1  
1.8 GHz  
Consumer  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM4DVTLZAA 2x A53, M4, GPU, VPU  
Dual  
1.8 GHz  
1.8 GHz  
1.8 GHz  
1.8 GHz  
Consumer  
Consumer  
Consumer  
Consumer  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM3DVTLZAA  
DualLite  
2x A53, M4, GPU  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM2DVTLZAA 1x A53, M4, GPU, VPU  
Solo  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
i.MX 8M Mini MIMX8MM1DVTLZAA  
SoloLite  
1x A53, M4, GPU  
0 to +95 14 x 14 mm,  
0.5 mm pitch  
1
Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other  
industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or  
ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.  
Figure 2 describes the part number nomenclature so that the users can identify the characteristics of the  
specific part number.  
Contact an NXP representative for additional details.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
6
NXP Semiconductors  
i.MX 8M Mini introduction  
MIMX8MM@+VT$$%A  
Silicon revision  
Qualification level  
Part number series  
Part differentiator  
Fusing options  
Primary core frequency  
Package type – all ROHS  
Qualification tier Tj  
Qualification Level  
Samples  
Part differentiator  
@
Frequency  
1.8 GHz  
$$  
LZ  
Temperature Tj  
+
D
Consumer: 0 to +95oC  
P
i.MX 8M Mini Quad  
4x A53, M4, GPU, VPU  
6
Industrial: -40 to 105oC  
C
1.6 GHz  
KZ  
Mass Production  
M
i.MX 8M Mini QuadLite  
4x A53, M4, GPU  
5
4
3
2
1
ROHS  
Part number series  
Name  
Fusing  
Package Type  
FCBGA486  
14 x 14 mm, 0.5 mm pitch  
%
A
i.MX 8M Mini Dual  
2x A53, M4, GPU, VPU  
VT  
Default  
IMX8MM  
i.MX 8M Mini  
Immersiv3D enabled w/Dolby Atmos  
C
D
i.MX 8M Mini DualLite  
2x A53, M4, GPU  
Immersiv3D enabled w/Dolby Atmos  
and DTS  
i.MX 8M Mini Solo  
1x A53, M4, GPU, VPU  
Silicon rev  
A
i.MX 8M Mini SoloLite  
1x A53, M4, GPU  
Rev A0  
A
Figure 2. Part number nomenclature—i.MX 8M Mini family of processors  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
7
Modules list  
2 Modules list  
The i.MX 8M Mini family of processors contains a variety of digital and analog modules. Table 3  
describes these modules in alphabetical order.  
Table 3. i.MX 8M Mini modules list  
Block mnemonic  
Block name  
Brief description  
32k Oscillator  
Clock system  
32 KHz oscillator is used as the clock source for RTC and internal  
low speed clock. It can be supplied by external 32.768 KHz oscillator.  
APBH-DMA  
Arm  
NAND Flash and BCH ECC  
DMA Controller  
DMA controller used for GPMI2 operation.  
Arm Platform  
The Arm Core Platform includes a quad Cortex-A53 core and a  
Cortex-M4 core. The Cortex-A53 core includes associated  
sub-blocks, such as the Level 2 Cache Controller, Snoop Control  
Unit (SCU), General Interrupt Controller (GIC), private timers,  
watchdog, and CoreSight debug modules. The Cortex-M4 core is  
used as a customer microcontroller.  
BCH  
Binary-BCH ECC Processor The BCH module provides up to 62-bit ECC encryption/decryption  
for NAND Flash controller (GPMI)  
CAAM  
Cryptographic accelerator and CAAM is a cryptographic accelerator and assurance module. CAAM  
assurance module  
implements several encryption and hashing functions, a run-time  
integrity checker, entropy source generator, and a Pseudo Random  
Number Generator (PRNG). The PRNG is certifiable by the  
Cryptographic Algorithm Validation Program (CAVP) of the National  
Institute of Standards and Technology (NIST).  
CAAM also implements a Secure Memory mechanism. In i.MX 8M  
Mini processors, the secure memory provided is 32 KB.  
CCM  
GPC  
SRC  
Clock Control Module, General These modules are responsible for clock and reset distribution in the  
PowerController, SystemReset system, and also for the system power management.  
Controller  
CSU  
Central Security Unit  
The Central Security Unit (CSU) is responsible for setting  
comprehensive security policy within the i.MX 8M Mini platform.  
CTI-0  
CTI-1  
CTI-2  
CTI-3  
CTI-4  
Cross Trigger Interface  
Cross Trigger Interface (CTI) allows cross-triggering based on inputs  
from masters attached to CTIs. The CTI module is internal to the  
Cortex-A53 core platform.  
DAP  
Debug Access Port  
The DAP provides real-time access for the debugger without halting  
the core to access:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan chains.  
DDRC  
Double Data Rate Controller The DDR Controller has the following features:  
• Supports 32/16-bit LPDDR4 (up to 1.5 GHz), DDR4-2400, and  
DDR3L-1600  
• Supports up to 8 Gbyte DDR memory space  
eCSPI1  
eCSPI2  
eCSPI3  
Configurable SPI  
Full-duplex enhanced Synchronous Serial Interface, with data rate  
up to 52 Mbit/s. Configurable to support Master/Slave modes, only  
one chip select is supported.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
8
Modules list  
Table 3. i.MX 8M Mini modules list (continued)  
Block mnemonic  
Block name  
Brief description  
ENET1  
Ethernet Controller  
The Ethernet Media Access Controller (MAC) is designed to support  
10/100/1000 Mbps Ethernet/IEEE 802.3 networks. An external  
transceiver interface and transceiver function are required to  
complete the interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the ENET chapter  
of the i.MX 8M Mini Applications Processor Reference Manual  
(IMX8MMRM) for details.  
FlexSPI  
FlexSPI  
The FlexSPI module acts as an interface to external serial flash  
devices. This module contains the following features:  
• Flexible sequence engine to support various flash vendor devices  
• Single pad/Dual pad/Quad pad mode of operation  
• Single Data Rate/Double Data Rate mode of operation  
• Parallel Flash mode  
• DMA support  
• Memory mapped read access to connected flash devices  
• Multi master access with priority and flexible and configurable  
buffer for each master  
GIC  
Generic Interrupt Controller  
The GIC handles all interrupts from the various subsystems and is  
ready for virtualization.  
GPIO1  
GPIO2  
GPIO3  
GPIO4  
GPIO5  
General Purpose I/O Modules Used for general purpose input/output to external ICs. Each GPIO  
module supports up to 32 bits of I/O.  
GPMI  
General Purpose Memory  
Interface  
The GPMI module supports up to 8x NAND devices and 62-bit ECC  
encryption/decryption for NAND Flash Controller (GPMI2). GPMI  
supports separate DMA channels for each NAND device.  
GPT1  
GPT2  
GPT3  
GPT4  
GPT5  
GPT6  
General Purpose Timer  
Each GPT is a 32-bit “free-running” or “set-and-forget” mode timer  
with programmable prescaler and compare and capture register. A  
timer counter value can be captured using an external event and can  
be configured to trigger a capture event on either the leading or  
trailing edges of an input pulse. When the timer is configured to  
operate in “set-and-forget” mode, it is capable of providing precise  
interrupts at regular intervals with minimal processor intervention.  
The counter has output compare logic to provide the status and  
interrupt at comparison. This timer can be configured to run either on  
an external clock or on an internal clock.  
GPU3D  
Graphics Processing Unit-3D The GPU3D provides hardware acceleration for 3D graphics  
algorithms with sufficient processor power to run desktop quality  
interactive graphics applications on displays.  
I2C1  
I2C2  
I2C3  
I2C4  
I2C Interface  
I2C provides serial interface for external devices. Data rates of up to  
320 kbps are supported.  
IOMUXC  
IOMUX Control  
This module enables flexible I/O multiplexing. Each IO pad has a  
default as well as several alternate functions. The alternate functions  
are software configurable.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
9
Modules list  
Table 3. i.MX 8M Mini modules list (continued)  
Block mnemonic  
Block name  
Brief description  
MIPI CSI2 (four-lane)  
MIPI Camera Serial Interface This module provides one four-lane MIPI camera serial interfaces,  
which operates up to a maximum bit rate of 1.5 Gbps.  
MIPI DSI (four-lane)  
OCOTP_CTRL  
MIPI Display Serial Interface This module provides a four-lane MIPI display serial interface  
operating up to a maximum bit rate of 1.5 Gbps.  
OTP Controller  
The On-Chip OTP controller (OCOTP_CTRL) provides an interface  
for reading, programming, and/or overriding identification and control  
information stored in on-chip fuse elements. The module supports  
electrically programmable poly fuses (eFUSEs). The OCOTP_CTRL  
also provides a set of volatile software-accessible signals that can be  
used for software control of hardware elements, not requiring non  
volatility. The OCOTP_CTRL provides the primary user-visible  
mechanism for interfacing with on-chip fuse elements. Among the  
uses for the fuses are unique chip identifiers, mask revision  
numbers, cryptographic keys, JTAG secure mode, boot  
characteristics, and various control signals requiring permanent non  
volatility.  
OCRAM  
On-Chip Memory controller  
The On-Chip Memory controller (OCRAM) module is designed as an  
interface between the system’s AXI bus and the internal (on-chip)  
SRAM memory module.  
In i.MX 8M Mini processors, the OCRAM is used for controlling the  
256 KB multimedia RAM through a 64-bit AXI bus.  
PCIe1  
PDM  
PMU  
PCI Express 2.0  
The PCIe IP provides PCI Express Gen 2.0 functionality.  
The PDM supports up to 8-channels (4 lanes).  
Pulse Density Modulation  
Power Management Unit  
Integrated power management unit. Used to provide power to  
various SoC domains.  
PWM1  
PWM2  
PWM3  
PWM4  
Pulse Width Modulation  
The pulse-width modulator (PWM) has a 16-bit counter and is  
optimized to generate sound from stored sample audio images. It  
can also generate tones. It uses 16-bit resolution and a 4x16 data  
FIFO to generate sound.  
SAI1  
SAI2  
SAI3  
SAI5  
SAI6  
Synchronous Audio Interface The SAI module provides a synchronous audio interface (SAI) that  
supports full duplex serial interfaces with frame synchronization,  
such as I2S, AC97, TDM, and codec/DSP interfaces.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
10  
Modules list  
Table 3. i.MX 8M Mini modules list (continued)  
Block name Brief description  
Block mnemonic  
SDMA  
Smart Direct Memory Access The SDMA is a multichannel flexible DMA engine. It helps in  
maximizing system performance by offloading the various cores in  
dynamic data routing. It has the following features:  
• Powered by a 16-bit Instruction-Set micro-RISC engine  
• Multi channel DMA supporting up to 32 time-division multiplexed  
DMA channels  
• 48 events with total flexibility to trigger any combination of  
channels  
• Memory accesses including linear, FIFO, and 2D addressing  
• Shared peripherals between Arm and SDMA  
• Very fast Context-Switching with 2-level priority based preemptive  
multi tasking  
• DMA units with auto-flush and prefetch capability  
• Flexible address management for DMA transfers (increment,  
decrement, and no address changes on source and destination  
address)  
• DMA ports can handle unidirectional and bidirectional flows (Copy  
mode)  
• Up to 8-word buffer for configurable burst transfers for EMIv2.5  
• Support of byte-swapping and CRC calculations  
• Library of Scripts and API is available  
SJC  
Secure JTAG Controller  
The SJC provides JTAG interface (designed to be compatible with  
JTAG TAP standards) to internal logic. The i.MX 8M Mini family of  
processors uses JTAG port for production, testing, and system  
debugging. Additionally, the SJC provides BSR (Boundary Scan  
Register) standard support, designed to be compatible with IEEE  
1149. 1.  
The JTAG port must be accessible during platform initial laboratory  
bring-up, for manufacturing tests and troubleshooting, as well as for  
software debugging by authorized entities. The i.MX 8M Mini SJC  
incorporates three security modes for protecting against  
unauthorized accesses. Modes are selected through eFUSE  
configuration.  
SNVS  
Secure Non-Volatile Storage Secure Non-Volatile Storage, including Secure Real Time Clock,  
Security State Machine, Master Key Control, and Violation/Tamper  
Detection and reporting.  
SPDIF1  
Sony Philips Digital  
Interconnect Format  
A standard audio file transfer format, developed jointly by the Sony  
and Phillips corporations. It supports Transmitter and Receiver  
functionality.  
TEMPSENSOR  
TZASC  
Temperature Sensor  
Temperature sensor  
Trust-Zone Address Space  
Controller  
The TZASC (TZC-380 by Arm) provides security address region  
control functions required for intended application. It is used on the  
path to the DRAM controller.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
11  
Modules list  
Table 3. i.MX 8M Mini modules list (continued)  
Block mnemonic  
Block name  
Brief description  
UART1  
UART2  
UART3  
UART4  
UART Interface  
Each of the UARTv2 modules supports the following serial data  
transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable parity (even,  
odd, or none)  
• Programmable baud rates up to 4 Mbps. This is a higher max  
baud rate relative to the 1.875 MHz, which is stated by the  
TIA/EIA-232-F standard.  
• 32-byte FIFO on Tx and 32 half-word FIFO on Rx supporting  
auto-baud  
uSDHC1  
uSDHC2  
uSDHC3  
SD/MMC and SDXC  
i.MX 8M Mini SoC characteristics:  
Enhanced Multi-Media Card / All the MMC/SD/SDIO controller IPs are based on the uSDHC IP.  
Secure Digital Host Controller They are designed to support:  
• SD/SDIO standard, up to version 3.0.  
• MMC standard, up to version 5.1.  
• 1.8 V and 3.3 V operation, but do not support 1.2 V operation.  
• 1-bit/4-bit SD and SDIO modes, 1-bit/4-bit/8-bit MMC mode.  
Two uSDHC controllers (uSDHC1 and uSDHC3) can support up to  
an 8-bit interface, the other controller (uSDHC2) can only support up  
to a 4-bit interface.  
USB1  
USB2  
2x USB 2.0 controllers and  
PHYs  
Two USB controllers and PHYs that support USB 2.0. Each USB  
instance contains:  
• USB 2.0 core, which can operate in 2.0 mode  
VPU  
Video Processing Unit  
A high performing video processing unit (VPU), which covers many  
SD-level and HD-level video decoders. See the i.MX 8M Mini  
Applications Processor Reference Manual (IMX8MMRM) for a  
complete list of the VPU’s decoding and encoding capabilities.  
WDOG1  
WDOG2  
WDOG3  
Watchdog  
The watchdog (WDOG) timer supports two comparison points  
during each counting period. Each of the comparison points is  
configurable to evoke an interrupt to the Arm core, and a second  
point evokes an external event on the WDOG line.  
XTALOSC  
Crystal Oscillator interface  
The XTALOSC module enables connectivity to an external crystal  
oscillator device. In a typical application use case, it is used for a 24  
MHz oscillator.  
2.1  
Recommended connections for unused input/output  
If a function of the i.MX 8M Mini is not in use, the I/Os and power rails of that function can be terminated  
to reduce overall board power.  
Table 4 shows the recommended connections for unused power supply rails.  
Table 4. Recommended connections for unused power supply rails  
Recommendations  
Function  
Ball Name  
if Unused  
MIP-CSI and  
MIPI-DSI  
VDD_MIPI_0P9, VDD_MIPI_1P2, VDD_MIPI_1P8  
Leave unconnected  
PCIe  
VDD_PCI_0P8, VDD_PCI_1P8  
Leave unconnected  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
12  
Modules list  
Table 4. Recommended connections for unused power supply rails (continued)  
Recommendations  
if Unused  
Function  
Ball Name  
USB1 and USB2 VDD_USB_0P8, VDD_USB_1P8, VDD_USB_3P3  
Leave unconnected  
Leave unconnected  
Leave unconnected  
All digital I/O  
VPU  
GPU  
VDD_VPU  
VDD_GPU  
Digital I/O  
supplies  
NVCC_CLK, NVCC_ECSPI, NVCC_ENET, NVCC_GPIO1, NVCC_I2C,  
NVCC_JTAG, NVCC_NAND, NVCC_SAI1, NVCC_SAI2, NVCC_SAI3, NVCC_SAI5, supplies listed in this  
NVCC_SD1, NVCC_SD2, NVCC_UART, NVCC_SNVS_1P8, PVCC0_1P8,  
PVCC1_1P8, PVCC2_1P8  
table must be  
powered under  
normal conditions  
whether the  
associated I/O pins  
are in use or not, and  
associated I/O pins  
need to enable pull  
in pad control  
register to limit any  
floating gate current.  
Table 5 shows recommended connections for unused signal contacts/interfaces.  
Table 5. Recommended connections for unused signal contacts/interfaces  
Recommendations  
Function  
Ball Name  
if Unused  
MIPI-CSI  
MIPI_CSI_CLK_P, MIPI_CSI_CLK_N, MIPI_CSI_Dx_P, MIPI_CSI_Dx_N  
Tie all signals to  
ground  
MIPI-DSI  
PCIe  
MIPI_VREG_CAP, MIPI_DSI_CLK_P, MIPI_DSI_CLK_N, MIPI_DSI_Dx_P,  
MIPI_DSI_Dx_N  
Leave unconnected  
PCIE_CLK_P, PCIE_CLK_N, PCIE_TXN_P, PCIE_TXN_N, PCIE_RXN_P,  
PCIE_RXN_N, PCIE_RESREF  
Leave unconnected  
USB1  
USB2  
USB1_VBUS, USB1_DN, USB1_DP, USB1_ID, USB1_TXRTUNE  
USB2_VBUS, USB2_DN, USB2_DP, USB2_ID, USB2_TXRTUNE  
Leave unconnected  
Leave unconnected  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
13  
Electrical characteristics  
3 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX 8M Mini family  
of processors.  
3.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 6 for a quick reference  
to the individual tables and sections.  
Table 6. i.MX 8M Mini chip-level conditions  
For these characteristics, …  
Absolute maximum ratings  
Topic appears …  
on page 14  
on page 16  
on page 17  
on page 19  
on page 20  
FCBGA package thermal resistance  
Operating ranges  
External clock sources  
Maximum supply currents  
3.1.1  
Absolute maximum ratings  
CAUTION  
Stresses beyond those listed under Table 7 may affect reliability or cause  
permanent damage to the device. These are stress ratings only. Functional  
operation of the device at these or any other conditions beyond those  
indicated in the operating ranges or parameters tables is not implied.  
Table 7. Absolute maximum ratings  
Parameter description  
Symbol  
Min  
Max  
Unit  
Notes  
Core supply voltages  
VDD_ARM  
VDD_SOC  
-0.3  
1.15  
V
Power supply for GPU  
Power supply for VPU  
DDR PHY supply voltage  
DDR I/O supply voltage  
DRAM PLL supply voltage  
VDD_GPU  
VDD_VPU  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.15  
1.15  
1.15  
1.575  
1.15  
2.15  
2.15  
0.95  
V
V
V
V
V
V
V
V
VDD_DRAM  
NVCC_DRAM  
VDD_DRAM_PLL_0P8  
VDD_DRAM_PLL_1P8  
NVCC_SNVS_1V8  
VDD_SNVS_0V8  
SNVS IO supply voltage  
VDD_SNVS supply voltage  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
14  
Electrical characteristics  
Table 7. Absolute maximum ratings (continued)  
Parameter description  
Symbol  
Min  
Max  
Unit  
Notes  
GPIO supply voltage  
NVCC_JTAG,  
NVCCGPIO1,  
NVCC_ENET,  
NVCC_SD1,  
NVCC_SD2,  
NVCC_NAND,  
NVCC_SA1,  
NVCC_SAI2,  
NVCC_SAI3,  
NVCC_SAI5,  
NVCC_ECSPI,  
NVCC_I2C,  
-0.3  
3.8  
V
NVCC_UART,  
NVCC_CLK  
GPIO pre-driver supply voltage  
PVCC0_1P8,  
PVCC1_1P8,  
PVCC2_1P8  
-0.3  
2.15  
V
Isolated core supply voltage  
Analog core supply voltage  
VDD_ANA_0P8  
VDD_ANA0_1P8  
VDD_ANA1_1P8  
VDD_ARM_PLL_0P8  
VDD_ARM_PLL_1P8  
VDD_MIPI_0P9  
VDD_MIPI_1P2  
VDD_MIPI_1P8  
VDD_PCIE_0P8  
VDD_PCIE_1P8  
VDD_USB_0P8  
VDD_USB_1P8  
VDD_USB_3P3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
1.15  
2.15  
2.15  
0.95  
2.15  
1.05  
1.45  
2.15  
0.95  
2.15  
0.95  
2.15  
3.95  
3.95  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
Arm PLL supply voltage  
MIPI PHY supply voltage  
PCIe PHY supply voltage  
USB PHY supply voltage  
USB_VBUS input detected  
USB1_VBUS,  
USB2_VBUS  
XTAL supply voltage  
VDD_24M_XTAL_1P8  
TSTORAGE  
-0.3  
-40  
2.15  
150  
V
Storage temperature range  
oC  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
15  
Electrical characteristics  
Table 8. Electrostatic discharge and latch up ratings  
Parameter description  
Rating  
Reference  
Comment  
Electrostatic Discharge  
(ESD)  
Human Body Model (HBM)  
1000 V  
250 V  
JS-001-2017  
JS-002-2018  
Charged Device Model (CDM)  
Latch UP (LU)  
Immunity level:  
• Class I@ 25 oC ambient  
temperature  
A
A
JESD78E  
• Class II @ 105 oC ambient  
temperature  
3.1.2  
Thermal resistance  
3.1.2.1  
FCBGA package thermal resistance  
Table 9 displays the FCBGA package thermal resistance data.  
Table 9. Thermal resistance data  
Rating  
Junction to Ambient  
Test conditions  
Symbol  
RJA  
Value  
Unit Notes  
1, 2  
Single layer board (1s)  
30  
oC/W  
Natural Convection  
1, 2, 3  
Junction to Ambient  
Natural Convection  
Four layer board (2s2p)  
RJA  
22.9  
oC/W  
1, 3  
1, 3  
4
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board  
Single layer board (1s)  
RJMA  
RJMA  
RJB  
RJC  
JT  
24  
18.5  
7.8  
4
oC/W  
oC/W  
oC/W  
oC/W  
oC/W  
Four layer board (2s2p)  
5
Junction to Case  
6
Junction to Package Top  
Natural Convection  
0.2  
1
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2
3
4
Per SEMI G38-87 and JESD51-2 with the single layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and printed circuit board per JEDEC JESD51-8. Board temperature is measured on the  
top surface of the board near the package.  
5
6
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written  
as Psi-JT.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
16  
NXP Semiconductors  
Electrical characteristics  
3.1.3  
Operating ranges  
Table 10 provides the operating ranges of the i.MX 8M Mini applications processor. For details on the  
chip's power structure, see the “Power Management Unit (PMU)” chapter of the i.MX 8M Mini  
Applications Processor Reference Manual (IMX8MMRM).  
1
Table 10. Operating ranges  
,
Symbol  
Min  
Typ  
Max2 3  
Unit  
Comment  
VDD_ARM  
0.805  
0.900  
0.950  
0.780  
0.805  
0.805  
0.850  
0.950  
1.000  
0.820  
0.850  
0.850  
0.950  
1.000  
1.050  
0.900  
0.900  
0.900  
V
V
V
V
V
V
Power supply for Quad-A53, 1.2 GHz  
Power supply for Quad-A53, 1.6 GHz  
Power supply for Quad-A53, 1.8 GHz4  
Power supply for SoC logic5  
VDD_SOC without PCIE  
VDD_SOC with PCIE  
VDD_GPU  
Power supply for SoC logic5  
Power supply for 3D GPU,  
nominal mode, 800 MHz  
0.855  
0.900  
1.000  
V
Power supply for 3D GPU,  
overdrive mode, 1000 MHz  
VDD_VPU  
Block  
G2/G1/H1  
0.805  
0.855  
0.900  
0.805  
0.850  
0.900  
0.950  
0.850  
0.900  
0.950  
1.000  
0.900  
V
V
V
V
Power supply for VPU, 450/450/450 MHz  
Power supply for VPU, 600/650/650 MHz  
Power supply for VPU, 700/750/750 MHz  
VDD_DRAM  
Power supply for DDRC, 0.85 V supports  
up to 1.0 GHz (DDR clock)  
0.855  
0.900  
0.900  
0.950  
0.950  
1.000  
V
V
Power supply for DDRC, 0.9 V supports  
up to 1.2 GHz (DDR clock)  
Power supply for DDRC, 0.95 V supports  
up to 1.5 GHz (DDR clock)  
VDD_SNVS_0P8  
NVCC_SNVS_1P8  
0.760  
1.620  
0.800  
1.800  
0.900  
1.980  
V
V
Power supply for SNVS core logic  
Power supply for GPIO pre-driver in  
SNVS bank  
NVCC_JTAG,  
NVCC_GPIO1,  
1.650  
3.000  
1.800  
3.300  
1.950  
3.600  
V
V
Power supply for GPIO when it is in 1.8 V  
mode  
NVCC_ENET, NVCC_SD1,  
NVCC_SD2,NVCC_NAND,  
NVCC_SAI1, NVCC_SAI2,  
NVCC_SAI3, NVCC_SAI5,  
NVCC_ECSPI, NVCC_I2C,  
NVCC_UART,  
Power supply for GPIO when it is in 3.3 V  
mode  
NVCC_CLK  
NVCC_ENET  
2.250  
2.500  
2.750  
V
Power supply for GPIO when it is in 2.5 V  
mode  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
17  
Electrical characteristics  
Symbol  
1
Table 10. Operating ranges (continued)  
,
Min  
Typ  
Max2 3  
Unit  
Comment  
PVCC0_1P8,  
PVCC1_1P8,  
PVCC2_1P8  
1.650  
1.800  
1.950  
V
Power supply for GPIO pre-driver  
VSS  
1.35  
1.2  
V
V
V
V
V
Ground for all core logic and I/O  
NVCC_DRAM  
1.283  
1.14  
1.425  
1.26  
DDR3L  
DDR4  
1.06  
1.1  
1.17  
LPDDR4  
DRAM_VREF  
0.49 x  
0.5 x  
0.51 x  
Internal output, no connection is needed.  
NVCC_DRAM NVCC_DRAM NVCC_DRAM  
VDD_DRAM_PLL_0P8  
0.805  
0.850  
1.000  
V
V
0.8 V logic power supply for DSM. It  
should be connected to the separate  
logic power.  
VDD_ANA0_1P8  
VDD_ANA1_1P8  
1.71  
1.8  
1.89  
Analog 1.8 V core power  
VDD_ANA_0P8  
VDD_ARM_PLL_0P8  
VDD_ARM_PLL_1P8  
VDD_24M_XTAL_1P8  
VDD_DRAM_PLL_1P8  
VDD_MIPI_0P9  
0.780  
0.780  
1.71  
0.820  
0.820  
1.8  
0.900  
0.900  
1.89  
V
V
V
V
V
V
V
V
V
V
V
Isolated 0.8 V core power  
Arm PLL 0.8 V power  
Arm PLL 1.8 V power  
1.71  
1.8  
1.89  
XTAL 1.8 V power  
1.71  
1.8  
1.89  
Analog 1.8 V core power  
0.9 V power for PLL and internal logic  
1.2 V power for analog  
0.855  
1.14  
0.9  
1.000  
1.26  
VDD_MIPI_1P2  
1.2  
VDD_MIPI_1P8  
1.71  
1.8  
1.89  
1.8 V power for PLL and analog  
Digital supply for PCIe PHY  
1.8 V supply for PCIe PHY  
VDD_PCI_0P86,7  
VDD_PCI_1P86  
0.805  
1.71  
0.850  
1.800  
0.820  
0.900  
1.890  
0.900  
VDD_USB_0P8  
0.780  
Digital power supply from PHY’s I/O  
power pads  
VDD_USB_1P8  
VDD_USB_3P3  
1.71  
3.069  
0.800  
1.80  
3.30  
1.40  
1.89  
3.6  
V
V
V
1.8 V analog power supply  
3.3 V analog power supply  
USB_VBUS input detect signal  
USB1_VBUS  
USB2_VBUS  
3.60  
Temperature Sensor  
Accuracy8  
0
3
5
°C Sensing temperature range 10°C to  
105°C  
T
J
+95  
oC See Table 2 for complete list of junction  
temperature capabilities.  
1
The BD71847MWV PMIC does not support 0.950 V for VDD_GPU, VDD_VPU, and VDD_DRAM. For this PMIC, 0.975 V  
typical is acceptable and supported.  
2
Applying the maximum voltage results in maximum power consumption and heat generation. A voltage set point = (Vmin + the  
supply tolerance) is recommended. This results in an optimized power/speed ratio.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
18  
NXP Semiconductors  
Electrical characteristics  
3
4
5
Overdrive maximum voltage includes all the nominal frequencies.  
50% duty cycle for 5 years  
Booting VDD_SOC at 0.800 V 5% is acceptable (Vmin = 0.760 V). Software is expected to program the VDD_SOC voltage  
to the typical value in this table prior to first DRAM memory access.  
6
Ensure the VDD_PCI_1P8 does not have more than 40 mVpp AC power supply noise superimposed on the high power supply  
voltage for the PHY core (1.8 V nominal DC value). Simultaneously, the VDD_PCI_0P8 should have no more than 20 mVpp  
AC power supply noise superimposed on the low power supply voltage for th PHY core (0.9 V nominal DC value for the  
overdrive).  
7
8
It can be min 0.78 V when supplied but not operating PCIe.  
“EN” of TMU Enable Register (TMU_TER) is required to be always enabled for the part to operate correctly.  
3.1.4  
External clock sources  
Each i.MX 8M Mini processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can only  
be connected to an external oscillator. RTC_XTALO should be directly connected to VDD_SNVS_0P8.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either an external oscillator or a crystal using  
internal oscillator amplifier.  
Table 11 shows the interface frequency requirements.  
Table 11. External input clock frequency  
Parameter Description  
RTC_XTALI Oscillator1  
XTALI Oscillator1,3  
Symbol  
Min  
Typ  
Max  
Unit  
fckil  
fxtal  
32.7682  
24  
kHz  
MHz  
1
2
3
The required frequency stability of this clock source is application dependent.  
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal appropriately coupled to the internal oscillator amplifier.  
The typical values shown in Table 11 are required for use with NXP software to ensure precise time  
keeping and USB operation. For RTC_XTALI operation, an external oscillator is necessary. RTC_XTALO  
should be directly connected to VDD_SNVS_0P8 when using an external 32.768 kHz oscillator.  
NOTE  
There is no internal RC oscillator.  
Table 12 shows the external input clock for OSC32K.  
Table 12. External input clock for OSC32K  
Symbol  
Min  
Typ  
Max  
Unit  
Frequency  
f
32.768  
kHz  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
19  
Electrical characteristics  
Table 12. External input clock for OSC32K  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI  
VIH  
VIL  
0.7 x NVCC_SNVS_1P8  
0
NVCC_SNVS_1P8  
V
V
0.3 x NVCC_SNVS_1P8  
3.1.5  
Maximum supply currents  
Power consumption is highly dependent on the application. Estimating the maximum supply currents  
required for power supply design is difficult because the use cases that requires maximum supply current  
is not a realistic use cases.  
To help illustrate the effect of the application on power consumption, data was collected while running  
consumer standard benchmarks that are designed to be compute and graphic intensive. The results  
provided are intended to be used as guidelines for power supply design.  
Table 13. Maximum supply currents  
Power rail  
Max current  
Unit  
VDD_ARM  
VDD_SOC  
2200  
1000  
500  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
VDD_GPU  
VDD_VPU  
1000  
1000  
50  
VDD_DRAM  
VDD_ANA_0P8  
VDD_ANA0_1P8  
VDD_ANA1_1P8  
250  
NVCC_SNVS_1P8  
3
mA  
mA  
VDD_ARM_PLL_1P8  
VDD_24M_XTAL_1P8  
100  
PVCCx_1P8  
NVCC_<XXX>  
NVCC_DRAM  
3
mA  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 x F)—Data change rate. Up to 0.5 of the clock  
rate (F).  
In this equation, Imax is in Amps, C in Farads, V in  
Volts, and F in Hertz.  
DRAM_VFEF  
10  
mA  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
20  
Electrical characteristics  
3.1.6  
Power modes  
The i.MX 8M Mini processors support the following power modes:  
RUN Mode: All external power rails are on, CPU is active and running; other internal modules can  
be on/off based on application.  
IDLE Mode: When there is no thread running and all high-speed devices are not active, the CPU  
can automatically enter this mode. The CPU can be in the power-gated state but with L2 data  
retained, DRAM and the bus clock are reduced. Most of the internal logic is clock gated but still  
remains powered. The M4 core can remain running. Compared with RUN mode, all the external  
power rails from the PMIC remain the same, and most of the modules still remain in their state.  
SUSPEND Mode: The most efficient power saving mode where all the clocks are off and all the  
unnecessary power supplies are off.  
SNVS Mode: This mode is also called RTC mode. Only the power for the SNVS domain remains  
on to keep RTC and SNVS logic alive.  
OFF Mode: All power rails are off.  
Table 14. Chip power in different LP mode  
Mode  
Supply  
Typ.1  
Unit  
SNVS  
VDD_SNVS_0P8 (0.8 V)  
NVCC_SNVS_1P8 (1.8 V)  
Total2  
0.02  
0.09  
0.11  
1.20  
0.50  
0.10  
0.10  
0.60  
2.20  
0.10  
4.00  
0.10  
3.00  
11.90  
mW  
SUSPEND  
NVCC (1.8 V)  
NVCC_DRAM (1.1 V)  
NVCC_ENET (1.8 V)  
NVCC_SNVS_1P8 (1.8 V)  
PVCC (1.8 V)  
mW  
VDD_MIPI_0P9 (0.9 V)  
VDD_SNVS_0P8 (0.8 V)  
VDD_SOC (0.82 V)  
VDD_ARM_0P8 (0.82 V)  
VDDA_PCIE_USB_0P8 (0.82 V)  
Total2  
1
All the power numbers defined in the table are for information only. These numbers are based on typical silicon at 25oC, under  
non-OS environment and use case dependent. For power numbers with OS and real use cases, see Power consumption  
measurement application note for more details.  
2
Sum of the listed supply rails.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
21  
Electrical characteristics  
Table 15 summarizes the external power supply states in all the power modes.  
Table 15. The power supply states  
Power rail  
VDD_ARM  
OFF  
SNVS  
SUSPEND  
OFF  
IDLE  
RUN  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
ON  
ON  
ON  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
VDD_SOC  
ON  
VDD_GPU  
OFF  
OFF  
OFF  
ON  
ON/OFF  
ON/OFF  
ON  
VDD_VPU  
VDD_DRAM  
Misc_1P81  
ON  
Misc_0P81  
ON  
ON  
VDD_MIPI_1P2  
VDD_MIPI_0P9  
VDD_DRAM_PLL_0P8  
VDD_SNVS_0P8  
NVCC_SNVS_1P8  
NVCC_<XXX>  
PVCCx_1P8  
OFF  
OFF  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
OFF  
OFF  
OFF  
ON  
ON  
ON  
ON  
NVCC_DRAM  
ON  
ON  
1
See Table 16  
Table 16. Group name  
VDD_24M_XTAL_1P8  
Misc_1P8  
VDD_ANA0_1P8  
VDD_ANA1_1P8  
VDD_ARM_PLL_1P8  
VDD_DRAM_PLL_1P8  
VDD_MIPI_1P8  
VDD_PCI_1P8  
VDD_USB_1P8  
Misc_0P8  
VDD_ANA_0P8  
VDD_ARM_PLL_0P8  
VDD_PCI_0P8  
VDD_USB_0P8  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
22  
Electrical characteristics  
3.2  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
3.2.1  
Power-up sequence  
Figure 5 illustrates the power-up sequence of i.MX 8M Mini processor.  
NVCC_SNVS_1P8  
T1  
VDD_SNVS_0P8  
T2  
RTC_RESET_B  
T3  
32K RTC_XTALI  
t1  
PMIC_ON_REQ  
T4  
VDD_SOC,VDD_ANA_0P8,VDD_ARM_PLL_0P8  
VDD_PCI_0P8,VDD_USB_0P8  
T5  
VDD_GPU,VDD_VPU,VDD_DRAM,  
VDD_DRAM_PLL_0P8  
T6  
VDD_MIPI_0P9  
T7  
VDD_ARM  
VDD_ANAx_1P8,VDD_DRAM_PLL_1P8,VDD_MIPI_1P8,  
VDD_24M_XTAL_1P8,VDD_USB_1P8,VDD_PCI_1P8  
VDD_ARM_PLL_1P8  
T8  
T9  
PVCCx_1P8, NVCC_xxx (1.8 V)  
T10  
T11  
NVCC_DRAM  
NVCC_xxx (2.5 and 3.3 V),VDD_USB_3P3  
T12  
T13  
VDD_MIPI_1P2  
POR_B  
Figure 3. The power-up sequence  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
23  
Electrical characteristics  
Table 17 represents the timing parameters of the power-up sequence.  
Table 17. Power-up sequence  
Description  
Min  
Typ  
Max  
Unit  
T1  
T2  
Delay from NVCC_SNVS_1P8 to VDD_SNVS_0P8  
Delay from VDD_SNVS_0P8 high or RTC_SET_B de-assert  
Delay from RTC_RESET_B de-assert to stable 32 k existed  
Delay from PMIC_ON_REQ assert to analog 0.8 V on  
Delay from analog 0.8 V on to analog 0.8/0/9 V on  
Delay from analog 0.8/0.9 V on to PHY 0.9 V on  
Delay from PHY 0.9 V on to VDD_ARM on  
0
0
0
0
0
0
0
0
0
0
0
0
2
10  
40  
0.2  
2
100  
ms  
ms  
s  
T3  
T4  
ms  
ms  
s  
T5  
T6  
15  
2
T7  
ms  
s  
T8  
Delay from VDD_ARM on to analog 1.8 V on  
15  
2
T9  
Delay from analog 1.8 V on to digital 1.8 V on  
ms  
ms  
ms  
ms  
ms  
T10  
T11  
T12  
T131  
t1  
Delay from digital 1.8 V on to NVCC_DRAM on  
Delay from NVCC_DRAM on to digital 2.5 V and 3.3 V on  
Delay from digital 2.5 V and 3.3 V on to PHY 1.2 V on  
Delay from PHY 1.2 V on to POR_B de-assert  
2
2
2
20  
Uncertain period before PMIC_ON_REQ assert during VDD_SNVS_0P8 ramp up.  
For ramp up requirement, only VDD_ANA0_1P8 has 5 s minimum requirement, others do not have such  
requirement.  
During power-up, make sure NVCC_xxx - PVCCx_1P8 < 2 V.  
1
The values of T13 depend on T2. RTC_RESET_B must be de-assert before POR_B de-asserts.  
3.2.2  
Power-down sequence  
Figure 5 illustrates the power-down sequence of i.MX 8M Mini processor.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
24  
NXP Semiconductors  
Electrical characteristics  
VDD_MIPI_1P2  
T1  
NVCC_xxx (2.5 and 3.3 V)  
NVCC_DRAM  
T2  
T3  
PVCCx_1P8, NVCC_xxx (1.8V)  
T4  
VDD_ANAx_1P8, VDD_DRAM_PLL_1P8,VDD_MIPI_1P8  
VDD_24M_XTAL_1P8,VDD_USB_1P8,VCC_PCI_1P8  
T5  
VDD_ARM  
T6  
VDD_MIPI_0P9  
T7  
VDD_GPU, VDD_VPU, VDD_DRAM  
VDD_DRAM_PLL_0P8  
T8  
VDD_SOC, VDD_ANA_0P8  
VDD_PCI_0P8, VDD_USB_0P8  
T9  
32K RTC_XTALI  
RTC_RESET_B  
T10  
T11  
T12  
VDD_SNVS_0P8  
NVCC_SNVS_1P8  
Figure 4. The power-down sequence  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
25  
Electrical characteristics  
Table 18 represents the timing parameters of the power-down sequence.  
Table 18. Power-down sequence  
Description  
Min  
Typ  
Max  
Unit  
T1  
T2  
Delay from PHY 1.2 V off to digital 2.5 V and 3.3 V off  
Delay from digital 2.5 V and 3.3 V off to NVCC_DRAM off  
Delay from NVCC_DRAM off to digital 1.8 V off  
Delay from digital 1.8 V off to analog 1.8 V off  
0
0
0
0
0
0
0
0
0
0
0
0
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
T3  
T4  
T5  
Delay from analog 1.8 V off to VDD_ARM off  
T6  
Delay from VDD_ARM off to PHY 0.9 V off  
T7  
Delay from PHY 0.9 V off to analog 0.8/0.9 V off  
Delay from analog 0.8/0.9 V off to analog 0.8 V off  
Delay from analog 0.8 V off to 32k off  
T8  
T9  
T10  
T11  
T12  
Delay from 32k off to RTC_RESET_B assert  
Delay from RTC_RESET_B assert to VDD_SNVS_0P8 off  
Delay from VDD_SNVS_0P8 off to NVCC_SNVS_1P8 off  
During power-down, make sure NVCC_xxx - PVCCx_1P8 < 2 V.  
3.3  
PLL electrical characteristics  
Table 19 shows PLL electrical characteristics.  
Table 19. PLL electrical parameters  
PLL type  
Parameter  
Value  
AUDIO_PLL1  
Clock output range  
Reference clock  
Lock time  
Maximum 650 MHz  
24 MHz  
375 s  
AUDIO_PLL2  
VIDEO_PLL1  
SYS_PLL1  
Clock output range  
Reference clock  
Lock time  
Maximum 650 MHz  
24 MHz  
375 s  
Clock output range  
Reference clock  
Lock time  
Maximum 650 MHz  
24 MHz  
375 s  
Clock output range  
Reference clock  
Lock time  
800 MHz  
24 MHz  
25 s  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
26  
Electrical characteristics  
Value  
Table 19. PLL electrical parameters (continued)  
Parameter  
PLL type  
SYS_PLL2  
Clock output range  
Reference clock  
Lock time  
1 GHz  
24 MHz  
25 s  
SYS_PLL3  
ARM_PLL  
DRAM_PLL  
GPU_PLL  
VPU_PLL  
Clock output range  
Reference clock  
Lock time  
600 MHz ~ 1 GHz  
24 MHz  
25 s  
Clock output range  
Reference clock  
Lock time  
800 MHz ~1.6 GHz  
24 MHz  
25 s  
Clock output range  
Reference clock  
Lock time  
Maximum 750 MHz  
24 MHz  
375 s  
Clock output range  
Reference clock  
Lock time  
Maximum 1 GHz  
24 MHz  
25 s  
Clock output range  
Reference clock  
Lock time  
400 MHz ~ 800 MHz  
24 MHz  
25 s  
3.4  
On-chip oscillators  
OSC24M  
3.4.1  
A 24 MHz oscillator is used as the primary clock source for the PLLs to generate the clock for the CPU,  
BUS, and high-speed interfaces. For fractional PLLs, the 24 MHz clock from the oscillator can be used as  
the PLL reference clock directly.  
1
Table 20. Crystal specifications  
Parameter Description  
Min  
Typ  
Max  
Unit  
Frequency  
Cload  
24  
12  
80  
MHz  
pF  
Drive level  
ESR  
100  
W  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
27  
Electrical characteristics  
1
Actual working drive level is depend on real design. Please contact crystal vendor for selecting drive level of crystal.  
3.4.2  
OSC32K  
An external 32.768 kHz oscillator is necessary.  
3.5  
General purpose I/O (GPIO) DC parameters  
Table 21 shows DC parameters for GPIO pads. The parameters in Table 21 are guaranteed per the  
operating ranges in Table 10, unless otherwise noted.  
Table 21. GPIO DC parameters  
Parameter  
Symbol  
Test Conditions  
Min  
Typ  
Max  
Unit  
High-level output voltage VOH (1.8 V)  
VOH (3.3 V)  
IOH = 1.6/3.2/6.4/9.6 mA (1.8 V)  
IOH = 2/4/8/12 mA (3.3 V)  
0.8 x VDD  
22  
23  
24  
33  
VDD  
V
V
0.8 x VDD  
VDD  
Low-level output voltage  
VOL (1.8 V)  
IOL = 1.6/3.2/6.4/9.6 mA (1.8 V)  
IOL = 2/4/8/12 mA (3.3 V)  
0
0
0.2 x VDD  
V
VOL (3.3 V)  
0.2 x VDD  
V
High-level input voltage  
Low-level input voltage  
Pull-up resistor  
VIH  
VIL  
0.7 x VDD  
-0.3  
12  
VDD + 0.3  
V
0.3 x VDD  
V
VDD = 1.65 - 1.95V  
Temp = 0 - 95 oC  
49  
48  
69  
69  
4
K  
K  
K  
K  
K  
K  
A  
A  
Pull-down resistor  
Pull-up resistor  
13  
VDD = 2.25 - 2.75V  
Temp = 0 - 95 oC  
13  
Pull-down resistor  
Pull-up resistor1  
9.1  
VDD = 3.0 - 3.6V  
Temp = 0 - 95 oC  
Pull-down resistor1  
High level input current  
Low level input current  
IIH  
IIL  
-4  
-0.7  
0.7  
1
Does not support internal pull-up or pull-down for 3.3 V IOs.  
Table 22. Additional leakage parameters  
Parameter  
Symbol  
Pins  
Min  
Max  
Unit  
PCIE_RXN, USBx_Dx  
PCIE_CLK  
-30  
-8  
30  
8
High level input current  
IIH  
A  
MIPI_CSI  
-4  
4
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
28  
Electrical characteristics  
Table 22. Additional leakage parameters (continued)  
Parameter  
Symbol  
Pins  
Min  
Max  
Unit  
JTAG_TRST_B, USBx_ID  
PCIE_CLK, USBx_Dx  
PCIE_RXN  
-200  
-6  
200  
6
Low level input current  
IIL  
A  
-2.5  
-0.7  
2.5  
0.7  
MIPI_CSI, ONOFF, POR_B  
3.5.1  
DDR I/O DC electrical characteristics  
The DDR I/O pads support LPDDR 4, DDR4, and DDR3L operational modes. The DDR Memory  
Controller (DDRMC) is designed to be compatible with JEDEC-compliant SDRAMs.  
DDRMC operation is contingent upon the board’s DDR design adherence to the DDR design and layout  
requirements stated in the hardware development guide for the i.MX 8M Mini applications processor.  
3.6  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
The GPIO load circuit and output transition time waveforms are shown in Figure 5 and Figure 6.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 5. Load circuit for output  
OVDD  
0 V  
80%  
20%  
80%  
20%  
tr  
Output (at pad)  
tf  
Figure 6. Output transition time waveform  
3.6.1  
General purpose I/O AC parameters  
This section presents the I/O AC parameters for GPIO in different modes.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
29  
Electrical characteristics  
Table 23. Maximum frequency of operation for input  
Maximum frequency (MHz)  
VDD = 1.8 V, CL = 50 pF  
VDD = 3.3 V, CL = 50 pF  
450  
440  
Table 24. Maximum frequency of operation for output  
Maximum Frequency (MHz)  
Parameter  
VDD = 1.8 V  
VDD = 3.3 V  
dse[2:0]  
sre[1:0]  
Driver type  
CL = 10 pF  
CL = 20 pF  
CL = 10 pF  
CL = 20 pF  
00X  
00X  
10X  
10X  
01X  
01X  
11X  
11X  
0X  
1X  
0X  
1X  
0X  
1X  
0X  
1X  
1x Slow Slew  
1x Fast Slew  
2x Slow Slew  
2x Fast Slew  
4x Slow Slew  
4x Fast Slew  
6x Slow Slew  
6x Fast Slew  
150  
150  
160  
160  
200  
200  
250  
250  
80  
80  
120  
120  
150  
150  
180  
180  
200  
200  
65  
65  
90  
80  
90  
80  
100  
100  
130  
130  
90  
90  
100  
100  
3.7  
Output buffer impedance parameters  
This section defines the I/O impedance parameters of the i.MX 8M Mini family of processors for the  
following I/O types:  
NOTE  
DDR I/O output driver impedance is measured with “long” transmission  
line of impedance Ztl attached to I/O pad and incident wave launched into  
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines  
specific voltage of incident wave relative to OVDD. Output driver  
impedance is calculated from this voltage divider (see Figure 7).  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
30  
NXP Semiconductors  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl W, L = 20 inches  
ipp_d
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
VDD  
(do)  
Vin  
t,(ns)  
0
U,(V)  
Vout (pad)  
OVDD  
Vref2  
Vref1  
Vref  
t,(ns)  
0
Vovdd - Vref1  
Vref1  
Rpu =  
Rpd =  
x Ztl  
x Ztl  
Vref2  
Vovdd - Vref2  
Figure 7. Impedance matching load for measurement  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
31  
Electrical characteristics  
3.7.1  
DDR I/O output buffer impedance  
Table 25 shows DDR I/O output buffer impedance of i.MX 8M Mini family of processors.  
Table 25. DDR I/O output buffer impedance  
Typical  
Test Conditions DSE  
Parameter  
Symbol  
Unit  
(Drive Strength)  
NVCC_DRAM=1.35 NVCC_DRAM = 1.2 NVCC_DRAM = 1.1  
V (DDR3L)  
V (DDR4)  
V (LPDDR4)  
Output Driver  
Impedance  
Rdrv  
000000  
Hi-Z  
240  
120  
80  
Hi-Z  
240  
120  
80  
Hi-Z  
240  
120  
80  
000010  
001000  
001010  
011000  
011010  
111000  
111010  
60  
60  
60  
48  
48  
48  
40  
40  
40  
34  
34  
34  
Note:  
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.  
2. Calibration is done against 240 external reference resistor.  
3. Output driver impedance deviation (calibration accuracy) is 5% (max/min impedance) across PVTs.  
3.8  
System modules timing  
This section contains the timing and electrical parameters for the modules in each i.MX 8M Mini  
processor.  
3.8.1  
Reset timings parameters  
Figure 8 shows the reset timing and Table 26 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 8. Reset timing diagram  
Table 26. Reset timing parameters  
ID  
Parameter  
Min Max  
Unit  
RTC_XTALI cycle  
CC1  
Duration of POR_B to be qualified as valid.  
1
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
32  
Electrical characteristics  
3.8.2  
WDOG Reset timing parameters  
Figure 9 shows the WDOG reset timing and Table 27 lists the timing parameters.  
WDOGx_B  
(Output)  
CC3  
Figure 9. WDOGx_B timing diagram  
Table 27. WDOGx_B timing parameters  
ID  
Parameter  
Duration of WDOGx_B Assertion  
Min  
Max  
Unit  
CC3  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOGx_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the  
IOMUXC chapter of the i.MX 8M Mini Applications Processor Reference  
Manual (IMX8MMRM) for detailed information.  
3.9  
External peripheral interface parameters  
The following subsections provide information on external peripheral interfaces.  
3.9.1  
ECSPI timing parameters  
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing  
parameters for master and slave modes.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
33  
Electrical characteristics  
3.9.1.1  
ECSPI Master mode timing  
Figure 10 depicts the timing of ECSPI in master mode. Table 28 lists the ECSPI master mode timing  
characteristics.  
ECSPIx_RDY_B  
ECSPIx_SS_B  
CS10  
CS5  
CS2  
CS6  
CS3  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MOSI  
ECSPIx_MISO  
CS2  
CS3  
CS7  
CS9  
CS8  
Figure 10. ECSPI Master mode timing diagram  
Table 28. ECSPI Master mode timing parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPIx_SCLK Cycle Time–Write  
tclk  
43  
15  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
21.5  
7
CS3 ECSPIx_SCLK Rise or Fall1  
tRISE/FALL  
tCSLH  
tSCS  
1
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CS4 ECSPIx_SS_B pulse width  
Half ECSPIx_SCLK period  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Propagation Delay (CLOAD = 20 pF)  
CS8 ECSPIx_MISO Setup Time  
Half ECSPIx_SCLK period - 4  
tHCS  
Half ECSPIx_SCLK period - 2  
tPDmosi  
tSmiso  
tHmiso  
tSDRY  
-1  
18  
0
CS9 ECSPIx_MISO Hold Time  
CS10 RDY to ECSPIx_SS_B Time2  
5
1
2
See specific I/O AC parameters Section 3.6, I/O AC parameters.”  
SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
34  
NXP Semiconductors  
Electrical characteristics  
3.9.1.2  
ECSPI Slave mode timing  
Figure 11 depicts the timing of ECSPI in Slave mode. Table 29 lists the ECSPI Slave mode timing  
characteristics.  
ECSPIx_SS_B  
CS5  
CS6  
CS2  
CS1  
CS4  
ECSPIx_SCLK  
ECSPIx_MISO  
CS2  
CS9  
CS8  
CS7  
ECSPIx_MOSI  
Figure 11. ECSPI Slave mode timing diagram  
Table 29. ECSPI Slave mode timing parameters  
ID  
Parameter  
Symbol  
Min  
Max Unit  
CS1 ECSPIx_SCLK Cycle Time–Read  
ECSPI_SCLK Cycle Time–Write  
tclk  
15  
43  
ns  
ns  
CS2 ECSPIx_SCLK High or Low Time–Read  
ECSPIx_SCLK High or Low Time–Write  
tSW  
7
21.5  
CS4 ECSPIx_SS_B pulse width  
tCSLH  
tSCS  
Half ECSPIx_SCLK period  
19  
ns  
ns  
ns  
ns  
ns  
ns  
CS5 ECSPIx_SS_B Lead Time (CS setup time)  
CS6 ECSPIx_SS_B Lag Time (CS hold time)  
CS7 ECSPIx_MOSI Setup Time  
5
5
4
4
4
tHCS  
tSmosi  
tHmosi  
tPDmiso  
CS8 ECSPIx_MOSI Hold Time  
CS9 ECSPIx_MISO Propagation Delay (CLOAD = 20 pF)  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
35  
Electrical characteristics  
3.9.2  
Ultra-high-speed SD/SDIO/MMC host interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC 5.1 (single data  
rate) timing, eMMC 5.1/SD3.0 (dual data rate) AC timing, and SDR50/SDR104 AC timing.  
3.9.2.1  
SD3.0/eMMC 5.1 (single data rate) AC timing  
Figure 12 depicts the timing of SD3.0/eMMC5.1 (SDR), and Table 30 lists the SD3.0/eMMC5.1 (SDR)  
timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 12. SD3.0/eMMC5.1 (SDR) timing  
Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1 Clock Frequency (Low Speed)  
fPP  
0
0
400  
25/50  
20/52  
400  
kHz  
MHz  
MHz  
kHz  
ns  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
fPP  
3
fPP  
0
fOD  
tWL  
100  
7
SD2 Clock Low Time  
SD3 Clock High Time  
SD4 Clock Rise Time  
SD5 Clock Fall Time  
tWH  
tTLH  
tTHL  
7
ns  
3
ns  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD6 uSDHC Output Delay tOD 6.6  
3.6  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
36  
Electrical characteristics  
Table 30. SD3.0/eMMC5.1 (SDR) interface timing specification (continued)  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD7 uSDHC Input Setup Time  
SD8 uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In Low-Speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In Normal (Full) -Speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In High-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In Normal (Full) -Speed mode for MMC card, clock frequency can be any value between 020 MHz. In High-speed mode,  
clock frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
3.9.2.2  
eMMC 5.1/SD3.0 (dual data rate) AC timing  
Figure 13 depicts the timing of eMMC 5.1/SD3.0 (DDR). Table 31 lists the eMMC 5.1/SD3.0 (DDR)  
timing characteristics. Be aware that only DATA is sampled on both edges of the clock (not applicable to  
CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 13. eMMC5.1/SD3.0 (DDR) timing  
Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1  
SD1  
Clock Frequency (eMMC5.1 DDR)  
Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.7  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
6.9  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
37  
Electrical characteristics  
Table 31. eMMC5.1/SD3.0 (DDR) interface timing specification (continued)  
ID  
Parameter  
uSDHC Input Setup Time  
Symbols  
Min  
Max  
Unit  
SD3  
SD4  
tISU  
tIH  
2.4  
1.3  
ns  
ns  
uSDHC Input Hold Time  
3.9.2.3  
HS400 DDR AC timing  
Figure 14 depicts the timing of HS400 mode, and Table 32 lists the HS400 timing characteristics. Be  
aware that only data is sampled on both edges of the clock (not applicable to CMD). The CMD  
input/output timing for HS400 mode is the same as CMD input/output timing for SDR104 mode. Check  
SD5, SD6, and SD7 parameters in Table 34 SDR50/SDR104 Interface Timing Specification for CMD  
input/output timing for HS400 mode.  
SD1  
SD3  
SD2  
SCK  
SD4  
SD5  
SD5  
SD4  
DAT0  
Output from  
uSDHC to eMMC  
DAT1  
...  
DAT7  
Strobe  
DAT0  
SD6  
SD7  
Input from  
eMMC to uSDHC  
DAT1  
...  
DAT7  
Figure 14. HS400 timing  
Table 32. HS400 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock frequency  
Clock low time  
Clock high time  
fPP  
tCL  
tCH  
0
200  
MHz  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
ns  
uSDHC Output/Card Inputs DAT (Reference to SCK)  
Output skew from data of edge of SCK  
Output skew from edge of SCk to data  
tOSkew1  
tOSkew2  
0.45  
0.45  
ns  
ns  
SD4  
SD5  
uSDHC Input/Card Outputs DAT (Reference to Strobe)  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
38  
Electrical characteristics  
Table 32. HS400 interface timing specification (continued)  
ID  
Parameter  
uSDHC input skew  
Symbols  
Min  
Max  
Unit  
tRQ  
0.45  
ns  
SD6  
SD7  
uSDHC hold skew  
tRQH  
0.45  
ns  
3.9.2.4  
HS200 Mode AC timing  
Figure 15 depicts the timing of HS200 mode, and Table 33 lists the HS200 timing characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 15. HS200 timing  
iti  
Table 33. HS200 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.3 x tCLK 0.7 x tCLK  
0.3 x tCLK 0.7 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
SD5 uSDHC Output Delay  
tOD  
-1.6  
1
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
SD8 uSDHC Output Data Window  
tODW  
0.5 x tCLK  
1
HS200 is for 8 bits while SDR104 is for 4 bits.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
39  
Electrical characteristics  
3.9.2.5  
SDR50/SDR104 AC timing  
Figure 16 depicts the timing of SDR50/SDR104, and Table 34 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD6  
SD7  
SD8  
Figure 16. SDR50/SDR104 timing  
Table 34. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1 Clock Frequency Period  
SD2 Clock Low Time  
tCLK  
tCL  
5
ns  
ns  
ns  
0.46 x tCLK 0.54 x tCLK  
0.46 x tCLK 0.54 x tCLK  
SD3 Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
SD4 uSDHC Output Delay tOD -3  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
SD5 uSDHC Output Delay tOD -1.6  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
1
1
ns  
ns  
SD6 uSDHC Input Setup Time  
SD7 uSDHC Input Hold Time  
tISU  
tIH  
2.4  
1.4  
ns  
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
SD8 uSDHC Output Data Window  
tODW  
0.5 x tCLK  
ns  
1
Data window in SDR100 mode is variable.  
3.9.2.6  
Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.5/5.0/5.1 can be 1.8 V or 3.3 V depending on the working mode. The DC  
parameters for the NVCC_SD1, NVCC_SD2 and NVCC_SD3 supplies are identical to those shown in  
Table 21, "GPIO DC parameters," on page 28.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
40  
NXP Semiconductors  
Electrical characteristics  
3.9.3  
Ethernet controller (ENET) AC electrical specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
Table 35. ENET signal mapping  
Pad name  
Description  
Mode  
Alt mode  
Direction  
Comments  
ENET_MDC  
ENET_MDIO  
ENET_TD3  
ENET_TD2  
enet1.MDC  
enet1.MDIO  
RGMII.TD3  
RMII/RGMII  
RMII/RGMII  
RGMII  
ALT0  
ALT0  
ALT0  
ALT0  
O
I/O  
O
Only used for RGMII  
RMII.CLK;  
RGMII.TD2  
RMII/RGMII  
I/O  
Used as RMII clock and RGMII data, there  
are two RGMII clock schemes.  
• MAC generate output 50M reference clock  
for PHY, and MAC also use this 50M clock.  
• MAC use external 50M clock.  
ENET_TD1  
ENET_TD0  
RMII and  
RGMII.TD1  
RMII/RGMII  
RMII/RGMII  
RMII/RGMII  
RGMII  
ALT0  
ALT0  
O
O
O
O
RMII and  
RGMII.TD0  
ENET_TX_CTL  
ENET_TXC  
RMII.TX_EN;  
RGMII.TX_CTL  
ALT0  
RMII.TX_ERR;  
RGMII. TX_CLK  
ALT0/ALT1  
For RMII—ENET_TXC works as  
RMII.TX_ERR need to work in the ALT1  
mode.  
For RGMII—ENET_TXC works as  
RGMII.TX_CLK need to work in the ALT0  
mode.  
ENET_RX_CTL  
ENET_RXC  
RMII.RX_EN  
(CRS_DV);  
RGMII.RC_CTL  
RMII/RGMII  
RGMII  
ALT0  
I
I
RMII.RX_ERR;  
RGMII.RX_CLK  
ALT0/ALT1  
For RMII—ENET_RXC works as  
RMII.RX_ERR need to work in the ALT1  
mode.  
For RGMII—ENET_RXC works as  
RGMII.RX_CLK need to work in the ALT0  
mode.  
ENET_RD0  
ENET_RD1  
RMII and  
RGMII.RD0  
RMII/RGMII  
RMII/RGMII  
ALT0  
ALT0  
I
I
RMII and  
RGMII.RD1  
ENET_RD2  
ENET_RD3  
GPIO1_IO06  
GPIO1_IO07  
I2C1_SCL  
RGMII.RD2  
RGMII.RD3  
enet1.MDC  
enet1.MDIO  
enet1.MDC  
RGMII  
ALT0  
ALT0  
ALT1  
ALT1  
ALT1  
I
I
RGMII  
RMII/RGMII  
RMII/RGMII  
RMII/RGMII  
O
I/O  
O
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
41  
Electrical characteristics  
Table 35. ENET signal mapping (continued)  
Pad name  
Description  
Mode  
Alt mode  
Direction  
Comments  
I2C1_SDA  
I2C2_SCL  
enet1.MDIO  
RMII/RGMII  
RMII/RGMII  
ALT1  
ALT1  
I/O  
O
enet1.1588_EV  
ENT1_IN  
I2C2_SDA  
GPIO1_IO00  
GPIO1_IO08  
enet1.1588_EV  
ENT1_OUT  
RMII/RGMII  
RGMII  
ALT1  
ALT1  
ALT1  
I/O  
O
I
ENET_PHY_RE  
F_CLK_ROOT  
Reference clock for PHY.  
enet1.1588_EV  
ENT0_IN  
RMII/RGMII  
Capture/compare block input/output event  
bus signal. When configured for capture and  
a rising edge is detected, the current timer  
value is latched and transferred into the  
corresponding ENET_TCCRn register for  
inspection by software. When configured for  
compare, the corresponding signal  
1588_EVENT is asserted for one cycle when  
the timer reaches the compare value  
programmed in register ENET_TCCRn. An  
interrupt or DMA request can be triggered if  
the corresponding bit in ENET_TCSRn[TIE]  
or ENET_TSCRn[TDRE] is set.  
GPIO1_IO09  
enet1.1588_EV  
ENT0_OUT  
RMII/RGMII  
ALT1  
O
3.9.3.1  
RMII mode timing  
Figure 17 shows RMII mode timings. Table 36 describes the timing parameters (M16–M21) shown in the  
figure.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
42  
NXP Semiconductors  
Electrical characteristics  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 17. RMII mode signal timing diagram  
Table 36. RMII signal timing  
ID  
Characteristic  
Min.  
Max.  
Unit  
M16  
M17  
M18  
M19  
M20  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
65%  
65%  
ENET_CLK period  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
15  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to  
ENET_CLK setup  
4
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold  
2
ns  
3.9.3.2  
RGMII signal switching specifications  
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver  
devices.  
1
Table 37. RGMII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
2
Tcyc  
Clock cycle duration  
7.2  
-500  
1
8.8  
500  
2.6  
55  
ns  
ps  
ns  
%
3
TskewT  
Data to clock output skew at transmitter  
Data to clock input skew at receiver  
Duty cycle for Gigabit  
3
TskewR  
Duty_G4  
Duty_T4  
Tr/Tf  
45  
Duty cycle for 10/100T  
40  
60  
%
Rise/fall time (20–80%)  
0.75  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
43  
Electrical characteristics  
1
The timings assume the following configuration:  
DDR_SEL = (11)b  
DSE (drive-strength) = (111)b  
2
For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns 40 ns and 40 ns 4 ns respectively.  
3
For all versions of RGMII prior to 2.0; this implies that PC board design will require clocks to be routed such that an additional  
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value  
is unspecified.  
4
Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long  
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned  
between.  
2'-))?48# ꢀAT TRANSMITTERꢁ  
4SKEW4  
2'-))?48$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
2'-))?48?#4,  
48%.  
48%22  
4SKEW2  
2'-))?48# ꢀAT RECEIVERꢁ  
Figure 18. RGMII transmit signal timing diagram original  
2'-))?28# ꢀAT TRANSMITTERꢁ  
4SKEW4  
2'-))?28$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
2'-))?28?#4,  
28$6  
28%22  
4SKEW2  
2'-))?28# ꢀAT RECEIVERꢁ  
Figure 19. RGMII receive signal timing diagram original  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
44  
NXP Semiconductors  
Electrical characteristics  
)NTERNAL DELAY  
2'-))?28# ꢀSOURCE OF DATAꢁ  
2'-))?28$N ꢀN ꢂ ꢃ TO ꢄ ꢁ  
4SETUP 4  
4 HOLD 4  
28$6  
28%22  
2'-))?28?#4,  
4 SETUP 2  
4 HOLD 2  
2'-))?28# ꢀAT RECEIVERꢁ  
Figure 20. RGMII receive signal timing diagram with internal delay  
3.9.4  
General-purpose media interface (GPMI) timing  
The i.MX 8M Mini GPMI controller is a flexible interface NAND Flash controller with 8-bit data width,  
up to 200 MB/s I/O speed and individual chip select.  
It supports Asynchronous Timing mode, Source Synchronous Timing mode and Toggle Timing mode  
separately, as described in the following subsections.  
3.9.4.1  
Asynchronous mode AC timing (ONFI 1.0 compatible)  
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The  
maximum I/O speed of GPMI in Asynchronous mode is about 50 MB/s. Figure 21 through Figure 24  
depicts the relative timing between GPMI signals at the module level for different operations under  
Asynchronous mode. Table 38 describes the timing parameters (NF1–NF17) that are shown in the figures.  
NF2  
NF1  
.!.$?#,%  
NF3  
NF4  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF5  
.!.$?!,%  
NF6  
NF8  
Command  
NF7  
NF9  
.!.$?$!4!XX  
Figure 21. Command Latch cycle timing diagram  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
45  
Electrical characteristics  
NF1  
.!.$?#,%  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
.!.$?!,%  
NF6  
NF8  
Address  
NF9  
NAND_DATAxx  
Figure 22. Address Latch cycle timing diagram  
NF1  
.!.$?#,%  
.!.$?#%ꢃ?"  
.!.$?7%?"  
NF3  
NF10  
NF5  
NF11  
NF7  
NF6  
NF8  
Data to NF  
.!.$?!,%  
NF9  
.!.$?$!4!XX  
Figure 23. Write Data Latch cycle timing diagram  
.!.$?#,%  
.!.$?#%ꢃ?"  
.!.$?2%?"  
NF14  
NF13  
NF15  
.!.$?2%!$9?"  
NF12  
NF16  
NF17  
Data from NF  
.!.$?$!4!XX  
Figure 24. Read Data Latch cycle timing diagram (Non-EDO Mode)  
.!.$?#,%  
.!.$?#%ꢃ?"  
NF14  
NF13  
NF15  
.!.$?2%?"  
.!.$?2%!$9?"  
NF12  
NF17  
NF16  
NAND_DATAxx  
Data from NF  
Figure 25. Read Data Latch cycle timing diagram (EDO mode)  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
46  
NXP Semiconductors  
Electrical characteristics  
1
Table 38. Asynchronous mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF1  
NF2  
NF3  
NF4  
NF5  
NF6  
NF7  
NF8  
NF9  
NAND_CLE setup time  
NAND_CLE hold time  
NAND_CE0_B setup time  
NAND_CE0_B hold time  
NAND_WE_B pulse width  
NAND_ALE setup time  
NAND_ALE hold time  
Data setup time  
tCLS  
tCLH  
tCS  
(AS + DS) T - 0.12 [see notes2,3  
DH T - 0.72 [see note2]  
]
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(AS + DS + 1) T [see notes3,2  
(DH+1) T - 1 [see note2]  
DS T [see note2]  
]
tCH  
tWP  
tALS  
tALH  
tDS  
(AS + DS) T - 0.49 [see notes3,2  
DH T - 0.42 [see note2]  
DS T - 0.26 [see note2]  
DH T - 1.37 [see note2]  
(DS + DH) T [see note2]  
DH T [see note2]  
]
Data hold time  
tDH  
NF10 Write cycle time  
tWC  
tWH  
tRR4  
tRP  
NF11 NAND_WE_B hold time  
NF12 Ready to NAND_RE_B low  
NF13 NAND_RE_B pulse width  
NF14 READ cycle time  
(AS + 2) T [see 3,2  
]
DS T [see note2]  
(DS + DH) T [see note2]  
DH T [see note2]  
tRC  
NF15 NAND_RE_B high hold time  
NF16 Data setup on read  
tREH  
tDSR  
(DS T -0.67)/18.38 [see  
notes5,6  
]
NF17 Data hold on read  
tDHR  
0.82/11.83 [see notes5,6  
]
ns  
1
GPMI’s Asynchronous mode output timing can be controlled by the module’s internal registers  
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.  
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.  
2
3
4
5
6
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = GPMI clock period -0.075 ns (half of maximum p-p jitter).  
NF12 is guaranteed by the design.  
Non-EDO mode.  
EDO mode, GPMI clock 100 MHz  
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).  
In EDO mode (Figure 24), NF16/NF17 are different from the definition in non-EDO mode (Figure 23).  
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical values for them  
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI samples  
NAND_DATAxx at the rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay  
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 8M Mini  
Applications Processor Reference Manual [IMX8MMRM]). The typical value of this control register is  
0x8 at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value  
should be made larger to compensate the board delay.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
47  
Electrical characteristics  
3.9.4.2  
Source synchronous mode AC timing (ONFI 2.x compatible)  
Figure 26 to Figure 28 show the write and read timing of Source Synchronous mode.  
NF19  
NF18  
.!.$?#%?"  
NF23  
NAND_CLE  
NF26  
NF25  
NF24  
NAND_ALE  
NF25 NF26  
NAND_WE/RE_B  
NF22  
NAND_CLK  
NAND_DQS  
NAND_DQS  
Output enable  
NF20  
NF20  
NF21  
NF21  
CMD  
ADD  
NAND_DATA[7:0]  
NAND_DATA[7:0]  
Output enable  
Figure 26. Source Synchronous mode command and address timing diagram  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
48  
Electrical characteristics  
NF19  
NF18  
.!.$?#%ꢃ?"  
.!.$?#,%  
NF23  
NF23  
NF24  
NF24  
NF25  
NF25  
NF26  
NF26  
.!.$?!,%  
NAND_WE/RE_B  
NF22  
.!.$?#,+  
.!.$?$13  
NF27  
NF27  
.!.$?$13  
Output enable  
NF29  
NF29  
.!.$?$1;ꢅꢆꢃ=  
NF28  
NF28  
.!.$?$1;ꢅꢆꢃ=  
Output enable  
Figure 27. Source Synchronous mode data write timing diagram  
NF18  
NF19  
.!.$?#%?"  
.!.$?#,%  
NF24  
NF24  
NF23  
NF23  
NF26  
NF26  
NF25  
NF25  
NAND_ALE  
NF25  
.!.$?7%ꢇ2%  
NF25  
NF22  
NF26  
.!.$?#,+  
.!.$?$13  
.!.$?$13  
/UTPUT ENABLE  
.!.$?$!4!;ꢅꢆꢃ=  
.!.$?$!4!;ꢅꢆꢃ=  
/UTPUT ENABLE  
Figure 28. Source Synchronous mode data read timing diagram  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
49  
Electrical characteristics  
.!.$?$13  
NF30  
.!.$?$!4!;ꢅꢆꢃ=  
D0  
D1  
D2  
D3  
NF30  
NF31  
NF31  
Figure 29. NAND_DQS/NAND_DQ read valid window  
1
Table 39. Source Synchronous mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF18 NAND_CE0_B access time  
NF19 NAND_CE0_B hold time  
tCE  
tCH  
CE_DELAY T - 0.79 [see note2]  
0.5 tCK - 0.63 [see note2]  
0.5 tCK - 0.05  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
NF20 Command/address NAND_DATAxx setup time  
NF21 Command/address NAND_DATAxx hold time  
NF22 clock period  
tCAS  
tCAH  
tCK  
0.5 tCK - 1.23  
NF23 preamble delay  
tPRE  
tPOST  
tCALS  
tCALH  
tDQSS  
PRE_DELAY T - 0.29 [see note2]  
POST_DELAY T - 0.78 [see note2]  
0.5 tCK - 0.86  
NF24 postamble delay  
NF25 NAND_CLE and NAND_ALE setup time  
NF26 NAND_CLE and NAND_ALE hold time  
NF27 NAND_CLK to first NAND_DQS latching transition  
NF28 Data write setup  
0.5 tCK - 0.37  
T - 0.41 [see note2]  
0.25 tCK - 0.35  
NF29 Data write hold  
0.25 tCK - 0.85  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
2.06  
1.95  
1
GPMI’s Source Synchronous mode output timing can be controlled by the module’s internal registers  
GPMI_TIMING2_CE_DELAY,GPMI_TIMING_PREAMBLE_DELAY,GPMI_TIMING2_POST_DELAY.ThisACtimingdepends  
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.  
2
T = tCK(GPMI clock period) –0.075 ns (half of maximum p-p jitter).  
For DDR Source Synchronous mode, Figure 29 shows the timing diagram of  
NAND_DQS/NAND_DATAxx read valid window. The typical value of tDQSQ is 0.85 ns (max) and 1 ns  
(max) for tQHS at 200 MB/s. GPMI will sample NAND_DATA[7:0] at both rising and falling edge of an  
delayed NAND_DQS signal, which can be provided by an internal DPLL. The delay value can be  
controlled by GPMI register GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI  
chapter of the i.MX 8M Mini Applications Processor Reference Manual [IMX8MMRM]). Generally, the  
typical delay value of this register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the  
board delay is big enough and cannot be ignored, the delay value should be made larger to compensate the  
board delay.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
50  
NXP Semiconductors  
Electrical characteristics  
3.9.4.3  
ONFI NV-DDR2 mode (ONFI 3.2 compatible)  
Command and address timing  
3.9.4.3.1  
ONFI 3.2 mode command and address timing is the same as ONFI 1.0 compatible Async mode AC timing.  
See Section 3.9.4.1, Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.  
3.9.4.3.2  
Read and write timing  
ONFI 3.2 mode read and write timing is the same as Toggle mode AC timing. See Section 3.9.4.4, Toggle  
mode AC Timing,” for details.  
3.9.4.4  
Toggle mode AC Timing  
3.9.4.4.1  
Command and address timing  
NOTE  
Toggle mode command and address timing is the same as ONFI 1.0  
compatible Asynchronous mode AC timing. See Section 3.9.4.1,  
Asynchronous mode AC timing (ONFI 1.0 compatible),” for details.  
3.9.4.4.2  
Read and write timing  
Figure 30. Toggle mode data write timing  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
51  
Electrical characteristics  
DEV?CLK  
.!.$?#%X?"  
.& ꢈꢉ  
.!.$?#,%  
.!.$?!,%  
ꢈ T #+  
.&ꢊꢋ  
.!.$?7%?"  
.!.$?2%?"  
ꢈ T #+  
.& ꢊꢄ  
ꢈ T #+  
ꢈ T #+  
ꢈ T #+  
.!.$?$13  
.!.$?$!4!;ꢅꢆꢃ=  
Figure 31. Toggle mode data read timing  
Table 40. Toggle mode timing parameters  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF1 NAND_CLE setup time  
NF2 NAND_CLE hold time  
NF3 NAND_CE0_B setup time  
NF4 NAND_CE0_B hold time  
NF5 NAND_WE_B pulse width  
NF6 NAND_ALE setup time  
NF7 NAND_ALE hold time  
tCLS  
tCLH  
tCS  
(AS + DS) T - 0.12 [see note1s,2]  
DH T - 0.72 [see note2]  
(AS + DS) T - 0.58 [see notes,2]  
DH T - 1 [see note2]  
tCH  
tWP  
tALS  
tALH  
DS T [see note2]  
(AS + DS) T - 0.49 [see notes,2]  
DH T - 0.42 [see note2]  
DS T - 0.26 [see note2]  
DH T - 1.37 [see note2]  
NF8 Command/address NAND_DATAxx setup time tCAS  
NF9 Command/address NAND_DATAxx hold time  
NF18 NAND_CEx_B access time  
NF22 clock period  
tCAH  
tCE  
CE_DELAY T [see notes3,2  
]
ns  
ns  
ns  
tCK  
NF23 preamble delay  
tPRE PRE_DELAY T [see notes4,2  
]
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
52  
Electrical characteristics  
Table 40. Toggle mode timing parameters (continued)  
Timing  
T = GPMI Clock Cycle  
ID  
Parameter  
Symbol  
Unit  
Min.  
Max.  
NF24 postamble delay  
tPOST POST_DELAY T + 0.43 [see  
ns  
note2]  
NF28 Data write setup  
NF29 Data write hold  
tDS5  
tDH5  
tDQSQ6  
tQHS6  
0.25 tCK - 0.32  
ns  
ns  
ns  
ns  
0.25 tCK - 0.79  
NF30 NAND_DQS/NAND_DQ read setup skew  
NF31 NAND_DQS/NAND_DQ read hold skew  
3.18  
3.27  
1
2
3
AS minimum value can be 0, while DS/DH minimum value is 1.  
T = tCK (GPMI clock period) -0.075 ns (half of maximum p-p jitter).  
CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started  
with enough time of ALE/CLE assertion to low level.  
4
5
6
PRE_DELAY+1 (AS+DS)  
Shown in Figure 30.  
Shown in Figure 31.  
For DDR Toggle mode, Figure 29 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid  
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI  
samples NAND_DATA[7:0] at both the rising and falling edges of a delayed NAND_DQS signal, which  
is provided by an internal DPLL. The delay value of this register can be controlled by the GPMI register  
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 8M Mini  
Applications Processor Reference Manual [IMX8MMRM]). Generally, the typical delay value is equal to  
0x7, which means a 1/4 clock cycle delay is expected. But if the board delay is big enough and cannot be  
ignored, the delay value should be made larger to compensate the board delay.  
3.9.5  
I2C bus characteristics  
The Inter-Integrated Circuit (I2C) provides functionality of a standard I2C master and slave. The I2C is  
designed to be compatible with the I2C Bus Specification, version 2.1, by Philips Semiconductor (now  
NXP Semiconductors).  
3.9.6  
MIPI D-PHY timing parameters  
MIPI D-PHY electrical specifications are compliance.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
53  
Electrical characteristics  
1
Table 41. MIPI PHY worst power dissipation  
Power consume on  
VDD_MIPI_0P9 (mW) VDD_MIPI_1P2 (mW) VDD_MIPI_1P8 (mW)  
Power consume on Power consume on  
Total power  
consume (mW)  
MODE  
M4 on  
S4 on  
226.1  
164.7  
63.02  
4.26  
4.1  
4.03  
0
35.6  
28.6  
265.8  
197.33  
78.82  
4.36  
M4 on  
2.1 Gbps  
S4 off  
M4 off  
S4 on  
15.8  
0.0367  
0.0584  
ULPS  
1
M4 indicates MIPI DSI have 4 data lane enable (at least 1 clock lane enable). S4 indicates MIPI CSI have 4 data lane enable  
(at least 1 clock lane enable).  
3.9.7  
PCIe PHY parameters  
The PCIe interface is designed to be compatible with PCIe specification Gen2 x1 lane and supports the  
PCI Express 1.1/2.0 standard.  
Table 42. PCIe DC electrical characteristics  
Parameter  
Description  
Min  
Typ  
Max  
Unit  
PD  
Power Consumption  
Normal Gen2  
Partial Mode  
129.5  
98.2  
4.9  
mW  
mW  
mW  
mW  
Slumber Mode  
Full Powerdown  
0.1  
3.9.7.1  
PCIE_RESREF reference resistor connection  
The impedance calibration process requires connection of reference resistor 8.2 k 1% precision resistor  
on PCIE_RESREF pads to ground. It is used for termination impedance calibration.  
3.9.8  
PDM timing parameters  
Figure 32 illustrates the input timing of the PDM.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
54  
Electrical characteristics  
PDM Clock  
PDM Bitstream  
ipg_clk_app  
Pulse right  
pre_channel_1  
ipg_dee_clk  
Channel 1  
Channel 0  
Figure 32. PDM input timing  
PDM clock operative range is from 500 kHz to 6 MHz. Within range, only need to configure ipg_clk_app  
rate and CLKDIV without I/O timing concerns.  
3.9.9  
Pulse width modulator (PWM) timing parameters  
This section describes the electrical information of the PWM. The PWM can be programmed to select one  
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before  
being input to the counter. The output is available at the pulse-width modulator output (PWMO) external  
pin.  
Figure 33 depicts the timing of the PWM, and Table 43 lists the PWM timing parameters.  
0ꢈ  
0ꢊ  
07-N?/54  
Figure 33. PWM timing  
Table 43. PWM output timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
PWM Module Clock Frequency  
PWM output pulse width high  
PWM output pulse width low  
0
66 (ipg_clk)  
MHz  
ns  
P1  
P2  
12  
12  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
55  
Electrical characteristics  
3.9.10 FlexSPI timing parameters  
Measurements are with a load of 15 pF and an input slew rate of 1 V/ns.  
3.9.10.1 FlexSPI input/read timing  
There are three sources for the internal sample clock for FlexSPI read data:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x1)  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
The following sections describe input signal timing for each of these four internal sample clock sources.  
3.9.10.1.1 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 44. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
[D:] Frequency of operation  
8.67  
0
66  
MHz  
ns  
1
F1  
F2  
[D:] Setup time for incoming data  
[D:] Hold time for incoming data  
ns  
1
The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be  
decreased by up to 2ns.  
Table 45. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
[D:] Frequency of operation  
1.5  
1
133  
MHz  
ns  
1
F1  
F2  
[D:] Setup time for incoming data  
[D:] Hold time for incoming data  
ns  
1
The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be  
decreased by up to 2ns.  
FLEXSPI_SCLK  
F1  
F2  
F1  
F2  
FLEXSPI_DATA[7:0]  
Internal Sample Clock  
Figure 34. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
56  
NXP Semiconductors  
Electrical characteristics  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge, and FlexSPI controller sampling read data on the falling edge.  
3.9.10.1.2 SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in SDR mode:  
A1Memory generates both read data and read strobe on SCK rising edge (or falling edge)  
A2Memory generates read data on SCK falling edge and generates read strobe on SCK rising  
edge  
Table 46. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
F3  
F4  
[D:] Frequency of operation  
[D:] Time from SCK to data valid  
[D:] Time from SCK to DQS  
-2  
166  
2
MHz  
ns  
ns  
[D:] Time delta between TSCKD and  
TSCKDQS  
ns  
FLEXSPI_SCLK  
F3  
F4  
F3  
FLEXSPI_DATA[7:0]  
FLEXSPI_DQS  
F4  
Figure 35. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)  
NOTE  
Timing shown is based on the memory generating read data and read strobe  
on the SCK rising edge. The FlexSPI controller samples read data on the  
DQS falling edge.  
Table 47. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
F5  
F6  
[D:] Frequency of operation  
[D:] Time from SCK to data valid  
[D:] Time from SCK to DQS  
-2  
166  
2
MHz  
ns  
ns  
[D:] Time delta between TSCKD and  
TSCKDQS  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
57  
Electrical characteristics  
FLEXSPI_SCLK  
F5  
F5  
F5  
FLEXSPI_DATA[7:0]  
F6  
F6  
F6  
FLEXSPI_DQS  
Internal Sample Clock  
Figure 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge and read strobe on the SCK rising edge. The FlexSPI controller  
samples read data on a half-cycle delayed DQS falling edge.  
3.9.10.1.3 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 48. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
[D:] Frequency of operation  
8.67  
0
33  
MHz  
ns  
1
F1  
F2  
[D:] Setup time for incoming data  
[D:] Hold time for incoming data  
ns  
1
The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be  
decreased by up to 2ns.  
Table 49. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Min.  
Max.  
Unit  
Notes  
[D:] Frequency of operation  
1.5  
1
66  
MHz  
ns  
1
F1  
F2  
[D:] Setup time for incoming data  
[D:] Hold time for incoming data  
ns  
1
The setup specification here assumes the data learning feature is not used. If data learning is enabled, then TIS can be  
decreased by up to 2ns.  
SCLK  
F1 F2  
F1  
F2  
SIO[0:7]  
Internal Sample Clocks  
Figure 37. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
58  
NXP Semiconductors  
Electrical characteristics  
3.9.10.1.4 DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
Table 50. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case 1)  
Symbol  
Parameter  
Min.  
Max.  
Unit  
[D:] Frequency of operation  
[D:] Time from SCK to data valid  
[D:] Time from SCK to DQS  
166  
MHz  
ns  
TSCKD  
TSCKDQS  
TSCKD - TSCKDQS  
ns  
[D:] Time delta between TSCKD and  
TSCKDQS  
-0.6  
0.6  
ns  
SCK  
TSCKD  
SIO[0:7]  
DQS  
TSCKDQS  
Figure 38. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3  
3.9.10.2 FlexSPI output/write timing  
The following sections describe output signal timing for the FlexSPI controller including control signals  
and data outputs.  
3.9.10.2.1 SDR mode  
Table 51. FlexSPI output timing in SDR mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
[D:] Frequency of operation1  
[D:] SCK clock period  
166  
MHz  
ns  
TCK  
6.02  
TDSO  
TDHO  
TCSS  
TCSH  
[D:] Output data setup time  
[D:] Output data hold time  
[D:] Chip select output setup time  
[D:] Chip select output hold time  
2
ns  
2
ns  
3 x TCK - 1  
3 x TCK - 1  
ns  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
59  
Electrical characteristics  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the  
FlexSPI SDR input timing specifications.  
NOTE  
T
and T  
are configured by the FlexSPIn_FLSHAxCR1 register, the  
CSS  
CSH  
default values are shown above. See the i.MX 8M Mini Applications  
Processor Reference Manual (IMX8MMRM) for more details.  
SCK  
CS  
TCK  
TCSS  
TCSH  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 39. FlexSPI output timing in SDR mode  
3.9.10.2.2 DDR mode  
Table 52. FlexSPI output timing in DDR mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
[D:] Frequency of operation1  
[D:] SCK clock period  
6.02  
166  
MHz  
ns  
TCK  
TDSO  
TDHO  
TCSS  
TCSH  
[D:] Output data setup time  
[D:] Output data hold time  
[D:] Chip select output setup time  
[D:] Chip select output hold time  
0.6  
ns  
0.6  
ns  
3 x TCK - 1.075  
3 x TCK - 1.075  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. See the  
FlexSPI SDR input timing specifications.  
NOTE  
T
and T  
are configured by the FlexSPIn_FLSHAxCR1 register, the  
CSS  
CSH  
default values are shown above. See the i.MX 8M Mini Applications  
Processor Reference Manual (IMX8MMRM) for more details.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
60  
NXP Semiconductors  
Electrical characteristics  
SCK  
CS  
TCSS  
TCK  
TCSH  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 40. FlexSPI output timing in DDR mode  
3.9.11 SAI/I2S switching specifications  
This section provides theAC timings for the SAI in Master (clocks driven) and Slave (clocks input) modes.  
All timings are given for non inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
1
Table 53. Master mode SAI timing (50 MHz)  
Num  
Characteristic  
SAI_MCLK cycle time  
Min  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
20  
40%  
20  
40%  
0
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
2
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
2
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
2
0
1
To achieve 50 MHz for BCLK operation, clock must be set in feedback mode.  
Table 54. Master mode SAI timing (25 MHz)  
Characteristic Min  
SAI_MCLK cycle time  
Num  
Max  
Unit  
S1  
40  
ns  
S2  
S3  
S4  
S5  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
40%  
40  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
40%  
60%  
2
BCLK period  
ns  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
61  
Electrical characteristics  
Num  
Table 54. Master mode SAI timing (25 MHz) (continued)  
Characteristic Min  
Max  
Unit  
S6  
S7  
S8  
S9  
S10  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
0
2
ns  
ns  
ns  
ns  
ns  
0
SAI_BCLK to SAI_TXD invalid  
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
12  
0
Figure 41. SAI timing—Master modes  
1
Table 55. Slave mode SAI timing (50 MHz)  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
Max  
Unit  
S11  
S12  
S13  
S14  
S17  
S18  
20  
40%  
2
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
SAI_RXD setup before SAI_BCLK  
SAI_RXD hold after SAI_BCLK  
60%  
BCLK period  
ns  
ns  
ns  
ns  
2
2
2
1
TX does not support 50 MHz operation in Slave mode.  
Table 56. Slave mode SAI timing (25 MHz)  
Characteristic Min  
Num  
Max  
Unit  
S11  
SAI_BCLK cycle time (input)  
SAI_BCLK pulse width high/low (input)  
40  
ns  
S12  
40%  
60%  
BCLK period  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
62  
Electrical characteristics  
Table 56. Slave mode SAI timing (25 MHz) (continued)  
Num  
Characteristic  
Min  
Max  
Unit  
S13  
S14  
S15  
S16  
S17  
S18  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
12  
2
7
ns  
ns  
ns  
ns  
ns  
ns  
0
12  
2
SAI_RXD hold after SAI_BCLK  
Figure 42. SAI Timing — Slave Modes  
3.9.12 SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 57 and Figure 43 and Figure 44 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 57. SPDIF timing parameters  
Timing Parameter Range  
Parameter  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50 pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
63  
Electrical characteristics  
Table 57. SPDIF timing parameters (continued)  
Timing Parameter Range  
Parameter  
Symbol  
Unit  
Min  
Max  
SPDIF_OUT output (Load = 30 pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
13.6  
18.0  
ns  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
VM  
srckph  
VM  
SPDIF_SR_CLK  
(Output)  
Figure 43. SPDIF_SR_CLK timing diagram  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 44. SPDIF_ST_CLK timing diagram  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
64  
Electrical characteristics  
3.9.13 UART I/O configuration and timing parameters  
3.9.13.1 UART RS-232 I/O configuration in different modes  
The i.MX 8M Mini UART interfaces can serve both as DTE or DCE device. This can be configured by  
the DCEDTE control bit (default 0—DCE mode). Table 58 shows the UART I/O configuration based on  
the enabled mode.  
Table 58. UART I/O configuration vs. mode  
DTE Mode  
Description  
DCE Mode  
Description  
Port  
Direction  
Direction  
UARTx_RTS_B  
UARTx_CTS_B  
Output  
Input  
UARTx_RTS_B from DTE to DCE  
UARTx_CTS_B from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
Input  
Output  
Output  
Input  
UARTx_RTS_B from DTE to DCE  
UARTx_CTS_B from DCE to DTE  
Serial data from DCE to DTE  
Serial data from DTE to DCE  
UARTx_TX_DATA  
UARTx_RX_DATA  
Input  
Output  
3.9.13.2 UART RS-232 Serial mode timing  
This section describes the electrical information of the UART module in the RS-232 mode.  
3.9.13.2.1 UART transmitter  
Figure 45 depicts the transmit timing of UART in the RS-232 Serial mode, with 8 data bit/1 stop bit  
format. Table 59 lists the UART RS-232 Serial mode transmit timing characteristics.  
Possible  
UA1  
UA1  
Bit 3  
Parity  
Bit  
Next  
Start  
Bit  
Start  
Bit  
UARTx_TX_DATA  
(output)  
STOP  
BIT  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA1  
UA1  
Figure 45. UART RS-232 Serial mode transmit timing diagram  
Table 59. RS-232 Serial mode transmit timing parameters  
ID  
Parameter  
Symbol  
Min  
Max  
1/Fbaud_rate + Tref_clk  
Unit  
2
UA1 Transmit Bit Time  
tTbit  
1/Fbaud_rate1 - Tref_clk  
1
2
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
65  
Electrical characteristics  
3.9.13.2.2  
UART receiver  
Figure 46 depicts the RS-232 Serial mode receive timing with 8 data bit/1 stop bit format. Table 60 lists  
Serial mode receive timing characteristics.  
Possible  
Parity  
UA2  
UA2  
Bit 3  
Bit  
Next  
Start  
Bit  
Start  
Bit  
STOP  
BIT  
UARTx_RX_DATA  
(output)  
Bit 7  
Bit 0  
Bit 1  
Bit 2  
Bit 4  
Bit 5  
Bit 6  
Par Bit  
UA2  
UA2  
Figure 46. UART RS-232 Serial mode receive timing diagram  
Table 60. RS-232 Serial mode receive timing parameters  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
UA2  
Receive Bit Time1  
tRbit  
1/Fbaud_rate2 - 1/(16  
1/Fbaud_rate  
+
x Fbaud_rate  
)
1/(16 x Fbaud_rate)  
1
2
The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not  
exceed 3/(16 x Fbaud_rate).  
Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.  
3.9.14 USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
3.9.14.1 Pad/Package/Board connections  
The USBx_VBUS pin cannot directly connect to the 5 V VBUS voltage on the USB2.0 link.  
Each USBx_VBUS pin must be isolated by an external 30 K1% precision resistor.  
The USB 2.0 PHY uses USBx_TXRTUNE and an external resistor to calibrate the USBx_DP/DN 45   
source impedance. The external resistor value is 200 1% precision on each of USBx_TXRTUNE pad to  
ground.  
3.9.14.2 USB PHY worst power consumption  
Table 61 shows the USB 2.0 PHY worst power dissipation.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
66  
NXP Semiconductors  
Electrical characteristics  
Total Power  
Table 61. USB 2.0 PHY worst power dissipation  
VDD_USB_3P3  
VDD_USB_1P8  
Mode  
VDD_USB_0P8  
HS TX  
FS TX  
LS TX  
8.286  
6.767  
4.63  
23.409  
5.968  
70.448  
63.22  
12.52  
mA  
mA  
mA  
mW  
7.001  
0.752  
0.761  
13.58  
0.164  
0.163  
6.224  
0.106  
0.106  
67.779  
Suspend  
Sleep  
1.465  
1.472  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
67  
Boot mode configuration  
4 Boot mode configuration  
This section provides information on Boot mode configuration pins allocation and boot devices interfaces  
allocation.  
4.1  
Boot mode configuration pins  
Table 62 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed Boot mode options configured by the Boot mode pins, see the “System Boot,  
Fusemap, and eFuse” chapter in the i.MX 8M Mini Applications Processor Reference Manual  
(IMX8MMRM).  
Table 62. Fuses and associated pins used for boot  
Directio  
n
State during reset  
(POR_B  
State after reset  
(POR_B  
Pin  
eFuse name  
Details  
at Reset  
asserted)  
deasserted)  
BOOT_MODE0  
BOOT_MODE1  
SAI1_RXD0  
SAI1_RXD1  
SAI1_RXD2  
SAI1_RXD3  
SAI1_RXD4  
SAI1_RXD5  
SAI1_RXD6  
SAI1_RXD7  
SAI1_TXD0  
SAI1_TXD1  
SAI1_TXD2  
SAI1_TXD3  
SAI1_TXD4  
SAI1_TXD5  
SAI1_TXD6  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
N/A  
Input with pull down Input with pull down Boot mode selection  
Input with pull down Input with pull down  
N/A  
BOOT_CFG[0]  
BOOT_CFG[1]  
BOOT_CFG[2]  
BOOT_CFG[3]  
BOOT_CFG[4]  
BOOT_CFG[5]  
BOOT_CFG[6]  
BOOT_CFG[7]  
BOOT_CFG[8]  
BOOT_CFG[9]  
Input with pull down Input with pull down Boot options pin value  
overrides fuse settings for  
Input with pull down Input with pull down  
BT_FUSE_SEL = “0“. Signal  
configuration as fuse override  
input at power up. These are  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
Input with pull down Input with pull down  
special I/O lines that control  
the boot configuration during  
product development. In  
production, the boot  
configuration can be  
controlled by fuses.  
BOOT_CFG[10] Input with pull down Input with pull down  
BOOT_CFG[11] Input with pull down Input with pull down  
BOOT_CFG[12] Input with pull down Input with pull down  
BOOT_CFG[13] Input with pull down Input with pull down  
BOOT_CFG[14] Input with pull down Input with pull down  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
68  
Boot mode configuration  
4.2  
Boot device interface allocation  
Table 63 lists the interfaces that can be used by the boot process in accordance with the specific Boot  
mode configuration. The table also describes the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 63. Interface allocation during boot  
Interface  
IP Instance  
Allocated Pads During Boot  
Comment  
SPI  
ECSPI-1  
ECSPI1_SCLK, ECSPI1_MOSI, ECSPI1_MISO,  
ECSPI1_SS0  
The chip-select pin used depends  
on the fuse “CS select (SPI only)“.  
SPI  
SPI  
ECSPI-2  
ECSPI-3  
GPMI  
ECSPI2_SCLK, ECSPI2_MOSI, ECSPI2_MISO,  
ECSPI2_SS0  
The chip-select pin used depends  
on the fuse “CS select (SPI only)“.  
UART1_RXD, UART1_TXD, UART2_RXD,  
UART2_TXD  
The chip-select pin used depends  
on the fuse “CS select (SPI only)“.  
NAND Flash  
NAND_ALE, NAND_CE0_B, NAND_CLE,  
NAND_DATA00,NAND_DATA01,NAND_DATA02,  
NAND_DATA03,NAND_DATA04,NAND_DATA05,  
NAND_DATA06, NAND_DATA07, NAND_DQS,  
NAND_RE_B, NAND_READY_B, NAND_WE_B,  
NAND_WP_B  
8-bit, only CS0 is supported.  
SD/MMC  
USDHC-1  
GPIO1_IO03, GPIO1_IO06, GPIO1_IO07,  
SD1_RESET_B, SD1_CLK, SD1_CMD,  
SD1_STROBE, SD1_DATA0, SD1_DATA1,  
SD1_DATA2, SD1_DATA3, SD1_DATA4,  
SD1_DATA5, SD1_DATA6, SD1_DATA7  
1, 4, or 8-bit  
SD/MMC  
SD/MMC  
USDHC-2  
USDHC-3  
GPIO1_IO04, GPIO1_IO08, GPIO1_IO07,  
SD2_RESET_B, SD2_WP, SD2_CLK, SD2_CMD,  
SD2_DATA0, SD2_DATA1, SD2_DATA2,  
SD2_DATA3  
1 or 4-bit  
NAND_CE1_B, NAND_CE2_B, NAND_CE3_B,  
NAND_CLE, NAND_DATA02, NAND_DATA03,  
NAND_DATA04,NAND_DATA05,NAND_DATA06,  
NAND_DATA07,NAND_RE_B,NAND_READY_B,  
NAND_WE_B, NAND_WP_B  
1, 4, or 8-bit  
FlexSPI  
FlexSPI  
NAND_ALE, NAND_CE0_B, NAND_CE1_B,  
NAND_CE2_B, NAND_CE3_B, NAND_CLE,  
NAND_DATA00,NAND_DATA01,NAND_DATA02,  
NAND_DATA03,NAND_DATA04,NAND_DATA05,  
NAND_DATA06, NAND_DATA07, NAND_DQS,  
NAND_RE_B  
For FlexSPI flash  
USB  
USB_OTG PHY Dedicated USB pins  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
69  
Package information and contact assignments  
5 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
5.1  
14 x 14 mm package information  
14 x 14 mm, 0.5 mm pitch, ball matrix  
5.1.1  
Figure 47 shows the top, bottom, and side views of the 14 × 14 mm FCBGA package.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
70  
NXP Semiconductors  
Package information and contact assignments  
Figure 47. 14 X 14 MM BGA, case x package top, bottom, and side views  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
71  
Package information and contact assignments  
5.1.2  
14 x 14 mm supplies contact assignments and functional contact  
assignments  
Table 64 shows supplies contact assignments for the 14 x 14 mm package.  
Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments  
Supply Rail Name  
Ball(s) Position(s)  
Remark  
NC  
J18  
NVCC_CLK  
M19  
Supply for CLK interface  
Supply for DRAM interface  
NVCC_DRAM  
P7, K8, N8, R8, V8, K9, L9, M9, N9, R9, T9,  
U9, V9  
NVCC_ECSPI  
NVCC_ENET  
NVCC_GPIO1  
NVCC_I2C  
H10  
Supply for ESCPI interface  
Supply for ENET interface  
Supply for GPIO1 interface  
Supply for I2C interface  
Supply for JTAG interface  
Supply for NAND interface  
Supply for SAI interface  
Supply for SAI interface  
Supply for SAI interface  
Supply for SAI interface  
Supply for SD interface  
Supply for SD interface  
Supply for SNVS interface  
Supply for UART interface  
Digital IO pre-drive  
W22  
W12  
J11  
NVCC_JTAG  
NVCC_NAND  
NVCC_SAI1  
L19  
U19  
W18  
V19  
NVCC_SAI2  
NVCC_SAI3  
Y10  
NVCC_SAI5  
W17  
V20  
NVCC_SD1  
NVCC_SD2  
V22  
NVCC_SNVS_1P8  
NVCC_UART  
PVCC0_1P8  
J22  
J12  
AB13  
T19  
PVCC1_1P8  
Digital IO pre-drive  
PVCC2_1P8  
J13  
Digital IO pre-drive  
VDD_24M_XTAL_1P8  
VDD_ANA_0P8  
VDD_ANA0_1P8  
VDD_ANA1_1P8  
VDD_ARM  
N19  
Supply for XTAL  
L17, N17  
AA14, Y15  
P19, N20  
Supply for Analog logic  
Supply for Analog logic  
Supply for Analog logic  
Supply for ARM  
R13, T13, U13, V13, W13, T14, W14, R15,  
T15, U15, V15, W15, V16, W16  
VDD_ARM_PLL_0P8  
VDD_ARM_PLL_1P8  
VDD_DRAM  
P16  
Supply for ARM PLL  
Supply for ARM PLL  
Supply for DRAM module  
R19  
J10, L10, N10, R10, U10, W10  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
72  
Package information and contact assignments  
Table 64. i.MX 8M Mini 14 x 14 mm supplies contact assignments (continued)  
VDD_DRAM_PLL_0P8  
VDD_DRAM_PLL_1P8  
VDD_GPU  
P9  
Supply for DRAM PLL  
Supply for DRAM PLL  
Supply for GPU  
P5  
R11, U11, W11, P12, V12  
VDD_MIPI_0P9  
VDD_MIPI_1P2  
VDD_MIPI_1P8  
VDD_PCI_0P8  
VDD_PCI_1P8  
VDD_SNVS_0P8  
VDD_SOC  
J14  
J15  
H13  
J16  
G14  
K22  
Supply for MIPI PHY  
Supply for MIPI PHY  
Supply for MIPI PHY  
Supply for PCIe PHY  
Supply for PCIe PHY  
Supply for SNVS logic  
N13, K15, L15, M15, N15, K16, R17, U17, L18, Supply for SOC logic  
N18, R18, U18  
VDD_USB_0P8  
VDD_USB_1P8  
VDD_USB_3P3  
VDD_VPU  
J17  
Supply for USB PHY  
Supply for USB PHY  
Supply for USB PHY  
Supply for VPU  
H15  
K19  
L11, N11, K12, K13, L13, M13, M14  
VSS  
A1, AG1, C2, H2, Y2, AE2, B3, E3, F3, J3, K3,  
N3, P3, R3, V3, W3, AB3, AC3, AF3, C5, AE5,  
C6, AE6, G7, J7, K7, N7, R7, V7, W7, AA7, C9,  
G9, AA9, AE9, C10, G10, AA10, AE10, L12,  
M12, N12, R12, T12, U12, C13, G13, P13,  
Y13, AA13, AE13, C14, AE14, C15, G15, P15,  
AA15, AE15, L16, M16, N16, R16, T16, U16,  
C18, G18, H18, Y18, AA18, AE18, C19, G19,  
AA19, AE19, K20, R20, G21, J21, K21, N21,  
P21, R21, V21, W21, AA21, C22, AE22, C23,  
AE23, E25, F25, J25, K25, N25, P25, R25,  
V25, W25, AB25, AC25, B26, A27, AG27  
Table 65 shows an alpha-sorted list of functional contact assignments for the 14 x 14 mm package.  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
24M_XTALI  
24M_XTALO  
B27  
C26  
VDD_24M_XTAL_ ANALOG  
1P8  
Input  
VDD_24M_XTAL_ ANALOG  
1P8  
Output  
BOOT_MODE0  
BOOT_MODE1  
G26  
G27  
NVCC_JTAG  
NVCC_JTAG  
GPIO  
GPIO  
ALT0 ccmsrcgpcmix.BOOT_MODE[0] Input with PD  
ALT0 ccmsrcgpcmix.BOOT_MODE[1] Input with PD  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
73  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
CLKIN1  
CLKIN2  
H27  
J27  
H26  
NVCC_CLK  
NVCC_CLK  
NVCC_CLK  
GPIO  
GPIO  
GPIO  
Input without  
PU/PD  
Input without  
PU/PD  
CLKOUT1  
Output low  
without  
PU/PD  
CLKOUT2  
J26  
NVCC_CLK  
GPIO  
Output low  
without  
PU/PD  
DRAM_AC00  
DRAM_AC01  
DRAM_AC02  
DRAM_AC03  
DRAM_AC04  
DRAM_AC05  
DRAM_AC06  
DRAM_AC07  
DRAM_AC08  
DRAM_AC09  
DRAM_AC10  
DRAM_AC11  
DRAM_AC12  
DRAM_AC13  
DRAM_AC14  
DRAM_AC15  
DRAM_AC16  
DRAM_AC17  
DRAM_AC19  
DRAM_AC20  
DRAM_AC21  
DRAM_AC22  
DRAM_AC23  
F4  
F5  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Output low  
Output low  
Input  
K4  
J4  
Input  
L2  
Input  
L1  
Input  
F6  
Input  
J5  
Input  
J6  
Input  
K6  
E4  
D5  
N4  
N5  
K5  
N6  
M1  
M2  
N2  
AB4  
AB5  
W4  
V4  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Output low  
Output low  
Input  
Input  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
74  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
DRAM_AC24  
DRAM_AC25  
DRAM_AC26  
DRAM_AC27  
DRAM_AC28  
DRAM_AC29  
DRAM_AC30  
DRAM_AC31  
DRAM_AC32  
DRAM_AC33  
DRAM_AC34  
DRAM_AC35  
DRAM_AC36  
DRAM_AC37  
DRAM_AC38  
DRAM_ALERT_N  
DRAM_DM0  
DRAM_DM1  
DRAM_DM2  
DRAM_DM3  
DRAM_DQ00  
DRAM_DQ01  
DRAM_DQ02  
DRAM_DQ03  
DRAM_DQ04  
DRAM_DQ05  
DRAM_DQ06  
DRAM_DQ07  
DRAM_DQ08  
DRAM_DQ09  
U2  
U1  
N1  
R6  
W6  
V6  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
AC4  
AD5  
R4  
R5  
T1  
T2  
V5  
W5  
AB6  
R2  
A4  
F1  
AB1  
AG4  
A5  
B5  
D2  
D1  
C1  
B1  
A3  
B4  
F2  
G2  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
75  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
DRAM_DQ10  
DRAM_DQ11  
DRAM_DQ12  
DRAM_DQ13  
DRAM_DQ14  
DRAM_DQ15  
DRAM_DQ16  
DRAM_DQ17  
DRAM_DQ18  
DRAM_DQ19  
DRAM_DQ20  
DRAM_DQ21  
DRAM_DQ22  
DRAM_DQ23  
DRAM_DQ24  
DRAM_DQ25  
DRAM_DQ26  
DRAM_DQ27  
DRAM_DQ28  
DRAM_DQ29  
DRAM_DQ30  
DRAM_DQ31  
DRAM_DQS0_N  
DRAM_DQS0_P  
DRAM_DQS1_N  
DRAM_DQS1_P  
DRAM_DQS2_N  
DRAM_DQS2_P  
DRAM_DQS3_N  
DRAM_DQS3_P  
J1  
J2  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
DDR  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
K2  
K1  
E1  
E2  
AB2  
AA2  
W1  
W2  
V2  
V1  
AC1  
AC2  
AG5  
AF5  
AD2  
AD1  
AE1  
AF1  
AG3  
AF4  
B2  
A2  
DDRCLK  
H1  
G1  
DDRCLK  
Y1  
AA1  
AF2  
AG2  
DDRCLK  
DDRCLK  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
76  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
DRAM_RESET_N  
DRAM_VREF  
DRAM_ZN  
R1  
P1  
NVCC_DRAM  
NVCC_DRAM  
NVCC_DRAM  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ECSPI  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_ENET  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
DDR  
DDR  
Output low  
P2  
DDR  
ECSPI1_MISO  
ECSPI1_MOSI  
ECSPI1_SCLK  
ECSPI1_SS0  
ECSPI2_MISO  
ECSPI2_MOSI  
ECSPI2_SCLK  
ECSPI2_SS0  
ENET_MDC  
ENET_MDIO  
ENET_RD0  
A7  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO5.IO[8]  
GPIO5.IO[7]  
GPIO5.IO[6]  
GPIO5.IO[9]  
GPIO5.IO[12]  
GPIO5.IO[11]  
GPIO5.IO[10]  
GPIO5.IO[13]  
GPIO1.IO[16]  
GPIO1.IO[17]  
GPIO1.IO[26]  
GPIO1.IO[27]  
GPIO1.IO[28]  
GPIO1.IO[29]  
GPIO1.IO[25]  
GPIO1.IO[24]  
GPIO1.IO[21]  
GPIO1.IO[20]  
GPIO1.IO[19]  
GPIO1.IO[18]  
GPIO1.IO[23]  
GPIO1.IO[22]  
GPIO1.IO[0]  
GPIO1.IO[1]  
GPIO1.IO[2]  
GPIO1.IO[3]  
GPIO1.IO[4]  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Output low  
B7  
D6  
B6  
A8  
B8  
E6  
A6  
AC27  
AB27  
AE27  
AD27  
AD26  
AC26  
AE26  
AF27  
AG26  
AF26  
AG25  
AF25  
AG24  
AF24  
AG14  
AF14  
AG13  
AF13  
AG12  
ENET_RD1  
ENET_RD2  
ENET_RD3  
ENET_RXC  
ENET_RX_CTL  
ENET_TD0  
ENET_TD1  
ENET_TD2  
ENET_TD3  
ENET_TXC  
ENET_TX_CTL  
GPIO1_IO00  
GPIO1_IO011  
GPIO1_IO02  
GPIO1_IO03  
GPIO1_IO04  
Input with PU  
Input with PD  
Input with PD  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
77  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
GPIO1_IO052  
GPIO1_IO06  
GPIO1_IO07  
GPIO1_IO08  
GPIO1_IO09  
GPIO1_IO10  
GPIO1_IO11  
GPIO1_IO12  
GPIO1_IO13  
GPIO1_IO14  
GPIO1_IO15  
I2C1_SCL  
AF12  
AG11  
AF11  
AG10  
AF10  
AD10  
AC10  
AB10  
AD9  
AC9  
AB9  
E9  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_GPIO1  
NVCC_I2C  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PHY  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
ALT0  
GPIO1.IO[5]  
GPIO1.IO[6]  
GPIO1.IO[7]  
GPIO1.IO[8]  
GPIO1.IO[9]  
GPIO1.IO[10]  
GPIO1.IO[11]  
GPIO1.IO[12]  
GPIO1.IO[13]  
GPIO1.IO[14]  
GPIO1.IO[15]  
GPIO5.IO[14]  
GPIO5.IO[15]  
GPIO5.IO[16]  
GPIO5.IO[17]  
GPIO5.IO[18]  
GPIO5.IO[19]  
GPIO5.IO[20]  
GPIO5.IO[21]  
cjtag_wrapper.MOD  
cjtag_wrapper.TCK  
cjtag_wrapper.TDI  
cjtag_wrapper.TDO  
cjtag_wrapper.TMS  
cjtag_wrapper.TRST_B  
Output high  
Input with PD  
Input with PU  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PU  
Input with PU  
Input with PU  
Input with PU  
Input with PU  
Input  
I2C1_SDA  
F9  
NVCC_I2C  
I2C2_SCL  
D10  
D9  
NVCC_I2C  
I2C2_SDA  
NVCC_I2C  
I2C3_SCL  
E10  
F10  
NVCC_I2C  
I2C3_SDA  
NVCC_I2C  
I2C4_SCL  
D13  
E13  
D27  
F26  
NVCC_I2C  
I2C4_SDA  
NVCC_I2C  
JTAG_MOD  
JTAG_TCK  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
NVCC_JTAG  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
JTAG_TDI  
E27  
E26  
F27  
JTAG_TDO  
JTAG_TMS  
JTAG_TRST_B  
MIPI_CSI_CLK_N  
MIPI_CSI_CLK_P  
MIPI_CSI_D0_N  
MIPI_CSI_D0_P  
MIPI_CSI_D1_N  
C27  
A16  
B16  
A14  
B14  
A15  
PHY  
Input  
PHY  
Input  
PHY  
Input  
PHY  
Input  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
78  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
MIPI_CSI_D1_P  
MIPI_CSI_D2_N  
MIPI_CSI_D2_P  
MIPI_CSI_D3_N  
MIPI_CSI_D3_P  
MIPI_DSI_CLK_N  
MIPI_DSI_CLK_P  
MIPI_DSI_D0_N  
MIPI_DSI_D0_P  
MIPI_DSI_D1_N  
MIPI_DSI_D1_P  
MIPI_DSI_D2_N  
MIPI_DSI_D2_P  
MIPI_DSI_D3_N  
MIPI_DSI_D3_P  
MIPI_VREG_CAP  
NAND_ALE  
B15  
A17  
B17  
A18  
B18  
A11  
B11  
A9  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
VDD_MIPI_1P8  
0.35 - 0.45 V  
PHY  
PHY  
Input  
Input  
PHY  
Input  
PHY  
Input  
PHY  
Input  
PHY  
Output low  
Output low  
Output low  
Output low  
Output low  
Output low  
Output low  
Output low  
Output low  
Output low  
Output  
PHY  
PHY  
B9  
PHY  
A10  
B10  
A12  
B12  
A13  
B13  
D15  
N22  
N24  
P27  
M27  
L27  
K27  
P23  
K24  
K23  
N23  
M26  
L26  
K26  
N26  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3.IO[0]  
GPIO3.IO[1]  
GPIO3.IO[2]  
GPIO3.IO[3]  
GPIO3.IO[4]  
GPIO3.IO[5]  
GPIO3.IO[6]  
GPIO3.IO[7]  
GPIO3.IO[8]  
GPIO3.IO[9]  
GPIO3.IO[10]  
GPIO3.IO[11]  
GPIO3.IO[12]  
GPIO3.IO[13]  
Input with PD  
Input with PU  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
NAND_CE0_B  
NAND_CE1_B  
NAND_CE2_B  
NAND_CE3_B  
NAND_CLE  
NAND_DATA00  
NAND_DATA01  
NAND_DATA02  
NAND_DATA03  
NAND_DATA04  
NAND_DATA05  
NAND_DATA06  
NAND_DATA07  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
79  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
NAND_DQS  
NAND_RE_B  
NAND_READY_B  
NAND_WE_B  
NAND_WP_B  
ONOFF  
R22  
N27  
P26  
R26  
R27  
A25  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_NAND  
NVCC_SNVS_1P8  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT0  
GPIO3.IO[14]  
GPIO3.IO[15]  
GPIO3.IO[16]  
GPIO3.IO[17]  
GPIO3.IO[18]  
snvsmix.ONOFF  
Input with PD  
Input with PU  
Input with PD  
Input with PD  
Input with PD  
Input without  
PU/PD  
PCIE_CLK_N  
PCIE_CLK_P  
PCIE_RESREF  
PCIE_RXN_N  
PCIE_RXN_P  
PCIE_TXN_N  
A21  
B21  
D19  
A19  
B19  
A20  
VDD_PCI_1P8  
VDD_PCI_1P8  
VDD_PCI_1P8  
VDD_PCI_1P8  
VDD_PCI_1P8  
VDD_PCI_1P8  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
High-Z  
High-Z  
High-Z  
Input, High-Z  
Input, High-Z  
Output,  
High-Z  
PCIE_TXN_P  
B20  
A24  
VDD_PCI_1P8  
PHY  
Output,  
High-Z  
PMIC_ON_REQ  
NVCC_SNVS_1P8  
GPIO  
ALT0  
snvsmix.PMIC_ON_REQ  
Open-drain  
output high  
with PU  
PMIC_STBY_REQ  
POR_B  
E24  
B24  
NVCC_SNVS_1P8  
NVCC_SNVS_1P8  
GPIO  
GPIO  
ALT0 ccmsrcgpcmix.PMIC_STBY_RE Output low  
Q
with PD  
ALT0  
snvsmix.POR_B  
Input without  
PU/PD  
RTC_XTALI  
RTC_XTALO  
A26  
B25  
NVCC_SNVS_1P8 ANALOG  
NVCC_SNVS_1P8 ANALOG  
Input  
Output,  
inverted of  
RTC_XTALI  
RTC_RESET_B  
F24  
NVCC_SNVS_1P8  
GPIO  
ALT0  
snvsmix.RTC_POR_B  
Input without  
PU/PD  
SAI1_MCLK  
SAI1_RXC  
SAI1_RXD0  
SAI1_RXD1  
SAI1_RXD2  
AB18  
AF16  
AG15  
AF15  
AG17  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4.IO[20]  
GPIO4.IO[1]  
GPIO4.IO[2]  
GPIO4.IO[3]  
GPIO4.IO[4]  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
80  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
SAI1_RXD3  
SAI1_RXD4  
SAI1_RXD5  
SAI1_RXD6  
SAI1_RXD7  
SAI1_RXFS  
SAI1_TXC  
AF17  
AG18  
AF18  
AG19  
AF19  
AG16  
AC18  
AG20  
AF20  
AG21  
AF21  
AG22  
AF22  
AG23  
AF23  
AB19  
AD19  
AB22  
AC24  
AC19  
AD22  
AC22  
AD23  
AD6  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI1  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI2  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
NVCC_SAI3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO4.IO[5]  
GPIO4.IO[6]  
GPIO4.IO[7]  
GPIO4.IO[8]  
GPIO4.IO[9]  
GPIO4.IO[0]  
GPIO4.IO[11]  
GPIO4.IO[12]  
GPIO4.IO[13]  
GPIO4.IO[14]  
GPIO4.IO[15]  
GPIO4.IO[16]  
GPIO4.IO[17]  
GPIO4.IO[18]  
GPIO4.IO[19]  
GPIO4.IO[10]  
GPIO4.IO[27]  
GPIO4.IO[22]  
GPIO4.IO[23]  
GPIO4.IO[21]  
GPIO4.IO[25]  
GPIO4.IO[26]  
GPIO4.IO[24]  
GPIO5.IO[2]  
GPIO4.IO[29]  
GPIO4.IO[30]  
GPIO4.IO[28]  
GPIO5.IO[0]  
GPIO5.IO[1]  
GPIO4.IO[31]  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
SAI1_TXD0  
SAI1_TXD1  
SAI1_TXD2  
SAI1_TXD3  
SAI1_TXD4  
SAI1_TXD5  
SAI1_TXD6  
SAI1_TXD7  
SAI1_TXFS  
SAI2_MCLK  
SAI2_RXC  
SAI2_RXD0  
SAI2_RXFS  
SAI2_TXC  
SAI2_TXD0  
SAI2_TXFS  
SAI3_MCLK  
SAI3_RXC  
SAI3_RXD  
SAI3_RXFS  
SAI3_TXC  
AG7  
AF7  
AG8  
AG6  
SAI3_TXD  
AF6  
SAI3_TXFS  
AC6  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
81  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
SAI5_MCLK3  
AD15  
NVCC_SAI5  
GPIO  
ALT5  
GPIO3.IO[25]  
Input without  
PU/PD  
SAI5_RXC  
SAI5_RXD0  
SAI5_RXD1  
SAI5_RXD2  
SAI5_RXD3  
SAI5_RXFS  
SD1_CLK  
AC15  
AD18  
AC14  
AD13  
AC13  
AB15  
V26  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SAI5  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD1  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SD2  
NVCC_SAI3  
NVCC_SAI3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3.IO[20]  
GPIO3.IO[21]  
GPIO3.IO[22]  
GPIO3.IO[23]  
GPIO3.IO[24]  
GPIO3.IO[19]  
GPIO2.IO[0]  
GPIO2.IO[1]  
GPIO2.IO[2]  
GPIO2.IO[3]  
GPIO2.IO[4]  
GPIO2.IO[5]  
GPIO2.IO[6]  
GPIO2.IO[7]  
GPIO2.IO[8]  
GPIO2.IO[9]  
GPIO2.IO[10]  
GPIO2.IO[11]  
GPIO2.IO[12]  
GPIO2.IO[13]  
GPIO2.IO[14]  
GPIO2.IO[15]  
GPIO2.IO[16]  
GPIO2.IO[17]  
GPIO2.IO[18]  
GPIO2.IO[19]  
GPIO2.IO[20]  
GPIO5.IO[5]  
GPIO5.IO[4]  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
SD1_CMD  
V27  
SD1_DATA0  
SD1_DATA1  
SD1_DATA2  
SD1_DATA3  
SD1_DATA4  
SD1_DATA5  
SD1_DATA6  
SD1_DATA7  
SD1_RESET_B  
SD1_STROBE  
SD2_CD_B  
SD2_CLK  
Y27  
Y26  
T27  
T26  
U27  
U26  
W27  
W26  
R23  
R24  
AA26  
W23  
W24  
AB23  
AB24  
V24  
SD2_CMD  
SD2_DATA0  
SD2_DATA1  
SD2_DATA2  
SD2_DATA3  
SD2_RESET_B  
SD2_WP  
V23  
AB26  
AA27  
AF8  
SPDIF_EXT_CLK  
SPDIF_RX  
AG9  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
82  
Package information and contact assignments  
Table 65. i.MX 8M Mini 14 x 14 mm functional contact assignments (continued)  
Reset condition  
Ball name  
Ball  
Power group  
Ball type  
Input/  
Output  
status  
Default  
mode  
Default function  
SPDIF_TX  
AF9  
D26  
J23  
NVCC_SAI3  
NVCC_JTAG  
GPIO  
GPIO  
ALT5  
ALT0  
GPIO5.IO[3]  
tcu.TEST_MODE  
Input with PD  
Input with PD  
Output low  
TEST_MODE  
TSENSOR_TEST_  
OUT  
VDD_ANA1_1P8  
ANALOG  
TSENSOR_REST_  
EXT  
J24  
VDD_ANA1_1P8  
ANALOG  
UART1_RXD  
UART1_TXD  
UART2_RXD  
UART2_TXD  
UART3_RXD  
UART3_TXD  
UART4_RXD  
UART4_TXD  
USB1_DN  
E14  
F13  
F15  
E15  
E18  
D18  
F19  
F18  
A22  
B22  
D22  
E19  
F22  
A23  
B23  
D23  
E22  
F23  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
NVCC_UART  
VDD_USB_3P3  
VDD_USB_3P3  
VDD_USB_1P8  
VDD_USB_1P8  
VDD_USB_3P3  
VDD_USB_3P3  
VDD_USB_3P3  
VDD_USB_1P8  
VDD_USB_1P8  
VDD_USB_3P3  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
GPIO  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
PHY  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO5.IO[22]  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input with PD  
Input  
GPIO5.IO[23]  
GPIO5.IO[24]  
GPIO5.IO[25]  
GPIO5.IO[26]  
GPIO5.IO[27]  
GPIO5.IO[28]  
GPIO5.IO[29]  
USB1_DP  
Input  
USB1_ID  
Input  
USB1_TXRTUNE  
USB1_VBUS  
USB2_DN  
Input  
USB2_DP  
Input  
USB2_ID  
Input  
USB2_TXRTUNE  
USB2_VBUS  
1
2
3
Works as JTAG Active output when the internal reset is asserted, default is output low. After the internal reset is deasserted,  
it becomes input with PD.  
Works as INT_BOOT output when the internal reset is asserted, default is output high. After the internal reset is deasserted,  
it becomes input with PU.  
Works as TESTER_ACK input when the internal reset is asserted, default is input without PU/PD. After the internal reset is  
deasserted, it becomes input with PD.  
5.1.3  
i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map  
Table 66 shows the i.MX 8M Mini 14 x 14 mm 0.5 mm pitch ball map.  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
83  
Package information and contact assignments  
Table 66. 14 x 14 mm, 0.5 mm pitch ball map  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
1
2
3
4
5
6
7
8
9
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
84  
Package information and contact assignments  
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
1
2
3
4
5
6
7
8
9
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
85  
Package information and contact assignments  
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
1
2
3
4
5
6
7
8
9
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
86  
Package information and contact assignments  
Table 66. 14 x 14 mm, 0.5 mm pitch ball map (continued)  
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27  
1
2
3
4
5
6
7
8
9
5.2  
DDR pin function list  
Table 67 shows the DDR pin function list.  
Table 67. DDR pin function list  
Ball name  
LPDDR4  
DDR4  
DDR3/3L  
DRAM_DQS0_P  
DRAM_DQS0_N  
DRAM_DM0  
DQS0_t_A  
DQS0_c_A  
DMI0_A  
DQ0_A  
DQSL_t_A  
DQSL_c_A  
DML_n_A / DBIL_n_A  
DQL0_A  
DQSL_A  
DQSL#_A  
DML_A  
DRAM_DQ00  
DRAM_DQ01  
DRAM_DQ02  
DRAM_DQ03  
DRAM_DQ04  
DRAM_DQ05  
DQL0_A  
DQL1_A  
DQL2_A  
DQL3_A  
DQL4_A  
DQL5_A  
DQ1_A  
DQL1_A  
DQ2_A  
DQL2_A  
DQ3_A  
DQL3_A  
DQ4_A  
DQL4_A  
DQ5_A  
DQL5_A  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
87  
Package information and contact assignments  
Table 67. DDR pin function list (continued)  
DRAM_DQ06  
DRAM_DQ07  
DRAM_DQS1_P  
DRAM_DQS1_N  
DRAM_DM1  
DQ6_A  
DQ7_A  
DQL6_A  
DQL7_A  
DQL6_A  
DQL7_A  
DQSU_A  
DQSU#_A  
DMU_A  
DQS1_t_A  
DQS1_c_A  
DMI1_A  
DQ08_A  
DQ09_A  
DQ10_A  
DQ11_A  
DQ12_A  
DQ13_A  
DQ14_A  
DQ15_A  
DQS0_t_B  
DQS0_c_B  
DMI0_B  
DQ0_B  
DQSU_t_A  
DQSU_c_A  
DMU_n_A / DBIU_n_A  
DQU0_A  
DRAM_DQ08  
DRAM_DQ09  
DRAM_DQ10  
DRAM_DQ11  
DRAM_DQ12  
DRAM_DQ13  
DRAM_DQ14  
DRAM_DQ15  
DRAM_DQS2_P  
DRAM_DQS2_N  
DRAM_DM2  
DQU0_A  
DQU1_A  
DQU2_A  
DQU3_A  
DQU4_A  
DQU5_A  
DQU6_A  
DQU7_A  
DQSL_B  
DQSL#_B  
DML_B  
DQU1_A  
DQU2_A  
DQU3_A  
DQU4_A  
DQU5_A  
DQU6_A  
DQU7_A  
DQSL_t_B  
DQSL_c_B  
DML_n_B / DBIL_n_B  
DQL0_B  
DRAM_DQ16  
DRAM_DQ17  
DRAM_DQ18  
DRAM_DQ19  
DRAM_DQ20  
DRAM_DQ20  
DRAM_DQ21  
DRAM_DQ22  
DRAM_DQ23  
DRAM_DQS3_P  
DRAM_DQS3_N  
DRAM_DM3  
DQL0_B  
DQL1_B  
DQL2_B  
DQL3_B  
DQL4_B  
DQL4_B  
DQL5_B  
DQL6_B  
DQL7_B  
DQSU_B  
DQSU#_B  
DMU_B  
DQ1_B  
DQL1_B  
DQ2_B  
DQL2_B  
DQ3_B  
DQL3_B  
DQ4_B  
DQL4_B  
DQ4_B  
DQL4_B  
DQ5_B  
DQL5_B  
DQ6_B  
DQL6_B  
DQ7_B  
DQL7_B  
DQS1_t_B  
DQS1_c_B  
DMI1_B  
DQ08_B  
DQ09_B  
DQ10_B  
DQ11_B  
DQ12_B  
DQ13_B  
DQSU_t_B  
DQSU_c_B  
DMU_n_B / DBIU_n_B  
DQU0_B  
DRAM_DQ24  
DRAM_DQ25  
DRAM_DQ26  
DRAM_DQ27  
DRAM_DQ28  
DRAM_DQ29  
DQU0_B  
DQU1_B  
DQU2_B  
DQU3_B  
DQU4_B  
DQU5_B  
DQU1_B  
DQU2_B  
DQU3_B  
DQU4_B  
DQU5_B  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
88  
Package information and contact assignments  
Table 67. DDR pin function list (continued)  
DRAM_DQ30  
DRAM_DQ31  
DRAM_RESET_N  
DRAM_ALERT_N  
DRAM_AC00  
DRAM_AC01  
DRAM_AC02  
DRAM_AC03  
DRAM_AC04  
DRAM_AC05  
DRAM_AC06  
DRAM_AC07  
DRAM_AC08  
DRAM_AC09  
DRAM_AC10  
DRAM_AC11  
DRAM_AC12  
DRAM_AC13  
DRAM_AC14  
DRAM_AC15  
DRAM_AC16  
DRAM_AC17  
DRAM_AC19  
DRAM_AC20  
DRAM_AC21  
DRAM_AC22  
DRAM_AC23  
DRAM_AC24  
DRAM_AC25  
DRAM_AC26  
DRAM_AC27  
DRAM_AC28  
DRAM_AC29  
DRAM_AC30  
DQ14_B  
DQ15_B  
RESET_N  
MTEST1  
CKE0_A  
CKE1_A  
CS0_A  
CS1_A  
CK_t_A  
CK_c_A  
DQU6_B  
DQU6_B  
DQU7_B  
RESET#  
MTEST1  
CKE0  
CKE1  
CS0#  
DQU7_B  
RESET_n  
ALERT_n / MTEST1  
CKE0  
CKE1  
CS0_n  
C0  
BG0  
BG1  
ACT_n  
A9  
BA2  
A14  
A15  
A9  
CA0_A  
CA1_A  
CA2_A  
CA3_A  
CA4_A  
CA5_A  
A12  
A12 / BC#  
A11  
A11  
A7  
A7  
A8  
A8  
A6  
A6  
A5  
A5  
A4  
A4  
A3  
A3  
CK_t_A  
CK_c_A  
MTEST  
CK_t_B  
CK_c_B  
CK_A  
CK#_A  
MTEST  
CK_B  
CK#_B  
MTEST  
CKE0_B  
CKE1_B  
CS1_B  
CS0_B  
CK_t_B  
CK_c_B  
A2  
A2  
A1  
A1  
BA1  
BA1  
PARITY  
A13  
CA0_B  
CA1_B  
CA2_B  
A13  
BA0  
BA0  
A10 / AP  
A10 / AP  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
89  
Package information and contact assignments  
Table 67. DDR pin function list (continued)  
DRAM_AC31  
DRAM_AC32  
DRAM_AC33  
DRAM_AC34  
DRAM_AC35  
DRAM_AC36  
DRAM_AC37  
DRAM_AC38  
DRAM_ZN  
CA3_B  
CA4_B  
CA5_B  
A0  
C2  
A0  
CAS_n / A15  
WE_n / A14  
RAS_n / A16  
ODT0  
CAS#  
WE#  
RAS#  
ODT0  
ODT1  
CS1#  
ZQ  
ODT1  
CS1_n  
ZQ  
ZQ  
DRAM_VREF  
VREF  
VREF  
VREF  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
90  
Revision history  
6 Revision history  
Table 68 provides a revision history for this data sheet.  
Table 68. Revision history  
Rev.  
number  
Date  
Substantive change(s)  
Rev. 1  
07/2020 • Updated the eMMC descriptions in the Table 1, "Features"  
• Updated numbers of SD 3.0 in the Figure 1, "i.MX 8M Mini system block diagram"  
• Added two part numbers and updated the part differentiator in the Table 2, "Orderable part  
numbers"  
• Updated the part differentiator and Fusing in the Figure 2, "Part number nomenclature—i.MX 8M  
Mini family of processors"  
• Updated eCSPI, SJC, and uSDHC descriptions in the Table 3, "i.MX 8M Mini modules list"  
• Updated a typo for NVCC_ENET in the Table 4, "Recommended connections for unused power  
supply rails"  
• Updated the min values and a typo in the Table 7, "Absolute maximum ratings"; removed ESD  
parameters from the Table 7, "Absolute maximum ratings"  
• Added the Table 8, "Electrostatic discharge and latch up ratings"  
• Added a footnote in the Table 10, "Operating ranges"  
• Added VDD_24M_XTAL_1P8, VDD_ARM_PLL_1P8, and PVCCx_1P8 in the Table 13, "Maximum  
supply currents"  
• Updated the Table 14, "Chip power in different LP mode"  
• Updated the suspend mode state of VDD_MIPI_0P9 and VDD_MIPI_1P2 in the Table 15, "The  
power supply states"  
• Updated the maximum values of T1, T2, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13 and minimum  
value of T3 in the Table 17, "Power-up sequence"  
• Updated the maximum values in the Table 18, "Power-down sequence"  
• Removed the USBx_ID, ONOFF, and POR_B from the Table 22, "Additional leakage parameters"  
• Added GPIO1_09, I2C2_SCL, and I2C2_SDA in the Table 35, "ENET signal mapping"  
• Removed 0x2 from the Section 3.9.10.1.1, SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0,  
0x1 and Section 3.9.10.1.3, DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
• Updated the parameters of GPIO1_IO00, GPIO1_IO01, GPIO1_IO05, GPIO1_IO09, and  
SAI5_MCLK in the Table 65, "i.MX 8M Mini 14 x 14 mm functional contact assignments"  
• Fixed a typo in the Table 66, "14 x 14 mm, 0.5 mm pitch ball map"  
Rev. 0.2  
04/2019 • Updated numbers of eMMC and FlexSPI in the Figure 1, "i.MX 8M Mini system block diagram"  
• Updated the descriptions about USB and uSDHC in the Table 3, "i.MX 8M Mini modules list"  
• Updated the comment of VDD_VPU and the LPDDR4 maximum value of NVCC_DRAM in the  
Table 10, "Operating ranges"  
Rev. 0.1  
Rev. 0  
02/2019 • Updated the SNVS states in the Table 15, "The power supply states"  
02/2019 • Initial version  
i.MX 8M Mini Applications Processor Datasheet for Consumer Products, Rev. 1, 07/2020  
NXP Semiconductors  
91  
Information in this document is provided solely to enable system and software implementers  
to use NXP products. There are no express or implied copyright licenses granted hereunder  
to design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its  
products for any particular purpose, nor does NXP assume any liability arising out of the  
application or use of any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages. “Typical” parameters that  
may be provided in NXP data sheets and/or specifications can and do vary in different  
applications, and actual performance may vary over time. All operating parameters,  
including “typicals” must be validated for each customer application by customer‚  
customer’s technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale,  
which can be found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s  
applications and products, and NXP accepts no liability for any vulnerability that is  
discovered. Customers should implement appropriate design and operating safeguards to  
minimize the risks associated with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD,  
COOLFLUX, EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES,  
MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS,  
MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo,  
AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, ColdFire+, C-Ware, the Energy Efficient  
Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC, Processor  
Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure, the SafeAssure logo, StarCore,  
StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC,  
Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS,  
EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product  
or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,  
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView,  
SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS,  
ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any  
or all of patents, copyrights, designs and trade secrets. All rights reserved. Oracle and Java  
are registered trademarks of Oracle and/or its affiliates.The Power Architecture and  
Power.org word marks and the Power and Power.org logos and related marks are  
trademarks and service marks licensed by Power.org.  
© 2019-2020 NXP B.V.  
Document Number: IMX8MMCEC  
Rev. 1  
07/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY