MK40DX128VLL7 [NXP]

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 128KB Flash, 72MHz, Segment LCD, USB, QFP 100;
MK40DX128VLL7
型号: MK40DX128VLL7
厂家: NXP    NXP
描述:

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 128KB Flash, 72MHz, Segment LCD, USB, QFP 100

时钟 CD 微控制器 外围集成电路
文件: 总71页 (文件大小:2195K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K40P100M72SF1  
Rev. 3, 11/2012  
Freescale Semiconductor  
Data Sheet: Technical Data  
K40P100M72SF1  
K40 Sub-Family  
Supports: MK40DX128VLL7,  
MK40DX256VLL7, MK40DX64VMC7,  
MK40DX128VMC7, MK40DX256VMC7  
Features  
Analog modules  
– Two 16-bit SAR ADCs  
– Programmable gain amplifier (PGA) (up to x64)  
integrated into each ADC  
– 12-bit DAC  
– Three analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
Clocks  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
Timers  
– Programmable delay block  
– Eight-channel motor control/general purpose/PWM  
timer  
– Two 2-channel quadrature decoder/general purpose  
timers  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
System peripherals  
– Multiple low-power modes to provide power  
optimization based on application requirements  
– 16-channel DMA controller, supporting up to 63  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Communication interfaces  
– USB full-/low-speed On-the-Go controller with on-  
chip transceiver  
– Controller Area Network (CAN) module  
– Two SPI modules  
– Two I2C modules  
– Five UART modules  
– I2S module  
– 128-bit unique identification (ID) number per chip  
Human-machine interface  
– Segment LCD controller supporting up to 36  
frontplanes and 8 backplanes, or 40 frontplanes and  
4 backplanes, depending on the package size  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Freescale reserves the right to change the detail specifications as may be  
required to permit improvements in the design of its products.  
© 2012 Freescale Semiconductor, Inc.  
Table of Contents  
1 Ordering parts...........................................................................3  
6 Peripheral operating requirements and behaviors....................22  
6.1 Core modules....................................................................22  
6.1.1 Debug trace timing specifications.........................22  
6.1.2 JTAG electricals....................................................22  
6.2 System modules................................................................25  
6.3 Clock modules...................................................................25  
6.3.1 MCG specifications...............................................25  
6.3.2 Oscillator electrical specifications.........................27  
6.3.3 32 kHz Oscillator Electrical Characteristics...........30  
6.4 Memories and memory interfaces.....................................30  
6.4.1 Flash electrical specifications................................30  
6.4.2 EzPort Switching Specifications............................35  
6.5 Security and integrity modules..........................................36  
6.6 Analog...............................................................................36  
6.6.1 ADC electrical specifications.................................36  
6.6.2 CMP and 6-bit DAC electrical specifications.........43  
6.6.3 12-bit DAC electrical characteristics.....................46  
6.6.4 Voltage reference electrical specifications............49  
6.7 Timers................................................................................50  
6.8 Communication interfaces.................................................50  
6.8.1 USB electrical specifications.................................50  
6.8.2 USB DCD electrical specifications........................51  
6.8.3 USB VREG electrical specifications......................51  
6.8.4 CAN switching specifications................................52  
6.8.5 DSPI switching specifications (limited voltage  
1.1 Determining valid orderable parts......................................3  
2 Part identification......................................................................3  
2.1 Description.........................................................................3  
2.2 Format...............................................................................3  
2.3 Fields.................................................................................3  
2.4 Example............................................................................4  
3 Terminology and guidelines......................................................4  
3.1 Definition: Operating requirement......................................4  
3.2 Definition: Operating behavior...........................................5  
3.3 Definition: Attribute............................................................5  
3.4 Definition: Rating...............................................................6  
3.5 Result of exceeding a rating..............................................6  
3.6 Relationship between ratings and operating  
requirements......................................................................6  
3.7 Guidelines for ratings and operating requirements............7  
3.8 Definition: Typical value.....................................................7  
3.9 Typical value conditions....................................................8  
4 Ratings......................................................................................9  
4.1 Thermal handling ratings...................................................9  
4.2 Moisture handling ratings..................................................9  
4.3 ESD handling ratings.........................................................9  
4.4 Voltage and current operating ratings...............................9  
5 General.....................................................................................10  
5.1 AC electrical characteristics..............................................10  
5.2 Nonswitching electrical specifications...............................10  
5.2.1 Voltage and current operating requirements.........11  
5.2.2 LVD and POR operating requirements.................11  
5.2.3 Voltage and current operating behaviors..............12  
5.2.4 Power mode transition operating behaviors..........13  
5.2.5 Power consumption operating behaviors..............14  
5.2.6 Designing with radiated emissions in mind...........18  
5.2.7 Capacitance attributes..........................................18  
5.3 Switching specifications.....................................................19  
5.3.1 Device clock specifications...................................19  
5.3.2 General switching specifications...........................19  
5.4 Thermal specifications.......................................................20  
5.4.1 Thermal operating requirements...........................20  
5.4.2 Thermal attributes.................................................21  
range)....................................................................52  
6.8.6 DSPI switching specifications (full voltage range).53  
6.8.7 I2C switching specifications..................................55  
6.8.8 UART switching specifications..............................55  
6.8.9 I2S/SAI Switching Specifications..........................55  
6.9 Human-machine interfaces (HMI)......................................60  
6.9.1 TSI electrical specifications...................................60  
6.9.2 LCD electrical characteristics................................61  
7 Dimensions...............................................................................62  
7.1 Obtaining package dimensions.........................................62  
8 Pinout........................................................................................62  
8.1 K40 Signal Multiplexing and Pin Assignments..................62  
8.2 K40 Pinouts.......................................................................67  
9 Revision History........................................................................69  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
2
Freescale Semiconductor, Inc.  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to www.freescale.com and perform a part number search for  
the following device numbers: PK40 and MK40 .  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K40  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
3
 
 
 
 
 
 
Terminology and guidelines  
Field  
Description  
Values  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
• MJ = 256 MAPBGA (17 mm x 17 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK40DN512ZVMD10  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
4
Freescale Semiconductor, Inc.  
 
 
 
Terminology and guidelines  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
5
 
 
Terminology and guidelines  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
6
Freescale Semiconductor, Inc.  
 
 
 
Terminology and guidelines  
3.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
Expected permanent failure  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
7
 
 
Terminology and guidelines  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
3.3 V supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
8
Freescale Semiconductor, Inc.  
 
Ratings  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
VHBM  
VCDM  
ILAT  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
1
2
V
-100  
+100  
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage  
–0.3  
3.8  
V
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
9
 
 
 
 
 
 
 
 
 
 
General  
Symbol  
IDD  
VDIO  
Description  
Min.  
Max.  
185  
Unit  
mA  
V
Digital supply current  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog1, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–0.3  
5.5  
VAIO  
–0.3  
VDD + 0.3  
25  
V
ID  
–25  
mA  
V
VDDA  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
VUSB_DP  
VUSB_DM  
VREGIN  
VBAT  
USB_DP input voltage  
V
USB_DM input voltage  
–0.3  
3.63  
V
USB regulator input  
–0.3  
6.0  
V
RTC battery supply voltage  
–0.3  
3.8  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
5.2 Nonswitching electrical specifications  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
10  
Freescale Semiconductor, Inc.  
 
 
 
 
General  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
1.71  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICDIO  
Input hysteresis  
0.06 × VDD  
-5  
V
Digital pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
3
mA  
IICAIO  
Analog2, EXTAL, and XTAL pin DC injection current —  
single pin  
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection  
to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at  
the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current  
limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN  
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting  
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC  
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is  
calculated as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
11  
 
 
 
 
 
General  
5.2.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
12  
Freescale Semiconductor, Inc.  
 
 
General  
Notes  
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
100  
mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
1
1
IIN  
Input leakage current (per pin) at 25°C  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
20  
20  
0.025  
1
μA  
μA  
kΩ  
kΩ  
IOZ  
RPU  
RPD  
50  
2
3
Internal pulldown resistors  
50  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 72 MHz  
• Bus clock = 36 MHz  
• Flash clock = 24 MHz  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
13  
 
 
 
 
General  
Table 5. Power mode transition operating behaviors  
Symbol  
tPOR  
Description  
Min.  
Max.  
Unit  
Notes  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
112  
74  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
73  
5.9  
5.8  
4.2  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
• @ 1.8V  
• @ 3.0V  
21.5  
21.5  
25  
30  
mA  
mA  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
• @ 1.8V  
• @ 3.0V  
• @ 25°C  
• @ 125°C  
31  
34  
mA  
31  
32  
34  
39  
mA  
mA  
mA  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
12.5  
2
5
6
7
IDD_WAIT Wait mode reduced frequency current at 3.0 V —  
all peripheral clocks disabled  
7.2  
0.996  
1.46  
mA  
mA  
mA  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
14  
Freescale Semiconductor, Inc.  
 
 
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks disabled  
0.61  
mA  
8
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
0.35  
0.384  
0.628  
0.567  
0.793  
1.2  
mA  
mA  
mA  
• @ 70°C  
• @ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• @ –40 to 25°C  
• @ 70°C  
5.9  
32.7  
59.8  
188  
μA  
μA  
μA  
26.1  
98.1  
• @ 105°C  
IDD_LLS Low leakage stop mode current at 3.0 V  
9
9
• @ –40 to 25°C  
• @ 70°C  
2.6  
8.6  
μA  
μA  
μA  
10.3  
42.5  
29.1  
92.5  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
• @ –40 to 25°C  
• @ 70°C  
1.9  
6.9  
5.8  
μA  
μA  
μA  
12.1  
41.9  
• @ 105°C  
28.1  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
• @ –40 to 25°C  
• @ 70°C  
1.59  
4.3  
5.5  
9.5  
34  
μA  
μA  
μA  
• @ 105°C  
17.5  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
• @ –40 to 25°C  
• @ 70°C  
1.47  
2.97  
5.4  
8.1  
32  
μA  
μA  
μA  
• @ 105°C  
12.41  
IDD_VBAT Average current with RTC and 32kHz disabled at  
3.0 V  
• @ –40 to 25°C  
• @ 70°C  
0.19  
0.49  
2.2  
0.22  
0.64  
3.2  
μA  
μA  
μA  
• @ 105°C  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
15  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when CPU is not accessing RTC  
registers  
10  
• @ 1.8V  
• @ –40 to 25°C  
• @ 70°C  
0.57  
0.90  
2.4  
0.67  
1.2  
μA  
μA  
μA  
• @ 105°C  
• @ 3.0V  
3.5  
• @ –40 to 25°C  
• @ 70°C  
0.67  
1.0  
0.94  
1.4  
μA  
μA  
μA  
• @ 105°C  
2.7  
3.9  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral  
clocks disabled.  
3. 72MHz core and system clock, 36MHz bus clock, and 24MHz flash clock. MCG configured for FEE mode. All peripheral  
clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. 25MHz core, system, bus and flash clock. MCG configured for FEI mode.  
6. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled. Code executing from flash.  
7. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core and system clock, 4 MHz and bus clock, and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
9. Data reflects devices with 128 KB of RAM.  
10. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater  
than 50 MHz frequencies.  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
16  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
 
 
General  
Figure 2. Run mode supply current vs. core frequency  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
17  
General  
Figure 3. VLPR mode supply current vs. core frequency  
5.2.6 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.7 Capacitance attributes  
Table 7. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
18  
Freescale Semiconductor, Inc.  
 
 
General  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 8. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
72  
MHz  
MHz  
fSYS_USB  
System and core clock when Full Speed USB in  
operation  
20  
fBUS  
Bus clock  
50  
25  
25  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
Flash clock  
LPTMR clock  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fERCLK  
fLPTMR_pin  
Flash clock  
0.5  
16  
25  
16  
8
External reference clock  
LPTMR clock  
fLPTMR_ERCLK LPTMR external reference clock  
fFlexCAN_ERCLK FlexCAN external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, and I2C signals.  
Table 9. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
100  
ns  
3
disabled, analog filter enabled) — Asynchronous path  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
19  
 
 
 
 
General  
Table 9. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
16  
ns  
3
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
ns  
3
4
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew disabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
12  
6
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or  
may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75pF load  
5. 15pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 10. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
20  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
General  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
121  
MAPBGA  
100 LQFP  
Unit  
Notes  
Single-layer  
(1s)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
74  
42  
62  
38  
23  
52  
°C/W  
1, 2  
Four-layer  
(2s2p)  
RθJA  
Thermal  
resistance,  
junction to  
ambient (natural  
convection)  
40  
42  
34  
25  
°C/W  
°C/W  
°C/W  
°C/W  
1, 3  
1,3  
1,3  
4
Single-layer  
(1s)  
RθJMA  
RθJMA  
RθJB  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Four-layer  
(2s2p)  
Thermal  
resistance,  
junction to  
ambient (200 ft./  
min. air speed)  
Thermal  
resistance,  
junction to  
board  
RθJC  
Thermal  
resistance,  
junction to case  
19  
4
12  
2
°C/W  
°C/W  
5
6
ΨJT  
Thermal  
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1.  
2.  
3.  
4.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the  
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.  
Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental  
Conditions—Forced Convection (Moving Air) with the board horizontal. For the LQFP, the board meets the JESD51-7  
specification.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
21  
 
 
 
 
 
Peripheral operating requirements and behaviors  
5.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
6.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug trace timing specifications  
Table 11. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
3
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
2
ns  
Figure 4. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 5. Trace data specifications  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
22  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.1.2 JTAG electricals  
Table 12. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 13. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
TCLK rise and fall times  
3
ns  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Table 13. JTAG full voltage range electricals (continued)  
Symbol  
J5  
Description  
Min.  
20  
0
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
J8  
25  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 6. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 7. Boundary scan (JTAG) timing  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 8. Test Access Port timing  
TCLK  
TRST  
J14  
J13  
Figure 9. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
25  
 
 
 
Peripheral operating requirements and behaviors  
6.3.1 MCG specifications  
Table 14. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.3  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
0.3  
fintf_ft  
fintf_t  
floc_low  
floc_high  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX32 DCO output  
frequency  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Jcyc_fll  
FLL period jitter  
ps  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
6
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
7
7
1060  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
8
8
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
9
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
7. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
8. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
9. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
27  
 
 
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.3.2.1 Oscillator DC electrical specifications  
Table 15. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
0.6  
V
mode) — low-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 16. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
29  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default and  
cannot be moved into high power/gain mode.  
6.3.3 32 kHz Oscillator Electrical Characteristics  
This section describes the module electrical characteristics.  
6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 17. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
Parasitical capacitance of EXTAL32 and XTAL32  
Peak-to-peak amplitude of oscillation  
100  
5
MΩ  
pF  
V
Cpara  
7
1
Vpp  
0.6  
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
6.3.3.2 32kHz oscillator frequency specifications  
Table 18. 32kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
vec_extal32 Externally provided input clock amplitude  
700  
VBAT  
mV  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
6.4 Memories and memory interfaces  
6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
30  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 19. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk32k Erase Block high-voltage time for 32 KB  
thversblk256k Erase Block high-voltage time for 256 KB  
113  
452  
904  
ms  
ms  
ms  
1
1
1
52  
104  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 20. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk32k  
• 32 KB data flash  
0.5  
1.7  
ms  
ms  
trd1blk256k  
• 256 KB program flash  
trd1sec1k Read 1s Section execution time (data flash  
sector)  
60  
60  
μs  
μs  
1
1
trd1sec2k Read 1s Section execution time (program flash  
sector)  
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 32 KB data flash  
65  
45  
30  
μs  
μs  
μs  
1
1
tpgm4  
145  
2
tersblk32k  
55  
465  
985  
ms  
ms  
tersblk256k  
• 256 KB program flash  
122  
tersscr  
Erase Flash Sector execution time  
Program Section execution time  
• 512 B program flash  
• 512 B data flash  
14  
114  
ms  
2
tpgmsec512p  
tpgmsec512d  
tpgmsec1kp  
tpgmsec1kd  
2.4  
4.7  
4.7  
9.3  
ms  
ms  
ms  
ms  
• 1 KB program flash  
• 1 KB data flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
trdonce  
1
2
tpgmonce Program Once execution time  
65  
μs  
tersall  
Erase All Blocks execution time  
175  
1500  
ms  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
31  
 
Peripheral operating requirements and behaviors  
Table 20. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tvfykey  
Verify Backdoor Access Key execution time  
30  
μs  
1
Swap Control execution time  
• control code 0x01  
• control code 0x02  
• control code 0x04  
• control code 0x08  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
Program Partition for EEPROM execution time  
• 32 KB FlexNVM  
tpgmpart32k  
70  
ms  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram8k  
tsetram32k  
50  
0.3  
0.7  
μs  
ms  
ms  
• 8 KB EEPROM backup  
• 32 KB EEPROM backup  
0.5  
1.0  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b8k  
teewr8b16k  
teewr8b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b8k  
teewr16b16k  
teewr16b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
340  
385  
475  
1700  
1800  
2000  
μs  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b8k  
teewr32b16k  
teewr32b32k  
• 8 KB EEPROM backup  
• 16 KB EEPROM backup  
• 32 KB EEPROM backup  
545  
630  
810  
1950  
2050  
2250  
μs  
μs  
μs  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
32  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
6.4.1.3 Flash high voltage current behaviors  
Table 21. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
2.5  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
6.4.1.4 Reliability specifications  
Table 22. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
2
3
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
10 K  
100  
50 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
Write endurance  
5
50  
years  
years  
20  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree8k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
• EEPROM backup to FlexRAM ratio = 8192  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
writes  
20 M  
100 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering  
Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
33  
 
 
 
Peripheral operating requirements and behaviors  
The bytes not assigned to data flash via the FlexNVM partition code are used by the flash  
memory module to obtain an effective endurance increase for the EEPROM data. The  
built-in EEPROM record management system raises the number of program/erase cycles  
that can be attained prior to device wear-out by cycling the EEPROM data through a  
larger EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycd  
EEESPLIT × EEESIZE  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;  
entered with the Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with the Program  
Partition command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycd — data flash cycling endurance (the following graph assumes 10,000  
cycles)  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 10. EEPROM backup writes to FlexRAM  
6.4.2 EzPort Switching Specifications  
Table 23. EzPort switching specifications  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
1.71  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
16  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
35  
 
Peripheral operating requirements and behaviors  
EZP_CK  
EP3  
EP4  
EP2  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EP5  
EP6  
EZP_D (input)  
Figure 11. EzPort Timing Diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are  
not direct device pins. Accuracy specifications for these pins are defined in Table 26 and  
Table 27.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
36  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
6.6.1.1 16-bit ADC operating conditions  
Table 24. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Ground voltage  
Absolute  
Delta to VDD (VDD - VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
Delta to VSS (VSS - VSSA  
)
0
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input capacitance  
Input resistance  
• 16-bit mode  
8
4
10  
5
pF  
• 8-/10-/12-bit modes  
RADIN  
RAS  
2
5
kΩ  
kΩ  
Analog source  
resistance  
13-/12-bit modes  
fADCK < 4 MHz  
3
5
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13 bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance must be kept as low as possible to achieve the best  
results. The results in this data sheet were derived from a system which has < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1ns.  
4. To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
37  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 12. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
0.7  
-1.1 to +1.9  
-0.3 to 0.5  
• <12-bit modes  
• 12-bit modes  
0.2  
1.0  
INL  
EFS  
Integral non-  
linearity  
-2.7 to +1.9  
-0.7 to +0.5  
LSB4  
LSB4  
5
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.5  
-4  
Full-scale error  
-5.4  
-1.8  
VADIN =  
VDDA  
-1.4  
5
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
38  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
-1 to 0  
Max.  
Unit  
Notes  
EQ  
Quantization  
error  
• 16-bit modes  
• ≤13-bit modes  
LSB4  
0.5  
ENOB  
Effective number 16-bit differential mode  
6
of bits  
• Avg = 32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
–94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
dB  
16-bit single-ended mode  
• Avg = 32  
90  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
25 °C  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit must be set, the HSC bit must be clear with 1 MHz ADC conversion clock  
speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
39  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 26. 16-bit ADC with PGA operating conditions  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREF_OU VREF_OU VREF_OU  
V
2, 3  
T
T
T
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
V
Input Common  
Mode range  
RPGAD  
Differential input Gain = 1, 2, 4, 8  
128  
64  
kΩ  
IN+ to IN-4  
impedance  
Gain = 16, 32  
Gain = 64  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
µs  
5
6
7
ADC sampling  
time  
1.25  
Crate  
ADC conversion ≤ 13 bit modes  
18.484  
450  
Ksps  
rate  
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
16 bit modes  
37.037  
250  
Ksps  
8
No ADC hardware  
averaging  
Continuous conversions  
enabled  
Peripheral clock = 50  
MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREF_OUT)  
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other  
than the output of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedance of the driven input is RPGAD/2  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1  
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
41  
 
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.6.1.4 16-bit ADC with PGA characteristics with Chop enabled  
(ADC_PGA[PGACHPb] =0)  
Table 27. 16-bit ADC with PGA characteristics  
Symbol  
Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
IDDA_PGA Supply current  
Low power  
420  
644  
μA  
2
(ADC_PGA[PGALPb]=0)  
IDC_PGA  
Input DC current  
A
3
Gain =1, VREFPGA=1.2V,  
VCM=0.5V  
1.54  
0.57  
μA  
μA  
Gain =64, VREFPGA=1.2V,  
VCM=0.1V  
G
Gain4  
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
0.95  
1.9  
1
2
1.05  
2.1  
R
AS < 100Ω  
3.8  
4
4.2  
7.6  
8
8.4  
15.2  
30.0  
58.8  
16  
31.6  
63.3  
16.6  
33.2  
67.8  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ratio  
Gain=1  
-84  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
CMRR  
Common mode  
rejection ratio  
• Gain=1  
-84  
-85  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
VOFS  
TGSW  
dG/dT  
Input offset  
voltage  
0.2  
mV  
µs  
Output offset =  
VOFS*(Gain+1)  
Gain switching  
settling time  
10  
5
Gain drift over full  
temperature range  
• Gain=1  
• Gain=64  
6
31  
10  
42  
ppm/°C  
ppm/°C  
%/V  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
0.07  
0.21  
0.31  
VDDA from 1.71  
to 3.6V  
0.14  
%/V  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
42  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC with PGA characteristics (continued)  
Symbol  
VPP,DIFF Maximum  
differential input  
Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
V
6
signal swing  
where VX = VREFPGA × 0.583  
SNR  
THD  
Signal-to-noise  
ratio  
• Gain=1  
80  
52  
90  
66  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32  
Total harmonic  
distortion  
• Gain=1  
85  
49  
100  
95  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32,  
fin=100Hz  
SFDR  
ENOB  
Spurious free  
dynamic range  
• Gain=1  
85  
53  
105  
88  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=100Hz  
• Gain=64  
Effective number  
of bits  
• Gain=1, Average=4  
• Gain=64, Average=4  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
11.6  
7.2  
13.4  
9.6  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
16-bit  
differential  
mode,fin=100Hz  
12.8  
11.0  
7.9  
14.5  
14.3  
13.8  
13.1  
12.5  
11.5  
10.6  
7.3  
6.8  
6.8  
7.5  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. This current is a PGA module adder, in addition to ADC conversion currents.  
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function of input common mode voltage (VCM) and the PGA gain.  
4. Gain = 2PGAG  
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 28. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
43  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 28. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
IDDHS  
IDDLS  
VAIN  
Description  
Min.  
Typ.  
Max.  
200  
20  
Unit  
μA  
μA  
V
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
44  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 15. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
45  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 29. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
TA  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Temperature  
3.6  
V
1
Operating temperature  
range of the device  
°C  
CL  
IL  
Output load capacitance  
Output load current  
100  
1
pF  
2
mA  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
46  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 30. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
150  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
0.7  
700  
200  
30  
μA  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
μs  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08)  
— low-power mode and high-speed mode  
1
μs  
Vdacoutl DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
100  
VDACR  
8
mV  
mV  
LSB  
LSB  
LSB  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
2
3
4
Differential non-linearity error — VDACR > 2  
V
1
Differential non-linearity error — VDACR  
VREF_OUT  
=
1
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set to  
0x800, temperature range is across the full range of the device  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
47  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Figure 17. Typical INL error vs. digital code  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
48  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 18. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 31. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
1.71  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range of  
the device.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
49  
 
 
 
Peripheral operating requirements and behaviors  
Table 32. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 33. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 34. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
50  
Freescale Semiconductor, Inc.  
 
 
 
 
 
Peripheral operating requirements and behaviors  
6.8.1 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
6.8.2 USB DCD electrical specifications  
Table 35. USB DCD electrical specifications  
Symbol  
VDP_SRC  
VLGC  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
USB_DM sink current  
0.8  
2.0  
V
IDP_SRC  
IDM_SINK  
7
10  
13  
μA  
μA  
kΩ  
V
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.33  
6.8.3 USB VREG electrical specifications  
Table 36. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load current  
equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
650  
4
nA  
μA  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
51  
 
 
Peripheral operating requirements and behaviors  
Table 36. USB VREG electrical specifications  
(continued)  
Symbol Description  
ILIM Short circuit current  
Min.  
Typ.1  
Max.  
Unit  
Notes  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
6.8.4 CAN switching specifications  
See General switching specifications.  
6.8.5 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 37. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
52  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 19. DSPI classic SPI timing — master mode  
Table 38. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
12.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
10  
14  
14  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 20. DSPI classic SPI timing — slave mode  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
53  
 
Peripheral operating requirements and behaviors  
6.8.6 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 39. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 21. DSPI classic SPI timing — master mode  
Table 40. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
Frequency of operation  
6.25  
MHz  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
54  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
Table 40. Slave mode DSPI timing (full voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
DSPI_SCK to DSPI_SOUT valid  
0
20  
19  
19  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2
7
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 22. DSPI classic SPI timing — slave mode  
6.8.7 I2C switching specifications  
See General switching specifications.  
6.8.8 UART switching specifications  
See General switching specifications.  
6.8.9 I2S/SAI Switching Specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock  
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
55  
 
 
 
Peripheral operating requirements and behaviors  
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the  
frame sync (FS) signal shown in the following figures.  
6.8.9.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 41. I2S/SAI master mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
-1.0  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
15  
ns  
ns  
ns  
0
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
20.5  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
56  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 23. I2S/SAI timing — master modes  
Table 42. I2S/SAI slave mode timing in Normal Run, Wait and Stop modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
5.8  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
25  
ns  
ns  
ns  
ns  
5.8  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
57  
 
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 24. I2S/SAI timing — slave modes  
6.8.9.2 VLPR, VLPW, and VLPS mode performance over the full operating  
voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 43. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
53  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
58  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 25. I2S/SAI timing — master modes  
Table 44. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
7.6  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
67  
72  
ns  
ns  
ns  
ns  
ns  
30  
6.5  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
59  
 
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S19  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 26. I2S/SAI timing — slave modes  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 45. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE Target electrode capacitance range  
Min.  
1.71  
1
Typ.  
20  
8
Max.  
3.6  
500  
15  
Unit  
V
Notes  
pF  
1
fREFmax Reference oscillator frequency  
fELEmax Electrode oscillator frequency  
MHz  
MHz  
pF  
2, 3  
2, 4  
1
1.8  
CREF  
VDELTA  
IREF  
Internal reference capacitor  
Oscillator delta voltage  
1
500  
mV  
μA  
2, 5  
2, 6  
Reference oscillator current source base current  
2 μA setting (REFCHRG = 0)  
2
3
36  
50  
32 μA setting (REFCHRG = 15)  
IELE  
Electrode oscillator current source base current  
2 μA setting (EXTCHRG = 0)  
μA  
2, 7  
2
36  
3
50  
32 μA setting (EXTCHRG = 15)  
Pres5  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
1.46  
38400  
38400  
38400  
fF/count  
fF/count  
fF/count  
fF/count  
bits  
8
9
Pres20 Electrode capacitance measurement precision  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
10  
11  
0.008  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
12  
13  
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
55  
μA  
1.3  
2.5  
μA  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
60  
Freescale Semiconductor, Inc.  
 
 
Peripheral operating requirements and behaviors  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. Fixed external capacitance of 20 pF.  
3. REFCHRG = 2, EXTCHRG=0.  
4. REFCHRG = 0, EXTCHRG = 10.  
5. VDD = 3.0 V.  
6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity  
depends on the configuration used. The documented values are provided as examples calculated for a specific  
configuration of operating conditions using the following equation: (Cref * Iext)/( Iref * PS * NSCN)  
The typical value is calculated with the following configuration:  
I
ext = 6 μA (EXTCHRG = 2), PS = 128, NSCN = 2, Iref = 16 μA (REFCHRG = 7), Cref = 1.0 pF  
The minimum value is calculated with the following configuration:  
ext = 2 μA (EXTCHRG = 0), PS = 128, NSCN = 32, Iref = 32 μA (REFCHRG = 15), Cref = 0.5 pF  
I
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be  
measured by a single count.  
12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, EXTCHRG = 7.  
13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of  
20 pF. Data is captured with an average of 7 periods window.  
6.9.2 LCD electrical characteristics  
Table 46. LCD electricals  
Symbol Description  
fFrame LCD frame frequency  
CLCD LCD charge pump capacitance — nominal value  
CBYLCD LCD bypass capacitance — nominal value  
Min.  
28  
Typ.  
30  
Max.  
58  
Unit  
Hz  
nF  
Notes  
100  
100  
2000  
1
1
2
3
nF  
CGlass  
VIREG  
LCD glass capacitance  
VIREG  
8000  
pF  
ΔRTRIM  
VIREG TRIM resolution  
VIREG ripple  
3.0  
% VIREG  
IVIREG  
IRBIAS  
VIREG current adder — RVEN = 1  
RBIAS current adder  
1
10  
1
µA  
µA  
µA  
4
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
61  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dimensions  
Table 46. LCD electricals (continued)  
Symbol Description  
Min.  
Typ.  
0.28  
2.98  
Max.  
Unit  
MΩ  
MΩ  
Notes  
RRBIAS  
RBIAS resistor values  
• LADJ = 10 or 11 — High load (LCD glass  
capacitance ≤ 8000 pF)  
• LADJ = 00 or 01 — Low load (LCD glass  
capacitance ≤ 2000 pF)  
VLL2  
VLL3  
VLL2 voltage  
VLL3 voltage  
1. The actual value used could vary with tolerance.  
2. For highest glass capacitance values, LCD_GCR[LADJ] should be configured as specified in the LCD Controller chapter  
within the device's reference manual.  
3. VIREG maximum should never be externally driven to any level other than VDD - 0.15 V  
4. 2000 pF load LCD, 32 Hz frame frequency  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to www.freescale.com and perform a keyword search for  
the drawing’s document number:  
If you want the drawing for this package  
100-pin LQFP  
Then use this document number  
98ASS23308W  
98ASA00344D  
121-pin MAPBGA  
8 Pinout  
8.1 K40 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
62  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Pinout  
121  
MAP  
BGA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
E4  
E3  
1
2
PTE0  
ADC1_SE4a  
ADC1_SE5a  
ADC1_SE4a  
ADC1_SE5a  
PTE0  
SPI1_PCS1  
SPI1_SOUT  
UART1_TX  
UART1_RX  
I2C1_SDA  
I2C1_SCL  
RTC_CLKOUT  
SPI1_SIN  
PTE1/  
PTE1/  
LLWU_P0  
LLWU_P0  
E2  
F4  
3
4
PTE2/  
LLWU_P1  
ADC1_SE6a  
ADC1_SE7a  
ADC1_SE6a  
ADC1_SE7a  
PTE2/  
LLWU_P1  
SPI1_SCK  
SPI1_SIN  
UART1_CTS_  
b
PTE3  
PTE3  
UART1_RTS_  
b
SPI1_SOUT  
E7  
F7  
H7  
5
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTE4/  
LLWU_P2  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_PCS0  
UART3_TX  
UART3_RX  
G4  
F3  
6
7
PTE5  
PTE6  
DISABLED  
DISABLED  
PTE5  
PTE6  
SPI1_PCS2  
SPI1_PCS3  
UART3_CTS_  
b
I2S0_MCLK  
USB_SOF_  
OUT  
E6  
G7  
L6  
F1  
F2  
G1  
G2  
H1  
H2  
J1  
8
VDD  
VDD  
VDD  
9
VSS  
VSS  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1  
ADC0_DM1  
ADC1_DP1  
ADC1_DM1  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1  
ADC0_DM1  
ADC1_DP1  
ADC1_DM1  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1  
ADC0_DM1  
ADC1_DP1  
ADC1_DM1  
J2  
K1  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
PGA0_DP/  
ADC0_DP0/  
ADC1_DP3  
K2  
L1  
L2  
19  
20  
21  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA0_DM/  
ADC0_DM0/  
ADC1_DM3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DP/  
ADC1_DP0/  
ADC0_DP3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
PGA1_DM/  
ADC1_DM0/  
ADC0_DM3  
F5  
G5  
G6  
F6  
L3  
22  
23  
24  
25  
26  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
63  
Pinout  
121  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP  
BGA  
LQFP  
K5  
L7  
27  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
RTC_  
RTC_  
RTC_  
WAKEUP_B  
WAKEUP_B  
WAKEUP_B  
L4  
L5  
K6  
H5  
J5  
28  
29  
30  
31  
32  
33  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
XTAL32  
EXTAL32  
VBAT  
EXTAL32  
VBAT  
PTE24  
PTE25  
PTE26  
ADC0_SE17  
ADC0_SE18  
DISABLED  
ADC0_SE17  
ADC0_SE18  
PTE24  
UART4_TX  
UART4_RX  
EWM_OUT_b  
EWM_IN  
PTE25  
PTE26  
H6  
UART4_CTS_  
b
RTC_CLKOUT USB_CLKIN  
J6  
34  
PTA0  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
TSI0_CH1  
PTA0  
UART0_CTS_  
b/  
UART0_COL_  
b
FTM0_CH5  
JTAG_TCLK/  
SWD_CLK  
EZP_CLK  
H8  
J7  
35  
36  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
UART0_TX  
JTAG_TDO/  
TRACE_SWO  
EZP_DO  
H9  
J8  
37  
38  
39  
PTA3  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS_  
b
FTM0_CH0  
FTM0_CH1  
FTM0_CH2  
JTAG_TMS/  
SWD_DIO  
PTA4/  
LLWU_P3  
NMI_b/  
EZP_CS_b  
PTA4/  
LLWU_P3  
NMI_b  
EZP_CS_b  
K7  
PTA5  
DISABLED  
PTA5  
USB_CLKIN  
CMP2_OUT  
I2S0_TX_  
BCLK  
JTAG_TRST_  
b
E5  
G3  
K8  
40  
41  
42  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA12  
CMP2_IN0  
CMP2_IN0  
PTA12  
CAN0_TX  
CAN0_RX  
SPI0_PCS0  
FTM1_CH0  
FTM1_CH1  
UART0_TX  
UART0_RX  
I2S0_TXD0  
FTM1_QD_  
PHA  
L8  
K9  
43  
44  
PTA13/  
LLWU_P4  
CMP2_IN1  
DISABLED  
CMP2_IN1  
PTA13/  
LLWU_P4  
I2S0_TX_FS  
FTM1_QD_  
PHB  
PTA14  
PTA14  
I2S0_RX_  
BCLK  
I2S0_TXD1  
L9  
45  
46  
PTA15  
PTA16  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
I2S0_RXD0  
J10  
SPI0_SOUT  
UART0_CTS_  
I2S0_RX_FS  
I2S0_RXD1  
b/  
UART0_COL_  
b
H10  
47  
PTA17  
ADC1_SE17  
ADC1_SE17  
PTA17  
PTA18  
SPI0_SIN  
UART0_RTS_  
b
I2S0_MCLK  
L10  
K10  
L11  
48  
49  
50  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
EXTAL0  
EXTAL0  
FTM0_FLT2  
FTM_CLKIN0  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
64  
Freescale Semiconductor, Inc.  
Pinout  
121  
MAP  
BGA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
K11  
51  
PTA19  
XTAL0  
XTAL0  
PTA19  
FTM1_FLT0  
FTM_CLKIN1  
LPTMR0_  
ALT1  
J11  
52  
53  
RESET_b  
RESET_b  
RESET_b  
G11  
PTB0/  
LCD_P0/  
LCD_P0/  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
FTM1_CH1  
FTM1_QD_  
PHA  
LCD_P0  
LLWU_P5  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
TSI0_CH0  
G10  
54  
PTB1  
LCD_P1/  
LCD_P1/  
PTB1  
FTM1_QD_  
PHB  
LCD_P1  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
TSI0_CH6  
G9  
G8  
55  
56  
PTB2  
PTB3  
LCD_P2/  
ADC0_SE12/  
TSI0_CH7  
LCD_P2/  
ADC0_SE12/  
TSI0_CH7  
PTB2  
PTB3  
I2C0_SCL  
I2C0_SDA  
UART0_RTS_  
b
FTM0_FLT3  
FTM0_FLT0  
LCD_P2  
LCD_P3  
LCD_P3/  
LCD_P3/  
UART0_CTS_  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
b/  
UART0_COL_  
b
E11  
D11  
E10  
D10  
C10  
B10  
E9  
57  
58  
59  
60  
61  
62  
63  
64  
65  
PTB7  
LCD_P7/  
ADC1_SE13  
LCD_P7/  
ADC1_SE13  
PTB7  
LCD_P7  
LCD_P8  
LCD_P9  
LCD_P10  
LCD_P11  
LCD_P12  
LCD_P13  
LCD_P14  
LCD_P15  
PTB8  
LCD_P8  
LCD_P9  
LCD_P8  
LCD_P9  
PTB8  
UART3_RTS_  
b
PTB9  
PTB9  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
SPI1_SOUT  
SPI1_SIN  
UART3_CTS_  
b
PTB10  
PTB11  
PTB16  
PTB17  
PTB18  
PTB19  
LCD_P10/  
ADC1_SE14  
LCD_P10/  
ADC1_SE14  
PTB10  
PTB11  
PTB16  
PTB17  
PTB18  
PTB19  
UART3_RX  
UART3_TX  
UART0_RX  
UART0_TX  
FTM2_CH0  
FTM2_CH1  
FTM0_FLT1  
FTM0_FLT2  
EWM_IN  
LCD_P11/  
ADC1_SE15  
LCD_P11/  
ADC1_SE15  
LCD_P12/  
TSI0_CH9  
LCD_P12/  
TSI0_CH9  
LCD_P13/  
TSI0_CH10  
LCD_P13/  
TSI0_CH10  
EWM_OUT_b  
D9  
LCD_P14/  
TSI0_CH11  
LCD_P14/  
TSI0_CH11  
CAN0_TX  
CAN0_RX  
I2S0_TX_  
BCLK  
FTM2_QD_  
PHA  
C9  
LCD_P15/  
TSI0_CH12  
LCD_P15/  
TSI0_CH12  
I2S0_TX_FS  
FTM2_QD_  
PHB  
F10  
F9  
66  
67  
68  
69  
70  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
LCD_P16  
LCD_P17  
LCD_P18  
LCD_P19  
LCD_P16  
LCD_P17  
LCD_P18  
LCD_P19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
LCD_P16  
LCD_P17  
LCD_P18  
LCD_P19  
LCD_P20  
F8  
E8  
B9  
SPI0_PCS5  
LCD_P20/  
ADC0_SE14/  
TSI0_CH13  
LCD_P20/  
ADC0_SE14/  
TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
PDB0_EXTRG  
I2S0_TXD1  
I2S0_TXD0  
D8  
71  
PTC1/  
LLWU_P6  
LCD_P21/  
ADC0_SE15/  
TSI0_CH14  
LCD_P21/  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
UART1_RTS_  
b
FTM0_CH0  
LCD_P21  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
65  
Pinout  
121  
100  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
MAP  
BGA  
LQFP  
C8  
B8  
72  
PTC2  
LCD_P22/  
LCD_P22/  
PTC2  
SPI0_PCS2  
UART1_CTS_  
b
FTM0_CH1  
I2S0_TX_FS  
LCD_P22  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE4b/  
CMP1_IN0/  
TSI0_CH15  
73  
PTC3/  
LLWU_P7  
LCD_P23/  
CMP1_IN1  
LCD_P23/  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_PCS1  
UART1_RX  
FTM0_CH2  
CLKOUT  
I2S0_TX_  
BCLK  
LCD_P23  
74  
75  
76  
77  
78  
79  
80  
VSS  
VSS  
VSS  
A11  
A10  
A9  
VLL3  
VLL3  
VLL3  
VLL2  
VLL2  
VLL2  
VLL1  
VLL1  
VLL1  
B11  
C11  
A8  
VCAP2  
VCAP1  
VCAP2  
VCAP1  
LCD_P24  
VCAP2  
VCAP1  
LCD_P24  
PTC4/  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART1_TX  
FTM0_CH3  
I2S0_RXD0  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
LCD_P24  
LCD_P25  
LCD_P26  
LCD_P27  
LCD_P28  
LLWU_P8  
D7  
C7  
B7  
A7  
81  
82  
83  
84  
PTC5/  
LLWU_P9  
LCD_P25  
LCD_P25  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
PTC6/  
LLWU_P10  
LCD_P26/  
CMP0_IN0  
LCD_P26/  
CMP0_IN0  
PTC6/  
LLWU_P10  
PDB0_EXTRG I2S0_RX_  
BCLK  
PTC7  
PTC8  
LCD_P27/  
CMP0_IN1  
LCD_P27/  
CMP0_IN1  
PTC7  
PTC8  
USB_SOF_  
OUT  
I2S0_RX_FS  
LCD_P28/  
LCD_P28/  
I2S0_MCLK  
ADC1_SE4b/  
CMP0_IN2  
ADC1_SE4b/  
CMP0_IN2  
D6  
85  
PTC9  
LCD_P29/  
ADC1_SE5b/  
CMP0_IN3  
LCD_P29/  
ADC1_SE5b/  
CMP0_IN3  
PTC9  
I2S0_RX_  
BCLK  
FTM2_FLT0  
LCD_P29  
C6  
C5  
B6  
A6  
86  
87  
PTC10  
LCD_P30/  
ADC1_SE6b  
LCD_P30/  
ADC1_SE6b  
PTC10  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_FS  
I2S0_RXD1  
LCD_P30  
LCD_P31  
LCD_P32  
LCD_P33  
LCD_P34  
PTC11/  
LLWU_P11  
LCD_P31/  
ADC1_SE7b  
LCD_P31/  
ADC1_SE7b  
PTC11/  
LLWU_P11  
PTC12  
PTC13  
LCD_P32  
LCD_P33  
LCD_P32  
LCD_P33  
PTC12  
PTC13  
PTC14  
UART4_RTS_  
b
UART4_CTS_  
b
A5  
88  
89  
90  
91  
92  
PTC14  
VSS  
LCD_P34  
VSS  
LCD_P34  
VSS  
UART4_RX  
VDD  
VDD  
VDD  
D5  
C4  
B4  
PTC16  
PTC17  
PTC18  
LCD_P36  
LCD_P37  
LCD_P38  
LCD_P36  
LCD_P37  
LCD_P38  
PTC16  
PTC17  
PTC18  
UART3_RX  
UART3_TX  
LCD_P36  
LCD_P37  
LCD_P38  
UART3_RTS_  
b
A4  
D4  
PTC19  
LCD_P39  
LCD_P40  
LCD_P39  
LCD_P40  
PTC19  
UART3_CTS_  
b
LCD_P39  
LCD_P40  
93  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
UART2_RTS_  
b
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
66  
Freescale Semiconductor, Inc.  
Pinout  
121  
MAP  
BGA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
D3  
94  
95  
PTD1  
LCD_P41/  
ADC0_SE5b  
LCD_P41/  
ADC0_SE5b  
PTD1  
SPI0_SCK  
UART2_CTS_  
b
LCD_P41  
LCD_P42  
C3  
PTD2/  
LCD_P42  
LCD_P42  
PTD2/  
SPI0_SOUT  
UART2_RX  
LLWU_P13  
LLWU_P13  
B3  
A3  
96  
97  
PTD3  
LCD_P43  
LCD_P44  
LCD_P43  
LCD_P44  
PTD3  
SPI0_SIN  
UART2_TX  
LCD_P43  
LCD_P44  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
UART0_RTS_  
b
FTM0_CH4  
FTM0_CH5  
EWM_IN  
A2  
98  
PTD5  
LCD_P45/  
LCD_P45/  
PTD5  
SPI0_PCS2  
UART0_CTS_  
EWM_OUT_b  
LCD_P45  
ADC0_SE6b  
ADC0_SE6b  
b/  
UART0_COL_  
b
B2  
99  
PTD6/  
LLWU_P15  
LCD_P46/  
ADC0_SE7b  
LCD_P46/  
ADC0_SE7b  
PTD6/  
LLWU_P15  
SPI0_PCS3  
CMT_IRO  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
FTM0_FLT0  
FTM0_FLT1  
LCD_P46  
LCD_P47  
A1  
K3  
H4  
J3  
100  
PTD7  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
LCD_P47  
NC  
LCD_P47  
NC  
PTD7  
UART0_TX  
NC  
NC  
NC  
NC  
H3  
K4  
J9  
NC  
NC  
NC  
NC  
NC  
NC  
J4  
NC  
NC  
H11  
F11  
B1  
C2  
C1  
D2  
D1  
E1  
B5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
8.2 K40 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
67  
 
Pinout  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VLL3  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTE6  
8
PTB22  
VDD  
9
PTB21  
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTB20  
USB0_DP  
USB0_DM  
VOUT33  
PTB19  
PTB18  
PTB17  
VREGIN  
PTB16  
ADC0_DP1  
ADC0_DM1  
ADC1_DP1  
ADC1_DM1  
PTB11  
PTB10  
PTB9  
PTB8  
PGA0_DP/ADC0_DP0/ADC1_DP3  
PTB7  
PGA0_DM/ADC0_DM0/ADC1_DM3  
PTB3  
PGA1_DP/ADC1_DP0/ADC0_DP3  
PTB2  
PGA1_DM/ADC1_DM0/ADC0_DM3  
PTB1  
VDDA  
VREFH  
VREFL  
VSSA  
PTB0/LLWU_P5  
RESET_b  
PTA19  
Figure 27. K40 100 LQFP Pinout Diagram  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
68  
Freescale Semiconductor, Inc.  
Revision History  
1
2
3
4
5
6
7
8
9
10  
11  
PTD4/  
PTC4/  
A
B
C
D
E
F
G
H
J
PTD7  
PTD5  
PTC19  
PTC14  
PTC13  
PTC8  
VLL1  
VLL2  
VLL3  
A
B
C
D
E
F
G
H
J
LLWU_P14  
LLWU_P8  
PTD6/  
PTC3/  
NC  
NC  
NC  
NC  
PTD3  
PTC18  
PTC17  
NC  
PTC12  
PTC10  
PTC9  
VDD  
PTC7  
PTC0  
PTB19  
PTB18  
PTB17  
PTB21  
PTB2  
PTA3  
NC  
PTB16  
PTB11  
PTB10  
PTB9  
VCAP2  
VCAP1  
PTB8  
PTB7  
NC  
LLWU_P15  
LLWU_P7  
PTD2/  
PTC11/  
PTC6/  
NC  
PTC2  
LLWU_P13  
LLWU_P11  
LLWU_P10  
PTD0/  
PTC5/  
PTC1/  
NC  
PTD1  
PTC16  
VDD  
LLWU_P12  
LLWU_P9 LLWU_P6  
PTE2/  
PTE1/  
PTE0  
PTE3  
PTE5  
NC  
VDD  
VSS  
VSS  
PTB23  
PTB22  
PTB3  
LLWU_P1 LLWU_P0  
USB0_DP USB0_DM  
PTE6  
VSS  
NC  
VDDA  
VREFH  
PTE24  
PTE25  
VSSA  
VREFL  
PTE26  
PTA0  
PTB20  
PTB1  
PTB0/  
VOUT33  
VREGIN  
LLWU_P5  
PTE4/  
ADC0_DP1 ADC0_DM1  
ADC1_DP1 ADC1_DM1  
PTA1  
PTA17  
PTA16  
VSS  
NC  
LLWU_P2  
PTA4/  
NC  
NC  
PTA2  
RESET_b  
PTA19  
LLWU_P3  
PGA0_DP/ PGA0_DM/  
ADC0_DP0/ ADC0_DM0/  
ADC1_DP3 ADC1_DM3  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
K
L
NC  
NC  
VBAT  
PTA5  
RTC_  
PTA12  
PTA14  
K
L
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
PGA1_DP/ PGA1_DM/  
ADC1_DP0/ ADC1_DM0/  
ADC0_DP3 ADC0_DM3  
PTA13/  
XTAL32  
4
EXTAL32  
5
VSS  
6
PTA15  
9
VDD  
10  
PTA18  
11  
WAKEUP_B LLWU_P4  
1
2
3
7
8
Figure 28. K40 121 MAPBGA Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
Table 47. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
3/2012  
Initial public release  
Table continues on the next page...  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
Freescale Semiconductor, Inc.  
69  
 
Revision History  
Table 47. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
2
4/2012  
• Replaced TBDs throughout.  
• Updated "Power consumption operating behaviors" table.  
• Updated "ADC electrical specifications" section.  
• Updated "VREF full-range operating behaviors" table.  
• Updated "I2S/SAI Switching Specifications" section.  
• Updated "TSI electrical specifications" table.  
3
11/2012  
• Updated orderable part numbers.  
• Updated the maximum input voltage (VADIN) specification in the "16-bit ADC operating  
conditions" section.  
• Updated the maximum IDDstby specification in the "USB VREG electrical specifications"  
section.  
K40 Sub-Family Data Sheet, Rev. 3, 11/2012.  
70  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2012 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Document Number: K40P100M72SF1  
Rev. 3, 11/2012  

相关型号:

MK40DX128VLQ10

K40 Sub-Family
FREESCALE

MK40DX128VLQ10R

32-BIT, FLASH, 100MHz, RISC MICROCONTROLLER, PQFP144, 20 X 20 MM, LQFP-144
NXP

MK40DX128VMB7

K40 Sub-Family
FREESCALE

MK40DX128VMC7

Kinetis K 32-bit MCU, ARM Cortex-M4 core, 128KB Flash, 72MHz, Segment LCD, USB, MAPBGA 121
NXP

MK40DX128VMC7R

MICROCONTROLLER
NXP

MK40DX128VMD10

K40 Sub-Family
FREESCALE

MK40DX128VML7

K40 Sub-Family
FREESCALE

MK40DX128VML7R

MICROCONTROLLER
NXP

MK40DX128VYY7

Low-power MCUs with USB and LCD
FREESCALE

MK40DX128YY10

Low-power MCUs with USB and LCD
FREESCALE

MK40DX128ZVLQ10

K40 Sub-Family Data Sheet
FREESCALE

MK40DX128ZVMD10

K40 Sub-Family Data Sheet
FREESCALE