MK60N256VMD100 [NXP]

暂无描述;
MK60N256VMD100
型号: MK60N256VMD100
厂家: NXP    NXP
描述:

暂无描述

文件: 总76页 (文件大小:1862K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K60P144M100SF2  
Rev. 4, 3/2011  
Freescale Semiconductor  
Data Sheet: Product Preview  
K60P144M100SF2  
K60 Sub-Family Data Sheet  
Supports the following:  
MK60N256VLQ100,  
MK60X256VLQ100,  
MK60N512VLQ100,  
MK60N256VMD100,  
MK60X256VMD100,  
MK60N512VMD100  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
– Hardware random-number generator  
– Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
– 128-bit unique identification (ID) number per chip  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
Performance  
– Up to 100 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Memories and memory interfaces  
– Up to 512 KB program flash memory on non-  
FlexMemory devices  
Analog modules  
– Two 16-bit SAR ADCs  
– Up to 256 KB program flash memory on  
FlexMemory devices  
– Programmable gain amplifier (up to x64) integrated  
into each ADC  
– Up to 256 KB FlexNVM on FlexMemory devices  
– 4 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– Two 12-bit DACs  
– Three analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
Timers  
Clocks  
– Programmable delay block  
– Eight-channel motor control/general purpose/PWM  
timer  
– Two 2-channel quadrature decoder/general purpose  
timers  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
System peripherals  
– IEEE 1588 timers  
– 10 low-power modes to provide power optimization  
based on application requirements  
– Memory protection unit with multi-master  
protection  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
– 16-channel DMA controller, supporting up to 64  
request sources  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
This document contains information on a product under development. Freescale  
reserves the right to change or discontinue this product without notice.  
© 2010–2011 Freescale Semiconductor, Inc.  
Preliminary  
Communication interfaces  
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability  
– USB full-/low-speed On-the-Go controller with on-chip transceiver  
– Two Controller Area Network (CAN) modules  
– Three SPI modules  
– Two I2C modules  
– Five UART modules  
– Secure Digital host controller (SDHC)  
– I2S module  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
2
Freescale Semiconductor, Inc.  
Preliminary  
Table of Contents  
1 Ordering parts...........................................................................5  
6 Peripheral operating requirements and behaviors....................21  
6.1 Core modules....................................................................22  
1.1 Determining valid orderable parts......................................5  
2 Part identification......................................................................5  
2.1 Description.........................................................................5  
2.2 Format...............................................................................5  
2.3 Fields.................................................................................5  
2.4 Example............................................................................6  
3 Terminology and guidelines......................................................6  
3.1 Definition: Operating requirement......................................6  
3.2 Definition: Operating behavior...........................................7  
3.3 Definition: Attribute............................................................7  
3.4 Definition: Rating...............................................................8  
3.5 Result of exceeding a rating..............................................8  
3.6 Relationship between ratings and operating  
6.1.1  
6.1.2  
Debug trace timing specifications.......................22  
JTAG electricals..................................................23  
6.2 System modules................................................................26  
6.3 Clock modules...................................................................26  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................26  
Oscillator electrical specifications.......................28  
32kHz Oscillator Electrical Characteristics.........30  
6.4 Memories and memory interfaces.....................................31  
6.4.1  
6.4.2  
6.4.3  
Flash (FTFL) electrical specifications.................31  
EzPort Switching Specifications.........................35  
Flexbus Switching Specifications........................36  
6.5 Security and integrity modules..........................................39  
6.6 Analog...............................................................................39  
requirements......................................................................8  
3.7 Guidelines for ratings and operating requirements............9  
3.8 Definition: Typical value.....................................................9  
3.9 Typical value conditions....................................................10  
4 Ratings......................................................................................10  
4.1 Thermal handling ratings...................................................11  
4.2 Moisture handling ratings..................................................11  
4.3 ESD handling ratings.........................................................11  
4.4 Voltage and current operating ratings...............................11  
5 General.....................................................................................12  
5.1 Nonswitching electrical specifications...............................12  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
ADC electrical specifications..............................39  
CMP and 6-bit DAC electrical specifications......47  
12-bit DAC electrical characteristics...................50  
Voltage reference electrical specifications..........53  
6.7 Timers................................................................................54  
6.8 Communication interfaces.................................................54  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
Ethernet switching specifications........................55  
USB electrical specifications...............................56  
USB DCD electrical specifications......................56  
USB VREG electrical specifications...................57  
CAN switching specifications..............................57  
DSPI switching specifications (low-speed  
5.1.1  
5.1.2  
5.1.3  
5.1.4  
5.1.5  
5.1.6  
5.1.7  
5.1.8  
Voltage and current operating requirements......12  
LVD and POR operating requirements...............13  
Voltage and current operating behaviors............14  
Power mode transition operating behaviors.......14  
Power consumption operating behaviors............15  
EMC radiated emissions operating behaviors....18  
Designing with radiated emissions in mind.........19  
Capacitance attributes........................................19  
mode)..................................................................58  
DSPI switching specifications (high-speed  
6.8.7  
mode)..................................................................59  
I2C switching specifications................................61  
UART switching specifications............................61  
6.8.8  
6.8.9  
6.8.10 SDHC specifications...........................................61  
6.8.11 I2S switching specifications................................62  
6.9 Human-machine interfaces (HMI)......................................64  
5.2 Switching specifications.....................................................19  
5.2.1  
5.2.2  
Device clock specifications.................................19  
General switching specifications.........................20  
6.9.1  
TSI electrical specifications................................64  
5.3 Thermal specifications.......................................................21  
7 Dimensions...............................................................................65  
7.1 Obtaining package dimensions.........................................65  
8 Pinout........................................................................................65  
5.3.1  
5.3.2  
Thermal operating requirements.........................21  
Thermal attributes...............................................21  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
3
Preliminary  
8.1 K60 Signal Multiplexing and Pin Assignments..................65  
8.2 K60 Pinouts.......................................................................72  
9 Revision History........................................................................74  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
4
Freescale Semiconductor, Inc.  
Preliminary  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to http://www.freescale.com and perform a part number  
search for the following device numbers: PK60 and MK60.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## M FFF T PP CCC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
M
Kinetis family  
• K60  
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
Field  
Description  
Values  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
T
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
Package identifier  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• EX = 64 QFN (9 mm x 9 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• MB = 81 MAPBGA (8 mm x 8 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
• MF = 196 MAPBGA (15 mm x 15 mm)  
• MJ = 256 MAPBGA (17 mm x 17 mm)  
CCC  
Maximum CPU frequency (MHz)  
Packaging type  
• 50 = 50 MHz  
• 72 = 72 MHz  
• 100 = 100 MHz  
• 120 = 120 MHz  
• 150 = 150 MHz  
N
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK60N512VMD100  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
6
Freescale Semiconductor, Inc.  
Preliminary  
Terminology and guidelines  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
7
Terminology and guidelines  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
8
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.6 Relationship between ratings and operating requirements  
Fatal  
range  
Normal  
operating  
range  
Fatal  
range  
- Probable permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Probable permanent failure  
Handling range  
- No permanent failure  
 
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
9
Preliminary  
Ratings  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Value  
Unit  
TA  
Ambient temperature  
25  
°C  
V
VDD  
3.3 V supply voltage  
3.3  
4 Ratings  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
10  
Freescale Semiconductor, Inc.  
Ratings  
4.1 Thermal handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TSTG  
Storage temperature  
–55  
150  
°C  
1
2
TSDR  
Solder temperature, lead-free  
Solder temperature, leaded  
260  
245  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
1
VCDM  
ILAT  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 85°C  
-500  
-100  
+500  
+100  
V
2
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage  
–0.3  
3.8  
V
IDD  
Digital supply current  
185  
5.5  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
–0.3  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
11  
General  
Symbol  
VAIO  
ID  
Description  
Min.  
Max.  
Unit  
Analog, RESET, EXTAL, and XTAL input voltage  
–0.3  
VDD + 0.3  
V
Instantaneous maximum current single pin limit (applies to all  
port pins)  
–25  
25  
mA  
VDDA  
VUSB_DP  
VUSB_DM  
VREGIN  
VBAT  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
USB regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
V
–0.3  
3.63  
–0.3  
6.0  
RTC battery supply voltage  
–0.3  
3.8  
5 General  
5.1 Nonswitching electrical specifications  
5.1.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
VDDA  
Analog supply voltage  
1.71  
–0.1  
–0.1  
1.71  
3.6  
0.1  
0.1  
3.6  
V
V
V
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
Input hysteresis  
0.06 × VDD  
V
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
12  
Freescale Semiconductor, Inc.  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IIC  
DC injection current — single pin  
• VIN < VSS  
1
0
–0.2  
mA  
DC injection current — total MCU limit, includes sum  
of all stressed pins  
1
0
–5  
mA  
• VIN < VSS  
VRAM  
VDD voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
TBD  
1. All functional non-supply pins are internally clamped to VSS, and induce an injection current when VIN is less than VSS. The  
IIC maximum operating requirement should not be exceeded. If this requirement cannot be met, the input must be current  
limited to the value specified.  
5.1.2 LVD and POR operating requirements  
Table 2. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
TBD  
1.1  
TBD  
V
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
TBD  
2.56  
TBD  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
TBD  
TBD  
TBD  
TBD  
2.70  
2.80  
2.90  
3.00  
TBD  
TBD  
TBD  
TBD  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
TBD  
1.60  
TBD  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
TBD  
TBD  
TBD  
TBD  
1.80  
1.90  
2.00  
2.10  
TBD  
TBD  
TBD  
TBD  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
40  
mV  
VBG  
tLPO  
Bandgap voltage reference  
TBD  
TBD  
1.00  
TBD  
TBD  
V
Internal low power oscillator period  
factory trimmed  
1000  
μs  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
13  
General  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
TBD  
1.1  
TBD  
V
5.1.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
100  
mA  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 10mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
Input leakage current (per pin)  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
30  
30  
100  
1
mA  
μA  
μA  
kΩ  
kΩ  
1
IOZ  
1
RPU  
RPD  
50  
50  
2
3
Internal pulldown resistors  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
5.1.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
14  
Freescale Semiconductor, Inc.  
Preliminary  
General  
• CPU and system clocks = 100 MHz  
• Bus and FlexBus clocks = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
RUN VLLS1 RUN  
• RUN VLLS1  
4.1  
μs  
μs  
• VLLS1 RUN  
123.8  
RUN VLLS2 RUN  
• RUN VLLS2  
4.1  
μs  
μs  
• VLLS2 RUN  
49.3  
RUN VLLS3 RUN  
• RUN VLLS3  
4.1  
μs  
μs  
• VLLS3 RUN  
49.2  
RUN LLS RUN  
• RUN LLS  
4.1  
5.9  
μs  
μs  
• LLS RUN  
RUN STOP RUN  
• RUN STOP  
4.1  
4.2  
μs  
μs  
• STOP RUN  
RUN VLPS RUN  
• RUN VLPS  
4.1  
5.8  
μs  
μs  
• VLPS RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
5.1.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
mA  
Notes  
IDDA  
Analog supply current  
TBD  
1
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
15  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
2
• @ 1.8V  
• @ 3.0V  
40  
42  
TBD  
TBD  
mA  
mA  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3
4
• @ 1.8V  
• @ 3.0V  
55  
56  
TBD  
TBD  
mA  
mA  
IDD_RUN_M Run mode current — all peripheral clocks  
enabled and peripherals active, code executing  
AX  
from flash  
• @ 1.8V  
85  
85  
TBD  
TBD  
mA  
mA  
• @ 3.0V  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
35  
15  
TBD  
TBD  
mA  
mA  
2
5
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
IDD_STOP Stop mode current at 3.0 V  
0.4  
TBD  
TBD  
mA  
mA  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
1.25  
6
7
8
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
TBD  
TBD  
mA  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
1.05  
50  
TBD  
TBD  
TBD  
mA  
μA  
μA  
IDD_LLS  
Low leakage stop mode current at 3.0 V  
12  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
• 128KB RAM devices  
8
6
TBD  
TBD  
μA  
μA  
• 64KB RAM devices  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
4
2
TBD  
TBD  
TBD  
μA  
μA  
nA  
IDD_VBAT Average current when CPU is not accessing  
RTC registers at 3.0 V  
550  
9
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.  
All peripheral clocks disabled.  
3. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled, but peripherals are not in active operation.  
4. 100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled, and peripherals are in active operation.  
5. 25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
16  
Freescale Semiconductor, Inc.  
Preliminary  
General  
6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks disabled. Code executing from flash.  
7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks enabled but peripherals are not in active operation. Code executing from flash.  
8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for fast IRCLK mode. All peripheral  
clocks disabled.  
9. Includes 32kHz oscillator current and RTC operation.  
5.1.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)  
• All peripheral clocks disabled except FTFL  
• LVD disabled, USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash  
Figure 1. Run mode supply current vs. core frequency — all peripheral clocks disabled  
The following data was measured under these conditions:  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
17  
Preliminary  
General  
• MCG in FEI mode (39.0625 kHz IRC), except for 1 MHz core (FBE)  
• All peripheral clocks enabled but peripherals are not in active operation  
• LVD disabled, USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash  
Figure 2. Run mode supply current vs. core frequency — all peripheral clocks enabled  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
18  
Freescale Semiconductor, Inc.  
Preliminary  
General  
5.1.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
VRE3  
VRE4  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
0.15–50  
50–150  
TBD  
TBD  
TBD  
TBD  
TBD  
dBμV  
1, 2  
150–500  
500–1000  
0.15–1000  
VRE_IEC_SAE IEC and SAE level  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions, IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated Circuits—TEM/  
Wideband TEM (GTEM) Cell Method.  
2. VDD = 3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method, and Appendix D of SAE Standard J1752-3, Measurement of Radiated Emissions from Integrated  
Circuits—TEM/Wideband TEM (GTEM) Cell Method.  
5.1.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to http://www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.1.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_A  
Input capacitance: analog pins  
7
pF  
CIN_D  
Input capacitance: digital pins  
7
pF  
5.2 Switching specifications  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
19  
General  
5.2.1 Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fSYS_USB  
fBUS  
System and core clock  
20  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
System and core clock when USB in operation  
Bus clock  
50  
50  
25  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
VLPR mode  
fSYS  
fBUS  
System and core clock  
Bus clock  
2
2
2
1
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
5.2.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, IEEE 1588 timer, and I2C signals.  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
2
2
GPIO pin interrupt pulse width (digital glitch filter  
ns  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
TBD  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
Port rise and fall time (high drive strength)  
• Slew disabled  
3
4
12  
36  
ns  
ns  
• Slew enabled  
Port rise and fall time (low drive strength)  
• Slew disabled  
32  
36  
ns  
ns  
• Slew enabled  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75pF load  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
20  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
4. 15pF load  
5.3 Thermal specifications  
5.3.1 Thermal operating requirements  
Table 9. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
TJ  
Die junction temperature  
–40  
–40  
125  
°C  
TA  
Ambient temperature  
105  
°C  
5.3.2 Thermal attributes  
Board Symbol Description  
type  
144  
144  
81  
80  
Unit  
Notes  
LQFP MAPBGAMAPBGALQFP  
Single-  
layer  
(1s)  
RθJA  
Thermal resistance, junction to ambient 52  
(natural convection)  
50  
30  
41  
27  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
1
Four-  
layer  
(2s2p)  
RθJA  
Thermal resistance, junction to ambient 44  
(natural convection)  
°C/W  
°C/W  
°C/W  
1
1
1
Single-  
layer  
(1s)  
RθJMA  
Thermal resistance, junction to ambient 43  
(200 ft./min. air speed)  
Four-  
layer  
RθJMA  
Thermal resistance, junction to ambient 38  
(200 ft./min. air speed)  
(2s2p)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to board  
Thermal resistance, junction to case  
33  
11  
2
17  
10  
2
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
°C/W  
°C/W  
°C/W  
2
3
4
Thermal characterization parameter,  
junction to package top outside center  
(natural convection)  
1.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
6 Peripheral operating requirements and behaviors  
All digital I/O switching characteristics assume:  
1. output pins  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
21  
Preliminary  
Peripheral operating requirements and behaviors  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
6.1 Core modules  
6.1.1 Debug trace timing specifications  
Table 10. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Tcyc  
Clock period  
Frequency dependent  
MHz  
Twl  
Twh  
Tr  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
ns  
ns  
ns  
ns  
ns  
ns  
3
Tf  
3
Ts  
Th  
Data hold  
2
Figure 3. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 4. Trace data specifications  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
22  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.1.2 JTAG electricals  
Table 11. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
ns  
50  
20  
10  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 12. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
TCLK cycle period  
1/J1  
ns  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
23  
Peripheral operating requirements and behaviors  
Table 12. JTAG full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J3  
TCLK clock pulse width  
• Boundary Scan  
• JTAG and CJTAG  
• Serial Wire Debug  
ns  
50  
25  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 5. Test clock input timing  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 6. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 7. Test Access Port timing  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
TCLK  
J14  
J13  
TRST  
Figure 8. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
6.3.1 MCG specifications  
Table 13. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25°C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
kHz  
Iints  
Internal reference (slow clock) current  
TBD  
TBD  
0.1  
4
µA  
µs  
tirefsts  
Internal reference (slow clock) startup time  
Δfdco_res_t Resolution of trimmed DCO output frequency at  
fixed voltage and temperature — using SCTRIM  
and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed DCO output frequency at  
fixed voltage and temperature — using SCTRIM  
only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+ 0.5  
- 1.0  
0.5  
3.5  
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
TBD  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3.4  
3
4
5
MHz  
MHz  
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 13. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Iintf  
Internal reference (fast clock) current  
TBD  
µA  
tirefstf  
floc_low  
Internal reference startup time (fast clock)  
TBD  
TBD  
µs  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
2, 3  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
4, 5  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
Jacc_fll  
FLL period jitter  
TBD  
TBD  
TBD  
TBD  
ps  
ps  
6
6
FLL accumulated jitter of DCO output over a 1µs  
time window  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
8
950  
• PLL @ 96 MHz (fosc_hi_1=8MHz,  
fpll_ref=2MHz, VDIV multiplier=48)  
fpll_ref  
Jcyc_pll  
Jacc_pll  
PLL reference frequency range  
PLL period jitter  
2.0  
4.0  
MHz  
ps  
400  
TBD  
9, 10  
9, 10  
PLL accumulated jitter over 1µs window  
ps  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
Table 13. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Dlock  
Dunl  
Lock entry frequency tolerance  
1.49  
2.98  
%
Lock exit frequency tolerance  
Lock detector detection time  
4.47  
5.97  
%
tpll_lock  
0.15 +  
ms  
11  
1075(1/  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
3. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
6. This specification was obtained at TBD frequency.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification was obtained at internal frequency of TBD.  
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 14. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
• 4 MHz  
• 8 MHz  
• 16 MHz  
• 24 MHz  
• 32 MHz  
500  
200  
300  
700  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
1.5  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 14. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
• 4 MHz  
• 8 MHz  
• 16 MHz  
• 24 MHz  
• 32 MHz  
25  
400  
800  
1.5  
3
μA  
μA  
μA  
mA  
mA  
mA  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
29  
Preliminary  
Peripheral operating requirements and behaviors  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 15. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Oscillator crystal or resonator frequency — low  
32  
40  
kHz  
frequency mode (MCG_C2[RANGE]=00)  
fosc_hi_1  
Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
(MCG_C2[RANGE]=01)  
3
8
8
MHz  
MHz  
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
tcst  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
TBD  
ms  
2, 3  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
800  
4
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
3
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL  
2. Proper PC board layout procedures must be followed to achieve specifications.  
3. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.3.3 32kHz Oscillator Electrical Characteristics  
This section describes the module electrical characteristics.  
6.3.3.1 32kHz oscillator DC electrical specifications  
Table 16. 32kHz oscillator DC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VBAT  
Supply voltage  
1.71  
3.6  
V
RF  
Internal feedback resistor  
100  
2.5  
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and XTAL32  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 16. 32kHz oscillator DC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Cload  
Internal load capacitance (programmable)  
15  
pF  
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
6.3.3.2 32kHz oscillator frequency specifications  
Table 17. 32kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1000  
1
1. Proper PC board layout procedures must be followed to achieve specifications.  
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFL) electrical specifications  
This section describes the electrical characteristics of the FTFL module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 18. NVM program/erase timing specifications  
Symbol Description  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
Min.  
Typ.  
Max.  
Unit  
Notes  
20  
TBD  
μs  
20  
100  
800  
ms  
ms  
1
1
thversblk256k Erase Block high-voltage time for 256 KB  
160  
1. Maximum time based on expectations at cycling end-of-life.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
31  
Peripheral operating requirements and behaviors  
6.4.1.2 Flash timing specifications — commands  
Table 19. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
• 256 KB data flash  
1.4  
ms  
trd1sec2k  
tpgmchk  
trdrsrc  
Read 1s Section execution time (flash sector)  
Program Check execution time  
50  
40  
35  
μs  
μs  
μs  
μs  
1
1
1
Read Resource execution time  
35  
tpgm4  
Program Longword execution time  
TBD  
Erase Flash Block execution time  
• 256 KB data flash  
2
2
tersblk256k  
tersscr  
160  
20  
800  
100  
ms  
ms  
Erase Flash Sector execution time  
Program Section execution time  
• 512 B flash  
tpgmsec512  
tpgmsec1k  
tpgmsec2k  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
• 1 KB flash  
• 2 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
2.8  
35  
ms  
μs  
μs  
ms  
μs  
trdonce  
1
tpgmonce Program Once execution time  
50  
320  
TBD  
1600  
35  
tersall  
Erase All Blocks execution time  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
Program Partition for EEPROM execution time  
• 256 KB FlexNVM  
tpgmpart256k  
175  
TBD  
ms  
Set FlexRAM Function execution time:  
• 32 KB EEPROM backup  
tsetram32k  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
• 256 KB EEPROM backup  
tsetram256k  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
100  
TBD  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b32k  
teewr8b64k  
teewr8b128k  
teewr8b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5  
ms  
ms  
ms  
ms  
TBD  
2.5  
Word-write to FlexRAM for EEPROM operation  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 19. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
teewr16bers Word-write to erased FlexRAM location  
execution time  
100  
TBD  
μs  
Word-write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
teewr16b128k  
teewr16b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
1.5  
ms  
ms  
ms  
ms  
TBD  
2.5  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
200  
TBD  
μs  
Longword-write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
teewr32b128k  
teewr32b256k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
2.7  
ms  
ms  
ms  
ms  
TBD  
3.7  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
6.4.1.3 Flash (FTFL) current and power specfications  
Table 20. Flash (FTFL) current and power specfications  
Symbol  
Description  
Typ.  
Unit  
mA  
IDD_PGM  
Worst case programming current in program flash  
10  
6.4.1.4 Reliability specifications  
Table 21. NVM reliability specifications  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
5
10  
TBD  
TBD  
TBD  
TBD  
years  
years  
years  
cycles  
2
2
2
3
15  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
5
TBD  
years  
2
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
Table 21. NVM reliability specifications (continued)  
Typ.1  
Symbol Description  
Min.  
Max.  
Unit  
years  
years  
cycles  
Notes  
tnvmretd1k Data retention after up to 1 K cycles  
tnvmretd100 Data retention after up to 100 cycles  
nnvmcycd Cycling endurance  
10  
TBD  
2
2
3
15  
10 K  
TBD  
TBD  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
tnvmretee1 Data retention up to 1% of write endurance  
Write endurance  
5
TBD  
TBD  
TBD  
years  
years  
years  
2
2
2
4
10  
15  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree32k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
35 K  
315 K  
1.27 M  
10 M  
TBD  
TBD  
TBD  
TBD  
TBD  
writes  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio =  
32,768  
80 M  
1. Typical data retention values are based on intrinsic capability of the technology measured at high temperature derated to  
25°C. For additional information on how Freescale defines typical data retention, please refer to Engineering Bulletin  
EB618.  
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).  
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum value  
assumes all byte-writes to FlexRAM.  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set size  
can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFL to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that can  
be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout the  
entire lifetime of a given application. The EEPROM endurance equation and graph  
shown below assume that only one configuration is ever used.  
EEPROM – 2 × EEESPLIT × EEESIZE  
Writes_subsystem =  
× Write_efficiency × nnvmcycd  
EEESPLIT × EEESIZE  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
where  
• Writes_subsystem — minimum number of writes to each FlexRAM location for  
subsystem (each subsystem can have different endurance)  
• EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;  
entered with Program Partition command  
• EEESPLIT — FlexRAM split factor for subsystem; entered with the Program  
Partition command  
• EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition  
command  
• Write_efficiency —  
• 0.25 for 8-bit writes to FlexRAM  
• 0.50 for 16-bit or 32-bit writes to FlexRAM  
• nnvmcycd — data flash cycling endurance  
Figure 9. EEPROM backup writes to FlexRAM  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
35  
Preliminary  
Peripheral operating requirements and behaviors  
6.4.2 EzPort Switching Specifications  
Table 22. EzPort switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid (setup)  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
12  
ns  
ns  
12  
ns  
EZP_CK  
EP3  
EP4  
EP2  
EZP_CS  
EP9  
EP7  
EP8  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 10. EzPort Timing Diagram  
6.4.3 Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
36  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 23. Flexbus switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
50  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
Mhz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
TBD  
0
11.5  
ns  
1
1
2
2
ns  
8.5  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
37  
Preliminary  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 11. FlexBus read timing diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
FB2  
FB3  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 12. FlexBus write timing diagram  
6.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.6 Analog  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
39  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 24 and Table 25 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and  
ADCx_DP3.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are used as the PGA inputs and are not  
direct device pins. Accuracy specifications for these pins are defined in Table 26 and  
Table 27.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 24. 16-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Absolute  
Min.  
1.71  
-100  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD (VDD  
-
0
+100  
mV  
2
2
VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-
-100  
0
+100  
mV  
VSSA  
)
VREFH  
ADC reference  
voltage high  
1.13  
VSSA  
VREFL  
VDDA  
VSSA  
VDDA  
V
V
VREFL  
Reference  
voltage low  
VSSA  
VADIN  
CADIN  
Input voltage  
VREFH  
V
Input  
capacitance  
• 16 bit modes  
8
4
10  
5
pF  
• 8/10/12 bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13/12 bit modes  
fADCK < 4MHz  
3
fADCK  
ADC conversion ≤13 bit modes  
clock frequency  
4
5
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
fADCK  
ADC conversion 16 bit modes  
clock frequency  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 24. 16-bit ADC operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤13  
6
rate  
bit modes  
18.484  
818.330  
Ksps  
No ADC hardware  
averaging  
Continuous  
conversions enabled  
Peripheral clock =  
50MHz  
Crate  
ADC conversion 16 bit modes  
rate  
7
No ADC hardware  
37.037  
361.402  
Ksps  
averaging  
Continuous  
conversions enabled  
Peripheral clock =  
50MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the  
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS  
/
CAS time constant should be kept to <1ns.  
4. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear.  
5. In order to use the maximum ADC conversion clock frequency ADHSC bit should be set and the ADLPC should be clear.  
6. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http://  
cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
7. For guidelines and examples of conversion rate calculation please download the ADC calculator tool http://  
cache.freescale.com/files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
41  
Preliminary  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 13. ADC input impedance equivalency diagram  
6.6.1.2 16-bit ADC electrical characteristics  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA  
Supply current  
0.215  
1.7  
mA  
3
ADC  
asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
2.4  
4.0  
5.2  
6.2  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
Conversion Time The ADC calculator tool can be used to determine ADC conversion times for different ADC  
configurations: http://cache.freescale.com/files/soft_dev_tools/software/app_software/  
converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
LSB4  
TUE  
Total unadjusted  
error  
• ≤13 bit modes  
• <12 bit modes  
0.8  
0.5  
TBD  
1
ADC  
conversion  
clock  
<12MHz,  
Max  
hardware  
averaging  
(AVGE =  
%1, AVGS  
= %11)  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
• ≤13 bit modes  
Typ.2  
0.7  
Symbol Description  
Min.  
Max.  
TBD  
0.5  
Unit  
Notes  
LSB4  
DNL  
Differential non-  
linearity  
ADC  
conversion  
clock  
• <12 bit modes  
0.2  
<12MHz,  
Max  
hardware  
averaging  
(AVGE =  
%1, AVGS  
= %11)  
LSB4  
LSB4  
LSB4  
INL  
EFS  
EQ  
Integral non-  
linearity  
• ≤13 bit modes  
• <12 bit modes  
• ≤13 bit modes  
• <12 bit modes  
• 16 bit modes  
• ≤13 bit modes  
1.0  
0.5  
TBD  
TBD  
TBD  
TBD  
Max  
averaging  
Full-scale error  
0.4  
VADIN  
VDDA  
=
1.0  
Quantization  
error  
-1 to 0  
0.5  
ENOB  
Effective number 16 bit differential mode  
5
of bits  
• Avg=32  
TBD  
TBD  
13.6  
13.2  
TBD  
TBD  
bits  
bits  
• Avg=1  
16 bit single-ended mode  
• Avg=32  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
bits  
bits  
• Avg=1  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16 bit differential mode  
• Avg=32  
5
5
-94  
TBD  
TBD  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
TBD  
SFDR  
Spurious free  
dynamic range  
16 bit differential mode  
• Avg=32  
TBD  
TBD  
95  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
TBD  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
43  
Peripheral operating requirements and behaviors  
Table 25. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IIn  
leakage  
current  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
=
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
• –40°C to 25°C  
• 25°C to 105°C  
TBD  
TBD  
mV/°C  
mV/°C  
VTEMP25 Temp sensor  
voltage  
25°C  
TBD  
mV  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock  
speed.  
1 LSB = (VREFH - VREFL)/2N  
4.  
5. Input data is 1 kHz sine wave.  
FIGURE TBD  
Figure 14. Typical TUE vs. ADC conversion rate 12-bit single-ended mode  
FIGURE TBD  
Figure 15. Typical ENOB vs. Averaging for 16-bit differential and 16-bit single-ended  
modes  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 26. 16-bit ADC with PGA operating conditions  
Typ.1  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREFOUT VREFOUT VREFOUT  
V
2, 3  
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
Input Common  
Mode range  
V
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 26. 16-bit ADC with PGA operating conditions (continued)  
Typ.1  
128  
64  
Symbol Description  
Conditions  
Gain = 1, 2, 4, 8  
Gain = 16, 32  
Gain = 64  
Min.  
Max.  
Unit  
Notes  
IN+ to IN-4  
RPGAD  
Differntial input  
impedance  
kΩ  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
5
6
ADC sampling  
time  
1.25  
µs  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREFOUT)  
3. PGA reference connected to the VREFOUT pin. If the user wishes to drive VREFOUT with a voltage other than the output  
of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedence of the driven input is 1/2.  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
6.6.1.4 16-bit ADC with PGA characteristics  
Table 27. 16-bit ADC with PGA characteristics  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
μA  
A
Notes  
IDDA_PGA Supply current  
590  
TBD  
IDC_PGA  
Input DC current  
2
IILKG  
Input Leakage  
current  
PGA disabled  
TBD  
TBD  
μA  
3
Gain4  
G
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
0.98  
1.99  
3.97  
7.95  
15.8  
31.4  
61.2  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
R
AS < 100Ω  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ration  
Gain=1  
TBD  
TBD  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
45  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
TBD  
TBD  
Symbol  
Description  
Conditions  
• Gain=1  
Min.  
TBD  
TBD  
Max.  
Unit  
dB  
Notes  
VCM  
500mVpp,  
fVCM= 50Hz,  
100Hz  
CMRR  
Common mode  
rejection ratio  
=
• Gain=64  
dB  
VOFS  
TGSW  
dG/dT  
Input offset  
voltage  
0.2  
TBD  
10  
mV  
µs  
Gain=1, ADC  
Averaging=32  
Gain switching  
settling time  
5
Gain drift over  
temperature  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ppm/°C  
ppm/°C  
0 to 50°C  
dVOFS/dT Offset drift over  
temperature  
Gain=1  
ppm/°C 0 to 50°C, ADC  
Averaging=32  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
%/V  
%/V  
mV  
VDDA from 1.71  
to 3.6V  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
VPP,DIFF  
Maximum  
V
6
differential input  
signal swing  
where VX = VREFPGA × 0.583  
SNR  
Signal-to-noise  
ratio  
• Gain=1  
• Gain=64  
TBD  
TBD  
83.0  
57.5  
dB  
dB  
16-bit  
differential  
mode,  
Average=32  
THD  
Total harmonic  
distortion  
• Gain=1  
• Gain=64  
TBD  
TBD  
89.4  
90.0  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=500Hz  
SFDR  
Spurious free  
dynamic range  
• Gain=1  
• Gain=64  
TBD  
TBD  
90.9  
77.0  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=500Hz  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 27. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
12.3  
12.7  
8.4  
Symbol  
Description  
Conditions  
• Gain=1, Average=4  
Min.  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
Max.  
Unit  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
Notes  
ENOB  
Effective number  
of bits  
16-bit  
differential  
mode,  
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
fin=500Hz  
8.7  
13.3  
13.1  
12.5  
11.8  
11.1  
10.2  
9.3  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function if input common mode voltage (VCM) and the PGA gain.  
3. This is the input leakage current of the module in addition to the PAD leakage current.  
Gain = 2PGAG  
4.  
5. When the PGA gain is changed, it takes some time to settle the output for the ADC to work properly. During a gain  
switching, a few ADC outputs should be discarded (minimum two data samples, may be more depending on ADC  
sampling rate and time of the switching).  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 28. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
mV  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
47  
Peripheral operating requirements and behaviors  
Table 28. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
120  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
TBD  
ns  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
48  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 16. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
49  
Preliminary  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 17. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 29. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
VDACR  
TA  
Reference voltage  
Temperature  
1.13  
−40  
3.6  
105  
100  
1
V
1
°C  
pF  
mA  
CL  
Output load capacitance  
Output load current  
2
IL  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREFO)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
50  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 30. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACLP Supply current — low-power mode  
150  
μA  
IDDA_DACH Supply current — high-speed mode  
700  
μA  
P
tDACLP  
Full-scale settling time (0x080 to 0xF7F) — low-  
power mode  
1
100  
15  
200  
30  
μs  
μs  
1
1
1
1
tDACHP  
Full-scale settling time (0x080 to 0xF7F) — high-  
power mode  
tCCDACLP Code-to-code settling time (0xBF8 to 0xC08) —  
low-power mode  
5
μs  
tCCDACHP Code-to-code settling time (0xBF8 to 0xC08) —  
high-speed mode  
TBD  
100  
μs  
Vdacoutl  
DAC output voltage range low — high-speed  
mode, no load, DAC set to 0x000  
TBD  
VDACR  
mV  
mV  
Vdacouth DAC output voltage range high — high-speed  
mode, no load, DAC set to 0xFFF  
VDACR  
−100  
INL  
DNL  
DNL  
Integral non-linearity error — high speed mode  
Differential non-linearity error — VDACR > 2 V  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR  
VREFO (1.15 V)  
=
VOFFSET Offset error  
0.4  
0.1  
60  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
EG  
PSRR  
TCO  
Gain error  
Power supply rejection ratio, VDDA > = 2.4 V  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
TBD  
TBD  
μV/C  
TGE  
ppm of  
FSR/C  
AC  
Rop  
SR  
Offset aging coefficient  
TBD  
250  
μV/yr  
Ω
Output resistance load = 3 kΩ  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
0.05  
0.12  
• Low power (SPLP  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
)
550  
40  
• Low power (SPLP  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
51  
Peripheral operating requirements and behaviors  
5. Calculated by a best fit curve from VSS+100 mV to VREF−100 mV  
Figure 18. Typical INL error vs. digital code  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
52  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Figure 19. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 31. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
TA  
CL  
Temperature  
−40  
105  
100  
°C  
nF  
Output load capacitance  
Table 32. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
nominal VDDA and temperature=25C  
TBD  
1.2  
TBD  
V
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
53  
Peripheral operating requirements and behaviors  
Table 32. VREF full-range operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Vout  
Voltage reference output with factory trim  
TBD  
TBD  
V
Voltage reference output user trim  
Voltage reference trim step  
1.198  
0.5  
1.202  
V
Vstep  
Vdrift  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
20  
See  
Figure 20  
Ac  
Ibg  
Itr  
Aging coefficient  
TBD  
TBD  
1.1  
ppm/year  
Bandgap only (MODE_LV = 00) current  
Tight-regulation buffer (MODE_LV =10) current  
µA  
mA  
V
Load regulation (MODE_LV = 10) current =  
1.0mA  
TBD  
Tstup  
DC  
Buffer startup time  
100  
TBD  
TBD  
µs  
mV  
dB  
Line regulation (power supply rejection)  
–60  
Table 33. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Notes  
TA  
Temperature  
0
50  
°C  
Table 34. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Vout  
Voltage reference output with factory trim  
TBD  
TBD  
V
TBD  
Figure 20. Typical output vs.temperature  
Figure 21. Typical output vs. VDD  
TBD  
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
54  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 35. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 22. MII transmit signal timing diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
55  
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 23. MII receive signal timing diagram  
6.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 36. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
56  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.3 USB DCD electrical specifications  
Table 37. USB DCD electrical specifications  
Symbol  
Description  
Min.  
TBD  
Typ.  
TBD  
Max.  
Unit  
VDP_SRC  
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
TBD  
V
VLGC  
0.8  
7
10  
2.0  
13  
V
IDP_SRC  
IDM_SINK  
μA  
μA  
kΩ  
V
USB_DM sink current  
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
TBD  
6.8.4 USB VREG electrical specifications  
Table 38. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
TBD  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1
TBD  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
500  
nA  
μA  
TBD  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.5  
2.3  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
1
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Current limitation threshold  
185  
290  
395  
mA  
1. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Freescale Semiconductor, Inc.  
57  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.5 CAN switching specifications  
See General switching specifications.  
6.8.6 DSPI switching specifications (low-speed mode)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 39. Master mode DSPI timing (low-speed mode)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK output cycle time  
4 x tBCLK  
DSPI_SCK output high/low time  
DSPI_PCSn to DSPI_SCK output valid  
DSPI_SCK to DSPI_PCSn output hold  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
(tSCK/2) - 4  
10  
(tSCK/2) - 4  
-2  
15  
0
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 24. DSPI classic SPI timing — master mode  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
58  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
Table 40. Slave mode DSPI timing (low-speed mode)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
Frequency of operation  
6.25  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBCLK  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSIP_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
20  
15  
15  
5
15  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 25. DSPI classic SPI timing — slave mode  
6.8.7 DSPI switching specifications (high-speed mode)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 41. Master mode DSPI timing (high-speed mode)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Operating voltage  
Frequency of operation  
25  
MHz  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
59  
Peripheral operating requirements and behaviors  
Table 41. Master mode DSPI timing (high-speed mode) (continued)  
Num  
Description  
DSPI_SCK output cycle time  
Min.  
Max.  
Unit  
DS1  
2 x tBCLK  
ns  
DS2  
DS3  
DS4  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK output high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_PCSn to DSPI_SCK output valid  
DSPI_SCK to DSPI_PCSn output hold  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
(tSCK/2) − 2  
8.5  
(tSCK/2) − 2  
−2  
TBD  
0
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 26. DSPI classic SPI timing — master mode  
Table 42. Slave mode DSPI timing (high-speed mode)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
12.5  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBCLK  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2 + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSIP_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
TBD  
2
7
14  
14  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
60  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
DSPI_SIN  
Figure 27. DSPI classic SPI timing — slave mode  
I2C switching specifications  
6.8.8  
See General switching specifications.  
6.8.9 UART switching specifications  
See General switching specifications.  
6.8.10 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 43. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
Clock frequency (low speed)  
Clock frequency (SD\SDIO full speed)  
Clock frequency (MMC full speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
400  
25  
20  
400  
kHz  
MHz  
MHz  
kHz  
ns  
0
0
SD2  
SD3  
SD4  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
61  
Peripheral operating requirements and behaviors  
Table 43. SDHC switching specifications  
(continued)  
Num  
Symbol  
Description  
Clock fall time  
Min.  
Max.  
Unit  
SD5  
tTHL  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
tOD SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
ns  
SD7  
SD8  
tTHL  
tTHL  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 28. SDHC timing  
I2S switching specifications  
6.8.11  
This section provides the AC timings for the I2S in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,  
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted, all  
the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame sync  
(I2S_FS) shown in the figures below.  
I2S master mode timing  
Table 44.  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
I2S_MCLK cycle time  
2.7  
3.6  
S1  
2 x tSYS  
ns  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
62  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
I2S master mode timing (continued)  
Table 44.  
Num  
S2  
Description  
Min.  
Max.  
55%  
Unit  
MCLK period  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
45%  
5 x tSYS  
45%  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
I2S_BCLK to I2S_TXD valid  
55%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
-2.5  
15  
I2S_BCLK to I2S_TXD invalid  
-3  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
20  
0
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S6  
S10  
S9  
S7  
S8  
S7  
S8  
S9  
S10  
I2S_RXD  
Figure 29. I2S timing — master mode  
Table 45.  
I2S slave mode timing  
Num  
Description  
Operating voltage  
Min.  
Max.  
3.6  
Unit  
V
2.7  
8 x tSYS  
45%  
10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
I2S_BCLK cycle time (input)  
ns  
I2S_BCLK pulse width high/low (input)  
I2S_FS input setup before I2S_BCLK  
I2S_FS input hold after I2S_BCLK  
I2S_BCLK to I2S_TXD/I2S_FS output valid  
I2S_BCLK to I2S_TXD/I2S_FS output invalid  
I2S_RXD setup before I2S_BCLK  
55%  
MCLK period  
ns  
ns  
ns  
ns  
ns  
3
20  
0
10  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
63  
Peripheral operating requirements and behaviors  
I2S slave mode timing (continued)  
Table 45.  
Num  
Description  
Min.  
Max.  
Unit  
S18  
I2S_RXD hold after I2S_BCLK  
2
ns  
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 30. I2S timing — slave modes  
6.9 Human-machine interfaces (HMI)  
6.9.1 TSI electrical specifications  
Table 46. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Target electrode capacitance range  
Reference oscillator frequency  
1
20  
5.5  
0.5  
1
500  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
pF  
1
fREFmax  
fELEmax  
CREF  
MHz  
MHz  
pF  
Electrode oscillator frequency  
Internal reference capacitor  
TBD  
TBD  
TBD  
TBD  
VDELTA  
IREF  
Oscillator delta voltage  
600  
1
mV  
μA  
μA  
%
Reference oscillator current source base current  
Electrode oscillator current source base current  
Electrode capacitance measurement precision  
Electrode capacitance measurement precision  
2
2
3
4
5
IELE  
1
Pres5  
Pres20  
TBD  
TBD  
TBD  
%
Pres100 Electrode capacitance measurement precision  
%
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
64  
Freescale Semiconductor, Inc.  
Dimensions  
Table 46. TSI electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
MaxSens2 Maximum sensitivity @ 20 pF electrode  
0
0.003  
0.25  
fF/count  
6
MaxSens Maximum sensitivity  
0.003  
16  
fF/count  
bits  
7
8
Res  
Resolution  
TCon20  
Response time @ 20 pF  
8
15  
25  
μs  
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
TBD  
1
μA  
TBD  
μA  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
3. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
4. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
5. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
6. Measured with a 20 pF electrode, reference oscillator frequency of ~5 MHz (IREF = 5 μA, REFCHRG = 4), PS = 128,  
NSCN = 2; Iext = 16 (EXTCHRG = 15).  
7. Typical value depends on the configuration used.  
8. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, DELVOL = 2, EXTCHRG = 15.  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.freescale.com and perform a keyword  
search for the drawing’s document number:  
If you want the drawing for this package  
80-pin LQFP  
Then use this document number  
98ASS23174W  
81-pin MAPBGA  
144-pin LQFP  
98ASA10631D  
98ASS23177W  
98ASA00222D  
144-pin MAPBGA  
8 Pinout  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
65  
Pinout  
8.1 K60 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
The 81-pin ballmap assignments are currently being developed.  
The • in the entries in this package column indicate which  
signals are present on the package.  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
1
BGA  
L5  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
M5  
NC  
NC  
NC  
NC  
A10 NC  
B10 NC  
C10 NC  
D3  
D2  
D1  
E4  
PTE0  
ADC1_SE4  
a
ADC1_SE4  
a
PTE0  
SPI1_PCS1 UART1_TX  
SDHC0_D1  
I2C1_SDA  
I2C1_SCL  
2
3
4
PTE1  
PTE2  
PTE3  
ADC1_SE5  
a
ADC1_SE5  
a
PTE1  
PTE2  
PTE3  
SPI1_SOUT UART1_RX SDHC0_D0  
ADC1_SE6  
a
ADC1_SE6  
a
SPI1_SCK  
SPI1_SIN  
UART1_CT  
S_b  
SDHC0_DC  
LK  
ADC1_SE7  
a
ADC1_SE7  
a
UART1_RT  
S_b  
SDHC0_CM  
D
5
6
7
8
9
E5  
F6  
E3  
E2  
E1  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTE4  
PTE5  
PTE6  
DISABLED  
DISABLED  
DISABLED  
PTE4  
PTE5  
PTE6  
SPI1_PCS0 UART3_TX  
SDHC0_D3  
SPI1_PCS2 UART3_RX SDHC0_D2  
SPI1_PCS3 UART3_CT  
S_b  
I2S0_MCLK  
I2S0_CLKIN  
10  
11  
12  
F4  
F3  
F2  
PTE7  
PTE8  
PTE9  
DISABLED  
DISABLED  
DISABLED  
PTE7  
PTE8  
PTE9  
UART3_RT  
S_b  
I2S0_RXD  
I2S0_RX_F  
S
I2S0_RX_B  
CLK  
13  
14  
F1  
PTE10  
PTE11  
DISABLED  
DISABLED  
PTE10  
PTE11  
I2S0_TXD  
G4  
I2S0_TX_F  
S
15  
G3  
PTE12  
DISABLED  
PTE12  
I2S0_TX_B  
CLK  
16  
17  
18  
E6  
F7  
H3  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
VDD  
VSS  
VSS  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
66  
Freescale Semiconductor, Inc.  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
H1  
H2  
G1  
G2  
J1  
19  
20  
21  
22  
23  
24  
25  
26  
27  
USB0_DP  
USB0_DM  
VOUT33  
USB0_DP  
USB0_DM  
VOUT33  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VREGIN  
VREGIN  
ADC0_DP1  
ADC0_DP1  
ADC0_DP1  
J2  
ADC0_DM1 ADC0_DM1 ADC0_DM1  
ADC1_DP1 ADC1_DP1 ADC1_DP1  
ADC1_DM1 ADC1_DM1 ADC1_DM1  
PGA0_DP/ PGA0_DP/ PGA0_DP/  
ADC0_DP0/ ADC0_DP0/ ADC0_DP0/  
K1  
K2  
L1  
ADC1_DP3  
ADC1_DP3  
ADC1_DP3  
28  
29  
30  
L2  
M1  
M2  
PGA0_DM/  
ADC0_DM0/ ADC0_DM0/ ADC0_DM0/  
ADC1_DM3 ADC1_DM3 ADC1_DM3  
PGA0_DM/  
PGA0_DM/  
PGA1_DP/  
ADC1_DP0/ ADC1_DP0/ ADC1_DP0/  
ADC0_DP3  
PGA1_DM/  
PGA1_DP/  
PGA1_DP/  
ADC0_DP3  
PGA1_DM/  
ADC0_DP3  
PGA1_DM/  
ADC1_DM0/ ADC1_DM0/ ADC1_DM0/  
ADC0_DM3 ADC0_DM3 ADC0_DM3  
31  
32  
33  
34  
35  
H5  
G5  
G6  
H6  
K3  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
ADC1_SE1  
6/  
ADC1_SE1  
6/  
ADC1_SE1  
6/  
CMP2_IN2/  
ADC0_SE2  
2
CMP2_IN2/  
ADC0_SE2  
2
CMP2_IN2/  
ADC0_SE2  
2
36  
37  
J3  
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
ADC0_SE1  
6/  
CMP1_IN2/  
ADC0_SE2  
1
M3  
VREF_OUT/ VREF_OUT VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE1  
8
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE1  
8
38  
39  
40  
L3  
L4  
DAC0_OUT/ DAC0_OUT DAC0_OUT/  
CMP1_IN3/  
ADC0_SE2  
3
CMP1_IN3/  
ADC0_SE2  
3
DAC1_OUT/ DAC1_OUT DAC1_OUT/  
CMP2_IN3/  
ADC1_SE2  
3
CMP2_IN3/  
ADC1_SE2  
3
M7  
XTAL32  
XTAL32  
XTAL32  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
67  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
M6  
L6  
41  
42  
43  
44  
45  
EXTAL32  
VBAT  
VDD  
EXTAL32  
VBAT  
VDD  
EXTAL32  
VBAT  
VDD  
VSS  
VSS  
VSS  
M4  
PTE24  
ADC0_SE1  
7
ADC0_SE1  
7
PTE24  
CAN1_TX  
CAN1_RX  
UART4_TX  
UART4_RX  
EWM_OUT  
_b  
46  
47  
48  
K5  
K4  
J4  
PTE25  
PTE26  
PTE27  
ADC0_SE1  
8
ADC0_SE1  
8
PTE25  
PTE26  
PTE27  
EWM_IN  
DISABLED  
DISABLED  
DISABLED  
UART4_CT  
S_b  
ENET_1588  
_CLKIN  
RTC_CLKO USB_CLKIN  
UT  
UART4_RT  
S_b  
49  
50  
H4  
J5  
PTE28  
PTA0  
PTE28  
PTA0  
JTAG_TCL  
K/  
SWD_CLK/  
EZP_CLK  
TSI0_CH1  
TSI0_CH2  
UART0_CT  
S_b  
FTM0_CH5  
JTAG_TCL  
K/  
SWD_CLK  
EZP_CLK  
EZP_DI  
51  
52  
J6  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
PTA1  
PTA2  
UART0_RX FTM0_CH6  
JTAG_TDI  
K6  
JTAG_TDO/ TSI0_CH3  
TRACE_SW  
O/EZP_DO  
UART0_TX  
FTM0_CH7  
JTAG_TDO/ EZP_DO  
TRACE_SW  
O
53  
54  
55  
K7  
L7  
PTA3  
PTA4  
PTA5  
JTAG_TMS/ TSI0_CH4  
SWD_DIO  
PTA3  
PTA4  
PTA5  
UART0_RT  
S_b  
FTM0_CH0  
FTM0_CH1  
FTM0_CH2  
JTAG_TMS/  
SWD_DIO  
NMI_b/  
TSI0_CH5  
NMI_b  
EZP_CS_b  
EZP_CS_b  
M8  
DISABLED  
RMII0_RXE CMP2_OUT I2S0_RX_B JTAG_TRS  
R/  
CLK  
T
MII0_RXER  
56  
57  
58  
E7  
G7  
J7  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA6  
DISABLED  
PTA6  
PTA7  
PTA8  
PTA9  
PTA10  
PTA11  
PTA12  
FTM0_CH3  
FTM0_CH4  
FTM1_CH0  
FTM1_CH1  
FTM2_CH0  
FTM2_CH1  
FTM1_CH0  
TRACE_CL  
KOUT  
59  
60  
61  
62  
63  
64  
J8  
K8  
L8  
M9  
L9  
K9  
PTA7  
ADC0_SE1  
0
ADC0_SE1  
0
TRACE_D3  
PTA8  
ADC0_SE1  
1
ADC0_SE1  
1
FTM1_QD_ TRACE_D2  
PHA  
PTA9  
DISABLED  
DISABLED  
DISABLED  
CMP2_IN0  
MII0_RXD3  
MII0_RXD2  
FTM1_QD_ TRACE_D1  
PHB  
PTA10  
PTA11  
PTA12  
FTM2_QD_ TRACE_D0  
PHA  
MII0_RXCL  
K
FTM2_QD_  
PHB  
CMP2_IN0  
CAN0_TX  
RMII0_RXD  
1/  
I2S0_TXD  
FTM1_QD_  
PHA  
MII0_RXD1  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
68  
Freescale Semiconductor, Inc.  
Pinout  
144  
LQF MAP  
P
144  
Pin Name  
Default  
CMP2_IN1  
DISABLED  
DISABLED  
DISABLED  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
BGA  
65  
J9  
PTA13  
CMP2_IN1  
PTA13  
CAN0_RX  
FTM1_CH1  
RMII0_RXD  
0/  
MII0_RXD0  
I2S0_TX_F  
S
FTM1_QD_  
PHB  
66  
67  
68  
69  
L10 PTA14  
L11 PTA15  
K10 PTA16  
K11 PTA17  
PTA14  
PTA15  
PTA16  
PTA17  
SPI0_PCS0 UART0_TX  
RMII0_CRS  
_DV/  
MII0_RXDV  
I2S0_TX_B  
CLK  
SPI0_SCK  
UART0_RX RMII0_TXE  
I2S0_RXD  
N/  
MII0_TXEN  
SPI0_SOUT UART0_CT  
S_b  
RMII0_TXD  
0/  
MII0_TXD0  
I2S0_RX_F  
S
ADC1_SE1  
7
ADC1_SE1  
7
SPI0_SIN  
UART0_RT  
S_b  
RMII0_TXD  
1/  
I2S0_MCLK I2S0_CLKIN  
MII0_TXD1  
70  
71  
72  
E8  
G8  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
M12 PTA18  
EXTAL  
EXTAL  
PTA18  
PTA19  
FTM0_FLT2 FTM_CLKIN  
0
73  
M11 PTA19  
XTAL  
XTAL  
FTM1_FLT0 FTM_CLKIN  
1
LPT0_ALT1  
74  
75  
76  
L12 RESET_b  
K12 PTA24  
J12 PTA25  
RESET_b  
DISABLED  
DISABLED  
RESET_b  
PTA24  
PTA25  
MII0_TXD2  
FB_A29  
FB_A28  
MII0_TXCL  
K
77  
78  
79  
80  
81  
J11 PTA26  
J10 PTA27  
H12 PTA28  
H11 PTA29  
H10 PTB0  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
/
ADC0_SE8/ ADC0_SE8/  
ADC1_SE8/ ADC1_SE8/  
TSI0_CH0  
PTA26  
PTA27  
PTA28  
PTA29  
PTB0  
MII0_TXD3  
MII0_CRS  
MII0_TXER  
MII0_COL  
FB_A27  
FB_A26  
FB_A25  
FB_A24  
/
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
FTM1_CH1  
RMII0_MDI  
O/  
MII0_MDIO  
FTM1_QD_  
PHA  
TSI0_CH0  
82  
H9  
PTB1  
/
/
PTB1  
RMII0_MDC  
/MII0_MDC  
FTM1_QD_  
PHB  
ADC0_SE9/ ADC0_SE9/  
ADC1_SE9/ ADC1_SE9/  
TSI0_CH6  
TSI0_CH6  
83  
84  
85  
G12 PTB2  
G11 PTB3  
G10 PTB4  
/
/
PTB2  
PTB3  
PTB4  
I2C0_SCL  
I2C0_SDA  
UART0_RT  
S_b  
ENET0_158  
8_TMR0  
FTM0_FLT3  
FTM0_FLT0  
FTM1_FLT0  
ADC0_SE1  
2/TSI0_CH7 2/TSI0_CH7  
ADC0_SE1  
/
/
UART0_CT  
S_b  
ENET0_158  
8_TMR1  
ADC0_SE1  
3/TSI0_CH8 3/TSI0_CH8  
ADC0_SE1  
/
/
ENET0_158  
8_TMR2  
ADC1_SE1  
0
ADC1_SE1  
0
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
69  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
86  
G9  
PTB5  
/
/
PTB5  
ENET0_158  
8_TMR3  
FTM2_FLT0  
ADC1_SE1  
1
ADC1_SE1  
1
87  
88  
F12 PTB6  
F11 PTB7  
F10 PTB8  
/
/
PTB6  
PTB7  
FB_AD23  
FB_AD22  
ADC1_SE1  
2
ADC1_SE1  
2
/
/
ADC1_SE1  
3
ADC1_SE1  
3
89  
90  
91  
PTB8  
PTB9  
PTB10  
UART3_RT  
S_b  
FB_AD21  
FB_AD20  
FB_AD19  
F9  
PTB9  
SPI1_PCS1 UART3_CT  
S_b  
E12 PTB10  
E11 PTB11  
/
/
SPI1_PCS0 UART3_RX  
FTM0_FLT1  
FTM0_FLT2  
ADC1_SE1  
4
ADC1_SE1  
4
92  
/
/
PTB11  
SPI1_SCK  
UART3_TX  
FB_AD18  
ADC1_SE1  
5
ADC1_SE1  
5
93  
94  
95  
96  
H7  
F5  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
E10 PTB16  
E9 PTB17  
/TSI0_CH9  
/TSI0_CH9  
PTB16  
SPI1_SOUT UART0_RX  
FB_AD17  
FB_AD16  
EWM_IN  
/TSI0_CH10 /TSI0_CH10 PTB17  
/TSI0_CH11 /TSI0_CH11 PTB18  
/TSI0_CH12 /TSI0_CH12 PTB19  
SPI1_SIN  
CAN0_TX  
CAN0_RX  
UART0_TX  
FTM2_CH0  
FTM2_CH1  
EWM_OUT  
_b  
97  
98  
D12 PTB18  
D11 PTB19  
D10 PTB20  
I2S0_TX_B  
CLK  
FB_AD15  
FB_OE_b  
FTM2_QD_  
PHA  
I2S0_TX_F  
S
FTM2_QD_  
PHB  
99  
PTB20  
PTB21  
PTB22  
PTB23  
SPI2_PCS0  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FB_AD31  
FB_AD30  
FB_AD29  
FB_AD28  
FB_AD14  
CMP0_OUT  
CMP1_OUT  
CMP2_OUT  
100  
101  
102  
103  
D9  
PTB21  
C12 PTB22  
C11 PTB23  
B12 PTC0  
SPI0_PCS5  
/
/
PTC0  
PTC1  
PTC2  
SPI0_PCS4 PDB0_EXT  
RG  
I2S0_TXD  
FTM0_CH0  
FTM0_CH1  
ADC0_SE1  
4/  
TSI0_CH13 TSI0_CH13  
ADC0_SE1  
4/  
104  
105  
B11 PTC1  
A12 PTC2  
/
/
SPI0_PCS3 UART1_RT  
S_b  
FB_AD13  
FB_AD12  
ADC0_SE1  
5/  
TSI0_CH14 TSI0_CH14  
ADC0_SE1  
5/  
/
/
SPI0_PCS2 UART1_CT  
S_b  
ADC0_SE4  
b/  
ADC0_SE4  
b/  
CMP1_IN0/  
CMP1_IN0/  
TSI0_CH15 TSI0_CH15  
106  
107  
A11 PTC3  
/CMP1_IN1  
VSS  
/CMP1_IN1  
VSS  
PTC3  
SPI0_PCS1 UART1_RX FTM0_CH2  
FB_CLKOU  
T
H8  
VSS  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
70  
Freescale Semiconductor, Inc.  
Pinout  
144  
144  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
LQF MAP  
P
BGA  
108  
109  
110  
111  
VDD  
VDD  
VDD  
A9  
PTC4  
PTC5  
PTC6  
PTC4  
SPI0_PCS0 UART1_TX  
SPI0_SCK  
FTM0_CH3  
FB_AD11  
CMP1_OUT  
CMP0_OUT  
D8  
C8  
PTC5  
PTC6  
LPT0_ALT2 FB_AD10  
FB_AD9  
/CMP0_IN0  
/CMP0_IN1  
/CMP0_IN0  
/CMP0_IN1  
SPI0_SOUT PDB0_EXT  
RG  
112  
113  
B8  
A8  
PTC7  
PTC8  
PTC7  
PTC8  
SPI0_SIN  
FB_AD8  
/
/
I2S0_MCLK I2S0_CLKIN FB_AD7  
ADC1_SE4  
b/  
ADC1_SE4  
b/  
CMP0_IN2  
CMP0_IN2  
114  
115  
116  
D7  
C7  
B7  
PTC9  
/
/
PTC9  
I2S0_RX_B FB_AD6  
CLK  
FTM2_FLT0  
ADC1_SE5  
b/  
CMP0_IN3  
ADC1_SE5  
b/  
CMP0_IN3  
PTC10  
PTC11  
/
/
PTC10  
PTC11  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_F  
S
FB_AD5  
ADC1_SE6  
b/  
CMP0_IN4  
ADC1_SE6  
b/  
CMP0_IN4  
/
/
I2S0_RXD  
FB_RW_b  
ADC1_SE7  
b
ADC1_SE7  
b
117  
118  
A7  
D6  
PTC12  
PTC13  
PTC12  
PTC13  
UART4_RT  
S_b  
FB_AD27  
FB_AD26  
UART4_CT  
S_b  
119  
120  
121  
122  
123  
C6  
B6  
PTC14  
PTC15  
VSS  
PTC14  
PTC15  
UART4_RX  
UART4_TX  
FB_AD25  
FB_AD24  
VSS  
VDD  
VSS  
VDD  
VDD  
A6  
PTC16  
PTC16  
PTC17  
PTC18  
PTC19  
CAN1_RX  
CAN1_TX  
UART3_RX ENET0_158 FB_CS5_b/  
8_TMR0  
FB_TSIZ1/  
FB_BE23_1  
6_BLS15_8  
_b  
124  
125  
126  
D5  
C5  
B5  
PTC17  
PTC18  
PTC19  
UART3_TX  
ENET0_158 FB_CS4_b/  
8_TMR1  
FB_TSIZ0/  
FB_BE31_2  
4_BLS7_0_  
b
UART3_RT  
S_b  
ENET0_158 FB_TBST_b  
8_TMR2  
/FB_CS2_b/  
FB_BE15_8  
_BLS23_16  
_b  
UART3_CT  
S_b  
ENET0_158 FB_CS3_b/  
FB_TA_b  
8_TMR3  
FB_BE7_0_  
BLS31_24_  
b
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
71  
Pinout  
144  
LQF MAP  
P
144  
Pin Name  
PTD0  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
BGA  
127  
A5  
PTD0  
SPI0_PCS0 UART2_RT  
S_b  
FB_ALE/  
FB_CS1_b/  
FB_TS_b  
128  
D4  
PTD1  
/
/
PTD1  
SPI0_SCK  
UART2_CT  
S_b  
FB_CS0_b  
ADC0_SE5  
b
ADC0_SE5  
b
129  
130  
131  
C4  
B4  
A4  
PTD2  
PTD3  
PTD4  
PTD2  
PTD3  
PTD4  
SPI0_SOUT UART2_RX  
SPI0_SIN UART2_TX  
FB_AD4  
FB_AD3  
FB_AD2  
SPI0_PCS1 UART0_RT  
S_b  
FTM0_CH4  
FTM0_CH5  
EWM_IN  
132  
133  
A3  
A2  
PTD5  
PTD6  
/
/
PTD5  
PTD6  
SPI0_PCS2 UART0_CT  
S_b  
FB_AD1  
FB_AD0  
EWM_OUT  
_b  
ADC0_SE6  
b
ADC0_SE6  
b
/
/
SPI0_PCS3 UART0_RX FTM0_CH6  
FTM0_FLT0  
ADC0_SE7  
b
ADC0_SE7  
b
134  
135  
136  
137  
138  
139  
140  
M10 VSS  
VSS  
VDD  
VSS  
VDD  
F8  
A1  
C9  
B9  
B3  
B2  
VDD  
PTD7  
PTD8  
PTD9  
PTD10  
PTD11  
PTD7  
PTD8  
PTD9  
PTD10  
PTD11  
CMT_IRO  
I2C0_SCL  
I2C0_SDA  
UART0_TX  
FTM0_CH7  
FTM0_FLT1  
FB_A16  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
FB_A17  
FB_A18  
SPI2_PCS0  
SDHC0_CL  
KIN  
FB_A19  
141  
142  
143  
144  
B1  
C3  
C2  
C1  
PTD12  
PTD13  
PTD14  
PTD15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD12  
PTD13  
PTD14  
PTD15  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
SDHC0_D4  
SDHC0_D5  
SDHC0_D6  
SDHC0_D7  
FB_A20  
FB_A21  
FB_A22  
FB_A23  
SPI2_PCS1  
8.2 K60 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
72  
Freescale Semiconductor, Inc.  
Preliminary  
Pinout  
PTE0  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
PTE1  
2
VSS  
PTE2  
3
PTC3  
PTC2  
PTC1  
PTC0  
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
PTE3  
4
VDD  
5
VSS  
6
PTE4  
7
PTE5  
8
PTE6  
9
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTE8  
98  
PTE9  
97  
PTE10  
96  
PTE11  
95  
PTE12  
94  
VDD  
VSS  
93  
VSS  
PTB11  
PTB10  
PTB9  
92  
VSS  
91  
USB0_DP  
90  
USB0_DM  
PTB8  
89  
VOUT33  
VREGIN  
PTB7  
88  
PTB6  
87  
ADC0_DP1  
PTB5  
86  
ADC0_DM1  
PTB4  
85  
ADC1_DP1  
PTB3  
84  
ADC1_DM1  
PTB2  
83  
PGA0_DP/ADC0_DP0/ADC1_DP3  
PGA0_DM/ADC0_DM0/ADC1_DM3  
PGA1_DP/ADC1_DP0/ADC0_DP3  
PGA1_DM/ADC1_DM0/ADC0_DM3  
VDDA  
PTB1  
82  
PTB0  
81  
PTA29  
PTA28  
PTA27  
PTA26  
PTA25  
PTA24  
RESET_b  
PTA19  
80  
79  
78  
VREFH  
77  
VREFL  
76  
VSSA  
75  
ADC1_SE16/CMP2_IN2/ADC0_SE22  
ADC0_SE16/CMP1_IN2/ADC0_SE21  
74  
73  
Figure 31. K60 144 LQFP Pinout Diagram  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
73  
Revision History  
1
2
3
4
5
6
7
8
9
10  
11  
12  
A
B
C
D
E
F
PTC8  
PTC4  
NC  
PTC3  
PTC2  
A
B
C
D
E
F
PTD7  
PTD12  
PTD6  
PTD5  
PTD4  
PTD0  
PTC16  
PTC12  
PTD11  
PTD14  
PTD10  
PTD13  
PTE0  
PTE4  
PTE8  
PTE12  
VSS  
PTD3  
PTD2  
PTD1  
PTE3  
PTC19  
PTC18  
PTC17  
VDD  
PTC15  
PTC14  
PTC13  
VDD  
PTC11  
PTC10  
PTC9  
VDD  
PTC7  
PTC6  
PTC5  
VDD  
PTD9  
PTD8  
NC  
PTC1  
PTB23  
PTB19  
PTB11  
PTB7  
PTC0  
PTB22  
PTB18  
PTB10  
PTB6  
PTD15  
NC  
PTE2  
PTE1  
PTB21  
PTB17  
PTB9  
PTB20  
PTB16  
PTB8  
PTB4  
PTB0  
PTA27  
PTA16  
PTA14  
PTE6  
PTE5  
PTE10  
PTE9  
PTE7  
VDD  
VSS  
VSS  
VDD  
G
H
J
G
H
J
VOUT33  
USB0_DP  
ADC0_DP1  
VREGIN  
USB0_DM  
ADC0_DM1  
PTE11  
PTE28  
PTE27  
PTE26  
VREFH  
VDDA  
PTA0  
PTE25  
NC  
VREFL  
VSSA  
PTA1  
PTA2  
VBAT  
VSS  
VSS  
PTB5  
PTB3  
PTB2  
VSS  
VSS  
PTB1  
PTA29  
PTA26  
PTA17  
PTA15  
PTA28  
PTA25  
PTA24  
RESET_b  
ADC0_SE16/  
CMP1_IN2/  
ADC0_SE21  
PTA6  
PTA3  
PTA4  
PTA7  
PTA8  
PTA9  
PTA13  
PTA12  
PTA11  
ADC1_SE16/  
K
L
K
L
ADC1_DP1  
PGA0_DP/  
ADC1_DM1 CMP2_IN2/  
ADC0_SE22  
PGA0_DM/ DAC0_OUT/ DAC1_OUT/  
CMP2_IN3/  
ADC0_DP0/ ADC0_DM0/ CMP1_IN3/  
ADC1_DP3  
ADC1_DM3 ADC0_SE23 ADC1_SE23  
VREF_OUT/  
PGA1_DM/  
PGA1_DP/  
CMP1_IN5/  
M
M
ADC1_DP0/ ADC1_DM0/  
PTE24  
NC  
EXTAL32  
XTAL32  
PTA5  
PTA10  
VSS  
PTA19  
PTA18  
CMP0_IN5/  
ADC1_SE18  
ADC0_DP3  
ADC0_DM3  
1
2
3
4
5
6
7
8
9
10  
11  
12  
Figure 32. K60 144 MAPBGA Pinout Diagram  
9 Revision History  
The following table provides a revision history for this document.  
Table 47. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
11/2010  
Initial public revision  
Table continues on the next page...  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
74  
Freescale Semiconductor, Inc.  
Revision History  
Table 47. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
2
3/2011  
Many updates throughout  
Corrected 81- and 104-pin package codes  
3
4
3/2011  
3/2011  
Added sections that were inadvertently removed in previous revision  
Reworded IIC footnote in "Voltage and Current Operating Requirements"  
table.  
Added paragraph to "Peripheral operating requirements and behaviors"  
section.  
Added "JTAG full voltage range electricals" table to the "JTAG electricals"  
section.  
K60 Sub-Family Data Sheet Data Sheet, Rev. 4, 3/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
75  
Information in this document is provided solely to enable system and sofware  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2010–2011 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: K60P144M100SF2  
Rev. 4, 3/2011  
Preliminary  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY