MK61FX512VMF12R [NXP]

FLASH, 120 MHz, RISC MICROCONTROLLER, PBGA196, 15 X 15 MM, MAPBGA-196;
MK61FX512VMF12R
型号: MK61FX512VMF12R
厂家: NXP    NXP
描述:

FLASH, 120 MHz, RISC MICROCONTROLLER, PBGA196, 15 X 15 MM, MAPBGA-196

时钟 外围集成电路
文件: 总83页 (文件大小:1980K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: K61P196M120SF3  
Rev. 2, 11/2011  
Freescale Semiconductor  
Data Sheet: Advance Information  
K61P196M120SF3  
K61 Sub-Family Data Sheet  
Supports the following:  
MK61FX512VMF12,  
MK61FN1M0VMF12  
Features  
Security and integrity modules  
– Hardware CRC module to support fast cyclic  
redundancy checks  
Operating Characteristics  
– Voltage range: 1.71 to 3.6 V  
– Flash write voltage range: 1.71 to 3.6 V  
– Temperature range (ambient): -40 to 105°C  
– Tamper detect and secure storage  
– Hardware random-number generator  
– Hardware encryption supporting DES, 3DES, AES,  
MD5, SHA-1, and SHA-256 algorithms  
– 128-bit unique identification (ID) number per chip  
Performance  
– Up to 120 MHz ARM Cortex-M4 core with DSP  
instructions delivering 1.25 Dhrystone MIPS per  
MHz  
Human-machine interface  
– Low-power hardware touch sensor interface (TSI)  
– General-purpose input/output  
Memories and memory interfaces  
– Up to 1024 KB program flash memory on non-  
FlexMemory devices  
Analog modules  
– Four 16-bit SAR ADCs  
– Programmable gain amplifier (PGA) (up to x64)  
integrated into each ADC  
– Two 12-bit DACs  
– Four analog comparators (CMP) containing a 6-bit  
DAC and programmable reference input  
– Voltage reference  
– Up to 512 KB program flash memory on  
FlexMemory devices  
– Up to 512 KB FlexNVM on FlexMemory devices  
– 16 KB FlexRAM on FlexMemory devices  
– Up to 128 KB RAM  
– Serial programming interface (EzPort)  
– FlexBus external bus interface  
– NAND flash controller interface  
Timers  
Clocks  
– Programmable delay block  
– Two 8-channel motor control/general purpose/PWM  
timers  
– Two 2-channel quadrature decoder/general purpose  
timers  
– 3 to 32 MHz crystal oscillator  
– 32 kHz crystal oscillator  
– Multi-purpose clock generator  
System peripherals  
– IEEE 1588 timers  
– 10 low-power modes to provide power optimization  
based on application requirements  
– Memory protection unit with multi-master  
protection  
– 32-channel DMA controller, supporting up to 128  
request sources  
– Periodic interrupt timers  
– 16-bit low-power timer  
– Carrier modulator transmitter  
– Real-time clock  
– External watchdog monitor  
– Software watchdog  
– Low-leakage wakeup unit  
This document contains information on a new product. Specifications and  
information herein are subject to change without notice.  
© 2011 Freescale Semiconductor, Inc.  
Preliminary  
Communication interfaces  
– Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability  
– USB high-/full-/low-speed On-the-Go controller with ULPI interface  
– USB full-/low-speed On-the-Go controller with on-chip transceiver  
– Two Controller Area Network (CAN) modules  
– Three SPI modules  
– Two I2C modules  
– Six UART modules  
– Secure Digital host controller (SDHC)  
– Two I2S modules  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
2
Freescale Semiconductor, Inc.  
Preliminary  
Table of Contents  
1 Ordering parts...........................................................................5  
5.4.2  
Thermal attributes...............................................24  
1.1 Determining valid orderable parts......................................5  
2 Part identification......................................................................5  
2.1 Description.........................................................................5  
2.2 Format...............................................................................5  
2.3 Fields.................................................................................5  
2.4 Example............................................................................6  
3 Terminology and guidelines......................................................6  
3.1 Definition: Operating requirement......................................6  
3.2 Definition: Operating behavior...........................................6  
3.3 Definition: Attribute............................................................7  
3.4 Definition: Rating...............................................................7  
3.5 Result of exceeding a rating..............................................8  
3.6 Relationship between ratings and operating  
6 Peripheral operating requirements and behaviors....................25  
6.1 Core modules....................................................................25  
6.1.1  
6.1.2  
Debug trace timing specifications.......................25  
JTAG electricals..................................................26  
6.2 System modules................................................................29  
6.3 Clock modules...................................................................29  
6.3.1  
6.3.2  
6.3.3  
MCG specifications.............................................29  
Oscillator electrical specifications.......................32  
32kHz Oscillator Electrical Characteristics.........34  
6.4 Memories and memory interfaces.....................................35  
6.4.1  
6.4.2  
6.4.3  
6.4.4  
Flash (FTFE) electrical specifications.................35  
EzPort Switching Specifications.........................38  
NFC specifications..............................................38  
Flexbus Switching Specifications........................42  
requirements......................................................................8  
3.7 Guidelines for ratings and operating requirements............8  
3.8 Definition: Typical value.....................................................9  
3.9 Typical value conditions....................................................10  
4 Ratings......................................................................................10  
4.1 Thermal handling ratings...................................................10  
4.2 Moisture handling ratings..................................................11  
4.3 ESD handling ratings.........................................................11  
4.4 Voltage and current operating ratings...............................11  
5 General.....................................................................................12  
5.1 AC electrical characteristics..............................................12  
5.2 Nonswitching electrical specifications...............................12  
6.5 Security and integrity modules..........................................44  
6.5.1 DryIce Tamper Electrical Specifications.............44  
6.6 Analog...............................................................................45  
6.6.1  
6.6.2  
6.6.3  
6.6.4  
ADC electrical specifications..............................46  
CMP and 6-bit DAC electrical specifications......54  
12-bit DAC electrical characteristics...................56  
Voltage reference electrical specifications..........59  
6.7 Timers................................................................................60  
6.8 Communication interfaces.................................................60  
6.8.1  
6.8.2  
6.8.3  
6.8.4  
6.8.5  
6.8.6  
6.8.7  
Ethernet switching specifications........................60  
USB electrical specifications...............................62  
USB DCD electrical specifications......................62  
USB VREG electrical specifications...................63  
ULPI timing specifications...................................63  
CAN switching specifications..............................64  
DSPI switching specifications (limited voltage  
range).................................................................65  
DSPI switching specifications (full voltage  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
5.2.5  
5.2.6  
5.2.7  
5.2.8  
Voltage and current operating requirements......12  
LVD and POR operating requirements...............14  
Voltage and current operating behaviors............15  
Power mode transition operating behaviors.......16  
Power consumption operating behaviors............17  
EMC radiated emissions operating behaviors....21  
Designing with radiated emissions in mind.........22  
Capacitance attributes........................................22  
6.8.8  
6.8.9  
range).................................................................66  
I2C switching specifications................................68  
5.3 Switching specifications.....................................................22  
5.3.1  
5.3.2  
Device clock specifications.................................22  
General switching specifications.........................23  
6.8.10 UART switching specifications............................68  
6.8.11 SDHC specifications...........................................68  
6.8.12 I2S/SAI Switching Specifications........................69  
6.9 Human-machine interfaces (HMI)......................................71  
5.4 Thermal specifications.......................................................24  
5.4.1 Thermal operating requirements.........................24  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
3
Preliminary  
6.9.1  
TSI electrical specifications................................71  
8.1 K61 Signal Multiplexing and Pin Assignments..................73  
8.2 K61 Pinouts.......................................................................80  
9 Revision History........................................................................82  
7 Dimensions...............................................................................72  
7.1 Obtaining package dimensions.........................................73  
8 Pinout........................................................................................73  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
4
Freescale Semiconductor, Inc.  
Preliminary  
Ordering parts  
1 Ordering parts  
1.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to http://www.freescale.com and perform a part number  
search for the following device numbers: PK60 and MK60.  
2 Part identification  
2.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
2.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF T PP CC N  
2.3 Fields  
This table lists the possible values for each field in the part number (not all combinations  
are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K60  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
5
Terminology and guidelines  
Field  
Description  
Values  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
T
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
CC  
N
Package identifier  
• MF = 196 MAPBGA (15 mm x 15 mm)  
• 12 = 120 MHz  
Maximum CPU frequency (MHz)  
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
2.4 Example  
This is an example part number:  
MK61FN1M0VMF12  
3 Terminology and guidelines  
3.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
3.1.1 Example  
This is an example of an operating requirement, which you must meet for the  
accompanying operating behaviors to be guaranteed:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
6
Freescale Semiconductor, Inc.  
Terminology and guidelines  
3.2 Definition: Operating behavior  
An operating behavior is a specified value or range of values for a technical  
characteristic that are guaranteed during operation if you meet the operating requirements  
and any other specified conditions.  
3.2.1 Example  
This is an example of an operating behavior, which is guaranteed if you meet the  
accompanying operating requirements:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
3.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
3.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
3.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
7
Preliminary  
Terminology and guidelines  
3.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
3.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
3.6 Relationship between ratings and operating requirements  
Fatal  
range  
Normal  
operating  
range  
Fatal  
range  
- Probable permanent failure  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- No permanent failure  
- Correct operation  
- No permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Probable permanent failure  
Handling range  
- No permanent failure  
 
3.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
8
Freescale Semiconductor, Inc.  
Preliminary  
Terminology and guidelines  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
3.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
3.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
3.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
9
Preliminary  
Ratings  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
3.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Value  
Unit  
TA  
Ambient temperature  
25  
°C  
V
VDD  
3.3 V supply voltage  
3.3  
4 Ratings  
4.1 Thermal handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TSTG  
Storage temperature  
–55  
150  
°C  
1
TSDR  
Solder temperature, lead-free  
260  
°C  
2
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
10  
Freescale Semiconductor, Inc.  
Preliminary  
Ratings  
4.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
4.3 ESD handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
Electrostatic discharge voltage, human body model  
-2000  
+2000  
V
1
VCDM  
ILAT  
Electrostatic discharge voltage, charged-device model  
Latch-up current at ambient temperature of 105°C  
-500  
-100  
+500  
+100  
V
2
mA  
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
4.4 Voltage and current operating ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Digital supply voltage1  
–0.3  
3.8  
V
VDD_INT  
IDD  
IDD_INT  
VDIO  
Core supply voltage  
Digital supply current  
Core supply current  
–0.3  
3.8  
300  
185  
5.5  
V
mA  
mA  
V
Digital input voltage (except RESET, EXTAL0/XTAL0, and  
EXTAL1/XTAL1) 2  
–0.3  
VDTamper  
VAIO  
Tamper input voltage  
–0.3  
–0.3  
VBAT + 0.3  
VDD + 0.3  
V
V
Analog3, RESET, EXTAL0/XTAL0, and EXTAL1/XTAL1 input  
voltage  
ID  
Instantaneous maximum current single pin limit (applies to all  
digital pins except Tamper pins)  
–25  
25  
mA  
mA  
ID_Tamper  
Instananeous maximum current signle pin limit (applies to  
Tamper pins)  
TBD  
TBD  
VDDA  
Analog supply voltage  
USB_DP input voltage  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
VUSB_DP  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
11  
General  
Symbol  
Description  
Min.  
Max.  
Unit  
VUSB_DM  
VREGIN  
VBAT  
USB_DM input voltage  
–0.3  
3.63  
V
USB regulator input  
–0.3  
–0.3  
6.0  
3.8  
V
V
RTC battery supply voltage  
1. It applies for all port pins except Tamper pins.  
2. It covers digital pins except Tamper pins.  
3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
5 General  
5.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
• have CL=30pF loads,  
• are configured for fast slew rate (PORTx_PCRn[SRE]=0), and  
• are configured for high drive strength (PORTx_PCRn[DSE]=1)  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
5.2 Nonswitching electrical specifications  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
12  
Freescale Semiconductor, Inc.  
Preliminary  
General  
Notes  
5.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
VDD_INT  
VDDA  
Core supply voltage  
1.71  
1.71  
–0.1  
–0.1  
1.71  
VDD  
3.6  
0.1  
0.1  
3.6  
V
V
V
V
V
Analog supply voltage  
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage (digital pins except Tamper pins )  
• 2.7 V ≤ VDD ≤ 3.6 V  
0.7 × VDD  
V
V
• 1.7 V ≤ VDD ≤ 2.7 V  
0.75 × VDD  
VIL  
Input low voltage (digital pins except Tamper pins )  
• 2.7 V ≤ VDD ≤ 3.6 V  
0.35 × VDD  
0.3 × VDD  
V
V
• 1.7 V ≤ VDD ≤ 2.7 V  
VIH_Tamper Tamper input high voltage  
• 2.7 V ≤ VBAT ≤ 3.6 V  
0.7 × VBAT  
V
V
0.75 × VBAT  
• 1.7 V ≤ VBAT ≤ 2.7 V  
VIL_Tamper Tamper input low voltage  
• 2.7 V ≤ VBAT ≤ 3.6 V  
0.35 × VBAT  
0.3 × VBAT  
V
V
• 1.7 V ≤ VBAT ≤ 2.7 V  
VHYS  
Input hysteresis (digital pins except Tamper pins )  
0.06 × VDD  
0.06 × VBAT  
V
V
VHYS_Tamper Input hysteresis (Tamper pins)  
IICDIO  
Digital pin (except Tamper pins ) negative DC injection  
1
-5  
mA  
current — single pin  
• VIN < VSS-0.3V  
IICDIO_Tamper Tamper pin negative DC injection current — single pin  
-0.2  
mA  
mA  
• VIN < VSS-0.3V  
• VIN > VBAT  
2.0  
Analog2, EXTAL0/XTAL0, and EXTAL1/XTAL1 pin DC  
injection current — single pin  
IICAIO  
3
mA  
-5  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
+5  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
13  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
VRAM  
VDD (VDD_INT) voltage required to retain RAM  
1.2  
V
V
VRFVBAT  
VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
1. All 5 V tolerant digital I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection  
to VDD. If VIN greater than VDIO_MIN (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at  
the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current  
limiting resistor is calculated as R=(VDIO_MIN-VIN)/|IIC|.  
2. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
3. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is greater than VAIO_MIN  
(=VSS-0.3V) and VIN is less than VAIO_MAX(=VDD+0.3V) is observed, then there is no need to provide current limiting  
resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC  
injection current limiting resistor is calculated as R=(VAIO_MIN-VIN)/|IIC|. The positive injection current limiting resistor is  
calcualted as R=(VIN-VAIO_MAX)/|IIC|. Select the larger of these two calculated resistances.  
5.2.2 LVD and POR operating requirements  
Table 2. LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR  
Falling VDD POR detect voltage  
0.8  
1.1  
1.5  
V
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
VLVDL  
Falling low-voltage detect threshold — low range  
(LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
14  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 2. LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
60  
mV  
low range  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period  
factory trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
5.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
Output high current total for all ports  
100  
100  
mA  
mA  
IOHT_io60  
Output high current total for fast digital ports  
VOH_Tamper Output high voltage — high drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -10mA  
VBAT – 0.5  
VBAT – 0.5  
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -3mA  
Output high voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -0.6mA  
VBAT – 0.5  
VBAT – 0.5  
V
V
IOH_Tamper Output high current total for Tamper pins  
TBD  
mA  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
15  
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOL  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOLT  
Output low current total for all ports  
TBD  
TBD  
mA  
mA  
IOLT_io60  
Output low current total for fast digital ports  
VOL_Tamper Output low voltage — high drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 10mA  
0.5  
0.5  
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 3mA  
Output low voltage — low drive strength  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = 2mA  
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = 0.6mA  
0.5  
0.5  
V
V
IOL_Tamper Output low current total for Tamper pins  
TBD  
1
mA  
μA  
IIN  
Input leakage current (per pin) for full temperature  
range  
1
1
IIN  
Input leakage current (per pin) at 25°C  
0.025  
TBD  
μA  
μA  
IIN_Tamper Input leakage current (per Tamper pin) for full  
temperature range  
IIN_Tamper Input leakage current (per Tamper pin) at 25°C  
20  
20  
20  
20  
0.025  
1
μA  
μA  
μA  
kΩ  
kΩ  
kΩ  
kΩ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
IOZ_Tamper Hi-Z (off-state) leakage current (per Tamper pin)  
1
RPU  
RPD  
Internal pullup resistors  
50  
50  
50  
50  
2
3
Internal pulldown resistors  
RPU_Tamper Internal pullup resistors (per Tamper pin)  
RPD_Tamper Internal pulldown resistors (per Tamper pin)  
1. Measured at VDD=3.6V  
2. Measured at VDD supply voltage = VDD min and Vinput = VSS  
3. Measured at VDD supply voltage = VDD min and Vinput = VDD  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
16  
Freescale Semiconductor, Inc.  
General  
5.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = FEI 100 MHz  
• Bus clock = 50 MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.71 V to execution of the first instruction  
across the operating temperature range of the chip.  
300  
μs  
1
126  
82  
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
82  
5.0  
TBD  
TBD  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFE_FOPT[LPBOOT]=1)  
5.2.5 Power consumption operating behaviors  
Table 6. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
2
52  
52  
TBD  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3
76  
76  
TBD  
TBD  
mA  
mA  
• @ 1.8V  
• @ 3.0V  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
17  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
37  
TBD  
mA  
#new-  
reference/  
fast_w_clo  
cks_disabl  
ed  
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
21  
TBD  
mA  
4
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
mA  
mA  
mA  
• @ 70°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
2.3  
3.1  
1.8  
TBD  
TBD  
TBD  
mA  
mA  
mA  
5
6
7
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
200  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_LLS  
Low leakage stop mode current at 3.0 V  
• @ –40 to 25°C  
8
200  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ 70°C  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
#new-  
reference/  
llsramn  
6.5  
37.4  
148.3  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
3.4  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
13.4  
58.5  
• @ 105°C  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
2.9  
9.8  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
44.7  
• @ 105°C  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
18  
Freescale Semiconductor, Inc.  
General  
Table 6. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_VBAT Average current when CPU is not accessing  
RTC registers at 3.0 V  
9
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• @ –40 to 25°C  
• @ 70°C  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus, 30 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus, 50 MHz FlexBus clock, and 20 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled, but peripherals are not in active operation.  
4. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz FlexBus and flash clock. MCG configured for FEI mode.  
5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
6. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
7. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All  
peripheral clocks disabled.  
8. Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.  
9. Includes 32kHz oscillator current and RTC operation.  
5.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater  
than 50 MHz frequencies. MCG in PEE mode is greater than 100 MHz frequencies.  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
19  
Preliminary  
General  
Figure 2. Run mode supply current vs. core frequency  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
20  
Freescale Semiconductor, Inc.  
Preliminary  
General  
Figure 3. VLPR mode supply current vs. core frequency  
5.2.6 EMC radiated emissions operating behaviors  
Table 7. EMC radiated emissions operating behaviors for  
Symbol  
Description  
Frequency  
band (MHz)  
Typ.  
Unit  
Notes  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
TBD  
TBD  
TBD  
TBD  
K
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported  
emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the  
measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 96 MHz, fBUS = 48 MHz  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
21  
Preliminary  
General  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and Wideband  
TEM Cell Method  
5.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to http://www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
5.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_A  
Input capacitance: analog pins  
7
pF  
CIN_D  
Input capacitance: digital pins  
7
9
pF  
pF  
CIN_D_io60  
Input capacitance: fast digital pins  
5.3 Switching specifications  
5.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
120  
MHz  
MHz  
fSYS_USBFS  
System and core clock when Full Speed USB in  
operation  
20  
fSYS_USBHS  
System and core clock when High Speed USB in  
operation  
TBD  
MHz  
MHz  
fENET  
System and core clock when ethernet in operation  
5
• 10 Mbps  
• 100 Mbps  
50  
fBUS  
Bus clock  
60  
50  
25  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
22  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 9. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
fLPTMR  
LPTMR clock  
25  
MHz  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
fLPTMR  
FlexBus clock  
Flash clock  
4
1
LPTMR clock  
25  
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for any  
other module.  
5.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CAN, CMT, IEEE 1588 timer, and I2C signals.  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous path  
100  
16  
ns  
ns  
ns  
2
2
2
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External reset pulse width (digital glitch filter disabled)  
100  
2
Mode select (EZP_CS) hold time after reset  
deassertion  
Bus clock  
cycles  
tio50  
tio50  
tio60  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Port rise and fall time (low drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
3
4
• Slew enabled  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
23  
General  
Table 10. General switching specifications (continued)  
Symbol  
Description  
Min.  
Max.  
TBD  
TBD  
Unit  
ns  
Notes  
tio60  
Port rise and fall time (low drive strength)  
• Slew disabled  
3
4
ns  
• Slew enabled  
ttamper  
Port rise and fall time (high drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
5
6
• Slew enabled  
ttamper  
Port rise and fall time (low drive strength)  
• Slew disabled  
TBD  
TBD  
ns  
ns  
7
8
• Slew enabled  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 25pF load  
4. 15pF load  
5. 75pF load  
6. 15pF load  
7. 75pF load  
8. 15pF load  
5.4 Thermal specifications  
5.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
TJ  
Die junction temperature  
Ambient temperature  
–40  
–40  
125  
105  
°C  
TA  
°C  
5.4.2 Thermal attributes  
Board type  
Symbol  
Description  
196 MAPBGA  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
45  
°C/W  
1
resistance, junction  
to ambient (natural  
convection)  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
24  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Board type  
Symbol  
Description  
196 MAPBGA  
Unit  
Notes  
Four-layer (2s2p)  
RθJA  
Thermal  
28  
°C/W  
1
resistance, junction  
to ambient (natural  
convection)  
Single-layer (1s)  
Four-layer (2s2p)  
RθJMA  
Thermal  
36  
24  
°C/W  
°C/W  
1
1
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJMA  
Thermal  
resistance, junction  
to ambient (200 ft./  
min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance, junction  
to board  
16  
9
°C/W  
°C/W  
°C/W  
2
3
4
Thermal  
resistance, junction  
to case  
Thermal  
2
characterization  
parameter, junction  
to package top  
outside center  
(natural  
convection)  
1.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2.  
3.  
Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4.  
Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
6 Peripheral operating requirements and behaviors  
6.1 Core modules  
6.1.1 Debug trace timing specifications  
Table 12. Debug trace operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Tcyc  
Clock period  
Frequency dependent  
MHz  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
25  
Peripheral operating requirements and behaviors  
Table 12. Debug trace operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Twl  
Low pulse width  
2
ns  
Twh  
Tr  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
3
3
ns  
ns  
ns  
ns  
ns  
Tf  
3
Ts  
Th  
Data hold  
2
Figure 4. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 5. Trace data specifications  
6.1.2 JTAG electricals  
Table 13. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
TCLK cycle period  
1/J1  
ns  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
26  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 13. JTAG limited voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J3  
TCLK clock pulse width  
• Boundary Scan  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 14. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
J6  
J7  
J8  
J9  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
25  
25  
8
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
27  
Peripheral operating requirements and behaviors  
Table 14. JTAG full voltage range electricals (continued)  
Symbol  
J10  
Description  
Min.  
1.4  
Max.  
Unit  
ns  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
TCLK low to TDO high-Z  
J11  
22.1  
22.1  
ns  
J12  
ns  
J13  
TRST assert time  
100  
8
ns  
J14  
TRST setup time (negation) to TCLK high  
ns  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 6. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 7. Boundary scan (JTAG) timing  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
28  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 8. Test Access Port timing  
TCLK  
TRST  
J14  
J13  
Figure 9. TRST timing  
6.2 System modules  
There are no specifications necessary for the device's system modules.  
6.3 Clock modules  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
29  
Preliminary  
Peripheral operating requirements and behaviors  
6.3.1 MCG specifications  
Table 15. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) — user  
trimmed  
31.25  
39.0625  
kHz  
Iints  
Internal reference (slow clock) current  
TBD  
TBD  
0.3  
4
µA  
µs  
tirefsts  
Internal reference (slow clock) startup time  
1
2
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.6  
%fdco  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
2
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
10  
%fdco  
%fdco  
2
2
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
4.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
4
5
MHz  
MHz  
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
Iintf  
Internal reference (fast clock) current  
TBD  
TBD  
TBD  
µA  
µs  
tirefstf  
floc_low  
Internal reference startup time (fast clock)  
1
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
floc_high  
Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
640 × ffll_ref  
20.97  
MHz  
3, 4  
frequency range  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
50  
75  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
100  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
30  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
23.99  
MHz  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
47.97  
71.99  
95.98  
MHz  
MHz  
MHz  
ps  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fVCO = 48 MHz  
• fVCO = 98 MHz  
Jacc_fll  
FLL accumulated jitter of DCO output over a 1µs  
time window  
TBD  
1
ps  
tfll_acquire FLL target frequency acquisition time  
ms  
7
PLL0,1  
fpll_ref  
PLL reference frequency range  
8
16  
MHz  
MHz  
fvcoclk_2x VCO output frequency  
180  
90  
360  
180  
fvcoclk  
PLL output frequency  
MHz  
MHz  
fvcoclk_90 PLL quadrature output frequency  
IDD_RUN Run current  
90  
TBD  
180  
1.5  
1
mA  
s
100 × 10-6  
+ 1075(1/  
tpll_lock  
Lock detector detection time  
8
9
fpll_ref  
TBD  
TBD  
)
Jitter (cycle to cycle)  
Jitter (accumulated)  
50  
ps  
ps  
500  
1. The startup time is defined as the time between the IRC being enabled, either by the MCG or by the IRCLKEN bit being  
set, and the first edge of the internal reference clock.  
2. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled  
(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes  
it is already running.  
9. Accumulated jitter will depend on VCO frequency and VDIV.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
31  
Preliminary  
Peripheral operating requirements and behaviors  
6.3.2 Oscillator electrical specifications  
This section provides the electrical characteristics of the module.  
6.3.2.1 Oscillator DC electrical specifications  
Table 16. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
1
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
32  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 16. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
RS Series resistor — low-frequency, low-power  
kΩ  
mode (HGO=0)  
Series resistor — low-frequency, high-gain mode  
(HGO=1)  
200  
kΩ  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any  
other devices.  
6.3.2.2 Oscillator frequency specifications  
Table 17. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Oscillator crystal or resonator frequency — low  
32  
40  
kHz  
frequency mode (MCG_C2[RANGE]=00)  
fosc_hi_1  
Oscillator crystal or resonator frequency — high  
frequency mode (low range)  
(MCG_C2[RANGE]=01)  
3
8
8
MHz  
MHz  
1
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal  
tdc_extal  
Input clock frequency (external clock mode)  
Input clock duty cycle (external clock mode)  
50  
60  
MHz  
%
2, 3  
40  
50  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
33  
Peripheral operating requirements and behaviors  
Table 17. Oscillator frequency specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tcst Crystal startup time — 32 kHz low-frequency,  
1000  
ms  
4, 5  
low-power mode (HGO=0)  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
500  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Frequencies less than 8 MHz are not in the PLL range.  
2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
3. When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it  
remains within the limits of the DCO input clock frequency.  
4. Proper PC board layout procedures must be followed to achieve specifications.  
5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register  
being set.  
6.3.3 32kHz Oscillator Electrical Characteristics  
This section describes the module electrical characteristics.  
6.3.3.1 32kHz oscillator DC electrical specifications  
Table 18. 32kHz oscillator DC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VBAT  
Supply voltage  
1.71  
3.6  
V
RF  
Internal feedback resistor  
100  
5
7
MΩ  
pF  
pF  
V
Cpara  
Cload  
Parasitical capacitance of EXTAL32 and XTAL32  
Internal load capacitance (programmable)  
Peak-to-peak amplitude of oscillation  
15  
0.6  
1
Vpp  
1. The EXTAL32 and XTAL32 pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
6.3.3.2 32kHz oscillator frequency specifications  
Table 19. 32kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
1. Proper PC board layout procedures must be followed to achieve specifications.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
34  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.4 Memories and memory interfaces  
6.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 20. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4  
thversscr  
thversblk  
Program Phrase high-voltage time  
7.5  
TBD  
μs  
Erase Flash Sector high-voltage time  
Erase Flash Block high-voltage time  
13  
TBD  
TBD  
ms  
ms  
1
1
425  
1. Maximum time based on expectations at cycling end-of-life.  
6.4.1.2 Flash timing specifications — commands  
Table 21. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk  
trd1sec4k  
tpgmchk  
trdrsrc  
Read 1s Block execution time  
1.5  
TBD  
ms  
Read 1s Section execution time (4KB flash)  
Program Check execution time  
50  
35  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
1
1
1
Read Resource execution time  
35  
μs  
tpgm8  
Program Phrase execution time  
Erase Flash Block execution time  
Erase Flash Sector execution time  
65  
μs  
tersblk  
450  
15  
ms  
ms  
ms  
ms  
μs  
2
2
tersscr  
tpgmsec4k Program Section execution time (4KB flash)  
20  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.5  
17  
trdonce  
1
tpgmonce Program Once execution time  
65  
μs  
tersall  
Erase All Blocks execution time  
900  
25  
ms  
μs  
2
1
tvfykey  
Verify Backdoor Access Key execution time  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
35  
Peripheral operating requirements and behaviors  
Table 21. Flash command timing specifications (continued)  
Symbol Description  
Swap Control execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
• control code 0x01  
• control code 0x02  
• control code 0x04  
• control code 0x08  
185  
65  
TBD  
TBD  
TBD  
TBD  
μs  
μs  
μs  
μs  
65  
25  
tpgmpart  
Program Partition for EEPROM execution time  
TBD  
TBD  
ms  
Set FlexRAM Function execution time:  
• 64 KB EEPROM backup  
tsetram64k  
tsetram128k  
tsetram256k  
tsetram512k  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
teewr8bers Byte-write to erased FlexRAM location execution  
time  
100  
TBD  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b64k  
teewr8b128k  
teewr8b256k  
teewr8b512k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr16bers 16-bit write to erased FlexRAM location  
execution time  
100  
TBD  
μs  
16-bit write to FlexRAM execution time:  
teewr16b64k  
teewr16b128k  
teewr16b256k  
teewr16b512k  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
200  
TBD  
μs  
teewr32b64k 32-bit-write to FlexRAM execution time:  
• 64 KB EEPROM backup  
• 128 KB EEPROM backup  
• 256 KB EEPROM backup  
• 512 KB EEPROM backup  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ms  
ms  
ms  
ms  
teewr32b128k  
teewr32b256k  
teewr32b512k  
1. Assumes 25MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
36  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.4.1.3 Flash (FTFE) current and power specfications  
Table 22. Flash (FTFE) current and power specfications  
Symbol  
Description  
Typ.  
Unit  
IDD_PGM  
Worst case programming current in program flash  
10  
mA  
6.4.1.4 Reliability specifications  
Table 23. NVM reliability specifications  
Typ.1  
Symbol Description  
Min.  
Program Flash  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
tnvmretp100 Data retention after up to 100 cycles  
nnvmcycp Cycling endurance  
5
10  
50  
years  
years  
years  
cycles  
2
2
2
3
100  
100  
35 K  
15  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
tnvmretd100 Data retention after up to 100 cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
years  
cycles  
2
2
2
3
10  
100  
100  
35 K  
15  
10 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
tnvmretee1 Data retention up to 1% of write endurance  
Write endurance  
5
50  
years  
years  
years  
2
2
2
4
10  
15  
100  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
nnvmwree32k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 4096  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
writes  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio =  
32,768  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a constant  
25°C profile. Engineering Bulletin EB618 does not apply to this technology.  
2. Data retention is based on Tjavg = 55°C (temperature profile over the lifetime of the application).  
3. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
4. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
37  
Preliminary  
Peripheral operating requirements and behaviors  
6.4.1.5 Write endurance to FlexRAM for EEPROM  
TBD  
6.4.2 EzPort Switching Specifications  
Table 24. EzPort switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
16  
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EZP_CS  
EP3  
EP4  
EP2  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 10. EzPort Timing Diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
38  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.4.3 NFC specifications  
The NAND flash controller (NFC) implements the interface to standard NAND flash  
memory devices. This section describes the timing parameters of the NFC.  
In the following table:  
• TH is the flash clock high time and  
• TL is flash clock low time,  
which are defined as:  
Tinput clock  
TNFC = TL + TH  
=
SCALER  
The SCALER value is derived from the fractional divider specified in the SIM's  
CLKDIV4 register:  
SIM_CLKDIV4[NFCFRAC] + 1  
SIM_CLKDIV4[NFCDIV] + 1  
=
SCALER  
In case the reciprocal of SCALER is an integer, the duty cycle of NFC clock is 50%,  
means TH = TL. In case the reciprocal of SCALER is not an integer:  
TNFC  
TL = (1 + SCALER / 2) x  
2
TNFC  
TH = (1 – SCALER / 2) x  
2
For example, if SCALER is 0.2, then TH = TL = TNFC/2.  
TNFC  
TH TL  
However, if SCALER is 0.667, then TL = 2/3 x TNFC and TH = 1/3 x TNFC  
.
TNFC  
TH TL  
NOTE  
The reciprocal of SCALER must be a multiple of 0.5. For  
example, 1, 1.5, 2, 2.5, etc.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
39  
Preliminary  
Peripheral operating requirements and behaviors  
Table 25. NFC specifications  
Num  
Description  
Min.  
Max.  
Unit  
tCLS  
NFC_CLE setup time  
2TH + TL – 1  
ns  
tCLH  
tCS  
NFC_CLE hold time  
NFC_CEn setup time  
NFC_CEn hold time  
NFC_WP pulse width  
NFC_ALE setup time  
NFC_ALE hold time  
Data setup time  
TH + TL – 1  
2TH + TL – 1  
TH + TL  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tCH  
tWP  
tALS  
tALH  
tDS  
TL – 1  
2TH + TL  
TH + TL  
TL – 1  
tDH  
tWC  
tWH  
tRR  
tRP  
Data hold time  
TH – 1  
Write cycle time  
TH + TL – 1  
TH – 1  
NFC_WE hold time  
Ready to NFC_RE low  
NFC_RE pulse width  
Read cycle time  
4TH + 3TL + 90  
TL + 1  
tRC  
tREH  
tIS  
TL + TH – 1  
TH – 1  
NFC_RE high hold time  
Data input setup time  
11  
NFC_CLE  
tCLS  
tCS  
tCLH  
tCH  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tDH  
Figure 11. Command latch cycle timing  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
40  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
NFC_ALE  
NFC_CEn  
NFC_WE  
NFC_IOn  
tALS  
tCS  
tALH  
tCH  
tWP  
tDS  
tDH  
address  
Figure 12. Address latch cycle timing  
tCS  
tCH  
tWC  
NFC_CEn  
NFC_WE  
NFC_IOn  
tWP  
tDS  
tWH  
tDH  
data  
data  
data  
Figure 13. Write data latch cycle timing  
tCH  
tRC  
tRP  
NFC_CEn  
NFC_RE  
NFC_IOn  
NFC_RB  
tREH  
tIS  
data  
data  
data  
tRR  
Figure 14. Read data latch cycle timing in non-fast mode  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
41  
Preliminary  
Peripheral operating requirements and behaviors  
tCH  
tRC  
tRP  
NFC_CEn  
tREH  
NFC_RE  
NFC_IOn  
NFC_RB  
tIS  
data  
data  
data  
tRR  
Figure 15. Read data latch cycle timing in fast mode  
6.4.4 Flexbus Switching Specifications  
All processor bus timings are synchronous; input setup/hold and output delay are given in  
respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be  
the same as the internal system bus frequency or an integer divider of that frequency.  
The following timing numbers indicate when data is latched or driven onto the external  
bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be  
derived from these values.  
Table 26. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
20  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
11.5  
ns  
1
1
2
2
0.5  
8.5  
0.5  
ns  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 27. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
FB_CLK  
MHz  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
42  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 27. Flexbus full voltage range switching specifications (continued)  
Num  
FB1  
FB2  
FB3  
FB4  
FB5  
Description  
Min.  
Max.  
Unit  
ns  
Notes  
Clock period  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
0
13.5  
ns  
1
1
2
2
ns  
13.7  
0.5  
ns  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
FB1  
FB_CLK  
FB3  
FB5  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
FB4  
FB2  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 16. FlexBus read timing diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
43  
Peripheral operating requirements and behaviors  
FB1  
FB_CLK  
FB2  
FB3  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB_TS  
Address  
Address  
Data  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 17. FlexBus write timing diagram  
6.5 Security and integrity modules  
6.5.1 DryIce Tamper Electrical Specifications  
Table 28. DryIce Tamper Electrical Specifications  
Symbol  
Description  
Min  
Typ  
Max  
Unit  
Notes  
VBAT  
3.3V supply voltage  
1.71  
3.6  
V
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
44  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 28. DryIce Tamper Electrical Specifications (continued)  
Symbol  
Description  
Supply current  
• clock tamper enabled  
Min  
Typ  
Max  
Unit  
Notes  
ITAM  
0.9  
TBD  
TBD  
TBD  
μA  
μA  
μA  
• clock and voltage tamper enabled  
1.01  
1.35  
• clock, voltage and temperature tamper enabled  
EXTAL32 input clock  
Low Voltage Detect  
• assertion  
32.768  
kHz  
1
1.55  
1.7  
1.60  
1.75  
1.65  
1.8  
V
V
• negation  
High Voltage Detect assertion  
Voltage Tamper Detect operational temperature  
• no false alarms  
3.65  
3.7  
3.75  
V
-50  
-60  
150  
160  
°C  
°C  
• with possible false alarms  
Temperature Tamper Detect assertion  
• low temperature detect  
2
-55  
-45  
°C  
°C  
• high temperature detect  
110  
130  
Temperature Tamper Detect operational voltage  
• no false alarms  
1.6  
3.7  
V
V
• with possible false alarms  
< 1.5  
> 3.8  
Clock Tamper Detect assertion  
• low frequency  
3
20  
kHz  
kHz  
ms  
• high frequency  
40  
• delay after loss of clock  
2
Clock Tamper Detect operational temperature  
• no false alarms  
-50  
-60  
150  
160  
°C  
• with possible false alarms  
Clock Tamper Detect operational voltage  
• no false alarms  
1.6  
3.7  
V
V
• with possible false alarms  
< 1.5  
> 3.8  
1. EXTAL32 oscillator must be enabled before enabling DryIce tamper detect.  
2. Temperature tamper detector assertion/negation is refreshed each 28 EXTAL32 clock cycles.  
3. Clock tamper detector assertion/negation is refreshed each 28 EXTAL32 clock cycles.  
6.6 Analog  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
45  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 29 and Table 30 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are  
not direct device pins. Accuracy specifications for these pins are defined in Table 31 and  
Table 32.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
6.6.1.1 16-bit ADC operating conditions  
Table 29. 16-bit ADC operating conditions  
Typ.1  
Symbol Description  
Conditions  
Absolute  
Min.  
1.71  
-100  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD (VDD  
-
0
+100  
mV  
2
2
VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-
-100  
0
+100  
mV  
VSSA  
)
VREFH  
ADC reference  
voltage high  
1.13  
VSSA  
VREFL  
VDDA  
VSSA  
VDDA  
V
V
VREFL  
Reference  
voltage low  
VSSA  
VADIN  
CADIN  
Input voltage  
VREFH  
V
Input  
capacitance  
• 16 bit modes  
8
4
10  
5
pF  
• 8/10/12 bit  
modes  
RADIN  
RAS  
Input resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
13/12 bit modes  
fADCK < 4MHz  
3
fADCK  
ADC conversion ≤ 13 bit modes  
clock frequency  
4
4
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
fADCK  
ADC conversion 16 bit modes  
clock frequency  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
46  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 29. 16-bit ADC operating conditions (continued)  
Typ.1  
Symbol Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
Crate  
ADC conversion ≤ 13 bit modes  
5
rate  
No ADC hardware  
20.000  
818.330  
Ksps  
averaging  
Continuous  
conversions enabled,  
subsequent conversion  
time  
Crate  
ADC conversion 16 bit modes  
5
rate  
No ADC hardware  
37.037  
461.467  
Ksps  
averaging  
Continuous  
conversions enabled,  
subsequent conversion  
time  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 1.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve the  
best results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The RAS  
/
CAS time constant should be kept to <1ns.  
4. To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool: http://cache.freescale.com/  
files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
due to  
input  
protection  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 18. ADC input impedance equivalency diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
47  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.2 16-bit ADC electrical characteristics  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
IDDA_ADC Supply current  
0.215  
1.7  
mA  
3
ADC  
asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
1.2  
3.0  
2.4  
4.4  
2.4  
4.0  
5.2  
6.2  
3.9  
7.3  
6.1  
9.5  
tADACK = 1/  
fADACK  
MHz  
MHz  
MHz  
MHz  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
fADACK  
Sample Time  
See Reference Manual chapter for sample times  
LSB4  
LSB4  
TUE  
DNL  
Total unadjusted  
error  
• 12 bit modes  
• <12 bit modes  
4
6.8  
2.1  
5
5
1.4  
Differential non-  
linearity  
• 12 bit modes  
0.7  
-1.1 to  
+1.9  
-0.3 to 0.5  
• <12 bit modes  
• 12 bit modes  
0.2  
1.0  
LSB4  
INL  
EFS  
Integral non-  
linearity  
-2.7 to  
+1.9  
5
-0.7 to  
+0.5  
• <12 bit modes  
0.5  
LSB4  
LSB4  
Full-scale error  
• 12 bit modes  
• <12 bit modes  
-4  
-5.4  
-1.8  
VADIN =  
VDDA  
-1.4  
5
EQ  
Quantization  
error  
• 16 bit modes  
• ≤13 bit modes  
-1 to 0  
0.5  
ENOB  
Effective number 16 bit differential mode  
6
of bits  
• Avg=32  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg=4  
16 bit single-ended mode  
• Avg=32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg=4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16 bit differential mode  
• Avg=32  
7
–94  
-85  
dB  
dB  
16 bit single-ended mode  
• Avg=32  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
48  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Conditions1  
Typ.2  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
SFDR  
Spurious free  
dynamic range  
16 bit differential mode  
• Avg=32  
7
82  
95  
dB  
16 bit single-ended mode  
• Avg=32  
78  
90  
dB  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
–40°C to 105°C  
25°C  
1.715  
719  
mV/°C  
mV  
VTEMP25 Temp sensor  
voltage  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).  
For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock  
speed.  
1 LSB = (VREFH - VREFL)/2N  
4.  
5. ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock <12MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock <12MHz.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
49  
Preliminary  
Peripheral operating requirements and behaviors  
Figure 19. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Figure 20. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
50  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.3 16-bit ADC with PGA operating conditions  
Table 31. 16-bit ADC with PGA operating conditions  
Typ.1  
Symbol Description  
VDDA Supply voltage  
VREFPGA PGA ref voltage  
Conditions  
Min.  
Max.  
Unit  
V
Notes  
Absolute  
1.71  
3.6  
VREF_OU VREF_OU VREF_OU  
V
2, 3  
T
T
T
VADIN  
VCM  
Input voltage  
VSSA  
VSSA  
VDDA  
VDDA  
V
V
Input Common  
Mode range  
IN+ to IN-4  
RPGAD  
Differential input Gain = 1, 2, 4, 8  
128  
64  
kΩ  
impedance  
Gain = 16, 32  
Gain = 64  
32  
RAS  
TS  
Analog source  
resistance  
100  
Ω
µs  
5
6
7
ADC sampling  
time  
1.25  
Crate  
ADC conversion ≤ 13 bit modes  
18.484  
450  
Ksps  
rate  
No ADC hardware  
averaging  
Continuous  
conversions enabled  
Peripheral clock = 50  
MHz  
16 bit modes  
37.037  
250  
Ksps  
8
No ADC hardware  
averaging  
Continuous  
conversions enabled  
Peripheral clock = 50  
MHz  
1. Typical values assume VDDA = 3.0 V, Temp = 25°C, fADCK = 6 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
2. ADC must be configured to use the internal voltage reference (VREF_OUT)  
3. PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage other  
than the output of the VREF module, the VREF module must be disabled.  
4. For single ended configurations the input impedance of the driven input is RPGAD/2  
5. The analog source resistance (RAS), external to MCU, should be kept as minimum as possible. Increased RAS causes drop  
in PGA gain without affecting other performances. This is not dependent on ADC clock frequency.  
6. The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µs  
time should be allowed for Fin=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at  
8 MHz ADC clock.  
7. ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 1  
8. ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
51  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.1.4 16-bit ADC with PGA characteristics  
Table 32. 16-bit ADC with PGA characteristics  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
IDDA_PGA Supply current  
Low power  
420  
644  
μA  
2
(ADC_PGA[PGALPb]=0)  
IDC_PGA  
Input DC current  
A
3
Gain =1, VREFPGA=1.2V,  
VCM=0.5V  
1.54  
0.57  
μA  
μA  
Gain =64, VREFPGA=1.2V,  
VCM=0.1V  
Gain4  
G
• PGAG=0  
• PGAG=1  
• PGAG=2  
• PGAG=3  
• PGAG=4  
• PGAG=5  
• PGAG=6  
0.95  
1.9  
1
2
1.05  
2.1  
RAS < 100Ω  
3.8  
4
4.2  
7.6  
8
8.4  
15.2  
30.0  
58.8  
16  
31.6  
63.3  
16.6  
33.2  
67.8  
BW  
Input signal  
bandwidth  
• 16-bit modes  
• < 16-bit modes  
4
kHz  
kHz  
dB  
40  
PSRR  
Power supply  
rejection ratio  
Gain=1  
-84  
VDDA= 3V  
100mV,  
fVDDA= 50Hz,  
60Hz  
CMRR  
VOFS  
Common mode  
rejection ratio  
• Gain=1  
-84  
-85  
dB  
dB  
VCM=  
500mVpp,  
fVCM= 50Hz,  
100Hz  
• Gain=64  
Input offset  
voltage  
• Chopping disabled  
(ADC_PGA[PGACHPb]  
=1)  
2.4  
0.2  
TBD  
mV  
mV  
Output offset =  
VOFS*(Gain+1)  
• Chopping enabled  
(ADC_PGA[PGACHPb]  
=0)  
TGSW  
Gain switching  
settling time  
10  
µs  
5
dG/dT  
Gain drift over  
temperature  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
TBD  
TBD  
ppm/°C  
ppm/°C  
0 to 50°C  
dVOFS/dT Offset drift over  
temperature  
Gain=1  
ppm/°C 0 to 50°C, ADC  
Averaging=32  
dG/dVDDA Gain drift over  
supply voltage  
• Gain=1  
• Gain=64  
TBD  
TBD  
TBD  
TBD  
%/V  
%/V  
VDDA from 1.71  
to 3.6V  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
52  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 32. 16-bit ADC with PGA characteristics (continued)  
Typ.1  
Symbol  
Description  
Conditions  
Min.  
Max.  
Unit  
Notes  
EIL  
Input leakage  
error  
All modes  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
VPP,DIFF  
Maximum  
V
6
differential input  
signal swing  
where VX = VREFPGA × 0.583  
SNR  
Signal-to-noise  
ratio  
• Gain=1  
80  
52  
90  
66  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32  
THD  
Total harmonic  
distortion  
• Gain=1  
85  
49  
100  
95  
dB  
dB  
16-bit  
differential  
mode,  
• Gain=64  
Average=32,  
fin=100Hz  
SFDR  
ENOB  
Spurious free  
dynamic range  
• Gain=1  
85  
53  
105  
88  
dB  
dB  
16-bit  
differential  
mode,  
Average=32,  
fin=100Hz  
• Gain=64  
Effective number  
of bits  
• Gain=1, Average=4  
11.6  
TBD  
7.2  
13.4  
12.7  
9.6  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
bits  
16-bit  
differential  
mode,fin=100H  
z
• Gain=1, Average=8  
• Gain=64, Average=4  
• Gain=64, Average=8  
• Gain=1, Average=32  
• Gain=2, Average=32  
• Gain=4, Average=32  
• Gain=8, Average=32  
• Gain=16, Average=32  
• Gain=32, Average=32  
• Gain=64, Average=32  
TBD  
12.8  
11.0  
7.9  
8.7  
14.5  
14.3  
13.8  
13.1  
12.5  
11.5  
10.6  
7.3  
6.8  
6.8  
7.5  
SINAD  
Signal-to-noise  
plus distortion  
ratio  
See ENOB  
6.02 × ENOB + 1.76  
dB  
1. Typical values assume VDDA =3.0V, Temp=25°C, fADCK=6MHz unless otherwise stated.  
2. This current is a PGA module adder, in addition to and ADC conversion currents.  
3. Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strong  
function of input common mode voltage (VCM) and the PGA gain.  
Gain = 2PGAG  
4.  
5. After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
53  
Preliminary  
Peripheral operating requirements and behaviors  
6. Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on the  
PGA reference voltage and gain setting.  
6.6.2 CMP and 6-bit DAC electrical specifications  
Table 33. Comparator and 6-bit DAC electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDHS  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
Analog input offset voltage  
mV  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
5
mV  
mV  
mV  
mV  
10  
20  
30  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD-0.6V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,  
VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
54  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0
HYSTCTR  
Setting  
00  
01  
10  
11  
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 21. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=0)  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
55  
Preliminary  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
0.1  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vinlevel (V)  
Figure 22. Typical hysteresis vs. Vin level (VDD=3.3V, PMODE=1)  
6.6.3 12-bit DAC electrical characteristics  
6.6.3.1 12-bit DAC operating requirements  
Table 34. 12-bit DAC operating requirements  
Symbol  
Desciption  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
VDACR  
TA  
Reference voltage  
Temperature  
1.13  
−40  
3.6  
105  
100  
1
V
1
°C  
pF  
mA  
CL  
Output load capacitance  
Output load current  
2
IL  
1. The DAC reference can be selected to be VDDA or the voltage output of the VREF module (VREF_OUT)  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
56  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.6.3.2 12-bit DAC operating behaviors  
Table 35. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
150  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DAC Supply current — high-speed mode  
700  
μA  
HP  
tDACLP  
Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
100  
15  
200  
30  
1
μs  
μs  
μs  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
EG  
PSRR  
TCO  
TGE  
Gain error  
Power supply rejection ratio, VDDA > = 2.4 V  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance load = 3 kΩ  
3.7  
0.000421  
μV/C  
%FSR/C  
Ω
6
Rop  
SR  
250  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
0.05  
0.12  
)
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0+100mV to VDACR−100 mV  
3. The DNL is measured for 0+100 mV to VDACR−100 mV  
4. The DNL is measured for 0+100mV to VDACR−100 mV with VDDA > 2.4V  
5. Calculated by a best fit curve from VSS+100 mV to VDACR−100 mV  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
57  
Peripheral operating requirements and behaviors  
6. VDDA = 3.0V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode(DACx_C0:LPEN = 0), DAC set  
to 0x800, Temp range from -40C to 105C  
Figure 23. Typical INL error vs. digital code  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
58  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
Figure 24. Offset at half scale vs. temperature  
6.6.4 Voltage reference electrical specifications  
Table 36. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VDDA  
Supply voltage  
1.71  
3.6  
V
TA  
CL  
Temperature  
−40  
105  
°C  
nF  
Output load capacitance  
100  
1
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
59  
Preliminary  
Peripheral operating requirements and behaviors  
Table 37. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1965  
1.2  
1.2027  
V
nominal VDDA and temperature=25C  
Voltage reference output with— factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.198  
1.2376  
1.202  
V
V
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Itr  
Bandgap only (MODE_LV = 00) current  
80  
µA  
mA  
mV  
Tight-regulation buffer (MODE_LV =10) current  
1.1  
ΔVLOAD Load regulation (MODE_LV = 10)  
• current = + 1.0 mA  
1
2
5
• current = - 1.0 mA  
Tstup  
Buffer startup time  
2
100  
µs  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range) (MODE_LV = 10, REGEN = 1)  
mV  
1. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 38. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Notes  
TA  
Temperature  
0
50  
°C  
Table 39. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
6.7 Timers  
See General switching specifications.  
6.8 Communication interfaces  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
60  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.8.1 Ethernet switching specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
6.8.1.1 MII signal switching specifications  
The following timing specs meet the requirements for MII style interfaces for a range of  
transceiver devices.  
Table 40. MII signal switching specifications  
Symbol  
Description  
Min.  
Max.  
25  
Unit  
MHz  
RXCLK frequency  
RXCLK pulse width high  
MII1  
35%  
65%  
RXCLK  
period  
RXCLK  
period  
ns  
MII2  
RXCLK pulse width low  
35%  
65%  
MII3  
MII4  
RXD[3:0], RXDV, RXER to RXCLK setup  
RXCLK to RXD[3:0], RXDV, RXER hold  
TXCLK frequency  
5
5
ns  
25  
MHz  
MII5  
TXCLK pulse width high  
35%  
65%  
TXCLK  
period  
TXCLK  
period  
ns  
MII6  
TXCLK pulse width low  
35%  
65%  
MII7  
MII8  
TXCLK to TXD[3:0], TXEN, TXER invalid  
TXCLK to TXD[3:0], TXEN, TXER valid  
2
25  
ns  
MII6  
MII5  
MII7  
TXCLK (input)  
MII8  
Valid data  
TXD[n:0]  
TXEN  
Valid data  
Valid data  
TXER  
Figure 25. MII transmit signal timing diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
61  
Peripheral operating requirements and behaviors  
MII2  
MII3  
MII1  
MII4  
RXCLK (input)  
RXD[n:0]  
RXDV  
Valid data  
Valid data  
Valid data  
RXER  
Figure 26. MII receive signal timing diagram  
6.8.1.2 RMII signal switching specifications  
The following timing specs meet the requirements for RMII style interfaces for a range of  
transceiver devices.  
Table 41. RMII signal switching specifications  
Num  
Description  
Min.  
Max.  
50  
Unit  
EXTAL frequency (RMII input clock RMII_CLK)  
RMII_CLK pulse width high  
MHz  
RMII1  
35%  
65%  
RMII_CLK  
period  
RMII2  
RMII_CLK pulse width low  
35%  
65%  
RMII_CLK  
period  
RMII3  
RMII4  
RMII7  
RMII8  
RXD[1:0], CRS_DV, RXER to RMII_CLK setup  
RMII_CLK to RXD[1:0], CRS_DV, RXER hold  
RMII_CLK to TXD[1:0], TXEN invalid  
4
2
15  
ns  
ns  
ns  
ns  
4
RMII_CLK to TXD[1:0], TXEN valid  
6.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-date  
standards, visit http://www.usb.org.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
62  
Freescale Semiconductor, Inc.  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.3 USB DCD electrical specifications  
Table 42. USB DCD electrical specifications  
Symbol  
Description  
Min.  
0.5  
Typ.  
Max.  
Unit  
VDP_SRC  
USB_DP source voltage (up to 250 μA)  
Threshold voltage for logic high  
USB_DP source current  
0.7  
V
VLGC  
0.8  
7
10  
2.0  
13  
V
IDP_SRC  
IDM_SINK  
μA  
μA  
kΩ  
V
USB_DM sink current  
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.325  
6.8.4 USB VREG electrical specifications  
Table 43. USB VREG electrical specifications  
Typ.1  
Symbol Description  
Min.  
2.7  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
120  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
TBD  
μA  
Quiescent current — Shutdown mode  
• VREGIN = 5.0 V and temperature=25C  
• Across operating voltage and temperature  
650  
nA  
μA  
TBD  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
63  
Preliminary  
Peripheral operating requirements and behaviors  
6.8.5 ULPI timing specifications  
The ULPI interface is fully compliant with the industry standard UTMI+ Low Pin  
Interface. Control and data timing requirements for the ULPI pins are given in the  
following table. These timings apply to synchronous mode only. All timings are  
measured with respect to the clock as seen at the USB_CLKIN pin.  
Table 44. ULPI timing specifications  
Num  
Description  
Min.  
Typ.  
Max.  
Unit  
USB_CLKIN  
operating  
60  
MHz  
frequency  
USB_CLKIN duty  
cycle  
5
50  
16.67  
9.5  
%
ns  
ns  
ns  
ns  
ns  
U1  
U2  
U3  
U4  
U5  
USB_CLKIN clock  
period  
Input setup (control  
and data)  
Input hold (control  
and data)  
1
Output valid  
(control and data)  
1
Output hold  
(control and data)  
U1  
USB_CLKIN  
U2  
U3  
ULPI_DIR/ULPI_NXT  
(control input)  
ULPI_DATAn (input)  
U5  
U4  
ULPI_STP  
(control output)  
ULPI_DATAn (output)  
Figure 27. ULPI timing diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
64  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
6.8.6 CAN switching specifications  
See General switching specifications.  
6.8.7 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provide DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 45. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
ns  
(tBUS x 2) −  
2
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 28. DSPI classic SPI timing — master mode  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
65  
Preliminary  
Peripheral operating requirements and behaviors  
Table 46. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
15  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
10  
14  
14  
2
7
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 29. DSPI classic SPI timing — slave mode  
6.8.8 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The tables  
below provides DSPI timing characteristics for classic SPI timing modes. Refer to the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 47. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
1
15  
MHz  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
66  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 47. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
DSPI_SCK output cycle time  
Min.  
Max.  
Unit  
Notes  
DS1  
4 x tBUS  
ns  
DS2  
DS3  
DSPI_SCK output high/low time  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
ns  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 30. DSPI classic SPI timing — master mode  
Table 48. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
7.5  
Unit  
V
Operating voltage  
Frequency of operation  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DSPI_SCK input high/low time  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
ns  
ns  
ns  
ns  
ns  
0
20  
19  
2
7
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
67  
Peripheral operating requirements and behaviors  
Table 48. Slave mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
DS16  
DSPI_SS inactive to DSPI_SOUT not driven  
19  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 31. DSPI classic SPI timing — slave mode  
I2C switching specifications  
6.8.9  
See General switching specifications.  
6.8.10 UART switching specifications  
See General switching specifications.  
6.8.11 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 49. SDHC switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
Table continues on the next page...  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
68  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 49. SDHC switching specifications  
(continued)  
Num  
Symbol  
fpp  
Description  
Min.  
Max.  
400  
25  
Unit  
kHz  
SD1  
Clock frequency (low speed)  
Clock frequency (SD\SDIO full speed)  
Clock frequency (MMC full speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
0
0
fpp  
MHz  
MHz  
kHz  
fpp  
20  
fOD  
400  
SD2  
SD3  
SD4  
SD5  
tWL  
tWH  
tTLH  
tTHL  
7
7
3
ns  
ns  
ns  
ns  
Clock high time  
Clock rise time  
Clock fall time  
3
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) -5 6.5  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 32. SDHC timing  
6.8.12 I2S/SAI Switching Specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial clock  
polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP]  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
69  
Preliminary  
Peripheral operating requirements and behaviors  
is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been  
inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the  
frame sync (FS) signal shown in the following figures.  
Table 50. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
33  
3.6  
V
I2S_MCLK cycle time1  
S1  
S2  
S3  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK cycle time (output)1  
I2S_RX_BCLK cycle time (output)1  
I2S_TX_BCLK pulse width high/low  
45%  
66  
55%  
MCLK period  
ns  
133  
S4  
S5  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
25  
S10  
S11  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid2  
0
ns  
ns  
21  
1. This parameter is limited in VLPx modes.  
2. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 33. I2S/SAI timing — master modes  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
70  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 51. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
66  
3.6  
V
S11  
I2S_RX_BCLK cycle time (input)  
I2S_TX_BCLK cycle time (input)  
ns  
133  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
10  
2
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
29  
21  
ns  
ns  
ns  
ns  
ns  
10  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
S12  
I2S_RX_BCLK (input)  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S16  
S15  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 34. I2S/SAI timing — slave modes  
6.9 Human-machine interfaces (HMI)  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Freescale Semiconductor, Inc.  
71  
Preliminary  
Dimensions  
6.9.1 TSI electrical specifications  
Table 52. TSI electrical specifications  
Symbol Description  
VDDTSI Operating voltage  
CELE  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
Target electrode capacitance range  
Reference oscillator frequency  
Electrode oscillator frequency  
Internal reference capacitor  
Oscillator delta voltage  
1
20  
8
500  
TBD  
TBD  
TBD  
TBD  
pF  
MHz  
MHz  
pF  
1
2
2
fREFmax  
fELEmax  
CREF  
0.5  
1
TBD  
TBD  
VDELTA  
IREF  
600  
mV  
μA  
2
Reference oscillator current source base current  
• 1uA setting (REFCHRG=0)  
2, 3  
1.133  
36  
1.5  
50  
• 32uA setting (REFCHRG=31)  
IELE  
Electrode oscillator current source base current  
• 1uA setting (EXTCHRG=0)  
μA  
2, 4  
1.133  
36  
1.5  
50  
• 32uA setting (EXTCHRG=31)  
Pres5  
Electrode capacitance measurement precision  
Electrode capacitance measurement precision  
8.3333  
8.3333  
8.3333  
12.5  
38400  
38400  
38400  
%
%
5
6
7
8
Pres20  
Pres100 Electrode capacitance measurement precision  
MaxSens Maximum sensitivity  
%
0.003  
fF/count  
bits  
μs  
Res  
Resolution  
16  
TCon20  
Response time @ 20 pF  
8
15  
25  
9
ITSI_RUN Current added in run mode  
ITSI_LP Low power mode current adder  
55  
μA  
1.3  
TBD  
μA  
10  
1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.  
2. Fixed external capacitance of 20 pF.  
3. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.  
4. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.  
5. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; Iext = 16.  
6. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; Iext = 16.  
7. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; Iext = 16.  
8. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes, it is equal to (Cref  
* Iext)/( Iref * PS * NSCN). Sensitivity depends on the configuration used. The typical value listed is based on the following  
configuration: Iext = 5 μA, EXTCHRG = 4, PS = 128, NSCN = 2, Iref = 16 μA, REFCHRG = 15, Cref = 1.0 pF. The minimum  
sensitivity describes the smallest possible capacitance that can be measured by a single count (this is the best sensitivity  
but is described as a minimum because it’s the smallest number). The minimum sensitivity parameter is based on the  
following configuration: Iext = 1 μA, EXTCHRG = 0, PS = 128, NSCN = 32, Iref = 32 μA, REFCHRG = 31, Cref= 0.5 pF  
9. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1  
electrode, EXTCHRG = 15.  
10. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of  
20 pF. Data is captured with an average of 7 periods window.  
7 Dimensions  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
72  
Freescale Semiconductor, Inc.  
Preliminary  
Pinout  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to http://www.freescale.com and perform a keyword  
search for the drawing’s document number:  
If you want the drawing for this package  
196-pin MAPBGA  
Then use this document number  
98ASA00054D  
8 Pinout  
8.1 K61 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
C2  
C1  
D3  
E3  
PTE0  
ADC1_SE4a ADC1_SE4a PTE0  
ADC1_SE5a ADC1_SE5a PTE1/  
LLWU_P0  
ADC1_SE6a ADC1_SE6a PTE2/  
LLWU_P1  
ADC1_SE7a ADC1_SE7a PTE3  
SPI1_PCS1  
SPI1_SOUT  
SPI1_SCK  
SPI1_SIN  
UART1_TX  
UART1_RX  
SDHC0_D1  
SDHC0_D0  
I2C1_SDA  
I2C1_SCL  
RTC_CLKO  
UT  
PTE1/  
LLWU_P0  
SPI1_SIN  
PTE2/  
LLWU_P1  
UART1_CTS SDHC0_DCL  
_b  
K
PTE3  
UART1_RTS SDHC0_CM  
SPI1_SOUT  
_b  
D
E7  
F7  
A1  
E4  
E5  
D2  
VDD  
VDD  
VDD  
VDDINT  
VSS  
VDDINT  
VSS  
VDDINT  
VSS  
PTF17  
PTF18  
DISABLED  
DISABLED  
DISABLED  
PTF17  
PTF18  
SPI2_SCK  
SPI2_SOUT  
SPI1_PCS0  
FTM0_CH4  
FTM1_CH0  
UART3_TX  
UART0_RX  
UART0_TX  
SDHC0_D3  
PTE4/  
PTE4/  
LLWU_P2  
LLWU_P2  
D1  
F3  
PTE5  
PTE6  
DISABLED  
DISABLED  
PTE5  
PTE6  
SPI1_PCS2  
SPI1_PCS3  
UART3_RX  
SDHC0_D2  
FTM3_CH0  
FTM3_CH1  
UART3_CTS I2S0_MCLK  
_b  
USB_SOF_  
OUT  
D7  
E6  
PTF19  
PTF20  
DISABLED  
DISABLED  
PTF19  
PTF20  
SPI2_SIN  
FTM1_CH1  
FTM2_CH0  
UART5_RX  
UART5_TX  
SPI2_PCS1  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
73  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
E2  
PTE7  
DISABLED  
PTE7  
UART3_RTS I2S0_RXD0  
_b  
FTM3_CH2  
G3  
E1  
PTE8  
ADC2_SE16 ADC2_SE16 PTE8  
ADC2_SE17 ADC2_SE17 PTE9  
I2S0_RXD1  
I2S0_TXD1  
UART5_TX  
UART5_RX  
I2S0_RX_FS  
FTM3_CH3  
FTM3_CH4  
PTE9  
I2S0_RX_BC  
LK  
F2  
F1  
G2  
PTE10  
PTE11  
PTE12  
DISABLED  
PTE10  
UART5_CTS I2S0_TXD0  
_b  
FTM3_CH5  
FTM3_CH6  
FTM3_CH7  
ADC3_SE16 ADC3_SE16 PTE11  
ADC3_SE17 ADC3_SE17 PTE12  
UART5_RTS I2S0_TX_FS  
_b  
I2S0_TX_BC  
LK  
E9  
F8  
G1  
VDD  
VDD  
VSS  
VDD  
VSS  
VSS  
PTE16  
ADC0_SE4a ADC0_SE4a PTE16  
ADC0_SE5a ADC0_SE5a PTE17  
ADC0_SE6a ADC0_SE6a PTE18  
ADC0_SE7a ADC0_SE7a PTE19  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
UART2_TX  
UART2_RX  
FTM_CLKIN  
0
FTM0_FLT3  
H1  
H3  
H2  
PTE17  
PTE18  
PTE19  
FTM_CLKIN  
1
LPTMR0_AL  
T3  
UART2_CTS I2C0_SDA  
_b  
UART2_RTS I2C0_SCL  
_b  
CMP3_OUT  
J7  
K1  
K2  
J1  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VSSA  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VSSA  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
VSSA  
J3  
K3  
M3  
ADC1_SE16/ ADC1_SE16/ ADC1_SE16/  
CMP2_IN2/ CMP2_IN2/ CMP2_IN2/  
ADC0_SE22 ADC0_SE22 ADC0_SE22  
L3  
P3  
ADC0_SE16/ ADC0_SE16/ ADC0_SE16/  
CMP1_IN2/  
CMP1_IN2/  
CMP1_IN2/  
ADC0_SE21 ADC0_SE21 ADC0_SE21  
VREF_OUT/ VREF_OUT/ VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
CMP1_IN5/  
CMP0_IN5/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18 ADC1_SE18 ADC1_SE18  
N3  
N4  
DAC0_OUT/ DAC0_OUT/ DAC0_OUT/  
CMP1_IN3/  
CMP1_IN3/  
CMP1_IN3/  
ADC0_SE23 ADC0_SE23 ADC0_SE23  
DAC1_OUT/ DAC1_OUT/ DAC1_OUT/  
CMP0_IN4/  
CMP2_IN3/  
CMP0_IN4/  
CMP2_IN3/  
CMP0_IN4/  
CMP2_IN3/  
ADC1_SE23 ADC1_SE23 ADC1_SE23  
TAMPER0/ TAMPER0/ TAMPER0/  
RTC_WAKE RTC_WAKE RTC_WAKE  
UP_B UP_B UP_B  
L4  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
74  
Freescale Semiconductor, Inc.  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
M4  
H4  
G4  
F4  
F5  
P6  
P5  
N5  
M6  
L6  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
TAMPER1  
TAMPER2  
TAMPER3  
TAMPER4  
TAMPER5  
XTAL32  
EXTAL32  
VBAT  
EXTAL32  
VBAT  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
TAMPER6  
TAMPER7  
VDD  
E8  
F10 VDDINT  
A14 VSS  
VDDINT  
VSS  
VDDINT  
VSS  
L5  
M5  
H5  
G5  
PTE24  
PTE25  
PTE26  
PTE27  
ADC0_SE17/ ADC0_SE17/ PTE24  
EXTAL1 EXTAL1  
CAN1_TX  
CAN1_RX  
UART4_TX  
UART4_RX  
I2S1_TX_FS  
EWM_OUT_ I2S1_RXD1  
b
ADC0_SE18/ ADC0_SE18/ PTE25  
XTAL1 XTAL1  
I2S1_TX_BC  
LK  
EWM_IN  
I2S1_TXD1  
ADC3_SE5b ADC3_SE5b PTE26  
ADC3_SE4b ADC3_SE4b PTE27  
ADC3_SE7a ADC3_SE7a PTE28  
ENET_1588  
_CLKIN  
UART4_CTS I2S1_TXD0  
_b  
RTC_CLKO  
UT  
USB_CLKIN  
UART4_RTS I2S1_MCLK  
_b  
H6  
N6  
PTE28  
PTA0  
JTAG_TCLK/ TSI0_CH1  
SWD_CLK/  
PTA0  
UART0_CTS FTM0_CH5  
_b/  
JTAG_TCLK/ EZP_CLK  
SWD_CLK  
EZP_CLK  
UART0_COL  
_b  
P7  
N7  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
UART0_RX  
FTM0_CH6  
FTM0_CH7  
JTAG_TDI  
EZP_DI  
JTAG_TDO/  
TRACE_SW  
O/EZP_DO  
UART0_TX  
JTAG_TDO/  
TRACE_SW  
O
EZP_DO  
M7  
L7  
PTA3  
JTAG_TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
UART0_RTS FTM0_CH0  
_b  
JTAG_TMS/  
SWD_DIO  
PTA4/  
NMI_b/  
PTA4/  
FTM0_CH1  
NMI_b  
EZP_CS_b  
LLWU_P3  
EZP_CS_b  
LLWU_P3  
P8  
PTA5  
DISABLED  
PTA5  
USB_CLKIN FTM0_CH2  
RMII0_RXE  
R/  
CMP2_OUT  
I2S0_TX_BC JTAG_TRST  
LK _b  
MII0_RXER  
E10 VDD  
VDD  
VSS  
VDD  
VSS  
F9  
VSS  
M8  
PTF21  
ADC3_SE6b ADC3_SE6b PTF21  
FTM2_CH1  
UART5_RTS  
_b  
N8  
PTF22  
ADC3_SE7b ADC3_SE7b PTF22  
I2C0_SCL  
FTM1_CH0  
UART5_CTS  
_b  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
75  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
M10 PTA6  
L10 PTA7  
P11 PTA8  
N11 PTA9  
N12 PTA10  
N13 PTA11  
ADC3_SE6a ADC3_SE6a PTA6  
ADC0_SE10 ADC0_SE10 PTA7  
ADC0_SE11 ADC0_SE11 PTA8  
ADC3_SE5a ADC3_SE5a PTA9  
ADC3_SE4a ADC3_SE4a PTA10  
ADC3_SE15 ADC3_SE15 PTA11  
ULPI_CLK  
ULPI_DIR  
ULPI_NXT  
ULPI_STP  
FTM0_CH3  
FTM0_CH4  
FTM1_CH0  
FTM1_CH1  
FTM2_CH0  
FTM2_CH1  
FTM1_CH0  
FTM1_CH1  
UART0_TX  
I2S1_RXD0  
TRACE_CLK  
OUT  
I2S1_RX_BC  
LK  
TRACE_D3  
I2S1_RX_FS  
MII0_RXD3  
MII0_RXD2  
MII0_RXCLK  
FTM1_QD_P TRACE_D2  
HA  
FTM1_QD_P TRACE_D1  
HB  
ULPI_DATA  
0
FTM2_QD_P TRACE_D0  
HA  
ULPI_DATA  
1
FTM2_QD_P  
HB  
K6  
K7  
J6  
PTA12  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
CMP2_IN0  
CMP2_IN1  
CMP3_IN0  
PTA12  
CAN0_TX  
CAN0_RX  
SPI0_PCS0  
RMII0_RXD1  
/MII0_RXD1  
I2S0_TXD0  
FTM1_QD_P  
HA  
PTA13/  
LLWU_P4  
PTA13/  
LLWU_P4  
RMII0_RXD0  
/MII0_RXD0  
I2S0_TX_FS FTM1_QD_P  
HB  
PTA14  
PTA14  
RMII0_CRS_  
DV/  
I2S0_RX_BC I2S0_TXD1  
LK  
MII0_RXDV  
K8  
G8  
PTA15  
VSS  
CMP3_IN1  
CMP3_IN1  
PTA15  
SPI0_SCK  
UART0_RX  
RMII0_TXEN  
/MII0_TXEN  
I2S0_RXD0  
VSS  
VSS  
K12 PTA16  
CMP3_IN2  
CMP3_IN2  
PTA16  
SPI0_SOUT  
UART0_CTS RMII0_TXD0  
I2S0_RX_FS I2S0_RXD1  
_b/  
/MII0_TXD0  
UART0_COL  
_b  
K11 PTA17  
ADC1_SE17 ADC1_SE17 PTA17  
ADC3_SE10 ADC3_SE10 PTF23  
ADC3_SE11 ADC3_SE11 PTF24  
ADC3_SE12 ADC3_SE12 PTF25  
ADC3_SE13 ADC3_SE13 PTF26  
ADC3_SE14 ADC3_SE14 PTF27  
SPI0_SIN  
I2C0_SDA  
CAN1_RX  
CAN1_TX  
UART0_RTS RMII0_TXD1  
I2S0_MCLK  
_b  
/MII0_TXD1  
L9  
M9  
N9  
PTF23  
PTF24  
PTF25  
FTM1_CH1  
TRACE_CLK  
OUT  
FTM1_QD_P  
HA  
TRACE_D3  
TRACE_D2  
TRACE_D1  
TRACE_D0  
FTM1_QD_P  
HB  
N10 PTF26  
P10 PTF27  
FTM2_QD_P  
HA  
FTM2_QD_P  
HB  
G6  
G9  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
P14 PTA18  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
FTM0_FLT2  
FTM1_FLT0  
FTM_CLKIN  
0
P13 PTA19  
XTAL0  
XTAL0  
FTM_CLKIN  
1
LPTMR0_AL  
T1  
N14 RESET_b  
M12 PTA24  
RESET_b  
CMP3_IN4  
RESET_b  
CMP3_IN4  
PTA24  
ULPI_DATA  
2
MII0_TXD2  
FB_A29  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
76  
Freescale Semiconductor, Inc.  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
M11 PTA25  
L12 PTA26  
L11 PTA27  
M13 PTA28  
L13 PTA29  
K10 PTF0  
CMP3_IN5  
CMP3_IN5  
PTA25  
ULPI_DATA  
3
MII0_TXCLK  
MII0_TXD3  
MII0_CRS  
MII0_TXER  
MII0_COL  
FB_A28  
ADC2_SE15 ADC2_SE15 PTA26  
ADC2_SE14 ADC2_SE14 PTA27  
ADC2_SE13 ADC2_SE13 PTA28  
ADC2_SE12 ADC2_SE12 PTA29  
ULPI_DATA  
4
FB_A27  
FB_A26  
FB_A25  
FB_A24  
ULPI_DATA  
5
ULPI_DATA  
6
ULPI_DATA  
7
ADC2_SE11 ADC2_SE11 PTF0  
ADC2_SE10 ADC2_SE10 PTF1  
CAN0_TX  
CAN0_RX  
FTM3_CH0  
FTM3_CH1  
I2S1_RXD1  
K9  
PTF1  
I2S1_RX_BC  
LK  
M14 PTB0/  
LLWU_P5  
ADC0_SE8/  
ADC1_SE8/  
ADC2_SE8/  
ADC3_SE8/  
TSI0_CH0  
ADC0_SE8/  
ADC1_SE8/  
ADC2_SE8/  
ADC3_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
RMII0_MDIO  
/MII0_MDIO  
FTM1_QD_P  
HA  
L14 PTB1  
ADC0_SE9/  
ADC1_SE9/  
ADC2_SE9/  
ADC3_SE9/  
TSI0_CH6  
ADC0_SE9/  
ADC1_SE9/  
ADC2_SE9/  
ADC3_SE9/  
TSI0_CH6  
PTB1  
FTM1_CH1  
RMII0_MDC/  
MII0_MDC  
FTM1_QD_P  
HB  
K13 PTB2  
J12 PTB3  
ADC0_SE12/ ADC0_SE12/ PTB2  
TSI0_CH7 TSI0_CH7  
I2C0_SCL  
I2C0_SDA  
UART0_RTS ENET0_158  
_b 8_TMR0  
FTM0_FLT3  
FTM0_FLT0  
ADC0_SE13/ ADC0_SE13/ PTB3  
TSI0_CH8 TSI0_CH8  
UART0_CTS ENET0_158  
_b/  
8_TMR1  
UART0_COL  
_b  
K14 PTB4  
J11 PTB5  
ADC1_SE10 ADC1_SE10 PTB4  
ADC1_SE11 ADC1_SE11 PTB5  
ENET0_158  
8_TMR2  
FTM1_FLT0  
FTM2_FLT0  
ENET0_158  
8_TMR3  
J13 PTB6  
J14 PTB7  
H14 PTB8  
ADC1_SE12 ADC1_SE12 PTB6  
ADC1_SE13 ADC1_SE13 PTB7  
FB_AD23  
FB_AD22  
FB_AD21  
DISABLED  
PTB8  
UART3_RTS  
_b  
H13 PTB9  
H12 PTB10  
H11 PTB11  
DISABLED  
PTB9  
SPI1_PCS1  
SPI1_PCS0  
SPI1_SCK  
UART3_CTS  
_b  
FB_AD20  
ADC1_SE14 ADC1_SE14 PTB10  
ADC1_SE15 ADC1_SE15 PTB11  
UART3_RX  
I2S1_TX_BC FB_AD19  
LK  
FTM0_FLT1  
FTM0_FLT2  
UART3_TX  
I2S1_TX_FS FB_AD18  
G7  
H7  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
G14 PTF2  
G13 PTF3  
F13 PTF4  
ADC2_SE6a ADC2_SE6a PTF2  
ADC2_SE7a ADC2_SE7a PTF3  
ADC2_SE4b ADC2_SE4b PTF4  
I2C1_SCL  
I2C1_SDA  
FTM3_CH2  
FTM3_CH3  
FTM3_CH4  
I2S1_RX_FS  
I2S1_RXD0  
I2S1_TXD0  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
77  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
G12 PTB16  
G11 PTB17  
TSI0_CH9  
TSI0_CH9  
PTB16  
SPI1_SOUT  
SPI1_SIN  
UART0_RX  
UART0_TX  
I2S1_TXD0  
I2S1_TXD1  
FB_AD17  
FB_AD16  
EWM_IN  
TSI0_CH10  
TSI0_CH10  
PTB17  
EWM_OUT_  
b
F14 PTB18  
TSI0_CH11  
TSI0_CH11  
PTB18  
CAN0_TX  
FTM2_CH0  
I2S0_TX_BC FB_AD15  
LK  
FTM2_QD_P  
HA  
E13 PTF5  
D13 PTF6  
ADC2_SE5b ADC2_SE5b PTF5  
ADC2_SE6b ADC2_SE6b PTF6  
FTM3_CH5  
FTM3_CH6  
I2S1_TX_FS  
I2S1_TX_BC  
LK  
F12 PTB19  
E14 PTB20  
TSI0_CH12  
TSI0_CH12  
PTB19  
CAN0_RX  
FTM2_CH1  
I2S0_TX_FS FB_OE_b  
FTM2_QD_P  
HB  
ADC2_SE4a ADC2_SE4a PTB20  
SPI2_PCS0  
FB_AD31/  
NFC_DATA1  
5
CMP0_OUT  
G10 VDD  
VDD  
VSS  
VDD  
VSS  
H8  
VSS  
F11 PTB21  
D14 PTB22  
E12 PTB23  
C14 PTC0  
C13 PTC1/  
ADC2_SE5a ADC2_SE5a PTB21  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FB_AD30/  
NFC_DATA1  
4
CMP1_OUT  
CMP2_OUT  
CMP3_OUT  
I2S0_TXD1  
I2S0_TXD0  
I2S0_TX_FS  
DISABLED  
DISABLED  
PTB22  
PTB23  
FB_AD29/  
NFC_DATA1  
3
SPI0_PCS5  
FB_AD28/  
NFC_DATA1  
2
ADC0_SE14/ ADC0_SE14/ PTC0  
TSI0_CH13 TSI0_CH13  
SPI0_PCS4  
SPI0_PCS3  
SPI0_PCS2  
SPI0_PCS1  
PDB0_EXTR  
G
FB_AD14/  
NFC_DATA1  
1
ADC0_SE15/ ADC0_SE15/ PTC1/  
TSI0_CH14 TSI0_CH14 LLWU_P6  
UART1_RTS FTM0_CH0  
_b  
FB_AD13/  
NFC_DATA1  
0
LLWU_P6  
B14 PTC2  
ADC0_SE4b/ ADC0_SE4b/ PTC2  
UART1_CTS FTM0_CH1  
_b  
FB_AD12/  
NFC_DATA9  
CMP1_IN0/  
TSI0_CH15  
CMP1_IN0/  
TSI0_CH15  
C12 PTC3/  
CMP1_IN1  
CMP1_IN1  
PTC3/  
UART1_RX  
FTM3_CH7  
FTM0_CH2  
UART3_RX  
I2S0_TX_BC  
LK  
LLWU_P7  
D12 PTF7  
H9 VSS  
LLWU_P7  
ADC2_SE7b ADC2_SE7b PTF7  
I2S1_TXD1  
I2S1_MCLK  
VSS  
VSS  
VDD  
H10 VDD  
D11 PTF8  
C11 PTC4/  
LLWU_P8  
B13 PTC5/  
LLWU_P9  
B12 PTC6/  
LLWU_P10  
A13 PTC7  
VDD  
DISABLED  
DISABLED  
PTF8  
FTM3_FLT0  
UART1_TX  
UART3_TX  
FTM0_CH3  
PTC4/  
SPI0_PCS0  
SPI0_SCK  
SPI0_SOUT  
SPI0_SIN  
FB_AD11/  
NFC_DATA8  
CMP1_OUT  
CMP0_OUT  
I2S0_MCLK  
I2S1_TX_BC  
LK  
LLWU_P8  
DISABLED  
CMP0_IN0  
CMP0_IN1  
PTC5/  
LLWU_P9  
LPTMR0_AL I2S0_RXD0  
T2  
FB_AD10/  
NFC_DATA7  
I2S1_TX_FS  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
PDB0_EXTR I2S0_RX_BC FB_AD9/  
G
LK  
I2S0_RX_FS FB_AD8/  
NFC_DATA5  
NFC_DATA6  
PTC7  
USB_SOF_  
OUT  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
78  
Freescale Semiconductor, Inc.  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
C10 PTC8  
B11 PTC9  
A12 PTC10  
ADC1_SE4b/ ADC1_SE4b/ PTC8  
CMP0_IN2 CMP0_IN2  
FTM3_CH4  
FTM3_CH5  
FTM3_CH6  
I2S0_MCLK  
FB_AD7/  
NFC_DATA4  
ADC1_SE5b/ ADC1_SE5b/ PTC9  
CMP0_IN3 CMP0_IN3  
I2S0_RX_BC FB_AD6/  
LK  
FTM2_FLT0  
I2S1_MCLK  
NFC_DATA3  
ADC1_SE6b ADC1_SE6b PTC10  
I2C1_SCL  
I2C1_SDA  
I2S0_RX_FS FB_AD5/  
NFC_DATA2  
K5  
B10 PTC11/  
LLWU_P11  
VSS  
VSS  
ADC1_SE7b ADC1_SE7b PTC11/  
LLWU_P11  
PTC12  
VSS  
FTM3_CH7  
I2S0_RXD1  
FB_RW_b/  
NFC_WE  
A11 PTC12  
DISABLED  
DISABLED  
UART4_RTS  
_b  
FB_AD27  
FTM3_FLT0  
A10 PTC13  
PTC13  
UART4_CTS  
_b  
FB_AD26  
FB_AD25  
B9  
PTC14  
DISABLED  
CMP2_IN4  
PTC14  
PTF9  
UART4_RX  
D10 PTF9  
CMP2_IN4  
CMP2_IN5  
UART3_RTS  
_b  
D9  
C9  
PTF10  
PTC15  
CMP2_IN5  
PTF10  
PTC15  
UART3_CTS  
_b  
DISABLED  
VSS  
UART4_TX  
FB_AD24  
J10 VSS  
VSS  
VDD  
J2  
VDD  
VDD  
C8  
PTF11  
DISABLED  
PTF11  
PTF12  
PTC16  
UART2_RTS  
_b  
C7  
A9  
PTF12  
PTC16  
DISABLED  
DISABLED  
UART2_CTS  
_b  
CAN1_RX  
CAN1_TX  
UART3_RX  
UART3_TX  
ENET0_158  
8_TMR0  
FB_CS5_b/  
FB_TSIZ1/  
NFC_RB  
FB_BE23_16  
_BLS15_8_b  
B8  
A8  
PTC17  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC17  
PTC18  
PTC19  
ENET0_158  
8_TMR1  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_24  
_BLS7_0_b  
NFC_CE0_b  
UART3_RTS ENET0_158  
_b 8_TMR2  
FB_TBST_b/ NFC_CE1_b  
FB_CS2_b/  
FB_BE15_8_  
BLS23_16_b  
A7  
B7  
DISABLED  
DISABLED  
UART3_CTS ENET0_158  
_b 8_TMR3  
FB_CS3_b/  
FB_BE7_0_  
BLS31_24_b  
FB_TA_b  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
SPI0_PCS0  
UART2_RTS FTM3_CH0  
_b  
FB_ALE/  
I2S1_RXD1  
FB_CS1_b/  
FB_TS_b  
A6  
B6  
PTD1  
ADC0_SE5b ADC0_SE5b PTD1  
SPI0_SCK  
UART2_CTS FTM3_CH1  
_b  
FB_CS0_b  
I2S1_RXD0  
PTD2/  
DISABLED  
PTD2/  
SPI0_SOUT  
UART2_RX  
FTM3_CH2  
FB_AD4  
I2S1_RX_FS  
LLWU_P13  
LLWU_P13  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
79  
Pinout  
196  
MAP  
BGA  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
EzPort  
A5  
B5  
C6  
PTD3  
DISABLED  
DISABLED  
PTD3  
SPI0_SIN  
UART2_TX  
FTM3_CH3  
FB_AD3  
I2S1_RX_BC  
LK  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
SPI0_PCS1  
SPI0_PCS2  
UART0_RTS FTM0_CH4  
_b  
FB_AD2/  
NFC_DATA1  
EWM_IN  
PTD5  
ADC0_SE6b ADC0_SE6b PTD5  
UART0_CTS FTM0_CH5  
_b/  
FB_AD1/  
NFC_DATA0  
EWM_OUT_  
b
UART0_COL  
_b  
A4  
PTD6/  
ADC0_SE7b ADC0_SE7b PTD6/  
SPI0_PCS3  
UART0_RX  
FTM0_CH6  
FB_AD0  
FTM0_FLT0  
LLWU_P15  
LLWU_P15  
PTF13  
D6  
D8  
J8  
PTF13  
PTF14  
VSS  
DISABLED  
DISABLED  
VSS  
UART2_RX  
UART2_TX  
PTF14  
VSS  
VDD  
E11 VDD  
VDD  
B4  
C5  
PTD7  
PTD8  
DISABLED  
DISABLED  
PTD7  
PTD8  
CMT_IRO  
I2C0_SCL  
UART0_TX  
UART5_RX  
FTM0_CH7  
FTM0_FLT1  
FB_A16/  
NFC_CLE  
A3  
A2  
B3  
PTD9  
DISABLED  
DISABLED  
DISABLED  
PTD9  
I2C0_SDA  
UART5_TX  
FB_A17/  
NFC_ALE  
PTD10  
PTD11  
PTD10  
PTD11  
UART5_RTS  
_b  
FB_A18/  
NFC_RE  
SPI2_PCS0  
UART5_CTS SDHC0_CLK  
FB_A19  
_b  
IN  
J9  
C4  
B2  
B1  
C3  
D5  
VSS  
VSS  
VSS  
PTD12  
PTD13  
PTD14  
PTD15  
PTF15  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTD12  
PTD13  
PTD14  
PTD15  
PTF15  
SPI2_SCK  
SPI2_SOUT  
SPI2_SIN  
FTM3_FLT0  
SDHC0_D4  
SDHC0_D5  
SDHC0_D6  
SDHC0_D7  
FB_A20  
FB_A21  
FB_A22  
FB_A23  
SPI2_PCS1  
UART0_RTS  
_b  
D4  
PTF16  
DISABLED  
PTF16  
SPI2_PCS0  
FTM0_CH3  
UART0_CTS  
_b/  
UART0_COL  
_b  
K5  
A1  
B1  
A8  
A7  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
VSS  
NC  
NC  
NC  
NC  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
80  
Freescale Semiconductor, Inc.  
Pinout  
8.2 K61 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
PTD6/  
LLWU_P15  
A
B
C
D
E
F
VSS NC  
PTD10  
PTD9  
PTD3  
PTD1  
PTC19 NC PTC18 NC  
PTC16  
PTC13  
PTC12  
PTC10  
PTC7  
VSS  
A
B
C
D
E
F
PTD4/  
PTD2/  
PTD0/  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10 LLWU_P9  
PTC5/  
PTD14 NC  
PTD13  
PTD11  
PTD7  
PTD12  
PTF16  
PTF17  
PTC17  
PTF11  
PTF14  
VDD  
PTC14  
PTC15  
PTF10  
VDD  
PTC9  
PTC2  
PTC0  
PTB22  
PTB20  
PTB18  
PTF2  
LLWU_P14 LLWU_P13 LLWU_P12  
PTE1/  
LLWU_P0  
PTC4/  
PTC3/  
PTC1/  
PTE0  
PTD15  
PTE2/  
PTD8  
PTF15  
PTF18  
PTD5  
PTF13  
PTF20  
PTF12  
PTF19  
VDD  
PTC8  
PTF9  
VDD  
LLWU_P8 LLWU_P7 LLWU_P6  
PTE4/  
LLWU_P2 LLWU_P1  
PTE5  
PTE9  
PTF8  
VDD  
PTF7  
PTB23  
PTB19  
PTB16  
PTB10  
PTB3  
PTF6  
PTF5  
PTF4  
PTF3  
PTB9  
PTB6  
PTB2  
PTA29  
PTA28  
PTA11  
PTE7  
PTE10  
PTE12  
PTE19  
VDD  
PTE3  
PTE6  
PTE11  
PTE16  
PTE17  
VOUT33  
TAMPER4 TAMPER5  
VDDINT  
VSS  
VSS  
VSS  
VDDINT  
VDD  
PTB21  
PTB17  
PTB11  
PTB5  
G
H
J
PTE8  
TAMPER3  
TAMPER2  
PTE27  
PTE26  
VDD  
PTE28  
VSS  
VSS  
G
H
J
PTE18  
VREGIN  
VSSA  
VDD  
VSS  
VSS  
VDD  
PTB8  
PTB7  
PTB4  
PTB1  
PTA14  
VSS  
VSS  
VSS  
VSS  
PTA13/  
LLWU_P4  
K
L
USB0_DP USB0_DM  
VSS VSS  
PTE24  
PTE25  
VBAT  
PTA12  
PTA15  
PTF1  
PTF23  
PTF24  
PTF25  
PTF0  
PTA7  
PTA6  
PTF26  
PTA17  
PTA27  
PTA25  
PTA9  
PTA16  
PTA26  
PTA24  
PTA10  
K
L
ADC0_SE16/ TAMPER0/  
CMP1_IN2/ RTC_  
ADC0_SE21 WAKEUP_B  
PTA4/  
LLWU_P3  
TAMPER7  
TAMPER6  
PTA0  
ADC1_SE16/  
PTB0/  
LLWU_P5  
M
N
P
TAMPER1  
CMP2_IN2/  
PTA3  
PTA2  
PTF21  
PTF22  
M
N
P
ADC0_SE22  
DAC1_OUT/  
DAC0_OUT/  
CMP0_IN4/  
RESET_b  
CMP1_IN3/  
ADC0_SE23  
CMP2_IN3/  
ADC1_SE23  
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
ADC1_SE18  
EXTAL32  
5
XTAL32  
6
PTA1  
7
PTA5  
8
PTF27  
10  
PTA8  
11  
PTA19  
13  
PTA18  
14  
1
2
3
4
9
12  
Figure 35. K61 196 MAPBGA Pinout Diagram  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
Preliminary  
Freescale Semiconductor, Inc.  
81  
Revision History  
9 Revision History  
The following table provides a revision history for this document.  
Table 53. Revision History  
Rev. No.  
Date  
6/2011  
11/2011  
Substantial Changes  
1
2
Initial public revision. Corrected USB conditions.  
• Added AC electrical specifications.  
• Updated Part identification section for 120 MHz CPU frequency.  
• Updated Voltage and current operating ratings section.  
• Updated Voltage and current operating requirements section.  
• Updated LVD and POR operating requirements section.  
• Updated Voltage and current operating behaviors section.  
• Updated Power mode transition operating behaviors section.  
• Updated Power consumption operating behaviors section.  
• In Run mode supply current vs. core frequency section, added Run and VLPR modes  
supply current vs. core frequency diagrams.  
• In Device clock specifications section, updated flash clock frequency and DDR clock  
frequency.  
• Updated Thermal attributes.  
• In MCG specifications section, updated total deviation of trimmed average DCO output  
Frequency, PLL reference frequency range, and lock detector detection time.  
• In Oscillator frequency specifications section, updated crystal startup time — 32 kHz.  
• Updated NFC specifications section.  
• In DryIce Tamper Electrical Specifications section, updated supply current.  
• In DSPI switching specifications section, updated master and slave modes frequency  
of operation for limited voltage and full voltage ranges.  
• In I2S/SAI Switching Specifications section, updated cycle time for master and slave  
modes.  
• In USB DCD electrical specifications section, updated data detect voltage.  
• In TSI electrical specifications, updated reference oscillator frequency.  
• Updated Pinouts.  
K61 Sub-Family Data Sheet Data Sheet, Rev. 2, 11/2011.  
82  
Freescale Semiconductor, Inc.  
Preliminary  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductors products. There are no express or implied  
copyright licenses granted hereunder to design or fabricate any integrated circuits or  
integrated circuits based on the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation, or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in  
Freescale Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating parameters,  
including "Typicals", must be validated for each customer application by customer's  
technical experts. Freescale Semiconductor does not convey any license under its patent  
rights nor the rights of others. Freescale Semiconductor products are not designed,  
intended, or authorized for use as components in systems intended for surgical implant  
into the body, or other applications intended to support or sustain life, or for any other  
application in which failure of the Freescale Semiconductor product could create a  
situation where personal injury or death may occur. Should Buyer purchase or use  
Freescale Semiconductor products for any such unintended or unauthorized application,  
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,  
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury  
or death associated with such unintended or unauthorized use, even if such claims alleges  
that Freescale Semiconductor was negligent regarding the design or manufacture of  
the part.  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and  
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.  
For further information, see http://www.freescale.com or contact your Freescale  
sales representative.  
Japan:  
For information on Freescale's Environmental Products program, go to  
http://www.freescale.com/epp.  
Freescale Semiconductor Japan Ltd.  
Headquarters  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
© 2011 Freescale Semiconductor, Inc.  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: K61P196M120SF3  
Rev. 2, 11/2011  
Preliminary  

相关型号:

MK61FX512VMJ12

K61 Sub-Family Data Sheet
FREESCALE

MK61FX512VMJ12R

32-BIT, FLASH, 120MHz, RISC MICROCONTROLLER, PBGA256, 17 X 17 MM, MAPBGA-256
NXP

MK61FX512VMJ15

K61 Sub-Family
FREESCALE

MK61FX512VMJ15R

RISC MICROCONTROLLER
NXP

MK620

Precision Power Film Radial-Lead Resistors
ETC

MK62486

VERY FAXT CMOS 32K x 9 CACHE BRAM
STMICROELECTR

MK6264US70

IC,SRAM,8KX8,CMOS,SOP,28PIN,PLASTIC
STMICROELECTR

MK62940AQ11

32KX9 CACHE SRAM, 11ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940AQ12

32KX9 CACHE SRAM, 12ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940AQ14

32KX9 CACHE SRAM, 14ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940Q19

32KX9 CACHE SRAM, 19ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR

MK62940Q24

32KX9 CACHE SRAM, 24ns, PQCC44, PLASTIC, LCC-44
STMICROELECTR