MK80FN256VLQ15 [NXP]

Kinetis K80 Sub-Family;
MK80FN256VLQ15
型号: MK80FN256VLQ15
厂家: NXP    NXP
描述:

Kinetis K80 Sub-Family

文件: 总95页 (文件大小:1134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
K80P121M150SF5  
Rev. 5, 11/2016  
Kinetis K80 Sub-Family  
MK80FN256VLL15  
High performance ARM® Cortex®-M4F MCU with up to  
256KB of Flash, 256KB of SRAM, Full Speed USB  
connectivity, and QuadSPI for interfacing to Serial NOR  
flash  
MK80FN256VDC15  
MK80FN256VLQ15  
MK80FN256CAx15  
The K80 sub-family extends Kinetis products with new features  
including QuadSPI serial flash interface and separate voltage  
domain for a sub-set of IO pins. The QuadSPI interface supports  
connections to Non-Volatile Memory for data or code. The  
extended memory resources allow developers to enhance their  
embedded applications with greater capability and features.  
Software compatibility with previous Kinetis devices ensures  
quick transitions from other Kinetis subfamilies. Enhancements  
include High Speed RUN for greater performance, and smart  
Peripherals like LPUART which can operate in STOP modes.  
121 XFBGA (DC)  
8 x 8 x 0.5 mm Pitch  
0.65 mm  
100 LQFP (LL)  
14 x 14 x 1.7 Pitch  
0.5mm  
144 LQFP (LQ)  
20 x 20 x 1.6 Pitch 0.5  
mm  
121 WLCSP (Ax)  
4.64 mm x 4.53 mm  
Performance  
• Up to 150 MHz ARM Cortex-M4 based core with DSP  
Analog modules  
• One 16-bit SAR ADCs, two 6-bit DAC and one  
12-bit DAC  
instructions and Single Precision Floating Point unit  
• Two analog comparators (CMP) containing a  
6-bit DAC and programmable reference input  
• Voltage reference 1.2V  
Memories and memory expansion  
• Up to 256 KB program flash with 256 KB RAM  
• FlexBus external bus interface and SDRAM controller  
• Dual QuadSPI with OTF decryption and XIP  
• 32 KB Boot ROM with built in bootloader  
Operating Characteristics  
• Main VDD Voltage and Flash write voltage  
range:1.71V–3.6 V  
• Supports SDR and DDR serial flash and octal configurations  
• Temperature range (ambient): -40 to 105°C  
• Independent VDDIO for PORTE (QuadSPI):  
1.71V–3.6 V  
System and Clocks  
• Multiple low-power modes  
• Memory protection unit with multi-master protection  
• 3 to 32 MHz main crystal oscillator  
• 32 kHz low power crystal oscillator  
• 48 MHz internal reference  
Communication interfaces  
• USB full-/low-speed On-the-Go controller  
• Secure Digital Host Controller (SDHC) and  
FlexIO  
Timers  
• One I2S module, three SPI, four I2C modules  
and five LPUART modules  
• One 4 ch-Periodic interrupt timer  
• Two 16-bit low-power timer PWM modules  
• Two 8-ch motor control/general purpose/PWM timers  
• Two 2-ch quadrature decoder/general purpose timers  
• Real-time clock with independent 3.3V power domain  
• Programmable delay block  
Security  
• Hardware random-number generator  
• Supports DES, AES, SHA accelerator (CAU)  
• Multiple levels of embedded flash security  
Human-machine interface  
• Low-power hardware touch sensor interface (TSI)  
• General-purpose input/output  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Ordering Information  
Memory  
Part Number  
Maximum number of I\O's  
Flash  
SRAM  
256 KB  
256 KB  
256 KB  
256 KB  
MK80FN256VLL15  
MK80FN256VDC15  
MK80FN256CAx15R1  
MK80FN256VLQ152  
256 KB  
256 KB  
256 KB  
256 KB  
66  
87  
87  
102  
1. The 121-pin WLCSP package for this product is not yet available, however it is included in a Package Your Way  
program for Kinetis MCUs. Visit nxp.com/KPYW for more details.  
2. The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way program  
for Kinetis MCUs. Visit nxp.com/KPYW for more details.  
Device Revision Number  
Device Mask Set Number  
SIM_SDID[REVID]  
JTAG ID Register[PRN]  
1N03P  
0001  
0001  
Related Resources  
Description  
Type  
Product  
Resource  
The Product Selector lets you find the right Kinetis part for your design.  
K-Series Product Selector  
Selector  
Fact Sheet  
The Fact Sheet gives overview of the product key features and its uses. K8x Fact Sheet  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
K80P121M150SF5RM1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for Kinetis_K_1N03P1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• LQFP 100-pin:  
98ASS23308W1  
• XFBGA 121-pin:  
98ASA00595D1  
• LQFP 144-pin:  
98ASS23177W2  
• WLCSP 121-pin: Under  
development2  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2. This package for this product is not yet available, however it is included in a Package Your Way program for Kinetis  
MCUs. Visit nxp.com/KPYW for more details.  
2
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Cryptographic  
accelerator  
(CAU)  
RTC  
OSC  
ARM Cortex M4  
MCG  
Trace  
Port  
PIT  
TPIU  
PPB  
ETM  
NVIC  
ITM  
IRC  
OSC  
PLL  
48 MHz  
WIC  
JTAG &  
Serial Wire  
AHB-AP  
SWJ-DP  
DSP  
FPU  
FPB  
DWT  
IRC  
4 MHz  
DMA  
Mux x2  
FLL  
192 KByte  
eDMA  
eSDHC  
MUX  
64 KByte  
Cache  
SRAM  
8 Kbyte  
8 Kbyte  
M2  
M4  
M0  
M1  
M3  
Crossbar Switch (XBS)  
System Memory Protection Unit (MPU)  
S3  
S2  
S1  
S5  
S0  
S4  
BME2  
RGPIO  
Flash  
Controller  
BOOT  
ROM  
AHB to IPS 0  
AHB to IPS 1  
SDRAMC  
FlexBus  
QSPI  
x128  
EMVSIM  
x2  
6-bit DAC  
& CMP x2  
SPI  
x3  
Flash  
256 KByte  
PDB  
PIT  
FlexIO  
FlexTimer  
x4  
I2C  
x4  
LPUART  
x5  
TRNG  
16-bit ADC  
TPM  
x2  
Vref  
CMT  
RTC  
CRC  
PMC  
TSI  
I2S  
Low-power  
timer x2  
12-bit DAC  
Figure 1. K80 Block Diagram  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
3
NXP Semiconductors  
Table of Contents  
1 Ratings....................................................................................5  
3.5.2  
3.5.3  
3.5.4  
CMP and 6-bit DAC electrical specifications.....50  
1.1 Thermal handling ratings................................................. 5  
1.2 Moisture handling ratings................................................ 5  
1.3 ESD handling ratings.......................................................5  
1.4 Voltage and current operating ratings............................. 5  
12-bit DAC electrical characteristics................. 52  
Voltage reference electrical specifications........55  
3.6 Timers..............................................................................56  
3.7 Communication interfaces............................................... 56  
1.4.1  
Recommended POR Sequencing ....................6  
3.7.1  
3.7.2  
3.7.3  
3.7.4  
EMV SIM specifications.................................... 57  
USB VREG electrical specifications..................61  
USB DCD electrical specifications.................... 62  
DSPI switching specifications (limited voltage  
range)................................................................63  
DSPI switching specifications (full voltage  
2 General................................................................................... 8  
2.1 AC electrical characteristics.............................................8  
2.2 Nonswitching electrical specifications..............................9  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
Voltage and current operating requirements.....9  
HVD, LVD and POR operating requirements....10  
Voltage and current operating behaviors.......... 11  
Power mode transition operating behaviors......12  
Power consumption operating behaviors..........14  
Electromagnetic Compatibility (EMC)  
3.7.5  
range)................................................................64  
I2C switching specifications.............................. 66  
UART switching specifications..........................66  
LPUART switching specifications......................66  
SDHC specifications......................................... 67  
3.7.6  
3.7.7  
3.7.8  
3.7.9  
specifications.....................................................20  
Designing with radiated emissions in mind....... 20  
Capacitance attributes...................................... 20  
2.2.7  
2.2.8  
3.7.10 I2S switching specifications.............................. 68  
3.8 Human-machine interfaces (HMI)....................................74  
2.3 Switching specifications...................................................21  
3.8.1  
TSI electrical specifications...............................74  
2.3.1  
2.3.2  
Device clock specifications............................... 21  
General switching specifications.......................21  
4 Dimensions............................................................................. 74  
4.1 Obtaining package dimensions....................................... 74  
5 Pinout......................................................................................75  
5.1 K80 Signal Multiplexing and Pin Assignments.................75  
5.2 Recommended connection for unused analog and  
2.4 Thermal specifications.....................................................23  
2.4.1  
2.4.2  
Thermal operating requirements.......................23  
Thermal attributes............................................. 23  
3 Peripheral operating requirements and behaviors.................. 24  
3.1 Core modules.................................................................. 24  
digital pins........................................................................82  
5.3 K80 Pinouts..................................................................... 84  
6 Ordering parts......................................................................... 88  
6.1 Determining valid orderable parts....................................88  
7 Part identification.....................................................................89  
7.1 Description.......................................................................89  
7.2 Format............................................................................. 89  
7.3 Fields............................................................................... 89  
7.4 Example...........................................................................90  
8 Terminology and guidelines.................................................... 90  
8.1 Definitions........................................................................90  
8.2 Examples.........................................................................91  
8.3 Typical-value conditions.................................................. 91  
8.4 Relationship between ratings and operating  
3.1.1  
3.1.2  
Debug trace timing specifications..................... 24  
JTAG electricals................................................25  
3.2 Clock modules................................................................. 28  
3.2.1  
3.2.2  
3.2.3  
3.2.4  
MCG specifications........................................... 28  
IRC48M specifications...................................... 31  
Oscillator electrical specifications..................... 32  
32 kHz oscillator electrical characteristics.........34  
3.3 Memories and memory interfaces................................... 34  
3.3.1  
3.3.2  
3.3.3  
3.3.4  
QuadSPI AC specifications...............................34  
Flash electrical specifications............................39  
Flexbus switching specifications....................... 41  
SDRAM controller specifications.......................43  
3.4 Security and integrity modules........................................ 46  
3.5 Analog............................................................................. 46  
requirements....................................................................92  
8.5 Guidelines for ratings and operating requirements..........92  
9 Revision History...................................................................... 92  
3.5.1  
ADC electrical specifications.............................46  
4
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
1.4 Voltage and current operating ratings  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
5
NXP Semiconductors  
Ratings  
Symbol  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
VDD  
VDDA  
VDDIO_E  
VBAT  
IDD  
Digital supply voltage  
Analog supply voltage  
VDDIO_E is an independent voltage supply for PORTE 1  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.8  
V
V
RTC supply voltage  
–0.3  
3.8  
V
Digital supply current  
300  
mA  
V
VIO  
Input voltage (except PORTE, VBAT domain pins, and  
USB0)2  
–0.3  
VDD + 0.3  
VIO_E  
ID  
PORTE input voltage3  
–0.3  
–25  
VDDIO_E + 0.3  
V
mA  
V
Maximum current single pin limit (digital output pins)  
USB regulator input  
25  
6.0  
VREGIN  
VUSB0_Dx  
–0.3  
–0.3  
USB0_DP and USB_DM input voltage  
3.63  
V
1. VDDIO_E is independent of the VDD domain and can operate at a voltage independent of VDD. However, it is required that  
the VDD domain be powered up before VDDIO_E. VDDIO_E must never be higher than VDD during power ramp up, or power  
down. VDD and VDDIO_E may ramp together if tied to the same power supply.  
2. Includes ADC, CMP, and RESET_b inputs.  
3. PORTE analog input voltages cannot exceed VDDIO_E supply when VDD ≥ VDDIO_E. PORTE analog input voltages cannot  
exceed VDD supply when VDD < VDDIO_E  
.
1.4.1 Recommended POR Sequencing  
Cases  
• VDD = VDDIO_E  
• VDD > VDDIO_E  
• VDD < VDDIO_E  
6
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Ratings  
Figure 2. VDD = VDDIO_E  
Figure 3. VDD > VDDIO_E  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
7
NXP Semiconductors  
General  
Figure 4. VDD < VDDIO_E  
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 5. Input signal measurement reference  
All digital I/O switching characteristics assume:  
1. output pins  
8
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
General  
• have CL=15pF loads,  
• are slew rate disabled, and  
• are normal drive strength  
2. input pins  
• have their passive filter disabled (PORTx_PCRn[PFE]=0)  
2.2 Nonswitching electrical specifications  
2.2.1 Voltage and current operating requirements  
Table 1. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
Max.  
3.6  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
Supply voltage  
Analog supply voltage  
VDDIO_E  
VDDA  
1.71  
V
1.71  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
V
–0.1  
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
1.71  
V
0.7 × VDD  
0.75 × VDD  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
V
VIL  
Input low voltage  
0.35 × VDD  
0.3 × VDD  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
VIH_E  
Input high voltage  
0.7 ×  
VDDIO_E  
V
V
• 2.7 V ≤ VDDIO_E ≤ 3.6 V  
• 1.7 V ≤ VDDIO_E ≤ 2.7 V  
0.75 ×  
VDDIO_E  
VIL_E  
Input low voltage  
0.35 ×  
VDDIO_E  
V
V
• 2.7 V ≤ VDDIO_E ≤ 3.6 V  
• 1.7 V ≤ VDDIO_E ≤ 2.7 V  
0.3 ×  
VDDIO_E  
VHYS  
Input hysteresis  
Input hysteresis  
0.06 × VDD  
V
V
VHYS_E  
0.06 ×  
VDDIO_E  
IICIO  
I/O pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
-5  
mA  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
9
NXP Semiconductors  
General  
Table 1. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Pseudo Open drain pullup voltage level  
VDD voltage required to retain RAM  
VDD  
1.2  
VDD  
V
V
V
2
VRFVBAT VBAT voltage required to retain the VBAT register file VPOR_VBAT  
1. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD or  
VDDIO_E. If VIN is less than -0.3V, a current limiting resistor is required. The negative DC injection current limiting resistor  
is calculated as R=(-0.3-VIN)/|IICIO|. The actual resistor value should be an order of magnitude higher to tolerate transient  
voltages.  
2. Open drain outputs must be pulled to VDD.  
2.2.2 HVD, LVD and POR operating requirements  
Table 2. VDD supply HVD, LVD and POR operating requirements  
Symbol Description  
Min.  
Typ.  
3.72  
3.46  
1.1  
Max.  
Unit  
V
Notes  
VHVDH  
VHVDL  
VPOR  
High Voltage Detect (High Trip Point)  
High Voltage Detect (Low Trip Point)  
Falling VDD POR detect voltage  
V
0.8  
2.48  
1.5  
2.64  
V
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.56  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
40  
mV  
Table continues on the next page...  
10  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
General  
Table 2. VDD supply HVD, LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
0.97  
900  
Typ.  
1.00  
1000  
Max.  
1.03  
Unit  
V
Notes  
VBG  
tLPO  
Bandgap voltage reference  
Internal low power oscillator period — factory  
trimmed  
1100  
μs  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
NOTE  
There is no LVD circuit for VDDIO domain  
Table 3. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
2.2.3 Voltage and current operating behaviors  
Table 4. Voltage and current operating behaviors  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive strength  
IO Group 1  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOH = -5mA  
2, 3  
VBAT – 0.5  
VBAT – 0.5  
V
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOH = -2.5mA  
IO Groups 2 and 3  
V
V
VDD – 0.5  
VDD – 0.5  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -10mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -5mA  
IO Group 4  
V
V
VDDIO_E – 0.5  
VDDIO_E – 0.5  
• 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOH = -5mA  
• 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOH = -2.5mA  
Output high voltage — High drive strength  
IO Group 3  
2
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10mA  
IO Group 4  
VDDIO_E – 0.5  
VDDIO_E – 0.5  
V
V
• 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOH = -15mA  
• 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOH = -7.5mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — normal drive strength  
IO Group 1  
100  
mA  
2, 4, 5  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
11  
NXP Semiconductors  
General  
Table 4. Voltage and current operating behaviors (continued)  
Symbol Description  
• 2.7 V ≤ VBAT ≤ 3.6 V, IOL = -5mA  
Min.  
Typ.1  
Max.  
Unit  
Notes  
0.5  
V
• 1.71 V ≤ VBAT ≤ 2.7 V, IOL = -2.5mA  
0.5  
V
IO Groups 2 and 3  
0.5  
0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = -10mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = -5mA  
IO Group 4  
0.5  
0.5  
V
V
• 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOL = -5mA  
• 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOL = -2.5mA  
Output low voltage — High drive strength  
IO Group 3  
2, 4  
0.5  
0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = -20mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = -10mA  
IO Group 4  
0.5  
0.5  
V
V
• 2.7 V ≤ VDDIO_E ≤ 3.6 V, IOL = -15mA  
• 1.71 V ≤ VDDIO_E ≤ 2.7 V, IOL = -7.5mA  
IOLT  
IIN  
Output low current total for all ports  
Input leakage current  
VDD domain pins  
100  
mA  
6, 7, 8  
0.002  
0.002  
0.5  
0.5  
µA  
µA  
• VSS ≤ VIN ≤ VDD  
PORTE pins  
• VSS ≤ VIN ≤ VDDIO_E  
0.002  
0.5  
µA  
VBAT domain pins  
• VSS ≤ VIN ≤ VBAT  
RPU  
RPD  
Internal pullup resistors  
Internal pulldown resistors  
20  
20  
50  
50  
kΩ  
kΩ  
9
10  
1. Typical values characterized at 25°C and VDD = 3.6V unless otherwise noted.  
2. IO Group 1 includes VBAT domain pins: RTC_WAKEUP_b. IO Group 2 includes VDD domain pins: PORTA, PORTB,  
PORTC, and PORTD, except PTA4. IO Group 3 includes VDD domain pins: PTB0, PTB1, PTC3, PTC4, PTD4, PTD5,  
PTD6, and PTD7. IO Group 4 includes VDDIO_E domain pins: PORTE.  
3. PTA4 has lower drive strength: IOH = -5mA for high VDD range; IOH = -2.5mA for low VDD range.  
4. Open drain outputs must be pulled to VDD  
.
5. PTA4 has lower drive strength: IOL = 5mA for high VDD range; IOL = 2.5mA for low VDD range.  
6. VDD domain pins include ADC, CMP, and RESET_b inputs. Measured at VDD = 3.6V.  
7. PORTE analog input voltages cannot exceed VDDIO_E supply when VDD ≥ VDDIO_E. PORTE analog input voltages cannot  
exceed VDD supply when VDD ˂ VDDIO_E  
.
8. VBAT domain pins include EXTAL32, XTAL32, and RTC_WAKEUP_b pins.  
9. Measured at minimum supply voltage and VIN = VSS  
10. Measured at minimum supply voltage and VIN = VDD  
12  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
General  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSx –> RUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 100MHz  
• Bus clock = 50MHz  
• FlexBus clock = 50 MHz  
• Flash clock = 25 MHz  
• MCG mode=FEI  
Table 5. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point  
VDD reaches 1.71 V to execution of the first  
instruction across the operating temperature range  
of the chip.  
300  
µs  
154  
154  
92  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
• VLLS0 –> RUN  
• VLLS1 –> RUN  
• VLLS2 –> RUN  
• VLLS3 –> RUN  
• LLS2 –> RUN  
• LLS3 –> RUN  
• VLPS –> RUN  
• STOP –> RUN  
92  
6.3  
6.3  
5.3  
5.3  
Table 6. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN4MHz 4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KH 32 kHz internal reference clock (IRC) adder.  
52  
52  
52  
52  
52  
52  
µA  
Measured by entering STOP mode with the  
z
32 kHz IRC enabled.  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
13  
NXP Semiconductors  
General  
Table 6. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IEREFSTEN4MH External 4 MHz crystal clock adder.  
206  
228  
237  
245  
251  
258  
uA  
Measured by entering STOP or VLPS mode  
z
with the crystal enabled.  
IEREFSTEN32K External 32 kHz crystal clock adder by  
means of the OSC0_CR[EREFSTEN and  
Hz  
EREFSTEN] bits. Measured by entering all  
modes with the crystal enabled.  
nA  
440  
440  
490  
490  
510  
510  
22  
490  
490  
490  
490  
560  
560  
22  
540  
540  
540  
540  
560  
560  
22  
560  
560  
560  
560  
560  
560  
22  
570  
570  
570  
570  
610  
610  
22  
580  
580  
680  
680  
680  
680  
22  
VLLS1  
VLLS3  
LLS2  
LLS3  
VLPS  
STOP  
ICMP  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP  
enabled using the 6-bit DAC and a single  
external input for compare. Includes 6-bit  
DAC power consumption.  
µA  
nA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
432  
357  
388  
475  
532  
810  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
IUART  
UART peripheral adder measured by placing  
the device in STOP or VLPS mode with  
selected clock source waiting for RX data at  
115200 baud rate. Includes selected clock  
source power consumption.  
µA  
66  
66  
66  
66  
66  
66  
MCGIRCLK (4 MHz internal reference clock)  
OSCERCLK (4 MHz external crystal)  
214  
45  
234  
45  
246  
45  
254  
45  
260  
45  
268  
45  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
µA  
µA  
IADC  
ADC peripheral adder combining the  
366  
366  
366  
366  
366  
366  
measured values at VDD and VDDA by placing  
the device in STOP or VLPS mode. ADC is  
configured for low power mode using the  
internal clock and continuous conversions.  
14  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
General  
2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
Table 7. Power consumption operating behaviors  
Symbol  
IDDA  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Analog supply current  
See note  
mA  
1
2
IDD_RUN  
Run mode current — all peripheral clocks disabled,  
code executing from internal flash @ 3.0V  
28  
31.55  
50.10  
mA  
mA  
mA  
• @ 25°C  
39.6  
• @ 105°C  
IDD_RUN  
Run mode current — all peripheral clocks enabled,  
code executing from internal flash @ 3.0V  
3, 4  
43.30  
57.80  
46.85  
68.30  
• @ 25°C  
• @ 105°C  
IDD_RUNCO Run mode current in compute operation - 120 MHz  
core / 24 MHz flash / bus clock disabled, code of  
5
while(1) loop executing from internal flash at 3.0 V  
25.1  
37.8  
28.65  
48.30  
• @ 25°C  
• @ 105°C  
IDD_HSRUN Run mode current — all peripheral clocks disabled,  
code executing from internal flash @ 3.0V  
6
38  
40.70  
65.04  
mA  
mA  
• @ 25°C  
51.7  
• @ 105°C  
IDD_HSRUN Run mode current — all peripheral clocks enabled,  
code executing from internal flash @ 3.0V  
7, 8  
48  
50.70  
77.04  
• @ 25°C  
63.7  
• @ 105°C  
IDD_HSRUNCO HSRun mode current in compute operation – 150 MHz  
core/ 25 MHz flash / bus clock disabled, code of  
while(1) loop executing from internal flash at 3.0V  
mA  
34.5  
50.3  
37.2  
• @ 25°C  
• @ 105°C  
63.64  
IDD_WAIT Wait mode high frequency current at 3.0 V — all  
peripheral clocks disabled  
9
14.2  
26.2  
19.87  
35.66  
mA  
mA  
• @ 25°C  
• @ 105°C  
IDD_WAIT Wait mode reduced frequency current at 3.0 V — all  
peripheral clocks enabled  
9
24.4  
30.07  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
15  
NXP Semiconductors  
General  
Table 7. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• @ 25°C  
36.6  
46.06  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks disabled  
10  
0.94  
3.99  
1.10  
7.62  
mA  
mA  
• @ 25°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V — all  
peripheral clocks enabled  
11  
12  
1.36  
4.4  
1.52  
8.03  
• @ 25°C  
• @ 105°C  
IDD_VLPRCO_ Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, LPTMR running with 4 MHz internal  
reference clock, CoreMark benchmark code executing  
from internal flash at 3.0 V  
CM  
1000  
3650  
μA  
• @ 25°C  
• @ 105°C  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option -  
core and system disabled / 10.5 MHz bus at 3.0 V  
• @ 25°C  
5
3.95  
5.75  
mA  
mA  
• @ 105°C  
17.71  
27.15  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks disabled  
13  
0.45  
3.28  
0.63  
6.87  
• @ 25°C  
• @ 105°C  
IDD_VLPW Very-low-power wait mode current at 3.0 V — all  
peripheral clocks enabled  
• @ 25°C  
0.75  
3.6  
0.93  
7.19  
mA  
• @ 105°C  
IDD_STOP Stop mode current at 3.0 V  
0.55  
5.67  
0.85  
9.59  
mA  
μA  
μA  
• @ 25°C  
• @ 105°C  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
91.48  
240.90  
• @ 25°C  
• @ 105°C  
1798.38  
3796.94  
IDD_LLS2  
Low leakage stop mode current at 3.0 V  
4.94  
7.14  
• @ 25°C  
• @ 105°C  
73.68  
121.9  
Table continues on the next page...  
16  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
General  
Notes  
Table 7. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_LLS3  
Low leakage stop mode current at 3.0 V  
7.78  
13.16  
μA  
• @ 25°C  
• @ 105°C  
160.91  
284.31  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
5.63  
9.34  
μA  
μA  
μA  
μA  
• @ 25°C  
• @ 105°C  
117.89  
202.55  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
3.13  
4.04  
48.7  
• @ 25°C  
• @ 105°C  
29.49  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
1.05  
1.36  
• @ 25°C  
• @ 105°C  
15.31  
18.56  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with  
POR detect circuit enabled  
0.62  
0.84  
• @ 25°C  
13.92  
16.95  
• @ 105°C  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V with  
POR detect circuit disabled  
0.33  
0.53  
μA  
μA  
μA  
• @ 25°C  
13.42  
16.44  
• @ 105°C  
IDD_VBAT Average current with RTC and 32kHz disabled at 3.0  
V
0.19  
2.56  
0.23  
3.71  
• @ 25°C  
• @ 105°C  
IDD_VBAT Average current when CPU is not accessing RTC  
registers @ 1.8V  
14  
0.57  
2.52  
0.64  
5.82  
• @ 25°C  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
3. 120 MHz core and system clock, 60 MHz bus and FlexBus clock, and 24 MHz flash clock. MCG configure for PEE  
mode. All peripheral clocks enabled.  
4. Max values are measured with CPU executing DSP instructions.  
5. MCG configured for PEE mode.  
6. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks disabled.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
17  
NXP Semiconductors  
General  
7. 150 MHz core and system clock, 50 MHz bus and FlexBus clock, and 25 MHz flash clock. MCG configured for PEE  
mode. All peripheral clocks enabled.  
8. Max values are measured with CPU executing DSP instructions.  
9. 120 MHz core and system clock, 60MHz bus clock, and FlexBus. MCG configured for PEE mode.  
10. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled. Code executing from flash.  
11. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks enabled but peripherals are not in active operation. Code executing from flash.  
12. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized  
for balanced.  
13. 4 MHz core, system, FlexBus, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral  
clocks disabled.  
14. Includes 32kHz oscillator current and RTC operation.  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFE  
• VDD=VDDA=VDDIO_E  
18  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
General  
Figure 6. Run mode supply current vs. core frequency  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
19  
NXP Semiconductors  
General  
Figure 7. VLPR mode supply current vs. core frequency  
2.2.6 Electromagnetic Compatibility (EMC) specifications  
EMC measurements to IC-level IEC standards are available from NXP on request.  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
• Go to www.nxp.com.  
• Perform a keyword search for “EMC design.”  
20  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
General  
2.2.8 Capacitance attributes  
Table 8. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
pF  
pF  
CIN_D  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 9. Device clock specifications  
Symbol  
fSYS  
Description  
Min.  
Max.  
Unit  
Notes  
High Speed run mode  
System and core clock  
150  
MHz  
Normal run mode (and High Speed run mode unless otherwise specified above)  
fSYS  
System and core clock  
120  
MHz  
MHz  
System and core clock when Full Speed USB in  
operation  
20  
fBUS  
FB_CLK  
fFLASH  
Bus clock  
75  
75  
28  
25  
MHz  
MHz  
MHz  
MHz  
FlexBus clock  
Flash clock  
fLPTMR  
LPTMR clock  
VLPR mode1  
System and core clock  
Bus clock  
fSYS  
fBUS  
4
4
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
FB_CLK  
fFLASH  
FlexBus clock  
Flash clock  
4
1
fERCLK  
fLPTMR_pin  
External reference clock  
LPTMR clock  
16  
25  
8
fFlexCAN_ERCLK FlexCAN external reference clock  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
21  
NXP Semiconductors  
General  
2.3.2 General switching specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
CMT, timers, and I2C signals.  
Table 10. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
NMI_b pin interrupt pulse width (analog filter enabled)  
— Asynchronous path  
100  
50  
ns  
ns  
ns  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
3
External RESET_b input pulse width (digital glitch  
filter disabled)  
100  
Port rise and fall time (high drive strength)  
• Slew enabled  
4, 5  
ns  
ns  
34  
16  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
ns  
ns  
• Slew disabled  
10  
8
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (low drive strength)  
• Slew enabled  
6, 7  
5, 8  
7, 8  
ns  
ns  
34  
16  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
ns  
ns  
• Slew disabled  
7
5
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
Port rise and fall time (high drive strength)  
• Slew enabled  
ns  
ns  
34  
16  
• 1.71 ≤ VDDIO_E ≤ 2.7V  
• 2.7 ≤ VDDIO_E ≤ 3.6V  
• Slew disabled  
ns  
ns  
7
5
• 1.71 ≤ VDDIO_E ≤ 2.7V  
• 2.7 ≤ VDDIO_E ≤ 3.6V  
Port rise and fall time (low drive strength)  
• Slew enabled  
ns  
ns  
34  
16  
22  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
General  
Notes  
Table 10. General switching specifications  
Symbol  
Description  
• 1.71 ≤ VDDIO_E ≤ 2.7V  
• 2.7 ≤ VDDIO_E ≤ 3.6V  
• Slew disabled  
Min.  
Max.  
Unit  
ns  
7
5
ns  
• 1.71 ≤ VDDIO_E ≤ 2.7V  
• 2.7 ≤ VDDIO_E ≤ 3.6V  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS,  
and VLLSx modes.  
4. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6, and PTD7.  
5. 75 pF load.  
6. Ports A, B, C, and D.  
7. 25 pF load.  
8. Port E pins only.  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 11. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1,  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is:  
TJ = TA + RθJA x chip power dissipation  
2.4.2 Thermal attributes  
Table 12. Thermal attributes  
Board type  
Symbol  
RθJA  
Description  
100 LQFP  
121  
XFBGA  
Unit  
°C/W  
°C/W  
Notes  
Single-layer (1S)  
Four-layer (2s2p)  
Thermal resistance, junction to  
ambient (natural convection)  
52  
39  
71  
1
1
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
36.8  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
23  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 12. Thermal attributes (continued)  
Board type  
Symbol  
RθJMA  
RθJMA  
RθJB  
Description  
100 LQFP  
121  
XFBGA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
Single-layer (1S)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
42  
33  
24  
11  
2
55  
1
1
2
3
4
Four-layer (2s2p)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
32.2  
18  
Thermal resistance, junction to  
board  
RθJC  
Thermal resistance, junction to  
case  
12.2  
0.25  
ΨJT  
Thermal characterization  
parameter, junction to package top  
outside center (natural convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. Board meets JESD51-9 specification.  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 Debug trace timing specifications  
Table 13. Debug trace operating behaviors  
Symbol  
Tcyc  
Twl  
Description  
Min.  
Max.  
Unit  
MHz  
ns  
Clock period  
Frequency dependent  
Low pulse width  
High pulse width  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
2
3
Twh  
Tr  
ns  
1.5  
1.0  
ns  
Tf  
3
ns  
Ts  
ns  
Th  
Data hold  
ns  
24  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
TRACECLK  
T
r
T
f
T
T
wh  
wl  
T
cyc  
Figure 8. TRACE_CLKOUT specifications  
TRACE_CLKOUT  
TRACE_D[3:0]  
Ts  
Th  
Ts  
Th  
Figure 9. Trace data specifications  
3.1.2 JTAG electricals  
Table 14. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
2.0  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
28  
25  
J6  
J7  
J8  
J9  
J10  
1
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
25  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 14. JTAG limited voltage range electricals (continued)  
Symbol  
J11  
Description  
Min.  
Max.  
19  
Unit  
ns  
TCLK low to TDO data valid  
TCLK low to TDO high-Z  
TRST assert time  
J12  
17  
ns  
J13  
100  
8
ns  
J14  
TRST setup time (negation) to TCLK high  
ns  
Table 15. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
J4  
J5  
TCLK rise and fall times  
20  
2.0  
8
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
30.6  
25  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1.0  
100  
8
19.0  
17.0  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 10. Test clock input timing  
26  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 11. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 12. Test Access Port timing  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
27  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
TCLK  
J14  
J13  
TRST  
Figure 13. TRST timing  
3.2 Clock modules  
3.2.1 MCG specifications  
Table 16. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
kHz  
Iints  
Internal reference (slow clock) current  
20  
32  
0.3  
µA  
µs  
tirefsts  
[O: ] Internal reference (slow clock) startup time  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.6  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
1
2
1
%fdco  
%fdco  
1
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
0.5  
fintf_ft  
fintf_t  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
Iintf  
Internal reference (fast clock) current  
25  
10  
15  
µA  
µs  
tirefsts  
floc_low  
[L: ] Internal reference startup time (fast clock)  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
kHz  
ext clk freq: above (3/5)fint never reset  
Table continues on the next page...  
28  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Table 16. MCG specifications (continued)  
Symbol Description  
ext clk freq: between (2/5)fint and (3/5)fint maybe  
Min.  
Typ.  
Max.  
Unit  
Notes  
reset (phase dependency)  
ext clk freq: below (2/5)fint always reset  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
kHz  
ext clk freq: above (16/5)fint never reset  
ext clk freq: between (15/5)fint and (16/5)fint  
maybe reset (phase dependency)  
ext clk freq: below (15/5)fint always reset  
FLL  
ffll_ref  
FLL reference frequency range  
31.25  
16.0  
39.0625  
26.66  
kHz  
fdco_ut  
DCO output  
Low range  
23.04  
MHz  
2
frequency range  
— untrimmed  
(DRS=00, DMX32=0)  
640 × fints_ut  
Mid range  
32.0  
48.0  
46.08  
69.12  
92.16  
26.35  
52.70  
79.09  
105.44  
53.32  
79.99  
106.65  
30.50  
60.99  
91.53  
122.02  
(DRS=01, DMX32=0)  
1280 × fints_ut  
Mid-high range  
(DRS=10, DMX32=0)  
1920 × fints_ut  
High range  
64.0  
(DRS=11, DMX32=0)  
2560 × fints_ut  
Low range  
18.3  
(DRS=00, DMX32=1)  
732 × fints_ut  
Mid range  
36.6  
(DRS=01, DMX32=1)  
1464 × fints_ut  
Mid-high range  
(DRS=10, DMX32=1)  
2197 × fints_ut  
54.93  
73.23  
High range  
(DRS=11, DMX32=1)  
2929 × fints_ut  
fdco  
DCO output  
frequency range  
Low range (DRS=00)  
640 × ffll_ref  
20  
40  
20.97  
41.94  
25  
50  
MHz  
MHz  
3, 4  
Mid range (DRS=01)  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
29  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 16. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
1280 × ffll_ref  
Mid-high range (DRS=10)  
1920 × ffll_ref  
60  
62.91  
75  
MHz  
High range (DRS=11)  
2560 × ffll_ref  
80  
83.89  
23.99  
47.97  
71.99  
95.98  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
ps  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5, 6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fpll_ref  
PLL reference frequency range  
8
180  
90  
90  
16  
360  
180  
180  
MHz  
MHz  
fvcoclk_2x VCO output frequency  
fvcoclk  
PLL output frequency  
MHz  
MHz  
fvcoclk_90 PLL quadrature output frequency  
Ipll  
PLL operating current  
8
8
9
1.1  
2
mA  
mA  
• VCO @ 176 MHz (fpll_ref = 8 MHz, VDIV  
multiplier = 22, PRDIV divide=1)  
Ipll  
PLL operating current  
• VCO @ 360 MHz (fpll_ref = 8 MHz, VDIV  
multiplier = 45, PRDIV divide=1)  
Jcyc_pll  
PLL period jitter (RMS)  
• fvco = 180 MHz  
100  
75  
ps  
ps  
• fvco = 360 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 180 MHz  
9
600  
300  
ps  
ps  
• fvco = 360 MHz  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
4.47  
5.97  
150 × 10-6  
+ 1075(1/  
%
s
tpll_lock  
10  
fpll_ref  
)
30  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. This applies when SCTRIM at value (0x80) and SCFTRIM control bit at value (0x0).  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
3.2.2 IRC48M specifications  
Table 17. IRC48M specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
IDD48M  
firc48m  
Supply current  
520  
48  
μA  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at  
low voltage (VDD=1.71V-1.89V) over temperature  
• Regulator disable  
0.5  
0.5  
1.0  
1.5  
%firc48m  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=0)  
• Regulator enable  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over temperature  
• Regulator enable  
0.5  
1.0  
0.1  
%firc48m  
(USB_CLK_RECOVER_IRC_EN[REG_EN]=1)  
Δfirc48m_cl Closed loop total deviation of IRC48M frequency  
%fhost  
1
2
over voltage and temperature  
Jcyc_irc48m Period Jitter (RMS)  
35  
2
150  
3
ps  
μs  
tirc48mst  
Startup time  
1. Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation.  
It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover  
function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1,  
USB_CLK_RECOVER_IRC_EN[IRC_EN]=1).  
2. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable  
the clock by one of the following settings:  
• USB_CLK_RECOVER_IRC_EN[IRC_EN]=1, or  
• MCG_C7[OSCSEL]=10, or  
• SIM_SOPT2[PLLFLLSEL]=11  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
31  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.2.3 Oscillator electrical specifications  
3.2.3.1 Oscillator DC electrical specifications  
Table 18. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
600  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
7.5  
500  
650  
2.5  
3.25  
4
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
Table continues on the next page...  
32  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Table 18. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
0
kΩ  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
VDD  
0.6  
V
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C, Internal capacitance = 20 pf  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.2.3.2 Oscillator frequency specifications  
Table 19. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
32  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
60  
%
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
1, 2  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Proper PC board layout procedures must be followed to achieve specifications.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
33  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default  
and cannot be moved into high power/gain mode.  
3.2.4 32 kHz oscillator electrical characteristics  
3.2.4.1 32 kHz oscillator DC electrical specifications  
Table 20. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
3.2.4.2 32 kHz oscillator frequency specifications  
Table 21. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
32.768  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
2
fec_extal32 Externally provided input clock frequency  
vec_extal32 Externally provided input clock amplitude  
kHz  
mV  
700  
VBAT  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. The  
oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VBAT  
.
3.3 Memories and memory interfaces  
34  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.3.1 QuadSPI AC specifications  
• All data is based on a negative edge data launch from the device and a positive  
edge data capture, as shown in the timing diagrams in this section.  
• Measurements are with a load of 15pf (1.8V) and 35pf (3V) on output pins. Input  
slew: 1ns  
• Timings assume a setting of 0x0000_000x for QuadSPI _SMPR register (see the  
reference manual for details).  
The following table lists the QuadSPI delay chain read/write settings. Refer the device  
reference manual for register and bit descriptions.  
Table 22. QuadSPI delay chain read/write settings  
Mode  
QuadSPI registers  
Notes  
QuadSPI_MCR[DQ QuadSPI_SOCCR[ QuadSPI_MCR[SC QuadSPI_FLSHC  
S_EN]  
SOCCFG]  
LKCFG]  
R[TDH]  
SDR  
DDR  
Yes  
3Fh  
5
No  
Delay of 63  
buffer and 64  
mux  
Yes  
3Fh  
0h  
1
2
2
Delay of 63  
buffer and 64  
mux  
Hyperflash  
RDS driven from  
Flash  
No  
Delay of 1 mux  
SDR mode  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tis  
Tih  
Data in  
Figure 14. QuadSPI input timing (SDR mode) diagram  
NOTE  
• The below timing values are with default settings for  
sampling registers like QuadSPI_SMPR.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
35  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
• A negative time indicates the actual capture edge inside  
the device is earlier than clock appearing at pad.  
• The below timing are for a load of 15pf (1.8V) and 35pf  
(3V) or output pads  
• All board delays need to be added appropriately  
• Input hold time being negative does not have any  
implication or max achievable frequency  
Table 23. QuadSPI input timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Tih  
Setup time for incoming data  
4
-
-
ns  
ns  
Hold time requirement for incoming data  
1.5  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Toh  
Tov  
Data out  
Figure 15. QuadSPI output timing (SDR mode) diagram  
Table 24. QuadSPI output timing (SDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Output Data Valid  
Output Data Hold  
SCK clock period  
-
2.8  
ns  
Toh  
Tck  
-1.4  
-
-
ns  
100  
MHz  
ns  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
2
-
-
-1  
ns  
NOTE  
For any frequency setup and hold specifications of the  
memory should be met.  
36  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
DDR Mode  
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tih  
Tis  
Data in  
Figure 16. QuadSPI input timing (DDR mode) diagram  
NOTE  
• Numbers are for a load of 15pf (1.8V) and 35pf (3V)  
• The numbers are for setting of hold condition in register  
QuadSPI_SMPR[DDRSNP]  
Table 25. QuadSPI input timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tis  
Setup time for incoming data  
4 (Without -  
learning)  
ns  
ns  
1 (With  
learning)  
Tih  
Hold time requirement for incoming data  
1.5  
-
1
2
3
Clock  
SFCK  
CS  
Tck  
Tcss  
Tcsh  
Tov  
Toh  
Data out  
Figure 17. QuadSPI output timing (DDR mode) diagram  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
37  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 26. QuadSPI output timing (DDR mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
Tov  
Toh  
Tck  
Output Data Valid  
Output Data Hold  
SCK clock period  
-
4.5  
ns  
1.5  
-
-
ns  
75 (with learning)  
MHz  
-
45 (without learning)  
Tcss  
Tcsh  
Chip select output setup time  
Chip select output hold time  
2
-
-
Clk(sck)  
Clk(sck)  
-1  
Hyperflash mode  
RDS  
TsMIN  
ThMIN  
DI[7:0]  
Figure 18. QuadSPI input timing (Hyperflash mode) diagram  
Table 27. QuadSPI input timing (Hyperflash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
TsMIN  
ThMIN  
Setup time for incoming data  
2
2
-
-
ns  
ns  
Hold time requirement for incoming data  
38  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
CK  
CK 2  
TclkSKMAX  
TclkSKMIN  
THO  
TDVO  
Output Invalid Data  
Figure 19. QuadSPI output timing (Hyperflash mode) diagram  
Table 28. QuadSPI output timing (Hyperflash mode) specifications  
Symbol  
Parameter  
Value  
Unit  
Min  
Max  
TdvMAX  
Tho  
Output Data Valid  
Output Data Hold  
-
4.3  
-
ns  
ns  
1.3  
-
TclkSKMAX  
TclkSKMIN  
Ck to Ck2 skew max  
Ck to Ck2 skew min  
T/4 + 0.5 ns  
- ns  
T/4 - 0.5  
NOTE  
Maximum clock frequency = 75 MHz.  
3.3.2 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.3.2.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 29. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
thvpgm4 Longword Program high-voltage time  
7.5  
18  
μs  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
39  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 29. NVM program/erase timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
13  
Max.  
113  
Unit  
ms  
Notes  
thversscr Sector Erase high-voltage time  
1
1
thversall  
Erase All high-voltage time  
208  
1808  
ms  
1. Maximum time based on expectations at cycling end-of-life.  
3.3.2.2 Flash timing specifications — commands  
Table 30. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
Notes  
trd1sec4k Read 1s Section execution time (flash sector)  
μs  
μs  
μs  
μs  
ms  
ms  
μs  
μs  
ms  
μs  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
30  
1
65  
145  
114  
0.9  
30  
2
tersscr  
trd1all  
14  
1
trdonce  
1
tpgmonce Program Once execution time  
100  
280  
2
tersall  
Erase All Blocks execution time  
2100  
30  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.3.2.3 Flash high voltage current behaviors  
Table 31. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.3.2.4 Reliability specifications  
Table 32. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
5
50  
years  
Table continues on the next page...  
40  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 32. NVM reliability specifications (continued)  
Symbol Description  
Min.  
20  
Typ.1  
Max.  
Unit  
years  
cycles  
Notes  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
100  
2
10 K  
50 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ °C.  
3.3.3 Flexbus switching specifications  
All processor bus timings are synchronous; input setup/hold and output delay are  
given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK  
frequency may be the same as the internal system bus frequency or an integer divider  
of that frequency.  
The following timing numbers indicate when data is latched or driven onto the  
external bus, relative to the Flexbus output clock (FB_CLK). All other timing  
relationships can be derived from these values.  
Table 33. Flexbus limited voltage range switching specifications  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
2.7  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
FB3  
FB4  
FB5  
1/FB_CLK  
Address, data, and control output valid  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
1.0  
6
11.8  
ns  
ns  
1
2
ns  
0.0  
ns  
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0],  
FB_ALE, and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Table 34. Flexbus full voltage range switching specifications  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
Clock period  
FB_CLK  
MHz  
ns  
FB1  
FB2  
1/FB_CLK  
Address, data, and control output valid  
12.6  
ns  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
41  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 34. Flexbus full voltage range switching specifications (continued)  
Num  
FB3  
FB4  
FB5  
Description  
Min.  
1.0  
12.5  
0
Max.  
Unit  
ns  
Notes  
Address, data, and control output hold  
Data and FB_TA input setup  
Data and FB_TA input hold  
1
ns  
ns  
2
1. Specification is valid for all FB_AD[31:0], FB_BE/BWEn, FB_CSn, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,  
and FB_TS.  
2. Specification is valid for all FB_AD[31:0] and FB_TA.  
Read Timing Parameters  
S0  
S1  
S2  
S3  
S0  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB5  
FB3  
Address  
FB4  
FB2  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
S1  
S0  
S2  
S3  
S0  
Figure 20. FlexBus read timing diagram  
42  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Write Timing Parameters  
FB1  
FB_CLK  
FB_A[Y]  
FB_D[X]  
FB_RW  
FB2  
FB3  
Address  
Address  
Data  
FB_TS  
FB_ALE  
FB_CSn  
FB_OEn  
FB_BEn  
FB_TA  
AA=1  
AA=0  
FB4  
FB5  
AA=1  
AA=0  
FB_TSIZ[1:0]  
TSIZ  
Figure 21. FlexBus write timing diagram  
3.3.4 SDRAM controller specifications  
The figure below shows SDRAM read cycle.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
43  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
D0  
CLKOUT  
D3  
D1  
Row  
Column  
A[23:0]  
D4  
SRAS  
SCAS  
D2  
1
D4  
DRAMW  
D[31:0]  
D5  
D6  
D4  
SDRAM_CS[1:0]  
BS[3:0]  
NOP  
ACTV  
NOP  
READ  
PRE  
1
DACR[CASL] = 2  
Figure 22. SDRAM read timing diagram  
Table 35. SDRAM Timing (Full voltage range)  
NUM  
Characteristic 1  
Symbol  
1.71  
MIn  
Max  
Unit  
Operating voltage  
3.6  
V
Frequency of operation  
CLKOUT  
MHz  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D73  
D83  
Clock period  
1/CLKOUT  
tCHDAV  
tCHDCV  
tCHDAI  
-
ns  
2
CLKOUT high to SDRAM address valid  
CLKOUT high to SDRAM control valid  
CLKOUT high to SDRAM address invalid  
CLKOUT high to SDRAM control invalid  
SDRAM data valid to CLKOUT high  
CLKOUT high to SDRAM data invalid  
CLKOUT high to SDRAM data valid  
CLKOUT high to SDRAM data invalid  
11.2  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.1  
1.0  
1.0  
12.0  
1.0  
-
-
tCHDCI  
-
tDDVCH  
tCHDDI  
tCHDDVW  
tCHDDIW  
-
-
12.0  
-
1.0  
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.  
2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz  
44  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. D7 and D8 are for write cycles only.  
Table 36. SDRAM Timing (Limited voltage range)  
NUM  
Characteristic 1  
Symbol  
2.7  
MIn  
3.6  
Max  
Unit  
Operating voltage  
V
Frequency of operation  
1/CLKOUT  
tCHDAV  
tCHDCV  
tCHDAI  
CLKOUT  
MHz  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D73  
D83  
Clock period  
-
ns  
2
CLKOUT high to SDRAM address valid  
CLKOUT high to SDRAM control valid  
CLKOUT high to SDRAM address invalid  
CLKOUT high to SDRAM control invalid  
SDRAM data valid to CLKOUT high  
CLKOUT high to SDRAM data invalid  
CLKOUT high to SDRAM data valid  
CLKOUT high to SDRAM data invalid  
11.1  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
11.1  
1.0  
1.0  
7.3  
1.0  
-
-
tCHDCI  
-
tDDVCH  
tCHDDI  
tCHDDVW  
tCHDDIW  
-
-
11.1  
-
1.0  
1. All timing specifications are based on taking into account, a 25pF load on the SDRAM output pins.  
2. CLKOUT is same as FB_CLK, maximum frequency can be 75 MHz  
3. D7 and D8 are for write cycles only.  
Following figure shows an SDRAM write cycle.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
45  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
D0  
CLKOUT  
D3  
D1  
Row  
Column  
A[23:0]  
SRAS  
D2  
1
SCAS  
D4  
DRAMW  
D[31:0]  
D7  
D8  
D4  
SDRAM_CS[1:0]  
D4  
D2  
BS[3:0]  
D4  
ACTV  
NOP  
WRITE  
NOP  
PALL  
1
DACR[CASL] = 2  
Figure 23. SDRAM write timing diagram  
3.4 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.5 Analog  
3.5.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 37 and Table 38 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
46  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
3.5.1.1 ADC operating conditions  
Table 37. ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
VREFH  
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
Input voltage  
• 16-bit differential mode  
• All other modes  
VREFL  
VREFL  
4
31/32 ×  
VREFH  
VREFH  
5
CADIN  
Input  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
pF  
kΩ  
RADIN  
RAS  
Input series  
resistance  
2
5
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
3
5
kΩ  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
18.0  
MHz  
4
5
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
47  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 24. ADC input impedance equivalency diagram  
3.5.1.2 ADC electrical characteristics  
Table 38. ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
1.0  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
48  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Table 38. ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
0.5  
–0.7 to  
+0.5  
• <12-bit modes  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–5.4  
–1.8  
0.5  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
-94  
-85  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor voltage 25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
49  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
Averaging of 8 samples  
Averaging of 32 samples  
12.30  
12.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 25. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
3.5.2 CMP and 6-bit DAC electrical specifications  
Table 39. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
0.5  
200  
600  
40  
V
V
Output low  
20  
80  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
50  
250  
ns  
ns  
μs  
μA  
tDLS  
IDAC6b  
7
Table continues on the next page...  
50  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Table 39. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
INL  
Description  
Min.  
–0.5  
–0.3  
Typ.  
Max.  
0.5  
Unit  
LSB3  
LSB  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
DNL  
0.3  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 26. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
51  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 27. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.5.3 12-bit DAC electrical characteristics  
3.5.3.1 12-bit DAC operating requirements  
Table 40. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
52  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.5.3.2 12-bit DAC operating behaviors  
Table 41. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
150  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
700  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
AC  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Offset aging coefficient  
3.7  
μV/C  
%FSR/C  
μV/yr  
Ω
6
0.000421  
100  
250  
Rop  
SR  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
V/μs  
• High power (SPHP  
• Low power (SPLP  
)
1.2  
1.7  
)
0.05  
0.12  
CT  
Channel to channel cross talk  
3dB bandwidth  
-80  
dB  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
53  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 28. Typical INL error vs. digital code  
54  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 29. Offset at half scale vs. temperature  
3.5.4 Voltage reference electrical specifications  
Table 42. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
Notes  
3.6  
V
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
55  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 43. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
0.5  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range)  
80  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
1
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
2
mV  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 44. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Table 45. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.6 Timers  
See General switching specifications.  
3.7 Communication interfaces  
56  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.7.1 EMV SIM specifications  
Each EMV SIM module interface consists of a total of five pins.  
The interface is designed to be used with synchronous Smart cards, meaning the EMV  
SIM module provides the clock used by the Smart card. The clock frequency is  
typically 372 times the Tx/Rx data rate; however, the EMV SIM module can also  
work with CLK frequencies of 16 times the Tx/Rx data rate.  
There is no timing relationship between the clock and the data. The clock that the  
EMV SIM module provides to the Smart card is used by the Smart card to recover the  
clock from the data in the same manner as standard UART data exchanges. All five  
signals of the EMV SIM module are asynchronous with each other.  
There are no required timing relationships between signals in normal mode. The smart  
card is initiated by the interface device; the Smart card responds with Answer to  
Reset. Although the EMV SIM interface has no defined requirements, the ISO/IEC  
7816 defines reset and power-down sequences (for detailed information see ISO/IEC  
7816).  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
SI8  
EMVSIMn_IO  
SI9  
EMVSIMn_VCCEN  
Figure 30. EMV SIM Clock Timing Diagram  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
57  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
The following table defines the general timing requirements for the EMV SIM  
interface.  
Table 46. Timing Specifications, High Drive Strength  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MHz  
SI EMV SIM clock frequency (EMVSIMn_CLK)1  
1
SI EMV SIM clock rise time (EMVSIMn_CLK)2  
2
SI EMV SIM clock fall time (EMVSIMn_CLK)2  
3
Sfreq  
Srise  
Sfall  
1
5
20  
0.09 × (1/Sfreq)  
ns  
ns  
ns  
ns  
ns  
0.09 × (1/Sfreq)  
SI EMV SIM input transition time (EMVSIMn_IO,  
4
Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3  
5
Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4  
6
Stran  
Tr/Tf  
Tr/Tf  
25  
1
EMVSIMn_PD)  
1
1. 50% duty cycle clock,  
2. With C = 50 pF  
3. With Cin = 30 pF, Cout = 30 pF,  
4. With Cin = 30 pF,  
3.7.1.1 EMV SIM Reset Sequences  
Smart cards may have internal reset, or active low reset. The following subset describes  
the reset sequences in these two cases.  
3.7.1.1.1 Smart Cards with Internal Reset  
Following figure shows the reset sequence for Smart cards with internal reset. The reset  
sequence comprises the following steps:  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• The card must send a response on EMVSIMn_IO acknowledging the reset between  
400–40000 clock cycles after T0.  
58  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
EMVSIMn_VCCEN  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
1
2
T0  
Figure 31. Internal Reset Card Reset Sequence  
The following table defines the general timing requirements for the SIM interface.  
Table 47. Timing Specifications, Internal Reset Card Reset Sequence  
Ref  
Min  
Max  
Units  
1
200  
EMVSIMx_CLK  
clock cycles  
2
400  
40,000  
EMVSIMx_CLK  
clock cycles  
3.7.1.1.2 Smart Cards with Active Low Reset  
Following figure shows the reset sequence for Smart cards with active low reset. The  
reset sequence comprises the following steps::  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no  
response is to be received on RX during those 40,000 clock cycles)  
• EMVSIMn_RST is asserted (at time T1)  
• EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1,  
and a response must be received on EMVSIMn_IO between 400 and 40,000 clock  
cycles after T1.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
59  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
EMVSIMn_VCCEN  
EMVSIMn_RST  
EMVSIMn_CLK  
RESPONSE  
EMVSIMn_IO  
2
1
3
3
T0  
T1  
Figure 32. Active-Low-Reset Smart Card Reset Sequence  
The following table defines the general timing requirements for the EMVSIM  
interface..  
Table 48. Timing Specifications, Internal Reset Card Reset Sequence  
Ref No  
Min  
Max  
200  
Units  
1
2
3
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
400  
40,000  
40,000  
3.7.1.2 EMVSIM Power-Down Sequence  
Following figure shows the EMV SIM interface power-down AC timing diagram.Table  
49 table shows the timing requirements for parameters (SI7–SI10) shown in the figure.  
The power-down sequence for the EMV SIM interface is as follows:  
• EMVSIMn_SIMPD port detects the removal of the Smart Card  
• EMVSIMn_RST is negated  
• EMVSIMn_CLK is negated  
• EMVSIM_IO is negated  
• EMVSIMx_VCCENy is negated  
Each of the above steps requires one Frtcclk period (usually 32 kHz and selected by  
SIM_SOPT1[OSC32KSEL]). Power-down may be initiated by a Smart card removal  
detection; or it may be launched by the processor.  
60  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
EMVSIMn_IO  
SI8  
SI9  
EMVSIMn_VCCEN  
Figure 33. Smart Card Interface Power Down AC Timing  
Table 49. Timing Requirements for Power-down Sequence  
Ref No  
Parameter  
Symbol  
Min  
Max  
Units  
SI7  
EMVSIM reset to SIM clock stop Srst2clk  
0.9 × 1/  
Frtcclk1  
1.1 × 1/Frtcclk  
μs  
SI8  
SI9  
EMVSIM reset to SIM Tx data  
low  
Srst2dat  
Srst2ven  
Spd2rst  
1.8 × 1/  
Frtcclk  
2.2 × 1/Frtcclk  
3.3 × 1/Frtcclk  
1.1 × 1/Frtcclk  
μs  
μs  
μs  
EMVSIM reset to SIM voltage  
enable low  
2.7 × 1/  
Frtcclk  
SI10  
EMVSIM presence detect to  
SIM reset low  
0.9 × 1/  
Frtcclk  
1. Frtcclk is ERCLK32K, and this clock must be enabled during the power down sequence.  
NOTE  
Same timing is also followed when auto power down is  
initiated. See Reference Manual for reference.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
61  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.7.2 USB VREG electrical specifications  
Table 50. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
3.7.3 USB DCD electrical specifications  
Table 51. USB DCD electrical specifications  
Symbol  
VDP_SRC  
Description  
Min.  
Typ.  
Max.  
Unit  
,
USB_DP and USB_DM source voltages (up to 250  
0.5  
0.7  
V
VDM_SRC μA)  
VLGC  
IDP_SRC  
IDM_SINK  
Threshold voltage for logic high  
0.8  
7
10  
2.0  
13  
V
USB_DP source current  
μA  
μA  
,
USB_DM and USB_DP sink currents  
50  
100  
150  
IDP_SINK  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
24.8  
0.4  
kΩ  
V
0.33  
62  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
3.7.4 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 52. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
30  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
1.0  
15.8  
0
15.0  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 34. DSPI classic SPI timing — master mode  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
63  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 53. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
Frequency of operation  
15 1  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
23.0  
ns  
ns  
2.7  
7.0  
ns  
ns  
13  
13  
ns  
ns  
1. The maximum operating frequency is measured with non-continuous CS and SCK. When DSPI is configured with  
continuous CS and SCK, there is a constraint that SPI clock should not be greater than 1/6 of bus clock, for example,  
when bus clock is 60MHz, SPI clock should not be greater than 10MHz.  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 35. DSPI classic SPI timing — slave mode  
64  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
3.7.5 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 54. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
15  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
ns  
(tBUS x 2) −  
4
ns  
2
3
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
1.0  
19.1  
0
16  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 36. DSPI classic SPI timing — master mode  
Table 55. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
65  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 55. Slave mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
7.5  
Unit  
MHz  
ns  
Frequency of operation  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
23.1  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
ns  
ns  
2.6  
7.0  
ns  
ns  
13.0  
13.0  
ns  
ns  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 37. DSPI classic SPI timing — slave mode  
3.7.6 I2C switching specifications  
See General switching specifications.  
3.7.7 UART switching specifications  
See General switching specifications.  
3.7.8 LPUART switching specifications  
See General switching specifications.  
66  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.7.9 SDHC specifications  
The following timing specs are defined at the chip I/O pin and must be translated  
appropriately to arrive at timing specs/constraints for the physical interface.  
Table 56. SDHC full voltage range switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25/45  
25/45  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid) 8.1  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SD6  
tOD  
0
ns  
SD7  
SD8  
tISU  
tIH  
SDHC input setup time  
SDHC input hold time  
5
0
ns  
ns  
Table 57. SDHC limited voltage range switching specifications  
Num  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
2.7  
3.6  
V
Card input clock  
SD1  
fpp  
fpp  
fpp  
fOD  
tWL  
tWH  
tTLH  
tTHL  
Clock frequency (low speed)  
0
0
400  
25\50  
20\50  
400  
kHz  
MHz  
MHz  
kHz  
ns  
Clock frequency (SD\SDIO full speed\high speed)  
Clock frequency (MMC full speed\high speed)  
Clock frequency (identification mode)  
Clock low time  
0
0
SD2  
SD3  
SD4  
SD5  
7
Clock high time  
7
ns  
Clock rise time  
3
ns  
Clock fall time  
3
ns  
SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
SDHC output delay (output valid)  
SD6  
tOD  
0
7
ns  
SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
67  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 57. SDHC limited voltage range switching specifications (continued)  
Num  
SD7  
SD8  
Symbol  
tISU  
Description  
Min.  
Max.  
Unit  
ns  
SDHC input setup time  
SDHC input hold time  
5
0
tIH  
ns  
SD3  
SD6  
SD2  
SD1  
SDHC_CLK  
Output SDHC_CMD  
Output SDHC_DAT[3:0]  
Input SDHC_CMD  
SD7  
SD8  
Input SDHC_DAT[3:0]  
Figure 38. SDHC timing  
3.7.10 I2S switching specifications  
This section provides the AC timings for the I2S in master (clocks driven) and slave  
modes (clocks input). All timings are given for non-inverted serial clock polarity  
(TCR[TSCKP] = 0, RCR[RSCKP] = 0) and a non-inverted frame sync (TCR[TFSI] = 0,  
RCR[RFSI] = 0). If the polarity of the clock and/or the frame sync have been inverted,  
all the timings remain valid by inverting the clock signal (I2S_BCLK) and/or the frame  
sync (I2S_FS) shown in the figures below.  
Table 58. I2S master mode timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
40  
Max.  
3.6  
Unit  
Operating voltage  
V
S1  
S2  
S3  
S4  
S5  
S6  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_BCLK cycle time  
45%  
80  
55%  
MCLK period  
ns  
I2S_BCLK pulse width high/low  
I2S_BCLK to I2S_FS output valid  
I2S_BCLK to I2S_FS output invalid  
45%  
55%  
15  
BCLK period  
ns  
ns  
0
Table continues on the next page...  
68  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Peripheral operating requirements and behaviors  
Table 58. I2S master mode timing (limited voltage range) (continued)  
Num  
S7  
Description  
Min.  
0
Max.  
15  
Unit  
ns  
I2S_BCLK to I2S_TXD valid  
S8  
I2S_BCLK to I2S_TXD invalid  
I2S_RXD/I2S_FS input setup before I2S_BCLK  
I2S_RXD/I2S_FS input hold after I2S_BCLK  
ns  
S9  
15  
0
ns  
S10  
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
I2S_BCLK (output)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S3  
S4  
S4  
S5  
S7  
S6  
S10  
S9  
S7  
S8  
S8  
S9  
S10  
I2S_RXD  
Figure 39. I2S timing — master mode  
Table 59. I2S slave mode timing (limited voltage range)  
Num  
Description  
Operating voltage  
Min.  
2.7  
80  
45%  
4.5  
2
Max.  
Unit  
3.6  
V
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
I2S_BCLK cycle time (input)  
ns  
I2S_BCLK pulse width high/low (input)  
I2S_FS input setup before I2S_BCLK  
I2S_FS input hold after I2S_BCLK  
55%  
MCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
I2S_BCLK to I2S_TXD/I2S_FS output valid  
I2S_BCLK to I2S_TXD/I2S_FS output invalid  
I2S_RXD setup before I2S_BCLK  
20  
0
4.5  
2
I2S_RXD hold after I2S_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
25  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
69  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_BCLK (input)  
I2S_FS (output)  
I2S_FS (input)  
I2S_TXD  
S12  
S15  
S16  
S13  
S14  
S19  
S15  
S16  
S15  
S16  
S17  
S18  
I2S_RXD  
Figure 40. I2S timing — slave modes  
3.7.10.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 60. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
15  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
70  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 41. I2S/SAI timing — master modes  
Table 61. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
80  
3.6  
V
S11  
S12  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
4.5  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
23.1  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
4.5  
2
25  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
71  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 42. I2S/SAI timing — slave modes  
3.7.10.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 62. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
45%  
250  
45%  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
45  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
72  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 43. I2S/SAI timing — master modes  
Table 63. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
250  
3.6  
V
S11  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
5
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
56.5  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
30  
5
72  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
73  
NXP Semiconductors  
Dimensions  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 44. I2S/SAI timing — slave modes  
3.8 Human-machine interfaces (HMI)  
3.8.1 TSI electrical specifications  
Table 64. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
74  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Pinout  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
100-pin LQFP  
Then use this document number  
98ASS23308W  
121-pin XFBGA  
144-pin LQFP  
98ASA00595D  
98ASS23177W1  
1. The 144-pin LQFP package for this product is not yet available, however it is included in a Package Your Way  
program for Kinetis MCUs. Visit nxp.com/KPYW for more details.  
5 Pinout  
5.1 K80 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
The 144-pin LQFP and 121-WLCSP packages for this  
product are not yet available, however they are included in a  
Package Your Way program for Kinetis MCUs. Visit  
nxp.com/KPYW for more details.  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
x
H6  
K9  
G8  
NC  
NC  
NC  
ADC0_  
SE16  
ADC0_  
SE16  
ADC0_  
SE16  
1
1
A11  
J6  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
J4  
NC  
NC  
B1  
C10  
PTE0  
DISABLED  
PTE0  
SPI1_  
PCS1  
LPUART1_ SDHC0_D1 QSPI0A_  
TX DATA3  
I2C1_SDA  
I2C1_SCL  
RTC_  
CLKOUT  
2
3
4
2
3
4
C2  
C1  
D2  
D9  
PTE1/  
LLWU_P0  
DISABLED  
DISABLED  
DISABLED  
PTE1/  
LLWU_P0  
SPI1_SCK  
LPUART1_ SDHC0_D0 QSPI0A_  
SPI1_SIN  
RX  
SCLK  
D10  
B11  
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
SPI1_  
SOUT  
LPUART1_ SDHC0_  
QSPI0A_  
DATA0  
SPI1_SCK  
CTS_b  
LPUART1_ SDHC0_  
RTS_b CMD  
DCLK  
PTE3  
PTE3  
SPI1_  
PCS2  
QSPI0A_  
DATA2  
SPI1_  
SOUT  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
75  
NXP Semiconductors  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
5
6
7
5
6
7
F7  
E5  
D1  
F6  
F7  
VSS  
VSS  
VSS  
VDDIO_E  
VDDIO_E  
VDDIO_E  
C11  
PTE4/  
LLWU_P2  
DISABLED  
PTE4/  
LLWU_P2  
SPI1_SIN  
LPUART3_ SDHC0_D3 QSPI0A_  
TX DATA1  
8
8
E2  
E1  
F3  
F2  
F1  
G2  
G1  
E8  
E9  
PTE5  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTE5  
SPI1_  
PCS0  
LPUART3_ SDHC0_D2 QSPI0A_  
FTM3_CH0 USB0_  
SOF_OUT  
RX  
SS0_B  
9
9
PTE6/  
LLWU_P16  
PTE6/  
LLWU_P16 PCS3  
SPI1_  
LPUART3_ I2S0_  
QSPI0B_  
DATA3  
FTM3_CH1 SDHC0_D4  
CTS_b  
MCLK  
10  
11  
12  
13  
14  
15  
16  
10  
11  
12  
13  
14  
E10  
D11  
E11  
F8  
PTE7  
PTE7  
SPI2_SCK  
LPUART3_ I2S0_RXD0 QSPI0B_  
FTM3_CH2 QSPI0A_  
SS1_B  
RTS_b  
SCLK  
PTE8  
PTE8  
I2S0_RXD1 SPI2_  
SOUT  
I2S0_RX_  
FS  
QSPI0B_  
DATA0  
FTM3_CH3 SDHC0_D5  
FTM3_CH4 SDHC0_D6  
FTM3_CH5 SDHC0_D7  
PTE9/  
LLWU_P17  
PTE9/  
LLWU_P17  
I2S0_TXD1 SPI2_  
PCS1  
I2S0_RX_  
BCLK  
QSPI0B_  
DATA2  
PTE10/  
LLWU_P18  
PTE10/  
LLWU_P18  
I2C3_SDA  
SPI2_SIN  
I2S0_TXD0 QSPI0B_  
DATA1  
F9  
PTE11  
PTE12  
PTE13  
PTE11  
PTE12  
PTE13  
I2C3_SCL  
SPI2_  
PCS0  
I2S0_TX_  
FS  
QSPI0B_  
SS0_B  
FTM3_CH6 QSPI0A_  
DQS  
LPUART2_ I2S0_TX_  
QSPI0B_  
DQS  
FTM3_CH7 FXIO0_D2  
QSPI0A_  
DATA3  
TX  
BCLK  
LPUART2_  
RX  
QSPI0B_  
SS1_B  
SDHC0_  
CLKIN  
FXIO0_D3  
QSPI0A_  
SCLK  
17  
18  
19  
15  
16  
F10  
F11  
VDDIO_E  
VSS  
VDDIO_E  
VSS  
VDDIO_E  
VSS  
PTE16  
ADC0_  
SE4a  
ADC0_  
SE4a  
PTE16  
SPI0_  
PCS0  
LPUART2_ FTM_  
FTM0_  
FLT3  
FXIO0_D4  
FXIO0_D5  
QSPI0A_  
DATA0  
TX  
CLKIN0  
20  
PTE17/  
LLWU_P19 SE5a  
ADC0_  
ADC0_  
SE5a  
PTE17/  
LLWU_P19  
SPI0_SCK  
LPUART2_ FTM_  
LPTMR0_  
ALT3/  
QSPI0A_  
DATA2  
RX  
CLKIN1  
LPTMR1_  
ALT3  
21  
22  
PTE18/  
LLWU_P20 SE6a  
ADC0_  
ADC0_  
SE6a  
PTE18/  
LLWU_P20 SOUT  
SPI0_  
LPUART2_ I2C0_SDA  
CTS_b  
FXIO0_D6  
FXIO0_D7  
QSPI0A_  
DATA1  
PTE19  
ADC0_  
SE7a  
ADC0_  
SE7a  
PTE19 SPI0_SIN  
LPUART2_ I2C0_SCL  
RTS_b  
QSPI0A_  
SS0_B  
23  
24  
25  
26  
27  
28  
29  
30  
16  
17  
18  
19  
20  
21  
H3  
H2  
H1  
J1  
F11  
G11  
H11  
G10  
H10  
G9  
VSS  
VSS  
VSS  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
NC  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
NC  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
NC  
J2  
K2  
K1  
J10  
K10  
ADC0_DP0 ADC0_DP0 ADC0_DP0  
ADC0_  
DM0  
ADC0_  
DM0  
ADC0_  
DM0  
31  
J3  
J11  
ADC0_DP3 ADC0_DP3 ADC0_DP3  
76  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
32  
K3  
K11  
ADC0_  
DM3  
ADC0_  
DM3  
ADC0_  
DM3  
33  
34  
35  
36  
37  
38  
22  
23  
24  
25  
26  
27  
F5  
G5  
G6  
F6  
L2  
L1  
H8  
H9  
J9  
J8  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
ADC0_DP1 ADC0_DP1 ADC0_DP1  
ADC0_  
DM1  
ADC0_  
DM1  
ADC0_  
DM1  
39  
28  
L3  
L11  
VREF_  
OUT/  
VREF_  
OUT/  
VREF_  
OUT/  
CMP1_IN5/ CMP1_IN5/ CMP1_IN5/  
CMP0_IN5/ CMP0_IN5/ CMP0_IN5/  
ADC0_  
SE22  
ADC0_  
SE22  
ADC0_  
SE22  
40  
42  
29  
30  
K4  
K5  
L10  
H7  
DAC0_  
OUT/  
DAC0_  
OUT/  
DAC0_  
OUT/  
CMP1_IN3/ CMP1_IN3/ CMP1_IN3/  
ADC0_  
SE23  
ADC0_  
SE23  
ADC0_  
SE23  
RTC_  
WAKEUP_  
B
RTC_  
WAKEUP_  
B
RTC_  
WAKEUP_  
B
43  
44  
45  
46  
47  
48  
31  
32  
33  
34  
35  
L4  
L5  
K6  
L9  
L8  
K8  
G7  
F6  
L7  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
XTAL32  
EXTAL32  
VBAT  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
H5  
PTA20  
DISABLED  
PTA20  
I2C0_SCL  
I2C0_SDA  
LPUART4_ FTM_  
FXIO0_D8  
FXIO0_D9  
EWM_  
OUT_b  
TPM_  
CLKIN1  
TX  
CLKIN1  
49  
50  
J5  
L7  
K7  
J7  
PTA21/  
LLWU_P21  
DISABLED  
PTA21/  
LLWU_P21  
LPUART4_  
RX  
EWM_IN  
36  
PTA0  
JTAG_  
TCLK/  
TSI0_CH1  
PTA0  
LPUART0_ FTM0_CH5  
CTS_b  
FXIO0_D10 EMVSIM0_ JTAG_  
CLK  
TCLK/  
SWD_CLK  
SWD_CLK  
51  
52  
37  
38  
H8  
J7  
J6  
PTA1  
PTA2  
JTAG_TDI  
TSI0_CH2  
TSI0_CH3  
PTA1  
PTA2  
LPUART0_ FTM0_CH6 I2C3_SDA  
RX  
FXIO0_D11 EMVSIM0_ JTAG_TDI  
IO  
K6  
JTAG_  
TDO/  
LPUART0_ FTM0_CH7 I2C3_SCL  
TX  
FXIO0_D12 EMVSIM0_ JTAG_  
PD  
TDO/  
TRACE_  
SWO  
TRACE_  
SWO  
53  
54  
39  
40  
H9  
J8  
L6  
PTA3  
JTAG_  
TMS/  
SWD_DIO  
TSI0_CH4  
TSI0_CH5  
PTA3  
LPUART0_ FTM0_CH0  
RTS_b  
FXIO0_D13 EMVSIM0_ JTAG_  
RST  
TMS/  
SWD_DIO  
H6  
PTA4/  
LLWU_P3  
NMI_b  
PTA4/  
LLWU_P3  
FTM0_CH1  
FXIO0_D14 EMVSIM0_ NMI_b  
VCCEN  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
77  
NXP Semiconductors  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
55  
41  
K7  
H5  
PTA5  
DISABLED  
PTA5  
USB0_  
CLKIN  
FTM0_CH2  
FXIO0_D15 I2S0_TX_  
BCLK  
JTAG_  
TRST_b  
56  
57  
58  
L10  
K10  
G6  
F5  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA6  
DISABLED  
PTA6  
PTA7  
PTA8  
I2C2_SCL  
I2C2_SDA  
FTM0_CH3 EMVSIM1_ CLKOUT  
CLK  
TRACE_  
CLKOUT  
59  
60  
PTA7  
PTA8  
ADC0_  
SE10  
ADC0_  
SE10  
FTM0_CH4 EMVSIM1_  
IO  
TRACE_D3  
ADC0_  
SE11  
ADC0_  
SE11  
FTM1_CH0 EMVSIM1_  
PD  
FTM1_QD_ TRACE_D2  
PHA/  
TPM1_CH0  
61  
62  
63  
64  
65  
42  
43  
J9  
L5  
L4  
K5  
J5  
PTA9  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA9  
FTM1_CH1 EMVSIM1_  
RST  
FTM1_QD_ TRACE_D1  
PHB/  
TPM1_CH1  
PTA10/  
LLWU_P22  
PTA10/  
LLWU_P22  
I2C2_SDA  
I2C2_SCL  
FTM2_CH0 EMVSIM1_ FXIO0_D16 FTM2_QD_ TRACE_D0  
VCCEN  
PHA/  
TPM2_CH0  
H7  
K8  
L8  
PTA11/  
LLWU_P23  
PTA11/  
LLWU_P23  
FTM2_CH1  
FXIO0_D17 FTM2_QD_  
PHB/  
TPM2_CH1  
PTA12  
PTA12  
FTM1_CH0 TRACE_  
CLKOUT  
FXIO0_D18 I2S0_TXD0 FTM1_QD_  
PHA/  
TPM1_CH0  
PTA13/  
LLWU_P4  
PTA13/  
LLWU_P4  
FTM1_CH1 TRACE_D3 FXIO0_D19 I2S0_TX_  
FS  
FTM1_QD_  
PHB/  
TPM1_CH1  
66  
67  
68  
69  
44  
45  
46  
47  
K9  
L9  
L3  
K4  
J4  
PTA14  
PTA15  
PTA16  
PTA17  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA14  
PTA15  
PTA16  
PTA17  
SPI0_  
PCS0  
LPUART0_ TRACE_D2 FXIO0_D20 I2S0_RX_  
I2S0_TXD1  
TX  
BCLK  
SPI0_SCK  
LPUART0_ TRACE_D1 FXIO0_D21 I2S0_RXD0  
RX  
J10  
H10  
SPI0_  
SOUT  
LPUART0_ TRACE_D0 FXIO0_D22 I2S0_RX_  
I2S0_RXD1  
CTS_b  
FS  
K3  
SPI0_SIN  
LPUART0_  
RTS_b  
FXIO0_D23 I2S0_  
MCLK  
70  
71  
72  
48  
49  
50  
E6  
G7  
L2  
K2  
L1  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
L11  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
FTM0_  
FLT2  
FTM_  
CLKIN0  
TPM_  
CLKIN0  
73  
51  
K11  
K1  
PTA19  
XTAL0  
XTAL0  
FTM1_  
FLT0  
FTM_  
CLKIN1  
LPTMR0_  
ALT1/  
TPM_  
CLKIN1  
LPTMR1_  
ALT1  
74  
75  
52  
J11  
J1  
RESET_b  
PTA24  
RESET_b  
RESET_b  
DISABLED  
PTA24  
EMVSIM0_  
CLK  
FB_A29  
78  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
76  
77  
78  
79  
PTA25  
PTA26  
PTA27  
PTA28  
PTA29  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA25  
EMVSIM0_  
IO  
FB_A28  
FB_A27  
FB_A26  
FB_A25  
FB_A24  
PTA26  
PTA27  
PTA28  
PTA29  
EMVSIM0_  
PD  
EMVSIM0_  
RST  
EMVSIM0_  
VCCEN  
80  
81  
H11  
G11  
J2  
J3  
53  
PTB0/  
LLWU_P5  
ADC0_  
SE8/  
TSI0_CH0  
ADC0_  
SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
FTM1_CH0  
FTM1_CH1  
SDRAM_  
CAS_b  
FTM1_QD_ FXIO0_D0  
PHA/  
TPM1_CH0  
82  
83  
84  
54  
55  
56  
G10  
G9  
H2  
H1  
H3  
PTB1  
PTB2  
PTB3  
ADC0_  
SE9/  
TSI0_CH6  
ADC0_  
SE9/  
TSI0_CH6  
PTB1  
PTB2  
PTB3  
SDRAM_  
RAS_b  
FTM1_QD_ FXIO0_D1  
PHB/  
TPM1_CH1  
ADC0_  
SE12/  
TSI0_CH7  
ADC0_  
SE12/  
TSI0_CH7  
LPUART0_  
RTS_b  
SDRAM_  
WE  
FTM0_  
FLT3  
FXIO0_D2  
FXIO0_D3  
G8  
ADC0_  
SE13/  
ADC0_  
SE13/  
LPUART0_  
CTS_b  
SDRAM_  
CS0_b  
FTM0_  
FLT0  
TSI0_CH8  
TSI0_CH8  
85  
86  
87  
B11  
C11  
F11  
H4  
G1  
G2  
PTB4  
PTB5  
PTB6  
DISABLED  
DISABLED  
DISABLED  
PTB4  
PTB5  
PTB6  
EMVSIM1_  
IO  
SDRAM_  
CS1_b  
FTM1_  
FLT0  
EMVSIM1_  
CLK  
FTM2_  
FLT0  
EMVSIM1_  
VCCEN  
FB_AD23/  
SDRAM_  
D23  
88  
89  
90  
91  
92  
57  
58  
59  
E11  
D11  
E10  
D10  
C10  
G3  
G4  
G5  
F1  
F2  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
EMVSIM1_  
PD  
FB_AD22/  
SDRAM_  
D22  
EMVSIM1_ LPUART3_  
RST  
FB_AD21/  
SDRAM_  
D21  
RTS_b  
SPI1_  
PCS1  
LPUART3_  
CTS_b  
FB_AD20/  
SDRAM_  
D20  
SPI1_  
PCS0  
LPUART3_ I2C2_SCL  
RX  
FB_AD19/  
SDRAM_  
D19  
FTM0_  
FLT1  
FXIO0_D4  
FXIO0_D5  
SPI1_SCK  
LPUART3_ I2C2_SDA  
TX  
FB_AD18/  
SDRAM_  
D18  
FTM0_  
FLT2  
93  
94  
60  
61  
L6  
E7  
F5  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
G6  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
79  
NXP Semiconductors  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
PTB16  
PTB17  
PTB18  
PTB19  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
95  
96  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
B10  
E9  
D9  
C9  
F10  
F9  
E1  
F3  
F4  
E2  
D1  
E3  
E4  
D2  
C1  
D3  
C2  
TSI0_CH9  
TSI0_CH9  
PTB16  
SPI1_  
SOUT  
LPUART0_ FTM_  
FB_AD17/  
SDRAM_  
D17  
EWM_IN  
TPM_  
CLKIN0  
RX  
CLKIN0  
TSI0_CH10 TSI0_CH10 PTB17  
TSI0_CH11 TSI0_CH11 PTB18  
TSI0_CH12 TSI0_CH12 PTB19  
SPI1_SIN  
LPUART0_ FTM_  
FB_AD16/  
SDRAM_  
D16  
EWM_  
OUT_b  
TPM_  
CLKIN1  
TX  
CLKIN1  
97  
FTM2_CH0 I2S0_TX_  
BCLK  
FB_AD15/  
SDRAM_  
A23  
FTM2_QD_ FXIO0_D6  
PHA/  
TPM2_CH0  
98  
FTM2_CH1 I2S0_TX_  
FS  
FB_OE_b  
FTM2_QD_ FXIO0_D7  
PHB/  
TPM2_CH1  
99  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTB20  
PTB21  
PTB22  
PTB23  
PTC0  
SPI2_  
PCS0  
FB_AD31/  
SDRAM_  
D31  
CMP0_  
OUT  
FXIO0_D8  
FXIO0_D9  
FXIO0_D10  
FXIO0_D11  
100  
101  
102  
103  
104  
105  
SPI2_SCK  
FB_AD30/  
SDRAM_  
D30  
CMP1_  
OUT  
F8  
SPI2_  
SOUT  
FB_AD29/  
SDRAM_  
D29  
E8  
B9  
D8  
C8  
SPI2_SIN  
SPI0_  
PCS5  
FB_AD28/  
SDRAM_  
D28  
ADC0_  
SE14/  
TSI0_CH13 TSI0_CH13  
ADC0_  
SE14/  
SPI0_  
PCS4  
PDB0_  
EXTRG  
USB0_  
SOF_OUT  
FB_AD14/  
SDRAM_  
A22  
I2S0_TXD1 FXIO0_D12  
I2S0_TXD0 FXIO0_D13  
PTC1/  
LLWU_P6  
ADC0_  
SE15/  
TSI0_CH14 TSI0_CH14  
ADC0_  
SE15/  
PTC1/  
LLWU_P6  
SPI0_  
PCS3  
LPUART1_ FTM0_CH0 FB_AD13/  
RTS_b  
SDRAM_  
A21  
PTC2  
ADC0_  
SE4b/  
CMP1_IN0/ CMP1_IN0/  
TSI0_CH15 TSI0_CH15  
ADC0_  
SE4b/  
PTC2  
SPI0_  
PCS2  
LPUART1_ FTM0_CH1 FB_AD12/  
CTS_b  
I2S0_TX_  
FS  
SDRAM_  
A20  
106  
73  
B8  
B1  
PTC3/  
LLWU_P7  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
SPI0_  
PCS1  
LPUART1_ FTM0_CH2 CLKOUT  
RX  
I2S0_TX_  
BCLK  
107  
108  
109  
74  
75  
76  
E5  
G6  
A1  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
A8  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_  
PCS0  
LPUART1_ FTM0_CH3 FB_AD11/  
CMP1_  
OUT  
TX  
SDRAM_  
A19  
110  
111  
77  
78  
D7  
C7  
B2  
C3  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
PTC5/  
LLWU_P9  
SPI0_SCK  
LPTMR0_  
ALT2/  
LPTMR1_  
ALT2  
I2S0_RXD0 FB_AD10/  
CMP0_  
OUT  
FTM0_CH2  
FXIO0_D14  
SDRAM_  
A18  
PTC6/  
LLWU_P10  
CMP0_IN0  
PTC6/  
LLWU_P10 SOUT  
SPI0_  
PDB0_  
EXTRG  
I2S0_RX_  
BCLK  
FB_AD9/  
SDRAM_  
A17  
I2S0_  
MCLK  
80  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
PTC7  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
112  
113  
114  
115  
79  
80  
81  
82  
B7  
A7  
D6  
C6  
A2  
B3  
D4  
A3  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
DISABLED  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
PTC7  
SPI0_SIN  
USB0_  
SOF_OUT  
I2S0_RX_  
FS  
FB_AD8/  
SDRAM_  
A16  
FXIO0_D15  
FXIO0_D16  
FXIO0_D17  
FXIO0_D18  
FXIO0_D19  
PTC8  
PTC8  
PTC9  
PTC10  
FTM3_CH4 I2S0_  
MCLK  
FB_AD7/  
SDRAM_  
A15  
PTC9  
FTM3_CH5 I2S0_RX_  
BCLK  
FB_AD6/  
SDRAM_  
A14  
FTM2_  
FLT0  
PTC10  
I2C1_SCL  
I2C1_SDA  
FTM3_CH6 I2S0_RX_  
FS  
FB_AD5/  
SDRAM_  
A13  
116  
117  
83  
84  
C5  
B6  
C4  
B4  
PTC11/  
LLWU_P11  
DISABLED  
DISABLED  
PTC11/  
LLWU_P11  
FTM3_CH7 I2S0_RXD1 FB_RW_b  
PTC12  
PTC13  
PTC14  
PTC15  
PTC12  
PTC13  
PTC14  
PTC15  
LPUART4_ FTM_  
RTS_b  
FB_AD27/  
SDRAM_  
D27  
FTM3_  
FLT0  
TPM_  
CLKIN0  
CLKIN0  
118  
119  
120  
85  
86  
87  
A6  
A5  
B5  
A4  
D5  
C5  
DISABLED  
DISABLED  
DISABLED  
LPUART4_ FTM_  
CTS_b  
FB_AD26/  
SDRAM_  
D26  
TPM_  
CLKIN1  
CLKIN1  
LPUART4_  
RX  
FB_AD25/  
SDRAM_  
D25  
FXIO0_D20  
FXIO0_D21  
LPUART4_  
TX  
FB_AD24/  
SDRAM_  
D24  
121  
122  
123  
88  
89  
F6  
E6  
A5  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
D5  
PTC16  
DISABLED  
PTC16  
PTC17  
PTC18  
LPUART3_  
RX  
FB_CS5_b/  
FB_TSIZ1/  
FB_BE23_  
16_BLS15_  
8_b/  
SDRAM_  
DQM2  
124  
125  
90  
C4  
B4  
B5  
A6  
PTC17  
PTC18  
DISABLED  
DISABLED  
LPUART3_  
TX  
FB_CS4_b/  
FB_TSIZ0/  
FB_BE31_  
24_BLS7_  
0_b/  
SDRAM_  
DQM3  
LPUART3_  
RTS_b  
FB_TBST_  
b/  
FB_CS2_b/  
FB_BE15_  
8_BLS23_  
16_b/  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
81  
NXP Semiconductors  
Pinout  
144  
LQFP LQFP  
100  
121  
XFB  
GA  
121  
WLC  
SP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
QSPI_SIP_  
MODE  
SDRAM_  
DQM1  
126  
A4  
B6  
PTC19  
DISABLED  
PTC19  
LPUART3_  
CTS_b  
FB_CS3_b/ FB_TA_b  
FB_BE7_  
0_BLS31_  
24_b/  
SDRAM_  
DQM0  
127  
91  
D4  
C6  
PTD0/  
DISABLED  
PTD0/  
SPI0_  
LPUART2_ FTM3_CH0 FB_ALE/  
FXIO0_D22  
LLWU_P12  
LLWU_P12 PCS0  
RTS_b  
FB_CS1_b/  
FB_TS_b  
128  
129  
92  
93  
D3  
C3  
D6  
D7  
PTD1  
ADC0_  
SE5b  
ADC0_  
SE5b  
PTD1  
SPI0_SCK  
LPUART2_ FTM3_CH1 FB_CS0_b  
CTS_b  
FXIO0_D23  
I2C0_SCL  
PTD2/  
LLWU_P13  
DISABLED  
DISABLED  
DISABLED  
PTD2/  
LLWU_P13 SOUT  
SPI0_  
LPUART2_ FTM3_CH2 FB_AD4/  
RX  
SDRAM_  
A12  
130  
131  
132  
133  
94  
95  
96  
97  
B3  
A3  
A2  
B2  
A7  
B7  
C7  
A8  
PTD3  
PTD3  
SPI0_SIN  
LPUART2_ FTM3_CH3 FB_AD3/  
I2C0_SDA  
TX  
SDRAM_  
A11  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14 PCS1  
SPI0_  
LPUART0_ FTM0_CH4 FB_AD2/  
EWM_IN  
SPI1_  
PCS0  
RTS_b  
SDRAM_  
A10  
PTD5  
ADC0_  
SE6b  
ADC0_  
SE6b  
PTD5  
SPI0_  
PCS2  
LPUART0_ FTM0_CH5 FB_AD1/  
EWM_  
OUT_b  
SPI1_SCK  
CTS_b  
SDRAM_  
A9  
PTD6/  
LLWU_P15 SE7b  
ADC0_  
ADC0_  
SE7b  
PTD6/  
LLWU_P15 PCS3  
SPI0_  
LPUART0_ FTM0_CH6 FB_AD0  
RX  
FTM0_  
FLT0  
SPI1_  
SOUT  
134  
135  
136  
98  
99  
F6  
E7  
B8  
VSS  
VSS  
VSS  
VDD  
VDD  
PTD7  
VDD  
100  
A1  
DISABLED  
PTD7  
CMT_IRO  
LPUART0_ FTM0_CH7 SDRAM_  
FTM0_  
FLT1  
SPI1_SIN  
TX  
CKE  
137  
A10  
A9  
PTD8/  
LLWU_P24  
DISABLED  
PTD8/  
LLWU_P24  
I2C0_SCL  
I2C0_SDA  
FB_A16  
FXIO0_D24  
138  
139  
140  
A9  
E4  
E3  
C8  
B9  
PTD9  
DISABLED  
DISABLED  
DISABLED  
PTD9  
FB_A17  
FB_A18  
FB_A19  
FXIO0_D25  
FXIO0_D26  
FXIO0_D27  
PTD10  
PTD10  
A10  
PTD11/  
PTD11/  
SPI2_  
LLWU_P25  
LLWU_P25 PCS0  
141  
142  
F4  
D8  
C9  
PTD12  
PTD13  
DISABLED  
DISABLED  
PTD12  
SPI2_SCK  
FTM3_  
FLT0  
FB_A20  
FB_A21  
FXIO0_D28  
FXIO0_D29  
G3  
PTD13  
SPI2_  
SOUT  
143  
144  
G4  
H4  
B10  
A11  
PTD14  
PTD15  
DISABLED  
DISABLED  
PTD14  
PTD15  
SPI2_SIN  
FB_A22  
FB_A23  
FXIO0_D30  
FXIO0_D31  
SPI2_  
PCS1  
82  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Pinout  
5.2 Recommended connection for unused analog and digital  
pins  
Table 65 shows the recommended connections for analog interface pins if those  
analog interfaces are not used in the customer's application  
Table 65. Recommended connection for unused analog interfaces  
Pin Type  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
Analog/non GPIO  
GPIO/Analog  
Short recommendation  
Float  
Detailed recommendation  
Analog input - Float  
ADCx/CMPx  
VREF_OUT  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Float  
Analog output - Float  
DAC0_OUT, DAC1_OUT  
RTC_WAKEUP_B  
XTAL32  
Analog output - Float  
Analog output - Float  
Analog output - Float  
EXTAL32  
Analog input - Float  
PTA18/EXTAL0  
PTA19/XTAL0  
PTx/ADCx  
Analog input - Float  
GPIO/Analog  
Analog output - Float  
GPIO/Analog  
Float (default is analog input)  
Float (default is analog input)  
Float (default is analog input)  
GPIO/Analog  
PTx/CMPx  
GPIO/Analog  
PTx/TSIOx  
GPIO/Digital  
PTA0/JTAG_TCLK  
Float (default is JTAG with  
pulldown)  
GPIO/Digital  
GPIO/Digital  
GPIO/Digital  
GPIO/Digital  
PTA1/JTAG_TDI  
PTA2/JTAG_TDO  
PTA3/JTAG_TMS  
PTA4/NMI_b  
Float  
Float  
Float  
Float (default is JTAG with  
pullup)  
Float (default is JTAG with  
pullup)  
Float (default is JTAG with  
pullup)  
10kΩ pullup or disable and  
float  
Pull high or disable in PCR &  
FOPT and float  
GPIO/Digital  
USB  
PTx  
Float  
Float  
Float  
Float (default is disabled)  
USB0_DP  
USB0_DM  
VOUT33  
Float  
Float  
USB  
USB  
Tie to input and ground  
through 10kΩ  
Tie to input and ground  
through 10kΩ  
USB  
VREGIN  
Tie to output and ground  
through 10kΩ  
Tie to output and ground  
through 10kΩ  
USB  
USB0_VSS  
VBAT  
Always connect to VSS  
Float  
Always connect to VSS  
Float  
VBAT  
VDDA  
VDDA  
Always connect to VDD  
potential  
Always connect to VDD  
potential  
VREFH  
VREFL  
VREFH  
VREFL  
Always connect to VDD  
potential  
Always connect to VDD  
potential  
Always connect to VSS  
potential  
Always connect to VSS  
potential  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
83  
NXP Semiconductors  
Pinout  
Table 65. Recommended connection for unused analog interfaces (continued)  
Pin Type  
Short recommendation  
Detailed recommendation  
VSSA  
VSSA  
Always connect to VSS  
potential  
Always connect to VSS  
potential  
5.3 K80 Pinouts  
The below figure shows the pinout diagram for the devices supported by this document.  
Many signals may be multiplexed onto a single pin. To determine what signals can be  
used on which pin, see the previous section.  
84  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Pinout  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VDD  
VSS  
2
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
VSS  
6
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
7
PTB23  
8
PTB22  
9
PTB21  
PTE6/LLWU_P16  
PTE7  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PTB20  
PTB19  
PTE8  
PTB18  
PTE9/LLWU_P17  
PTE10/LLWU_P18  
PTE11  
PTB17  
PTB16  
VDD  
VDDIO_E  
VSS VSS  
USB0_DP  
USB0_DM  
VOUT33  
VSS  
PTB11  
PTB10  
PTB9  
PTB3  
VREGIN  
PTB2  
NC  
PTB1  
VDDA  
PTB0/LLWU_P5  
RESET_b  
PTA19  
VREFH  
VREFL  
VSSA  
Figure 45. K80 100 LQFP Pinout Diagram  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
85  
NXP Semiconductors  
Pinout  
1
2
3
4
5
6
7
8
9
10  
11  
A
B
C
D
E
F
G
H
J
PTD7  
PTD5  
PTD4/  
LLWU_P14  
PTC19  
PTC14  
PTC13  
PTC8  
PTC4/  
LLWU_P8  
PTD9  
PTD8/  
LLWU_P24  
NC  
A
B
C
D
E
F
G
H
J
PTE0  
PTD6/  
LLWU_P15  
PTD3  
PTC18  
PTC17  
PTC15  
PTC12  
PTC10  
PTC9  
VDD  
PTC7  
PTC3/  
LLWU_P7  
PTC0  
PTB19  
PTB18  
PTB17  
PTB21  
PTB2  
PTB16  
PTB11  
PTB10  
PTB9  
PTB4  
PTB5  
PTB8  
PTB7  
PTB6  
PTE2/  
PTE1/  
PTD2/  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10  
PTC2  
LLWU_P1 LLWU_P0 LLWU_P13  
PTE4/  
LLWU_P2  
PTE3  
PTE5  
PTE8  
PTD1  
PTD0/  
LLWU_P12  
PTC16  
VDDIO_E  
VDDA  
PTC5/  
LLWU_P9 LLWU_P6  
PTC1/  
PTE6/  
LLWU_P16  
PTD11/  
LLWU_P25  
PTD10  
PTD12  
PTD14  
PTD15  
NC  
VDD  
VSS  
VSS  
PTB23  
PTB22  
PTB3  
PTA1  
PTE9/  
LLWU_P17  
PTE7  
PTD13  
VSS  
VSSA  
VREFL  
NC  
PTB20  
PTB1  
PTE11  
PTE10/  
LLWU_P18  
VREFH  
PTA20  
PTB0/  
LLWU_P5  
USB0_DM USB0_DP  
PTA11/  
LLWU_P23  
PTA3  
PTA17  
PTA16  
VSS  
PTA29  
RESET_b  
PTA19  
VOUT33  
VREGIN ADC0_DP3  
PTA21/  
LLWU_P21  
NC  
PTA2  
PTA5  
PTA4/  
LLWU_P3 LLWU_P22  
PTA10/  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23  
K
L
ADC0_DM0 ADC0_DP0 ADC0_DM3  
RTC_  
WAKEUP_B  
VBAT  
PTA12  
PTA14  
K
L
VREF_OUT/  
CMP1_IN5/  
CMP0_IN5/  
PTA13/  
LLWU_P4  
ADC0_DM1 ADC0_DP1  
XTAL32  
4
EXTAL32  
5
VSS  
6
PTA0  
7
PTA15  
9
VDD  
10  
PTA18  
11  
ADC0_SE22  
1
2
3
8
Figure 46. K80 121 XFBGA Pinout Diagram  
86  
NXP Semiconductors  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
Pinout  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
VSS  
5
PTC1/LLWU_P6  
PTC0  
VDDIO_E  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
VDD  
8
PTE6/LLWU_P16  
PTE7  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
PTE8  
98  
PTE9/LLWU_P17  
PTE10/LLWU_P18  
PTE11  
97  
96  
95  
PTE12  
94  
PTE13  
VSS  
93  
VDDIO_E  
VSS  
PTB11  
PTB10  
PTB9  
92  
91  
PTE16  
90  
PTE17/LLWU_P19  
PTE18/LLWU_P20  
PTE19  
PTB8  
89  
PTB7  
88  
PTB6  
87  
VSS  
PTB5  
86  
USB0_DP  
USB0_DM  
VOUT33  
PTB4  
85  
PTB3  
84  
PTB2  
83  
VREGIN  
PTB1  
82  
NC  
PTB0/LLWU_P5  
PTA29  
PTA28  
PTA27  
PTA26  
PTA25  
PTA24  
RESET_b  
PTA19  
81  
ADC0_DP0  
ADC0_DM0  
ADC0_DP3  
ADC0_DM3  
VDDA  
80  
79  
78  
77  
76  
VREFH  
75  
VREFL  
74  
VSSA  
73  
Figure 47. K80 144 LQFP Pinout Diagram  
NOTE  
The 144-pin LQFP package for this product is not yet  
available, however it is included in a Package Your Way  
program for Kinetis MCUs. Visit nxp.com/KPYW for more  
details.  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
87  
NXP Semiconductors  
Ordering parts  
1
2
3
4
5
6
7
8
9
10  
11  
A
PTC4/  
LLWU_P8  
PTC7  
PTC10  
PTC13  
PTC16  
PTC18  
PTD3  
PTD6/  
PTD8/  
PTD11/  
PTD15  
A
B
C
D
E
F
G
H
J
LLWU_P15 LLWU_P24 LLWU_P25  
B
C
D
E
F
G
H
J
PTC3/  
LLWU_P7 LLWU_P9  
PTC5/  
PTC8  
PTC12  
PTC11/  
PTC17  
PTC15  
PTC14  
VSS  
PTC19  
PTD4/  
LLWU_P14  
PTD7  
PTD9  
PTD12  
PTE5  
PTD10  
PTD13  
PTE1/  
PTD14  
PTE0  
PTE3  
PTC0  
PTB20  
PTB16  
PTB10  
PTB5  
PTC2  
PTB23  
PTB19  
PTB11  
PTB6  
PTB1  
PTA29  
VSS  
PTC6/  
LLWU_P10 LLWU_P11  
PTD0/  
LLWU_P12  
PTD5  
PTE4/  
LLWU_P2  
PTC1/  
LLWU_P6  
PTC9  
PTB22  
PTB18  
PTB8  
PTD1  
VDD  
PTD2/  
LLWU_P13  
PTE2/  
PTE8  
LLWU_P0 LLWU_P1  
PTB21  
PTB17  
PTB7  
VDD  
VDDIO_E  
VDD  
PTE6/  
LLWU_P16  
PTE7  
PTE9/  
LLWU_P17  
VSS VSS  
VSS VSS  
VSS VSS  
PTB9  
PTE10/  
LLWU_P18  
PTE11  
NC  
VDDIO_E VSS VSS  
VDD VDD  
VDD  
ADC0_SE16  
VDDA  
VOUT33  
USB0_DP  
PTB2  
PTB3  
PTB4  
PTA5  
PTA4/  
RTC_  
VREFH  
VREFL  
NC  
VREGIN USB0_DM  
ADC0_DP0 ADC0_DP3  
LLWU_P3 WAKEUP_B  
RESET_b  
PTA19  
PTB0/  
LLWU_P5  
PTA16  
PTA15  
PTA11/  
PTA13/  
LLWU_P4  
PTA1  
PTA2  
PTA0  
VSSA  
K
L
PTA17  
PTA12  
PTA21/  
LLWU_P21  
VBAT  
ADC0_DM0 ADC0_DM3  
VREF_OUT/  
K
L
DAC0_OUT/  
CMP1_IN5/  
CMP1_IN3/  
CMP0_IN5/  
PTA18  
1
VDD  
2
PTA14  
3
PTA10/  
PTA3  
6
PTA20  
7
EXTAL32  
8
XTAL32  
9
ADC0_SE23  
ADC0_SE22  
LLWU_P23 LLWU_P22  
4
5
10  
11  
Figure 48. K80 121 WLCSP Pinout Diagram  
NOTE  
The 121-pin WLCSP package for this product is not yet  
available, however it is included in a Package Your Way  
program for Kinetis MCUs. Visit nxp.com/KPYW for more  
details.  
6 Ordering parts  
88  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Part identification  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable  
part numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: MK80.  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q K## A M FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
K##  
A
Kinetis family  
Key attribute  
• K80  
• D = Cortex-M4 w/ DSP  
• F = Cortex-M4 w/ DSP and FPU  
M
Flash memory type  
• N = Program flash only  
• X = Program flash and FlexMemory  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
• 256 = 256 KB  
• 512 = 512 KB  
• 1M0 = 1 MB  
• 2M0 = 2 MB  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
89  
NXP Semiconductors  
Terminology and guidelines  
Field  
Description  
Values  
R
Silicon revision  
• Z = Initial  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
• C = –40 to 85  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)  
• LK = 80 LQFP (12 mm x 12 mm)  
• LL = 100 LQFP (14 mm x 14 mm)  
• MC = 121 MAPBGA (8 mm x 8 mm)  
• DC = 121 XFBGA (8 mm x 8 mm x 0.5 mm)  
• LQ = 144 LQFP (20 mm x 20 mm)  
• MD = 144 MAPBGA (13 mm x 13 mm)  
CC  
Maximum CPU frequency (MHz)  
• 5 = 50 MHz  
• 7 = 72 MHz  
• 10 = 100 MHz  
• 12 = 120 MHz  
• 15 = 150 MHz  
• 18 = 180 MHz  
N
Packaging type  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MK80FN256VLL15  
8 Terminology and guidelines  
8.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
Table continues on the next page...  
90  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Terminology and guidelines  
Term  
Definition  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor guaranteed.  
8.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
8.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
91  
NXP Semiconductors  
Revision History  
Symbol  
Description  
Ambient temperature  
Supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
8.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
9 Revision History  
The following table provides the revision history for this document.  
92  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
Revision History  
Table 66. Revision History  
Rev. No.  
Date  
Substantial Changes  
Initial release  
• Updated dimensions of 121 WLCSP package drawing  
0
1
08/2014  
09/2014  
• Updated instances of I2S module to one  
• Updated the maximum number of I/Os  
• Removed DDR specs all over the datasheet  
• Updated Voltage and Current Operating behaviors table  
• Updated QuadSPI input timing (SDR mode) diagram  
• Updated 35 pf load to load of 15pf (1.8V), 35pf (3V)  
• Updated Notes in QuadSPI AC specifications section  
2
03/2015  
• Updated frequencies of footnotes of Power Consumption Operating behaviors table  
• Added entry of VDDIO in Voltage and current operating requirements  
• Updated the footnotes of Voltage and current operating ratings  
• Updated the description of of Ipll in MCG specs  
• Updated the minimum value of FB4 in Flexbus limited voltage range switching  
specifications table  
• Updated the minimum value of D5 in SDRAM Timing (Limited voltage range) table  
• Added SD1 clock frequencies for high speed  
• Updated the package size of 121 XFBGA to 8x8x0.5mm with a 0.65mm pitch  
• Added Recommended POR sequencing topic  
• Updated the typical values of Power consumption operating behaviors table  
• Updated the Run mode supply current vs. core frequency diagram  
• Updated the number of I2C instances in front matter and deleted "0" after LPUART  
• Updated VLPR mode supply current vs. core frequency figure  
3
05/2015  
• Added maximum number of I/Os in the Ordering Information table.  
• Updated 'Voltage and current operating ratings' table.  
• Updated 'Voltage and current operating requirements' table.  
• Added rows for VIH_E, VIL_E, and VHYS_E  
.
• Removed IICAIO parameter description from the table.  
• Removed positive current injection specifications from IICcont  
• Updated footnotes.  
.
• Updated 'Voltage and current operating behaviors' table.  
• Updated Max. values in the 'Power mode transition operating behaviors' table.  
• Corrected Typ. values of IDD_LLS2 and IDD_LLS3 in 'Power consumption operating  
behaviors' table.  
• Updated 'General switching specifications' table.  
• Updated 'Thermal operating requirements' table to include footnotes.  
• Updated Typ. and Max. values of the fdco_t parameter in the 'MCG Specifications'  
table.  
• Updated Max. values for SD1 (fpp) and SD6 in the 'SDHC full voltage range  
switching specifications' table and for SD6 in the 'SDHC limited voltage range  
switching specifications' table.  
4
09/2015  
• Updated part numbers.  
• Updated Related Resources table to include package drawing numbers and other  
relevant resource information.  
• Updated title of section 2.2.2 to 'HVD, LVD and POR operating requirements'.  
• Updated 'VDD supply LVD and POR operating requirements' table.  
• Added rows for VHVDH and VHVDL  
.
• Updated 'Power consumption operating behaviors' table.  
• Updated Typ. values and Max. values.  
• Added data for 105°C.  
• Updated IDD charts - Figure 6. Run mode supply current vs. core frequency and  
Figure 7. VLPR mode supply current vs. core frequency.  
Table continues on the next page...  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
93  
NXP Semiconductors  
Revision History  
Rev. No.  
Table 66. Revision History (continued)  
Date  
Substantial Changes  
• Replaced section 2.2.6 'EMC radiated emissions operating behaviors' with  
'Electromagnetic Compatibility (EMC) specifications'.  
• Removed EZPort information from 'General switching specifications' table.  
• Updated 100 LQFP and 121 XFBGA values in the 'Thermal attributes' table.  
• Updated 'MCG specifications' table  
• Updated Typ. value of Δfdco_t from -1 to 1.  
• Removed Jacc_fll data.  
• Updated description of Ipll and their corresponding Typ. values.  
• Updated Typ. values of Jcyc_pll and Jacc_pll  
.
• Updated footnote 2 in 'SDRAM Timing (Full voltage range)' table - corrected  
maximum frequency of FB_CLK to 75MHz.  
• Removed IALKG data from 'Comparator and 6-bit DAC electrical specifications' table.  
• Updated Min and Max values of Sfreq in the 'Timing Specifications, High Drive  
Strength' table.  
• Updated the 'Timing Requirements for Power-down Sequence' table.  
• Added a footnote - "Frtcclk is ERCLK32K, and this clock must be enabled  
during the power down sequence."  
• Updated unit from ns to μs.  
• Added 121 WLCSP pin assignment information and diagram to the Pinout section.  
5
11/2016  
• Added 'Device Revision Number' table.  
• Removed phrase "(except RTC_WAKEUP pins)" from RPU and RPD rows in 'Voltage  
and current operating behaviors' table.  
• Updated 'Power consumption operating behaviors' table  
• Updated Typ. and Max. values of IDD_RUN Run mode current — all peripheral  
clocks enabled.  
• Updated footnote 3 to "120 MHz core and system clock, 60 MHz bus and  
FlexBus clock, and 24 MHz flash clock. MCG configured for PEE mode. All  
peripheral clocks enabled".  
• In 'Thermal operating requirements' table, in footnote corrected TJ = TA + ΘJA to TJ  
= TA + RΘJA.  
94  
Kinetis K80 Sub-Family, Rev. 5, 11/2016  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customerʼs technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners.  
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
© 2014 - 2016 NXP B.V.  
Document Number K80P121M150SF5  
Revision 5, 11/2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY