MKE1XZ64VLD4 [NXP]

Kinetis KE1xZ with up to 64 KB Flash;
MKE1XZ64VLD4
型号: MKE1XZ64VLD4
厂家: NXP    NXP
描述:

Kinetis KE1xZ with up to 64 KB Flash

文件: 总82页 (文件大小:1593K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
KE1xZP48M48SF0  
Rev. 3, 06/2020  
Kinetis KE1xZ with up to 64 KB  
MKE1xZ64VLF4  
MKE1xZ64VLD4  
MKE1xZ64VFP4  
MKE1xZ32VLF4  
MKE1xZ32VLD4  
MKE1xZ32VFP4  
Flash  
Up to 48 MHz Arm® Cortex®-M0+ Based Microcontroller  
Providing up to 64 KB flash, up to 8 KB RAM, and a complete set  
of analog/digital features, KE1xZ64 offers a robust Touch Sense  
Interface (TSI) and CAN bus for industrial networking, which  
provides high-level stability and accuracy in customer's home  
appliance touch UI and industrial control systems.  
48 LQFP (LF)  
7x7x1.4 mm P 0.5  
44 LQFP (LD)  
10x10x1.4 mm P 0.8  
40 QFN (FP)  
5x5x0.85 mm P 0.4  
Core Processor and System  
• Arm® Cortex®-M0+ core, supports up to 48 MHz  
frequency  
Memory and memory interfaces  
• Up to 64 KB program flash  
• Up to 8 KB SRAM  
• Arm Core based on the ARMv6 Architecture and  
• 64 Bytes flash cache  
Thumb®-2 ISA  
Mixed-signal analog  
• Configurable Nested Vectored Interrupt Controller  
(NVIC)  
• Memory-Mapped Divide and Square Root module  
(MMDVSQ)  
• 1× 12-bit analog-to-digital converter (ADC) with up  
to 16 channel analog inputs per module, up to 1  
Msps  
• 1× high-speed analog comparators (CMP) with  
internal 8-bit digital to analog converter (DAC)  
Reliability, safety and security  
• Cyclic Redundancy Check (CRC) generator module  
• 128-bit unique identification (ID) number  
• Internal watchdog (WDOG) with independent clock  
source  
• External watchdog monitor (EWM) module  
• ADC self calibration feature  
Timing and control  
• 2× Flex Timers (FTM) for PWM generation, offering  
6ch+2ch  
• 1× 16-bit Low-Power Timer (LPTMR) with flexible  
wake up control  
• 1× Programmable Delay Block (PDB) with flexible  
trigger system  
• On-chip clock loss monitoring  
Power management  
• 1× 32-bit Low-power Periodic Interrupt Timer (LPIT)  
with 2 independent channels  
• Real timer clock (RTC)  
• Low-power Arm Cortex-M0+ core with excellent energy  
efficiency  
• Power management controller (PMC) with multiple  
power modes: Run, Wait, Stop, VLPR, VLPW and  
VLPS  
Debug functionality  
• Serial Wire Debug (SWD) debug interface  
• Debug Watchpoint and Trace (DWT)  
• Micro Trace Buffer (MTB)  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Supports clock gating for unused modules, and specific  
peripherals remain working in low power modes  
• POR, LVD/LVR  
Connectivity and communications interfaces  
• 3× low-power universal asynchronous receiver/  
transmitter (LPUART) modules with FIFO support  
and low power availability  
Clock interfaces  
• OSC: high range 4 - 40 MHz (with low power or high-  
gain mode) and low range 32 - 40 kHz (with high-gain  
mode only)  
• 48 MHz high-accuracy (up to 1ꢀ) fast internal  
reference clock (FIRC) for normal Run  
• 8 MHz / 2 MHz high-accuracy (up to 3ꢀ) slow internal  
reference clock (SIRC) for low-speed Run  
• 128 kHz low power oscillator (LPO)  
• Low-power FLL (LPFLL)  
• 1× low-power serial peripheral interface (LPSPI)  
modules with FIFO support and low power  
availability  
• 1× low-power inter-integrated circuit (LPI2C)  
modules with FIFO support and low power  
availability  
• 1× CAN module (MSCAN), with 5 Rx buffers and 3  
Tx buffers  
• Up to 50 MHz DC external square wave input clock  
• System clock generator (SCG)  
• Real time counter (RTC)  
Operating Characteristics  
• Voltage range: 2.7 to 5.5 V  
• Ambient temperature range: –40 to 105 °C  
Human-machine interface (HMI)  
• Supports up to 32 interrupt request (IRQ) sources  
• Up to 42 GPIO pins with interrupt functionality  
• Touch sensing input (TSI) module  
Related Resources  
Type  
Description  
Resource  
Fact Sheet  
The Fact Sheet gives overview of the product key features and its uses. KE1xZ Family Fact Sheet  
Product Brief The Product Brief contains concise overview/summary information to  
enable quick evaluation of a device for design suitability.  
KE1xZ64PB1  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
KE1xZP48M48SF0RM 1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document:  
KE1xZP48M48SF0  
Chip Errata  
The chip mask set Errata provides additional or corrective information for Kinetis_E_0N16X 1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
48-LQFP: 98ASH00962A  
44-LQFP: 98ASS23225W  
40-QFN: 98ASA01371D  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Kinetis KE1xZ64 Sub-Family  
Arm® Cortex® -M0+  
System  
Memories and Memory Interfaces  
Clocks  
OSC  
Core  
Program  
flash  
RAM  
TRGMUX  
WDOG  
EWM  
FIRC  
SIRC  
LPFLL  
Debug  
interfaces  
MMDVSQ  
Interrupt  
controller  
LPO  
Security  
Communication Interfaces  
Human-Machine  
Interface (HMI)  
Analog  
Timers  
and Integrity  
LPI 2C  
x1  
FlexTimer  
6ch x1  
2ch x1  
12-bit ADC  
GPIO  
CRC  
upto 42  
x1  
LPUART  
x3  
CMP x1  
(with 8-bit DAC)  
High drive  
I/O (6 pins)  
PDB x1  
LPSPI  
x1  
Digital filters  
(port E)  
PMC  
LPIT, 2ch  
LPTMR  
SRTC  
PWT  
TSI, 25ch  
msCAN x1  
Figure 1. Functional block diagram  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
3
NXP Semiconductors  
Table of Contents  
1 Ordering information............................................................... 5  
5.1.3  
5.1.4  
Typical-value conditions....................................32  
2 Overview................................................................................. 5  
2.1 System features...............................................................6  
Relationship between ratings and operating  
requirements..................................................... 32  
Guidelines for ratings and operating  
2.1.1  
2.1.2  
2.1.3  
2.1.4  
2.1.5  
2.1.6  
2.1.7  
2.1.8  
2.1.9  
ARM Cortex-M0+ core...................................... 6  
NVIC..................................................................7  
AWIC.................................................................7  
Memory............................................................. 8  
Reset and boot..................................................8  
Clock options.....................................................9  
Security............................................................. 10  
Power management..........................................10  
Debug controller................................................12  
5.1.5  
requirements..................................................... 33  
5.2 Ratings............................................................................ 33  
5.2.1  
5.2.2  
5.2.3  
5.2.4  
Thermal handling ratings...................................33  
Moisture handling ratings..................................34  
ESD handling ratings........................................ 34  
Voltage and current operating ratings...............34  
5.3 General............................................................................35  
5.3.1  
5.3.2  
5.3.3  
Nonswitching electrical specifications...............35  
Switching specifications.................................... 48  
Thermal specifications...................................... 51  
2.2 Peripheral features.......................................................... 12  
2.2.1  
2.2.2  
2.2.3  
2.2.4  
2.2.5  
2.2.6  
2.2.7  
2.2.8  
2.2.9  
FTM...................................................................12  
ADC...................................................................13  
CMP.................................................................. 14  
RTC...................................................................14  
LPIT...................................................................15  
PDB...................................................................15  
LPTMR..............................................................15  
CRC.................................................................. 16  
LPUART............................................................16  
5.4 Peripheral operating requirements and behaviors...........54  
5.4.1  
5.4.2  
5.4.3  
5.4.4  
5.4.5  
5.4.6  
5.4.7  
5.4.8  
System modules................................................54  
Clock interface modules....................................55  
Memories and memory interfaces.....................60  
Security and integrity modules..........................61  
Analog...............................................................61  
Communication interfaces.................................68  
Human-machine interfaces (HMI)..................... 72  
Debug modules.................................................73  
2.2.10 LPSPI................................................................17  
2.2.11 LPI2C................................................................ 17  
2.2.12 Modular/Scalable Controller Area Network  
6 Design considerations.............................................................74  
6.1 Hardware design considerations..................................... 74  
(MSCAN)...........................................................18  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
Printed circuit board recommendations.............74  
Power delivery system...................................... 75  
Analog design................................................... 75  
Digital design.....................................................76  
Crystal oscillator................................................78  
2.2.13 Port control and GPIO.......................................18  
3 Memory map........................................................................... 20  
4 Pinouts.................................................................................... 20  
4.1 KE1xZ64 Signal Multiplexing and Pin Assignments........ 20  
4.2 Port control and interrupt summary................................. 22  
4.3 Module Signal Description Tables................................... 23  
4.4 Pinout diagram................................................................ 27  
4.5 Package dimensions....................................................... 30  
5 Electrical characteristics..........................................................31  
5.1 Terminology and guidelines.............................................31  
6.2 Software considerations.................................................. 80  
7 Part identification.....................................................................80  
7.1 Description.......................................................................80  
7.2 Format............................................................................. 80  
7.3 Fields............................................................................... 81  
7.4 Example...........................................................................81  
8 Revision history.......................................................................81  
5.1.1  
5.1.2  
Definitions......................................................... 31  
Examples.......................................................... 31  
4
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Ordering information  
1 Ordering information  
The following chips are available for ordering.  
Table 1. Ordering information  
Product  
Memory  
Package  
IO and ADC channel  
HMI  
TSI  
Commu  
nication  
Part number  
Flash  
SRAM  
(KB)  
Pin  
Packag  
e
GPIOs  
GPIOs  
(INT/  
ADC  
channel  
s
CAN  
(KB)  
count  
HD)1  
MKE16Z64VLF4  
MKE16Z64VLD4  
MKE15Z64VLF4  
MKE15Z64VLD4  
MKE14Z64VLF4  
MKE14Z64VLD4  
MKE16Z32VLF4  
MKE16Z32VLD4  
MKE15Z32VLF4  
MKE15Z32VLD4  
MKE14Z32VLF4  
MKE14Z32VLD4  
MKE15Z64VFP4  
MKE14Z64VFP4  
MKE15Z32VFP4  
MKE14Z32VFP4  
64  
64  
64  
64  
64  
64  
32  
32  
32  
32  
32  
32  
64  
64  
32  
32  
8
8
8
8
8
8
4
4
4
4
4
4
8
8
4
4
48  
44  
48  
44  
48  
44  
48  
44  
48  
44  
48  
44  
40  
40  
40  
40  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
LQFP  
QFN  
42  
38  
42  
38  
42  
38  
42  
38  
42  
38  
42  
38  
36  
36  
36  
36  
42/6  
38/6  
42/6  
38/6  
42/6  
38/6  
42/6  
38/6  
42/6  
38/6  
42/6  
38/6  
36/4  
36/4  
36/4  
36/4  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
12  
11  
11  
11  
11  
Yes  
Yes  
Yes  
Yes  
No  
Yes  
Yes  
No  
No  
No  
No  
Yes  
Yes  
No  
No  
No  
No  
No  
No  
No  
No  
No  
Yes  
Yes  
Yes  
Yes  
No  
No  
Yes  
No  
QFN  
QFN  
Yes  
No  
QFN  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
2 Overview  
The following figure shows the system diagram of this device.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
5
NXP Semiconductors  
Overview  
Slave  
Master  
M0  
Cortex M0+  
IOPORT  
unified bus  
for core  
Flash  
upto 64 KB  
FMC  
Debug  
(SWD)  
CM0+ core  
S0  
S1  
NVIC  
SRAM  
upto 8 KB  
various  
peripheral  
blocks  
S2  
MUX  
System Clock Generator (SCG)  
Fast IRC  
Slow IRC  
SOSC  
LPFLL  
Clock  
Source  
LPO  
Figure 2. System diagram  
The crossbar switch connects bus masters and slaves using a crossbar switch structure.  
This structure allows up to four bus masters to access different bus slaves  
simultaneously, while providing arbitration among the bus masters when they access  
the same slave.  
2.1 System features  
The following sections describe the high-level system features.  
6
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
2.1.1 ARM Cortex-M0+ core  
The enhanced ARM Cortex M0+ is the member of the Cortex-M Series of processors  
targeting microcontroller cores focused on very cost sensitive, low power  
applications. It has a single 32-bit AMBA AHB-Lite interface and includes an NVIC  
component. It also has hardware debug functionality including support for simple  
program trace capability. The processor supports the ARMv6-M instruction set  
(Thumb) architecture including all but three 16-bit Thumb opcodes (52 total) plus  
seven 32-bit instructions. It is upward compatible with other Cortex-M profile  
processors.  
2.1.2 NVIC  
The Nested Vectored Interrupt Controller supports nested interrupts and 4 priority  
levels for interrupts. In the NVIC, each source in the IPR registers contains 2 bits. It  
also differs in number of interrupt sources and supports 32 interrupt vectors.  
The Cortex-M family uses a number of methods to improve interrupt latency to up to  
15 clock cycles for Cortex-M0+. It also can be used to wake the MCU core from Wait  
and VLPW modes.  
2.1.3 AWIC  
The asynchronous wake-up interrupt controller (AWIC) is used to detect  
asynchronous wake-up events in Stop mode and signal to clock control logic to  
resume system clocking. After clock restarts, the NVIC observes the pending interrupt  
and performs the normal interrupt or event processing. The AWIC can be used to  
wake MCU core from Partial Stop, Stop and VLPS modes.  
Wake-up sources for this SoC are listed as below:  
Table 2. AWIC Stop and VLPS Wake-up Sources  
Wake-up source  
Available system resets  
Pin interrupts  
ADCx  
Description  
RESET pin, WDOG , loss of clock(LOC) reset and loss of lock (LOL) reset  
Port Control Module - Any enabled pin interrupt is capable of waking the system  
ADCx is optional functional with clock source from SIRC or OSC  
Functional in Stop/VLPS modes with clock source from SIRC or OSC  
Functional in Stop/VLPS modes with clock source from SIRC or OSC  
Functional in Stop/VLPS modes with clock source from SIRC or OSC  
CMPx  
LPI2C  
LPUART  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
7
NXP Semiconductors  
Overview  
Table 2. AWIC Stop and VLPS Wake-up Sources (continued)  
Wake-up source  
LPSPI  
LPIT  
Description  
Functional in Stop/VLPS modes with clock source from SIRC or OSC  
Functional in Stop/VLPS modes with clock source from SIRC or OSC  
Functional in Stop/VLPS modes  
LPTMR  
RTC  
Functional in Stop/VLPS modes  
SCG  
Functional in Stop mode (Only SIRC)  
CAN stop wakeup  
CAN  
TSI  
Touch sense wakeup  
NMI  
Non-maskable interrupt  
2.1.4 Memory  
This device has the following features:  
• Upto 64 KB of embedded program flash memory.  
• Upto 8 KB of embedded RAM accessible (read/write) at CPU clock speed with 0  
wait states.  
• The program flash memory contains a 16-byte flash configuration field that stores  
default protection settings and security information. The page size of program flash  
is 1 KB.  
The protection setting can protect 32 regions of the program flash memory from  
unintended erase or program operations.  
The security circuitry prevents unauthorized access to RAM or flash contents from  
debug port.  
2.1.5 Reset and boot  
The following table lists all the reset sources supported by this device.  
NOTE  
In the following table, Y means the specific module, except  
for the registers, bits or conditions mentioned in the footnote,  
is reset by the corresponding Reset source. N means the  
specific module is not reset by the corresponding Reset  
source.  
8
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
Table 3. Reset source  
Reset  
Descriptions  
Modules  
sources  
PMC SIM SMC RCM  
Reset WDO SCG RTC LPTM Other  
pin is  
G
R
s
negated  
POR reset  
Power-on reset (POR)  
Y
Y1  
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
N
Y
Y
Y
Y
System  
resets  
Low-voltage detect  
(LVD)  
External pin reset  
(RESET)  
Y1  
Y1  
Y1  
Y2  
Y2  
Y2  
Y3  
Y3  
Y3  
Y4  
Y4  
Y4  
Y
Y
Y
Y5  
Y5  
Y5  
Y6  
Y6  
Y6  
N
N
N
N
N
N
Y
Y
Y
Watchdog (WDOG)  
reset  
Multipurpose clock  
generator loss of clock  
(LOC) reset  
Multipurpose clock  
generator loss of lock  
(LOL) reset  
Stop mode acknowledge Y1  
error (SACKERR)  
Y1  
Y2  
Y2  
Y3  
Y3  
Y4  
Y4  
Y
Y
Y5  
Y5  
Y6  
Y6  
N
N
N
N
Y
Y
Software reset (SW)  
Y1  
Y1  
Y1  
Y1  
Y2  
Y2  
Y2  
Y2  
Y3  
Y3  
Y3  
Y3  
Y4  
Y4  
Y4  
Y4  
Y
Y
Y
Y
Y5  
Y5  
Y5  
Y5  
Y6  
Y6  
Y6  
Y6  
N
N
N
N
N
N
N
N
Y
Y
Y
Y
Lockup reset (LOCKUP)  
MDM DAP system reset  
Debug reset Debug reset  
1. Except PMC_LVDSC1[LVDV] and PMC_LVDSC2[LVWV]  
2. Except SIM_SOPT1  
3. Except SMC_PMPROT, SMC_PMCTRL_RUM, SMC_PMCTRL_STOPM, SMC_STOPCTRL, SMC_PMSTAT  
4. Except RCM_RPC, RCM_MR, RCM_FM, RCM_SRIE, RCM_SRS, RCM_SSRS  
5. Except WDOG_CS[TST]  
6. Except SCG_CSR and SCG_FIRCSTAT  
This device supports booting from:  
• internal flash  
2.1.6 Clock options  
The SCG module controls which clock source is used to derive the system clocks. The  
clock generation logic divides the selected clock source into a variety of clock  
domains, including the clocks for the system bus masters, system bus slaves, and flash  
memory . The clock generation logic also implements module-specific clock gating to  
allow granular shutoff of modules.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
9
NXP Semiconductors  
Overview  
The following figure is a high level block diagram of the clock generation. For more  
details on the clock operation and configuration, see the Clocking chapter in the  
Reference Manual.  
00  
01  
10  
PWT  
11  
TCLK0  
00  
01  
SIM_CHIPCTL[PWTCLKSEL]  
TCLK1  
TCLK2  
10  
11  
FTMx  
SIM_FTMOPT0[FTMxCLKSEL]  
SCG  
SCG_LPFLLTCFG[TRIMSRC]  
Core  
RAM  
GPIOC  
48MHz  
Fast  
IRC  
01  
00  
0101  
LPFLL  
TRIMDIV  
(SCG_LFLLTCFG)  
10  
11  
0011  
0010  
default start up  
DIVCORE  
CORE_CLK/SYS_CLK  
PDB  
8MHz/2MHz  
Slow  
IRC  
PCC  
0001  
Other  
SYS_CLK  
PCC_xxx[CGC]  
BUS_CLK/FLASH_CLK  
CRC  
ACMPx  
TSI  
SCG_xCCR[SCS]  
(x=R, V, H)  
DIVSLOW  
BUSOUT  
FLL_CLK  
FLLDIV2_CLK  
FLLDIV2  
Flash  
Peripheral  
Registers  
SIRC_CLK  
FIRC_CLK  
SIRCDIV2_CLK  
FIRCDIV2_CLK  
ADCx  
SIRCDIV2  
LPIT  
LPI2Cx  
LPUARTx  
LPSPIx  
Async clock  
FIRCDIV2  
SCG_SOSCCFG[EREFS]  
0
SOSCDIV2_CLK  
SOSC_CLK  
SOSCDIV2  
EXTAL  
System  
OSC  
1
PCC_xxx[PCS]  
Other 0000 0001 0011 0010 0101  
SCG_CLKOUTCNFG  
[CLKOUTSEL]  
XTAL  
SCG_SOSCCSR  
[SOSCERCLKEN]  
OSC  
SCG CLKOUT  
00  
WDOG  
01  
10  
CLKOUTDIV  
CLKOUT  
11  
SIM_CHIPCTL[CLKOUTSEL]  
LPO_CLK  
RTC_CLKIN  
LPTMR  
EWM  
RTC  
1kHz  
LPO128K  
1
÷128  
PMC  
00  
01  
10  
11  
32kHz  
RTC_CLKIN  
0
RTC_CLKOUT  
÷4  
PORT Control  
RTC_CR[LPOS]  
SIM_CHIPCTL[RTC32KCLKSEL]  
MSCAN  
Figure 3. Clocking block diagram  
2.1.7 Security  
Security state can be enabled via programming flash configure field (0x40e). After  
enabling device security, the SWD port cannot access the memory resources of the  
MCU.  
External interface  
Security  
Unsecure  
SWD port  
Can't access memory source by SWD  
interface  
the debugger can write to the Flash  
Mass Erase in Progress field of the  
MDM-AP Control register to trigger a  
mass erase (Erase All Blocks)  
command  
10  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
2.1.8 Power management  
The Power Management Controller (PMC) expands upon ARM’s operational modes  
of Run, Sleep, and Deep Sleep, to provide multiple configurable modes. These modes  
can be used to optimize current consumption for a wide range of applications. The  
WFI or WFE instruction invokes a Wait or a Stop mode, depending on the current  
configuration. For more information on ARM’s operational modes, See the ARM®  
Cortex® User Guide.  
The PMC provides Normal Run (RUN), and Very Low Power Run (VLPR)  
configurations in ARM’s Run operation mode. In these modes, the MCU core is  
active and can access all peripherals. The difference between the modes is the  
maximum clock frequency of the system and therefore the power consumption. The  
configuration that matches the power versus performance requirements of the  
application can be selected.  
The PMC provides Wait (Wait) and Very Low Power Wait (VLPW) configurations in  
ARM’s Sleep operation mode. In these modes, even though the MCU core is inactive,  
all of the peripherals can be enabled and operate as programmed. The difference  
between the modes is the maximum clock frequency of the system and therefore the  
power consumption.  
The PMC provides Stop (Stop), Very Low Power Stop (VLPS) configurations in  
ARM’s Deep Sleep operational mode. In these modes, the MCU core and most of the  
peripherals are disabled. Depending on the requirements of the application, different  
portions of the analog, logic, and memory can be retained or disabled to conserve  
power.  
The Nested Vectored Interrupt Controller (NVIC), the Asynchronous Wake-up  
Interrupt Controller (AWIC) are used to wake up the MCU from low power states.  
The NVIC is used to wake up the MCU core from WAIT and VLPW modes. The  
AWIC is used to wake up the MCU core from STOP and VLPS modes.  
For additional information regarding operational modes, power management, the  
NVIC, AWIC, please refer to the Reference Manual.  
The following table provides information about the state of the peripherals in the  
various operational modes and the modules that can wake MCU from low power  
modes.  
Table 5. Peripherals states in different operational modes  
Core mode  
Device mode  
Descriptions  
Run mode  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
11  
NXP Semiconductors  
Overview  
Table 5. Peripherals states in different operational modes (continued)  
Core mode  
Device mode  
Descriptions  
Run  
In Run mode, all device modules are operational.  
Very Low Power Run  
In VLPR mode, all device modules are operational at a reduced frequency  
except the Low Voltage Detect (LVD) monitor, which is disabled.  
Sleep mode  
Deep sleep  
Wait  
In Wait mode, all peripheral modules are operational. The MCU core is  
placed into Sleep mode.  
Very Low Power Wait  
In VLPW mode, all peripheral modules are operational at a reduced  
frequency except the Low Voltage Detect (LVD) monitor, which is disabled.  
The MCU core is placed into Sleep mode.  
Stop  
In Stop mode, most peripheral clocks are disabled and placed in a static  
state. Stop mode retains all registers and SRAMs while maintaining Low  
Voltage Detection protection. In Stop mode, the ADC, CMP, LPTMR, RTC,  
and pin interrupts are operational. The NVIC is disabled, but the AWIC can  
be used to wake up from an interrupt.  
Very Low Power Stop  
In VLPS mode, the contents of the SRAM are retained. The CMP (low  
speed), ADC, OSC, RTC, LPTMR, LPIT, FlexIO, LPUART, LPI2C,LPSPI,  
and DMA are operational, LVD and NVIC are disabled, AWIC is used to  
wake up from interrupt.  
NOTE  
When the MCU is in HSRUN or VLP mode, user cannot write  
FlexRAM (EEPROM), and cannot launch an FTFE command  
including flash programming/erasing.  
2.1.9 Debug controller  
This device has extensive debug capabilities including run control and tracing  
capabilities. The standard ARM debug port supports SWD interface.  
2.2 Peripheral features  
The following sections describe the features of each peripherals of the chip.  
2.2.1 FTM  
This device contains two FlexTimer modules.  
12  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
The FlexTimer module (FTM) is a two-to-eight channel timer that supports input  
capture, output compare, and the generation of PWM signals to control electric motor  
and power management applications. The FTM time reference is a 16-bit counter that  
can be used as an unsigned or signed counter.  
Several key enhancements of this module are made:  
• Signed up counter  
• Deadtime insertion hardware  
• Fault control inputs  
• Enhanced triggering functionality  
• Initialization and polarity control  
2.2.2 ADC  
This device contains one 12-bit SAR ADC modules. The ADC module supports  
hardware triggers from FTM, LPTMR, PIT, RTC, external trigger pin and CMP  
output. It supports wakeup of MCU in low power mode when using internal clock  
source or external crystal clock.  
ADC module has the following features:  
• Linear successive approximation algorithm with up to 12-bit resolution  
• Up to 12 single-ended external analog inputs  
• Support 12-bit, 10-bit, and 8-bit single-ended output modes  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Input clock selectable from up to four sources  
• Operation in low-power modes for lower noise  
• Selectable hardware conversion trigger  
• Automatic compare with interrupt for less-than, greater-than or equal-to, within  
range, or out-of-range, programmable value  
• Temperature sensor  
• Hardware average function  
• Selectable Voltage reference: from external or alternate  
• Self-Calibration mode  
2.2.2.1 Temperature sensor  
This device contains one temperature sensor internally connected to the input channel  
of AD26, see ADC electrical characteristics for details of the linearity factor.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
13  
NXP Semiconductors  
Overview  
The sensor must be calibrated to gain good accuracy, so as to provide good linearity,  
see also AN3031 for more detailed application information of the temperature sensor.  
2.2.3 CMP  
There are one analog comparators on this device.  
• Each CMP has its own independent 8-bit DAC.  
• Each CMP supports up to 6 analog inputs from external pins.  
• Each CMP is able to convert an internal reference from the bandgap.  
• Each CMP supports the round-robin sampling scheme. In summary, this allow the  
CMP to operate independently in VLPS and Stop modes, whilst being triggered  
periodically to sample up to 8 inputs. Only if an input changes state is a full wakeup  
generated.  
The CMP has the following features:  
• Inputs may range from rail to rail  
• Programmable hysteresis control  
• Selectable interrupt on rising-edge, falling-edge, or both rising and falling edges of  
the comparator output  
• Selectable inversion on comparator output  
• Capability to produce a wide range of outputs such as sampled, windowed, or  
digitally filtered  
• External hysteresis can be used at the same time that the output filter is used for  
internal functions  
• Two software selectable performance levels: Shorter propagation delay at the  
expense of higher power, and Low power with longer propagation delay  
• Functional in all power modes available on this MCU  
• The window and filter functions are not available in STOP mode  
• Integrated 8-bit DAC with selectable supply reference source and can be power  
down to conserve power  
2.2.4 RTC  
The RTC is an always powered-on block that remains active in all low power modes.  
RTC is reset on power-on reset, and a software reset bit in RTC can also initialize all  
RTC registers.  
The RTC module has the following features  
• 32-bit seconds counter with roll-over protection and 32-bit alarm  
14  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
• 16-bit prescaler with compensation that can correct errors between 0.12 ppm and  
3906 ppm  
• Register write protection with register lock mechanism  
• 1 Hz square wave or second pulse output with optional interrupt  
2.2.5 LPIT  
The Low Power Periodic Interrupt Timer (LPIT) is a multi-channel timer module  
generating independent pre-trigger and trigger outputs. These timer channels can  
operate individually or can be chained together. The LPIT can operate in low power  
modes if configured to do so. The pre-trigger and trigger outputs can be used to  
trigger other modules on the device.  
2.2.6 PDB  
The Programmable Delay Block (PDB) provides controllable delays from either an  
internal or an external trigger, or a programmable interval tick, to the hardware trigger  
inputs of ADCs and/or generates the interval triggers to DACs, so that the precise  
timing between ADC conversions and/or DAC updates can be achieved. The PDB can  
optionally provide pulse outputs (Pulse-Out's) that are used as the sample window in  
the CMP block.  
The PDB module has the following capabilities:  
• trigger input sources and one software trigger source  
• 1 DAC refresh trigger output, for this device  
• configurable PDB channels for ADC hardware trigger  
• 1 pulse output, for this device  
2.2.7 LPTMR  
The low-power timer (LPTMR) can be configured to operate as a time counter with  
optional prescaler, or as a pulse counter with optional glitch filter, across all power  
modes, including the low-leakage modes. It can also continue operating through most  
system reset events, allowing it to be used as a time of day counter.  
The LPTMR module has the following features:  
• 16-bit time counter or pulse counter with compare  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
15  
NXP Semiconductors  
Overview  
• Optional interrupt can generate asynchronous wakeup from any low-power  
mode  
• Hardware trigger output  
• Counter supports free-running mode or reset on compare  
• Configurable clock source for prescaler/glitch filter  
• Configurable input source for pulse counter  
2.2.8 CRC  
This device contains one cyclic redundancy check (CRC) module which can generate  
16/32-bit CRC code for error detection.  
The CRC module provides a programmable polynomial, WAS, and other parameters  
required to implement a 16-bit or 32-bit CRC standard.  
The CRC module has the following features:  
• Hardware CRC generator circuit using a 16-bit or 32-bit programmable shift  
register  
• Programmable initial seed value and polynomial  
• Option to transpose input data or output data (the CRC result) bitwise or bytewise.  
• Option for inversion of final CRC result  
• 32-bit CPU register programming interface  
2.2.9 LPUART  
This product contains three Low-Power UART modules, and can work in Stop and  
VLPS modes. The module also supports 4× to 32× data oversampling rate to meet  
different applications.  
The LPUART module has the following features:  
• Programmable baud rates (13-bit modulo divider) with configurable oversampling  
ratio from 4× to 32×  
• Transmit and receive baud rate can operate asynchronous to the bus clock and can  
be configured independently of the bus clock frequency, support operation in Stop  
mode  
• Interrupt, or polled operation  
• Hardware parity generation and checking  
• Programmable 8-bit, 9-bit or 10-bit character length  
• Programmable 1-bit or 2-bit stop bits  
• Three receiver wakeup methods  
16  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
• Idle line wakeup  
• Address mark wakeup  
• Receive data match  
• Automatic address matching to reduce ISR overhead:  
• Address mark matching  
• Idle line address matching  
• Address match start, address match end  
• Optional 13-bit break character generation / 11-bit break character detection  
• Configurable idle length detection supporting 1, 2, 4, 8, 16, 32, 64 or 128 idle  
characters  
• Selectable transmitter output and receiver input polarity  
2.2.10 LPSPI  
This device contains one LPSPI modules. The LPSPI is a low power Serial Peripheral  
Interface (SPI) module that supports an efficient interface to an SPI bus as a master  
and/or a slave. The LPSPI can continue operating in stop modes provided an  
appropriate clock is available and is designed for low CPU overhead with DMA  
offloading of FIFO register accesses.  
The LPSPI modules have the following features:  
• Command/transmit FIFO of 4 words  
• Receive FIFO of 4 words  
• Host request input can be used to control the start time of an SPI bus transfer  
2.2.11 LPI2C  
This device contains one LPI2C modules. The LPI2C is a low power Inter-Integrated  
Circuit (I2C) module that supports an efficient interface to an I2C bus as a master  
and/or a slave. The LPI2C can continue operating in stop modes provided an  
appropriate clock is available and is designed for low CPU overhead with DMA  
offloading of FIFO register accesses. The LPI2C implements logic support for  
standard-mode, fast-mode, fast-mode plus and ultra-fast modes of operation. The  
LPI2C module also complies with the System Management Bus (SMBus)  
Specification, version 2.  
The LPI2C modules have the following features:  
• Standard, Fast, Fast+ and Ultra Fast modes are supported  
• HS-mode supported in slave mode  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
17  
NXP Semiconductors  
Overview  
• Multi-master support including synchronization and arbitration  
• Clock stretching  
• General call, 7-bit and 10-bit addressing  
• Software reset, START byte and Device ID require software support  
• For master mode:  
• command/transmit FIFO of 4 words  
• receive FIFO of 4 words  
• For slave mode:  
• separate I2C slave registers to minimize software overhead due to master/slave  
switching  
• support for 7-bit or 10-bit addressing, address range, SMBus alert and general  
call address  
• transmit/receive data register supporting interrupt requests  
2.2.12 Modular/Scalable Controller Area Network (MSCAN)  
This device contains one CAN module. It uses the MSCAN mudule which is a  
communication controller implementing the CAN 2.0A/B protocol as defined in the  
Bosch specification dated September 1991.  
Its 5 Rx buffers and 3 Tx buffers are adaptable to target CAN applications.  
The MSCAN module has the following features :  
• Implementation of the CAN protocol Version 2.0 A/B  
• Standard and extended data frames  
• 0-to-8 bytes data length  
• Programmable bit rate up to 1 Mbit/s  
• Support for remote frames  
• Individual Rx Mask Registers per Message Buffer  
• Internal timer for time-stamping of received and transmitted messages  
• Listen-only mode capability  
• Programmable loopback mode supporting self-test operation  
• Programmable transmission priority scheme: lowest ID, lowest buffer number, or  
highest priority  
• Low power modes, with programmable wakeup on bus activity  
18  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Overview  
2.2.13 Port control and GPIO  
The Port Control and Interrupt (PORT) module provides support for port control,  
digital filtering, and external interrupt functions. The GPIO data direction and output  
data registers control the direction and output data of each pin when the pin is  
configured for the GPIO function. The GPIO input data register displays the logic  
value on each pin when the pin is configured for any digital function, provided the  
corresponding Port Control and Interrupt module for that pin is enabled.  
The following figure shows the basic I/O pad structure. Pseudo open-drain pins have  
the p-channel output driver disabled when configured for open-drain operation. None  
of the I/O pins, including open-drain and pseudo open-drain pins, are allowed to go  
above VDD.  
Digital input  
IBE=1 whenever  
IFE  
MUX000  
IBE  
ESD  
Bus  
VDD  
RPULL  
PE  
PS  
Analog input  
DSE  
Digital output  
Figure 4. I/O simplified block diagram  
The PORT module has the following features:  
• all PIN support interrupt enable  
• Configurable edge (rising, falling, or both) or level sensitive interrupt type  
• Support DMA request  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
19  
NXP Semiconductors  
Memory map  
• Asynchronous wake-up in low-power modes  
• Configurable pullup, pulldown, and pull-disable on select pins  
• Configurable high and low drive strength on selected pins  
• Configurable passive filter on selected pins  
• Individual mux control field supporting analog or pin disabled, GPIO, and up to  
chip-specific digital functions  
• Pad configuration fields are functional in all digital pin muxing modes.  
The GPIO module has the following features:  
• Port Data Input register visible in all digital pin-multiplexing modes  
• Port Data Output register with corresponding set/clear/toggle registers  
• Port Data Direction register  
• GPIO support single-cycle access via fast GPIO.  
3 Memory map  
This device contains various memories and memory-mapped peripherals which are  
located in a 4 GB memory space. For more details of the system memory and peripheral  
locations, see the Memory Map chapter in the Reference Manual.  
4 Pinouts  
4.1 KE1xZ64 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
48  
44  
40  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
1
1
5
6
PTE5  
TSI0_CH0  
TSI0_CH1  
TSI0_CH16  
TSI0_CH15  
TSI0_CH5  
TSI0_CH0  
TSI0_CH1  
TSI0_CH16  
TSI0_CH15  
TSI0_CH5  
PTE5  
TCLK2  
EWM_IN  
PTE4  
PTC7  
PTC6  
PTD1  
PTE4  
PTC7  
PTC6  
PTD1  
BUSOUT  
EWM_OUT_b  
32  
33  
1
LPUART1_TX  
LPUART1_RX  
FTM0_CH3  
TRGMUX_  
OUT2  
2
2
2
PTD0  
TSI0_CH4  
TSI0_CH4  
PTD0  
FTM0_CH2  
TRGMUX_  
OUT1  
20  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Pinouts  
48  
44  
40  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
3
3
PTE11  
TSI0_CH3  
TSI0_CH3  
PTE11  
PWT_IN1  
LPTMR0_  
ALT1  
4
5
3
4
7
PTE10  
PTE5  
PTE4  
VDD  
TSI0_CH2  
TSI0_CH0  
TSI0_CH1  
VDD  
TSI0_CH2  
TSI0_CH0  
TSI0_CH1  
VDD  
PTE10  
PTE5  
PTE4  
CLKOUT  
TCLK2  
CAN0_TX  
CAN0_RX  
EWM_IN  
6
4
BUSOUT  
EWM_OUT_b  
7
5
8
6
7
VDDA  
VREFH  
VDDA  
VDDA  
9
7
7
VREFH  
VREFH  
10  
8
VSS/  
VSS/  
VSS/  
VREFL  
VREFL  
VREFL  
11  
12  
13  
9
8
9
PTB7  
PTB6  
PTE3  
EXTAL  
EXTAL  
PTB7  
PTB6  
PTE3  
LPI2C0_SCL  
LPI2C0_SDA  
FTM0_FLT0  
10  
11  
XTAL  
XTAL  
TSI0_CH24  
TSI0_CH24  
LPUART2_  
RTS  
14  
15  
16  
17  
18  
12  
13  
14  
15  
10  
11  
12  
13  
14  
PTE8  
PTB5  
PTB4  
PTC3  
PTC2  
ACMP0_IN3/  
TSI0_CH11  
ACMP0_IN3/  
TSI0_CH11  
PTE8  
PTB5  
PTB4  
PTC3  
PTC2  
TSI0_CH9  
TSI0_CH9  
FTM0_CH5  
FTM0_CH4  
FTM0_CH3  
FTM0_CH2  
LPSPI0_  
PCS1  
TRGMUX_IN0  
TRGMUX_IN1  
TSI0_CH8  
TSI0_CH8  
LPSPI0_  
SOUT  
ADC0_SE11/  
ACMP0_IN4  
ADC0_SE11/  
ACMP0_IN4  
ADC0_SE10/  
ACMP0_IN5  
ADC0_SE10/  
ACMP0_IN5  
19  
20  
21  
16  
17  
18  
15  
16  
17  
PTD7  
PTD6  
PTD5  
TSI0_CH10  
TSI0_CH7  
TSI0_CH6  
TSI0_CH10  
TSI0_CH7  
TSI0_CH6  
PTD7  
PTD6  
PTD5  
LPUART2_TX  
LPUART2_RX  
LPTMR0_  
ALT2  
PWT_IN2  
LPUART2_  
CTS  
22  
23  
24  
25  
26  
27  
28  
29  
19  
20  
21  
22  
23  
24  
25  
26  
18  
19  
20  
22  
23  
24  
25  
PTC1  
PTC0  
PTB3  
PTB2  
PTB1  
PTB0  
PTA7  
PTA6  
ADC0_SE9/  
TSI0_CH23  
ADC0_SE9/  
TSI0_CH23  
PTC1  
PTC0  
PTB3  
PTB2  
PTB1  
PTB0  
PTA7  
PTA6  
FTM0_CH1  
FTM0_CH0  
FTM1_CH1  
FTM1_CH0  
ADC0_SE8/  
TSI0_CH22  
ADC0_SE8/  
TSI0_CH22  
ADC0_SE7/  
TSI0_CH21  
ADC0_SE7/  
TSI0_CH21  
LPSPI0_SIN  
LPSPI0_SCK  
FTM1_QD_  
PHA  
TRGMUX_IN2  
TRGMUX_IN3  
ADC0_SE6/  
TSI0_CH20  
ADC0_SE6/  
TSI0_CH20  
FTM1_QD_  
PHB  
ADC0_SE5  
ADC0_SE4  
ADC0_SE3  
ADC0_SE2  
ADC0_SE5  
ADC0_SE4  
ADC0_SE3  
ADC0_SE2  
LPUART0_TX LPSPI0_  
SOUT  
TCLK0  
LPUART0_RX LPSPI0_  
PCS0  
LPTMR0_  
ALT3  
PWT_IN3  
FTM0_FLT2  
LPSPI0_  
PCS3  
RTC_CLKIN  
LPUART1_  
RTS  
FTM0_FLT1  
LPUART1_  
CTS  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
21  
NXP Semiconductors  
Pinouts  
48  
44  
40  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
30  
27  
21,  
40  
VSS  
VSS  
VSS  
and  
EP  
31  
32  
33  
34  
35  
36  
37  
28  
29  
30  
31  
32  
33  
34  
26  
27  
28  
29  
30  
VDD  
VDD  
VDD  
PTD4  
PTD3  
PTD2  
PTA3  
PTA2  
PTA1  
DISABLED  
NMI_b  
PTD4  
FTM0_FLT3  
FTM1_CH1  
PTD3  
PTD2  
PTA3  
PTA2  
PTA1  
NMI_b  
DISABLED  
DISABLED  
DISABLED  
LPI2C0_SCL  
LPI2C0_SDA  
EWM_IN  
LPUART0_TX  
LPUART0_RX  
EWM_OUT_b  
ADC0_SE1/  
ACMP0_IN1/  
TSI0_CH18  
ADC0_SE1/  
ACMP0_IN1/  
TSI0_CH18  
LPI2C0_  
SDAS  
FTM1_QD_  
PHA  
LPUART0_  
RTS  
TRGMUX_  
OUT0  
38  
35  
31  
PTA0  
ADC0_SE0/  
ACMP0_IN0/  
TSI0_CH17  
ADC0_SE0/  
ACMP0_IN0/  
TSI0_CH17  
PTA0  
LPI2C0_  
SCLS  
LPUART0_  
CTS  
TRGMUX_  
OUT3  
39  
40  
41  
36  
37  
PTC7  
PTC6  
PTE6  
TSI0_CH16  
TSI0_CH15  
DISABLED  
TSI0_CH16  
TSI0_CH15  
PTC7  
PTC6  
PTE6  
LPUART1_TX  
LPUART1_RX  
CAN0_TX  
CAN0_RX  
LPSPI0_  
PCS2  
LPUART1_  
RTS  
42  
43  
38  
39  
PTE2  
PTE1  
TSI0_CH19  
TSI0_CH14  
TSI0_CH19  
TSI0_CH14  
PTE2  
PTE1  
LPSPI0_  
SOUT  
LPTMR0_  
ALT3  
PWT_IN3  
LPUART1_  
CTS  
34  
LPSPI0_SIN  
LPI2C0_  
HREQ  
44  
45  
40  
41  
35  
36  
PTE0  
PTC5  
TSI0_CH13  
TSI0_CH12  
TSI0_CH13  
TSI0_CH12  
PTE0  
PTC5  
LPSPI0_SCK  
TCLK1  
RTC_  
CLKOUT  
46  
42  
37  
PTC4  
SWD_CLK  
ACMP0_IN2  
PTC4  
FTM1_CH0  
RTC_  
CLKOUT  
EWM_IN  
FTM1_QD_  
PHB  
SWD_CLK  
47  
48  
43  
44  
38  
39  
PTA5  
PTA4  
RESET_b  
SWD_DIO  
PTA5  
PTA4  
TCLK1  
RESET_b  
SWD_DIO  
ACMP0_OUT  
EWM_OUT_b  
4.2 Port control and interrupt summary  
The following table provides more information regarding the Port Control and Interrupt  
configurations.  
Table 6. Ports summary  
Feature  
Port A  
Port B  
Yes  
Port C  
Port D  
Port E  
Yes  
Pull select control Yes  
Yes  
Yes  
Pull select at reset PTA4/PTA5=Pull  
up, Others=No  
No  
PTC4=Pull down, PTD3=Pull up,  
Others=No Others=No  
No  
Table continues on the next page...  
22  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Pinouts  
Table 6. Ports summary (continued)  
Feature  
Port A  
Port B  
Yes  
Port C  
Port D  
Port E  
Yes  
Pull enable control Yes  
Yes  
Yes  
Pull enable at reset PTA4/  
Disabled  
PTC4=Enabled;  
Others=Disabled  
PTD3=Enabled;  
Others=Disabled  
Disabled  
PTA5=Enabled;  
Others=Disabled  
Passive filter  
enable control  
PTA5=Yes;  
Others=No  
No  
No  
PTD3=Yes;  
Others=No  
No  
Passive filter  
enable at reset  
PTA5=Enabled;  
Others=Disabled  
Disabled  
Disabled  
Disabled  
Disabled  
Open drain enable I2C and UART  
I2C and UART  
Tx=Enabled;  
I2C and UART  
Tx=Enabled;  
I2C and UART  
Tx=Enabled;  
I2C and UART  
Tx=Enabled;  
control  
Tx=Enabled;  
Others=Disabled  
Others=Disabled  
Others=Disabled  
Others=Disabled  
Others=Disabled  
Open drain enable Disabled  
at reset  
Disabled  
PTB4/PTB5 only  
Disabled  
Yes  
Disabled  
No  
Disabled  
PTD0/PTD1 only  
Disabled  
Yes  
Disabled  
Drive strength  
enable control  
No  
PTE0/PTE1 only  
Disabled  
Drive strength  
enable at reset  
Disabled  
Disabled  
Yes  
Pin mux control Yes  
Yes  
Pin mux at reset PTA4/PTA5=ALT7; ALT0  
Others=ALT0  
PTC4=ALT7;  
Others=ALT0  
PTD3=ALT7;  
Others=ALT0  
ALT0  
Lock bit  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Interrupt and DMA Yes  
request  
Digital glitch filter No  
No  
No  
No  
Yes  
4.3 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the module's chapter. They also briefly describe the signal function and direction.  
4.3.1 Core Modules  
Table 7. SWD Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
SWD_CLK  
SWD_DIO  
SWD_CLK  
SWD_DIO  
Serial Wire Clock  
Serial Wire Data  
I
I/O  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
23  
NXP Semiconductors  
Pinouts  
4.3.2 System Modules  
Table 8. System Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
NMI_b  
Non-maskable interrupt NOTE: Driving the NMI signal low forces a  
non-maskable interrupt, if the NMI function is selected on the  
corresponding pin.  
I
RESET_b  
VDD  
Reset bidirectional signal  
MCU power  
I/O  
I
I
VSS  
MCU ground  
Table 9. EWM Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
EWM_IN  
EWM_in  
EWM input for safety status of external safety circuits. The polarity  
of EWM_IN is programmable using the EWM_CTRL[ASSIN] bit.  
The default polarity is active-low.  
I
EWM_OUT_b  
EWM_out  
EWM reset out signal  
O
4.3.3 Clock Modules  
Table 10. OSC (in SCG) Signal Descriptions  
Chip  
signal  
name  
Module signal name  
Description  
I/O  
EXTAL  
XTAL  
EXTAL  
XTAL  
External clock/Oscillator input  
Oscillator output  
I
O
4.3.4 Analog  
Table 11. ADC0 Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
ADC0_SE[11:0]  
AD[11:0]  
VREFSH  
Single-Ended Analog Channel Inputs  
Voltage Reference Select High  
I
I
VREFH  
Table continues on the next page...  
24  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Pinouts  
I/O  
Table 11. ADC0 Signal Descriptions (continued)  
Chip signal name  
Module signal  
name  
Description  
VREFL  
VDDA  
VREFSL  
VDDA  
Voltage Reference Select Low  
Analog Power Supply  
I
I
Table 12. ACMP0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
IN[5:0]  
CMPO  
ACMP0_IN[5:0]  
ACMP0_OUT  
Analog voltage inputs  
Comparator output  
I
O
4.3.5 Timer Modules  
Table 13. LPTMR0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPTMR0_ALT[3:1]  
LPTMR_ALTn  
Pulse Counter Input pin  
I
Table 14. RTC Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
RTC_CLKOUT  
RTC_CLKOUT  
1 Hz square-wave output or 32 kHz clock  
O
Table 15. FTM0 Signal Descriptions  
Chip signal name Module signal name Description  
I/O  
FTM0_CH[5:0]  
FTM0_FLT[3:0]  
TCLK[2:0]  
CHn  
FTM channel (n), where n can be 5-0  
Fault input (j), where j can be 3-0  
I/O  
FAULTj  
EXTCLK  
I
I
External clock. FTM external clock can be selected to drive the  
FTM counter.  
Table 16. FTM1 Signal Descriptions  
Chip signal name Module signal name Description  
I/O  
I/O  
I
FTM1_CH[1:0]  
CHn  
PHA  
FTM channel (n), where n can be 1-0  
FTM1_QD_PHA  
Quadrature decoder phase A input. Input pin associated with  
quadrature decoder phase A.  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
25  
NXP Semiconductors  
Pinouts  
Table 16. FTM1 Signal Descriptions (continued)  
FTM1_QD_PHB  
PHB  
Quadrature decoder phase B input. Input pin associated with  
quadrature decoder phase B.  
I
4.3.6 Communication Interfaces  
Table 17. CANn Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
CAN Rx  
CAN Tx  
CANn_RX  
CANn_TX  
CAN Receive Pin  
CAN Transmit Pin  
I
O
Table 18. LPSPIn Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
SOUT  
SIN  
LPSPIn_SOUT  
LPSPIn_SIN  
Serial Data Out  
Serial Data In  
O
I
LPSPIn_SCK  
SCK  
Serial Clock  
I/O  
I/O  
LPSPIn_PCS[3:0]  
PCS[3:0]  
Peripheral Chip Select 0-3  
Table 19. LPI2Cn Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPI2Cn_SCL  
LPI2Cn_SDA  
LPI2Cn_HREQ  
SCL  
Bidirectional serial clock line of the I2C system.  
Bidirectional serial data line of the I2C system.  
I/O  
I/O  
I
SDA  
HREQ  
Host request, can initiate an LPI2C master transfer if asserted and  
the I2C bus is idle.  
LPI2Cn_SCLS  
LPI2Cn_SDAS  
SCLS  
SDAS  
Secondary I2C clock line.  
Secondary I2C data line.  
I/O  
I/O  
Table 20. LPUARTn Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
LPUARTn_TX  
LPUARTn_RX  
LPUARTn_CTS  
LPUARTn_RTS  
LPUART_TXD  
LPUART_RXD  
LPUART_CTS  
LPUART_RTS  
Transmit data  
Receive data  
Clear to send  
Request to send  
I/O  
I
I
O
26  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Pinouts  
4.3.7 Human-Machine Interfaces (HMI)  
Table 21. GPIO Signal Descriptions  
Chip signal name  
Module signal  
name  
Description  
I/O  
PTA[7:0]  
PTB[7:0]  
PTC[7:0]  
PTD[7:0]  
PTE[11:10],  
PTE[8],  
PORTA7–PORTA0 General-purpose input/output  
PORTB7–PORTB0 General-purpose input/output  
PORTC7–PORTC0 General-purpose input/output  
PORTD7–PORTD0 General-purpose input/output  
I/O  
I/O  
I/O  
I/O  
I/O  
PORTE11–  
PORTE10  
General-purpose input/output  
PORTE8  
PTE[6:0]  
PORTE6–PORTE0  
Table 22. TSI0 Signal Descriptions  
Chip signal name  
Module signal  
Description  
I/O  
name  
TSI0_CH[24:0]  
TSI[24:0]  
TSI sensing pins or GPIO pins  
I/O  
4.4 Pinout diagram  
The following figure shows the pinout diagram for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous table of Pin Assignments.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
27  
NXP Semiconductors  
Pinouts  
PTA2  
PTA3  
PTD2  
PTD3  
PTD4  
VDD  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD1  
PTD0  
1
2
PTE11  
PTE10  
PTE5  
3
4
5
PTE4  
6
VDD  
VSS  
7
VDDA  
PTA6  
PTA7  
PTB0  
PTB1  
PTB2  
8
VREFH  
VSS/VREFL  
PTB7  
9
10  
11  
12  
PTB6  
Figure 5. 48 LQFP Pinout Diagram  
28  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Pinouts  
PTA2  
PTA3  
PTD2  
PTD3  
PTD4  
VDD  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTD1  
PTD0  
1
2
PTE5  
3
PTE4  
4
VDD  
5
VDDA  
6
VSS  
VREFH  
VSS/VREFL  
PTB7  
7
PTA6  
PTA7  
8
9
PTB6  
10  
11  
PTB0  
PTB1  
24  
23  
PTE3  
Figure 6. 44 LQFP Pinout Diagram  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
29  
NXP Semiconductors  
Pinouts  
PTA1  
PTA2  
PTA3  
PTD3  
VDD  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PTD1  
PTD0  
1
2
PTE11  
3
PTE10  
4
PTE5  
5
PTE4  
PTA7  
PTB0  
PTB1  
PTB2  
VSS  
6
VDD VDDA VREFH  
PTB7  
7
Exposed Pad (EP)  
VSS  
8
PTB6  
9
PTE8  
10  
Figure 7. 40 QFN Pinout Diagram  
4.5 Package dimensions  
The following hyperlinks (package drawings) show the dimensions of the package  
options for the devices supported by this document.  
• 48-LQFP: 98ASH00962A  
• 44-LQFP: 98ASS23225W  
• 40-QFN: 98ASA01371D  
30  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5 Electrical characteristics  
5.1 Terminology and guidelines  
5.1.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
31  
NXP Semiconductors  
Electrical characteristics  
5.1.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
5.1.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
Supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
5.0  
32  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5.1.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
5.1.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
5.2 Ratings  
5.2.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
33  
NXP Semiconductors  
Electrical characteristics  
5.2.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
5.2.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
Max.  
Unit  
Notes  
Electrostatic discharge voltage, human body model  
− 6000  
6000  
V
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
All pins except the corner pins  
Corner pins only  
− 500  
− 750  
− 100  
500  
750  
100  
V
V
ILAT  
Latch-up current at ambient temperature upper limit  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
5.2.4 Voltage and current operating ratings  
NOTE  
Functional operating conditions appear in the "DC electrical  
specifications". Absolute maximum ratings are stress ratings  
only, and functional operation at the maximum values is not  
guaranteed. Stress beyond the listed maximum values may  
affect device reliability or cause permanent damage to the  
device.  
Table 23. Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
Unit  
V
Supply voltage  
5.8 1  
IDD  
Digital supply current  
mA  
Table continues on the next page...  
34  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 23. Voltage and current operating ratings (continued)  
Symbol  
VIO  
Description  
Min.  
VSS – 0.3  
–25  
Max.  
VDD + 0.3  
25  
Unit  
V
IO pin input voltage  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.1  
VDD + 0.1  
V
1. 60s lifetime - No restrictions, i.e. the part can switch.  
10 hours lifetime - Device in reset, i.e. the part cannot switch.  
5.3 General  
5.3.1 Nonswitching electrical specifications  
5.3.1.1 Voltage and current operating requirements  
Table 24. Voltage and current operating requirements  
Symbol Description  
Min.  
2.7  
Max.  
5.5  
Unit  
V
Notes  
VDD  
Supply voltage  
VDDA  
Analog supply voltage  
VDD-to-VDDA differential voltage  
2.7  
5.5  
V
VDD  
– 0.1  
0.1  
V
VDDA  
VSS  
VSSA  
VSS-to-VSSA differential voltage  
DC injection current — single pin  
– 0.1  
0.1  
V
IICIO  
VIN < VSS - 0.3 V (Negative current  
injection)  
− 3  
mA  
mA  
1
VIN > VDD + 0.3 V (Positive current  
injection)  
+ 3  
IICcont  
Contiguous pin DC injection current —  
regional limit, includes sum of negative  
injection currents or sum of positive  
injection currents of 16 contiguous pins  
− 25  
VDD  
+ 25  
VDD  
mA  
V
VODPU Open drain pullup voltage level  
2
1. All pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VSS – 0.3V or greater  
than VDD + 0.3V, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated  
as R=(VSS – 0.3V–VIN)/|IICIO|. The positive injection current limiting resistor is calculated as R=[VIN–(VDD + 0.3V)]/|  
IICIO|. The actual resistor values should be an order of magnitude higher to tolerate transient voltages.  
2. Open drain outputs must be pulled to VDD  
.
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
35  
NXP Semiconductors  
Electrical characteristics  
5.3.1.2 DC electrical specifications at 3.3 V Range and 5.0 V Range  
Table 25. DC electrical specifications  
Symbol  
Parameter  
Value  
Typ  
3.3  
Unit  
Notes  
Min  
Max  
VDD  
I/O Supply Voltage 1  
2.7  
4
V
@ VDD = 3.3 V  
@ VDD = 5.0 V  
4
5.5  
V
V
Vih  
Input Buffer High Voltage  
@ VDD = 3.3 V  
0.7 × VDD  
VDD + 0.3  
@ VDD = 5.0 V  
0.65 × VDD  
VSS − 0.3  
VDD + 0.3  
0.3 × VDD  
V
V
Vil  
Input Buffer Low Voltage  
@ VDD = 3.3 V  
@ VDD = 5.0 V  
VSS − 0.3  
0.06 × VDD  
2.8  
0.35 × VDD  
V
V
Vhys  
Input Buffer Hysteresis  
Ioh_5  
Normal drive I/O current source capability  
measured when pad = (VDD − 0.8 V)  
mA  
@ VDD = 3.3 V  
@ VDD = 5.0 V  
4.8  
2.4  
mA  
mA  
Iol_5  
Ioh_20  
Iol_20  
Normal drive I/O current sink capability  
measured when pad = 0.8 V  
@ VDD = 3.3 V  
@ VDD = 5.0 V  
4.4  
mA  
mA  
High drive I/O current source capability  
measured when pad = (VDD − 0.8 V), 2  
10.8  
@ VDD = 3.3 V  
@ VDD = 5.0 V  
18.5  
10.1  
mA 3  
mA  
High drive I/O current sink capability measured  
when pad = 0.8 V4  
@ VDD = 3.3 V  
@ VDD = 5.0 V  
18.5  
mA 3  
nA  
I_leak  
VOH  
Hi-Z (Off state) leakage current (per pin)  
Output high voltage  
300  
5, 6  
7
Normal drive pad (2.7 V ≤ VDD ≤ 4.0 V, IOH = −  
2.8 mA)  
VDD – 0.8  
VDD – 0.8  
VDD – 0.8  
VDD – 0.8  
V
V
Normal drive pad (4.0 V ≤ VDD ≤ 5.5 V, IOH = −  
4.8 mA)  
High drive pad (2.7 V ≤ VDD ≤ 4.0 V, IOH = −  
10.8 mA)  
V
High drive pad (4.0 V ≤ VDD ≤ 5.5 V, IOH = −  
18.5 mA)  
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage  
100  
mA  
7
Table continues on the next page...  
36  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 25. DC electrical specifications (continued)  
Symbol  
Parameter  
Value  
Typ  
Unit  
Notes  
Min  
Max  
Normal drive pad (2.7 V ≤ VDD ≤ 4.0 V, IOH = −  
2.8 mA)  
0.8  
V
V
Normal drive pad (4.0 V ≤ VDD ≤ 5.5 V, IOH = −  
4.8 mA)  
0.8  
0.8  
0.8  
100  
High drive pad (2.7 V ≤ VDD ≤ 4.0 V, IOH = −  
10.8 mA)  
V
High drive pad (4.0 V ≤ VDD ≤ 5.5 V, IOH = −  
18.5 mA)  
V
IOLT  
IIN  
Output low current total for all ports  
mA  
Input leakage current (per pin) for full temperature range  
@ VDD = 3.3 V  
8, 7  
All pins other than high drive port pins  
High drive port pins  
0.002  
0.004  
0.5  
0.5  
μA  
μA  
Input leakage current (per pin) for full temperature range  
@ VDD = 5.5 V  
All pins other than high drive port pins  
High drive port pins  
Internal pull-up resistors  
@ VDD = 3.3 V  
20  
0.005  
0.010  
0.5  
0.5  
65  
μA  
μA  
kΩ  
RPU  
9
@ VDD = 5.0 V  
20  
20  
50  
65  
kΩ  
kΩ  
RPD  
Internal pull-down resistors  
@ VDD = 3.3 V  
10  
@ VDD = 5.0 V  
20  
50  
kΩ  
1. Max power supply ramp rate is 500 V/ms.  
2. The value given is measured at high drive strength mode. For value at low drive strength mode see the Ioh_5 value  
given above.  
3. The 20 mA I/O pin is capable of switching a 50 pF load at up to 40 MHz.  
4. The value given is measured at high drive strength mode. For value at low drive strength mode see the Iol_5 value  
given above.  
5. Refers to the current that leaks into the core when the pad is in Hi-Z (Off state).  
6. Maximum pin leakage current at the ambient temperature upper limit.  
7. PTD0, PTD1, PTB4, PTB5, PTE0 and PTE1 I/O have both high drive and normal drive capability selected by the  
associated Portx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
8. Refers to the pin leakage on the GPIOs when they are OFF.  
9. Measured at VDD supply voltage = VDD min and input V = VSS  
10. Measured at VDD supply voltage = VDD min and input V = VDD  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
37  
NXP Semiconductors  
Electrical characteristics  
5.3.1.3 Voltage regulator electrical characteristics  
VDD  
48 LQFP /  
VDDA  
VDD  
VSS  
44 LQFP  
VREFH  
Package  
VREFL / VSS  
Figure 8. Pinout decoupling  
Table 26. Voltage regulator electrical characteristics  
Symbol  
Description  
Min.  
Typ.  
100  
100  
Max.  
Unit  
nF  
, 1, 2  
CREF  
ADC reference high decoupling capacitance  
Recommended decoupling capacitance  
2, 3  
CDEC  
nF  
1. For improved ADC performance it is recommended to use 1 nF X7R/C0G and 10 nF X7R ceramics in parallel.  
2. The capacitors should be placed as close as possible to the VREFH/VREFL pins or corresponding VDD/VSS pins.  
3. The requirement and value of of CDEC will be decided by the device application requirement.  
5.3.1.4 LVR, LVD and POR operating requirements  
Table 27. VDD supply LVR, LVD and POR operating requirements  
Symbol  
VPOR  
Description  
Min.  
1.1  
Typ.  
1.6  
Max.  
2.0  
Unit  
V
Notes  
Rising and Falling VDD POR detect voltage  
VLVRX  
LVRX falling threshold (RUN and STOP  
modes)  
2.53  
2.58  
2.64  
V
LVRX hysteresis  
45  
mV  
V
1
VLVRX_HYST  
VLVRX_LP  
LVRX falling threshold (VLPS/VLPR  
modes)  
1.97  
2.12  
2.44  
VLVRX_LP_HYST LVRX hysteresis (VLPS/VLPR modes)  
2.8  
40  
2.88  
50  
3
mV  
V
VLVD  
Falling low-voltage detect threshold  
LVD hysteresis  
mV  
1
1
VLVD_HYST  
VLVW  
VLVW_HYST  
VBG  
Falling low-voltage warning threshold  
LVW hysteresis  
4.19  
0.97  
4.31  
68  
4.5  
V
mV  
V
Bandgap voltage reference  
1.00  
1.03  
1. Rising threshold is the sum of falling threshold and hysteresis voltage.  
38  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5.3.1.5 Power mode transition operating behaviors  
Table 28. Power mode transition operating behaviors  
Description  
System Clock  
Core, Bus, Flash  
frequency (MHz)  
Min.  
Typ. (μs)1 Max. (μs)2  
STOPRUN  
FIRC  
FLL  
48, 24, 24  
7.41  
13.4  
16.5  
13.4  
16.9  
15  
STOPRUN  
VLPSRUN  
VLPSRUN  
RUNVLPR  
VLPRRUN  
VLPRRUN  
WAITRUN  
WAITRUN  
VLPWVLPR  
VLPSVLPR  
VLPWRUN  
48, 24, 24  
10.9  
7.41  
10.4  
14.3  
23.5  
27  
FIRC  
FLL  
48, 24, 24  
48, 24, 24  
FLLSIRC  
SIRCFIRC  
SIRCFLL  
FIRC  
48, 24, 244, 1, 1  
4, 1, 148, 24, 24  
4, 1, 148, 24, 24  
48, 24, 24  
37.3  
36  
0.620  
0.632  
20.7  
19.8  
97.4  
88.2  
0.760  
0.775  
28  
FLL  
48, 24, 24  
SIRC  
4, 1, 1  
SIRC  
4, 1, 1  
26  
FIRC (reset value)  
FIRC (reset value)  
48, 24, 24 (reset value)  
48, 24, 24 (reset value)  
109  
101  
3
tPOR  
1. Typical value is the average of values tested at Temperature=25 and VDD=3.3 V.  
2. Max value is mean+6×sigma of tested values at the worst case of ambient temperature range and VDD 2.7 V to 5.5 V.  
3. After a POR event, the amount of time from the point VDD reaches the reference voltage 2.7 V to execution of the first  
instruction, across the operating temperature range of the chip.  
5.3.1.6 Power consumption  
The following table shows the power consumption targets for the device in various  
modes of operations.  
NOTE  
The maximum values stated in the following table represent  
characterized results equivalent to the mean plus three times  
the standard deviation (mean + 3 sigma).  
Table 29. Power consumption operating behaviors (48 LQFP and 44 LQFP)  
Mode  
Symbol  
Clock  
Configur  
ation  
Description  
Temperat Min  
ure  
Typ  
Max1  
Uni  
t
RUN  
IDD_RUN  
LPFLL  
Running CoreMark in Flash in Compute 25 ℃  
8.09  
8.23  
mA  
Operation mode.  
105 ℃  
8.37  
8.51  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
LPFLL  
Running CoreMark in Flash all  
peripheral clock disabled.  
25 ℃  
8.76  
8.90  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
39  
NXP Semiconductors  
Electrical characteristics  
Table 29. Power consumption operating behaviors (48 LQFP and 44 LQFP) (continued)  
Mode  
Symbol  
Clock  
Configur  
ation  
Description  
Temperat Min  
ure  
Typ  
Max1  
Uni  
t
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
105 ℃  
9.04  
9.18  
LPFLL  
Running CoreMark in Flash, all  
peripheral clock enabled.  
25 ℃  
9.76  
9.90  
105 ℃  
10.06  
10.20  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
LPFLL  
Running While(1) loop in Flash, all  
peripheral clock disabled.  
25 ℃  
6.65  
6.91  
6.79  
7.05  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
LPFLL  
Running While(1) loop in Flash all  
peripheral clock enabled.  
25 ℃  
7.66  
7.94  
7.80  
8.08  
105 ℃  
Core@48MHz , bus@24MHz, flash  
@24MHz, VDD=5V  
IRC48M  
IRC48M  
IRC48M  
IRC48M  
IRC8M  
IRC8M  
IRC8M  
Running CoreMark in Flash in Compute 25 ℃  
7.8  
7.94  
8.11  
Operation mode.  
105 ℃  
7.97  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash all  
peripheral clock disabled.  
25 ℃  
8.46  
8.64  
8.60  
8.78  
105 ℃  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash, all  
peripheral clock enabled.  
25 ℃  
9.47  
9.64  
9.61  
9.78  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
Running While(1) loop in Flash, all  
peripheral clock disabled.  
25 ℃  
6.35  
6.55  
6.49  
6.69  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
VLPR  
IDD_VLPR  
Very Low Power Run Core Mark in  
Flash in Compute Operation mode.  
25 ℃  
25 ℃  
25 ℃  
1480  
1580  
1510  
1522  
1622  
1552  
μA  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run Core Mark in  
Flash all peripheral clock disabled.  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run Core Mark in  
Flash all peripheral clock enabled.  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Table continues on the next page...  
40  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 29. Power consumption operating behaviors (48 LQFP and 44 LQFP) (continued)  
Mode  
Symbol  
Clock  
Configur  
ation  
Description  
Temperat Min  
ure  
Typ  
Max1  
Uni  
t
IRC8M  
IRC8M  
IRC2M  
IRC2M  
Very Low Power Run While(1) loop in  
Flash all peripheral clock disabled.  
25 ℃  
25 ℃  
25 ℃  
25 ℃  
701  
743  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock enabled.  
765  
571  
609  
807  
613  
651  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock disabled.  
Core@2MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock enabled.  
Core@2MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
WAIT  
IDD_WAIT  
LPFLL  
core disabled, system@48MHz, bus  
@24MHz, flash disabled (flash doze  
enabled), VDD=5 V, all peripheral  
clocks disabled  
25 ℃  
25 ℃  
25 ℃  
25 ℃  
4.77  
4.46  
609  
525  
23  
4.87  
4.56  
644  
560  
25  
mA  
IRC48M  
core disabled, system@48 MHz, bus  
@24MHz, flash disabled (flash doze  
enabled), VDD=5 V, all peripheral  
clocks disabled  
VLPW  
IDD_VLPW IRC8M  
Very Low Power Wait current, core  
disabled system@4MHz, bus and  
flash@1MHz, all peripheral clocks  
disabled, VDD=5V  
μA  
IRC2M  
Very Low Power Wait current, core  
disabled system@2MHz, bus and  
flash@1MHz, all peripheral clocks  
disabled, VDD=5V  
STOP  
STOP  
IDD_STOP  
-
-
Stop mode current, VDD=5V, bias  
enabled 2, clock bias enabled , 3  
25 and  
below  
μA  
μA  
50 ℃  
85 ℃  
105 ℃  
25  
36  
52  
20  
27  
39  
57  
22  
IDD_STOP  
Stop mode current, VDD=5V, bias  
enabled 2, clock bias disabled , 3  
25 and  
below  
50 ℃  
85 ℃  
105 ℃  
22  
33  
48  
25  
41  
61  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
41  
NXP Semiconductors  
Electrical characteristics  
Table 29. Power consumption operating behaviors (48 LQFP and 44 LQFP) (continued)  
Mode  
Symbol  
Clock  
Configur  
ation  
Description  
Temperat Min  
ure  
Typ  
Max1  
Uni  
t
VLPS  
IDD_VLPS  
-
-
Very Low Power Stop current, VDD=5V, 25 and  
23  
25  
μA  
bias enabled 2, clock bias enabled , 3  
below  
50 ℃  
85 ℃  
105 ℃  
25  
36  
50  
20  
27  
39  
55  
22  
VLPS  
IDD_VLPS  
Very Low Power Stop current, VDD=5V, 25 and  
μA  
bias enabled 2, clock bias disabled , 3  
below  
50 ℃  
85 ℃  
105 ℃  
22  
33  
48  
25  
41  
61  
1. These values are based on characterization but not covered by test limits in production.  
2. PMC_REGSC[BIASDIS] is the control bit to enable or disable bias under STOP/VLPS mode.  
3. PMC_REGSC[CLKBIASDIS] is the control bit to enable or disable clockbias under STOP/VLPS mode.  
Table 30. Power consumption operating behaviors (40 QFN)  
Mode  
Symbol  
Clock  
Configura  
tion  
Description  
Temperat Min  
ure  
Typ  
Max1 Unit  
RUN  
IDD_RUN  
LPFLL  
LPFLL  
LPFLL  
LPFLL  
LPFLL  
IRC48M  
Running CoreMark in Flash in Compute 25 ℃  
8.09  
8.33  
8.62  
mA  
Operation mode.  
105 ℃  
8.37  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash all peripheral 25 ℃  
8.76  
9.04  
9.02  
9.31  
clock disabled.  
105 ℃  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash, all  
peripheral clock enabled.  
25 ℃  
9.76  
10.05  
10.36  
105 ℃  
10.06  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
Running While(1) loop in Flash, all  
peripheral clock disabled.  
25 ℃  
6.65  
6.91  
6.85  
7.12  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
Running While(1) loop in Flash all  
peripheral clock enabled.  
25 ℃  
7.66  
7.94  
7.89  
8.18  
105 ℃  
Core@48MHz , bus@24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash in Compute 25 ℃  
7.8  
8.03  
8.21  
Operation mode.  
105 ℃  
7.97  
Table continues on the next page...  
42  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 30. Power consumption operating behaviors (40 QFN) (continued)  
Mode  
Symbol  
Clock  
Configura  
tion  
Description  
Temperat Min  
ure  
Typ  
Max1 Unit  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
IRC48M  
IRC48M  
IRC48M  
IRC8M  
IRC8M  
IRC8M  
IRC8M  
IRC8M  
IRC2M  
IRC2M  
Running CoreMark in Flash all peripheral 25 ℃  
8.46  
8.71  
clock disabled.  
105 ℃  
8.64  
8.90  
Core@48MHz, bus @24MHz, flash  
@24MHz, VDD=5V  
Running CoreMark in Flash, all  
peripheral clock enabled.  
25 ℃  
9.47  
9.64  
9.75  
9.93  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
Running While(1) loop in Flash, all  
peripheral clock disabled.  
25 ℃  
6.35  
6.55  
6.54  
6.75  
105 ℃  
Core@48MHz, bus@24MHz, flash  
@24MHz, VDD=5V  
VLPR  
IDD_VLPR  
Very Low Power Run Core Mark in Flash 25 ℃  
in Compute Operation mode.  
1480  
1580  
1510  
701  
1670  
1783  
1704  
791  
μA  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run Core Mark in Flash 25 ℃  
all peripheral clock disabled.  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run Core Mark in Flash 25 ℃  
all peripheral clock enabled.  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock disabled.  
25 ℃  
25 ℃  
25 ℃  
25 ℃  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock enabled.  
765  
863  
Core@4MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock disabled.  
571  
644  
Core@2MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Very Low Power Run While(1) loop in  
Flash all peripheral clock enabled.  
609  
687  
Core@2MHz, bus @1MHz, flash  
@1MHz, VDD=5V  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
43  
NXP Semiconductors  
Electrical characteristics  
Table 30. Power consumption operating behaviors (40 QFN) (continued)  
Mode  
Symbol  
Clock  
Configura  
tion  
Description  
Temperat Min  
ure  
Typ  
Max1 Unit  
WAIT  
IDD_WAIT  
LPFLL  
IRC48M  
IRC8M  
IRC2M  
-
core disabled, system@48MHz, bus  
@24MHz, flash disabled (flash doze  
enabled), VDD=5 V, all peripheral clocks  
disabled  
25 ℃  
25 ℃  
25 ℃  
25 ℃  
4.77  
5.37  
mA  
core disabled, system@48 MHz, bus  
@24MHz, flash disabled (flash doze  
enabled), VDD=5 V, all peripheral clocks  
disabled  
4.46  
609  
525  
23  
5.02  
747  
644  
31  
VLPW  
IDD_VLPW  
Very Low Power Wait current, core  
disabled system@4MHz, bus and  
flash@1MHz, all peripheral clocks  
disabled, VDD=5V  
μA  
Very Low Power Wait current, core  
disabled system@2MHz, bus and  
flash@1MHz, all peripheral clocks  
disabled, VDD=5V  
STOP  
STOP  
VLPS  
VLPS  
IDD_STOP  
IDD_STOP  
IDD_VLPS  
IDD_VLPS  
Stop mode current, VDD=5V, bias  
enabled 2, clock bias enabled , 3  
25 and  
below  
μA  
μA  
μA  
μA  
50 ℃  
85 ℃  
105 ℃  
25  
36  
52  
20  
51  
74  
103  
28  
-
-
-
Stop mode current, VDD=5V, bias  
enabled 2, clock bias disabled , 3  
25 and  
below  
50 ℃  
85 ℃  
105 ℃  
22  
33  
48  
23  
46  
69  
100  
31  
Very Low Power Stop current, VDD=5V, 25 and  
bias enabled 2, clock bias enabled , 3  
below  
50 ℃  
85 ℃  
105 ℃  
25  
36  
50  
20  
51  
74  
102  
27  
Very Low Power Stop current, VDD=5V, 25 and  
bias enabled 2, clock bias disabled , 3  
below  
50 ℃  
85 ℃  
105 ℃  
22  
33  
48  
46  
68  
100  
1. These values are based on characterization but not covered by test limits in production.  
2. PMC_REGSC[BIASDIS] is the control bit to enable or disable bias under STOP/VLPS mode.  
3. PMC_REGSC[CLKBIASDIS] is the control bit to enable or disable clockbias under STOP/VLPS mode.  
44  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
NOTE  
CoreMark benchmark compiled using IAR 8.30 with  
optimization level high, optimized for balanced.  
5.3.1.6.1 Low power mode peripheral current adder — typical value  
Symbol  
Description  
Typical  
ILPTMR  
LPTMR peripheral adder measured by placing the device in VLPS  
mode with LPTMR enabled using LPO. Includes LPO power  
consumption.  
366 nA  
ICMP  
CMP peripheral adder measured by placing the device in VLPS mode  
with CMP enabled using the 8-bit DAC and a single external input for  
compare. 8-bit DAC enabled with half VDDA voltage, low speed mode.  
Includes 8-bit DAC power consumption.  
16 μA  
IRTC  
RTC peripheral adder measured by placing the device in VLPS mode  
with external 32 kHz crystal enabled by means of the RTC_CR[OSCE]  
bit and the RTC counter enabled. Includes EXTAL32 (32 kHz external  
crystal) power consumption.  
312 nA  
ILPUART  
LPUART peripheral adder measured by placing the device in VLPS  
mode with selected clock source waiting for RX data at 115200 baud  
rate. Includes selected clock source power consumption. (SIRC 8 MHz)  
79 μA  
45 μA  
IFTM  
FTM peripheral adder measured by placing the device in VLPW mode  
with selected clock source, outputting the edge aligned PWM of 100 Hz  
frequency.  
IADC  
ADC peripheral adder combining the measured values at VDD and  
VDDA by placing the device in VLPS mode. ADC is configured for low  
power mode using SIRC clock source, 8-bit resolution and continuous  
conversions.  
484 μA  
ILPI2C  
LPI2C peripheral adder measured by placing the device in VLPS mode  
with selected clock source sending START and Slave address, waiting  
for RX data. Includes the DMA power consumption.  
179 μA  
18 μA  
ILPIT  
LPIT peripheral adder measured by placing the device in VLPS mode  
with internal SIRC 8 MHz enabled in Stop mode. Includes selected  
clock source power consumption.  
ILPSPI  
IMSCAN  
ITSI  
LPSPI peripheral adder measured by placing the device in VLPS mode  
with selected clock source, output data on SOUT pin with SCK 500  
kbit/s. Includes the DMA power consumption.  
565 μA  
2354 μA  
784 μA  
MSCAN peripheral adder measured by placing the device in RUN  
mode, CAN baud rate = 125 kbps, loopback mode: MSCAN receives  
the frame sent by itself continuously.  
TSI self-cap mode:  
TSI peripheral adder measured by placing the device in RUN mode,  
continuous TSI self-cap mode scan with 11.6 kHz switching clock.  
TSI mutual-cap mode:  
899 μA  
TSI peripheral adder measured by placing the device in RUN mode,  
continuous TSI mutual-cap mode scan with 37.22 kHz switching clock.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
45  
NXP Semiconductors  
Electrical characteristics  
5.3.1.6.2 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• SCG in SOSC for both Run and VLPR modes  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Figure 9. Run mode supply current vs. core frequency  
46  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
Figure 10. VLPR mode supply current vs. core frequency  
5.3.1.7 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following applications notes, available on http://www.nxp.com for advice  
and guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
5.3.1.7.1 EMC radiated emissions operating behaviors  
EMC measurements to IC-level IEC standards are available from NXP on request.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
47  
NXP Semiconductors  
Electrical characteristics  
5.3.1.7.2 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions.  
1. Go to http://www.nxp.com.  
2. Perform a keyword search for “EMC design”.  
3. Select the "Documents" category and find the application notes.  
5.3.1.8 Capacitance attributes  
Table 31. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
NOTE  
Please refer to External Oscillator electrical specifications for  
EXTAL/XTAL pins.  
5.3.2 Switching specifications  
5.3.2.1 Device clock specifications  
Table 32. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
25  
48  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR / VLPW mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fERCLK  
fLPTMR  
Flash clock  
1
External reference clock  
LPTMR clock  
16  
13  
1. The frequency limitations in VLPR / VLPW mode here override any frequency specification listed in the timing  
specification for any other module.  
48  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5.3.2.2 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 11. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Normal drive strength  
5.3.2.3 General AC specifications  
These general purpose specifications apply to all signals configured for GPIO, UART,  
and timers.  
Table 33. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
50  
ns  
3
4
GPIO pin interrupt pulse width (digital glitch filter  
disabled, passive filter disabled) — Asynchronous  
path  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses  
may or may not be recognized. In Stop and VLPS modes, the synchronizer is bypassed so shorter pulses can be  
recognized in that case.  
2. The greater of synchronous and asynchronous timing must be met.  
3. These pins have a passive filter enabled on the inputs. This is the shortest pulse width that is guaranteed to be  
recognized.  
4. These pins do not have a passive filter on the inputs. This is the shortest pulse width that is guaranteed to be  
recognized.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
49  
NXP Semiconductors  
Electrical characteristics  
5.3.2.4 AC specifications at 3.3 V range  
Table 34. Functional pad AC specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
I/O Supply Voltage  
Vdd 1  
2.7  
4
V
1. Max power supply ramp rate is 500 V/ms.  
Name  
Prop Delay (ns) 1  
Rise/Fall Edge (ns) 2  
Min Max  
Drive Load (pF)  
Max  
17.5  
28  
Normal drive I/O pad  
High drive I/O pad  
CMOS Input 3  
5
9
17  
32  
17  
33  
3
25  
50  
25  
50  
0.5  
19  
5
26  
9
4
1.2  
1. Propagation delay measured from 50ꢀ of core side input to 50ꢀ of the output.  
2. Edges measured using 20ꢀ and 80ꢀ of the VDD supply.  
3. Input slope = 2 ns.  
NOTE  
All measurements were taken accounting for 150 mV drop  
across VDD and VSS.  
5.3.2.5 AC specifications at 5 V range  
Table 35. Functional pad AC specifications  
Characteristic  
Symbol  
Min  
Typ  
Max  
5.5  
Unit  
I/O Supply Voltage  
Vdd 1  
4
V
1. Max power supply ramp rate is 500 V/ms.  
Name  
Prop Delay (ns) 1  
Rise/Fall Edge (ns) 2  
Min Max  
Drive Load (pF)  
Max  
12  
18  
13  
19  
3
Normal drive I/O pad  
High drive I/O pad  
CMOS Input 3  
3.6  
8
10  
17  
10  
19  
2.8  
25  
50  
25  
50  
0.5  
3.6  
8
1.2  
1. As measured from 50ꢀ of core side input to 50ꢀ of the output.  
2. Edges measured using 20ꢀ and 80ꢀ of the VDD supply.  
3. Input slope = 2 ns.  
50  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
NOTE  
All measurements were taken accounting for 150 mV drop  
across VDD and VSS.  
5.3.3 Thermal specifications  
5.3.3.1 Thermal operating requirements  
Table 36. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is: TJ = TA + RΘJA × chip power dissipation.  
5.3.3.2 Thermal attributes  
5.3.3.2.1 Description  
The tables in the following sections describe the thermal characteristics of the device.  
NOTE  
Junction temperature is a function of die size, on-chip power  
dissipation, package thermal resistance, mounting side  
(board) temperature, ambient temperature, air flow, power  
dissipation or other components on the board, and board  
thermal resistance.  
5.3.3.2.2 Thermal characteristics for the 44-pin LQFP package  
Table 37. Thermal characteristics for the 44-pin LQFP package  
Rating  
Conditions  
Symbol  
Value  
Unit  
Thermal resistance, Junction to Ambient  
(Natural Convection)1, 2  
Single layer board (1s)  
RθJA  
74  
°C/W  
Thermal resistance, Junction to Ambient  
(Natural Convection)1, 2  
Four layer board (2s2p)  
Single layer board (1s)  
RθJA  
52  
61  
°C/W  
°C/W  
Thermal resistance, Junction to Ambient  
(@200 ft/min)1, 3  
RθJMA  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
51  
NXP Semiconductors  
Electrical characteristics  
Table 37. Thermal characteristics for the 44-pin LQFP package (continued)  
Rating  
Conditions  
Symbol  
Value  
Unit  
Thermal resistance, Junction to Ambient  
(@200 ft/min)1, 3  
Four layer board (2s2p)  
RθJMA  
45  
°C/W  
Thermal resistance, Junction to Board4  
Thermal resistance, Junction to Case 5  
Thermal resistance, Junction to Package Top6  
RθJB  
RθJC  
ψJT  
32  
19  
5
°C/W  
°C/W  
°C/W  
Natural Convection  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s  
or 2s2p board, respectively.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
5.3.3.2.3 Thermal characteristics for the 48-pin LQFP package  
Table 38. Thermal characteristics for the 48-pin LQFP package  
Rating  
Conditions  
Symbol  
Value  
Unit  
Thermal resistance, Junction to Ambient  
(Natural Convection)1, 2  
Single layer board (1s)  
RθJA  
79  
°C/W  
Thermal resistance, Junction to Ambient  
(Natural Convection)1, 2  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RθJA  
RθJMA  
RθJMA  
55  
66  
49  
°C/W  
°C/W  
°C/W  
Thermal resistance, Junction to Ambient  
(@200 ft/min)1, 3  
Thermal resistance, Junction to Ambient  
(@200 ft/min)1, 3  
Thermal resistance, Junction to Board4  
Thermal resistance, Junction to Case 5  
Thermal resistance, Junction to Package Top6  
RθJB  
RθJC  
ψJT  
33  
23  
6
°C/W  
°C/W  
°C/W  
Natural Convection  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for 1s  
or 2s2p board, respectively.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured  
on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
52  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2.  
5.3.3.2.4 Thermal characteristics for the 40-pin QFN package  
Table 39. Thermal characteristics for the 40-pin QFN package  
Rating  
Board Type 1  
Symbol  
RθJA  
Value  
28.6  
Unit  
Junction to Ambient  
Thermal Resistance 2  
JESD51-9, 2s2p  
/W  
Junction-to-Top of  
Package Thermal  
Characterization  
Parameter 2  
JESD51-9, 2s2p  
JESD51-9  
ΨJT  
0.2  
/W  
/W  
Junction to Case  
RθJC  
1.6  
Thermal Resistance 3  
1. Thermal test board meets JEDEC specification for this package (JESD51-9).  
2. Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this  
report is solely for a thermal performance comparison of one package to another in a standardized specified  
environment. It is not meant to predict the performance of a package in an application-specific environment.  
3. Junction-to-Case thermal resistance determined using an isothermal cold plate. Case is defined as the bottom of the  
packages (exposed pad).  
5.3.3.2.5 General notes for specifications at maximum junction temperature  
An estimation of the chip junction temperature, TJ, can be obtained from this  
equation:  
TJ = TA + (RθJA × PD)  
where:  
• TA = ambient temperature for the package (°C)  
• RθJA = junction to ambient thermal resistance (°C/W)  
• PD = power dissipation in the package (W)  
The junction to ambient thermal resistance is an industry standard value that provides  
a quick and easy estimation of thermal performance. Unfortunately, there are two  
values in common usage: the value determined on a single layer board and the value  
obtained on a board with two planes. For packages such as the PBGA, these values  
can be different by a factor of two. Which value is closer to the application depends  
on the power dissipated by other components on the board. The value obtained on a  
single layer board is appropriate for the tightly packed printed circuit board. The value  
obtained on the board with the internal planes is usually appropriate if the board has  
low power dissipation and the components are well separated.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
53  
NXP Semiconductors  
Electrical characteristics  
When a heat sink is used, the thermal resistance is expressed in the following equation  
as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal  
resistance:  
RθJA = RθJC + RθCA  
where:  
• RθJA = junction to ambient thermal resistance (°C/W)  
• RθJC = junction to case thermal resistance (°C/W)  
• RθCA = case to ambient thermal resistance (°C/W)  
RθJC is device related and cannot be influenced by the user. The user controls the  
thermal environment to change the case to ambient thermal resistance, RθCA. For  
instance, the user can change the size of the heat sink, the air flow around the device,  
the interface material, the mounting arrangement on printed circuit board, or change the  
thermal dissipation on the printed circuit board surrounding the device.  
To determine the junction temperature of the device in the application when heat sinks  
are not used, the Thermal Characterization Parameter (ΨJT) can be used to determine  
the junction temperature with a measurement of the temperature at the top center of the  
package case using this equation:  
TJ = TT + (ΨJT × PD)  
where:  
• TT = thermocouple temperature on top of the package (°C)  
ΨJT = thermal characterization parameter (°C/W)  
• PD = power dissipation in the package (W)  
The thermal characterization parameter is measured per JESD51-2 specification using a  
40 gauge type T thermocouple epoxied to the top center of the package case. The  
thermocouple should be positioned so that the thermocouple junction rests on the  
package. A small amount of epoxy is placed over the thermocouple junction and over  
about 1 mm of wire extending from the junction. The thermocouple wire is placed flat  
against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
5.4 Peripheral operating requirements and behaviors  
54  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5.4.1 System modules  
There are no specifications necessary for the device's system modules.  
5.4.2 Clock interface modules  
5.4.2.1 Oscillator electrical specifications  
5.4.2.1.1 External Oscillator electrical specifications  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
55  
NXP Semiconductors  
Electrical characteristics  
Single input buffer  
(EXTAL WAVE)  
ref_clk  
mux  
Differential input comparator  
(HG/LP mode)  
Peak detector  
LP mode  
Driver  
(HG/LP mode)  
Pull down resistor (OFF)  
ESD PAD  
300 ohms  
ESD PAD  
40 ohms  
XTAL pin  
EXTAL pin  
1
Series resistor for current  
limitation  
1M ohms Feedback Resistor  
Crystal or resonator  
C1  
C2  
NOTE:  
1. 1M Feedback resistor is needed only for HG mode.  
Figure 12. Oscillator connections scheme (OSC)  
NOTE  
Data values in the following "External Oscillator electrical  
specifications" tables are from simulation.  
Table 40. External Oscillator electrical specifications (OSC)  
Symbol  
VDD  
Description  
Min.  
Typ.  
Max.  
Unit Notes  
Supply voltage  
2.7  
5.5  
V
IDDOSC  
Supply current — low-gain mode (low-power mode) (HGO=0)  
1
4 MHz  
8 MHz  
200  
300  
µA  
µA  
Table continues on the next page...  
56  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 40. External Oscillator electrical specifications (OSC)  
(continued)  
Symbol  
Description  
Min.  
Typ.  
1.2  
1.6  
2
Max.  
Unit Notes  
16 MHz  
mA  
mA  
mA  
mA  
1
24 MHz  
32 MHz  
40 MHz  
2.6  
IDDOSC  
Supply current — high-gain mode (HGO=1)  
32 kHz  
25  
1
µA  
4 MHz  
mA  
mA  
mA  
mA  
mA  
mA  
8 MHz  
1.2  
3.5  
5
16 MHz  
24 MHz  
32 MHz  
5.5  
6
40 MHz  
gmXOSC  
Fast external crystal oscillator transconductance  
32 kHz, Low Frequency Range, High Gain (32 kHz)  
Medium Frequency Range (4-8 MHz)  
High Frequency Range (8-40 MHz)  
Input high voltage — EXTAL pin in external clock mode  
Input low voltage — EXTAL pin in external clock mode  
EXTAL load capacitance  
15  
2.2  
16  
45  
9.7  
37  
µA / V  
mA / V  
mA / V  
VIH  
VIL  
C1  
C2  
RF  
1.75  
VSS  
VDD  
1.20  
V
V
2
XTAL load capacitance  
2
Feedback resistor  
3
Low-frequency, high-gain mode (32 kHz)  
10  
MΩ  
MΩ  
Medium/high-frequency, low-gain mode (low-power  
mode) (4-8 MHz, 8-40 MHz)  
Medium/high-frequency, high-gain mode (4-8 MHz,  
8-40 MHz)  
1
MΩ  
RS  
Series resistor  
Low-frequency, high-gain mode (32 kHz)  
200  
0
kΩ  
kΩ  
Medium/high-frequency, low-gain mode (low-power  
mode) (4-8 MHz, 8-40 MHz)  
Medium/high-frequency, high-gain mode (4-8 MHz,  
8-40 MHz)  
0
kΩ  
Vpp  
Peak-to-peak amplitude of oscillation (oscillator mode)  
Low-frequency, high-gain mode  
4
3.3  
1.0  
3.3  
V
V
V
Medium/high-frequency, low-gain mode  
Medium/high-frequency, high-gain mode  
1. Measured at VDD = 5 V, Temperature = 25 °C. The current consumption is according to the crystal or resonator,  
loading capacitance.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
57  
NXP Semiconductors  
Electrical characteristics  
2. C1 and C2 must be provided by external capacitors and their load capacitance depends on the crystal or resonator  
manufacturers' recommendation. Please check the crystal datasheet for the recommended values. And also consider  
the parasitic capacitance of package and board.  
3. When low power mode is selected, RF is integrated and must not be attached externally.  
4. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
5.4.2.1.2 External Oscillator frequency specifications  
Table 41. External Oscillator frequency specifications (OSC)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
fosc_me  
fosc_hi  
Oscillator crystal or resonator frequency — Low  
Frequency, High Gain Mode  
32  
40  
kHz  
Oscillator crystal or resonator frequency —  
Medium Frequency  
4
8
8
MHz  
Oscillator crystal or resonator frequency — High  
Frequency  
40  
tdc_extal Input clock duty cycle (external clock mode)  
fec_extal Input clock frequency (external clock mode)  
40  
50  
60  
50  
MHz  
ms  
tcst  
Crystal startup time — 32 kHz Low Frequency,  
High-Gain Mode  
500  
1
Crystal startup time — 8 MHz Medium  
Frequency, Low-Power Mode  
1.5  
2.5  
2
Crystal startup time — 8 MHz Medium  
Frequency, High-Gain Mode  
Crystal startup time — 40 MHz High Frequency,  
Low-Power Mode  
Crystal startup time — 40 MHz High Frequency,  
High-Gain Mode  
2.5  
1. The start-up measured after 4096 cycles. Proper PC board layout procedures must be followed to achieve  
specifications.  
5.4.2.2 System Clock Generation (SCG) specifications  
5.4.2.2.1 Fast internal RC Oscillator (FIRC) electrical specifications  
Table 42. Fast internal RC Oscillator electrical specifications  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Min.  
Max.  
FFIRC  
Fast internal reference frequency  
MHz  
48  
400  
IVDD  
Supply current  
500  
µA  
FUntrimmed IRC frequency (untrimmed)  
FIRC  
×
FIRC  
×
MHz  
(1-0.3)  
(1+0.3)  
Table continues on the next page...  
58  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 42. Fast internal RC Oscillator electrical specifications  
(continued)  
Symbol  
Parameter  
Value  
Typ.  
Unit  
Min.  
Max.  
ΔFOL  
Open loop total deviation of IRC frequency over voltage and  
temperature1  
Regulator enable  
Startup time  
0.5  
1
3
ꢀFFIRC  
µs2  
TStartup  
TJIT  
Period jitter (RMS)  
35  
150  
ps  
1. The limit is respected across process, voltage and full temperature range.  
2. Startup time is defined as the time between clock enablement and clock availability for system use.  
NOTE  
Fast internal RC Oscillator is compliant with CAN and LIN  
standards.  
5.4.2.2.2 Slow internal RC oscillator (SIRC) electrical specifications  
Table 43. Slow internal RC oscillator (SIRC) electrical specifications  
Symbol  
Parameter  
Value  
Typ.  
2
Unit  
Min.  
Max.  
FSIRC  
Slow internal reference frequency  
MHz  
8
IVDD  
FUntrimmed  
ΔFOL  
Supply current  
23  
µA  
IRC frequency (untrimmed)  
MHz  
Open loop total deviation of IRC frequency over  
voltage and temperature1  
Regulator enable  
Startup time  
6
3
ꢀFSIRC  
µs2  
TStartup  
1. The limit is respected across process, voltage and full temperature range.  
2. Startup time is defined as the time between clock enablement and clock availability for system use.  
5.4.2.2.3 Low Power Oscillator (LPO) electrical specifications  
Table 44. Low Power Oscillator (LPO) electrical specifications  
Symbol  
FLPO  
Parameter  
Internal low power oscillator frequency  
Current consumption  
Min.  
113  
1
Typ.  
128  
3
Max.  
139  
7
Unit  
kHz  
µA  
ILPO  
Tstartup  
Startup Time  
20  
µs  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
59  
NXP Semiconductors  
Electrical characteristics  
5.4.2.2.4 LPFLL electrical specifications  
Table 45. LPFLL electrical specifications  
Symbol  
Iavg  
Parameter  
Min.  
Typ.  
240  
3.6  
Max.  
Unit  
μA  
μs  
Power consumption  
Start-up time  
Tstart  
ΔFol  
Frequency accuracy over temperature and voltage  
in open loop after process trimmed  
–10  
–1 1  
10  
ΔFcl  
Frequency accuracy in closed loop  
1 1  
1. ΔFcl is dependent on reference clock accuracy. For example, if locked to crystal oscillator, ΔFcl is typically limited by  
trimming ability of the module itself; if locked to other clock source which has 3ꢀ accuracy, then ΔFcl can only be 3ꢀ.  
5.4.3 Memories and memory interfaces  
5.4.3.1 Flash memory module (FTFA) electrical specifications  
This section describes the electrical characteristics of the flash memory module  
(FTFA).  
5.4.3.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 46. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
5.4.3.1.2 Flash timing specifications — commands  
Table 47. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
45  
μs  
30  
μs  
1
tpgm4  
65  
145  
μs  
Table continues on the next page...  
60  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Electrical characteristics  
Table 47. Flash command timing specifications (continued)  
Symbol Description  
tersscr Erase Flash Sector execution time  
trd1all  
Min.  
Typ.  
14  
Max.  
114  
0.9  
25  
Unit  
ms  
ms  
μs  
Notes  
2
1
Read 1s All Blocks execution time  
Read Once execution time  
trdonce  
1
tpgmonce Program Once execution time  
65  
70  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
575  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
70  
575  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
5.4.3.1.3 Flash high voltage current behaviors  
Table 48. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
5.4.3.1.4 Reliability specifications  
Table 49. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
5.4.4 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
61  
NXP Semiconductors  
Electrical characteristics  
5.4.5 Analog  
5.4.5.1 ADC electrical specifications  
5.4.5.1.1 12-bit ADC operating conditions  
Table 50. 12-bit ADC operating conditions  
Symbol Description  
Conditions  
Absolute  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VDDA  
Supply voltage  
Supply voltage  
ΔVDDA  
Delta to VDD  
-100  
0
+100  
mV  
2
2
3
3
(VDD – VDDA  
)
ΔVSSA  
Ground voltage  
Delta to VSS (VSS  
-100  
2.5  
0
+100  
mV  
V
– VSSA  
)
VREFH  
ADC reference voltage high  
VDDA  
VDDA +  
100m  
VREFL  
VADIN  
RS  
ADC reference voltage low  
Input voltage  
− 100  
VREFL  
0
100  
VREFH  
5
mV  
V
0.5  
Source impedendance  
fADCK < 4 MHz  
kΩ  
kΩ  
RSW1  
Channel Selection Switch  
Impedance  
1.2  
RAD  
CP1  
CP2  
CS  
Sampling Switch Impedance  
Pin Capacitance  
2
2
3
5
5
kΩ  
pF  
Analog Bus Capacitance  
Sampling capacitance  
4
pF  
5
pF  
fADCK  
ADC conversion clock  
frequency  
40  
48  
MHz  
4, 5  
7
Crate  
ADC conversion rate  
No ADC  
20  
1200  
Ksps  
hardware  
averaging6  
Continuous  
conversions  
enabled,  
subsequent  
conversion time  
1. Typical values assume VDDA = 5 V, Temp = 25 °C, fADCK = 40 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. Clock and compare cycle need to be set according the guidelines in the block guide.  
5. ADC conversion will become less reliable above maximum frequency.  
6. When using ADC hardware averaging, refer to the device Reference Manual to determine the most appropriate setting  
for AVGS.  
7. Max ADC conversion rate of 1200 Ksps is with 10-bit mode  
62  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
Figure 13. ADC input impedance equivalency diagram  
5.4.5.1.2 12-bit ADC electrical characteristics  
NOTE  
All the parameters in the table are given assuming system  
clock as the clocking source for ADC.  
NOTE  
For ADC signals adjacent to VDD/VSS or the XTAL pins  
some degradation in the ADC performance may be  
observed.  
NOTE  
All values guarantee the performance of the ADC for the  
multiple ADC input channel pins. When using the ADC to  
monitor the internal analogue parameters, please assume  
minor degradation.  
Table 51. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max. 3  
Unit  
Notes  
IDDA_ADC Supply current at 2.7  
to 5.5 V  
470  
515 μA @  
5 V  
560  
μA  
4
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
63  
NXP Semiconductors  
Electrical characteristics  
Table 51. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max. 3  
Unit  
Notes  
Sample Time  
275  
Refer to  
the  
ns  
device's  
Reference  
Manual  
TUE  
DNL  
INL  
Total unadjusted error  
at 2.7 to 5.5 V  
4.5  
0.8  
1.4  
–2  
6.11  
1.07  
3.54  
-3.60  
-4.24  
0.5  
LSB5  
LSB5  
LSB5  
LSB5  
LSB5  
LSB5  
bits  
6
Differential non-  
linearity at 2.7 to 5.5 V  
6
Integral non-linearity at  
2.7 to 5.5 V  
6
6
EFS  
Full-scale error at 2.7  
to 5.5 V  
VADIN = VDDA  
EZS  
Zero-scale error at 2.7  
to 5.5 V  
–2.7  
EQ  
Quantization error at  
2.7 to 5.5 V  
ENOB  
Effective number of  
bits at 2.7 to 5.5 V  
11.3  
70  
7
Signal-to-noise plus  
See ENOB  
SINAD = 6.02 ×  
ENOB + 1.76  
SINAD distortion at 2.7 to 5.5  
V
dB  
EIL  
Input leakage error at  
2.7 to 5.5 V  
IIn × RAS  
mV  
IIn = leakage  
current (refer to  
the MCU's  
voltage and  
current operating  
ratings)  
VTEMP_S Temp sensor slope at Across the full  
1.492  
730  
1.564  
740.5  
1.636  
751  
mV/°C  
mV  
8, 9  
2.7 to 5.5 V  
temperature  
range of the  
device  
VTEMP25 Temp sensor voltage 25 °C  
at 2.7 to 5.5 V  
8, 9  
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 5.0 V, Temp = 25 °C, fADCK = 48 MHz unless otherwise stated.  
3. These values are based on characterization but not covered by test limits in production.  
4. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
5. 1 LSB = (VREFH - VREFL)/2N  
6. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = ꢀ1, AVGS = ꢀ11)  
7. Input data is 100 Hz sine wave. ADC conversion clock < 40 MHz.  
8. ADC conversion clock < 3 MHz  
9. The sensor must be calibrated to gain good accuracy, so as to provide good linearity, see also AN3031 for more detailed  
application information of the temperature sensor.  
64  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
5.4.5.2 CMP with 8-bit DAC electrical specifications  
Table 52. Comparator with 8-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
Typ. 1  
Max.  
Unit  
V
Supply voltage  
2.7  
5.5  
IDDHS  
Supply current, High-speed mode2  
within ambient temperature range  
Supply current, Low-speed mode2  
within ambient temperature range  
Analog input voltage  
μA  
145  
200  
IDDLS  
μA  
0
5
10  
VAIN  
VAIO  
0 - VDDX  
VDDX  
V
Analog input offset voltage, High-speed mode  
within ambient temperature range  
Analog input offset voltage, Low-speed mode  
within ambient temperature range  
Propagation delay, High-speed mode3  
within ambient temperature range  
Propagation delay, Low-speed mode3  
within ambient temperature range  
Propagation delay, High-speed mode4  
within ambient temperature range  
Propagation delay, Low-speed mode4  
within ambient temperature range  
Initialization delay, High-speed mode 3  
within ambient temperature range  
Initialization delay, Low-speed mode3  
within ambient temperature range  
mV  
-25  
-40  
1
4
25  
40  
200  
2
VAIO  
tDHSB  
tDLSB  
tDHSS  
tDLSS  
tIDHS  
mV  
ns  
30  
0.5  
70  
1
µs  
ns  
400  
5
µs  
μs  
1.5  
10  
0
3
tIDLS  
μs  
30  
VHYST0  
Analog comparator hysteresis, Hyst0 (VAIO  
within ambient temperature range  
)
mV  
mV  
VHYST1  
Analog comparator hysteresis, Hyst1, High-speed  
mode  
within ambient temperature range  
16  
11  
32  
22  
53  
30  
90  
53  
Analog comparator hysteresis, Hyst1, Low-speed  
mode  
within ambient temperature range  
VHYST2  
Analog comparator hysteresis, Hyst2, High-speed  
mode  
mV  
mV  
within ambient temperature range  
Analog comparator hysteresis, Hyst2, Low-speed  
mode  
within ambient temperature range  
VHYST3  
Analog comparator hysteresis, Hyst3, High-speed  
mode  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
65  
NXP Semiconductors  
Electrical characteristics  
Table 52. Comparator with 8-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ. 1  
Max.  
Unit  
within ambient temperature range  
48  
133  
Analog comparator hysteresis, Hyst3, Low-speed  
mode  
within ambient temperature range  
8-bit DAC current adder (enabled)  
8-bit DAC integral non-linearity  
8-bit DAC differential non-linearity  
33  
10  
80  
16  
IDAC8b  
INL  
μA  
LSB5  
–0.6  
–0.5  
0.5  
0.5  
DNL  
LSB  
1. Typical values assumed at VDDA = 5.0 V, Temp = 25 , unless otherwise stated.  
2. Difference at input > 200mV  
3. Applied (100 mV + Hyst) around switch point  
4. Applied (30 mV + 2 × Hyst) around switch point  
5. 1 LSB = Vreference/256  
Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
66  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
Figure 16. Typical hysteresis vs. Vin level (VDD = 5 V, PMODE = 0)  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
67  
NXP Semiconductors  
Electrical characteristics  
Figure 17. Typical hysteresis vs. Vin level (VDD = 5 V, PMODE = 1)  
5.4.6 Communication interfaces  
5.4.6.1 LPUART electrical specifications  
Refer to General AC specifications for LPUART specifications.  
5.4.6.2 LPSPI electrical specifications  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable.  
The following tables provide timing characteristics for classic LPSPI timing modes.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
Table 53. LPSPI master mode timing  
Num.  
Symbol Description  
fSPSCK Frequency of SPSCK  
tSPSCK  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
SPSCK period  
2048 x  
tperiph  
ns  
3
4
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
68  
NXP Semiconductors  
Electrical characteristics  
Table 53. LPSPI master mode timing (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Note  
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
ns  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is LPSPI peripheral functional clock. On this device, the max value of fSPSCK should not exceed 25 MHz.  
2. tperiph = 1/fperiph  
NOTE  
High drive pin should be used for fast bit rate.  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. LPSPI master mode timing (CPHA = 0)  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
69  
NXP Semiconductors  
Electrical characteristics  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. LPSPI master mode timing (CPHA = 1)  
Table 54. LPSPI slave mode timing  
Num.  
1
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
fSPSCK  
tSPSCK  
tLead  
Frequency of SPSCK  
SPSCK period  
0
fperiph/2  
2
2 x tperiph  
ns  
2
3
Enable lead time  
Enable lag time  
1
tperiph  
tperiph  
ns  
3
4
tLag  
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is LPSPI peripheral functional clock. On this device, the max value of fSPSCK should not exceed 25 MHz.  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
70  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Electrical characteristics  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
Figure 20. LPSPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
Figure 21. LPSPI slave mode timing (CPHA = 1)  
5.4.6.3 LPI2C  
Table 55. LPI2C specifications  
Symbol Description  
Min.  
Max.  
100  
Unit  
Notes  
fSCL  
SCL clock frequency  
Standard mode (Sm)  
Fast mode (Fm)  
0
0
0
0
0
kHz  
1, 2, 3  
400  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
71  
NXP Semiconductors  
Electrical characteristics  
1. Hs-mode is only supported in slave mode.  
2. The maximum SCL clock frequency in Fast mode with maximum bus loading (400pF) can only be achieved with  
appropriate pull-up devices on the bus when using the high or normal drive pins across the full voltage range . The  
maximum SCL clock frequency in Fast mode Plus can support maximum bus loading (400pF) with appropriate pull-up  
devices when using the high drive pins. The maximum SCL clock frequency in Ultra Fast mode can support maximum  
bus loading (400pF) when using the high drive pins. The maximum SCL clock frequency for slave in High speed mode  
can support maximum bus loading (400pF) with appropriate pull-up devices when using the high drive pins. For more  
information on the required pull-up devices, see I2C Bus Specification.  
3. See the section "General switching specifications".  
5.4.6.4 Modular/Scalable Controller Area Network (MSCAN)  
Table 56. MSCAN Timing Parameters  
Characteristic  
Baud Rate  
Symbol  
BRCAN  
Min  
5
Max  
1
Unit  
Mbit/s  
µs  
CAN Wakeup dominant pulse filtered  
CAN Wakeup dominant pulse pass  
TWAKEUP  
TWAKEUP  
1.5  
µs  
CAN_RX  
CAN receive  
data pin  
T
WAKEUP  
(Input)  
Figure 22. Bus Wake-up Detection  
5.4.7 Human-machine interfaces (HMI)  
5.4.7.1 Touch sensing input (TSI) electrical specifications  
Table 57. TSI electrical specifications  
Symbol  
Description  
Value  
Typ  
Unit  
Min  
Max  
IDD_EN  
Power  
consumption in  
operation mode  
500  
600  
µA  
nA  
IDD_DIS  
Power  
20  
355  
consumption in  
disable mode  
VBG  
VPRE  
CI  
Internal bandgap  
reference voltage  
1.21  
1.51  
90  
V
V
Internal bias  
voltage  
Internal integration  
capacitance  
pF  
Table continues on the next page...  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
72  
NXP Semiconductors  
Electrical characteristics  
Table 57. TSI electrical specifications (continued)  
Symbol  
Description  
Value  
Typ  
16  
Unit  
Min  
Max  
FCLK  
Internal main clock  
frequency  
MHz  
5.4.8 Debug modules  
5.4.8.1 SWD electricals  
Table 58. SWD full voltage range electricals  
Symbol  
VDDA  
S1  
Description  
Min.  
Max.  
5.5  
25  
Unit  
V
Operating voltage  
2.7  
0
SWD_CLK frequency of operation  
SWD_CLK cycle period  
MHz  
ns  
S2  
1/S1  
15  
S3  
SWD_CLK clock pulse width  
ns  
S4  
SWD_CLK rise and fall times  
3
ns  
S9  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
8
ns  
S10  
S11  
S12  
1.4  
ns  
25  
ns  
5
ns  
S2  
S4  
S3  
S3  
SWD_CLK (input)  
S4  
Figure 23. Serial wire clock input timing  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
73  
NXP Semiconductors  
Design considerations  
SWD_CLK  
S9  
S10  
Input data valid  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
S11  
Output data valid  
S12  
S11  
Output data valid  
Figure 24. Serial wire data timing  
6 Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground. Consider to add ferrite bead or  
inductor to some sensitive lines.  
• Physically isolate analog circuits from digital circuits if possible.  
74  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Design considerations  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground  
plane directly under LQFP packages; and solder the exposed pad (EP) to ground  
directly under QFN packages.  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as  
sequential segments.  
• Always route the power net as star topology, and make each power trace loop as  
minimum as possible.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 25. RC circuit for ADC input  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
75  
NXP Semiconductors  
Design considerations  
High voltage measurement circuits require voltage division, current limiting, and over-  
voltage protection as shown the following figure. The voltage divider formed by R1 –  
R4 must yield a voltage less than or equal to VREFH. The current must be limited to  
less than the injection current limit. External clamp diodes can be added here to protect  
against transient over-voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 26. High voltage measurement with an ADC input  
NOTE  
For more details of ADC related usage, refer to AN5250:  
How to Increase the Analog-to-Digital Converter Accuracy in  
an Application.  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• RESET_b pin  
The RESET_b pin is a pseudo open-drain I/O pin that has an internal pullup  
resistor. An external RC circuit is recommended to filter noise as shown in the  
following figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the  
recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable  
digital filter to reject spurious noise.  
76  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Design considerations  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 27. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength.  
The supervisor chip must have an active high, open-drain output.  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 28. Reset signal connection to external reset chip  
• NMI pin  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low  
level on this pin will trigger non-maskable interrupt. When this pin is enabled as  
the NMI function, an external pull-up resistor (10 kΩ) as shown in the following  
figure is recommended for robustness.  
If the NMI_b pin is used as an I/O pin, the non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
77  
NXP Semiconductors  
Design considerations  
VDD  
MCU  
10k  
NMI_b  
Figure 29. NMI pin biasing  
• Debug interface  
This MCU uses the standard ARM SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required (SWD_DIO  
has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ  
pull resistors are recommended for system robustness. The RESET_b pin  
recommendations mentioned above must also be considered.  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 30. SWD debug interface  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the digital  
input path to the MCU.  
78  
NXP Semiconductors  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
Design considerations  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators.  
An external feedback is required when using high gain (HGO=1) mode.  
The series resistor, RS, is required in high gain (HGO=1) mode when the crystal or  
resonator frequency is below 2 MHz. Otherwise, the low power oscillator (HGO=0)  
must not have any series resistance; and the high frequency, high gain oscillator with a  
frequency above 2 MHz does not require any series resistance.  
Table 59. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768 kHz), high gain  
High frequency (1-32 MHz), low power  
High frequency (1-32 MHz), high gain  
Oscillator mode  
Diagram 3  
Diagram 2  
Diagram 3  
OSCILLATOR  
EXTAL  
OSCILLATOR  
XTAL  
EXTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 31. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 32. Crystal connection – Diagram 3  
NOTE  
For PCB layout, the user could consider to add the guard  
ring to the crystal oscillator circuit.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
79  
NXP Semiconductors  
Part identification  
6.2 Software considerations  
All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and  
software enablement solutions, which can reduce development costs and time to market.  
Featured software and tools are listed below. Visit http://www.nxp.com/kinetis/sw for  
more information and supporting collateral.  
Evaluation and Prototyping Hardware  
• Freedom Development Platform: http://www.nxp.com/freedom  
IDEs for Kinetis MCUs  
• MCUXpresso IDE: https://www.nxp.com/support/developer-resources/software-  
development-tools/mcuxpresso-software-and-tools/mcuxpresso-integrated-  
development-environment-ide:MCUXpresso-IDE  
• Partner IDEs: http://www.nxp.com/kide  
Run-time Software  
• MCUXpresso Software Development Kit (SDK): https://www.nxp.com/support/  
developer-resources/software-development-tools/mcuxpresso-software-and-tools/  
mcuxpresso-software-development-kit-sdk:MCUXpresso-SDK  
For all other partner-developed software and tools, visit http://www.nxp.com/partners.  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KE## A FFF R T PP CC N  
80  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
NXP Semiconductors  
Revision history  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 60. Part number fields description  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KE##  
A
Kinetis family  
Key attribute  
• KE16, KE15, KE14  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LD = 44 LQFP (10 mm x 10 mm)  
• LF = 48 LQFP (7 mm x 7 mm)  
• FP = 40 QFN (5 mm x 5 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MKE16Z64VLF4  
8 Revision history  
The following table provides a revision history for this document.  
Table 61. Revision history  
Rev. No.  
Date  
Substantial Changes  
2
3
01/2019  
06/2020  
Initial public release.  
40-QFN new package is added. Related sections (Ordering information, Pinout, Package,  
Power consumption, Thermal characteristics, etc.) are updated.  
Kinetis KE1xZ with up to 64 KB Flash, Rev. 3, 06/2020  
81  
NXP Semiconductors  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, CWare, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play, SafeAssure,  
the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet,  
Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower, TurboLink, UMEMS, eIQ,  
Immersiv3D, EdgeLock, and EdgeScale are trademarks of NXP B.V. All other product or service  
names are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11,  
Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali,  
Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK,  
ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered  
trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The related technology  
may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power Architecture and  
Power.org word marks and the Power and Power.org logos and related marks are trademarks and  
service marks licensed by Power.org.  
© 2018–2020 NXP B.V.  
Document Number KE1xZP48M48SF0  
Revision 3, 06/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY