MKL02Z16VFG4 [NXP]

Kinetis KL02 32 KB Flash;
MKL02Z16VFG4
型号: MKL02Z16VFG4
厂家: NXP    NXP
描述:

Kinetis KL02 32 KB Flash

文件: 总48页 (文件大小:997K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
Document Number: KL02P32M48SF0  
Rev. 5 08/2017  
Kinetis KL02 32 KB Flash  
MKL02ZxxVFG4  
MKL02ZxxVFK4  
MKL02ZxxVFM4  
48 MHz Cortex-M0+ Based Microcontroller  
Designed with efficiency in mind. Features a size efficient, ultra-  
small package, energy efficient ARM Cortex-M0+ 32-bit  
performance. Shares the comprehensive enablement and  
scalability of the Kinetis family.  
16-pin QFN (FG)  
24-pin QFN (FK)  
3 x 3 x 0.65 Pitch 0.5  
4 x 4 x 1 Pitch 0.5 mm  
mm  
This product offers:  
• Run power consumption down to 36 μA/MHz in very low  
power run mode  
• Static power consumption down to 2 μA with full state  
retention and 4 μs wakeup  
• Ultra-efficient Cortex-M0+ processor running up to 48 MHz  
with industry leading throughput  
• Memory option is up to 32 KB flash and 4 KB RAM  
• Energy-saving architecture is optimized for low power with  
90nm TFS technology, clock and power gating techniques,  
and zero wait state flash memory controller  
32-pin QFN (FM)  
5 x 5 x 1 Pitch 0.5 mm  
Performance  
• 48 MHz ARM® Cortex®-M0+ core  
Human-machine interface  
• Up to 28 general-purpose input/output (GPIO)  
Memories and memory interfaces  
• Up to 32 KB program flash memory  
• Up to 4 KB SRAM  
Communication interfaces  
• One 8-bit SPI module  
• One low power UART module  
• Two I2C module  
System peripherals  
• Nine low-power modes to provide power optimization  
based on application requirements  
• COP Software watchdog  
• SWD debug interface and Micro Trace Buffer  
• Bit Manipulation Engine  
Analog Modules  
• 12-bit SAR ADC  
• Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
Timers  
Clocks  
• Two 2-channel Timer/PWM modules  
• 16-bit low-power timer (LPTMR)  
• 32 kHz to 40 kHz crystal oscillator  
• Multi-purpose clock source  
• 1 kHz LPO clock  
Security and integrity modules  
• 80-bit unique identification number per chip  
Operating Characteristics  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range (ambient): -40 to 105°C  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Ordering Information 1  
Part Number  
Memory  
Maximum number of I\O's  
Flash (KB)  
SRAM (KB)  
MKL02Z8VFG4  
MKL02Z16VFG4  
MKL02Z32VFG4  
MKL02Z16VFK4  
MKL02Z32VFK4  
MKL02Z16VFM4  
MKL02Z32VFM4  
8
1
2
4
2
4
2
4
14  
14  
14  
22  
22  
28  
28  
16  
32  
16  
32  
16  
32  
1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.  
Related Resources  
Type  
Description  
Resource  
Solution Advisor  
Selector Guide The NXP Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Product Brief  
The Product Brief contains concise overview/summary information to KL0XPB1  
enable quick evaluation of a device for design suitability.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KL02P32M48SF0RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
KL02P32M48SF01  
Chip Errata  
The chip mask set Errata provides additional or corrective  
information for a particular device mask set.  
KINETIS_L_xN33H2  
Package  
drawing  
Package dimensions are provided in package drawings.  
QFN 16-pin: 98ASA00525D1  
QFN 24-pin: 98ASA00474D1  
QFN 32-pin: 98ASA00473D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2. To find the associated resource, go to http://www.nxp.com and perform a search using this term with the “x” replaced by  
the revision of the device you are using.  
Figure 1 shows the functional modules in the chip.  
2
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Kinetis KL02 Family  
System  
Clocks  
Memories and  
Memory Interfaces  
ARM Cortex-M0+  
Core  
Internal  
watchdog  
Frequency-  
locked loop  
Debug  
interfaces  
Program  
flash  
Low  
BME  
frequency  
oscillator  
Interrupt  
RAM  
controller  
Internal  
reference  
clocks  
MTB  
Security  
and Integrity  
Analog  
Communication Human-Machine  
Timers  
Interfaces  
Interface (HMI)  
Internal  
watchdog  
Timers  
2x2ch  
12-bit ADC  
x1  
GPIOs  
with  
I2C  
x2  
interrupt  
Analog  
comparator  
x1  
Low Power  
Timer  
Low power  
UART  
x1  
6-bit DAC  
SPI  
x1  
Figure 1. Functional block diagram  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
3
NXP Semiconductors  
Table of Contents  
1
2
Ratings..................................................................................5  
3.6 Analog............................................................................24  
3.6.1 ADC electrical specifications............................. 24  
3.6.2 CMP and 6-bit DAC electrical specifications..... 27  
3.7 Timers............................................................................29  
3.8 Communication interfaces............................................. 29  
3.8.1 SPI switching specifications.............................. 29  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing.... 33  
3.8.3 UART.................................................................35  
Dimensions........................................................................... 35  
4.1 Obtaining package dimensions......................................35  
Pinout....................................................................................36  
5.1 KL02 signal multiplexing and pin assignments..............36  
5.2 KL02 pinouts..................................................................37  
Ordering parts....................................................................... 40  
6.1 Determining valid orderable parts..................................40  
Part identification...................................................................40  
7.1 Description.....................................................................40  
7.2 Format........................................................................... 41  
7.3 Fields............................................................................. 41  
7.4 Example.........................................................................41  
Small package marking.........................................................42  
Terminology and guidelines.................................................. 42  
9.1 Definition: Operating requirement..................................42  
9.2 Definition: Operating behavior....................................... 43  
9.3 Definition: Attribute........................................................ 43  
9.4 Definition: Rating........................................................... 43  
9.5 Result of exceeding a rating.......................................... 44  
9.6 Relationship between ratings and operating  
1.1 Thermal handling ratings............................................... 5  
1.2 Moisture handling ratings...............................................5  
1.3 ESD handling ratings.....................................................5  
1.4 Voltage and current operating ratings............................5  
General................................................................................. 6  
2.1 AC electrical characteristics...........................................6  
2.2 Nonswitching electrical specifications............................6  
2.2.1 Voltage and current operating requirements..... 7  
2.2.2 LVD and POR operating requirements..............7  
2.2.3 Voltage and current operating behaviors...........8  
2.2.4 Power mode transition operating behaviors...... 9  
2.2.5 Power consumption operating behaviors.......... 10  
2.2.6 EMC radiated emissions operating behaviors... 15  
2.2.7 EMC Radiated Emissions Web Search  
4
5
6
7
Procedure boilerplate........................................ 16  
2.2.8 Capacitance attributes.......................................16  
2.3 Switching specifications.................................................16  
2.3.1 Device clock specifications................................16  
2.3.2 General switching specifications....................... 17  
2.4 Thermal specifications...................................................17  
2.4.1 Thermal operating requirements....................... 17  
2.4.2 Thermal attributes..............................................17  
Peripheral operating requirements and behaviors................ 18  
3.1 Core modules................................................................ 18  
3.1.1 SWD electricals ................................................ 18  
3.2 System modules............................................................ 20  
3.3 Clock modules............................................................... 20  
3.3.1 MCG specifications............................................20  
3.3.2 Oscillator electrical specifications......................21  
3.4 Memories and memory interfaces................................. 22  
3.4.1 Flash electrical specifications............................ 22  
3.5 Security and integrity modules.......................................24  
8
9
3
requirements..................................................................44  
9.7 Guidelines for ratings and operating requirements........45  
9.8 Definition: Typical value.................................................45  
9.9 Typical value conditions.................................................46  
10 Revision history.....................................................................47  
4
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 3. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
5
NXP Semiconductors  
General  
1.4 Voltage and current operating ratings  
Table 4. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume the output  
pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
2.2 Nonswitching electrical specifications  
6
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
General  
2.2.1 Voltage and current operating requirements  
Table 5. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
–3  
V
1
IO pin negative DC injection current—single pin  
• VIN < VSS–0.3V  
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
–25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
2.2.2 LVD and POR operating requirements  
Table 6. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
1
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
7
NXP Semiconductors  
General  
Table 6. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
• Level 1 falling (LVWV = 00)  
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
2.62  
2.70  
2.78  
V
2.72  
2.82  
2.92  
2.80  
2.90  
3.00  
2.88  
2.98  
3.08  
V
V
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
2.2.3 Voltage and current operating behaviors  
Table 7. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
0.5  
0.5  
V
V
Table continues on the next page...  
8
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
General  
Table 7. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
1
0.5  
0.5  
100  
1
V
V
IOLT  
IIN  
Output low current total for all ports  
mA  
μA  
3
Input leakage current (per pin) for full temperature  
range  
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
41  
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
4
RPU  
20  
50  
1. PTA12, PTA13, PTB0 and PTB1 I/O have both high drive and normal drive capability selected by the associated  
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 8. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
tPOR  
After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
95  
115  
μs  
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
9
NXP Semiconductors  
General  
Table 8. Power mode transition operating behaviors (continued)  
Symbol Description  
• VLLS1 RUN  
Min.  
Typ.  
Max.  
Unit  
93  
115  
μs  
• VLLS3 RUN  
• VLPS RUN  
• STOP RUN  
42  
4
53  
4.4  
4.4  
μs  
μs  
μs  
4
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
Table 9. Power consumption operating behaviors  
Symbol  
IDDA  
Description  
Temp.  
Typ.  
Max  
See note  
4
Unit  
mA  
mA  
Note  
Analog supply current  
1
2
IDD_RUNCO  
Run mode current in compute operation -  
48 MHz core / 24 MHz flash / bus clock  
disabled, code of while(1) loop executing  
from flash, at 3.0 V  
3.6  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz  
bus and flash, all peripheral clocks  
disabled, code executing from flash, at 3.0  
V
4.3  
4.6  
mA  
2
2, 3  
2
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz  
bus and flash, all peripheral clocks  
enabled, code executing from flash, at 3.0  
V
at 25 °C  
4.8  
5
5
mA  
mA  
at 125 °C  
5.2  
IDD_WAIT  
IDD_WAIT  
IDD_PSTOP2  
Wait mode current - core disabled / 48 MHz  
system / 24 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks  
disabled, at 3.0 V  
2.3  
1.8  
1.3  
2.6  
2.1  
1.5  
mA  
mA  
mA  
Wait mode current - core disabled / 24 MHz  
system / 24 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks  
disabled, at 3.0 V  
2
Stop mode current with partial stop 2  
clocking option - core and system  
disabled / 10.5 MHz bus, at 3.0 V  
2
Table continues on the next page...  
10  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
Description  
Temp.  
Typ.  
Max  
Unit  
Note  
IDD_VLPRCO  
Very low power run mode current in  
compute operation - 4 MHz core / 0.8 MHz  
flash / bus clock disabled, code executing  
from flash, at 3.0 V  
145  
198  
µA  
4
IDD_VLPR  
IDD_VLPR  
IDD_VLPW  
IDD_STOP  
Very low power run mode current - 4 MHz  
core / 0.8 MHz bus and flash, all peripheral  
clocks disabled, code executing from flash,  
at 3.0 V  
165  
185  
86  
217  
237  
141  
µA  
µA  
µA  
4
3, 4  
4
Very low power run mode current - 4 MHz  
core / 0.8 MHz bus and flash, all peripheral  
clocks enabled, code executing from flash,  
at 3.0 V  
Very low power wait mode current - core  
disabled / 4 MHz system / 0.8 MHz bus /  
flash disabled (flash doze enabled), all  
peripheral clocks disabled, at 3.0 V  
Stop mode current at 3.0 V  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
230  
238  
268  
301  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
259  
307  
290  
352  
341  
437  
IDD_VLPS  
IDD_VLLS3  
IDD_VLLS1  
IDD_VLLS0  
Very-low-power stop mode current at 3.0 V  
2.3  
4.28  
8.29  
17.63  
33.55  
64.75  
1.33  
2.12  
3.57  
6.45  
13.59  
0.69  
1.04  
2.02  
4.05  
9.42  
0.4  
4.75  
10.1  
20.23  
40.54  
1.12  
1.59  
2.81  
5.26  
10.82  
0.58  
0.9  
Very low-leakage stop mode 3 current at  
3.0 V  
Very low-leakage stop mode 1 current at  
3.0 V  
1.68  
3.51  
7.89  
0.3  
Very low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
0.62  
1.38  
3.16  
7.44  
0.75  
1.71  
3.71  
8.98  
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
11  
NXP Semiconductors  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
IDD_VLLS0  
Description  
Temp.  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
Typ.  
0.12  
0.44  
1.21  
3.01  
7.34  
Max  
0.23  
0.58  
1.55  
3.57  
8.89  
Unit  
µA  
µA  
µA  
µA  
µA  
Note  
Very low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
5
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEI mode.  
3. Incremental current consumption from peripheral activity is not included.  
4. MCG configured for BLPI mode.  
5. No brownout.  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC) adder.  
Measured by entering STOP mode with the  
32 kHz IRC enabled.  
52  
52  
52  
52  
52  
52  
µA  
nA  
IEREFSTEN32KHz  
External 32 kHz crystal clock  
adder by means of the  
OSC0_CR[EREFSTEN and  
EREFSTEN] bits. Measured  
by entering all modes with the  
crystal enabled.  
VLLS1  
VLLS3  
VLPS  
440  
440  
510  
510  
490  
490  
560  
560  
540  
540  
560  
560  
560  
560  
560  
560  
570  
570  
610  
610  
580  
580  
680  
680  
STOP  
ICMP  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP enabled  
using the 6-bit DAC and a single external  
input for compare. Includes 6-bit DAC power  
consumption.  
22  
22  
22  
22  
22  
22  
µA  
µA  
IUART  
UART peripheral adder  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source waiting for RX data at  
115200 baud rate. Includes  
selected clock source power  
consumption.  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
66  
66  
66  
66  
66  
66  
ITPM  
TPM peripheral adder  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
86  
86  
86  
86  
86  
86  
µA  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source configured for output  
compare generating 100 Hz  
Table continues on the next page...  
12  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
clock signal. No load is  
placed on the I/O generating  
the clock signal. Includes  
selected clock source and I/O  
switching currents.  
OSCERCLK  
(4 MHz  
external  
crystal)  
235  
256  
265  
274  
280  
287  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, or VLLSx mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
366  
366  
366  
366  
366  
366  
measured values at VDD and VDDA by placing  
the device in STOP or VLPS mode. ADC is  
configured for low power mode using the  
internal clock and continuous conversions.  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE for run mode, and BLPE for VLPR mode  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
13  
NXP Semiconductors  
General  
Run Mode Current VS Core Frequency  
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE  
7.00E-03  
6.00E-03  
5.00E-03  
4.00E-03  
3.00E-03  
2.00E-03  
1.00E-03  
000.00E+00  
All Peripheral CLK Gates  
All Off  
All On  
CLK Ratio  
'1-1  
1
'1-1  
2
'1-1  
3
'1-1  
4
'1-1  
6
'1-1  
12  
'1-1  
24  
'1-2  
48  
Flash-Core  
Core Freq (MHz)  
Figure 3. Run mode supply current vs. core frequency  
14  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
General  
VLPR Mode Current VS Core Frequency  
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = BLPE  
350.00E-06  
300.00E-06  
250.00E-06  
200.00E-06  
150.00E-06  
100.00E-06  
50.00E-06  
All Peripheral CLK Gates  
All Off  
All On  
000.00E+00  
CLK Ratio  
'1-1  
'1-2  
'1-2  
'1-4  
Flash-Core  
1
2
4
Core Freq (MHz)  
Figure 4. VLPR mode current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 11. EMC radiated emissions operating behaviors for 32-pin QFN package  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
7
6
4
4
N
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,  
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -  
Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM  
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic  
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next  
whole number, from among the measured orientations in each frequency range.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
15  
NXP Semiconductors  
General  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 32.768 kHz (crystal), fSYS = 48 MHz, fBUS = 24 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
2.2.7 EMC Radiated Emissions Web Search Procedure boilerplate  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for "EMC design"  
2.2.8 Capacitance attributes  
Table 12. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
MHz  
MHz  
MHz  
MHz  
kHz  
1
1
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
24  
External reference clock  
32.768  
16  
fLPTMR_ERCLK LPTMR external reference clock  
fTPM TPM asynchronous clock  
MHz  
MHz  
8
Table continues on the next page...  
16  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
General  
Table 13. Device clock specifications (continued)  
Symbol  
Description  
UART0 asynchronous clock  
Min.  
Max.  
Unit  
fUART0  
8
MHz  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 14. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
— Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + θJA × chip power dissipation.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
17  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
2.4.2 Thermal attributes  
Table 16. Thermal attributes  
Board type  
Symbol  
Description  
16 QFN 24 QFN 32 QFN  
Unit  
Notes  
Single-layer (1S)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
141  
114  
101  
°C/W  
1
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
55  
42  
35  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Single-layer (1S)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
120  
49  
96  
84  
Four-layer (2s2p)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
36  
30  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
board  
27  
19  
15  
2
3
4
Thermal resistance, junction to  
case  
20  
3.4  
15  
3.4  
11  
Thermal characterization  
parameter, junction to package  
top outside center (natural  
convection)  
23  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 SWD electricals  
Table 17. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
Table continues on the next page...  
18  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Peripheral operating requirements and behaviors  
Table 17. SWD full voltage range electricals (continued)  
Symbol  
Description  
• Serial wire debug  
Min.  
Max.  
25  
Unit  
0
MHz  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
ns  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 5. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 6. Serial wire data timing  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
19  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG specifications  
Table 18. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
48  
MHz  
MHz  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
frequency  
2
Table continues on the next page...  
20  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Peripheral operating requirements and behaviors  
Table 18. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
732 × ffll_ref  
Mid range (DRS = 01)  
1464 × ffll_ref  
47.97  
MHz  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
180  
1
ps  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
3.3.2 Oscillator electrical specifications  
3.3.2.1 Oscillator DC electrical specifications  
Table 19. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
• 32 kHz  
1
500  
nA  
μA  
IDDOSC Supply current — high gain mode (HGO=1)  
• 32 kHz  
1
25  
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
21  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 19. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Series resistor — low-frequency, high-gain  
200  
kΩ  
mode (HGO=1)  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using either the integrated capacitors or by using external components.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.2.2 Oscillator frequency specifications  
Table 20. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low  
frequency mode (MCG_C2[RANGE]=00)  
tdc_extal Input clock duty cycle (external clock mode)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
40  
50  
60  
%
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
ms  
1, 2  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
ms  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
22  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 21. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
1
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 22. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
1
1
45  
μs  
trdrsrc  
tpgm4  
tersscr  
trd1all  
trdonce  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
30  
μs  
1
65  
14  
145  
114  
0.5  
25  
μs  
2
ms  
ms  
μs  
1
tpgmonce Program Once execution time  
65  
61  
μs  
2
tersall  
Erase All Blocks execution time  
500  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.4.1.3 Flash high voltage current behaviors  
Table 23. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
23  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.4.1.4 Reliability specifications  
Table 24. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
All ADC channels meet the 12-bit single-ended accuracy specifications.  
3.6.1.1 12-bit ADC operating conditions  
Table 25. 12-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
ADC reference  
voltage high  
VDDA  
3
VREFL  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
3
VADIN  
CADIN  
Input voltage  
VREFL  
4
VREFH  
5
V
Input  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
pF  
RADIN  
Input series  
resistance  
2
5
kΩ  
Table continues on the next page...  
24  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Peripheral operating requirements and behaviors  
Table 25. 12-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
12-bit modes  
fADCK < 4 MHz  
Min.  
Typ.1  
Max.  
Unit  
kΩ  
Notes  
RAS  
Analog source  
resistance  
4
5
(external)  
fADCK  
Crate  
ADC conversion ≤ 12-bit mode  
clock frequency  
1.0  
18.0  
MHz  
5
6
ADC conversion ≤ 12-bit modes  
rate  
No ADC hardware averaging  
20.000  
818.330  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied  
to VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 7. ADC input impedance equivalency diagram  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
25  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.6.1.2 12-bit ADC electrical characteristics  
Table 26. 12-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
clock source  
• ADLPC = 1, ADHSC =  
0
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
• ADLPC = 1, ADHSC =  
1
3.0  
fADACK  
4.4  
• ADLPC = 0, ADHSC =  
0
• ADLPC = 0, ADHSC =  
1
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
1.0  
0.5  
–1.1 to  
+1.9  
–0.3 to 0.5  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
EFS  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 12-bit modes  
–4  
–1.4  
–5.4  
–1.8  
0.5  
LSB4  
VADIN  
VDDA  
=
5
EQ  
EIL  
Quantization  
error  
LSB4  
mV  
Input leakage  
error  
IIn × RAS  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
6
VTEMP25 Temp sensor  
voltage  
25 °C  
6
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
26  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. ADC conversion clock < 3 MHz  
Typical ADC 12-bit Single Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
11.9  
11.8  
11.7  
11.6  
11.5  
11.4  
11.3  
11.2  
11.1  
11  
10.9  
10.8  
10.7  
10.6  
10.5  
10.4  
10.3  
Hardware Averaging Disabled  
Averaging of 8 samples  
10.2  
10.1  
10  
Averaging of 32 samples  
0
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
ADC Clock Frequency (MHz)  
Figure 8. Typical ENOB vs. ADC_CLK for 12-bit single-ended mode  
3.6.2 CMP and 6-bit DAC electrical specifications  
Table 27. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
Supply current, High-speed mode (EN=1,  
PMODE=1)  
200  
μA  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
VSS – 0.3  
20  
VDD  
20  
μA  
V
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
Output high  
Output low  
VDD – 0.5  
V
V
0.5  
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
27  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 27. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
tDHS  
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
50  
200  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
28  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
3.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
29  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 28. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
20  
0
ns  
ns  
ns  
ns  
ns  
12  
8
tv  
0
9
tHO  
tRI  
10  
tperiph – 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
Table 29. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph – 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
30  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 11. SPI master mode timing (CPHA = 0)  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 12. SPI master mode timing (CPHA = 1)  
Table 30. SPI slave mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
1
2
3
fop  
Frequency of operation  
0
4 x tperiph  
1
tSPSCK  
tLead  
SPSCK period  
ns  
2
Enable lead time  
tperiph  
Table continues on the next page...  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
31  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
Table 30. SPI slave mode timing on slew rate disabled pads (continued)  
Num.  
4
Symbol Description  
tLag Enable lag time  
tWSPSCK Clock (SPSCK) high or low time  
Min.  
Max.  
Unit  
tperiph  
ns  
Note  
3
1
5
tperiph – 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
3
7
ns  
7
ns  
8
23  
23  
0
tperiph  
tperiph  
25.7  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph – 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Table 31. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Note  
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
Hz  
ns  
1
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph – 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph – 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0, fperiph is the bus clock (fBUS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
32  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 13. SPI slave mode timing (CPHA = 0)  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 14. SPI slave mode timing (CPHA = 1)  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
33  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 32. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
1001  
Fast Mode  
Unit  
Minimum  
Maximum  
4002  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
03  
2506  
3.454  
05  
1004, 7  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.93  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
8
7
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The PTB3 and PTB4 pins can support only the Standard mode.  
2. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can be achieved only when using the  
normal drive pins and VDD ≥ 2.7 V.  
3. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
4. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
5. Input signal Slew = 10 ns and Output Load = 50 pF  
6. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
7. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
8. Cb = total capacitance of the one bus line in pF.  
Table 33. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
0.5  
0.26  
0.26  
0
µs  
µs  
µs  
µs  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
tSU; STA  
tHD; DAT  
Table continues on the next page...  
34  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Dimensions  
Table 33. I 2C 1Mbit/s timing (continued)  
Characteristic  
Data set-up time  
Symbol  
Minimum  
50  
Maximum  
Unit  
ns  
tSU; DAT  
120  
120  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
Bus free time between STOP and START condition  
tr  
tf  
20 +0.1Cb  
ns  
2
20 +0.1Cb  
ns  
tSU; STO  
tBUF  
tSP  
0.26  
0.5  
0
µs  
µs  
Pulse width of spikes that must be suppressed by  
the input filter  
50  
ns  
1. The maximum SCL clock frequency of 1 Mbit/s can support 200 pF bus loading when using the normal drive pins and  
VDD ≥ 2.7 V.  
2. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 15. Timing definition for devices on the I2C bus  
3.8.3 UART  
See General switching specifications.  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
35  
NXP Semiconductors  
Pinout  
If you want the drawing for this package  
Then use this document number  
98ASA00525D  
16-pin QFN  
24-pin QFN  
32-pin QFN  
98ASA00474D  
98ASA00473D  
5 Pinout  
5.1 KL02 signal multiplexing and pin assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT functionality is available on each pin.  
NOTE  
PTB3 and PTB4 are true open drain pins. To use these pins as  
outputs, you must use an external pullup resistor to make  
them output correct values when using I2C, GPIO, and  
UART0.  
32  
24  
16  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
QFN  
QFN  
QFN  
1
1
PTB6/  
DISABLED  
PTB6/  
TPM1_CH1  
TPM_CLKIN1  
IRQ_2/  
IRQ_2/  
LPTMR0_ALT3  
LPTMR0_ALT3  
2
2
PTB7/  
IRQ_3  
DISABLED  
PTB7/  
IRQ_3  
TPM1_CH0  
3
4
3
3
1
1
VDD  
VDD  
VDD  
VREFH  
VREFL  
VSS  
VREFH  
VREFH  
VREFL  
VSS  
5
4
2
VREFL  
6
4
2
VSS  
7
5
3
PTA3  
PTA4  
PTA5  
PTA6  
PTB8  
PTB9  
PTB10  
PTB11  
EXTAL0  
EXTAL0  
XTAL0  
PTA3  
PTA4  
PTA5  
PTA6  
PTB8  
PTB9  
PTB10  
PTB11  
I2C0_SCL  
I2C0_SDA  
TPM0_CH1  
TPM0_CH0  
I2C1_SDA  
I2C1_SCL  
SPI0_SS_b  
SPI0_MISO  
8
6
4
XTAL0  
9
7
5
DISABLED  
DISABLED  
ADC0_SE11  
ADC0_SE10  
ADC0_SE9  
ADC0_SE8  
ADC0_SE7  
10  
11  
12  
13  
14  
15  
8
6
9
7
ADC0_SE11  
ADC0_SE10  
ADC0_SE9  
ADC0_SE8  
ADC0_SE7  
TPM0_CH1  
TPM0_CH0  
SPI0_MISO  
10  
11  
PTA7/  
IRQ_4  
PTA7/  
IRQ_4  
SPI0_MOSI  
36  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Pinout  
32  
24  
16  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
QFN  
QFN  
QFN  
16  
17  
18  
12  
13  
14  
8
9
PTB0/  
IRQ_5  
ADC0_SE6  
ADC0_SE6  
PTB0/  
IRQ_5  
EXTRG_IN  
SPI0_SCK  
PTB1/  
IRQ_6  
ADC0_SE5/  
CMP0_IN3  
ADC0_SE5/  
CMP0_IN3  
PTB1/  
IRQ_6  
UART0_TX  
UART0_RX  
UART0_RX  
UART0_TX  
10  
PTB2/  
IRQ_7  
ADC0_SE4  
ADC0_SE4  
PTB2/  
IRQ_7  
19  
20  
21  
15  
16  
PTA8  
PTA9  
ADC0_SE3  
ADC0_SE2  
DISABLED  
ADC0_SE3  
ADC0_SE2  
PTA8  
PTA9  
I2C1_SCL  
I2C1_SDA  
PTA10/  
IRQ_8  
PTA10/  
IRQ_8  
22  
23  
24  
25  
26  
17  
18  
19  
20  
11  
12  
13  
PTA11/  
IRQ_9  
DISABLED  
DISABLED  
DISABLED  
NMI_b  
PTA11/  
IRQ_9  
PTB3/  
IRQ_10  
PTB3/  
IRQ_10  
I2C0_SCL  
I2C0_SDA  
TPM1_CH1  
TPM1_CH0  
UART0_TX  
UART0_RX  
NMI_b  
PTB4/  
IRQ_11  
PTB4/  
IRQ_11  
PTB5/  
IRQ_12  
ADC0_SE1/  
CMP0_IN1  
PTB5/  
IRQ_12  
PTA12/  
IRQ_13/  
ADC0_SE0/  
CMP0_IN0  
ADC0_SE0/  
CMP0_IN0  
PTA12/  
IRQ_13/  
TPM_CLKIN0  
LPTMR0_ALT2  
LPTMR0_ALT2  
27  
28  
29  
30  
21  
22  
14  
PTA13  
PTB12  
PTB13  
DISABLED  
DISABLED  
ADC0_SE13  
SWD_CLK  
PTA13  
PTB12  
ADC0_SE13  
PTB13  
TPM1_CH1  
TPM1_CH0  
PTA0/  
IRQ_0  
ADC0_SE12/  
CMP0_IN2  
PTA0/  
IRQ_0  
SWD_CLK  
RESET_b  
31  
32  
23  
24  
15  
16  
PTA1/  
IRQ_1/  
LPTMR0_ALT1  
RESET_b  
SWD_DIO  
PTA1/  
IRQ_1/  
LPTMR0_ALT1  
TPM_CLKIN0  
CMP0_OUT  
PTA2  
PTA2  
SWD_DIO  
5.2 KL02 pinouts  
The following figures show the pinout diagrams for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see KL02 signal multiplexing and pin assignments.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
37  
NXP Semiconductors  
Pinout  
PTB4/IRQ_11  
PTB3/IRQ_10  
PTA11/IRQ_9  
PTA10/IRQ_8  
PTA9  
PTB6/IRQ_2/LPTMR0_ALT3  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTB7/IRQ_3  
VDD  
VREFH  
VREFL  
VSS  
PTA8  
PTA3  
PTB2/IRQ_7  
PTB1/IRQ_6  
18  
17  
PTA4  
Figure 16. KL02 32-pin QFN pinout diagram  
38  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Pinout  
PTB4/IRQ_11  
PTB3/IRQ_10  
PTA9  
PTB6/IRQ_2/LPTMR0_ALT3  
18  
17  
16  
15  
14  
13  
1
2
3
4
5
6
PTB7/IRQ_3  
VDD VREFH  
VREFL VSS  
PTA3  
PTA8  
PTB2/IRQ_7  
PTB1/IRQ_6  
PTA4  
Figure 17. KL02 24-pin QFN pinout diagram  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
39  
NXP Semiconductors  
Ordering parts  
VDD VREFH  
VREFL VSS  
PTA3  
1
2
3
4
12  
11  
10  
9
PTB4/IRQ_11  
PTB3/IRQ_10  
PTB2/IRQ_7  
PTB1/IRQ_6  
PTA4  
Figure 18. KL02 16-pin QFN pinout diagram  
6 Ordering parts  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the Web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: PKL02 and MKL02  
7 Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
40  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Part identification  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 34. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL02  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 8 = 8 KB  
• 16 = 16 KB  
• 32 = 32 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FG = 16 QFN (3 mm x 3 mm)  
• FK = 24 QFN (4 mm x 4 mm)  
• FM = 32 QFN (5 mm x 5 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
• (Blank) = Trays  
7.4 Example  
This is an example part number:  
MKL02Z8VFG4  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
41  
NXP Semiconductors  
Small package marking  
8 Small package marking  
In order to save space, small package devices use special marking on the chip.  
Q FS FF (TP)  
Table 35. Small package marking  
Field  
Description  
Values  
Q
Qualification status  
• M = M  
• P = P  
FS  
FF  
Kinetis family and CPU frequency  
Program flash memory size  
• (0)2T = KL02, 48 MHz of CPU  
• 3 = 8 KB  
• 4 = 16 KB  
• 5 = 32 KB  
TP  
Temperature range (°C) and package  
• V = –40 to 105, 24 or 32 QFN  
• blank = –40 to 105, 16 QFN  
For example:  
M2T4 = MKL02Z16VFG4  
M02T4V = MKL02Z16VFK4  
9 Terminology and guidelines  
9.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation and  
possibly decreasing the useful life of the chip.  
9.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
42  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Terminology and guidelines  
9.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
9.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
9.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that  
are guaranteed, regardless of whether you meet the operating requirements.  
9.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
9.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if  
exceeded, may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
43  
NXP Semiconductors  
Terminology and guidelines  
9.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
9.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
44  
NXP Semiconductors  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
Terminology and guidelines  
9.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
9.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
9.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
45  
NXP Semiconductors  
Terminology and guidelines  
9.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
9.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
9.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
46  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
NXP Semiconductors  
Revision history  
Table 36. Typical value conditions  
Symbol  
TA  
Description  
Value  
25  
Unit  
°C  
Ambient temperature  
3.3 V supply voltage  
VDD  
3.3  
V
10 Revision history  
The following table provides a revision history for this document.  
Table 37. Revision history  
Rev. No.  
Date  
Substantial Changes  
2
05/2013  
07/2013  
Public release.  
2.1  
Removed the specification on OSCERCLK (4 MHz external crystal)  
because KL02 does not support it.  
3
3/2014  
• Updated the front page and restructured the chapters  
• Added a note to the ILAT in the ESD handling ratings  
• Updated table title in the Voltage and current operating ratings  
• Updated Voltage and current operating requirements  
• Updated footnote to the VOH in the Voltage and current operating  
behaviors  
• Updated Power mode transition operating behaviors  
• Updated Capacitance attributes  
• Updated the Device clock specifications  
• Added Inter-Integrated Circuit Interface (I2C) timing  
4
5
08/2014  
08/2017  
• Updated related source and added block diagram in the front  
page  
• Updated Power consumption operating behaviors  
• Updated tSU and tv in Table 28, tSU, tdis, tv in Table 30  
• Updated the note in KL02 signal multiplexing and pin  
assignments  
• Added a note in the Thermal operating requirements  
• Added I2C 1 Mbit/s timing table and a footnote to the fSCL of the  
I2C timing table in the Inter-Integrated Circuit Interface (I2C)  
timing.  
Kinetis KL02 32 KB Flash, Rev. 5 08/2017  
47  
NXP Semiconductors  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customerʼs technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions. .  
NXP, the NXP logo, Freescale, Freescale logo, Energy Efficient Solutions logo,  
and Kinetis are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. &  
Tm. Off. All other product or service names are the property of their respective  
owners. ARM and Cortex are registered trademarks of ARM Limited (or its  
subsidiaries) in the EU and/or elsewhere. All rights reserved.  
© 2012-2017 NXP B.V.  
Document Number KL02P32M48SF0  
Revision 5 08/2017  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY