MKL13Z64VLH4 [NXP]

Kinetis KL13 Microcontroller;
MKL13Z64VLH4
型号: MKL13Z64VLH4
厂家: NXP    NXP
描述:

Kinetis KL13 Microcontroller

微控制器
文件: 总71页 (文件大小:1539K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Data Sheet: Technical Data  
KL13P80M48SF3  
Rev. 2, 03/2015  
Kinetis KL13 Microcontroller  
MKL13Z32Vxx4  
MKL13Z64Vxx4  
48 MHz ARM® Cortex®-M0+ and 64 KB Flash  
The KL13 series is optimized for cost-sensitive and battery-  
powered applications requiring low-power general purpose  
connectivity. The product offers:  
64 LQFP  
80 LQFP  
10x10 mm P 0.5 mm 12x12 mm P 0.5 mm  
• Embedded ROM with boot loader for flexible program  
upgrade  
• High accuracy internal voltage and clock reference  
• FlexIO to support any standard and customized serial  
peripheral emulation  
• Hardware CRC module  
• Down to 60uA/MHz in very low power run mode and  
1.83uA in deep sleep mode (RAM + RTC retained)  
48 QFN  
7x7 mm P 0.5 mm  
32 QFN  
5x5 mm P 0.5 mm  
Core Processor  
Peripherals  
• ARM® Cortex®-M0+ core up to 48 MHz  
• One UART module supporting ISO7816, operating  
up to 1.5 Mbit/s  
Memories  
• Two low-power UART modules supporting  
asynchronous operation in low-power modes  
• Two I2C modules and I2C0 supporting up to 1  
Mbit/s  
• Two 16-bit SPI modules supporting up to 24 Mbit/s  
• One FlexIO module supporting emulation of  
additional UART, IrDA, SPI, I2C, PWM and other  
serial modules, etc.  
• One 16-bit 818 ksps ADC module with high  
accuracy internal voltage reference (Vref) and up to  
20 channels  
• High-speed analog comparator containing a 6-bit  
DAC for programmable reference input  
• One 12-bit DAC  
• 32/64 KB program flash memory  
• 4/8 KB SRAM  
• 8 KB ROM with build-in bootloader  
• 32-byte backup register  
System  
• 4-channel asynchronous DMA controller  
• Watchdog  
• Low-leakage wakeup unit  
• Two-pin Serial Wire Debug (SWD) programming and  
debug interface  
• Micro Trace Buffer  
• Bit manipulation engine  
• Interrupt controller  
• 1.2 V internal voltage reference  
Clocks  
Timers  
• 48 MHz high accuracy (up to 0.5%) internal reference  
clock  
• One 6-channel Timer/PWM module  
• Two 2-channel Timer/PWM modules  
• One low-power timer  
• Periodic interrupt timer  
• Real time clock  
• 8MHz/2MHz high accuracy (up to 3%) internal  
reference clock  
• 1KHz reference clock active under all low-power  
modes (except VLLS0)  
• 32–40KHz and 3–32MHz crystal oscillator  
Freescale reserves the right to change the detail specifications as may be required to  
permit improvements in the design of its products. © 2014–2015 Freescale  
Semiconductor, Inc. All rights reserved.  
Operating Characteristics  
Security and Integrity  
• 80-bit unique identification number per chip  
• Advanced flash security  
• Hardware CRC module  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
I/O  
Packages  
• Up to 70 general-purpose input/output pins (GPIO)  
and 4 high-drive pad  
• 80 LQFP 12mm x 12mm, 0.5mm pitch, 1.6mm  
thickness  
• 64 LQFP 10mm x 10mm, 0.5mm pitch, 1.6mm  
thickness  
• 64 MAPBGA 5mm x 5mm, 0.5mm pitch, 1.23mm  
thickness (Package Your Way)  
• 48 QFN 7mm x 7mm, 0.5mm pitch, 0.65mm thickness  
(Package Your Way)  
Low Power  
• Down to 60uA/MHz in very low power run mode  
• Down to 1.83uA in VLLS3 mode (RAM + RTC  
retained)  
• Six flexible static modes  
• 32 QFN 5mm x 5mm, 0.5mm pitch, 0.65mm thickness  
(Package Your Way)  
Ordering Information  
Product  
Marking (Line1/  
Memory  
Package  
IO and ADC channel  
Part number  
Flash  
SRAM  
(KB)  
Pin  
Package  
GPIOs  
GPIOs  
ADC  
Line2)  
(KB)  
count  
(INT/HD)1 channels  
(SE/DP)  
MKL13Z32VFM4  
MKL13Z64VFM4  
MKL13Z32VFT4  
MKL13Z64VFT4  
MKL13Z32VLH4  
MKL13Z64VLH4  
MKL13Z32VMP4  
MKL13Z64VMP4  
MKL13Z32VLK4  
MKL13Z64VLK4  
TBD  
TBD  
32  
64  
32  
64  
32  
64  
32  
64  
32  
64  
4
8
4
8
4
8
4
8
4
8
32  
32  
48  
48  
64  
64  
64  
64  
80  
80  
QFN  
QFN  
28  
28  
40  
40  
54  
54  
54  
54  
70  
70  
28/4  
28/4  
40/4  
40/4  
54/4  
54/4  
54/4  
54/4  
70/4  
70/4  
11/2  
11/2  
18/3  
18/3  
20/4  
20/4  
20/4  
20/4  
20/4  
20/4  
TBD  
QFN  
TBD  
QFN  
MKL13Z32/VLH4  
MKL13Z64/VLH4  
TBD  
LQFP  
LQFP  
MAPBGA  
MAPBGA  
LQFP  
LQFP  
TBD  
MKL13Z32VLK4  
MKL13Z64VLK4  
1. INT: interrupt pin numbers; HD: high drive pin numbers  
NOTE  
The 32 QFN, 48 QFN, and 64 MAPBGA packages supporting MKLx3ZxxVFT4,  
MKLx3ZxxVFM4, and MKLx3ZxxVMP4 part numbers for this product are not yet  
available. However, these packages are included in Package Your Way program for  
Kinetis MCUs. Visit freescale.com/KPYW for more details.  
Related Resources  
Description  
Type  
Selector  
Guide  
Resource  
The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Solution Advisor  
Product Brief The Product Brief contains concise overview/summary information to  
enable quick evaluation of a device for design suitability.  
KL1xPB1  
Table continues on the next page...  
2
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Related Resources (continued)  
Description  
Type  
Resource  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
KL13P80M48SF3RM1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for KINETIS_L_0N01P1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• 64-LQFP: 98ASS23234W1  
• 64 MAPBGA:  
98ASA00420D1  
• 48 QFN: 98ASA00616D1  
• 80 LQFP: 98ASS23174W1  
• 32 QFN: 98ASA00615D1  
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
3
Freescale Semiconductor, Inc.  
Table of Contents  
1
2
Ratings..................................................................................5  
5
Communication interfaces.....................................................40  
1.1 Thermal handling ratings.............................................5  
1.2 Moisture handling ratings............................................ 5  
1.3 ESD handling ratings...................................................5  
1.4 Voltage and current operating ratings......................... 5  
General................................................................................. 6  
2.1 AC electrical characteristics........................................ 6  
2.2 Nonswitching electrical specifications......................... 6  
2.2.1 Voltage and current operating requirements... 7  
2.2.2 LVD and POR operating requirements............7  
2.2.3 Voltage and current operating behaviors.........8  
2.2.4 Power mode transition operating behaviors.... 9  
2.2.5 Power consumption operating behaviors........ 10  
2.2.6 EMC performance........................................... 20  
2.2.7 Capacitance attributes.....................................21  
2.3 Switching specifications...............................................21  
2.3.1 Device clock specifications..............................21  
2.3.2 General switching specifications..................... 21  
2.4 Thermal specifications.................................................22  
2.4.1 Thermal operating requirements..................... 22  
2.4.2 Thermal attributes............................................22  
Peripheral operating requirements and behaviors................ 23  
3.1 Core modules.............................................................. 23  
3.1.1 SWD electricals .............................................. 23  
3.2 System modules..........................................................25  
3.3 Clock modules.............................................................25  
3.3.1 MCG-Lite specifications...................................25  
3.3.2 Oscillator electrical specifications....................25  
3.4 Memories and memory interfaces............................... 28  
3.4.1 Flash electrical specifications..........................28  
3.5 Security and integrity modules.................................... 29  
3.6 Analog......................................................................... 29  
3.6.1 ADC electrical specifications........................... 29  
3.6.2 Voltage reference electrical specifications...... 34  
3.6.3 CMP and 6-bit DAC electrical specifications... 35  
3.6.4 12-bit DAC electrical characteristics................37  
Timers................................................................................... 40  
5.1 SPI switching specifications........................................ 40  
5.2 I2C...............................................................................45  
5.2.1 Inter-Integrated Circuit Interface (I2C) timing.. 45  
5.3 UART...........................................................................47  
Design considerations...........................................................47  
6.1 Hardware design considerations................................. 47  
6.1.1 Printed circuit board recommendations...........47  
6.1.2 Power delivery system.....................................47  
6.1.3 Analog design..................................................48  
6.1.4 Digital design...................................................49  
6.1.5 Crystal oscillator.............................................. 52  
6.2 Software considerations.............................................. 53  
Dimensions........................................................................... 54  
7.1 Obtaining package dimensions................................... 54  
Pinouts and Packaging......................................................... 55  
8.1 KL13 Signal Multiplexing and Pin Assignments.......... 55  
8.2 KL13 Family Pinouts....................................................58  
Ordering parts....................................................................... 63  
9.1 Determining valid orderable parts................................63  
6
7
8
9
10 Part identification...................................................................63  
10.1 Description...................................................................63  
10.2 Format......................................................................... 64  
10.3 Fields...........................................................................64  
10.4 Example.......................................................................64  
11 Terminology and guidelines.................................................. 65  
11.1 Definition: Operating requirement................................65  
11.2 Definition: Operating behavior.....................................65  
11.3 Definition: Attribute...................................................... 65  
11.4 Definition: Rating......................................................... 66  
11.5 Result of exceeding a rating........................................66  
11.6 Relationship between ratings and operating  
3
requirements................................................................67  
11.7 Guidelines for ratings and operating requirements......67  
11.8 Definition: Typical value...............................................68  
11.9 Typical value conditions.............................................. 69  
12 Revision History.................................................................... 69  
4
4
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 3. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
5
Freescale Semiconductor, Inc.  
General  
1.4 Voltage and current operating ratings  
Table 4. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
2.2 Nonswitching electrical specifications  
6
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
2.2.1 Voltage and current operating requirements  
Table 5. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VSRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain SRAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
2.2.2 LVD and POR operating requirements  
Table 6. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
1
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
7
Freescale Semiconductor, Inc.  
General  
Table 6. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
• Level 1 falling (LVWV = 00)  
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
2.62  
2.70  
2.78  
V
2.72  
2.82  
2.92  
2.80  
2.90  
3.00  
2.88  
2.98  
3.08  
V
V
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
2.2.3 Voltage and current operating behaviors  
Table 7. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1.5 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — high drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –18 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –6 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 1.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — high drive pad  
Table continues on the next page...  
8
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 7. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 18 mA  
Min.  
Max.  
Unit  
0.5  
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 6 mA  
0.5  
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
80  
μA  
μA  
2
2
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, and PTD7 I/O have both high drive and normal drive capability selected by the associated  
PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• HIRC clock mode  
Table 8. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS3 RUN  
• LLS RUN  
152  
152  
93  
166  
166  
104  
8
μs  
μs  
μs  
μs  
7.5  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
9
Freescale Semiconductor, Inc.  
General  
Table 8. Power mode transition operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• VLPS RUN  
7.5  
8
8
μs  
• STOP RUN  
7.5  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11)  
2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
NOTE  
The while (1) test is executed with flash cache enabled.  
Table 9. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUNCO Running CoreMark in flash in compute operation  
mode—48M HIRC mode, 48 MHz core / 24 MHz  
flash, VDD = 3.0 V  
4.74  
4.9  
4.93  
5.10  
mA  
mA  
mA  
• at 25 °C  
• at 105 °C  
IDD_RUNCO Running While(1) loop in flash in compute  
operation mode—48M HIRC mode, 48 MHz  
core / 24 MHz flash, VDD = 3.0 V  
• at 25 °C  
3.27  
3.42  
3.43  
3.59  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
5.63  
5.79  
5.86  
6.02  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in flash all peripheral clock disable,  
24 MHz core/12 MHz flash, VDD = 3.0 V  
2,  
3.47  
3.63  
3.61  
3.78  
• at 25 °C  
mA  
• at 105 °C  
Table continues on the next page...  
10  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock disable  
12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
2.37  
2.53  
2.56  
2.73  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
CoreMark in Flash all peripheral clock enable 48  
MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
2
6.91  
7.07  
7.19  
7.35  
mA  
mA  
mA  
mA  
mA  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in flash all peripheral clock  
disable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
4.14  
4.3  
4.31  
4.47  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, running  
While(1) loop in Flash all peripheral clock  
disable, 24 MHz core/12 MHz flash, VDD = 3.0 V  
• at 25 °C  
2.7  
2.92  
3.09  
2.86  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
disable, 12 MHz core/6 MHz flash, VDD = 3.0 V  
• at 25 °C  
1.99  
2.14  
2.15  
2.31  
• at 105 °C  
IDD_RUN Run mode current—48M HIRC mode, Running  
While(1) loop in Flash all peripheral clock  
enable, 48 MHz core/24 MHz flash, VDD = 3.0 V  
• at 25 °C  
5.39  
5.56  
5.61  
5.78  
• at 105 °C  
IDD_VLPRCO Very Low Power Run Core Mark in Flash in  
Compute Operation mode: Core@4MHz, Flash  
@1MHz, VDD = 3.0 V  
739  
339  
152  
827.68  
406.8  
197.6  
μA  
μA  
μA  
• at 25 °C  
IDD_VLPRCO Very-low-power-run While(1) loop in SRAM in  
compute operation mode— 8 MHz LIRC mode,  
4 MHz core / 1 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPRCO Very-low-power run While(1) loop in SRAM in  
compute operation mode:—2 MHz LIRC mode,  
2 MHz core / 0.5 MHz flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
11  
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
clock disable, 2 MHz core / 0.5 MHz flash, VDD  
= 3.0 V  
• at 25 °C  
Min.  
Typ.  
Max.  
Unit  
Notes  
119  
178.5  
μA  
IDD_VLPR Very-low-power run mode current— 2 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
41  
277  
343  
375  
441  
45  
89.39  
360.1  
425.32  
450  
μA  
μA  
μA  
μA  
μA  
μA  
mA  
mA  
μA  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock disable, 4 MHz core / 1 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in flash all peripheral  
clock enable, 4 MHz core / 1 MHz flash, VDD  
=
3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM in all  
peripheral clock disable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
• at 25 °C  
IDD_VLPR Very-low-power run mode current— 8 MHz  
LIRC mode, While(1) loop in SRAM all  
peripheral clock enable, 4 MHz core / 1 MHz  
flash, VDD = 3.0 V  
529.2  
103.5  
2.50  
• at 25 °C  
IDD_VLPR Very-low-power run mode current—2 MHz LIRC  
mode, While(1) loop in SRAM all peripheral  
clock disable, 125 kHz core / 31.25 kHz flash,  
VDD = 3.0 V  
• at 25 °C  
IDD_WAIT Wait mode current—core disabled, 48 MHz  
system/24 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
• at 25 °C  
2.14  
1.41  
193  
IDD_WAIT Wait mode current—core disabled, 24 MHz  
system/12 MHz bus, flash disabled (flash doze  
enabled), all peripheral clocks disabled,  
MCG_Lite under HIRC mode, VDD = 3.0 V  
• at 25 °C  
1.62  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 4 MHz system/ 1 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
• at 25 °C  
239.023  
Table continues on the next page...  
12  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
124.8  
78  
Unit  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 2 MHz system/ 0.5 MHz bus and flash,  
all peripheral clocks disabled, VDD = 3.0 V  
• at 25 °C  
78  
μA  
IDD_VLPW Very-low-power wait mode current, core  
disabled, 125 kHz system/ 31.25 kHz bus and  
flash, all peripheral clocks disabled, VDD = 3.0 V  
• at 25 °C  
39  
μA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
12 MHz bus and flash, VDD = 3.0 V  
• at 25 °C  
1.72  
1.1  
2.06  
1.32  
mA  
mA  
IDD_PSTOP2 Partial Stop 2, core and system clock disabled,  
flash doze enabled, 12 MHz bus, VDD = 3.0 V  
• at 25 °C  
IDD_STOP Stop mode current at 3.0 V  
• at 25 °C and below  
161  
178.2  
181.17  
229.72  
302.01  
• at 50 °C  
• at 85 °C  
• at 105 °C  
171.9  
206.8  
255.9  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
• at 25 °C and below  
2.20  
4.57  
3.80  
8.03  
• at 50 °C  
• at 85 °C  
• at 105 °C  
18.02  
39.60  
31.98  
65.80  
IDD_VLPS Very-low-power stop mode current at 1.8 V  
• at 25 °C and below  
2.13  
4.42  
3.80  
7.94  
• at 50 °C  
• at 85 °C  
• at 105 °C  
17.53  
38.55  
31.58  
65.18  
μA  
μA  
IDD_LLS Low-leakage stop mode current, all peripheral  
disable, at 3.0 V  
• at 25 °C and below  
1.63  
2.42  
4.22  
7.16  
15.34  
2.25  
3.55  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
7.08  
10.22  
22.69  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 3.0 V  
μA  
2.3  
2.99  
• at 25 °C and below  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
13  
Freescale Semiconductor, Inc.  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
3.12  
4.50  
4.96  
7.93  
7.71  
10.75  
22.99  
16.02  
IDD_LLS Low-leakage stop mode current with RTC  
current, at 1.8 V  
3
μA  
2.03  
2.81  
4.53  
7.31  
14.93  
2.55  
3.95  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
7.30  
10.25  
22.72  
IDD_VLLS3 Very-low-leakage stop mode 3 current, all  
peripheral disable, at 3.0 V  
μA  
μA  
μA  
1.16  
1.72  
3.04  
5.21  
11.33  
1.65  
2.65  
5.70  
7.79  
17.63  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 3.0 V  
3
1.83  
2.43  
3.78  
5.98  
12.02  
2.35  
3.39  
5.95  
8.14  
17.89  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current with RTC  
current, at 1.8 V  
3
1.58  
2.13  
3.37  
5.4  
1.98  
3.17  
5.80  
7.83  
16.86  
• at 25 °C and below  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
10.99  
IDD_VLLS1 Very-low-leakage stop mode 1 current all  
peripheral disabled at 3.0 V  
0.62  
0.99  
1.88  
3.41  
1.06  
1.43  
2.65  
4.53  
• at 25 °C and below  
• at 50°C  
• at 70°C  
μA  
Table continues on the next page...  
14  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
Notes  
3
Table 9. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
• at 85°C  
7.89  
9.99  
• at 105 °C  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 3.0 V  
1.31  
1.7  
1.52  
2.04  
3.20  
4.69  
10.46  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
2.6  
μA  
4.14  
8.51  
IDD_VLLS1 Very-low-leakage stop mode 1 current RTC  
enabled at 1.8 V  
3
1.06  
1.39  
2.18  
3.54  
7.43  
1.35  
1.73  
2.83  
4.60  
9.97  
• at 25 °C and below  
• at 50°C  
• at 70°C  
• at 85°C  
• at 105 °C  
μA  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 0) at 3.0 V  
278  
578  
385  
• at 25 °C and below  
1013  
2015  
3617  
9900  
nA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1530  
3070  
7550  
IDD_VLLS0 Very-low-leakage stop mode 0 current all  
peripheral disabled (SMC_STOPCTRL[PORPO]  
= 1) at 3 V  
95  
218  
653  
• at 25 °C and below  
412  
nA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
1350  
2900  
7380  
1683  
3428  
9785  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. MCG_Lite configured for HIRC mode. CoreMark benchmark compiled using IAR 7.20 with optimization level high,  
optimized for balanced.  
3. RTC uses external 32 kHz crystal as clock source, and the current includes ERCLK32K power consumption.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
15  
Freescale Semiconductor, Inc.  
General  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIRC8MHz  
8 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 8 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
85  
87  
88  
88  
89  
90  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IIRC2MHz  
2 MHz internal reference clock (IRC)  
adder. Measured by entering STOP  
mode with the 2 MHz IRC enabled,  
MCG_SC[FCRDIV]=000b,  
28  
28  
28  
28  
28  
28  
µA  
µA  
MCG_MC[LIRC_DIV2]=000b.  
IEREFSTEN4MHz  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS  
mode with the crystal enabled.  
206  
224  
230  
238  
245  
253  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of setting the  
OSC0_CR[EREFSTEN and  
EREFSTEN] bits to 1 and  
SIM_SOPT1[OSC32KSEL] to 01.  
Measured by entering all modes with  
the crystal enabled.  
• VLLS1  
440  
440  
490  
510  
510  
490  
490  
490  
560  
560  
540  
540  
540  
560  
560  
560  
560  
560  
560  
560  
570  
570  
570  
610  
610  
580  
580  
680  
680  
680  
• VLLS3  
• LLS  
• VLPS  
• STOP  
nA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
200  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare.  
16  
16  
16  
16  
16  
16  
Includes 6-bit DAC power consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
582  
627  
638  
662  
682  
760  
nA  
IUART  
UART peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source waiting  
for RX data at 115200 baud rate.  
Table continues on the next page...  
16  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
Includes selected clock source power  
consumption.  
105  
34  
110  
34  
110  
34  
111  
34  
112  
34  
114  
34  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare  
generating 100 Hz clock signal. No load  
is placed on the I/O generating the clock  
signal. Includes selected clock source  
and I/O switching currents.  
130  
40  
130  
40  
130  
40  
130  
40  
130  
40  
130  
40  
µA  
• IRC8M (8 MHz internal reference  
clock)  
• IRC2M (2 MHz internal reference  
clock)  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx or VLLSx  
mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low power  
mode using the internal clock and  
continuous conversions.  
320  
320  
320  
320  
320  
320  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG-Lite in HIRC for run mode, and LIRC for VLPR mode  
• No GPIOs toggled  
• Code execution from flash  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
17  
Freescale Semiconductor, Inc.  
General  
Figure 2. Run mode supply current vs. core frequency  
18  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
General  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
19  
Freescale Semiconductor, Inc.  
General  
Figure 3. VLPR mode current vs. core frequency  
2.2.6 EMC performance  
Electromagnetic compatibility (EMC) performance is highly dependent on the  
environment in which the MCU resides. Board design and layout, circuit topology  
choices, location and characteristics of external components, and MCU software  
operation play a significant role in the EMC performance. The system designer can  
consult the following Freescale applications notes, available on freescale.com for  
advice and guidance specifically targeted at optimizing EMC performance.  
• AN2321: Designing for Board Level Electromagnetic Compatibility  
• AN1050: Designing for Electromagnetic Compatibility (EMC) with HCMOS  
Microcontrollers  
• AN1263: Designing for Electromagnetic Compatibility with Single-Chip  
Microcontrollers  
• AN2764: Improving the Transient Immunity Performance of Microcontroller-  
Based Applications  
20  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
General  
• AN1259: System Design and Layout Techniques for Noise Reduction in MCU-  
Based Systems  
• KL-QRUG (Kinetis L-series Quick Reference).  
2.2.7 Capacitance attributes  
Table 11. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 12. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
fLPTMR_ERCLK LPTMR external reference clock  
fosc_hi_2  
Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fLPUART0/1 LPUART0/1 asynchronous clock  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
21  
Freescale Semiconductor, Inc.  
General  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 13. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 14. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + θJA × chip power dissipation.  
2.4.2 Thermal attributes  
NOTE  
The 48 QFN, 32 QFN, and 64 MAPBGA packages for this  
product are not yet available. However, these packages are  
included in Package Your Way program for Kinetis MCUs.  
Visit freescale.com/KPYW for more details.  
22  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 15. Thermal attributes  
Board type  
Symbol  
Description  
64 LQFP 80 LQFP  
Unit  
Notes  
Single-layer (1S)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
71  
53  
60  
46  
35  
21  
5
58  
43  
47  
37  
26  
15  
3
°C/W  
1, 2  
Four-layer (2s2p)  
RθJA  
RθJMA  
RθJMA  
RθJB  
Thermal resistance, junction to  
ambient (natural convection)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 3  
1, 3,  
4
Single-layer (1S)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Four-layer (2s2p)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
board  
RθJC  
ΨJT  
Thermal resistance, junction to  
case  
5
Thermal characterization  
6
parameter, junction to package top  
outside center (natural convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Per JEDEC JESD51-2 with natural convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
3. Per JEDEC JESD51-6 with forced convection for horizontally oriented board. Board meets JESD51-9 specification for  
1s or 2s2p board, respectively.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is  
measured on the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883  
Method 1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction  
temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is  
written as Psi-JT.  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 SWD electricals  
Table 16. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
23  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 16. SWD full voltage range electricals (continued)  
Symbol  
Description  
• Serial wire debug  
Min.  
Max.  
Unit  
0
25  
MHz  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
ns  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 4. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 5. Serial wire data timing  
24  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Peripheral operating requirements and behaviors  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG-Lite specifications  
Table 17. IRC48M specifications  
Symbol  
IDD48M  
firc48m  
Description  
Min.  
Typ.  
400  
48  
Max.  
500  
Unit  
μA  
Notes  
Supply current  
Internal reference frequency  
MHz  
Δfirc48m_ol_lv Open loop total deviation of IRC48M frequency at  
low voltage (VDD=1.71V-1.89V) over temperature  
0.5  
1.5  
%firc48m  
Δfirc48m_ol_hv Open loop total deviation of IRC48M frequency at  
high voltage (VDD=1.89V-3.6V) over temperature  
0.5  
35  
2
1.0  
150  
3
%firc48m  
ps  
Jcyc_irc48m Period Jitter (RMS)  
tirc48mst  
Startup time  
μs  
Table 18. IRC8M/2M specification  
Symbol  
IDD_2M  
Description  
Min.  
Typ.  
14  
30  
2
Max.  
17  
Unit  
µA  
Notes  
Supply current in 2 MHz mode  
Supply current in 8 MHz mode  
Output frequency  
IDD_8M  
35  
µA  
fIRC_2M  
fIRC_8M  
fIRC_T_2M  
fIRC_T_8M  
Tsu_2M  
MHz  
MHz  
Output frequency  
8
Output frequency range (trimmed)  
Output frequency range (trimmed)  
Startup time  
3
%fIRC  
%fIRC  
µs  
3
12.5  
12.5  
Tsu_8M  
Startup time  
µs  
3.3.2 Oscillator electrical specifications  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
25  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.3.2.1 Oscillator DC electrical specifications  
Table 19. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Table continues on the next page...  
26  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Peripheral operating requirements and behaviors  
Table 19. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Peak-to-peak amplitude of oscillation (oscillator  
VDD  
V
mode) — low-frequency, high-gain mode  
(HGO=1)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
0.6  
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.2.2 Oscillator frequency specifications  
Table 20. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency —  
high-frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency —  
high frequency mode (high range)  
(MCG_C2[RANGE]=1x)  
32  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
1, 2  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
27  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 21. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 22. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
1
1
tpgmchk  
trdrsrc  
tpgm4  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
45  
μs  
30  
μs  
1
65  
14  
145  
114  
0.9  
25  
μs  
2
tersscr  
trd1all  
ms  
ms  
μs  
1
trdonce  
1
tpgmonce Program Once execution time  
65  
70  
μs  
2
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
575  
30  
ms  
μs  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
1
70  
575  
ms  
2
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
28  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.4.1.3 Flash high voltage current behaviors  
Table 23. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
2.5  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 24. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
Using differential inputs can achieve better system accuracy than using single-end  
inputs.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
29  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.1.1 16-bit ADC operating conditions  
Table 25. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VADIN  
Supply voltage  
Supply voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
-100  
0
+100  
+100  
mV  
mV  
V
Ground voltage Delta to VSS (VSS – VSSA  
)
-100  
0
2
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
31/32 *  
VREFH  
VREFL  
VREFH  
CADIN  
Input  
8
4
10  
5
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
3
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
4
4
5
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
5
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
30  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 6. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK =  
1/fADACK  
2.4  
clock source  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total  
unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
2.5  
1.4  
6.8  
2.1  
LSB4  
LSB4  
5
5
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-  
linearity  
• 12-bit modes  
0.9  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
31  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
0.4  
• <12-bit modes  
–0.7 to  
+0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB Effective  
number of bits  
16-bit differential mode  
• Avg = 32  
6
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
• Avg = 4  
Signal-to-noise See ENOB  
plus distortion  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic 16-bit differential mode  
7
7
distortion  
–94  
–85  
dB  
dB  
• Avg = 32  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
90  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Temp sensor  
slope  
Across the full temperature range  
of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
32  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
33  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.2 Voltage reference electrical specifications  
Table 27. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Supply voltage  
Temperature  
Min.  
Max.  
Unit  
V
Notes  
3.6  
Operating temperature  
range of the device  
°C  
CL  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature range  
of the device.  
Table 28 is tested under the condition of setting VREF_TRM[CHOPEN],  
VREF_SC[REGEN] and VREF_SC[ICOMPEN] bits to 1.  
Table 28. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.1915  
1.195  
1.1977  
V
1
nominal VDDA and temperature=25C  
Voltage reference output — factory trim  
Voltage reference output — user trim  
Voltage reference trim step  
Vout  
Vout  
1.1584  
1.193  
0.5  
2
1.2376  
1.197  
V
V
1
1
1
1
Vstep  
Vtdrift  
mV  
mV  
Temperature drift (Vmax -Vmin across the full  
temperature range: 0 to 70°C)  
15  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
1
1
Low-power buffer current  
High-power buffer current  
Ihp  
1
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax -Vmin across the full voltage  
range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
34  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 29. VREF limited-range operating requirements  
Symbol  
Description  
Temperature  
Min.  
Max.  
50  
Unit  
Notes  
TA  
0
°C  
Table 30. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim  
1.173  
1.225  
V
3.6.3 CMP and 6-bit DAC electrical specifications  
Table 31. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
35  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
36  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.4 12-bit DAC electrical characteristics  
3.6.4.1 12-bit DAC operating requirements  
Table 32. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
37  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
3.6.4.2 12-bit DAC operating behaviors  
Table 33. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
38  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 11. Typical INL error vs. digital code  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
39  
Freescale Semiconductor, Inc.  
Timers  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 12. Offset at half scale vs. temperature  
4 Timers  
See General switching specifications.  
5 Communication interfaces  
40  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Communication interfaces  
5.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 34. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 35. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
96  
0
ns  
ns  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
41  
Freescale Semiconductor, Inc.  
Communication interfaces  
Table 35. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
83  
Unit  
ns  
Note  
8
9
tv  
Data valid (after SPSCK edge)  
tHO  
tRI  
Data hold time (outputs)  
Rise time input  
0
ns  
10  
tperiph - 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
Fall time output  
36  
ns  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 13. SPI master mode timing (CPHA = 0)  
42  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Communication interfaces  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA = 1)  
Table 36. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
43  
Freescale Semiconductor, Inc.  
Communication interfaces  
Table 37. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
130  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 15. SPI slave mode timing (CPHA = 0)  
44  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Communication interfaces  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 16. SPI slave mode timing (CPHA = 1)  
5.2 I2C  
5.2.1 Inter-Integrated Circuit Interface (I2C) timing  
Table 38. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
4001  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.25  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
0.6  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
02  
2505  
3.453  
04  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.92  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
45  
Freescale Semiconductor, Inc.  
Communication interfaces  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using the  
High drive pins across the full voltage range and when using the Normal drive pins and VDD ≥ 2.7 V.  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
7. Cb = total capacitance of the one bus line in pF.  
To achieve 1MHz I2C clock rates, consider the following recommendations:  
• To counter the effects of clock stretching, the I2C baud Rate select bits can be  
configured for faster than desired baud rate.  
• Use high drive pad and DSE bit should be set in PORTx_PCRn register.  
• Minimize loading on the I2C SDA and SCL pins to ensure fastest rise times for the  
SCL line to avoid clock stretching.  
• Use smaller pull up resistors on SDA and SCL to reduce the RC time constant.  
Table 39. I 2C 1Mbit/s timing  
Characteristic  
Symbol  
fSCL  
Minimum  
Maximum  
Unit  
MHz  
µs  
SCL Clock Frequency  
0
11  
Hold time (repeated) START condition. After this  
period, the first clock pulse is generated.  
tHD; STA  
0.26  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
0.5  
0.26  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
ns  
Set-up time for a repeated START condition  
Data hold time for I2C bus devices  
Data set-up time  
tSU; STA  
tHD; DAT  
tSU; DAT  
tr  
0.26  
0
50  
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
20 +0.1Cb  
120  
120  
2
tf  
20 +0.1Cb  
tSU; STO  
tBUF  
0.26  
0.5  
0
Bus free time between STOP and START condition  
Pulse width of spikes that must be suppressed by  
the input filter  
tSP  
50  
1. The maximum SCL Clock Frequency of 1Mbit/s can support maximum bus loading when using the High drive pins  
across the full voltage range.  
2. Cb = total capacitance of the one bus line in pF.  
46  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Design considerations  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 17. Timing definition for devices on the I2C bus  
5.3 UART  
See General switching specifications.  
6 Design considerations  
6.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of  
any voltages higher than maximum-rated voltages to this high-impedance circuit.  
6.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital  
circuits between connectors.  
• Drivers and filters for I/O functions should be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground  
plane directly under LQFP packages; and solder the exposed pad (EP) to ground  
directly under QFN packages.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
47  
Freescale Semiconductor, Inc.  
Design considerations  
6.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as sequential  
segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10uF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2V typically) as the ADC  
reference.  
NOTE  
The internal reference voltage output (VREFO) is bonded to  
the VREFH pin on some packages and to PTE30 on other  
packages. When the VREFO output is used, a 0.1uF capacitor  
is required as a filter. Do not connect any other supply voltage  
to the pin that has VREFO activated.  
6.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be RAS max if fast sampling and high resolution are  
required. The value of C must be chosen to ensure that the RC time constant is very  
small compared to the sample period.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 18. RC circuit for ADC input  
48  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Design considerations  
High voltage measurement circuits require voltage division, current limiting, and  
over-voltage protection as shown the following figure. The voltage divider formed by  
R1 – R4 must yield a voltage less than or equal to VREFH. The current must be  
limited to less than the injection current limit. Since the ADC pins do not have diodes  
to VDD, external clamp diodes must be included to protect against transient over-  
voltages.  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 19. High voltage measurement with an ADC input  
6.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (max I/O spec is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially  
the RESET_b pin.  
• RESET_b pin  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following  
figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the  
recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable  
digital filter to reject spurious noise.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
49  
Freescale Semiconductor, Inc.  
Design considerations  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 20. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor should be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in Figure 55. The series resistor value (RS below) should be in the range  
of 100Ω to 1kΩ depending on the external reset chip drive strength. The supervisor  
chip must have an active high, open-drain output.  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 21. Reset signal connection to external reset chip  
• NMI pin  
Because a low level on the NMI_b pin will trigger the Non-maskable interrupt, it is  
not recommended to add a pull-down resistor or capacitor on this pin. When this  
pin is enabled as the NMI function an external pull-up resistor (10k) as shown in  
the following figure is recommended for robustness.  
If the NMI_b pin is used as an I/O pin the Non-maskable interrupt handler is  
required to disable the NMI function by remapping to another function. The NMI  
function is disabled by programming the FOPT[NMI_DIS] bit to zero.  
50  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Design considerations  
VDD  
MCU  
10k  
NMI_b  
Figure 22. NMI pin biasing  
• Debug interface  
This MCU uses the standard ARM SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required  
(SWD_DIO has an internal pull-up and SWD_CLK has an internal pull-down),  
external 10kΩ pull resistors are recommended for system robustness. Please note  
the RESET_b pin recommendations mentioned above.  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 23. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). Please refer to the signal multiplexing  
table for pin selection.  
• Unused pin  
Unused GPIO pins should be left floating (no electrical connections) with the  
MUX field of the pin’s PORTx_PCRn register equal to 0:0:0. This disables the  
digital input path to the MCU.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
51  
Freescale Semiconductor, Inc.  
Design considerations  
6.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode.  
The series resistor, RS, is required in high gain (HGO=1) mode when the crystal or  
resonator frequency is below 2MHz. Otherwise, the low power oscillator (HGO=0)  
must not have any series resistance; and the high frequency, high gain oscillator with a  
frequency above 2MHz does not require any series resistance.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode.  
Use the SCxP bits in the OSC0_CR register to adjust the load capacitance for the  
crystal. Typically, values of 10pf to 16pF are sufficient for 32.768kHz crystals that have  
a 12.5pF CL specification. The internal load capacitor selection must not be used for  
high frequency crystals and resonators.  
Table 40. External crystal/resonator connections  
Oscillator mode  
Low frequency (32.768kHz), low power  
Low frequency (32.768kHz), high gain  
High frequency (1-32MHz), low power  
High frequency (1-32MHz), high gain  
Oscillator mode  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 24. Crystal connection – Diagram 1  
52  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Design considerations  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 25. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 26. Crystal connection – Diagram 3  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 27. Crystal connection – Diagram 4  
6.2 Software considerations  
All Kinetis MCUs are supported by comprehensive Freescale and third-party  
hardware and software enablement solutions, which can reduce development costs and  
time to market. Featured software and tools are listed below. Visit http://  
www.freescale.com/kinetis/sw for more information and supporting collateral.  
Evaluation and Prototyping Hardware  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
53  
Freescale Semiconductor, Inc.  
Dimensions  
• Freescale Freedom Development Platform: http://www.freescale.com/freedom  
• Tower System Development Platform: http://www.freescale.com/tower  
IDEs for Kinetis MCUs  
• Kinetis Design Studio IDE: http://www.freescale.com/kds  
• Partner IDEs: http://www.freescale.com/kide  
Development Tools  
• PEG Graphics Software: http://www.freescale.com/peg  
• Processor Expert Software and Embedded Components: http://www.freescale.com/  
processorexpert )  
Run-time Software  
• Kinetis SDK: http://www.freescale.com/ksdk  
• Kinetis Bootloader: http://www.freescale.com/kboot  
• ARM mbed Development Platform: http://www.freescale.com/mbed  
• MQX RTOS: http://www.freescale.com/mqx  
For all other partner-developed software and tools, visit http://www.freescale.com/  
partners.  
7 Dimensions  
7.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
32-pin QFN  
Then use this document number  
98ASA00615D  
48-pin QFN  
98ASA00616D  
98ASS23234W  
98ASA00420D  
98ASS23174W  
64-pin LQFP  
64-pin MAPBGA  
80-pin LQFP  
54  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
8 Pinouts and Packaging  
8.1 KL13 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
NOTE  
The 32 QFN, 48 QFN, and 64 MAPBGA packages for this  
product are not yet available. However, these packages are  
included in Package Your Way program for Kinetis MCUs.  
Visit freescale.com/KPYW for more details.  
80  
64  
48  
64  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
MAP  
BGA  
QFN  
1
1
C5  
A1  
1
NC  
NC  
NC  
PTE0  
DISABLED  
PTE0/  
CLKOUT32  
K
SPI1_MISO LPUART1_  
TX  
RTC_  
CLKOUT  
CMP0_OUT I2C1_SDA  
SPI1_MISO I2C1_SCL  
2
2
B1  
2
PTE1  
DISABLED  
PTE1  
SPI1_MOSI LPUART1_  
RX  
3
4
5
6
7
8
9
3
1
C4  
E1  
3
PTE2  
PTE3  
PTE4  
PTE5  
VDD  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
VDD  
PTE2  
PTE3  
PTE4  
PTE5  
SPI1_SCK  
SPI1_MISO  
SPI1_PCS0  
SPI1_MOSI  
VDD  
VSS  
4
2
VSS  
VSS  
5
3
PTE16  
ADC0_DP1/ ADC0_DP1/ PTE16  
SPI0_PCS0 UART2_TX  
TPM_  
FXIO0_D0  
ADC0_SE1  
ADC0_SE1  
CLKIN0  
10  
6
4
D1  
4
PTE17  
ADC0_  
DM1/  
ADC0_  
DM1/  
PTE17  
SPI0_SCK  
UART2_RX TPM_  
LPTMR0_  
ALT3  
FXIO0_D1  
CLKIN1  
ADC0_  
SE5a  
ADC0_  
SE5a  
11  
12  
7
8
5
6
E2  
D2  
5
6
PTE18  
PTE19  
ADC0_DP2/ ADC0_DP2/ PTE18  
SPI0_MOSI  
SPI0_MISO  
I2C0_SDA  
I2C0_SCL  
SPI0_MISO FXIO0_D2  
SPI0_MOSI FXIO0_D3  
ADC0_SE2  
ADC0_SE2  
ADC0_  
DM2/  
ADC0_  
DM2/  
PTE19  
ADC0_  
SE6a  
ADC0_  
SE6a  
13  
9
7
G1  
PTE20  
ADC0_DP0/ ADC0_DP0/ PTE20  
ADC0_SE0 ADC0_SE0  
TPM1_CH0 LPUART0_  
TX  
FXIO0_D4  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
55  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
80  
64  
48  
64  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
MAP  
BGA  
QFN  
14  
10  
8
F1  
PTE21  
ADC0_  
DM0/  
ADC0_  
DM0/  
PTE21  
TPM1_CH1 LPUART0_  
RX  
FXIO0_D5  
ADC0_  
SE4a  
ADC0_  
SE4a  
15  
16  
11  
12  
G2  
F2  
PTE22  
PTE23  
ADC0_DP3/ ADC0_DP3/ PTE22  
TPM2_CH0 UART2_TX  
TPM2_CH1 UART2_RX  
FXIO0_D6  
FXIO0_D7  
ADC0_SE3  
ADC0_SE3  
ADC0_  
DM3/  
ADC0_  
DM3/  
PTE23  
ADC0_  
SE7a  
ADC0_  
SE7a  
17  
18  
18  
13  
14  
14  
9
F4  
G4  
G4  
7
VDDA  
VDDA  
VDDA  
10  
10  
VREFH  
VREFO  
VREFH  
VREFH  
VREFH  
VREFO  
(1,2V  
reference,  
bond to  
VREFH)  
19  
20  
21  
15  
16  
17  
11  
12  
13  
G3  
F3  
H1  
8
VREFL  
VSSA  
VREFL  
VSSA  
VREFL  
VSSA  
PTE29  
CMP0_IN5/  
ADC0_  
SE4b  
CMP0_IN5/  
ADC0_  
SE4b  
PTE29  
PTE30  
TPM0_CH2 TPM_  
CLKIN0  
22  
18  
14  
H2  
9
PTE30  
DAC0_  
OUT/  
DAC0_  
OUT/  
TPM0_CH3 TPM_  
CLKIN1  
LPUART1_  
TX  
LPTMR0_  
ALT1  
ADC0_  
SE23/  
ADC0_  
SE23/  
CMP0_IN4  
CMP0_IN4  
23  
24  
25  
26  
27  
19  
20  
21  
22  
23  
15  
16  
17  
18  
H3  
H4  
H5  
D3  
D4  
10  
11  
PTE31  
PTE24  
PTE25  
PTA0  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
PTE31  
PTE24  
PTE25  
PTA0  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
TPM2_CH0  
I2C0_SCL  
I2C0_SDA  
SWD_CLK  
PTA1  
PTA1  
LPUART0_  
RX  
28  
24  
19  
E5  
12  
PTA2  
DISABLED  
PTA2  
LPUART0_  
TX  
TPM2_CH1  
29  
30  
31  
32  
33  
34  
25  
26  
27  
28  
29  
20  
21  
D5  
G5  
F5  
H6  
G6  
13  
14  
PTA3  
SWD_DIO  
NMI_b  
PTA3  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
SWD_DIO  
NMI_b  
PTA4  
PTA4  
PTA5  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTA5  
PTA12  
PTA13  
PTA14  
PTA12  
PTA13  
PTA14  
SPI0_PCS0 LPUART0_  
TX  
35  
36  
PTA15  
PTA16  
DISABLED  
DISABLED  
PTA15  
PTA16  
SPI0_SCK  
LPUART0_  
RX  
SPI0_MOSI  
SPI0_MISO  
56  
Freescale Semiconductor, Inc.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Pinouts and Packaging  
80  
64  
48  
64  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
MAP  
BGA  
QFN  
37  
38  
39  
40  
30  
31  
32  
22  
23  
24  
G7  
H7  
H8  
15  
16  
17  
PTA17  
VDD  
DISABLED  
VDD  
PTA17  
SPI0_MISO  
SPI0_MOSI  
VDD  
VSS  
VSS  
VSS  
PTA18  
EXTAL0  
EXTAL0  
PTA18  
PTA19  
PTA20  
LPUART1_  
RX  
TPM_  
CLKIN0  
41  
33  
25  
G8  
18  
PTA19  
PTA20  
XTAL0  
XTAL0  
LPUART1_  
TX  
TPM_  
CLKIN1  
LPTMR0_  
ALT1  
42  
43  
34  
35  
26  
27  
F8  
F7  
19  
20  
RESET_b  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8  
ADC0_SE8  
ADC0_SE9  
PTB0/  
LLWU_P5  
I2C0_SCL  
TPM1_CH0 SPI1_MOSI SPI1_MISO  
44  
45  
36  
37  
28  
29  
F6  
E7  
21  
PTB1  
PTB2  
ADC0_SE9  
PTB1  
PTB2  
I2C0_SDA  
I2C0_SCL  
TPM1_CH1 SPI1_MISO SPI1_MOSI  
TPM2_CH0  
ADC0_  
SE12  
ADC0_  
SE12  
46  
38  
30  
E8  
PTB3  
ADC0_  
SE13  
ADC0_  
SE13  
PTB3  
I2C0_SDA  
TPM2_CH1  
47  
48  
49  
50  
51  
39  
31  
E6  
PTB8  
PTB8  
SPI1_PCS0 EXTRG_IN  
SPI1_SCK  
PTB9  
PTB9  
PTB10  
PTB11  
PTB16  
PTB10  
PTB11  
PTB16  
SPI1_PCS0  
SPI1_SCK  
SPI1_MOSI LPUART0_  
RX  
TPM_  
CLKIN0  
SPI1_MISO  
SPI1_MOSI  
52  
40  
32  
D7  
PTB17  
PTB17  
SPI1_MISO LPUART0_  
TX  
TPM_  
CLKIN1  
53  
54  
55  
41  
42  
43  
33  
D6  
C7  
D8  
PTB18  
PTB19  
PTC0  
PTB18  
PTB19  
PTC0  
TPM2_CH0  
TPM2_CH1  
EXTRG_IN  
ADC0_  
SE14  
ADC0_  
SE14  
CMP0_OUT  
56  
44  
34  
C6  
22  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
ADC0_  
SE15  
ADC0_  
SE15  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
57  
58  
45  
46  
35  
36  
B7  
C8  
23  
24  
PTC2  
ADC0_  
SE11  
ADC0_  
SE11  
PTC2  
PTC3/  
LLWU_P7  
PTC3/  
LLWU_P7  
SPI1_SCK  
LPUART1_  
RX  
TPM0_CH2 CLKOUT  
59  
60  
61  
47  
48  
49  
37  
E3  
E4  
B8  
25  
VSS  
VDD  
VSS  
VDD  
VSS  
VDD  
PTC4/  
LLWU_P8  
PTC4/  
LLWU_P8  
SPI0_PCS0 LPUART1_  
TX  
TPM0_CH3 SPI1_PCS0  
62  
63  
64  
50  
51  
52  
38  
39  
40  
A8  
A7  
B6  
26  
27  
28  
PTC5/  
LLWU_P9  
PTC5/  
LLWU_P9  
SPI0_SCK  
LPTMR0_  
ALT2  
CMP0_OUT  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
SPI0_MOSI EXTRG_IN  
SPI0_MISO  
SPI0_MOSI  
PTC7  
PTC7  
SPI0_MISO  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
57  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
80  
64  
48  
64  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP LQFP QFN  
MAP  
BGA  
QFN  
65  
66  
67  
68  
69  
53  
54  
55  
56  
A6  
B5  
B4  
A5  
PTC8  
CMP0_IN2  
CMP0_IN3  
CMP0_IN2  
CMP0_IN3  
PTC8  
I2C0_SCL  
I2C0_SDA  
I2C1_SCL  
I2C1_SDA  
TPM0_CH4  
TPM0_CH5  
PTC9  
PTC9  
PTC10  
PTC11  
PTC12  
PTC10  
PTC11  
PTC12  
TPM_  
CLKIN0  
70  
PTC13  
PTC13  
TPM_  
CLKIN1  
71  
72  
73  
74  
57  
58  
41  
42  
PTC16  
PTC17  
PTD0  
PTC16  
PTC17  
PTD0  
C3  
A4  
SPI0_PCS0  
SPI0_SCK  
TPM0_CH0  
TPM0_CH1  
FXIO0_D0  
FXIO0_D1  
PTD1  
ADC0_  
SE5b  
ADC0_  
SE5b  
PTD1  
75  
76  
77  
59  
60  
61  
43  
44  
45  
C2  
B3  
A3  
29  
PTD2  
PTD3  
PTD2  
PTD3  
SPI0_MOSI UART2_RX TPM0_CH2 SPI0_MISO FXIO0_D2  
SPI0_MISO UART2_TX TPM0_CH3 SPI0_MOSI FXIO0_D3  
SPI1_PCS0 UART2_RX TPM0_CH4  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
FXIO0_D4  
FXIO0_D5  
78  
79  
80  
62  
63  
64  
46  
47  
48  
C1  
B2  
A2  
30  
31  
32  
PTD5  
ADC0_  
SE6b  
ADC0_  
SE6b  
PTD5  
SPI1_SCK  
UART2_TX  
TPM0_CH5  
I2C1_SDA  
I2C1_SCL  
PTD6/  
LLWU_P15  
ADC0_  
SE7b  
ADC0_  
SE7b  
PTD6/  
LLWU_P15  
SPI1_MOSI LPUART0_  
RX  
SPI1_MISO FXIO0_D6  
SPI1_MOSI FXIO0_D7  
PTD7  
PTD7  
SPI1_MISO LPUART0_  
TX  
8.2 KL13 Family Pinouts  
Figure below shows the 64 LQFP pinouts:  
NOTE  
The 32 QFN, 48 QFN, and 64 MAPBGA packages for this  
product are not yet available. However, these packages are  
included in Package Your Way program for Kinetis MCUs.  
Visit freescale.com/KPYW for more details.  
58  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
VSS  
4
PTC2  
PTE16  
5
PTC1/LLWU_P6/RTC_CLKIN  
PTE17  
6
PTC0  
PTE18  
7
PTB19  
PTB18  
PTB17  
PTB16  
PTB3  
PTE19  
8
PTE20  
9
PTE21  
10  
11  
12  
13  
14  
15  
16  
PTE22  
PTE23  
PTB2  
VDDA  
PTB1  
VREFH/VREFO  
VREFL  
VSSA  
PTB0/LLWU_P5  
PTA20  
PTA19  
Figure 28. 64 LQFP Pinout diagram  
Figure below shows the 80 LQFP pinouts:  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
59  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
1
PTE0  
PTE1  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
VDD  
2
VSS  
3
PTE2  
PTC3/LLWU_P7  
4
PTE3  
PTC2  
5
PTE4  
PTC1/LLWU_P6/RTC_CLKIN  
6
PTE5  
PTC0  
7
VDD  
PTB19  
PTB18  
PTB17  
PTB16  
PTB11  
PTB10  
PTB9  
8
VSS  
9
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
PTB8  
PTB3  
PTB2  
PTB1  
VREFH/VREFO  
VREFL  
VSSA  
PTB0/LLWU_P5  
PTA20  
PTA19  
Figure 29. 80 LQFP Pinout diagram  
Figure below shows the 64 MAPBGA pinouts:  
60  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
1
2
3
4
5
6
7
8
PTD4/  
LLWU_P14  
PTC6/  
LLWU_P10 LLWU_P9  
PTC5/  
A
B
C
D
E
F
PTE0  
PTD7  
PTD1  
PTC11  
PTC8  
A
B
C
D
E
F
PTD6/  
LLWU_P15  
PTE1  
PTD5  
PTD3  
PTD0  
PTA0  
VSS  
PTC10  
VSS  
PTC9  
NC  
PTC7  
PTC2  
PTB19  
PTB17  
PTB2  
PTC4/  
LLWU_P8  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
PTC3/  
LLWU_P7  
PTD2  
PTE19  
PTE18  
PTE23  
PTE22  
PTE17  
PTE16  
PTE21  
PTE20  
PTA1  
VDD  
PTA3  
PTA2  
PTA5  
PTA4  
PTB18  
PTB16  
PTB1  
PTC0  
PTB3  
PTB0/  
LLWU_P5  
VSSA  
VREFL  
VDDA  
PTA20  
PTA19  
G
H
VREFH/  
VREFO  
PTA13  
VDD  
G
H
PTE29  
1
PTE30  
2
PTE31  
3
PTE24  
4
PTE25  
5
PTA12  
6
VSS  
7
PTA18  
8
Figure 30. 64 MAPBGA Pinout diagram  
Figure below shows the 48 QFN pinouts:  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
61  
Freescale Semiconductor, Inc.  
Pinouts and Packaging  
PTC3/LLWU_P7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
1
2
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
3
PTC0  
PTE17  
4
PTB17  
PTB16  
PTB3  
PTE18  
5
PTE19  
6
PTE20  
7
PTE21  
PTB2  
8
VDDA  
PTB1  
9
VREFH/VREFO  
VREFL  
PTB0/LLWU_P5  
PTA20  
10  
11  
12  
VSSA  
PTA19  
Figure 31. 48 QFN Pinout diagram  
Figure below shows the 32 QFN pinouts:  
62  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Ordering parts  
PTC3/LLWU_P7  
PTE0  
PTE1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTE17  
PTE18  
PTE19  
VDDA  
VSSA  
PTB1  
PTB0/LLWU_P5  
PTA20  
PTA19  
18  
17  
PTA18  
Figure 32. 32 QFN Pinout diagram  
9 Ordering parts  
9.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the Web. To determine the orderable  
part numbers for this device, go to freescale.com and perform a part number search for  
the following device numbers:  
10 Part identification  
10.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
63  
Freescale Semiconductor, Inc.  
Part identification  
10.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
10.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 41. Part number fields description  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL13  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm) 1  
• FT = 48 QFN (7 mm x 7 mm)1,  
• LH = 64 LQFP (10 mm x 10 mm)  
• MP = 64 MAPBGA (5 mm x 5 mm)1  
• LK = 80 LQFP (12 mm x 12 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
1. This package for this product is not yet available. However, it is included in Package Your Way program for Kinetis  
MCUs. Visit freescale.com/KPYW for more details.  
10.4 Example  
This is an example part number:  
MKL13Z32VLH4  
64  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
11 Terminology and guidelines  
11.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation  
and possibly decreasing the useful life of the chip.  
11.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
11.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
11.2.1 Example  
This is an example of an operating behavior:  
Symbol  
Description  
Min.  
Max.  
Unit  
IWP  
Digital I/O weak pullup/ 10  
pulldown current  
130  
µA  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
65  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
11.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that are  
guaranteed, regardless of whether you meet the operating requirements.  
11.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
11.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
11.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
66  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
11.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
11.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
11.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
67  
Freescale Semiconductor, Inc.  
Terminology and guidelines  
11.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
11.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
11.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
68  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Revision History  
5000  
4500  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
TJ  
150 °C  
105 °C  
25 °C  
–40 °C  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
11.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Table 42. Typical value conditions  
Symbol  
TA  
Description  
Value  
25  
Unit  
°C  
Ambient temperature  
3.3 V supply voltage  
VDD  
3.3  
V
12 Revision History  
The following table provides a revision history for this document.  
Table 43. Revision History  
Rev. No.  
Date  
Substantial Changes  
1
01 February  
2015  
• Added new topic "Electrical Design Considerations" as Section 6.  
• Added a note in Table 14 - Thermal operating requirements.  
• Footnote 1 in Table 9 was moved in the beginning of the table as text.  
Table continues on the next page...  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
69  
Freescale Semiconductor, Inc.  
Revision History  
Table 43. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
2
18 March  
2015  
• Updated the features and completed the ordering information.  
• Removed thickness dimension from package diagrams.  
• Updated Table 7. Voltage and current operating behaviors.  
• Specified correct max. value for IIN parameter.  
• Updated Table 8. Power mode transition operating behaviors with Typ. and Max.  
values.  
• Updated Table 9. Power consumption operating behaviors with Typ. and Max.  
values.  
• Updated Table 10. Low power mode peripheral adders — typical value.  
• Updated EMC Performance information in section 2.2.6.  
• Updated Table 17. IRC48M specification and Table 18. IRC8M/2M specification.  
• Updated Typ. values of TUE and INL parameters in Table 26. 16-bit ADC  
characteristics.  
• Updated Table 28. VREF full-range operating behaviors.  
• Removed Ac(Aging coefficient) row.  
• Added Tchop_osc_stup parameter.  
• Updated typical value of the Vout parameter.  
• Added tables: "I2C timing" and "I2C 1Mbit/s timing" under section - I2C.  
• Updated Section 6 - Design Considerations.  
70  
Kinetis KL13 Microcontroller, Rev.2, 03/2015.  
Freescale Semiconductor, Inc.  
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis  
are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.  
Off. All other product or service names are the property of their  
respective owners. ARM and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights  
reserved.  
©2014-2015 Freescale Semiconductor, Inc.  
Document Number KL13P80M48SF3  
Revision 2, 03/2015  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY