MKL16Z32VLH4 [NXP]

Kinetis L 32-bit MCU, ARM Cortex-M0+ core, 32KB Flash, 48MHz, QFP 64;
MKL16Z32VLH4
型号: MKL16Z32VLH4
厂家: NXP    NXP
描述:

Kinetis L 32-bit MCU, ARM Cortex-M0+ core, 32KB Flash, 48MHz, QFP 64

时钟 输入元件 外围集成电路
文件: 总58页 (文件大小:1284K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Data Sheet: Technical Data  
Document Number: KL16P64M48SF5  
Rev 5 08/2014  
Kinetis KL16 Sub-Family  
MKL16ZxxxVFM4  
MKL16ZxxxVFT4  
MKL16ZxxxVLH4  
48 MHz Cortex-M0+ Based Microcontroller  
Designed with efficiency in mind. Compatible with all other  
Kinetis L families as well as Kinetis K1x family. General purpose  
MCU featuring market leading ultra low-power to provide  
developers an appropriate entry-level 32-bit solution.  
This product offers:  
32-pin QFN (FM)  
5 x 5 x 1 Pitch 0.5 mm 7 x 7 x 1 Pitch 0.5 mm  
48-pin QFN (FT)  
• Run power consumption down to 40 μA/MHz in very low  
power run mode  
• Static power consumption down to 2 μA with full state  
retention and 4.5 μs wakeup  
• Ultra-efficient Cortex-M0+ processor running up to 48 MHz  
with industry leading throughput  
• Memory option is up to 128 KB flash and 16 KB RAM  
• Energy-saving architecture is optimized for low power with  
90nm TFS technology, clock and power gating techniques,  
and zero wait state flash memory controller  
64-pin LQFP (LH)  
10 x 10 x 1.4 Pitch 0.5 mm  
Performance  
• 48 MHz ARM® Cortex®-M0+ core  
Human-machine interface  
• Low-power hardware touch sensor interface (TSI)  
• Up to 54 general-purpose input/output (GPIO)  
Memories and memory interfaces  
• Up to 128 KB program flash memory  
• Up to 16 KB SRAM  
Communication interfaces  
• Two 16-bit SPI modules  
• I2S (SAI) module  
System peripherals  
• One low power UART module  
• Two UART modules  
• Two I2C module  
• Nine low-power modes to provide power optimization  
based on application requirements  
• COP Software watchdog  
• 4-channel DMA controller, supporting up to 63 request Analog Modules  
sources  
• Low-leakage wakeup unit  
• SWD debug interface and Micro Trace Buffer  
• Bit Manipulation Engine  
• 16-bit SAR ADC  
• 12-bit DAC  
• Analog comparator (CMP) containing a 6-bit DAC  
and programmable reference input  
Clocks  
Timers  
• 32 kHz to 40 kHz or 3 MHz to 32 MHz crystal oscillator  
• Multi-purpose clock source  
• Six channel Timer/PWM (TPM)  
• Two 2-channel Timer/PWM modules  
• Periodic interrupt timers  
• 16-bit low-power timer (LPTMR)  
• Real time clock  
Operating Characteristics  
• Voltage range: 1.71 to 3.6 V  
• Flash write voltage range: 1.71 to 3.6 V  
• Temperature range (ambient): -40 to 105°C  
Security and integrity modules  
• 80-bit unique identification number per chip  
Freescale reserves the right to change the detail specifications as may be required to  
permit improvements in the design of its products. © 2013–2014 Freescale  
Semiconductor, Inc. All rights reserved.  
Ordering Information 1  
Memory  
Part Number  
Maximum number of I\O's  
Flash (KB)  
SRAM (KB)  
MKL16Z32VFM4  
32  
64  
4
8
28  
28  
28  
40  
40  
40  
54  
54  
54  
MKL16Z64VFM4  
MKL16Z128VFM4  
MKL16Z32VFT4  
MKL16Z64VFT4  
MKL16Z128VFT4  
MKL16Z32VLH4  
MKL16Z64VLH4  
MKL16Z128VLH4  
128  
32  
16  
4
64  
8
128  
32  
16  
4
64  
8
128  
16  
1. To confirm current availability of ordererable part numbers, go to http://www.freescale.com and perform a part number  
search.  
Related Resources  
Type  
Description  
Resource  
Solution Advisor  
Selector Guide The Freescale Solution Advisor is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the KL16P64M48SF5RM1  
structure and function (operation) of a device.  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
KL16P64M48SF51  
Chip Errata  
The chip mask set Errata provides additional or corrective  
information for a particular device mask set.  
KINETIS_L_xN15J 2  
Package  
drawing  
Package dimensions are provided in package drawings.  
QFN 32-pin: 98ASA00473D1  
QFN 48-pin: 98ASA00466D1  
LQFP 64-pin: 98ASS23234W1  
1. To find the associated resource, go to http://www.freescale.com and perform a search using this term.  
2. To find the associated resource, go to http://www.freescale.com and perform a search using this term with the “x”  
replaced by the revision of the device you are using.  
2
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
Table of Contents  
1 Ratings..................................................................................4  
3.6.2 CMP and 6-bit DAC electrical specifications......29  
3.6.3 12-bit DAC electrical characteristics.................. 31  
3.7 Timers............................................................................34  
3.8 Communication interfaces............................................. 34  
3.8.1 SPI switching specifications...............................34  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing.....39  
3.8.3 UART................................................................. 40  
3.8.4 I2S/SAI switching specifications........................ 40  
3.9 Human-machine interfaces (HMI)..................................44  
3.9.1 TSI electrical specifications................................44  
4 Dimensions........................................................................... 45  
4.1 Obtaining package dimensions......................................45  
5 Pinout....................................................................................45  
5.1 KL16 Signal Multiplexing and Pin Assignments.............45  
5.2 KL16 pinouts..................................................................48  
6 Ordering parts....................................................................... 51  
6.1 Determining valid orderable parts..................................51  
7 Part identification...................................................................51  
7.1 Description.....................................................................52  
7.2 Format........................................................................... 52  
7.3 Fields............................................................................. 52  
7.4 Example.........................................................................52  
8 Terminology and guidelines.................................................. 53  
8.1 Definition: Operating requirement..................................53  
8.2 Definition: Operating behavior....................................... 53  
8.3 Definition: Attribute........................................................ 53  
8.4 Definition: Rating........................................................... 54  
8.5 Result of exceeding a rating.......................................... 54  
8.6 Relationship between ratings and operating  
1.1 Thermal handling ratings............................................... 4  
1.2 Moisture handling ratings...............................................4  
1.3 ESD handling ratings..................................................... 4  
1.4 Voltage and current operating ratings............................4  
2 General................................................................................. 5  
2.1 AC electrical characteristics...........................................5  
2.2 Nonswitching electrical specifications............................5  
2.2.1 Voltage and current operating requirements......6  
2.2.2 LVD and POR operating requirements.............. 6  
2.2.3 Voltage and current operating behaviors...........7  
2.2.4 Power mode transition operating behaviors.......8  
2.2.5 Power consumption operating behaviors...........9  
2.2.6 EMC radiated emissions operating behaviors... 14  
2.2.7 Designing with radiated emissions in mind........15  
2.2.8 Capacitance attributes....................................... 15  
2.3 Switching specifications.................................................15  
2.3.1 Device clock specifications................................ 15  
2.3.2 General switching specifications........................16  
2.4 Thermal specifications................................................... 16  
2.4.1 Thermal operating requirements........................16  
2.4.2 Thermal attributes..............................................17  
3 Peripheral operating requirements and behaviors................ 17  
3.1 Core modules................................................................ 17  
3.1.1 SWD electricals .................................................17  
3.2 System modules............................................................ 19  
3.3 Clock modules............................................................... 19  
3.3.1 MCG specifications............................................19  
3.3.2 Oscillator electrical specifications...................... 21  
3.4 Memories and memory interfaces................................. 23  
3.4.1 Flash electrical specifications............................ 23  
3.5 Security and integrity modules.......................................24  
3.6 Analog............................................................................24  
3.6.1 ADC electrical specifications..............................24  
requirements..................................................................54  
8.7 Guidelines for ratings and operating requirements........55  
8.8 Definition: Typical value.................................................55  
8.9 Typical value conditions.................................................56  
9 Revision history.....................................................................57  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
3
Freescale Semiconductor, Inc.  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 3. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
4
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
 
 
 
General  
1.4 Voltage and current operating ratings  
Table 4. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
Digital supply voltage  
Digital supply current  
IO pin input voltage  
V
mA  
V
120  
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
VDD + 0.3  
V
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 1. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume the output  
pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
2.2 Nonswitching electrical specifications  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
5
Freescale Semiconductor, Inc.  
 
 
 
General  
2.2.1 Voltage and current operating requirements  
Table 5. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
2.2.2 LVD and POR operating requirements  
Table 6. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
1
Table continues on the next page...  
6
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
General  
Notes  
Table 6. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
• Level 1 falling (LVWV = 00)  
2.62  
2.70  
2.78  
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
2.72  
2.82  
2.92  
2.80  
2.90  
3.00  
2.88  
2.98  
3.08  
V
V
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
60  
mV  
V
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
2.2.3 Voltage and current operating behaviors  
Table 7. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
0.5  
0.5  
V
V
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
7
Freescale Semiconductor, Inc.  
 
 
General  
Table 7. Voltage and current operating behaviors (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
1
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
100  
1
mA  
μA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
65  
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
4
1. PTB0, PTB1, PTD6, and PTD7 I/O have both high drive and normal drive capability selected by the associated  
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull down device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 8. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR After a POR event, amount of time from the  
300  
μs  
1
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
• VLLS0 RUN  
106  
120  
μs  
Table continues on the next page...  
8
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
General  
Notes  
Table 8. Power mode transition operating behaviors (continued)  
Symbol Description  
• VLLS1 RUN  
Min.  
Typ.  
Max.  
Unit  
105  
117  
μs  
• VLLS3 RUN  
• LLS RUN  
47  
4.5  
4.5  
4.5  
54  
5.0  
5.0  
5.0  
μs  
μs  
μs  
μs  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
2.2.5 Power consumption operating behaviors  
The maximum values stated in the following table represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma).  
Table 9. Power consumption operating behaviors  
Symbol  
IDDA  
Description  
Temp.  
Typ.  
Max  
See note  
Unit  
mA  
mA  
Note  
Analog supply current  
1
2
IDD_RUNCO_ CM  
Run mode current in compute  
operation - 48 MHz core / 24 MHz  
flash/ bus disabled, LPTMR running  
using 4 MHz internal reference clock,  
CoreMark® benchmark code  
6.1  
executing from flash, at 3.0 V  
IDD_RUNCO  
Run mode current in compute  
operation - 48 MHz core / 24 MHz  
flash / bus clock disabled, code of  
while(1) loop executing from flash, at  
3.0 V  
3.8  
4.6  
4.4  
5.2  
mA  
mA  
3
IDD_RUN  
Run mode current - 48 MHz core / 24  
MHz bus and flash, all peripheral  
clocks disabled, code executing from  
flash, at 3.0 V  
3
IDD_RUN  
Run mode current - 48 MHz core / 24 at 25 °C  
6.0  
6.2  
6.2  
6.2  
6.4  
6.5  
mA  
mA  
mA  
3, 4  
MHz bus and flash, all peripheral  
clocks enabled, code executing from  
at 70 °C  
at 125 °C  
flash, at 3.0 V  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
9
Freescale Semiconductor, Inc.  
 
 
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
IDD_WAIT  
Description  
Temp.  
Typ.  
Max  
Unit  
Note  
Wait mode current - core disabled / 48  
MHz system / 24 MHz bus / flash  
disabled (flash doze enabled), all  
peripheral clocks disabled, at 3.0 V  
2.7  
3.2  
mA  
3
IDD_WAIT  
Wait mode current - core disabled / 24  
MHz system / 24 MHz bus / flash  
disabled (flash doze enabled), all  
peripheral clocks disabled, at 3.0 V  
2.1  
2.6  
mA  
3
IDD_PSTOP2  
Stop mode current with partial stop 2  
clocking option - core and system  
disabled / 10.5 MHz bus, at 3.0 V  
1.5  
2.0  
mA  
µA  
3
5
IDD_VLPRCO _CM  
Very-low-power run mode current in  
compute operation - 4 MHz core / 0.8  
MHz flash / bus clock disabled,  
732  
LPTMR running with 4 MHz internal  
reference clock, CoreMark benchmark  
code executing from flash, at 3.0 V  
IDD_VLPRCO  
IDD_VLPR  
IDD_VLPR  
IDD_VLPW  
Very low power run mode current in  
compute operation - 4 MHz core / 0.8  
MHz flash / bus clock disabled, code  
executing from flash, at 3.0 V  
161  
185  
255  
110  
329  
352  
421  
281  
µA  
µA  
µA  
µA  
6
6
Very low power run mode current - 4  
MHz core / 0.8 MHz bus and flash, all  
peripheral clocks disabled, code  
executing from flash, at 3.0 V  
Very low power run mode current - 4  
MHz core / 0.8 MHz bus and flash, all  
peripheral clocks enabled, code  
executing from flash, at 3.0 V  
4, 6  
6
Very low power wait mode current -  
core disabled / 4 MHz system / 0.8  
MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks  
disabled, at 3.0 V  
IDD_STOP  
IDD_VLPS  
IDD_LLS  
Stop mode current at 3.0 V  
at 25 °C  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
305  
317  
326  
344  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
337  
380  
364  
428  
429  
553  
Very-low-power stop mode current at at 25 °C  
3.0 V  
2.69  
5.54  
11.80  
21.13  
45.85  
1.98  
3.13  
4.14  
9.80  
21.94  
39.13  
85.45  
2.65  
4.35  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
Low leakage stop mode current at 3.0 at 25 °C  
V
at 50 °C  
Table continues on the next page...  
10  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
General  
Note  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
Description  
Temp.  
Typ.  
5.65  
9.58  
20.52  
1.46  
2.29  
4.10  
6.93  
14.80  
0.71  
1.10  
2.09  
3.80  
8.84  
0.40  
0.80  
1.79  
3.50  
8.54  
0.23  
0.61  
1.59  
3.30  
8.36  
Max  
8.34  
14.29  
31.74  
2.06  
3.22  
5.90  
10.02  
22.12  
1.20  
1.71  
3.03  
5.42  
12.98  
0.88  
1.40  
2.72  
5.10  
12.63  
0.69  
1.19  
2.50  
4.89  
12.41  
Unit  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
µA  
at 70 °C  
at 85 °C  
at 105 °C  
IDD_VLLS3  
Very low-leakage stop mode 3 current at 25 °C  
7
at 3.0 V  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
IDD_VLLS1  
IDD_VLLS0  
IDD_VLLS0  
Very low-leakage stop mode 1 current at 25 °C  
at 3.0V  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
Very low-leakage stop mode 0 current at 25 °C  
(SMC_STOPCTRL[PORPO] = 0) at  
3.0 V  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
Very low-leakage stop mode 0 current at 25 °C  
(SMC_STOPCTRL[PORPO] = 1) at  
3.0 V  
at 50 °C  
at 70 °C  
at 85 °C  
at 105 °C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. MCG configured for PEE mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized  
for balanced.  
3. MCG configured for FEI mode.  
4. Incremental current consumption from peripheral activity is not included.  
5. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 6.40 with optimization level high, optimized  
for balanced.  
6. MCG configured for BLPI mode.  
7. No brownout.  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC) adder.  
Measured by entering STOP or VLPS mode  
with 4 MHz IRC enabled.  
56  
56  
56  
56  
56  
56  
µA  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
11  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IIREFSTEN32KHz  
IEREFSTEN4MHz  
IEREFSTEN32KHz  
32 kHz internal reference clock (IRC) adder.  
Measured by entering STOP mode with the  
32 kHz IRC enabled.  
52  
52  
52  
52  
52  
52  
µA  
External 4 MHz crystal clock adder.  
Measured by entering STOP or VLPS mode  
with the crystal enabled.  
206  
228  
237  
245  
251  
258  
µA  
nA  
External 32 kHz crystal clock  
adder by means of the  
OSC0_CR[EREFSTEN and  
EREFSTEN] bits. Measured  
by entering all modes with  
the crystal enabled.  
VLLS1  
VLLS3  
LLS  
440  
440  
490  
510  
510  
22  
490  
490  
490  
560  
560  
22  
540  
540  
540  
560  
560  
22  
560  
560  
560  
560  
560  
22  
570  
570  
570  
610  
610  
22  
580  
580  
680  
680  
680  
22  
VLPS  
STOP  
ICMP  
CMP peripheral adder measured by placing  
the device in VLLS1 mode with CMP  
enabled using the 6-bit DAC and a single  
external input for compare. Includes 6-bit  
DAC power consumption.  
µA  
nA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
432  
66  
357  
66  
388  
66  
475  
66  
532  
66  
810  
66  
IUART  
UART peripheral adder  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source waiting for RX data at  
115200 baud rate. Includes  
selected clock source power  
consumption.  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
µA  
OSCERCLK 214  
(4 MHz  
external  
237  
86  
246  
86  
254  
86  
260  
86  
268  
86  
crystal)  
ITPM  
TPM peripheral adder  
MCGIRCLK  
(4 MHz  
internal  
reference  
clock)  
86  
µA  
measured by placing the  
device in STOP or VLPS  
mode with selected clock  
source configured for output  
compare generating 100 Hz  
clock signal. No load is  
placed on the I/O generating  
the clock signal. Includes  
selected clock source and  
I/O switching currents.  
OSCERCLK 235  
(4 MHz  
external  
256  
265  
274  
280  
287  
crystal)  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
45  
45  
45  
45  
45  
45  
µA  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
366  
366  
366  
366  
366  
366  
12  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
General  
Unit  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
50 70  
-40  
25  
85  
105  
placing the device in STOP or VLPS mode.  
ADC is configured for low power mode using  
the internal clock and continuous  
conversions.  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE for run mode, and BLPE for VLPR mode  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
Run Mode Current VS Core Frequency  
Temperature = 25, VDD = 3, CACHE = Enable, Code Residence = Flash, Clocking Mode = FBE  
7.00E-03  
6.00E-03  
5.00E-03  
4.00E-03  
All Peripheral CLK Gates  
All Off  
All On  
3.00E-03  
2.00E-03  
1.00E-03  
000.00E+00  
CLK Ratio  
'1-2  
'1-1  
1
'1-1  
2
'1-1  
3
'1-1  
4
'1-1  
6
'1-1  
12  
'1-1  
24  
Flash-Core  
48  
Core Freq (MHz)  
Figure 2. Run mode supply current vs. core frequency  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
13  
Freescale Semiconductor, Inc.  
General  
400.00E-06  
350.00E-06  
300.00E-06  
250.00E-06  
200.00E-06  
150.00E-06  
100.00E-06  
50.00E-06  
All Off  
All On  
000.00E+00  
CLK Ratio  
Flash-Core  
Core Freq (MHz)  
1
2
4
Figure 3. VLPR mode current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 11. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
16  
18  
11  
13  
M
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150  
kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement  
of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.  
14  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
General  
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,  
from among the measured orientations in each frequency range.  
2. VDD = 3.3 V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS = 48 MHz, fBUS = 24 MHz  
3. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.freescale.com.  
2. Perform a keyword search for “EMC design.”  
2.2.8 Capacitance attributes  
Table 12. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
External reference clock  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
15  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
General  
Table 13. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
MHz  
MHz  
fLPTMR_ERCLK LPTMR external reference clock  
16  
16  
fosc_hi_2  
Oscillator crystal or resonator frequency — high frequency  
mode (high range) (MCG_C2[RANGE]=1x)  
fTPM  
TPM asynchronous clock  
8
8
MHz  
MHz  
fUART0  
UART0 asynchronous clock  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS was entered from RUN  
or from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO and  
UART signals.  
Table 14. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
ns  
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise and fall time  
16  
ns  
ns  
2
3
36  
1. The greater synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. 75 pF load  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature  
–40  
–40  
TA  
105  
°C  
16  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
2.4.2 Thermal attributes  
Table 16. Thermal attributes  
Board type  
Symbol  
Description  
64 LQFP 48 QFN 32 QFN  
Unit  
Notes  
Single-layer (1S)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
71  
53  
59  
46  
35  
21  
6
83  
30  
68  
24  
12  
2.3  
5
98  
34  
82  
28  
13  
2.3  
8
°C/W  
1
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Single-layer (1S)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Four-layer (2s2p)  
RθJMA Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
RθJB  
RθJC  
ΨJT  
Thermal resistance, junction to  
board  
2
3
4
Thermal resistance, junction to  
case  
Thermal characterization  
parameter, junction to package  
top outside center (natural  
convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test  
Method Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 SWD electricals  
Table 17. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
17  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Table 17. SWD full voltage range electricals (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 4. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 5. Serial wire data timing  
18  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Peripheral operating requirements and behaviors  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 MCG specifications  
Table 18. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/-2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
48  
MHz  
MHz  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
frequency  
2
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
19  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
Table 18. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
732 × ffll_ref  
Mid range (DRS = 01)  
1464 × ffll_ref  
47.97  
MHz  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
180  
1
ps  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
9
9
1060  
• PLL at 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 48)  
=
=
Ipll  
PLL operating current  
600  
µA  
• PLL at 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
10  
10  
120  
50  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
11  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency deviation  
(Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
9. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
10. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics  
of each PCB and results will vary.  
11. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
20  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
3.3.2 Oscillator electrical specifications  
3.3.2.1 Oscillator DC electrical specifications  
Table 19. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.71  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
21  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 19. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
0
kΩ  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
VDD  
0.6  
V
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
3.3.2.2 Oscillator frequency specifications  
Table 20. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
22  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
 
 
Peripheral operating requirements and behaviors  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps  
are active and do not include command overhead.  
Table 21. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
1
113  
452  
ms  
ms  
thversall  
Erase All high-voltage time  
52  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 22. Flash command timing specifications  
Symbol Description  
Min.  
Typ.  
Max.  
60  
Unit  
μs  
Notes  
trd1sec1k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
1
1
45  
μs  
trdrsrc  
tpgm4  
tersscr  
trd1all  
trdonce  
Read Resource execution time  
Program Longword execution time  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
30  
μs  
1
65  
14  
145  
114  
1.8  
25  
μs  
2
ms  
ms  
μs  
1
tpgmonce Program Once execution time  
65  
88  
μs  
2
tersall  
Erase All Blocks execution time  
650  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
Kinetis KL16 Sub-Family, Rev5 08/2014.  
23  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.4.1.3 Flash high voltage current behaviors  
Table 23. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
3.4.1.4 Reliability specifications  
Table 24. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 25 and Table 26 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
24  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
3.6.1.1 16-bit ADC operating conditions  
Table 25. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
-100  
-100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
2
VREFH  
ADC reference  
voltage high  
VDDA  
3
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
4
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied  
to VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
25  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 6. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC  
asynchronous  
clock source  
• ADLPC = 1, ADHSC =  
0
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK  
=
1/fADACK  
2.4  
• ADLPC = 1, ADHSC =  
1
3.0  
fADACK  
4.4  
• ADLPC = 0, ADHSC =  
0
• ADLPC = 0, ADHSC =  
1
Sample Time  
See Reference Manual chapter for sample times  
TUE  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
5
1.4  
Table continues on the next page...  
26  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
Peripheral operating requirements and behaviors  
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
DNL  
Differential non-  
linearity  
• 12-bit modes  
0.7  
–1.1 to  
+1.9  
LSB4  
5
• <12-bit modes  
• 12-bit modes  
• <12-bit modes  
0.2  
1.0  
0.5  
–0.3 to 0.5  
INL  
Integral non-  
linearity  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN  
VDDA  
=
5
Quantization  
error  
0.5  
ENOB  
Effective number 16-bit differential mode  
6
12.8  
11.9  
14.5  
13.8  
bits  
bits  
of bits  
• Avg = 32  
• Avg = 4  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
16-bit single-ended mode  
• Avg = 32  
• Avg = 4  
Signal-to-noise  
plus distortion  
See ENOB  
SINAD  
THD  
6.02 × ENOB + 1.76  
dB  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
-94  
-85  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
SFDR  
Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
82  
78  
95  
90  
dB  
dB  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage  
error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(refer to  
the MCU's  
voltage  
and  
current  
operating  
ratings)  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
27  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 26. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
Temp sensor  
slope  
Across the full temperature  
range of the device  
1.55  
1.62  
1.69  
mV/°C  
8
VTEMP25 Temp sensor  
voltage  
25 °C  
706  
716  
726  
mV  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
12.30  
12.00  
Averaging of 8 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 7. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
28  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
3.6.2 CMP and 6-bit DAC electrical specifications  
Table 27. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
Supply current, High-speed mode (EN=1,  
PMODE=1)  
200  
μA  
IDDLS  
VAIN  
VAIO  
VH  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
VSS – 0.3  
20  
VDD  
20  
μA  
V
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
Analog comparator initialization delay2  
80  
250  
600  
40  
ns  
μs  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
29  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 27. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
IDAC6b  
INL  
Description  
Min.  
Typ.  
7
Max.  
Unit  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
6-bit DAC differential non-linearity  
μA  
–0.5  
–0.3  
0.5  
0.3  
LSB3  
LSB  
DNL  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 9. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
30  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
Peripheral operating requirements and behaviors  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.3 12-bit DAC electrical characteristics  
3.6.3.1 12-bit DAC operating requirements  
Table 28. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
1.71  
1.13  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH.  
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
31  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
3.6.3.2 12-bit DAC operating behaviors  
Table 29. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-speed  
mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC set  
to 0x800, temperature range is across the full range of the device  
32  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 11. Typical INL error vs. digital code  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
33  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 12. Offset at half scale vs. temperature  
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
34  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
Peripheral operating requirements and behaviors  
3.8.1 SPI switching specifications  
The Serial Peripheral Interface (SPI) provides a synchronous serial bus with master  
and slave operations. Many of the transfer attributes are programmable. The following  
tables provide timing characteristics for classic SPI timing modes. See the SPI chapter  
of the chip's Reference Manual for information about the modified transfer formats  
used for communicating with slower peripheral devices.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted,  
as well as input signal transitions of 3 ns and a 30 pF maximum load on all SPI pins.  
Table 30. SPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
Table 31. SPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
96  
0
ns  
ns  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
35  
Freescale Semiconductor, Inc.  
 
 
Peripheral operating requirements and behaviors  
Table 31. SPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
52  
Unit  
ns  
Note  
8
9
tv  
Data valid (after SPSCK edge)  
tHO  
tRI  
Data hold time (outputs)  
Rise time input  
0
ns  
10  
tperiph - 25  
ns  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
Fall time output  
36  
ns  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 13. SPI master mode timing (CPHA = 0)  
36  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
Peripheral operating requirements and behaviors  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 14. SPI master mode timing (CPHA = 1)  
Table 32. SPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
37  
Freescale Semiconductor, Inc.  
 
 
 
 
Peripheral operating requirements and behaviors  
Table 33. SPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. For SPI0 fperiph is the bus clock (fBUS). For SPI1 fperiph is the system clock (fSYS).  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 15. SPI slave mode timing (CPHA = 0)  
38  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
 
Peripheral operating requirements and behaviors  
SS  
(INPUT)  
4
2
12  
12  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
13  
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
8
6
7
MOSI  
(INPUT)  
MSB IN  
LSB IN  
NOTE: Not defined  
Figure 16. SPI slave mode timing (CPHA = 1)  
3.8.2 Inter-Integrated Circuit Interface (I2C) timing  
Table 34. I2C timing  
Characteristic  
Symbol  
Standard Mode  
Fast Mode  
Unit  
Minimum Maximum Minimum Maximum  
SCL Clock Frequency  
fSCL  
0
4
100  
0
4001  
kHz  
µs  
Hold time (repeated) START condition. tHD; STA  
After this period, the first clock pulse is  
generated.  
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
02  
2505  
3.453  
04  
1003, 6  
20 +0.1Cb  
20 +0.1Cb  
0.6  
0.92  
µs  
ns  
ns  
ns  
µs  
µs  
Data set-up time  
7
6
Rise time of SDA and SCL signals  
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
1000  
300  
300  
300  
tf  
tSU; STO  
tBUF  
4
Bus free time between STOP and  
START condition  
4.7  
1.3  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only achieved when using the High  
drive pins (see Voltage and current operating behaviors) or when using the Normal drive pins and VDD ≥ 2.7 V  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
39  
Freescale Semiconductor, Inc.  
 
 
Peripheral operating requirements and behaviors  
2. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
4. Input signal Slew = 10 ns and Output Load = 50 pF  
5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.  
6. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such  
a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax + tSU;  
DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is released.  
7. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 17. Timing definition for fast and standard mode devices on the I2C bus  
3.8.3 UART  
See General switching specifications.  
3.8.4 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks are  
driven) and slave mode (clocks are input). All timing is given for noninverted serial  
clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync  
(TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync  
have been inverted, all the timing remains valid by inverting the bit clock signal  
(BCLK) and/or the frame sync (FS) signal shown in the following figures.  
40  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
 
 
 
 
Peripheral operating requirements and behaviors  
3.8.4.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 35. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
15.5  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
19  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
26  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 18. I2S/SAI timing — master modes  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
41  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 36. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
10  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
33  
28  
ns  
ns  
ns  
ns  
ns  
10  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 19. I2S/SAI timing — slave modes  
3.8.4.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
42  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
Peripheral operating requirements and behaviors  
Table 37. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes  
(full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
250  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 20. I2S/SAI timing — master modes  
Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full  
voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.71  
250  
3.6  
V
S11  
ns  
Table continues on the next page...  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
43  
Freescale Semiconductor, Inc.  
Peripheral operating requirements and behaviors  
Table 38. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
(continued)  
Num.  
S12  
Characteristic  
Min.  
Max.  
55%  
Unit  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
30  
72  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 21. I2S/SAI timing — slave modes  
3.9 Human-machine interfaces (HMI)  
3.9.1 TSI electrical specifications  
Table 39. TSI electrical specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
TSI_RUNF  
Fixed power consumption in run mode  
100  
µA  
Table continues on the next page...  
44  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
Dimensions  
Table 39. TSI electrical specifications (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
TSI_RUNV  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to freescale.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
32-pin QFN  
Then use this document number  
98ASA00473D  
48-pin QFN  
64-pin LQFP  
98ASA00466D  
98ASS23234W  
5 Pinout  
5.1 KL16 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is  
responsible for selecting which ALT functionality is available on each pin.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
45  
Freescale Semiconductor, Inc.  
 
 
 
 
Pinout  
64  
48  
32  
QFN  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
UART1_TX  
UART1_RX  
ALT4  
ALT5  
ALT6  
I2C1_SDA  
I2C1_SCL  
ALT7  
LQFP QFN  
1
1
PTE0  
DISABLED  
PTE0  
SPI1_MISO  
SPI1_MOSI  
RTC_  
CLKOUT  
CMP0_OUT  
SPI1_MISO  
2
3
4
5
1
2
3
PTE1  
VDD  
DISABLED  
VDD  
PTE1  
VDD  
2
VSS  
VSS  
VSS  
3
PTE16  
ADC0_DP1/  
ADC0_SE1  
ADC0_DP1/  
ADC0_SE1  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
SPI0_MISO  
UART2_TX  
UART2_RX  
TPM_CLKIN0  
TPM_CLKIN1  
I2C0_SDA  
6
7
4
5
4
5
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
ADC0_DM1/  
ADC0_SE5a  
ADC0_DM1/  
ADC0_SE5a  
LPTMR0_  
ALT3  
ADC0_DP2/  
ADC0_SE2  
ADC0_DP2/  
ADC0_SE2  
SPI0_MISO  
SPI0_MOSI  
8
6
6
ADC0_DM2/  
ADC0_SE6a  
ADC0_DM2/  
ADC0_SE6a  
I2C0_SCL  
9
7
ADC0_DP0/  
ADC0_SE0  
ADC0_DP0/  
ADC0_SE0  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
UART0_TX  
UART0_RX  
UART2_TX  
UART2_RX  
10  
11  
12  
8
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
13  
14  
15  
16  
17  
9
7
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
VDDA  
VREFH  
VREFL  
VSSA  
10  
11  
12  
13  
8
PTE29  
CMP0_IN5/  
ADC0_SE4b  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
PTE30  
TPM0_CH2  
TPM0_CH3  
TPM_CLKIN0  
TPM_CLKIN1  
18  
14  
9
PTE30  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
ADC0_SE23/  
CMP0_IN4  
19  
20  
21  
22  
23  
24  
25  
26  
27  
15  
16  
17  
18  
19  
20  
21  
10  
11  
12  
13  
14  
PTE31  
PTE24  
PTE25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
DISABLED  
DISABLED  
DISABLED  
SWD_CLK  
DISABLED  
DISABLED  
SWD_DIO  
NMI_b  
PTE31  
PTE24  
PTE25  
PTA0  
PTA1  
PTA2  
PTA3  
PTA4  
PTA5  
TPM0_CH4  
TPM0_CH0  
TPM0_CH1  
TPM0_CH5  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
I2C0_SCL  
I2C0_SDA  
TSI0_CH1  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
TSI0_CH5  
SWD_CLK  
UART0_RX  
UART0_TX  
I2C1_SCL  
I2C1_SDA  
SWD_DIO  
NMI_b  
DISABLED  
I2S0_TX_  
BCLK  
28  
29  
30  
22  
15  
PTA12  
PTA13  
VDD  
DISABLED  
DISABLED  
VDD  
PTA12  
PTA13  
TPM1_CH0  
TPM1_CH1  
I2S0_TXD0  
I2S0_TX_FS  
VDD  
46  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Pinout  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP QFN  
QFN  
31  
32  
33  
23  
24  
25  
16  
17  
18  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
UART1_RX  
UART1_TX  
TPM_CLKIN0  
TPM_CLKIN1  
PTA19  
LPTMR0_  
ALT1  
34  
35  
26  
27  
19  
20  
PTA20  
RESET_b  
PTA20  
RESET_b  
PTB0/  
LLWU_P5  
ADC0_SE8/  
TSI0_CH0  
ADC0_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
I2C0_SCL  
I2C0_SDA  
I2C0_SCL  
I2C0_SDA  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
36  
37  
38  
28  
29  
30  
21  
PTB1  
PTB2  
PTB3  
ADC0_SE9/  
TSI0_CH6  
ADC0_SE9/  
TSI0_CH6  
PTB1  
PTB2  
PTB3  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
39  
40  
41  
31  
32  
PTB16  
PTB17  
PTB18  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
TSI0_CH9  
TSI0_CH10  
TSI0_CH11  
PTB16  
PTB17  
PTB18  
SPI1_MOSI  
SPI1_MISO  
UART0_RX  
UART0_TX  
TPM2_CH0  
TPM_CLKIN0 SPI1_MISO  
TPM_CLKIN1 SPI1_MOSI  
I2S0_TX_  
BCLK  
42  
43  
PTB19  
PTC0  
TSI0_CH12  
TSI0_CH12  
PTB19  
PTC0  
TPM2_CH1  
EXTRG_IN  
I2S0_TX_FS  
CMP0_OUT  
33  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
I2S0_TXD0  
I2S0_TXD0  
44  
34  
22  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6/  
RTC_CLKIN  
I2C1_SCL  
I2C1_SDA  
TPM0_CH0  
TPM0_CH1  
45  
46  
35  
36  
23  
24  
PTC2  
ADC0_SE11/  
TSI0_CH15  
ADC0_SE11/  
TSI0_CH15  
PTC2  
I2S0_TX_FS  
PTC3/  
LLWU_P7  
DISABLED  
PTC3/  
LLWU_P7  
UART1_RX  
UART1_TX  
TPM0_CH2  
CLKOUT  
I2S0_TX_  
BCLK  
47  
48  
49  
37  
25  
VSS  
VDD  
VSS  
VSS  
VDD  
VDD  
PTC4/  
LLWU_P8  
DISABLED  
PTC4/  
LLWU_P8  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
TPM0_CH3  
I2S0_RXD0  
I2S0_MCLK  
50  
51  
38  
39  
26  
27  
PTC5/  
LLWU_P9  
DISABLED  
CMP0_IN0  
PTC5/  
LLWU_P9  
LPTMR0_  
ALT2  
CMP0_OUT  
I2S0_MCLK  
PTC6/  
LLWU_P10  
CMP0_IN0  
PTC6/  
LLWU_P10  
EXTRG_IN  
I2S0_RX_  
BCLK  
SPI0_MISO  
SPI0_MOSI  
52  
53  
54  
40  
28  
PTC7  
PTC8  
PTC9  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
CMP0_IN1  
CMP0_IN2  
CMP0_IN3  
PTC7  
PTC8  
PTC9  
SPI0_MISO  
I2C0_SCL  
I2C0_SDA  
I2S0_RX_FS  
I2S0_MCLK  
TPM0_CH4  
TPM0_CH5  
I2S0_RX_  
BCLK  
55  
56  
57  
58  
59  
41  
42  
43  
PTC10  
PTC11  
PTD0  
PTD1  
PTD2  
DISABLED  
DISABLED  
DISABLED  
ADC0_SE5b  
DISABLED  
PTC10  
PTC11  
PTD0  
PTD1  
PTD2  
I2C1_SCL  
I2C1_SDA  
SPI0_PCS0  
SPI0_SCK  
SPI0_MOSI  
I2S0_RX_FS  
I2S0_RXD0  
TPM0_CH0  
TPM0_CH1  
TPM0_CH2  
ADC0_SE5b  
UART2_RX  
SPI0_MISO  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
47  
Freescale Semiconductor, Inc.  
Pinout  
64  
48  
32  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
LQFP QFN  
QFN  
60  
61  
44  
45  
PTD3  
DISABLED  
DISABLED  
PTD3  
SPI0_MISO  
SPI1_PCS0  
UART2_TX  
UART2_RX  
TPM0_CH3  
TPM0_CH4  
SPI0_MOSI  
29  
PTD4/  
PTD4/  
LLWU_P14  
LLWU_P14  
62  
63  
46  
47  
30  
31  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
SPI1_SCK  
UART2_TX  
UART0_RX  
TPM0_CH5  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
SPI1_MOSI  
SPI1_MISO  
SPI1_MOSI  
64  
48  
32  
PTD7  
DISABLED  
PTD7  
SPI1_MISO  
UART0_TX  
5.2 KL16 pinouts  
The following figures show the pinout diagrams for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see KL16 Signal Multiplexing and Pin Assignments.  
48  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
Pinout  
PTE0  
PTE1  
1
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
VDD  
2
VSS  
VDD  
3
PTC3/LLWU_P7  
PTC2  
VSS  
4
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
VREFH  
VREFL  
VSSA  
5
PTC1/LLWU_P6/RTC_CLKIN  
6
PTC0  
7
PTB19  
PTB18  
PTB17  
PTB16  
PTB3  
8
9
10  
11  
12  
13  
14  
15  
16  
PTB2  
PTB1  
PTB0/LLWU_P5  
PTA20  
PTA19  
Figure 22. KL16 64-pin LQFP pinout diagram  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
49  
Freescale Semiconductor, Inc.  
Pinout  
PTC3/LLWU_P7  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
VDD  
VSS  
1
2
PTC2  
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTE17  
PTE18  
PTE19  
PTE20  
PTE21  
VDDA  
VREFH  
VREFL  
VSSA  
3
PTC0  
4
PTB17  
PTB16  
PTB3  
5
6
7
PTB2  
8
PTB1  
9
PTB0/LLWU_P5  
PTA20  
10  
11  
12  
PTA19  
Figure 23. KL16 48-pin QFN pinout diagram  
50  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
Ordering parts  
PTC3/LLWU_P7  
PTC2  
PTE0  
PTE1  
24  
23  
22  
21  
20  
19  
1
2
3
4
5
6
7
8
PTC1/LLWU_P6/RTC_CLKIN  
PTE16  
PTE17  
PTE18  
PTE19  
VDDA  
VSSA  
PTB1  
PTB0/LLWU_P5  
PTA20  
PTA19  
18  
17  
PTA18  
Figure 24. KL16 32-pin QFN pinout diagram  
6 Ordering parts  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable  
part numbers for this device, go to freescale.com and perform a part number search  
for the following device numbers: PKL16 and MKL16  
7 Part identification  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
51  
Freescale Semiconductor, Inc.  
 
 
 
Part identification  
7.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
7.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
7.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL16  
• Z = Cortex-M0+  
FFF  
Program flash memory size  
• 32 = 32 KB  
• 64 = 64 KB  
• 128 = 128 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• FM = 32 QFN (5 mm x 5 mm)  
• FT = 48 QFN (7 mm x 7 mm)  
• LH = 64 LQFP (10 mm x 10 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• R = Tape and reel  
7.4 Example  
This is an example part number:  
MKL16Z128VFM4  
52  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
 
 
 
Terminology and guidelines  
8 Terminology and guidelines  
8.1 Definition: Operating requirement  
An operating requirement is a specified value or range of values for a technical  
characteristic that you must guarantee during operation to avoid incorrect operation  
and possibly decreasing the useful life of the chip.  
8.1.1 Example  
This is an example of an operating requirement:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
0.9  
1.1  
V
8.2 Definition: Operating behavior  
Unless otherwise specified, an operating behavior is a specified value or range of  
values for a technical characteristic that are guaranteed during operation if you meet  
the operating requirements and any other specified conditions.  
8.3 Definition: Attribute  
An attribute is a specified value or range of values for a technical characteristic that  
are guaranteed, regardless of whether you meet the operating requirements.  
8.3.1 Example  
This is an example of an attribute:  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN_D  
Input capacitance:  
digital pins  
7
pF  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
53  
Freescale Semiconductor, Inc.  
 
 
 
 
Terminology and guidelines  
8.4 Definition: Rating  
A rating is a minimum or maximum value of a technical characteristic that, if exceeded,  
may cause permanent chip failure:  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
8.4.1 Example  
This is an example of an operating rating:  
Symbol  
Description  
Min.  
Max.  
Unit  
VDD  
1.0 V core supply  
voltage  
–0.3  
1.2  
V
8.5 Result of exceeding a rating  
40  
30  
The likelihood of permanent chip failure increases rapidly as  
soon as a characteristic begins to exceed one of its operating ratings.  
20  
10  
0
Operating rating  
Measured characteristic  
54  
Freescale Semiconductor, Inc.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
 
 
 
Terminology and guidelines  
8.6 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
8.7 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
8.8 Definition: Typical value  
A typical value is a specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Given the typical manufacturing process, is representative of that characteristic  
during operation when you meet the typical-value conditions or other specified  
conditions  
Typical values are provided as design guidelines and are neither tested nor guaranteed.  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
55  
Freescale Semiconductor, Inc.  
 
 
Terminology and guidelines  
8.8.1 Example 1  
This is an example of an operating behavior that includes a typical value:  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IWP  
Digital I/O weak  
pullup/pulldown  
current  
10  
70  
130  
µA  
8.8.2 Example 2  
This is an example of a chart that shows typical values for various voltage and  
temperature conditions:  
5000  
4500  
4000  
TJ  
3500  
150 °C  
3000  
105 °C  
2500  
25 °C  
2000  
–40 °C  
1500  
1000  
500  
0
0.90  
0.95  
1.00  
1.05  
1.10  
VDD (V)  
8.9 Typical value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
56  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
Freescale Semiconductor, Inc.  
 
Revision history  
Table 40. Typical value conditions  
Symbol  
TA  
Description  
Value  
25  
Unit  
°C  
Ambient temperature  
3.3 V supply voltage  
VDD  
3.3  
V
9 Revision history  
The following table provides a revision history for this document.  
Table 41. Revision history  
Rev. No.  
Date  
3/2014  
5/2014  
Substantial Changes  
3
4
• Updated the front page and restructured the chapters  
• Updated Power consumption operating behaviors  
• Updated Definition: Operating behavior  
5
08/2014  
• Updated related source in the front page  
• Updated Power consumption operating behaviors  
Kinetis KL16 Sub-Family, Rev5 08/2014.  
57  
Freescale Semiconductor, Inc.  
 
Information in this document is provided solely to enable system and  
software implementers to use Freescale products. There are no express  
or implied copyright licenses granted hereunder to design or fabricate  
any integrated circuits based on the information in this document.  
Freescale reserves the right to make changes without further notice to  
any products herein.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale makes no warranty, representation, or guarantee regarding  
the suitability of its products for any particular purpose, nor does  
Freescale assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability,  
including without limitation consequential or incidental damages.  
“Typical” parameters that may be provided in Freescale data sheets  
and/or specifications can and do vary in different applications, and  
actual performance may vary over time. All operating parameters,  
including “typicals,” must be validated for each customer application by  
customer's technical experts. Freescale does not convey any license  
under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found  
at the following address: freescale.com/SalesTermsandConditions.  
Freescale, Freescale logo, Energy Efficient Solutions logo, and Kinetis  
are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm.  
Off. All other product or service names are the property of their  
respective owners. ARM and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights  
reserved.  
© 2012-2014 Freescale Semiconductor, Inc.  
Document Number KL16P64M48SF5  
Revision 5 08/2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY