MKL28Z512VDC72 [NXP]

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM;
MKL28Z512VDC72
型号: MKL28Z512VDC72
厂家: NXP    NXP
描述:

Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM

静态存储器
文件: 总83页 (文件大小:1216K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
Data Sheet: Technical Data  
MKL28Z512Vxx7  
Rev. 3, 09/2020  
Kinetis KL28Zxxx with 512 KB  
MKL28Z512Vxx7  
Flash and 128 KB SRAM  
72 MHz Cortex-M0+ based Microcontroller  
Supports ultra low power Arm based microcontroller with crystal-  
less USB feature, large flash and RAM, evolutionary low-power  
peripherals and security features. This is an ideal solution for  
Sensor Hub applications, Bluetooth, Wi-Fi connectivity, Smart  
Energy, Internet of Things, and Edge and Concentrator. This  
device offers:  
121 XFBGA  
8 x 8 x 0.43 mm Pitch 14 x 14 x 1.4 mm Pitch  
0.65 mm 0.5 mm  
100 LQFP  
• 128KB SRAM for data processing and connectivity stack  
• Ultra low dynamic and static power consumption with smart  
peripherals for low power applications  
• Advanced LPI2C and LPSPI supporting asynchronous  
DMA master data transition  
• FlexIO for flexible and high performance interfaces  
• Crypto acceleration with AES/DES/3DES/MD5/SHA and TRNG  
• USB FS 2.0 device operation without need of external crystal  
Core  
• Arm® Cortex®-M0+ cores up to 72 MHz in Normal  
mode and 96 MHz in High Speed mode  
Communication interfaces  
• Three 16-bit Low Power Serial Peripheral Interface  
(LPSPI) modules  
• One EMVSIM module supporting EMV version 4.3,  
ISO7816  
• Three LPUART modules  
• Three LPI2C modules supporting up to 5 Mbit/s  
• One SAI module supporting I2S  
• One FlexIO module emulating UART, SPI, I2S,  
camera interface, and Motorola 68K/Intel 8080 bus  
• USB FS 2.0 device operation without need of  
external crystal  
Memories  
• Up to 512 KB program flash memory  
• 128 KB SRAM  
• 32 KB ROM with built-in bootloader  
System peripherals  
• 8-channel DMA controller  
• Independent clocked Watchdog  
• Low-leakage wakeup unit  
• SWD debug interface and Micro Trace Buffer  
• Bit Manipulation Engine  
• Memory Mapped Divide and Square Root module  
(MMDDVSQ)  
• Cyclic Redundancy Check (CRC) module  
• Nested Vector Interrupt Controller (NVIC) supports 32  
interrupt vectors  
• Additional peripheral interrupt support via Interrupt  
Multiplexer (INTMUX)  
Analog Modules  
• 16-bit, 24-channel SAR ADC with internal voltage  
reference  
• Two High-speed analog comparators each  
containing a 6-bit DAC and programmable reference  
input  
• One 12-bit DAC  
• 1.2 V and 2.1 V voltage references (Vref)  
Timers  
Clocks  
• One 6-channel Timer/PWM module  
• Two 2-channel Timer/PWM modules  
• Two low-power timers  
• System Clock Generator module that includes the  
following clock sources:  
• 48 to 60 MHz high accuracy fast internal  
reference clock (FIRC)  
• Two periodic interrupt timers  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• 32–40 kHz, or 3–32 MHz crystal oscillator  
• 1 kHz LPO clock  
• Secure Real time clock  
• 56-bit software time stamp timer at 1 MHz  
• 8/2 MHz slow internal reference clock (SIRC)  
• Peripheral Clock Control (PCC) module that  
supports asynchronous clocking and clock divide  
options for peripherals.  
Security and integrity modules  
• 80-bit unique identification number per chip  
• MMCAU supports acceleration of the DES, 3DES,  
AES, MD5, SHA-1, and SHA-256 algorithms  
• True Random Number Generator (TRNG)  
Human-machine interface  
• General-purpose input/output up to 97  
• Low-power hardware touch sensor interface (TSI)  
Operating Characteristics  
• Voltage range: 1.71 to 3.6 V  
• Temperature range: –40 to 105 °C  
NOTE  
The 121-pin packages for this product is not yet available. However, it is included in a  
Package Your Way program for Kinetis MCUs. Visit nxp.com/KPYW for more  
details.  
Ordering Information 1  
Part Number  
Memory  
Package  
IO and ADC channels  
GPIOs ADC  
Flash (KB)  
SRAM (KB)  
Pin count  
Package  
GPIOs  
(INT/HD)  
channels  
(SE/DP)  
MKL28Z512V  
LL7  
512  
512  
128  
128  
100  
121  
LQFP  
82  
97  
82/8  
27/4  
MKL28Z512V  
DC72  
XFBGA  
97/8  
27/4  
1. To confirm current availability of ordererable part numbers, go to http://www.nxp.com and perform a part number search.  
2. Package Your Way.  
Related Resources  
Type  
Selector  
Guide  
Description  
Resource  
Solution Advisor  
The NXP Solution Advisor is a web-based tool that features interactive  
application wizards and a dynamic product selector.  
Product Brief The Product Brief contains concise overview/summary information to  
enable quick evaluation of a device for design suitability.  
KL2XPB1  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
MKL28ZRM1  
MKL28Z512Vxx71  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for KINETIS_L_1N52N1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• 121-XFBGA:  
98ASA00595D1  
• 100-LQFP:  
98ASS23308W1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
WDOG  
Reset  
Timer  
Timer  
Timer  
Timer  
SPI  
UART  
Clocks/  
Oscillators  
SMC  
XTAL  
OSC  
ANALOG  
Temp  
SCG  
TSTMR  
0
TPM  
2
LPTMR LPTMR WDOG LPSPI  
LPUART  
2
PMC  
CRC  
1
0
0
2
ADC  
Inputs  
TSI0  
TSI  
ADC0  
DAC0  
CMP0  
CMP1  
FIRC  
PLL  
SIRC  
Monitor  
PCC  
LPI2C  
2
I2C  
DAC  
Outputs  
VREF  
LPO1K  
LLWU  
0
LPIT  
0
SCG  
SRTC  
RCM  
SIM  
TRG  
MUX  
SAI0  
Audio  
GPIO  
Reference  
Inputs  
RGPIO  
DMA0  
8-channel  
USB  
MCM  
s2  
s1  
MSCM  
USBVREG  
DMA  
Requests  
CAU  
DMAMux  
m1  
0
Core  
SRAM  
128KB  
DVSQ  
IO Port  
Cortex-M0+  
Platform  
AXBS  
m0  
MTB  
DWT  
CTI  
Cortex-M0+  
ROM  
32KB  
s0  
s3  
System  
Interrupts  
m2  
SYSTICK NVIC  
SWD  
SWD-DP  
FTFA  
DBG  
CTI  
MPU  
AWIC  
MDM-AP  
AHB-AP0  
FLASH 0  
256KB  
FMC  
FLASH 1  
256KB  
M0+ DBG  
AIPS1  
AHB  
EMVSIM  
EMVSIM  
TPM  
0/1  
TRNG  
Timer  
SPI  
USB  
SRAM  
LPSPI  
0/1  
PortA  
PortB  
PortC  
Port A  
Port B  
Port C  
PCC  
LPUART  
0/1  
UART  
I2C  
AIPS0  
TRG  
MUX  
LPI2C  
0/1  
FlexIO  
8/16-bit  
Parallel I/F  
FlexIO0  
PortD  
PortE  
Port D  
Port E  
1x  
USB  
USB0  
LEGEND:  
Synchronizer  
Bus Components  
Platform Domain  
CM0+ Platform  
Analog Domain  
AHB32  
S
AIPS0 IPBUS  
AIPS1 IPBUS  
Core Memory-  
Mapped Module  
DAP Reference  
sec  
exsc  
Memory protection  
Gaskets  
Other Module such  
as test/analog  
Figure 1. KL28Z block diagram  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
3
NXP Semiconductors  
Table of Contents  
1
2
Ratings..................................................................................5  
3.8 Communication interfaces............................................. 43  
3.8.1 EMV SIM specifications.....................................43  
3.8.2 USB electrical specifications............................. 48  
3.8.3 USB VREG electrical specifications.................. 49  
3.8.4 LPSPI switching specifications.......................... 49  
3.8.5 LPI2C.................................................................54  
3.8.6 LPUART............................................................ 54  
3.8.7 I2S/SAI switching specifications........................ 55  
3.9 Human-machine interfaces (HMI)..................................59  
3.9.1 TSI electrical specifications............................... 59  
Dimensions........................................................................... 59  
4.1 Obtaining package dimensions......................................59  
Pinouts and Packaging......................................................... 60  
5.1 KL28Z Signal Multiplexing and Pin Assignments.......... 60  
5.2 KL28Z Pinouts............................................................... 65  
Ordering parts....................................................................... 67  
6.1 Determining valid orderable parts..................................67  
Design considerations...........................................................68  
7.1 Hardware design considerations................................... 68  
7.1.1 Printed circuit board recommendations............. 68  
7.1.2 Power delivery system.......................................68  
7.1.3 Analog design....................................................69  
7.1.4 Digital design.....................................................70  
7.1.5 Crystal oscillator................................................ 74  
7.2 Software considerations................................................ 75  
Part identification...................................................................76  
8.1 Description.....................................................................76  
8.2 Format........................................................................... 76  
8.3 Fields............................................................................. 76  
8.4 Example.........................................................................77  
Terminology and guidelines.................................................. 77  
9.1 Definitions......................................................................77  
9.2 Examples.......................................................................78  
9.3 Typical-value conditions................................................ 78  
9.4 Relationship between ratings and operating  
1.1 Thermal handling ratings............................................... 5  
1.2 Moisture handling ratings...............................................5  
1.3 ESD handling ratings.....................................................5  
1.4 Voltage and current operating ratings............................5  
General................................................................................. 6  
2.1 AC electrical characteristics...........................................6  
2.2 Nonswitching electrical specifications............................7  
2.2.1 Voltage and current operating requirements..... 7  
2.2.2 LVD, HVD, and POR operating requirements... 7  
2.2.3 Voltage and current operating behaviors...........8  
2.2.4 Power mode transition operating behaviors...... 9  
2.2.5 Power consumption operating behaviors.......... 10  
2.2.6 EMC radiated emissions operating behaviors... 19  
2.2.7 Designing with radiated emissions in mind........20  
2.2.8 Capacitance attributes.......................................20  
2.3 Switching specifications.................................................20  
2.3.1 Device clock specifications................................20  
2.3.2 General switching specifications....................... 21  
2.4 Thermal specifications...................................................23  
2.4.1 Thermal operating requirements....................... 23  
2.4.2 Thermal attributes..............................................23  
Peripheral operating requirements and behaviors................ 24  
3.1 Core modules................................................................ 24  
3.1.1 SWD electricals ................................................ 24  
3.2 System modules............................................................ 26  
3.3 Clock modules............................................................... 26  
3.3.1 System Clock Generation (SCG) specifications26  
3.3.2 Oscillator electrical specifications......................28  
3.4 Memories and memory interfaces................................. 30  
3.4.1 Flash electrical specifications............................ 30  
3.5 Security and integrity modules.......................................32  
3.6 Analog............................................................................32  
3.6.1 ADC electrical specifications............................. 32  
3.6.2 Voltage reference electrical specifications........ 36  
3.6.3 CMP and 6-bit DAC electrical specifications..... 38  
3.6.4 12-bit DAC electrical characteristics..................40  
3.7 Timers............................................................................43  
4
5
6
7
3
8
9
requirements..................................................................79  
9.5 Guidelines for ratings and operating requirements........79  
10 Revision History.................................................................... 80  
4
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Ratings  
1 Ratings  
1.1 Thermal handling ratings  
Table 1. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.2 Moisture handling ratings  
Table 2. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.3 ESD handling ratings  
Table 3. ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
–2000  
–500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 105 °C  
–100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
5
NXP Semiconductors  
General  
1.4 Voltage and current operating ratings  
Table 4. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
USB_DP input voltage  
USB_DM input voltage  
USB regulator input  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
V
V
V
V
VUSB_DP  
VUSB_DM  
VREGIN  
–0.3  
3.63  
–0.3  
6.0  
2 General  
2.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 2. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
6
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
2.2 Nonswitching electrical specifications  
2.2.1 Voltage and current operating requirements  
Table 5. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
3.6  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.71 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
-5  
V
IO pin negative DC injection current — single pin  
• VIN < VSS-0.3V  
1
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
-25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
2
VDD voltage required to retain RAM  
1. All I/O pins are internally clamped to VSS through a ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS-0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
2. Open drain outputs must be pulled to VDD  
.
2.2.2 LVD, HVD, and POR operating requirements  
Table 6. VDD supply LVD, HVD, and POR operating requirements  
Symbol Description  
VPOR Falling VDD POR detect voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
0.8  
1.1  
1.5  
V
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
7
NXP Semiconductors  
General  
Table 6. VDD supply LVD, HVD, and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV = 01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
60  
2.78  
2.88  
2.98  
3.08  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
1
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
VHVDL  
VHVDH  
VHYSH  
High voltage detect threshold — low range  
(HVDV=0) — Rising  
3.4  
3.35  
3.65  
3.6  
3.5  
3.45  
3.75  
3.7  
50  
3.6  
3.55  
3.85  
3.8  
V
V
2
High voltage detect threshold — low range  
(HVDV=0) — Falling  
High voltage detect threshold — high range  
(HVDV=1) — Rising  
2
High voltage detect threshold — high range  
(HVDV=1) — Falling  
High voltage detect hysteresis — low range  
(HVDV=0)  
mV  
High voltage detect hysteresis — high range  
(HVDV=1)  
50  
1. Rising thresholds are falling threshold + hysteresis voltage  
2. The selection of high voltage detect trip voltage is controlled by PMC_HVDSC1[HVDV].  
8
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
2.2.3 Voltage and current operating behaviors  
Table 7. Voltage and current operating behaviors  
Symbol Description  
VOH Output high voltage — Normal drive pad  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
VDD – 0.5  
VDD – 0.5  
V
V
VOH  
Output high voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
1
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
0.5  
100  
1
V
V
IOLT  
IIN  
Output low current total for all ports  
mA  
μA  
Input leakage current (per pin) for full  
temperature range  
2
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
41  
μA  
μA  
2
2
Input leakage current (total all pins) for full  
temperature range  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Internal pullup resistors  
1
μA  
kΩ  
RPU  
20  
50  
3
1. PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high drive and normal drive capability  
selected by the associated PORTx_PCRn[DSE] control bit. All other GPIOs are normal drive only. PTD4, PTD5,  
PTD6, PTD7, PTE20, PTE21, PTE22, and PTE23 are also fast pins.  
2. Measured at VDD = 3.6 V  
3. Measured at VDD supply voltage = VDD min and Vinput = VSS  
2.2.4 Power mode transition operating behaviors  
All specifications in the following table assume this clock configuration in Run mode:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• SCG configured in FIRC mode; peripheral functional clocks from  
FIRCDIV3_CLK and USB clock from FIRCDIV1_CLK  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
9
NXP Semiconductors  
General  
Table 8. Power mode transition operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the  
point VDD reaches 1.8 V to execution of the first  
instruction across the operating temperature  
range of the chip.  
300  
μs  
1
• VLLS0 RUN  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS3 RUN  
• LLS2 RUN  
• VLPS RUN  
• STOP RUN  
188  
188  
125  
125  
5.5  
5.5  
5.5  
5.5  
193  
193  
130  
130  
6.1  
6.1  
6.1  
6.1  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11).  
2.2.5 Power consumption operating behaviors  
NOTE  
The values in the following table are based on  
characterization data with a few samples.  
NOTE  
The actual power consumption measured in the related  
condition, with certain peripherals running, is the sum of  
related low power current consumption of the device listed in  
Table 9 and the related low power mode peripheral adders in  
Table 10.  
10  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
NOTE  
The maximum values represent characterized results  
equivalent to the mean plus three times the standard  
deviation (mean + 3σ).  
Table 9. Power consumption operating behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_HSRUN High speed run mode current at 96  
MHz - all peripheral clocks disabled,  
code executing from flash, while(1)  
loop  
12.6  
12.8  
17.4  
17.6  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
IDD_HSRUN High speed run mode current at 96  
MHz - all peripheral clocks enabled,  
code executing from flash, while(1)  
loop  
3
15.5  
15.7  
20.4  
20.6  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
IDD_RUN  
IDD_RUN  
IDD_RUN  
IDD_RUN  
Run mode current at 72 MHz - all  
peripheral clocks disabled, code  
executing from flash, while(1) loop  
4
5
6
7
• at 1.8 V  
• at 3.0 V  
9.4  
9.6  
13.6  
13.8  
mA  
mA  
Run mode current at 48 Mhz - all  
peripheral clocks disabled, code  
executing from flash, while(1) loop  
7.3  
7.4  
11.4  
11.5  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
Run mode current at 72 MHz - all  
peripheral clocks enabled, code  
executing from flash, while(1) loop  
11.6  
11.7  
15.9  
16.0  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
Run mode current at 48 Mhz - all  
peripheral clocks enabled, code  
executing from flash, while(1) loop  
8.9  
9.1  
13.1  
13.3  
mA  
mA  
• at 1.8 V  
• at 3.0 V  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
11  
NXP Semiconductors  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_WAIT  
IDD_WAIT  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
IDD_VLPR  
Wait mode high frequency current at 72  
MHz, at 3.0 V - all peripheral clocks  
disabled, while(1) loop  
7.0  
9.0  
mA  
4
Wait mode current at 3.0 V at 48 Mhz  
— all peripheral clocks disabled,  
while(1) loop  
5.7  
10.4  
mA  
μA  
μA  
μA  
μA  
μA  
μA  
5
8
Very-low-power run mode current at  
3.0 V — all peripheral clocks enabled  
at 4 MHz, while(1) loop  
483.7  
557.6  
400.3  
415.2  
285.9  
415.6  
1011.7  
1720.2  
926.5  
Very-low-power run mode current at  
3.0 V — all peripheral clocks enabled  
at 8 MHz, while(1) loop  
9
Very-low-power run mode current at  
3.0 V — all peripheral clocks disabled  
at 4 MHz, while(1) loop  
10  
11  
10  
11  
Very-low-power run mode current at  
3.0 V — all peripheral clocks disabled  
at 8 MHz, while(1) loop  
941.1  
IDD_VLPW Very-low-power wait mode current at  
3.0 V — all peripheral clocks disabled  
at 4 MHz, while(1) loop  
1145.6  
1498.7  
IDD_VLPW Very-low-power wait mode current at  
3.0 V — all peripheral clocks disabled  
at 8 MHz, while(1) loop  
IDD_STOP Stop mode current at 3.0 V  
• -40 to 25 °C  
264.5  
287.0  
325.3  
374.7  
496.7  
320.5  
356.1  
445.4  
590.8  
952.3  
μA  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
IDD_VLPS  
Very-low-power stop mode current at  
3.0 V  
4.2  
16.4  
35.9  
μA  
• -40 to 25 °C  
11.0  
24.0  
44.0  
93.4  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
84.5  
156.2  
300.2  
IDD_LLS2  
Low-leakage stop mode 2 current at  
3.0 V  
2.7  
4.7  
5.4  
μA  
• -40 to 25 °C  
10.6  
22.7  
49.0  
• at 50 °C  
• at 70 °C  
8.6  
14.7  
Table continues on the next page...  
12  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• at 85 °C  
30.4  
88.6  
• at 105 °C  
IDD_LLS3  
Low-leakage stop mode 3 current at  
3.0 V  
3.0  
5.9  
5.9  
14.5  
32.0  
65.2  
122.0  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
11.4  
19.7  
40.9  
IDD_VLLS3 Very-low-leakage stop mode 3 current  
at 3.0 V  
2.2  
4.6  
5.1  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
10.9  
24.4  
44.8  
91.0  
9.0  
15.9  
33.1  
IDD_VLLS2 Very-low-leakage stop mode 2 current  
at 3.0 V  
1.8  
3.3  
3.4  
6.8  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
6.1  
14.5  
26.4  
54.4  
10.4  
21.6  
IDD_VLLS1 Very-low-leakage stop mode 1 current  
at 3.0V  
0.65  
1.1  
2.1  
3.6  
8.5  
0.88  
1.6  
μA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
3.3  
21.0  
32.2  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0  
V
372.0  
768.6  
1734  
3291  
8025  
598  
1331  
nA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
3038  
20575  
27560  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
13  
NXP Semiconductors  
General  
Table 9. Power consumption operating behaviors (continued)  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• at 85 °C  
• at 105 °C  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
12  
(SMC_STOPCTRL[PORPO] = 1) at 3.0  
V
94.1  
480.9  
1416  
2970  
7642  
311  
1024  
nA  
• -40 to 25 °C  
• at 50 °C  
• at 70 °C  
• at 85 °C  
• at 105 °C  
2760  
19574  
27325  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and  
SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
3. 96 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_HCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz  
from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
4. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks disabled by clearing all xxDIV3, xxDIV2, and xxDIV1 in SCG_SOSCDIV and  
SCG_SPLLDIV registers. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
5. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks disabled by clearing  
all xxDIV3, xxDIV2, and xxDIV1 in SCG_FIRCDIV register. PLL, SOSC, and SIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].  
6. 72 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as System PLL mode (SCG_RCCR[SCS]=0110), PLL clock source is SOSC from external 8 MHz  
crystal. All peripheral functional clocks except USB = 24 MHz from SPLLDIV3_CLK. USB functional clock = 48 MHz  
from SPLLDIV1_CLK. FIRC and SIRC disabled by clearing SCG_FIRCCSR[FIRCEN] and SCG_SIRCCSR[SIRCEN].  
7. 48 MHz core and system clock (DIVCORE_CLK), 24 MHz bus/slow clock(DIVSLOW_CLK), and 24 MHz flash clock.  
SCG configured as FIRC 48 MHz mode (SCG_RCCR[SCS]=0011). All peripheral functional clocks except USB = 24  
MHz from FIRCDIV3_CLK. USB functional clock = 48 MHz from FIRCDIV1_CLK. PLL, SOSC, and SIRC disabled by  
clearing SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_SIRCCSR[SIRCEN].  
8. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from  
SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN],  
SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
9. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks except USB = 1M Hz from  
SIRCDIV3_CLK. USB clock disabled. PLL, SOSC, and FIRC disabled by clearing SCG_SPLLCSR[SPLLEN],  
SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
10. 4 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all  
xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
11. 8 MHz core and system clock (DIVCORE_CLK), 1 MHz bus/slow clock(DIVSLOW_CLK), and 1 MHz flash clock. SCG  
configured as SIRC 8 MHz mode (SCG_VCCR[SCS]=0010). All peripheral functional clocks disabled by clearing all  
14  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
xxDIV3, xxDIV2, and xxDIV1 in SCG_SIRCDIV register. PLL, SOSC, and FIRC disabled by clearing  
SCG_SPLLCSR[SPLLEN], SCG_SOSCCSR[SOSCEN], and SCG_FIRCCSR[FIRCEN].  
12. No brownout  
Table 10. Low power mode peripheral adders — typical value  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IEREFSTEN8MHz  
External 8 MHz crystal clock adder with 402.9 462.1 477.5  
System OSC. Measured by entering  
VLPS mode with the crystal enabled  
(SCG_SOSCCFG[RANGE] = 10,  
492  
506.2 530.4  
uA  
SCG_SOSCCFG[HGO] = 0,  
SCG_SOSCCFG[EREFS] = 1, and  
SC2P/SC4P/SC8P = 0).  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder  
with System OSC by means of  
SCG_SOSCCFG[RANGE] = 01,  
SCG_SOSCCFG[HGO] = 0,  
SCG_SOSCCFG[EREFS] = 1, and  
SC2P/SC4P/SC8P = 0. Measured by  
entering all the following modes with  
the crystal enabled:  
• VLLS1  
nA  
373.9 539.2 612.3 644.9 523.7 1000  
568.4 552.6 650.8 757.9 995.6 1400  
582.8 565.0 615.5 797.1 968.5 1700  
472.4 635.2 776.9 425.6 1500 2800  
528.0 534.1 636.6 9600 20300 40900  
• VLLS3  
• LLS3  
• VLPS  
• STOP  
ILPTMR  
LPTMR peripheral adder measured by 151.0  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO clock.  
7.7  
21.8  
19.9  
7.6  
174.0 31.0  
nA  
µA  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and  
a single external input for compare.  
Includes 6-bit DAC power  
18.8  
19.6  
20.0  
20.4  
20.5  
consumption.  
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode and  
the RTC ALARM set for 1 minute.  
Includes selected clock source power  
consumption.  
• OSC32KCLK (32KHz external  
crystal)  
• LPO (internal 1K Hz Low Power  
Oscillator)  
116.0 1400 1400 1500 1500 120.0  
35.0 1400 1400 1600 1400 120.0  
nA  
ILPUART  
LPUART peripheral adder measured  
by placing the device in STOP mode  
with selected clock source waiting for  
RX data at 115200 baud rate. Includes  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
15  
NXP Semiconductors  
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
selected clock source power  
consumption.  
85.7  
89.4  
87.3  
88.4  
85.3  
86.6  
µA  
41.2  
43.5  
38.7  
36.8  
39.6  
37.0  
• Slow IRC clock from SCG (8  
MHz internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
ILPSPI  
LPSPI peripheral adder measured by  
placing the device in VLPS mode with  
selected clock source, LPSPI is  
configured as master mode with bit  
rate of 4 Mbps. Includes selected clock  
source power consumption.  
69.4  
66.7  
65.9  
66.1  
65.8  
66.0  
µA  
µA  
• Slow IRC clock from SCG (8  
MHz internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
431.9 489.9 503.5 518.6 533.0 557.0  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP mode with  
selected clock source configured for  
output compare generating 100 Hz  
clock signal. No load is placed on the  
I/O generating the clock signal.  
Includes selected clock source and I/O  
switching currents.  
80.7  
35.5  
84.2  
37.2  
84.2  
37.3  
84.4  
37.1  
84.8  
37.7  
86.3  
37.7  
• Slow IRC clock from SCG (8  
MHz internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
ILPI2C  
LPI2C peripheral adder measured by  
placing the device in VLPS mode with  
selected clock source, LPI2C is  
configured as master, and bit rate is  
400 Kbps. Includes selected clock  
source power consumption.  
• Slow IRC clock from SCG (8  
MHz internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
µA  
69.7  
66.7  
66.9  
67.6  
68.2  
68.2  
582.9 597.9 610.8 623.8 637.0 660.2  
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPS mode.  
• Bandgap buffer disabled  
µA  
µA  
96.8  
95.4  
96.4  
98.2  
98.2  
98.5  
137.5 129.6 133.0 135.5 136.9 139.6  
372.9 380.5 384.0 388.3 392.2 394.6  
• Bandgap buffer enabled  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP mode.  
ADC is configured for low power mode  
using the ADC asynchronous clock  
(ADACK) and continuous conversions.  
Table continues on the next page...  
16  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
General  
Table 10. Low power mode peripheral adders — typical value (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
-40  
25  
50  
70  
85  
105  
IWDOG  
WDOG peripheral adder measured by  
placing the device in STOP mode,  
WDOG is configured to time out at 1  
second. Includes selected clock source  
power consumption.  
µA  
68.8  
11.2  
56.0  
68.5  
10.1  
57.1  
69.2  
10.1  
58.6  
69.9  
10.2  
58.5  
71.7  
10.5  
58.6  
72.6  
10.7  
60.0  
• Slow IRC clock from SCG (8  
MHz internal reference clock)  
• OSCERCLK (8 MHz external  
crystal)  
• LPO (internal 1 kHz Lower  
Power Oscillator)  
ISIRC_8MHz  
SIRC adder when SIRC is configured  
to 8 MHz. Measured by entering VLPS  
mode with 8 MHz IRC enabled, and  
SIRCDIV1, SIRCDIV2, SIRCDIV3  
=000.  
67.2  
22.3  
63.0  
21.2  
63.3  
21.4  
63.2  
21.5  
63.3  
21.7  
63.6  
21.4  
µA  
µA  
ISIRC_2MHz  
SIRC adder when SIRC is configured  
to 2 MHz. Measured by entering STOP  
or VLPS mode with 2 MHz IRC  
enabled, and SIRCDIV1, SIRCDIV2,  
SIRCDIV3 =000.  
2.2.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• SCG is configured as SPLL mode with SOSC as the clock source for RUN mode  
current measurement, and as SIRC mode for VLPR mode current measurement  
• USB regulator disabled  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
• For the ALLON curve, all peripheral clocks are enabled as specified in notes of  
Power consumption operating behaviors.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
17  
NXP Semiconductors  
General  
Figure 3. Run mode supply current vs. core frequency  
18  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
Figure 4. VLPR mode supply current vs. core frequency  
2.2.6 EMC radiated emissions operating behaviors  
Table 11. EMC radiated emissions operating behaviors  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
18  
21  
21  
24  
L
dBμV  
dBμV  
dBμV  
dBμV  
1, 2  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
2, 3  
1. Determined according to IEC Standard 61967-2 (and SAE J1752/3), Integrated Circuits - Measurement of  
Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code.  
The reported emission level is the value of the maximum measured emission, rounded up to the next whole number,  
from among the measured orientations in each frequency range.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
19  
NXP Semiconductors  
General  
2. VDD = 3.3 V, VREGIN= 5V, TA = 25 °C, fOSC = 8 MHz (crystal), fSYS_CORE = 96 MHz, fBUS = 24 MHz  
3. IEC/SAE level maximum: L≤24dB mV  
2.2.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com.  
2. Perform a keyword search for “EMC design.”  
2.2.8 Capacitance attributes  
Table 12. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
2.3 Switching specifications  
2.3.1 Device clock specifications  
Table 13. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Run mode1  
Normal run mode  
fSYS  
System and core clock (DIVCORE_CLK)  
96  
72  
MHz High speed run  
mode  
MHz Normal speed run  
mode  
8
MHz VLPR mode  
fBUS  
Bus clock/Slow clock (DIVSLOW_CLK)  
Flash clock  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
MHz VLPR mode  
fFLASH  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
1
1
MHz VLPR mode  
KHz All modes  
KHz All modes  
fLLWU  
fRCM  
LLWU clock  
RCM clock  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
20  
NXP Semiconductors  
General  
Table 13. Device clock specifications (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Run mode1  
fWDOG, fTSI WDOG clock, TSI clock  
24  
MHz High speed run  
mode and Normal  
speed run mode  
1
242  
MHz VLPR mode  
fADC  
ADC clock  
MHz High speed run  
mode and Normal  
speed run mode  
8
32.768  
1
MHz VLPR mode  
KHz All modes  
MHz All modes  
MHz All modes  
fRTC  
fTSTMR  
RTC clock  
TSTMR clock  
LPTMR clock  
fLPTMR  
24  
fTPM, fLPIT  
,
TPM clock, LPIT clock, LPSPI clock, LPI2C clock,  
LPUART clock, EMVSIM clock, SAI clock, FlexIO  
clock  
96  
MHz High speed run  
mode  
fLPSPI, fLPI2C  
fLPUART  
fEMVSIM, fSAI  
fFLEXIO  
,
,
72  
MHz Normal speed run  
mode  
,
8
MHz VLPR mode  
fUSB  
USB clock  
48  
MHz High speed run  
mode and Normal  
speed run mode  
0
MHz VLPR mode  
fERCLK  
External reference clock  
48  
MHz High speed run  
mode and Normal  
speed run mode  
16  
32  
MHz VLPR mode  
fosc_hi_2  
Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
(SCG_SOSCCFG[RANGE]=11)  
MHz High speed run  
mode and Normal  
speed run mode  
16  
96  
MHz VLPR mode  
fCAU, fGPIO  
CAU clock, GPIO clock  
MHz High speed run  
mode  
72  
8
MHz Normal speed run  
mode  
MHz VLPR mode  
1. Normal run mode, High speed run mode, and VLPR mode.  
2. See ADC electrical specifications  
2.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO, LPI2C,  
and LPUART signals.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
21  
NXP Semiconductors  
General  
Table 14. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled) —  
Synchronous path  
1.5  
Bus clock  
cycles  
1
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter enabled) — Asynchronous path  
100  
50  
ns  
ns  
ns  
ns  
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter disabled) — Asynchronous path  
External RESET and NMI pin interrupt pulse width —  
Asynchronous path  
100  
16  
2
2
GPIO pin interrupt pulse width — Asynchronous path  
Port rise/fall time  
Normal drive pins  
3
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
3
ns  
10.5  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
17  
• Slow slew rate  
High drive pins  
4
Normal/low drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2.5  
ns  
10.5  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
17  
• Slow slew rate  
High drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2
11  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
2.5  
17  
• Slow slew rate  
Normal drive fast pins  
5
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
0.5  
10  
ns  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
0.75  
19  
• Slow slew rate  
High drive fast pins  
6
Normal/low drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
0.5  
ns  
22  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
General  
Notes  
Table 14. General switching specifications  
Description  
• Fast slew rate  
Min.  
Max.  
Unit  
11  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
1
19  
• Slow slew rate  
High drive enabled  
• 2.7 ≤ VDD ≤ 3.6 V  
• Fast slew rate  
2
13  
• Slow slew rate  
• 1.71 ≤ VDD ≤ 2.7 V  
• Fast slew rate  
4
21  
• Slow slew rate  
1. The synchronous and asynchronous timing must be met.  
2. This is the shortest pulse that is guaranteed to be recognized.  
3. For high drive pins with high drive enabled, load is 75pF; other pins load (normal/low drive) is 25pF. Fast slew rate is  
enabled by clearing PORTx_PCRn[SRE].  
4. High drive pins are PTB0,PTB1, PTC3, and PTC4. High drive capability is enabled by setting PORTx_PCRn[DSE].  
5. Normal drive fast pins are PTE20, PTE21, PTE22, and PTE23.  
6. High drive fast pins are PTD4, PTD5, PTD6, and PTD7. High drive capability is enabled by setting  
PORTx_PCRn[DSE].  
NOTE  
Only PTA4, PTA20, and PTB19 pins have analog/passive  
filter.  
2.4 Thermal specifications  
2.4.1 Thermal operating requirements  
Table 15. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
23  
NXP Semiconductors  
Peripheral operating requirements and behaviors  
2.4.2 Thermal attributes  
Table 16. Thermal attributes  
Board type  
Single-layer (1S)  
Four-layer (2s2p)  
Single-layer (1S)  
Four-layer (2s2p)  
Symbol  
RθJA  
Description  
100 LQFP  
121  
XFBGA  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Notes  
Thermal resistance, junction to  
ambient (natural convection)  
64  
51  
54  
45  
37  
19  
4
94  
57  
81  
53  
40  
30  
8
1
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
RθJMA  
RθJMA  
RθJB  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
ambient (200 ft./min. air speed)  
Thermal resistance, junction to  
board  
2
3
4
RθJC  
Thermal resistance, junction to  
case  
ΨJT  
Thermal characterization  
parameter, junction to package top  
outside center (natural convection)  
1. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method  
Environmental Conditions—Forced Convection (Moving Air).  
2. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board.  
3. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material between  
the top of the package and the cold plate.  
4. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
3 Peripheral operating requirements and behaviors  
3.1 Core modules  
3.1.1 SWD electricals  
Table 17. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
Table continues on the next page...  
24  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
Peripheral operating requirements and behaviors  
Table 17. SWD full voltage range electricals (continued)  
Symbol  
Description  
• Serial wire debug  
Min.  
Max.  
25  
Unit  
0
MHz  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
ns  
20  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 5. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 6. Serial wire data timing  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
25  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
3.2 System modules  
There are no specifications necessary for the device's system modules.  
3.3 Clock modules  
3.3.1 System Clock Generation (SCG) specifications  
3.3.1.1 Fast IRC (FIRC) specifications  
Table 18. Fast IRC (FIRC) specifications  
Symbol  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Notes  
Vdd_firc  
Supply voltage  
Ffirc_target IRC target frequency (nominal)  
Trim range = 00  
MHz  
1
48  
52  
56  
60  
Trim range = 01  
Trim range = 10  
Trim range = 11  
Δffirc_ol_lv Open loop total deviation of FIRC frequency at low  
voltage (VDD=1.71V-1.89V) over full temperature  
• Regulator disable  
2
0.5  
0.5  
0.5  
1.5  
1.5  
1.5  
%Ffirc_targe  
t
(SCG_FIRCCSR[FIRCREGOFF]=1)  
• Regulator enable  
(SCG_FIRCCSR[FIRCREGOFF]=0)  
Δffirc_ol_hv Open loop total deviation of FIRC frequency at high  
2, 3  
voltage (VDD=1.89V-3.6V) over full temperature  
%Ffirc_targe  
Regulator enable  
(SCG_FIRCCSR[FIRCREGOFF]=0)  
t
Δffirc_cl  
Fine Trim Resolution  
0.1  
%Ffirc_targe  
t
Jcyc_firc  
Tst_firc  
Idd_firc  
Period Jitter (RMS)  
Startup time  
35  
2
150  
3
ps  
μs  
4
Current consumption:  
• 48 MHz  
350  
360  
380  
400  
400  
420  
460  
500  
μA  
• 52 MHz  
• 56 MHz  
• 60 MHz  
1. FIRC trim range is programmable via SCG_FIRCCFG[RANGE].  
26  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
2. For temperatures -40 to 85 °C, the maximum value is 1%, characterized on a few samples of different slots. This  
value is not guaranteed by production.  
3. Closed loop operation of the FIRC is only usable for USB device operation; it is not usable for USB host operation. It is  
enabled by configuring for USB Device, selecting FIRC as USB clock source, and enabling the clock recover function  
(USBn_CLK_RECOVER_CTRL[CLOCK_RECOVER_EN]=1, SCG_FIRCCSR[FIRCREGOFF]=0).  
4. FIRC startup time is defined as the time between clock enablement and clock availability for system use.  
3.3.1.2 Slow IRC (SIRC) specifications  
Table 19. Slow IRC specifications  
Symbol  
Description  
Min.  
Typ.  
14  
25  
2
Max.  
17  
Unit  
μA  
Notes  
IDD_sirc2M Supply current in 2 MHz mode  
IDD_sirc8M Supply current in 8 MHz mode  
35  
μA  
fsirc  
Output frequency  
MHz  
1
2
8
Δfsirc  
Total deviation of trimmed frequency over voltage  
and temperature  
%fsirc  
3
4
• 0 to 105 °C  
• -40 to 0 °C  
Δfsirc_t  
Total deviation of trimmed frequency over  
temperature @VDD=3.3V  
2
3
3
%fsirc  
Tsu_sirc  
Jcyc_sirc  
Startup time  
12.5  
μs  
ps  
Period jitter (RMS)  
• fsirc = 2 MHz  
• fsirc = 8 Mhz  
350  
100  
1. Selection of output frequency for Slow IRC between 2 MHz and 8 MHz is controlled by SCG_ SIRCCFG[RANGE].  
2. Maximum deviation occurs at cold temperature (-40 °C) and hot temperature (105 °C).  
3. This specification was obtained using a NXP developed PCB. Jitter is dependent on the noise characteristics of each  
PCB and results will vary.  
3.3.1.3 System PLL specifications  
Table 20. System PLL Specifications  
Symbol  
fpll_ref  
Description  
Min.  
8
Typ.  
Max.  
16  
Unit  
MHz  
MHz  
MHz  
Notes  
PLL reference frequency range  
VCO output frequency  
PLL output frequency  
fvcoclk_2x  
fvcoclk  
Ipll  
180  
90  
288  
144  
PLL operating current — VCO @ 180 MHz (f osc_hi_2  
= 10 MHz , f pll_ref = 10 MHz ,VDIV multiplier = 18)  
1
2
1.1  
mA  
ps  
PLL operating current — VCO @ 288 MHz (f osc_hi_2  
= 32 MHz , f pll_ref = 8 MHz ,VDIV multiplier = 36)  
2.0  
Jcyc_pll  
PLL period jitter (RMS)  
120  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
27  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
Table 20. System PLL Specifications  
(continued)  
Symbol  
Description  
• fvco = 180 MHz  
• fvco = 288 MHz  
Min.  
Typ.  
Max.  
Unit  
Notes  
80  
Jacc_pll  
PLL accumilated jitter over 1 μs (RMS)  
• fvco = 180 MHz  
2
600  
300  
ps  
• fvco = 288 MHz  
Dunl  
Lock exit frequency tolerance  
Lock detector detection time  
4.47  
5.97  
150 × 10-6  
%
s
tpll_lock  
3
+ 1075(1/  
f pll_ref  
)
1. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
2. This specification was obtained using an NXP developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
3. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled to PLL enabled. If a crystal/resonator is being used as the reference, this specification assumes it is already  
running.  
3.3.2 Oscillator electrical specifications  
3.3.2.1 Oscillator DC electrical specifications  
Table 21. Oscillator DC electrical specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VDD  
Supply voltage  
1.71  
3.6  
V
IDDOSC  
Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC  
Supply current — high gain mode (HGO=1)  
1
• 32 kHz  
25  
400  
500  
2.5  
μA  
μA  
μA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
28  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
Table 21. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• 24 MHz  
3
mA  
• 32 MHz  
4
mA  
Cx  
Cy  
RF  
EXTAL load capacitance  
2, 3  
2, 3  
2, 4  
XTAL load capacitance  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-power  
mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
V
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, low-power mode  
(HGO=0)  
0.6  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
1.0  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx,Cy can be provided by using the integrated capacitors when the low frequency oscillator (RANGE = 00) is used. For  
all other cases external capacitors must be used.  
4. When low power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other devices.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
29  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
3.3.2.2 Oscillator frequency specifications  
Table 22. Oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo Oscillator crystal or resonator frequency — low-  
32  
40  
kHz  
frequency range  
(SCG_SOSCCFG[RANGE]=01)  
fosc_hi_1 Oscillator crystal or resonator frequency —  
medium frequency range  
1
8
8
MHz  
MHz  
(SCG_SOSCCFG[RANGE]=10)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency range  
32  
(SCG_SOSCCFG[RANGE]=11)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
48  
60  
MHz  
%
1, 2  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
3, 4, 5  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz medium  
frequency (SCG_SOSCCFG[RANGE]=11), low-  
power mode (HGO=0)  
Crystal startup time — 8 MHz medium  
frequency (SCG_SOSCCFG[RANGE]=10),  
high-gain mode (HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the PLL.  
2. When transitioning to system PLL mode, restrict the frequency of the input clock so that, when it is divided by PREDIV, it  
remains within the limits of the PLL reference input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the SCG_SOSCCSR[SOSCVLD]  
being set.  
5. Crystal startup time is dependent on external crystal and/or resonator and loading capacitance as well as series  
resistance.  
3.4 Memories and memory interfaces  
3.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
3.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
30  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
System Clock Generation (SCG) specifications  
Table 23. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
13  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4 Longword Program high-voltage time  
thversscr Sector Erase high-voltage time  
thversblk128k Erase Block high-voltage time for 128 KB  
1
113  
452  
904  
ms  
ms  
ms  
52  
1
thversall  
Erase All high-voltage time  
104  
1
1. Maximum time based on expectations at cycling end-of-life.  
3.4.1.2 Flash timing specifications — commands  
Table 24. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 128 KB program flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk128k  
1.7  
ms  
trd1sec1k Read 1s Section execution time (flash sector)  
tpgmchk Program Check execution time  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
trdrsrc  
tpgm4  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 128 KB program flash  
30  
1
145  
2
tersblk128k  
88  
600  
ms  
tersscr  
trd1all  
Erase Flash Sector execution time  
Read 1s All Blocks execution time  
Read Once execution time  
14  
114  
1.8  
25  
ms  
ms  
μs  
2
1
trdonce  
1
tpgmonce Program Once execution time  
65  
175  
μs  
2
tersall  
Erase All Blocks execution time  
1300  
30  
ms  
μs  
tvfykey  
Verify Backdoor Access Key execution time  
1
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3.4.1.3 Flash high voltage current behaviors  
Table 25. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
31  
NXP Semiconductors  
ADC electrical specifications  
3.4.1.4 Reliability specifications  
Table 26. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ 125 °C.  
3.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
3.6 Analog  
3.6.1 ADC electrical specifications  
3.6.1.1 16-bit ADC operating conditions  
Table 27. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.71  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VADIN  
Supply voltage  
Supply voltage  
Absolute  
2
Delta to VDD (VDD – VDDA  
)
-100  
0
+100  
+100  
mV  
mV  
V
Ground voltage Delta to VSS (VSS – VSSA  
)
-100  
0
2
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
31/32 ×  
VREFH  
VREFL  
VREFH  
CADIN  
Input  
8
4
10  
5
pF  
capacitance  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
kΩ  
kΩ  
Analog source  
resistance  
16-bit modes  
• fADCK > 8 MHz  
3, 4  
0.5  
Table continues on the next page...  
32  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
ADC electrical specifications  
Table 27. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
• fADCK = 4–8 MHz  
Min.  
Typ.1  
Max.  
Unit  
Notes  
1
kΩ  
• fADCK < 4 MHz  
2
kΩ  
13-bit / 12-bit modes  
• fADCK > 16 MHz  
• fADCK > 8 MHz  
• fADCK = 4–8 MHz  
• fADCK < 4 MHz  
0.5  
1
kΩ  
kΩ  
kΩ  
kΩ  
2
5
11-bit / 10-bit modes  
• fADCK > 8 MHz  
• fADCK = 4–8 MHz  
• fADCK < 4MHz  
2
5
kΩ  
kΩ  
kΩ  
10  
9-bit / 8-bit modes  
• fADCK > 8 MHz  
• fADCK < 8 MHz  
5
kΩ  
10  
kΩ  
fADCK  
ADC conversion ≤ 13-bit mode  
1.0  
2.0  
24.0  
12.0  
MHz  
MHz  
5
6
clock frequency  
16-bit mode  
Crate  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
1200  
ksps  
ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
461.467  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. Assumes ADLSMP=0  
4. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low  
as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS * CAS time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
33  
NXP Semiconductors  
ADC electrical specifications  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
CIRCUIT  
ZADIN  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 7. ADC input impedance equivalency diagram  
3.6.1.2 16-bit ADC electrical characteristics  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
Table continues on the next page...  
34  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
ADC electrical specifications  
Table 28. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor voltage 25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
35  
NXP Semiconductors  
ADC electrical specifications  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
Averaging of 8 samples  
Averaging of 32 samples  
12.30  
12.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 8. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
11.00  
Averaging of 4 samples  
Averaging of 32 samples  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 9. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
3.6.2 Voltage reference electrical specifications  
36  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
Table 29. VREF full-range operating requirements  
Symbol  
Description  
Min.  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Supply voltage for 1.2V output  
Supply voltage for 2.1V output  
Temperature  
2.4  
3.6  
V
TA  
CL  
Operating temperature  
range of the device  
°C  
Output load capacitance  
100  
nF  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/-25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 30. VREF full-range operating behaviors  
Symbol Description  
Min.  
1.190  
2.092  
1.188  
2.087  
Typ.  
1.195  
2.1  
Max.  
1.2  
Unit  
V
Notes  
Vout Voltage reference output with factory trim at  
1
nominal VDDA and temperature=25°C  
2.108  
1.202  
2.113  
V
Vout  
Voltage reference 1.2 V output— factory trim  
Voltage reference 2.1 V output — factory trim  
Voltage reference trim step for 1.2 V output  
Voltage reference trim step for 2.1 V output  
Aging coefficient  
1.195  
2.1  
V
1
1
V
Vstep  
0.5  
mV  
mV  
uV/yr  
µA  
µA  
µA  
mV  
µs  
1
1.5  
1
Ac  
Ibg  
Ilp  
400  
80  
1
Bandgap only current  
60  
Low-power buffer current  
180  
480  
0.2  
360  
960  
1
Ihp  
High-power buffer current  
1
ΔVLOAD Load regulation — current is 1.0 mA  
1, 2  
1
Tstup  
Buffer startup time  
100  
2
Vvdrift  
Voltage drift for 1.2 V output (Vmax -Vmin  
across the full voltage range)  
0.5  
mV  
Voltage drift for 2.1 V output (Vmax -Vmin  
across the full voltage range)  
0.9  
2
3.5  
15  
26  
mV  
mV  
mV  
Vtdrift  
Temperature drift for 1.2 V output (Vmax -Vmin  
across the full temperature range)  
3
Temperature drift for 2.1 V output (Vmax -Vmin  
across the full temperature range)  
3.5  
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register for Vout  
selection of 1.2 V or 2.1 V.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
3. To get best performance of VREF temperature drift, VREF_SC[ICOMPEN] must be set.  
Table 31. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
50  
°C  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
37  
NXP Semiconductors  
ADC electrical specifications  
Table 32. VREF limited-range operating behaviors  
Symbol  
Vout  
Description  
Min.  
1.173  
2.088  
Max.  
1.225  
2.115  
Unit  
V
Notes  
Voltage reference output 1.2 V with factory trim  
Voltage reference output 2.1 V with factory trim  
Vout  
V
3.6.3 CMP and 6-bit DAC electrical specifications  
Table 33. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, high-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
38  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 10. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
39  
NXP Semiconductors  
ADC electrical specifications  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 11. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
3.6.4 12-bit DAC electrical characteristics  
3.6.4.1 12-bit DAC operating requirements  
Table 34. 12-bit DAC operating requirements  
Symbol  
VDDA  
VDACR  
CL  
Desciption  
Min.  
Max.  
3.6  
3.6  
100  
1
Unit  
V
Notes  
Supply voltage  
Reference voltage  
Output load capacitance  
Output load current  
1.13  
V
1
2
pF  
mA  
IL  
1. The DAC reference can be selected to be VDDA or VREFH  
.
2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.  
40  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
3.6.4.2 12-bit DAC operating behaviors  
Table 35. 12-bit DAC operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA_DACL Supply current — low-power mode  
250  
μA  
P
IDDA_DACH Supply current — high-speed mode  
100  
15  
900  
200  
30  
μA  
μs  
μs  
μs  
P
tDACLP Full-scale settling time (0x080 to 0xF7F) —  
low-power mode  
1
1
1
tDACHP Full-scale settling time (0x080 to 0xF7F) —  
high-power mode  
tCCDACLP Code-to-code settling time (0xBF8 to  
0xC08) — low-power mode and high-  
speed mode  
0.7  
1
Vdacoutl DAC output voltage range low — high-  
speed mode, no load, DAC set to 0x000  
100  
mV  
mV  
Vdacouth DAC output voltage range high — high-  
speed mode, no load, DAC set to 0xFFF  
VDACR  
−100  
VDACR  
INL  
DNL  
DNL  
Integral non-linearity error — high speed  
mode  
8
1
1
LSB  
LSB  
LSB  
2
3
4
Differential non-linearity error — VDACR > 2  
V
Differential non-linearity error — VDACR  
VREF_OUT  
=
VOFFSET Offset error  
EG Gain error  
PSRR Power supply rejection ratio, VDDA ≥ 2.4 V  
60  
0.4  
0.1  
0.8  
0.6  
90  
%FSR  
%FSR  
dB  
5
5
TCO  
TGE  
Rop  
SR  
Temperature coefficient offset voltage  
Temperature coefficient gain error  
Output resistance (load = 3 kΩ)  
Slew rate -80hF7Fh80h  
3.7  
μV/C  
%FSR/C  
Ω
6
0.000421  
250  
V/μs  
• High power (SPHP  
)
1.2  
1.7  
• Low power (SPLP  
3dB bandwidth  
)
0.05  
0.12  
BW  
kHz  
• High power (SPHP  
• Low power (SPLP  
)
550  
40  
)
1. Settling within 1 LSB  
2. The INL is measured for 0 + 100 mV to VDACR −100 mV  
3. The DNL is measured for 0 + 100 mV to VDACR −100 mV  
4. The DNL is measured for 0 + 100 mV to VDACR −100 mV with VDDA > 2.4 V  
5. Calculated by a best fit curve from VSS + 100 mV to VDACR − 100 mV  
6. VDDA = 3.0 V, reference select set for VDDA (DACx_CO:DACRFS = 1), high power mode (DACx_C0:LPEN = 0), DAC  
set to 0x800, temperature range is across the full range of the device  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
41  
NXP Semiconductors  
ADC electrical specifications  
8
6
4
2
0
-2  
-4  
-6  
-8  
0
500  
1000  
1500  
2000  
2500  
3000  
3500  
4000  
Digital Code  
Figure 12. Typical INL error vs. digital code  
42  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
ADC electrical specifications  
1.499  
1.4985  
1.498  
1.4975  
1.497  
1.4965  
1.496  
55  
85  
25  
105  
125  
-40  
Temperature °C  
Figure 13. Offset at half scale vs. temperature  
3.7 Timers  
See General switching specifications.  
3.8 Communication interfaces  
3.8.1 EMV SIM specifications  
Each EMV SIM module interface consists of a total of five pins.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
43  
NXP Semiconductors  
ADC electrical specifications  
The interface is designed to be used with synchronous Smart cards, meaning the EMV  
SIM module provides the clock used by the Smart card. The clock frequency is  
typically 372 times the Tx/Rx data rate.  
There is no timing relationship between the clock and the data. The clock that the EMV  
SIM module provides to the Smart card is used by the Smart card to recover the clock  
from the data in the same manner as standard UART data exchanges. All five signals of  
the EMV SIM module are asynchronous with each other.  
There are no required timing relationships between signals in normal mode. The smart  
card is initiated by the interface device; the Smart card responds with Answer to Reset.  
Although the EMV SIM interface has no defined requirements, the ISO/IEC 7816  
defines reset and power-down sequences (for detailed information see ISO/IEC 7816).  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
SI8  
EMVSIMn_IO  
SI9  
EMVSIMn_VCCEN  
Figure 14. EMV SIM Clock Timing Diagram  
44  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
The following table defines the general timing requirements for the EMV SIM  
interface.  
Table 36. Timing Specifications, High Drive Strength  
ID  
Parameter  
Symbol  
Min  
Max  
Unit  
MHz  
SI EMV SIM clock frequency (EMVSIMn_CLK)1  
1
SI EMV SIM clock rise time (EMVSIMn_CLK)2  
2
SI EMV SIM clock fall time (EMVSIMn_CLK)2  
3
Sfreq  
Srise  
Sfall  
1
5
20  
0.08 × (1/Sfreq)  
ns  
ns  
ns  
μs  
μs  
0.08 × (1/Sfreq)  
SI EMV SIM input transition time (EMVSIMn_IO,  
4
Si EMV SIM I/O rise time / fall time (EMVSIMn_IO)3  
5
Si EMV SIM RST rise time / fall time (EMVSIMn_RST)4 Tr/Tf  
6
Stran  
Tr/Tf  
25  
EMVSIMn_PD)  
0.8  
0.8  
1. 50% duty cycle clock,  
2. With C = 50 pF  
3. With Cin = 30 pF, Cout = 30 pF,  
4. With Cin = 30 pF,  
3.8.1.1 EMV SIM Reset Sequences  
Smart cards may have internal reset, or active low reset. The following subset  
describes the reset sequences in these two cases.  
3.8.1.1.1 Smart Cards with Internal Reset  
Following figure shows the reset sequence for Smart cards with internal reset. The  
reset sequence comprises the following steps:  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• The card must send a response on EMVSIMn_IO acknowledging the reset  
between 400–40000 clock cycles after T0.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
45  
NXP Semiconductors  
ADC electrical specifications  
EMVSIMn_VCCEN  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
1
2
T0  
Figure 15. Internal Reset Card Reset Sequence  
The following table defines the general timing requirements for the SIM interface.  
Table 37. Timing Specifications, Internal Reset Card Reset Sequence  
Ref  
Min  
Max  
Units  
1
200  
EMVSIMx_CLK  
clock cycles  
2
400  
40,000  
EMVSIMx_CLK  
clock cycles  
3.8.1.1.2 Smart Cards with Active Low Reset  
Following figure shows the reset sequence for Smart cards with active low reset. The  
reset sequence comprises the following steps::  
• After power-up, the clock signal is enabled on EMVSIMn_CLK (time T0)  
• After 200 clock cycles, EMVSIMn_IO must be asserted.  
• EMVSIMn_RST must remain low for at least 40,000 clock cycles after T0 (no  
response is to be received on RX during those 40,000 clock cycles)  
• EMVSIMn_RST is asserted (at time T1)  
• EMVSIMn_RST must remain asserted for at least 40,000 clock cycles after T1, and  
a response must be received on EMVSIMn_IO between 400 and 40,000 clock  
cycles after T1.  
46  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
EMVSIMn_VCCEN  
EMVSIMn_RST  
EMVSIMn_CLK  
EMVSIMn_IO  
RESPONSE  
2
1
3
3
T0  
T1  
Figure 16. Active-Low-Reset Smart Card Reset Sequence  
The following table defines the general timing requirements for the EMVSIM  
interface..  
Table 38. Timing Specifications, Internal Reset Card Reset Sequence  
Ref No  
Min  
Max  
200  
Units  
1
2
3
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
EMVSIMx_CLK clock cycles  
400  
40,000  
40,000  
3.8.1.2 EMVSIM Power-Down Sequence  
Following figure shows the EMV SIM interface power-down AC timing  
diagram.Table 39 table shows the timing requirements for parameters (SI7–SI10)  
shown in the figure. The power-down sequence for the EMV SIM interface is as  
follows:  
• EMVSIMn_SIMPD port detects the removal of the Smart Card  
• EMVSIMn_RST is negated  
• EMVSIMn_CLK is negated  
• EMVSIM_IO is negated  
• EMVSIMx_VCCENy is negated  
Each of the above steps requires one OSC32KCLK period (usually 32 kHz, also  
known as rtcclk in below figure). Power-down may be initiated by a Smart card  
removal detection; or it may be launched by the processor.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
47  
NXP Semiconductors  
ADC electrical specifications  
SI10  
EMVSIMn_PD  
EMVSIMn_RST  
SI7  
EMVSIMn_CLK  
EMVSIMn_IO  
SI8  
SI9  
EMVSIMn_VCCEN  
Figure 17. Smart Card Interface Power Down AC Timing  
Table 39. Timing Requirements for Power-down Sequence  
Ref No  
Parameter  
Symbol  
Min  
Max  
Units  
SI7  
EMVSIM reset to SIM clock stop  
Srst2clk  
0.9 × 1/  
Frtcclk1  
1.1 × 1/Frtcclk  
μs  
SI8  
SI9  
EMVSIM reset to SIM Tx data  
low  
Srst2dat 1.8 × 1/Frtcclk 2.2 × 1/Frtcclk  
Srst2ven 2.7 × 1/Frtcclk 3.3 × 1/Frtcclk  
Spd2rst 0.9 × 1/Frtcclk 1.1 × 1/Frtcclk  
μs  
μs  
μs  
EMVSIM reset to SIM voltage  
enable low  
SI10  
EMVSIM presence detect to SIM  
reset low  
1. Frtcclk is OSC32KCLK, and this clock must be enabled during the power down sequence.  
NOTE  
Same timing is also followed when auto power down is  
initiated. See Reference Manual for reference.  
48  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
3.8.2 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-  
date standards, visit usb.org.  
NOTE  
The Fast IRC do not meet the USB jitter specifications for  
certification for Host mode operation.  
3.8.3 USB VREG electrical specifications  
Table 40. USB VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
V
Notes  
VREGIN Input supply voltage  
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.1  
10  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and  
temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
49  
NXP Semiconductors  
ADC electrical specifications  
3.8.4 LPSPI switching specifications  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus  
with master and slave operations. Many of the transfer attributes are programmable.  
The following tables provide timing characteristics for classic SPI timing modes.  
All timing is shown with respect to 20% VDD and 80% VDD thresholds, unless noted, as  
well as input signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
NOTE  
• Slew rate disabled pads are those pins with  
PORTx_PCRn[SRE] bit cleared. Slew rate enabled pads  
are those pins with PORTx_PCRn[SRE] bit set.  
• To achieve high bit rate, it is recommended to use fast  
pins (PTE20, PTE21, PTE22, PTE23, PTD4, PTD5,  
PTD6, and PTD7) and/or high drive pins (PTC3, PTC4,  
PTD4, PTD5, PTD6, and PTD7).  
Table 41. LPSPI master mode timing on slew rate disabled pads  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Hz  
Note  
1
2
fop  
Frequency of operation  
fperiph/2048  
2 x tperiph  
fperiph/2  
1
2
tSPSCK  
SPSCK period  
2048 x  
tperiph  
ns  
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
18  
0
ns  
ns  
ns  
ns  
ns  
15  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock.  
2. tperiph = 1/fperiph  
Table 42. LPSPI master mode timing on slew rate enabled pads  
Num.  
Symbol Description  
fop Frequency of operation  
Min.  
Max.  
Unit  
Note  
1
fperiph/2048  
fperiph/2  
Hz  
1
Table continues on the next page...  
50  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
ADC electrical specifications  
Table 42. LPSPI master mode timing on slew rate enabled pads (continued)  
Num.  
Symbol Description  
Min.  
Max.  
Unit  
Note  
2
tSPSCK  
SPSCK period  
2 x tperiph  
2048 x  
tperiph  
ns  
2
3
4
5
tLead  
tLag  
Enable lead time  
Enable lag time  
1/2  
1/2  
tSPSCK  
tSPSCK  
ns  
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
1024 x  
tperiph  
6
7
tSU  
tHI  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
96  
0
ns  
ns  
ns  
ns  
ns  
52  
8
tv  
0
9
tHO  
tRI  
10  
tperiph - 25  
tFI  
Fall time input  
11  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
1
SS  
(OUTPUT)  
3
2
10  
10  
11  
11  
4
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
8
MSB IN  
LSB IN  
9
MOSI  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 18. LPSPI master mode timing (CPHA = 0)  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
51  
NXP Semiconductors  
ADC electrical specifications  
1
SS  
(OUTPUT)  
2
10  
10  
11  
11  
4
3
SPSCK  
(CPOL=0)  
(OUTPUT)  
5
5
SPSCK  
(CPOL=1)  
(OUTPUT)  
6
7
MISO  
(INPUT)  
2
BIT 6 . . . 1  
LSB IN  
MSB IN  
9
8
MOSI  
(OUTPUT)  
2
PORT DATA  
BIT 6 . . . 1  
MASTER MSB OUT  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 19. LPSPI master mode timing (CPHA = 1)  
Table 43. LPSPI slave mode timing on slew rate disabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2.5  
3.5  
0
ns  
7
ns  
8
tperiph  
tperiph  
31  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
25  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
52  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
Table 44. LPSPI slave mode timing on slew rate enabled pads  
Num.  
1
Symbol Description  
Min.  
Max.  
fperiph/4  
Unit  
Hz  
Note  
1
fop  
tSPSCK  
tLead  
tLag  
Frequency of operation  
0
2
SPSCK period  
Enable lead time  
Enable lag time  
4 x tperiph  
ns  
2
3
1
tperiph  
tperiph  
ns  
3
4
1
5
tWSPSCK Clock (SPSCK) high or low time  
tperiph - 30  
6
tSU  
tHI  
ta  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
2
7
ns  
7
ns  
8
0
tperiph  
tperiph  
122  
ns  
9
tdis  
tv  
Slave MISO disable time  
Data valid (after SPSCK edge)  
Data hold time (outputs)  
Rise time input  
ns  
4
10  
11  
12  
ns  
tHO  
tRI  
tFI  
ns  
tperiph - 25  
ns  
Fall time input  
13  
tRO  
tFO  
Rise time output  
36  
ns  
Fall time output  
1. fperiph is the LPSPI peripheral functional clock  
2. tperiph = 1/fperiph  
3. Time to data active from high-impedance state  
4. Hold time to high-impedance state  
SS  
(INPUT)  
2
12  
12  
13  
4
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
3
13  
11  
SPSCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
see  
note  
SEE  
NOTE  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
MOSI  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 20. LPSPI slave mode timing (CPHA = 0)  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
53  
NXP Semiconductors  
ADC electrical specifications  
SS  
(INPUT)  
4
2
12  
12  
13  
13  
3
SPSCK  
(CPOL=0)  
(INPUT)  
5
5
SPSCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
MISO  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
MOSI  
(INPUT)  
MSB IN  
NOTE: Not defined  
Figure 21. LPSPI slave mode timing (CPHA = 1)  
3.8.5 LPI2C  
Table 45. LPI2C specifications  
Symbol Description  
Min.  
Max.  
100  
Unit  
Notes  
1
fSCL  
SCL clock frequency  
Standard mode (Sm)  
Fast mode (Fm)  
0
0
0
0
0
kHz  
400  
1, 2  
1, 3  
1, 4  
1, 5  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1. See General switching specifications, measured at room temperature.  
2. Measured with the maximum bus loading of 400pF at 3.3V VDD with pull-up Rp = 580Ω on normal drive pins or 350Ω on  
high drive pins, and at 1.8V VDD with Rp = 880Ω. For all other cases, select appropriate Rp per I2C Bus Specification  
and the pin drive capability.  
3. Fm+ is only supported on high drive pin with high drive enabled. It is measured with the maximum bus loading of 400pF  
at 3.3V VDD with Rp = 350Ω. For all other cases, select appropriate Rp per I2C Bus Specification and the pin drive  
capability.  
4. UFm is only supported on high drive pin with high drive enabled and push-pull output only mode. It is measured at 3.3V  
VDD with the maximum bus loading of 400pF. For 1.8V VDD, the maximum speed is 4Mbps.  
5. Hs-mode is only supported in slave mode and on the high drive pins with high drive enabled.  
3.8.6 LPUART  
See General switching specifications.  
54  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
3.8.7 I2S/SAI switching specifications  
This section provides the AC timing for the I2S/SAI module in master mode (clocks  
are driven) and slave mode (clocks are input). All timing is given for noninverted  
serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame  
sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame  
sync have been inverted, all the timing remains valid by inverting the bit clock signal  
(BCLK) and/or the frame sync (FS) signal shown in the following figures.  
3.8.7.1 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Table 46. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
80  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
15.5  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
19  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
26  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
55  
NXP Semiconductors  
ADC electrical specifications  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S5  
S4  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
S9  
S10  
I2S_RXD  
Figure 22. I2S/SAI timing — master modes  
Table 47. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
80  
3.6  
V
S11  
S12  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
10  
2
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
33  
28  
ns  
ns  
ns  
ns  
ns  
10  
2
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
56  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
ADC electrical specifications  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 23. I2S/SAI timing — slave modes  
3.8.7.2 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Table 48. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
62.5  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
45%  
250  
55%  
MCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
S10  
I2S_RXD/I2S_RX_FS input hold after  
I2S_RX_BCLK  
0
ns  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
57  
NXP Semiconductors  
ADC electrical specifications  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S5  
S4  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S7  
S8  
I2S_TXD  
S9  
S10  
I2S_RXD  
Figure 24. I2S/SAI timing — master modes  
Table 49. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
250  
3.6  
V
S11  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
(input)  
45%  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
S15  
S16  
S17  
S18  
S19  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid  
I2S_RXD setup before I2S_RX_BCLK  
0
ns  
ns  
ns  
ns  
ns  
72  
30  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
58  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Dimensions  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 25. I2S/SAI timing — slave modes  
3.9 Human-machine interfaces (HMI)  
3.9.1 TSI electrical specifications  
Table 50. TSI electrical specifications  
Symbol  
TSI_RUNF  
TSI_RUNV  
Description  
Min.  
Typ.  
100  
Max.  
Unit  
µA  
Fixed power consumption in run mode  
Variable power consumption in run mode  
(depends on oscillator's current selection)  
1.0  
128  
µA  
TSI_EN  
TSI_DIS  
Power consumption in enable mode  
Power consumption in disable mode  
TSI analog enable time  
100  
1.2  
66  
µA  
µA  
µs  
pF  
V
TSI_TEN  
TSI_CREF  
TSI_DVOLT  
TSI reference capacitor  
1.0  
Voltage variation of VP & VM around nominal  
values  
0.19  
1.03  
4 Dimensions  
4.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
59  
NXP Semiconductors  
Pinouts and Packaging  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
100-pin LQFP  
Then use this document number  
98ASS23308W  
98ASA00595D  
121-pin XFBGA  
5 Pinouts and Packaging  
5.1 KL28Z Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control Module is responsible  
for selecting which ALT function is available on each pin.  
NOTE  
The 121-pin XFBGA package for this product is not yet  
available. However, it is included in a Package Your Way  
program for Kinetis MCUs. Visit nxp.com/KPYW for more  
details.  
NOTE  
• A pull-up resistor (typically 4.7 KΩ) must be connected to  
the EMVSIM0_IO pin if this pin is configured as EMV  
SIM function.  
• PTB0/1, PTC3/4, PTD4/5/6/7 have both high drive and  
normal/low drive capability. PTD4, PTD5, PTD6, PTD7,  
PTE20, PTE21, PTE22, PTE23 are also fast pins. When a  
high bit rate is required on the communication interface  
pins, it is recommended to use fast pins. In case of high  
bus loading, the high drive strength of high drive pins  
must be enabled by setting the corresponding  
PORTx_PCRn[DSE] bit.  
• RESET_b pin is open drain with internal pullup device  
and passive analog filter when configured as RESET pin  
(default state after POR). When this pin is configured to  
other shared functions, the passive analog filter is  
disabled.  
60  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Pinouts and Packaging  
• NMI0_b pin has pullup device enabled and passive  
analog filter disabled after POR.  
• SWD_DIO pin has pullup device enabled after POR.  
SWD_CLK has pulldown device enabled after POR.  
121  
XFB  
GA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
E4  
E3  
E2  
F4  
H7  
1
2
3
4
5
PTE0  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
DISABLED  
ADC0_SE16  
ADC0_SE17  
ADC0_SE18  
ADC0_SE19  
PTE0/  
RTC_CLKOUT  
LPSPI1_SIN  
LPUART1_TX  
LPUART1_RX  
CMP0_OUT  
LPI2C1_SDA  
LPI2C1_SCL  
LPI2C1_SDAS  
LPI2C1_SCLS  
PTE1/  
LLWU_P0  
PTE1/  
LLWU_P0  
LPSPI1_  
SOUT  
PTE2/  
LLWU_P1  
PTE2/  
LLWU_P1  
LPSPI1_SCK  
LPSPI1_SIN  
LPSPI1_PCS0  
LPUART1_  
CTS_b  
PTE3  
PTE3  
LPUART1_  
RTS_b  
PTE4/  
PTE4/  
LLWU_P2  
LLWU_P2  
G4  
F3  
6
7
PTE5  
DISABLED  
DISABLED  
PTE5  
LPSPI1_PCS1  
LPSPI1_PCS2  
PTE6/  
LLWU_P16  
PTE6/  
LLWU_P16  
I2S0_MCLK  
USB_SOF_  
OUT  
E6  
G7  
L6  
8
VDD  
VDD  
VDD  
9
VSS  
VSS  
VSS  
10  
11  
12  
13  
14  
VSS  
VSS  
VSS  
F1  
F2  
G1  
G2  
H1  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE16  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
ADC0_DP1/  
ADC0_SE1  
ADC0_DP1/  
ADC0_SE1  
PTE16  
LPSPI0_PCS0 LPUART2_TX  
TPM0_CLKIN  
LPSPI1_PCS3 FXIO0_D0  
H2  
15  
PTE17/  
LLWU_P19  
ADC0_DM1/  
ADC0_SE5a  
ADC0_DM1/  
ADC0_SE5a  
PTE17/  
LLWU_P19  
LPSPI0_SCK  
LPUART2_RX TPM1_CLKIN  
LPTMR0_  
ALT3/  
FXIO0_D1  
LPTMR1_  
ALT3  
J1  
J2  
K1  
K2  
L1  
L2  
F5  
16  
17  
18  
19  
20  
21  
22  
PTE18/  
LLWU_P20  
ADC0_DP2/  
ADC0_SE2  
ADC0_DP2/  
ADC0_SE2  
PTE18/  
LLWU_P20  
LPSPI0_  
SOUT  
LPUART2_  
CTS_b  
LPI2C0_SDA  
LPI2C0_SCL  
LPUART0_TX  
LPUART0_RX  
LPUART2_TX  
LPUART2_RX  
FXIO0_D2  
FXIO0_D3  
FXIO0_D4  
FXIO0_D5  
FXIO0_D6  
FXIO0_D7  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
VDDA  
ADC0_DM2/  
ADC0_SE6a  
ADC0_DM2/  
ADC0_SE6a  
PTE19  
PTE20  
PTE21  
PTE22  
PTE23  
LPSPI0_SIN  
LPUART2_  
RTS_b  
ADC0_DP0/  
ADC0_SE0  
ADC0_DP0/  
ADC0_SE0  
LPSPI2_SCK  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
ADC0_DM0/  
ADC0_SE4a  
ADC0_DM0/  
ADC0_SE4a  
LPSPI2_  
SOUT  
ADC0_DP3/  
ADC0_SE3  
ADC0_DP3/  
ADC0_SE3  
LPSPI2_SIN  
ADC0_DM3/  
ADC0_SE7a  
ADC0_DM3/  
ADC0_SE7a  
LPSPI2_PCS0 TPM2_CH1  
VDDA  
VDDA  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
61  
NXP Semiconductors  
Pinouts and Packaging  
121  
XFB  
GA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
G5  
23  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
G6  
F6  
L3  
24  
25  
26  
VREFL  
VREFL  
VREFL  
VSSA  
VSSA  
VSSA  
PTE29  
CMP1_IN5/  
CMP0_IN5/  
ADC0_SE4b  
CMP1_IN5/  
CMP0_IN5/  
ADC0_SE4b  
PTE29  
EMVSIM0_  
CLK  
TPM0_CH2  
TPM0_CH3  
TPM0_CLKIN  
TPM1_CLKIN  
K5  
27  
PTE30  
PTE31  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
CMP0_IN4  
DAC0_OUT/  
CMP1_IN3/  
ADC0_SE23/  
CMP0_IN4  
PTE30  
PTE31  
EMVSIM0_  
RST  
L4  
28  
DISABLED  
EMVSIM0_  
VCCEN  
TPM0_CH4  
TPM2_CLKIN  
LPI2C0_  
HREQ  
L5  
K6  
H5  
J5  
29  
30  
31  
32  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
PTE24  
ADC0_SE20  
ADC0_SE21  
ADC0_SE20  
ADC0_SE21  
PTE24  
EMVSIM0_IO  
TPM0_CH0  
LPI2C0_SCL  
LPI2C0_SDA  
PTE25/  
PTE25/  
EMVSIM0_PD TPM0_CH1  
LLWU_P21  
LLWU_P21  
H6  
J6  
33  
34  
PTE26  
PTA0  
DISABLED  
SWD_CLK  
PTE26/  
RTC_CLKOUT  
TPM0_CH5  
LPI2C0_SCLS  
LPI2C0_SDAS  
USB_CLKIN  
SWD_CLK  
TSI0_CH1  
PTA0  
LPUART0_  
CTS_b  
TPM0_CH5  
H8  
J7  
35  
36  
37  
PTA1  
PTA2  
PTA3  
DISABLED  
DISABLED  
SWD_DIO  
TSI0_CH2  
TSI0_CH3  
TSI0_CH4  
PTA1  
PTA2  
PTA3  
LPUART0_RX TPM2_CH0  
LPUART0_TX  
LPI2C1_SCL  
TPM2_CH1  
TPM0_CH0  
H9  
LPUART0_  
RTS_b  
SWD_DIO  
NMI0_b  
J8  
38  
39  
PTA4/  
LLWU_P3  
DISABLED  
DISABLED  
TSI0_CH5  
PTA4/  
LLWU_P3  
LPI2C1_SDA  
USB_CLKIN  
TPM0_CH1  
TPM0_CH2  
K7  
PTA5  
PTA5  
LPI2C2_  
HREQ  
I2S0_TX_  
BCLK  
E5  
G3  
K3  
H4  
J9  
40  
41  
VDD  
VSS  
VDD  
VDD  
VSS  
VSS  
PTA6  
PTA7  
DISABLED  
DISABLED  
DISABLED  
PTA6  
PTA7  
TPM0_CH3  
LPSPI0_PCS3 TPM0_CH4  
LPSPI0_PCS2 TPM2_CH0  
LPI2C2_SDAS  
LPI2C2_SCLS  
PTA10/  
PTA10/  
LLWU_P22  
LLWU_P22  
J4  
PTA11/  
DISABLED  
PTA11/  
LPSPI0_PCS1 TPM2_CH1  
LPI2C2_SDA  
LLWU_P23  
LLWU_P23  
K8  
L8  
42  
43  
PTA12  
DISABLED  
DISABLED  
PTA12  
TPM1_CH0  
TPM1_CH1  
LPI2C2_SCL  
LPI2C2_SDA  
I2S0_TXD0  
PTA13/  
PTA13/  
I2S0_TX_FS  
LLWU_P4  
LLWU_P4  
K9  
L9  
44  
45  
PTA14  
PTA15  
DISABLED  
DISABLED  
PTA14  
PTA15  
LPSPI0_PCS0 LPUART0_TX  
LPI2C2_SCL  
I2S0_RX_  
BCLK  
I2S0_TXD0  
LPSPI0_SCK  
LPUART0_RX  
I2S0_RXD0  
62  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
Pinouts and Packaging  
121  
XFB  
GA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
J10  
46  
47  
PTA16  
DISABLED  
PTA16  
LPSPI0_  
SOUT  
LPUART0_  
CTS_b  
I2S0_RX_FS  
I2S0_MCLK  
I2S0_RXD0  
H10  
PTA17  
ADC0_SE22  
ADC0_SE22  
PTA17  
LPSPI0_SIN  
LPUART0_  
RTS_b  
L10  
K10  
L11  
K11  
48  
49  
50  
51  
VDD  
VDD  
VDD  
VSS  
VSS  
VSS  
PTA18  
PTA19  
EXTAL0  
XTAL0  
EXTAL0  
XTAL0  
PTA18  
PTA19  
LPUART1_RX TPM0_CLKIN  
LPUART1_TX  
TPM1_CLKIN  
LPTMR0_  
ALT1/  
LPTMR1_  
ALT1  
J11  
H11  
G11  
52  
53  
PTA20  
PTA29  
RESET_b  
PTA20  
PTA29  
LPI2C0_SCLS  
LPI2C0_SDAS  
LPI2C0_SCL  
TPM2_CLKIN  
RESET_b  
DISABLED  
PTB0/  
LLWU_P5  
ADC0_SE8/  
TSI0_CH0  
ADC0_SE8/  
TSI0_CH0  
PTB0/  
LLWU_P5  
TPM1_CH0  
TPM1_CH1  
TPM2_CH0  
TPM2_CH1  
FXIO0_D8  
FXIO0_D9  
FXIO0_D10  
FXIO0_D11  
G10  
G9  
54  
55  
56  
PTB1  
PTB2  
PTB3  
ADC0_SE9/  
TSI0_CH6  
ADC0_SE9/  
TSI0_CH6  
PTB1  
PTB2  
PTB3  
LPI2C0_SDA  
LPI2C0_SCL  
LPI2C0_SDA  
ADC0_SE12/  
TSI0_CH7  
ADC0_SE12/  
TSI0_CH7  
LPUART0_  
RTS_b  
G8  
ADC0_SE13/  
TSI0_CH8  
ADC0_SE13/  
TSI0_CH8  
LPSPI1_PCS3 LPUART0_  
CTS_b  
F11  
E11  
D11  
E10  
D10  
C10  
B10  
57  
58  
59  
60  
61  
62  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
PTB16  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH9  
PTB6  
PTB7  
PTB8  
PTB9  
PTB10  
PTB11  
PTB16  
LPSPI1_PCS2  
LPSPI1_PCS1  
LPSPI1_PCS0  
LPSPI1_SCK  
LPSPI1_PCS0  
LPSPI1_SCK  
FXIO0_D12  
FXIO0_D13  
FXIO0_D14  
FXIO0_D15  
TPM2_CLKIN  
TSI0_CH9  
LPSPI1_  
SOUT  
LPUART0_RX TPM0_CLKIN  
LPSPI2_PCS3 FXIO0_D16  
E9  
D9  
63  
64  
PTB17  
PTB18  
TSI0_CH10  
TSI0_CH11  
TSI0_CH10  
TSI0_CH11  
PTB17  
PTB18  
LPSPI1_SIN  
LPUART0_TX  
TPM2_CH0  
TPM1_CLKIN  
LPSPI2_PCS2 FXIO0_D17  
I2S0_TX_  
BCLK  
LPI2C1_  
HREQ  
FXIO0_D18  
C9  
F10  
F9  
65  
66  
67  
68  
PTB19  
PTB20  
PTB21  
PTB22  
TSI0_CH12  
DISABLED  
DISABLED  
DISABLED  
TSI0_CH12  
PTB19  
PTB20  
PTB21  
PTB22  
TPM2_CH1  
I2S0_TX_FS  
LPSPI2_PCS1 FXIO0_D19  
CMP0_OUT  
LPSPI2_PCS0  
LPSPI2_SCK  
CMP1_OUT  
F8  
LPSPI2_  
SOUT  
E8  
B9  
69  
70  
PTB23  
PTC0  
DISABLED  
PTB23  
PTC0  
LPSPI2_SIN  
ADC0_SE14/  
TSI0_CH13  
ADC0_SE14/  
TSI0_CH13  
LPSPI2_PCS1  
USB_SOF_  
OUT  
CMP0_OUT  
I2S0_TXD0  
I2S0_TXD0  
D8  
71  
PTC1/  
LLWU_P6  
ADC0_SE15/  
TSI0_CH14  
ADC0_SE15/  
TSI0_CH14  
PTC1/  
LLWU_P6  
LPI2C1_SCL  
LPUART1_  
RTS_b  
TPM0_CH0  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
63  
NXP Semiconductors  
Pinouts and Packaging  
121  
XFB  
GA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
C8  
72  
73  
PTC2  
ADC0_SE11/  
CMP1_IN0/  
TSI0_CH15  
ADC0_SE11/  
CMP1_IN0/  
TSI0_CH15  
PTC2  
LPI2C1_SDA  
LPUART1_  
CTS_b  
TPM0_CH1  
I2S0_TX_FS  
B8  
PTC3/  
LLWU_P7  
CMP1_IN1  
CMP1_IN1  
PTC3/  
LLWU_P7  
LPSPI0_PCS1 LPUART1_RX TPM0_CH2  
CLKOUT  
I2S0_TX_  
BCLK  
F7  
E7  
74  
75  
76  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
B11  
C11  
A8  
PTC22  
PTC23  
DISABLED  
DISABLED  
DISABLED  
PTC22  
PTC23  
LPSPI0_PCS3  
LPSPI0_PCS2  
PTC4/  
PTC4/  
LLWU_P8  
LPSPI0_PCS0 LPUART1_TX  
TPM0_CH3  
I2S0_RXD0  
I2S0_MCLK  
CMP1_OUT  
CMP0_OUT  
LLWU_P8  
D7  
77  
PTC5/  
DISABLED  
PTC5/  
LLWU_P9  
LPSPI0_SCK  
LPTMR0_  
ALT2/  
LLWU_P9  
LPTMR1_  
ALT2  
C7  
B7  
78  
79  
PTC6/  
LLWU_P10  
CMP0_IN0  
CMP0_IN1  
CMP0_IN0  
CMP0_IN1  
PTC6/  
LLWU_P10  
LPSPI0_  
SOUT  
I2S0_RX_  
BCLK  
I2S0_MCLK  
FXIO0_D20  
PTC7  
PTC7  
LPSPI0_SIN  
USB_SOF_  
OUT  
I2S0_RX_FS  
A7  
D6  
80  
81  
PTC8  
PTC9  
CMP0_IN2  
CMP0_IN3  
CMP0_IN2  
CMP0_IN3  
PTC8  
PTC9  
LPI2C0_SCL  
LPI2C0_SDA  
TPM0_CH4  
TPM0_CH5  
I2S0_MCLK  
FXIO0_D21  
FXIO0_D22  
I2S0_RX_  
BCLK  
C6  
C5  
82  
83  
PTC10  
DISABLED  
DISABLED  
PTC10  
LPI2C1_SCL  
LPI2C1_SDA  
I2S0_RX_FS  
I2S0_RXD0  
FXIO0_D23  
PTC11/  
PTC11/  
LLWU_P11  
LLWU_P11  
B6  
A6  
A5  
84  
85  
86  
PTC12  
PTC13  
PTC14  
DISABLED  
DISABLED  
DISABLED  
PTC12  
PTC13  
PTC14  
LPI2C1_SCLS  
LPI2C1_SDAS  
TPM0_CLKIN  
TPM1_CLKIN  
EMVSIM0_  
CLK  
B5  
87  
PTC15  
DISABLED  
PTC15  
EMVSIM0_  
RST  
A11  
88  
89  
90  
VSS  
VSS  
VSS  
VDD  
VDD  
VDD  
D5  
PTC16  
DISABLED  
PTC16  
EMVSIM0_  
VCCEN  
C4  
B4  
A4  
D4  
91  
92  
93  
PTC17  
PTC18  
PTC19  
DISABLED  
DISABLED  
DISABLED  
DISABLED  
PTC17  
PTC18  
PTC19  
EMVSIM0_IO  
LPSPI0_PCS3  
EMVSIM0_PD LPSPI0_PCS2  
LPSPI0_PCS1  
PTD0/  
LLWU_P12  
PTD0/  
LLWU_P12  
LPSPI0_PCS0 LPUART2_  
RTS_b  
TPM0_CH0  
TPM0_CH1  
FXIO0_D0  
FXIO0_D1  
FXIO0_D2  
D3  
C3  
94  
95  
PTD1  
ADC0_SE5b  
DISABLED  
ADC0_SE5b  
PTD1  
LPSPI0_SCK  
LPUART2_  
CTS_b  
PTD2/  
LLWU_P13  
PTD2/  
LLWU_P13  
LPSPI0_  
SOUT  
LPUART2_RX TPM0_CH2  
64  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
Pinouts and Packaging  
121  
XFB  
GA  
100  
LQFP  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
B3  
A3  
96  
97  
PTD3  
DISABLED  
DISABLED  
PTD3  
LPSPI0_SIN  
LPUART2_TX  
TPM0_CH3  
FXIO0_D3  
FXIO0_D4  
PTD4/  
LLWU_P14  
PTD4/  
LLWU_P14  
LPSPI1_PCS0 LPUART2_RX TPM0_CH4  
LPUART0_  
RTS_b  
A2  
B2  
98  
99  
PTD5  
ADC0_SE6b  
ADC0_SE7b  
ADC0_SE6b  
ADC0_SE7b  
PTD5  
LPSPI1_SCK  
LPUART2_TX  
LPUART0_RX  
TPM0_CH5  
LPUART0_  
CTS_b  
FXIO0_D5  
FXIO0_D6  
PTD6/  
LLWU_P15  
PTD6/  
LLWU_P15  
LPSPI1_  
SOUT  
A1  
100  
PTD7  
DISABLED  
DISABLED  
PTD7  
LPSPI1_SIN  
LPI2C0_SCL  
LPUART0_TX  
LPSPI1_PCS1  
FXIO0_D7  
A10  
PTD8/  
PTD8/  
FXIO0_D24  
LLWU_P24  
LLWU_P24  
A9  
B1  
C2  
PTD9  
DISABLED  
DISABLED  
DISABLED  
PTD9  
LPI2C0_SDA  
LPSPI2_PCS3  
FXIO0_D25  
FXIO0_D26  
FXIO0_D27  
PTD10  
PTD10  
LPSPI2_PCS2 LPI2C0_SCLS  
LPSPI2_PCS0 LPI2C0_SDAS  
PTD11/  
PTD11/  
LLWU_P25  
LLWU_P25  
C1  
D2  
PTD12  
PTD13  
DISABLED  
DISABLED  
PTD12  
PTD13  
LPSPI2_SCK  
FXIO0_D28  
FXIO0_D29  
LPSPI2_  
SOUT  
D1  
E1  
J3  
PTD14  
PTD15  
NC  
DISABLED  
DISABLED  
NC  
PTD14  
PTD15  
LPSPI2_SIN  
FXIO0_D30  
FXIO0_D31  
LPSPI2_PCS1  
NC  
NC  
NC  
NC  
H3  
K4  
L7  
NC  
NC  
NC  
NC  
NC  
NC  
5.2 KL28Z Pinouts  
The below figure shows the pinout diagram for the devices supported by this  
document. Many signals may be multiplexed onto a single pin. To determine what  
signals can be used on which pin, see the previous section.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
65  
NXP Semiconductors  
Pinouts and Packaging  
1
2
3
4
5
6
7
8
9
10  
11  
PTD4/  
LLWU_P14  
PTC4/  
LLWU_P8  
PTD8/  
LLWU_P24  
A
B
C
D
E
F
G
H
J
PTD7  
PTD10  
PTD12  
PTD14  
PTD15  
PTD5  
PTC19  
PTC14  
PTC13  
PTC8  
PTD9  
VSS  
A
B
C
D
E
F
G
H
J
PTD6/  
LLWU_P15  
PTC3/  
LLWU_P7  
PTD3  
PTC18  
PTC17  
PTC15  
PTC12  
PTC10  
PTC9  
VDD  
PTC7  
PTC0  
PTB19  
PTB18  
PTB17  
PTB21  
PTB2  
PTB16  
PTB11  
PTB10  
PTB9  
PTC22  
PTC23  
PTB8  
PTB7  
PTB6  
PTD11/  
PTD2/  
LLWU_P25 LLWU_P13  
PTC11/  
LLWU_P11  
PTC6/  
LLWU_P10  
PTC2  
PTD0/  
LLWU_P12  
PTC5/  
PTC1/  
LLWU_P9 LLWU_P6  
PTD13  
PTD1  
PTC16  
VDD  
PTE2/  
PTE1/  
PTE0  
PTE3  
PTE5  
VDD  
VSS  
VSS  
PTB23  
PTB22  
PTB3  
LLWU_P1 LLWU_P0  
PTE6/  
USB0_DP USB0_DM  
VDDA  
VSSA  
VREFL  
PTE26  
PTA0  
PTB20  
PTB1  
LLWU_P16  
VREFH/  
VREF_OUT  
PTB0/  
LLWU_P5  
VOUT33  
PTE16  
VREGIN  
VSS  
PTE17/  
LLWU_P19  
PTE4/  
LLWU_P2  
NC  
NC  
PTA7  
PTE24  
PTA1  
PTA3  
PTA17  
PTA16  
VSS  
PTA29  
PTA20  
PTA19  
PTE18/  
LLWU_P20  
PTA11/  
LLWU_P23 LLWU_P21  
PTE25/  
PTA4/  
LLWU_P3 LLWU_P22  
PTA10/  
PTE19  
PTE21  
PTA2  
PTA5  
K
L
PTE20  
PTA6  
NC  
PTE30  
VDD  
PTA12  
PTA14  
K
L
PTA13/  
LLWU_P4  
PTE22  
1
PTE23  
2
PTE29  
3
PTE31  
4
VSS  
5
VSS  
6
NC  
7
PTA15  
9
VDD  
10  
PTA18  
11  
8
Figure 26. 121 XFBGA Pinout Diagram  
66  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
Ordering parts  
1
75  
74  
73  
72  
71  
70  
69  
68  
67  
66  
65  
64  
63  
62  
61  
60  
59  
58  
57  
56  
55  
54  
53  
52  
51  
PTE0  
PTE1/LLWU_P0  
PTE2/LLWU_P1  
PTE3  
VDD  
2
VSS  
3
PTC3/LLWU_P7  
PTC2  
4
5
PTC1/LLWU_P6  
PTC0  
PTE4/LLWU_P2  
PTE5  
6
7
PTB23  
PTB22  
PTB21  
PTB20  
PTB19  
PTB18  
PTB17  
PTB16  
PTB11  
PTE6/LLWU_P16  
VDD  
8
9
VSS  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
PTE16  
PTE17/LLWU_P19  
PTE18/LLWU_P20  
PTE19  
PTB10  
PTB9  
PTB8  
PTE20  
PTB7  
PTE21  
PTB3  
PTE22  
PTB2  
PTE23  
PTB1  
VDDA  
PTB0/LLWU_P5  
PTA20  
VREFH/VREF_OUT  
VREFL  
PTA19  
VSSA  
Figure 27. 100 LQFP Pinout Diagram  
6 Ordering parts  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
67  
NXP Semiconductors  
Design considerations  
6.1 Determining valid orderable parts  
Valid orderable part numbers are provided on the web. To determine the orderable part  
numbers for this device, go to nxp.com and perform a part number search for the  
following device numbers: PKL28Z and MKL28Z  
7 Design considerations  
7.1 Hardware design considerations  
This device contains protective circuitry to guard against damage due to high static  
voltage or electric fields. However, take normal precautions to avoid application of any  
voltages higher than maximum-rated voltages to this high-impedance circuit.  
7.1.1 Printed circuit board recommendations  
• Place connectors or cables on one edge of the board and do not place digital circuits  
between connectors.  
• Drivers and filters for I/O functions must be placed as close to the connectors as  
possible. Connect TVS devices at the connector to a good ground. Connect filter  
capacitors at the connector to a good ground.  
• Physically isolate analog circuits from digital circuits if possible.  
• Place input filter capacitors as close to the MCU as possible.  
• For best EMC performance, route signals as transmission lines; use a ground plane  
directly under LQFP/MAPBGA packages.  
7.1.2 Power delivery system  
Consider the following items in the power delivery system:  
• Use a plane for ground.  
• Use a plane for MCU VDD supply if possible.  
• Always route ground first, as a plane or continuous surface, and never as sequential  
segments.  
• Route power next, as a plane or traces that are parallel to ground traces.  
• Place bulk capacitance, 10 μF or more, at the entrance of the power plane.  
• Place bypass capacitors for MCU power domain as close as possible to each  
VDD/VSS pair, including VDDA/VSSA and VREFH/VREFL.  
68  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Design considerations  
• The minimum bypass requirement is to place 0.1 μF capacitors positioned as near  
as possible to the package supply pins.  
• The VREG_IN voltage range is 2.7 V to 5.5 V. Typically, 5.0V is applied here. If  
USB module is used, this pin must be powered to make the USB transceiver also  
powered. It is recommended to include a filter circuit with one bulk capacitor (no  
less than 2.2 μF) and one 0.1 μF capacitor to VREG_IN at this pin to improve  
USB performance. Total capacitors on VBUS should be less than 10 μF.  
• Take special care to minimize noise levels on the VREFH/VREFL inputs. An  
option is to use the internal reference voltage (output 1.2 V or 2.1 V typically) as  
the ADC reference.  
NOTE  
The internal reference voltage output (VREF_OUT) is  
bonded to the VREFH pin. When the VREF_OUT output is  
used, a 0.1 μF capacitor is required as a filter. Do not  
connect any other supply voltage to the pin that has  
VREF_OUT activated.  
7.1.3 Analog design  
Each ADC input must have an RC filter as shown in the following figure. The  
maximum value of R must be smaller than RAS max if high resolution is required.  
The value of C must be chosen to ensure that the RC time constant is very small  
compared to the sample period. See AN4373: Cookbook for SAR ADC  
Measurements for how to select proper RC values.  
MCU  
1
2
Input signal  
ADCx  
R
C
Figure 28. RC circuit for ADC input  
High voltage measurement circuits require voltage division, current limiting, and  
overvoltage protection as shown the following figure. The voltage divider formed by  
R1 – R4 must yield a voltage less than or equal to VREFH. Typically, VREFH is  
connected to VDDA. The current must be limited to less than the negative injection  
current limit. Since the ADC pins do not have diodes to VDD, external clamp diodes  
must be included to protect against transient over-voltages.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
69  
NXP Semiconductors  
Design considerations  
MCU  
R1  
R2  
R3  
VDD  
1
1
1
2
2
2
R5  
1
2
ADCx  
High voltage input  
R4  
1
2
C
BAT54SW  
Figure 29. High voltage measurement with an ADC input  
7.1.4 Digital design  
Ensure that all I/O pins cannot get pulled above VDD (Max I/O is VDD+0.3V).  
CAUTION  
Do not provide power to I/O pins prior to VDD, especially the  
RESET_b pin.  
• High drive pins  
PTB0, PTB1, PTC3, PTC4, PTD4, PTD5, PTD6 and PTD7 I/O have both high  
drive and normal drive capability selected by the associated PTx_PCRn[DSE]  
control bit. All other GPIOs are normal drive only. When in high drive mode, the  
sink/source current for a high drive pin can reach 20 mA. However, the total  
current flowing into the MCU VDD must not exceed maximum limit of IDD.  
• Fast pins  
PTE20, PTE21, PTE22, PTE23, PTD4, PTD5, PTD6, PTD7 can support fast slew  
rate of 0.5 ns and are used for high speed communications. It is set/cleared by  
PTx_PCRn[SRE].  
• Default I/O state  
Most of digital pins are disabled (in high impedance state) after power up, so a pull-  
up/down is needed to a determined level for some applications. Please refer to the  
Signal Multiplexing and Pin Assignments chapter to know the default IO state for a  
dedicate pin.  
• RESET_b pin  
70  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Design considerations  
The RESET_b pin is an open-drain I/O pin that has an internal pullup resistor. An  
external RC circuit is recommended to filter noise as shown in the following  
figure. The resistor value must be in the range of 4.7 kΩ to 10 kΩ; the  
recommended capacitance value is 0.1 μF. The RESET_b pin also has a selectable  
digital filter to reject spurious noise.  
VDD  
MCU  
10k  
RESET_b  
RESET_b  
0.1uF  
Figure 30. Reset circuit  
When an external supervisor chip is connected to the RESET_b pin, a series  
resistor must be used to avoid damaging the supervisor chip or the RESET_b pin,  
as shown in the following figure. The series resistor value (RS below) must be in  
the range of 100 Ω to 1 kΩ depending on the external reset chip drive strength.  
The supervisor chip must have an active high, open-drain output.  
VDD  
Supervisor Chip  
MCU  
10k  
1
2
OUT  
RESET_b  
RS  
Active high,  
open drain  
0.1uF  
Figure 31. Reset signal connection to external reset chip  
• NMI pin  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
71  
NXP Semiconductors  
Design considerations  
Do not add a pull-down resistor or capacitor on the NMI_b pin, because a low level  
on this pin will trigger non-maskable interrupt. When this pin is enabled as the NMI  
function, an external pull-up resistor (10 kΩ) as shown in the following figure is  
recommended for robustness.  
If the NMI_b pin is used as an I/O pin, use the following two ways to disable NMI  
function:  
a. Define NMI interrupt handler in which NMI pin function is remapped to other  
pin mux function  
b. Disable NMI function by programming flash configuration byte at 0x40d for  
FOPT, change FOPT[NMI_DIS] bit to zero. It will not take effect until next  
reset.  
VDD  
MCU  
10k  
NMI_b  
Figure 32. NMI pin biasing  
• Debug interface  
This MCU uses the standard Arm SWD interface protocol as shown in the  
following figure. While pull-up or pull-down resistors are not required (SWD_DIO  
has an internal pull-up and SWD_CLK has an internal pull-down), external 10 kΩ  
pull resistors are recommended for system robustness. The RESET_b pin  
recommendations mentioned above must also be considered.  
72  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Design considerations  
VDD  
10k  
VDD  
J1  
SWD_DIO  
SWD_CLK  
1
3
5
7
9
2
4
6
8
RESET_b  
10k  
10  
0.1uF  
HDR_5X2  
Figure 33. SWD debug interface  
• Low leakage stop mode wakeup  
Select low leakage wakeup pins (LLWU_Px) to wake the MCU from one of the  
low leakage stop modes (LLS/VLLSx). See KL28 Signal Multiplexing and Pin  
Assignments chapter for pin selection.  
• Unused pin  
Unused GPIO pins must be left floating (no electrical connections) with the MUX  
field of the pin’s PORTx_PCRn register equal to 000. This disables the digital  
input path to the MCU.  
If the USB module is not used, leave the USB data pins (USB0_DP, USB0_DM)  
floating.  
• EMVSIM  
When using EMVSIM, a typical 4.7 KΩ pull up resistor should be added on the  
EMVSIM_IO pin.  
P3V3  
R103  
4.7K  
EMVSIM HEADER  
JP1  
1
2
3
EMVSIM_CLK  
PTC14  
EMVSIM_RST  
EMVSIM_VCCEN  
EMVSIM_IO  
4
5
6
7
PTC15  
PTC16  
PTC17  
PTC18  
EMVSIM_PD  
HDR TH 1X7  
GND  
Figure 34. EMVSIM interface  
• Pull up resistor for getting correct power consumption result  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
73  
NXP Semiconductors  
Design considerations  
Connect the pull up resistor to VDD_MCU for the pins like RESET and NMI. For  
other pull up resistor, do not use VDD_MCU.  
7.1.5 Crystal oscillator  
When using an external crystal or ceramic resonator as the frequency reference for the  
MCU clock system, refer to the following table and diagrams.  
The feedback resistor, RF, is incorporated internally with the low power oscillators. An  
external feedback is required when using high gain (HGO=1) mode. In harsh EMC  
environment, it is recommended to use high gain mode. For low frequency (32 to 40  
kHz), switching between high gain and low power is not supported.  
The series resistor, RS, is used to limit current to external crystal or resonator to avoid  
overdrive, and is required in high gain (HGO=1) mode when the crystal or resonator  
frequency is below 2 MHz. The low power oscillator (HGO=0) must not have any  
series resistor RS.  
Internal load capacitors (Cx, Cy) are provided in the low frequency (32.786kHz) mode.  
Use the SCxP bits in the SCG_SOSCCFG register to adjust the load capacitance for the  
crystal. Typically, values of 10 pf to 16 pF are sufficient for 32.768 kHz crystals that  
have a 12.5 pF CL specification. The internal load capacitor selection must not be used  
for high frequency crystals and resonators. See crystal or resonator manufacturer's  
recommendation for parameters about load capacitance and RF.  
Table 51. External crystal/resonator connections  
Oscillator mode  
Diagram  
Low frequency (32 kHz-40 kHz), low power  
Low frequency (32 kHz-40 kHz), high gain  
High/Medium frequency (1-32 MHz), low power  
High/Medium frequency (1-32MHz), high gain  
Diagram 1  
Diagram 2, Diagram 4  
Diagram 3  
Diagram 4  
OSCILLATOR  
EXTAL  
XTAL  
1
2
CRYSTAL  
Figure 35. Crystal connection – Diagram 1  
74  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Design considerations  
OSCILLATOR  
EXTAL  
XTAL  
1
2
RF  
RS  
1
2
CRYSTAL  
Figure 36. Crystal connection – Diagram 2  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 37. Crystal connection – Diagram 3  
OSCILLATOR  
EXTAL  
OSCILLATOR  
EXTAL  
XTAL  
XTAL  
1
2
1
2
RF  
RF  
RS  
RS  
1
2
1
3
CRYSTAL  
Cx  
Cy  
RESONATOR  
Figure 38. Crystal connection – Diagram 4  
7.2 Software considerations  
All Kinetis MCUs are supported by comprehensive NXP and third-party hardware and  
software enablement solutions, which can reduce development costs and time to  
market. Featured software and tools are listed below. Visit http://www.nxp.com/  
kinetis/sw for more information and supporting collateral.  
Evaluation and Prototyping Hardware  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
75  
NXP Semiconductors  
Part identification  
• NXP Freedom Development Platform: http://www.nxp.com/freedom  
• Tower System Development Platform: http://www.nxp.com/tower  
IDEs for Kinetis MCUs  
• Kinetis Design Studio IDE: http://www.nxp.com/kds  
• Partner IDEs: http://www.nxp.com/kide  
Development Tools  
• PEG Graphics Software: http://www.nxp.com/peg  
• Processor Expert Software and Embedded Components: http://www.nxp.com/  
processorexpert )  
Run-time Software  
• Kinetis SDK: http://www.nxp.com/ksdk  
• Kinetis Bootloader: http://www.nxp.com/kboot  
• Arm mbed Development Platform: http://www.nxp.com/mbed  
• MQX RTOS: http://www.nxp.com/mqx  
For all other partner-developed software and tools, visit http://www.nxp.com/partners.  
8 Part identification  
8.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
8.2 Format  
Part numbers for this device have the following format:  
Q KL## A FFF R T PP CC N  
76  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Terminology and guidelines  
8.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 52. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KL##  
A
Kinetis family  
Key attribute  
• KL28  
FFF  
Program flash memory size  
• 256 = 256 KB  
• 512 = 512 KB  
R
Silicon revision  
• (Blank) = Main  
• A = Revision after main  
T
Temperature range (°C)  
Package identifier  
• V = –40 to 105  
PP  
• LL = 100 LQFP (14 mm x 14 mm)  
• DC = 121XFBGA (8mm x 8mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 7 = 72 MHz  
• R = Tape and reel  
• (Blank) = Trays  
8.4 Example  
This is an example part number:  
MKL28Z512VDC7  
MKL28Z512VLL7  
9 Terminology and guidelines  
9.1 Definitions  
Key terms are defined in the following table:  
Term  
Definition  
Rating  
A minimum or maximum value of a technical characteristic that, if exceeded, may cause  
permanent chip failure:  
Table continues on the next page...  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
77  
NXP Semiconductors  
Terminology and guidelines  
Term  
Definition  
Operating ratings apply during operation of the chip.  
Handling ratings apply when the chip is not powered.  
NOTE: The likelihood of permanent chip failure increases rapidly as soon as a characteristic  
begins to exceed one of its operating ratings.  
Operating requirement A specified value or range of values for a technical characteristic that you must guarantee during  
operation to avoid incorrect operation and possibly decreasing the useful life of the chip  
Operating behavior  
A specified value or range of values for a technical characteristic that are guaranteed during  
operation if you meet the operating requirements and any other specified conditions  
Typical value  
A specified value for a technical characteristic that:  
• Lies within the range of values specified by the operating behavior  
• Is representative of that characteristic during operation when you meet the typical-value  
conditions or other specified conditions  
NOTE: Typical values are provided as design guidelines and are neither tested nor  
guaranteed.  
9.2 Examples  
Operating rating:  
EXAMPLE  
EXAMPLE  
Operating requirement:  
Operating behavior that includes a typical value:  
EXAMPLE  
78  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
NXP Semiconductors  
Terminology and guidelines  
9.3 Typical-value conditions  
Typical values assume you meet the following conditions (or other conditions as  
specified):  
Symbol  
Description  
Ambient temperature  
Supply voltage  
Value  
Unit  
TA  
25  
°C  
V
VDD  
3.3  
9.4 Relationship between ratings and operating requirements  
Fatal range  
Degraded operating range  
Normal operating range  
Degraded operating range  
Fatal range  
Expected permanent failure  
- No permanent failure  
- No permanent failure  
- Correct operation  
- No permanent failure  
Expected permanent failure  
- Possible decreased life  
- Possible incorrect operation  
- Possible decreased life  
- Possible incorrect operation  
 
Operating (power on)  
Fatal range  
Handling range  
Fatal range  
Expected permanent failure  
No permanent failure  
Expected permanent failure  
∞  
Handling (power off)  
9.5 Guidelines for ratings and operating requirements  
Follow these guidelines for ratings and operating requirements:  
• Never exceed any of the chip’s ratings.  
• During normal operation, don’t exceed any of the chip’s operating requirements.  
• If you must exceed an operating requirement at times other than during normal  
operation (for example, during power sequencing), limit the duration as much as  
possible.  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
79  
NXP Semiconductors  
Revision History  
10 Revision History  
The following table provides a revision history for this document.  
Table 53. Revision History  
Rev. No.  
Date  
Substantial Changes  
0
1
08/2015  
10/2015  
Initial release  
• Removed "Ready Play module (RPM)" from the features list  
• Added "96 MHz high speed mode" to the features list under "Core"  
• Updated the values in the following sections:  
• Voltage and current operating requirements  
• Power mode transition operating behaviors  
• EMC radiated emissions operating behaviors  
• General switching specifications  
• Oscillator frequency specifications  
• 16-bit ADC operating conditions  
• LPSPI switching specifications  
• LPI2C specifications  
• Created new table for topic "Power consumption operating behaviors"  
• Updated the pinouts  
• Updated the "Terminology and guidelines" section to a new format  
2
04/2016  
• Removed 64-pin package information and marked 121-pin package information as  
"Package Your Way"  
• Updated the values in Power mode transition operating behaviors  
• Updated values and resolved TBDs in Power consumption operating behaviors  
• In section Diagram: Typical IDD_RUN operating behavior :  
• Added "For the ALLON curve, all peripheral clocks are enabled as specified in  
notes of Table 9."  
• Updated figures  
• Updated table in Slow IRC (SIRC) specifications  
• Removed section "Specification Test Methods"  
• In table VREF full-range operating behaviors, removed the user trim values and  
updated the factory trim values  
2.1  
3
06/2016  
09/2020  
• In table Table 10 Low power mode peripheral adders — typical value, removed  
IUSB_Alive  
• In section Fast IRC (FIRC) specifications :  
• In the Open loop total deviation of FIRC frequency at low voltage  
(VDD=1.71V-1.89V) over full temperature specification, maximum regulator  
disable value updated to 1.5.  
• In the Open loop total deviation of FIRC frequency at high voltage  
(VDD=1.89V-3.6V) over full temperature specification, maximum value updated  
to 1.5.  
• Added footnote stating "For temperatures -40 to 85 °C, the maximum value is  
1%, characterized on a few samples of different slots. This value is not  
guaranteed by production.".  
80  
NXP Semiconductors  
Kinetis KL28Zxxx with 512 KB Flash and 128 KB SRAM, Rev. 3, 09/2020  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,EMBRACE,  
GREENCHIP, HITAG, ICODE, JCOP, LIFE, VIBES, MIFARE, MIFARE CLASSIC, MIFARE DESFire, MIFARE  
PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT, MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX,  
SMARTMX, STARPLUG, TOPFET, TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior,  
ColdFire, ColdFire+, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa,  
Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, Tower, TurboLink,  
EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP B.V. All other product or service names  
are the property of their respective owners. AMBA, Arm, Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE,  
Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP,  
RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. The  
related technology may be protected by any or all of patents, copyrights, designs and trade secrets. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. M, M Mobileye and other Mobileye trademarks  
or logos appearing herein are trademarks of Mobileye Vision Technologies Ltd. in the United States, the EU and/or  
other jurisdictions.  
©
NXP B.V. 2015-2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: September, 2020  
Document identifier: MKL28Z512Vxx7  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY