MKW21D512VHA5 [NXP]

The MKW2xD is a low power, compact integrated device;
MKW21D512VHA5
型号: MKW21D512VHA5
厂家: NXP    NXP
描述:

The MKW2xD is a low power, compact integrated device

文件: 总78页 (文件大小:899K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
MKW2xDxxx  
Data Sheet: Technical Data  
Rev. 2, 05/2016  
MKW2xD Data Sheet  
MKW2xDxxxVHA5  
Supports MKW24D512V, MKW22D512V, MKW21D512V, and  
MKW21D256V Products  
The MKW2xD is a low power, compact integrated device  
consisting of:  
• A high-performance 2.4 GHz IEEE 802.15.4 compliant  
radio transceiver  
• A powerful ARM Cortex-M4 MCU system with connectivity  
• Precision mixed signal analog peripherals  
The MKW2xD family of devices are used to easily enable  
connectivity based on the IEEE 802.15.4 Standard.  
64 LQFP  
8.0x8.0x0.91 mm P 0.5 mm  
Core Processor and Memories  
• 50 MHz Cortex-M4 CPU with DSP capabilities  
• Up to 512 KB of flash memory  
• Up to 64 KB of SRAM  
Peripherals  
• USB  
• Cryptographic Acceleration  
• 16-bit ADC  
• 12-bit DAC  
• Flexible timers  
Typical Applications  
• Smart Energy 1.x  
• ZigBee Home Automation  
• ZigBee Healthcare  
• ZigBee RF4CE  
Radio transceiver performance  
• Up to –102 dBm receiver sensitivity  
• +8 dBm maximum transmit output power  
• Up to 58 dBm channel rejection  
• Current consumption is minimized with peak  
transmit current of 17 mA at 0 dBm output power,  
and peak receive current of 15 mA in Low Power  
Preamble Search mode.  
• ZigBee Light Link  
• Thread  
• Home Area Networks consisting of  
• Meters  
• Gateways  
• In-home displays  
• Connected appliances  
• Networked Building Control and Home Automations  
with  
Package and Operating Characteristics  
• Packaged in an 8 x 8 mm LGA with 56 contacts  
• Voltage range: 1.8 V to 3.6 V  
• Ambient temperature range: –40°C to 105°C  
• Lighting Control  
• HVAC  
• Security  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products. © 2013–2016 NXP B.V.  
Ordering Information  
Memory  
Operatin  
g Temp  
Range  
(TA)  
Device  
Package  
Description  
Options  
MKW21D256VHA5(R)  
-40 to  
105°C  
8x8 LGA (R: tape  
and reel)  
32 KB  
Additional FlexMemory with up to 64 KB FlexNVM and  
SRAM, up to 4 KB FlexRAM. No USB.  
256 KB  
flash  
MKW21D512VHA5(R)  
MKW22D512VHA5(R)  
MKW24D512VHA5(R)  
-40 to  
105°C  
8x8 LGA (R: tape  
and reel)  
64 KB  
Supports higher memory option and additional GPIO.  
SRAM, No USB. No FlexNVM or FlexRAM.  
512 KB  
flash  
-40 to  
105°C  
8x8 LGA (R: tape  
and reel)  
64 KB  
SRAM, FlexRAM.  
512 KB  
Supports full speed USB 2.0. No FlexNVM or  
flash  
-40 to  
105°C  
8x8 LGA (R: tape  
and reel)  
64 KB  
Supports Smart Energy 2.0 and full-speed USB 2.0.  
SRAM, No FlexNVM or FlexRAM.  
512 KB  
flash  
Related Resources  
Type  
Description  
Resource  
Product Selector  
Selector  
Guide  
The Kinetis MCUs Product Selector is a web-based tool that features  
interactive application wizards and a dynamic product selector.  
Fact Sheet  
The Fact Sheet gives overview of the product key features and its uses. KW2X Fact Sheet  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
MKW2xDRM1  
This document.  
98ASA00393D1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
Package  
drawing  
Package dimensions are provided in package drawings.  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Table of Contents  
1
2
Features.............................................................................. 4  
7.3.1 Voltage and current operating requirements..26  
7.3.2 LVD and POR operating requirements.......... 27  
7.3.3 Voltage and current operating behaviors.......28  
7.3.4 Power mode transition operating behaviors...28  
7.3.5 Power consumption operating behaviors.......29  
7.3.6 EMC radiated emissions operating  
1.1 Block diagram............................................................ 4  
1.2 Radio features............................................................4  
1.3 Microcontroller features............................................. 5  
Transceiver description....................................................... 8  
2.1 Key specifications...................................................... 8  
2.2 RF interface and usage..............................................9  
2.2.1 Clock output feature.......................................9  
2.3 Transceiver functions.................................................10  
2.3.1 Receive..........................................................10  
2.3.2 Transmit.........................................................10  
2.3.3 Clear channel assessment (CCA), energy  
behaviors....................................................... 33  
7.3.7 Designing with radiated emissions in mind....34  
7.3.8 Capacitance attributes................................... 34  
7.4 Switching specifications.............................................34  
7.4.1 Device clock specifications............................ 34  
7.4.2 General switching specifications....................35  
7.5 Thermal specifications............................................... 36  
7.5.1 Thermal operating requirements....................36  
7.5.2 Thermal attributes..........................................36  
7.6 Peripheral operating requirements and behaviors.....37  
7.6.1 Core modules.................................................37  
7.6.2 System modules............................................ 40  
7.6.3 Clock modules............................................... 40  
7.6.4 Memories and memory interfaces..................45  
7.6.5 Security and integrity modules.......................49  
7.6.6 Analog............................................................50  
7.6.7 Timers............................................................57  
7.6.8 Communication interfaces............................. 57  
Transceiver Electrical Characteristics................................. 66  
8.1 DC electrical characteristics.......................................66  
8.2 AC electrical characteristics.......................................67  
8.3 SPI timing: R_SSEL_B to R_SCLK........................... 68  
8.4 SPI timing: R_SCLK to R_MOSI and R_MISO..........69  
Crystal oscillator reference frequency.................................69  
9.1 Crystal oscillator design considerations.....................69  
9.2 Crystal requirements..................................................69  
detection (ED), and link quality indicator  
(LQI)...............................................................11  
2.3.4 Packet processor........................................... 12  
2.3.5 Packet buffering.............................................13  
2.4 Dual PAN ID...............................................................14  
System and power management.........................................15  
3.1 Modes of operation.................................................... 15  
3.2 Power management...................................................15  
Radio Peripherals................................................................16  
4.1 Clock output (CLK_OUT)...........................................16  
4.2 General-purpose input output (GPIO)........................16  
4.3 Serial peripheral interface (SPI).................................18  
4.3.1 Features.........................................................18  
4.4 Antenna diversity....................................................... 19  
4.5 RF Output Power Distribution.................................... 19  
MKW2xD operating modes................................................. 20  
5.1 Transceiver Transmit Current Distribution................. 21  
MKW2xD electrical characteristics......................................22  
6.1 Radio recommended operating conditions................ 22  
6.2 Ratings.......................................................................23  
6.2.1 Thermal handling ratings............................... 23  
6.2.2 Moisture handling ratings...............................23  
6.2.3 ESD handling ratings..................................... 23  
6.2.4 Voltage and current operating ratings............24  
MCU Electrical characteristics.............................................24  
7.1 Maximum ratings........................................................24  
7.2 AC electrical characteristics.......................................25  
7.3 Nonswitching electrical specifications........................26  
3
4
8
9
5
6
10 Pin diagrams and pin assignments..................................... 71  
10.1 MKW21D256/MKW21D512 Pin Assignment............. 71  
10.2 MKW22/24D512V Pin Assignment............................ 72  
10.3 Pin assignments.........................................................72  
11 Dimensions..........................................................................76  
11.1 Obtaining package dimensions..................................76  
12 Revision History.................................................................. 77  
7
MKW2xD Data Sheet, Rev. 2, 05/2016  
3
NXP Semiconductors  
Features  
1 Features  
This section provides a simplified block diagram and highlights the device features.  
1.1 Block diagram  
Core  
RF Transceiver  
System  
Memories  
Internal and  
External  
Watchdogs  
Program Flash  
(up to 512 KB)  
TM –M  
ARM Cortex  
4
IEEE 802.15.4 2006  
2.4 GHz  
®
50 MHz  
FlexNVM  
64 KB  
4 KB FlexRAM  
MKW21D256 only  
Dual  
PAN ID  
Debug  
Interfaces  
Antenna Diversity  
DSP  
DMA  
SRAM  
(up to 64 KB)  
32 MHz  
OSC  
SPI  
Interrupt Controller  
Low‐Leakage  
Wake‐up Unit  
Timers  
Clocks  
Analog  
Security  
Communication Interfaces  
and Integrity  
FlexTimer  
Phase‐Locked  
Loop  
Cyclic  
Redundancy  
Check (CRC)  
16‐bit  
ADC  
USB On‐the‐Go  
I2C  
Programmable  
Delay Block  
(HS)  
Frequency  
Locked Loop  
Tamper Detect  
USB Device  
UART  
High‐Speed  
Comparator  
with 6‐bit  
DAC  
Periodic Interrupt  
Timers  
Charger Detect  
(ISO 7816)  
Low/High  
Frequency  
Oscillators  
Cryptography  
Authentication  
Unit  
(DCD)  
Low‐Power  
Timer  
USB Voltage  
Regulator  
SPI  
Internal  
Reference  
Clocks  
Independent  
Real‐Time  
Clock (RTC)  
Random Number  
Generator  
Standard Feature  
Optional  
Figure 1. MKW2xD simplified block diagram  
1.2 Radio features  
• Fully compliant 802.15.4 Standard transceiver supports 250 kbps data rate with O-  
QPSK modulation in 5.0 MHz channels with direct sequence spread-spectrum  
(DSSS) encode and decode  
4
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Features  
• Operates on one of 16 selectable channels in the 2.4 GHz frequency ISM band  
• Programmable output power  
• Supports 2.36 to 2.4 GHz Medical Band (MBAN) frequencies with same  
modulation as IEEE 802.15.4  
• Hardware acceleration for IEEE® 802.15.4 2006 packet processing  
• Random number generator  
• Support for dual PAN mode  
• 32 MHz crystal reference oscillator with on board trim capability to supplement  
external load capacitors  
• Programmable frequency clock output (CLK_OUT)  
• Control port for Antenna Diversity mode  
• Clocks  
• 32 MHz crystal oscillator  
• Internal 1 kHz low power oscillator  
• DC to 32 MHz external square wave input clock  
• Small RF footprint  
• Differential input/output port used with external balun  
• Integrated transmit/receive switch  
• Supports single ended and antenna diversity options  
• Low external components count  
• Supports external PA and LNA  
1.3 Microcontroller features  
• Core:  
• ARM Cortex-M4 Core at 50 MHz (1.25 MIPS/MHz)  
• Supports DSP instructions  
MKW2xD Data Sheet, Rev. 2, 05/2016  
5
NXP Semiconductors  
Features  
• Nested vectored interrupt controller (NVIC)  
• Asynchronous wake-up interrupt controller (AWIC)  
• Debug and trace capability  
• 2-pin serial wire debug (SWD)  
• IEEE 1149.1 Joint Test Action Group (JTAG)  
• IEEE 1149.7 compact JTAG (cJTAG)  
• Trace port interface unit (TPIU)  
• Flash patch and breakpoint (FPB)  
• Data watchpoint and trace (DWT)  
• Instrumentation trace macrocell (ITM)  
• Enhanced trace macrocell (ETM)  
• System and power management:  
• Software and hardware watchdog with external monitor pin  
• DMA controller with 16 channels  
• Low-leakage wake-up unit (LLWU)  
• Power management controller with 10 different power modes  
• Non-maskable interrupt (NMI)  
• 128-bit unique identification (ID) number per chip  
• Memories and memory interfaces:  
• Up to 512 KB Program Flash  
• Up to 64 KB of SRAM  
• In MKW21D256, FlexMemory with up to 64 KB FlexNVM and up to 4 KB  
FlexRAM can be partitioned.  
• EEPROM has endurance of 10 million cycles over full voltage and temperature  
range and read-while-write capability  
• Flash security and protection features  
• Serial flash programming interface (EzPort)  
6
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Features  
• Clocks  
• Multi-purpose clock generator  
• PLL and FLL operation  
• Internal reference clocks (32 kHz or 2 MHz)  
• Three separate crystal oscillators  
• 3 MHz to 32 MHz crystal oscillator for MCU  
• 32 kHz to 40 kHz crystal oscillator for MCU or RTC  
• 32 MHz crystal oscillator for Radio  
• Internal 1 kHz low power oscillator  
• DC to 50 MHz external square wave input clock  
• Security and integrity  
• Hardware CRC module to support fast cyclic redundancy checks  
• Tamper detect and secure storage  
• Hardware random-number generator  
• Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and  
SHA-256 algorithms  
• 128-bit unique identification (ID) number per chip  
• Analog  
• 16-bit SAR ADC  
• High-speed Analog comparator (CMP) with 6-bit DAC  
• Timers  
• Up to 12 channels; 7 channels support external connections; 5 channels are  
internal only  
• Carrier modulator timer (CMT)  
• Programmable delay block (PDB)  
• 1x4ch programmable interrupt timer (PIT)  
MKW2xD Data Sheet, Rev. 2, 05/2016  
7
NXP Semiconductors  
Transceiver description  
• Low-power timer (LPT)  
• FlexTimers that support general-purpose PWM for motor control functions  
• Communications  
• One SPI  
• Two I2C with SMBUS support  
• Three UARTs (w/ ISO7816, IrDA, and hardware flow control)  
• One USB On-The-Go Full Speed  
• Human-machine interface  
• GPIO with pin interrupt support, DMA request capability, digital glitch filter,  
and other pin control options  
• Operating characteristics  
• Voltage range 1.8 V - 3.6 V  
• Flash memory programming down to 1.8 V  
• Temperature range (TA) -40 to 105°C  
2 Transceiver description  
2.1 Key specifications  
MKW2xD meets or exceeds all IEEE 802.15.4 performance specifications applicable to  
2.4 GHz ISM and MBAN (Medical Band Area Network) bands. Key specifications for  
MKW2xD are:  
• ISM band:  
• RF operating frequency: 2405 MHz to 2480 MHz (center frequency range)  
• 5 MHz channel spacing  
• MBAN band:  
• RF operating frequency: 2360 MHz to 2400 MHz (center frequency range)  
• MBAN channel page 9 is (2360 MHz-2390 MHz band)  
8
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Transceiver description  
• Fc = 2363.0 + 1.0 * k in MHz for k = 0, 1, 2, ...26  
• MBAN channel page 10 is (2390 MHz-2400 MHz band)  
• Fc = 2390.0 + 1.0 * k in MHz for k = 0, 1, 2, ...8  
• IEEE 802.15.4 Standard 2.4 GHz modulation scheme  
• Chip rate: 2000 kbps  
• Data rate: 250 kbps  
• Symbol rate: 62.5 kbps  
• Modulation: OQPSK  
• Receiver sensitivity: -102 dBm, typical (@1% PER for 20 byte payload packet)  
• Differential bidirectional RF input/output port with integrated transmit/receive  
switch  
• Programmable output power from -35 dBm to +8 dBm.  
2.2 RF interface and usage  
The MKW2xD RF output ports are bidirectional (diplexed between receive/transmit  
modes) and differential enabling interfaces with numerous off-chip devices such as a  
balun. When using a balun, this device provides an interface to directly connect  
between a single-ended antenna and the MKW2xD RF ports. In addition, MKW2xD  
provides four output driver ports that can have both drive strength and slew rate  
configured to control external peripheral devices. These signals designated as  
ANT_A, ANT_B, RX_SWITCH, and TX_SWITCH when enabled are switched via  
an internal hardware state machine. These ports provide control features for peripheral  
devices such as:  
• Antenna diversity modules  
• External PAs  
• External LNAs  
• T/R switches  
MKW2xD Data Sheet, Rev. 2, 05/2016  
9
NXP Semiconductors  
Transceiver functions  
2.2.1 Clock output feature  
The CLK_OUT digital output can be enabled to drive the system clock to the MCU.  
This provides a highly accurate clock source based on the transceiver reference  
oscillator. The clock is programmable over a wide range of frequencies divided down  
from the reference 32 MHz (see Table 2). The CLK_OUT pin will be enabled upon  
POR. The frequency CLK_OUT default to 4 MHz (32 MHz/8).  
2.3 Transceiver functions  
2.3.1 Receive  
The receiver has the functionality to operate in either normal run state or low power run  
state that can be considered as a partial power down mode. Low power run state can  
save a considerable amount of current by duty-cycling some sections of the receiver  
lineup during preamble search and is referred to as Low Power Preamble Search mode  
(LPPS).  
The radio receiver path is based upon a near zero IF (NZIF) architecture incorporating  
front end amplification, one mixed signal down conversion to IF that is programmably  
filtered, demodulated and digitally processed. The RF front end (FE) input port is  
differential that shares the same off chip matching network with the transmit path.  
2.3.2 Transmit  
MKW2xD transmits OQPSK modulation having power and channel selection  
adjustment per user application. After the channel of operation is determined, coarse  
and fine tuning is executed within the Frac-N PLL to engage signal lock. After signal  
lock is established, the modulated buffered signal is then routed to a multi-stage  
amplifier for transmission. The differential signals at the output of the PA (RFOUTP,  
RFOUTN) are converted as single ended (SE) signals with off chip components as  
required.  
10  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Transceiver functions  
2.3.3 Clear channel assessment (CCA), energy detection (ED), and  
link quality indicator (LQI)  
The MKW2xD supports three clear channel assessment (CCA) modes of operation  
including energy detection (ED) and link quality indicator (LQI). Functionality for  
each of these modes is as follows.  
2.3.3.1 CCA mode 1  
CCA mode 1 has two functions:  
• To estimate the energy in the received baseband signal. This energy is estimated  
based on receiver signal strength indicator (RSSI).  
• To determine whether the energy is greater than a set threshold.  
The estimate of the energy can also be used as the Link Quality metric. In CCA Mode  
1, the MKW2xD must warm up from Idle to Receive mode where RSSI averaging  
takes place.  
2.3.3.2 CCA mode 2  
CCA mode 2 detects whether there is any 802.15.4 signal transmitting in the  
frequency band that an 802.15.4 transmitter intends to transmit. From the definition of  
CCA mode 2 in the 802.15.4 standard, the requirement is to detect an 802.15.4  
complied signal. Whether the detected energy is strong or not is not important for  
CCA mode 2.  
2.3.3.3 CCA mode 3  
CCA mode 3 as defined by 802.15.4 standard is implemented using a logical  
combination of CCA mode 1 and CCA mode 2. Specifically, CCA mode 3 operates in  
one of two operating modes:  
• CCA mode 3 is asserted if both CCA mode 1 and CCA mode 2 are asserted.  
• CCA mode 3 is asserted if either CCA mode 1 or CCA mode 2 is asserted.  
This mode setting is available through a programmable register.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
11  
NXP Semiconductors  
Transceiver functions  
2.3.3.4 Energy detection (ED)  
Energy detection (ED) is based on receiver signal strength indicator (RSSI) and  
correlator output for the 802.15.4 standard. ED is an average value of signal strength.  
The magnitude from this measurement is calculated from the digital RSSI value that is  
averaged over a 128 μs duration.  
2.3.3.5 Link quality indicator (LQI)  
Link quality indicator (LQI) is based on receiver signal strength indicator (RSSI) or  
correlator output for the 802.15.4 standard. In this mode, the RSSI measurement is done  
during normal packet reception. LQI computations for the MKW2xD are based on  
either digital RSSI or correlator peak values. This setting is executed through a register  
bit where the final LQI value is available 64 μs after preamble is detected. If a  
continuous update of LQI based on RSSI throughout the packet is desired, it can be read  
in a separate 8-bit register by enabling continuous update in a register bit.  
2.3.4 Packet processor  
The MKW2xD packet processor performs sophisticated hardware filtering of the  
incoming received packet to determine if the packet is both PHY- and MAC-compliant,  
is addressed to this device, if the device is a PAN coordinator and whether a message is  
pending for the sending device. The packet processor greatly reduces the packet  
filtering burden on software allowing it to tend to higher-layer tasks with a lower  
latency and smaller software footprint.  
2.3.4.1 Features  
• Aggressive packet filtering to enable long, uninterrupted MCU sleep periods  
• Fully compliant with both 2003 and 2006 versions of the 802.15.4 wireless  
standard  
• Supports all frame types, including reserved types  
• Supports all valid 802.15.4 frame lengths  
• Enables auto-Tx acknowledge frames (no MCU intervention) by parsing of frame  
control field and sequence number  
• Supports all source and destination address modes, and also PAN ID compression  
• Supports broadcast address for PAN ID and short address mode  
12  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Transceiver functions  
• Supports “promiscuous” mode, to receive all packets regardless of address- and  
rules-checking  
• Allows frame type-specific filtering (e.g., reject all but beacon frames)  
• Supports SLOTTED and non-SLOTTED modes  
• Includes special filtering rules for PAN coordinator devices  
• Enables minimum-turnaround Tx-acknowledge frames for data-polling requests  
by automatically determining message-pending status  
• Assists MCU in locating pending messages in its indirect queue for data-polling  
end devices  
• Makes available to MCU detailed status of frames that fail address- or rules-  
checking.  
• Supports Dual PAN mode, allowing the device to exist on 2 PAN's  
simultaneously  
• Supports 2 IEEE addresses for the device  
• Supports active promiscuous mode  
2.3.5 Packet buffering  
The packet buffer is a 128-byte random access memory (RAM) dedicated to the  
storage of 802.15.4 packet contents for both TX and RX sequences. For TX  
sequences, software stores the contents of the packet buffer starting with the frame  
length byte at packet buffer address 0 followed by the packet contents at the  
subsequent packet buffer addresses. For RX sequences the incoming packet's frame  
length is stored in a register external to the packet buffer. Software will read this  
register to determine the number of bytes of packet buffer to read. This facilitates  
DMA transfer through the SPI. For receive packets, an LQI byte is stored at the byte  
immediately following the last byte of the packet (frame length +1). Usage of the  
packet buffer for RX and TX sequences is on a time-shared basis; receive packet data  
will overwrite the contents of the packet buffer. Software can inhibit receive-packet  
overwriting of the packet buffer contents by setting the PB_PROTECT bit. This will  
block RX packet overwriting, but will not inhibit TX content loading of the packet  
buffer via the SPI.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
13  
NXP Semiconductors  
Transceiver functions  
2.3.5.1 Features  
• 128 byte buffer stores maximum length 802.15.4 packets  
• Same buffer serves both TX and RX sequences  
• The entire Packet Buffer can be uploaded or downloaded in a single SPI burst.  
• Automatic address auto-incrementing for burst accesses  
• Single-byte access mode supported.  
• Entire packet buffer can be accessed in hibernate mode  
• Under-run error interrupt supported  
2.4 Dual PAN ID  
In the past, radio transceivers designed for IEEE 802.15.4 applications allowed a device  
to associate to one and only one PAN (Personal Area Network) at any given time. The  
MKW2xD represents a high-performance SiP that includes hardware support for a  
device to reside in two networks simultaneously. In optional Dual PAN mode, the  
device alternates between the two (2) PANs under hardware or software control.  
Hardware support for Dual PAN operation consists of two (2) sets of PAN and IEEE  
addresses for the device, two (2) different channels (one for each PAN) and a  
programmable timer to automatically switch PANs (including on-the-fly channel  
changing) without software intervention. There are control bits to configure and enable  
Dual PAN mode, and read only bits to monitor status in Dual PAN mode. A device can  
be configured to be a PAN coordinator on either network, both networks or neither.  
For the purpose of defining PAN in the context of Dual PAN mode, two (2) sets of  
network parameters are maintained; PAN0 and PAN1. PAN0 and PAN1 will be used to  
refer to the two (2) PANs where each parameter set uniquely identifies a PAN for Dual  
PAN mode. These parameters are described in Table 1.  
Table 1. PAN0 and PAN1 descriptions  
PAN0  
PAN1  
Channel0 (PHY_INT0, PHY_FRAC0)  
MacPANID0 (16-bit register)  
MacShortAddrs0 (16-bit register)  
MacLongAddrs0 (64-bit registers)  
PANCORDNTR0 (1-bit register)  
Channel1 (PHY_INT1, PHY_FRAC1)  
MacPANID1 (16-bit register)  
MacShortAddrs1 (16-bit register)  
MacLongAddrs1 (64-bit registers)  
PANCORDNTR1 (1-bit register)  
14  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
System and power management  
During device initialization if Dual PAN mode is used, software will program both  
parameter sets to configure the hardware for operation on two (2) networks.  
3 System and power management  
The MKW2xD is a low power device that also supports extensive system control and  
power management modes to maximize battery life and provide system protection.  
3.1 Modes of operation  
The transceiver modes of operation include:  
• Idle mode  
• Doze mode  
• Low power (LP) / hibernate mode  
• Reset / powerdown mode  
• Run mode  
3.2 Power management  
The MKW2xD power management is controlled through programming the modes of  
operation. Different modes allow for different levels of power-down and RUN  
operation. For the receiver, programmable power modes available are:  
• Preamble search  
• Preamble search sniff  
• Low Power Preamble Search (LPPS)  
• Fast Antenna Diversity (FAD) Preamble search  
• Packet decoding  
MKW2xD Data Sheet, Rev. 2, 05/2016  
15  
NXP Semiconductors  
Radio Peripherals  
4 Radio Peripherals  
The MKW2xD provides a set of I/O pins useful for suppling a system clock to the  
MCU, controlling external RF modules/circuitry, and GPIO.  
4.1 Clock output (CLK_OUT)  
MKW2xD integrates a programmable clock to source numerous frequencies for  
connection with various MCUs. Package pin 39 can be used to provide this clock source  
as required allowing the user to make adjustments per their application requirement.  
The transceiver CLK_OUT pin is internally connected to the MCU EXTAL pin so that  
no external connection is needed to drive the MCU clock.  
Care must be taken that the clock output signal does not interfere with the reference  
oscillator or the radio. Additional functionality this feature supports is:  
• XTAL domain can be completely gated off (hibernate mode)  
• SPI communication allowed in hibernate  
Table 2. CLK_OUT  
CLK_OUT_DIV [2:0]  
CLK_OUT frequency  
32 MHz1  
0
1
2
3
4
5
6
7
16 MHz1  
8 MHz1  
4 MHz  
2 MHz  
1 MHz  
62.5 kHz  
32.786 kHz  
1. May require high drive strength for proper signal integrity.  
There is an enable/disable bit for CLK_OUT. When disabling, the clock output will  
optionally continue to run for 128 clock cycles after disablement. There is also be one  
(1) bit available to adjust the CLK_OUT I/O pad drive strength.  
16  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Radio Peripherals  
4.2 General-purpose input output (GPIO)  
In addition to the MCU supported GPIOs, the radio supports 2 GPIO pins. All I/O  
pins will have the same supply voltage and depending on the supply, can vary from  
1.8 V up to 3.6 V. When the pin is configured as a general-purpose output or for  
peripheral use, there will be specific settings required per use case. Pin configuration  
will be executed by software to adjust input/output direction and drive strength,  
capability. When the pin is configured as a general-purpose input or for peripheral  
use, software (see Table 3) can enable a pull-up or pull-down device. Immediately  
after reset, all pins are configured as high-impedance general-purpose inputs with  
internal pull-up devices enabled.  
Features for these pins include:  
• Programmable output drive strength  
• Programmable output slew rate  
• Hi-Z mode  
• Programmable as outputs or inputs (default)  
Table 3. Pin configuration summary  
Tolerance  
Pin function configuration  
Details  
Units  
Min.  
2
Typ.  
10  
2
Max.  
10  
6
I/O buffer full drive mode1  
I/O buffer partial drive mode1  
I/O buffer high impedance2  
No slew, full drive  
Source or sink  
Source or sink  
Off state  
Rise and fall time3  
Rise and fall time  
Rise and fall time  
Rise and fall time  
Full drive5  
mA  
mA  
nA  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
No slew, partial drive  
2
4
6
Slew, full drive  
6
12  
12  
24  
24  
11  
11  
50  
50  
Slew, partial drive  
6
Propagation delay4, no slew  
Propagation delay, no slew  
Propagation delay, slew  
Propagation delay, slew  
Partial drive6  
Full drive  
Partial drive  
1. For this drive condition, the output voltage will not deviate more than 0.5 V from the rail reference VOH or VOL.  
2. Leakage current applies for the full range of possible input voltage conditions.  
3. Rise and fall time values in reference to 20% and 80%  
4. Propagation Delay measured from/to 50% voltage point.  
5. Full drive values provided are in reference to a 75 pF load.  
6. Partial drive values provided are in reference to a 15 pF load.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
17  
NXP Semiconductors  
Radio Peripherals  
4.3 Serial peripheral interface (SPI)  
The MKW2xD SiP uses a SPI interface allowing the MCU to communicate with the  
radio's register set and packet buffer. The SPI is a slave-only interface; the MCU must  
drive R_SSEL_B, R_SCLK and R_MOSI. Write and read access to both direct and  
indirect registers is supported, and transfer length can be single-byte or bursts of  
unlimited length. Write and read access to the Packet buffer can also be single-byte or a  
burst mode of unlimited length.  
The SPI interface is asynchronous to the rest of the IC. No relationship between  
R_SCLK and MKW2xD's internal oscillator is assumed. And no relationship between  
R_SCLK and the CLK_OUT pin is assumed. All synchronization of the SPI interface to  
the IC takes place inside the SPI module. SPI synchronization takes place in both  
directions; register writes and register reads. The SPI is capable of operation in all  
power modes, except Reset. Operation in hibernate mode allows most transceiver  
registers and the complete packet buffer to be accessed in the lowest-power operating  
state enabling minimal power consumption, especially during the register-initialization  
phase of the radio.  
The SPI design features a compact, single-byte control word, reducing SPI access  
latency to a minimum. Most SPI access types require only a single-byte control word,  
with the address embedded in the control word. During control word transfer (the first  
byte of any SPI access), the contents of the IRQSTS1 register (MKW2xD radio's  
highest-priority status register) are always shifted out so that the MCU gets access to  
IRQSTS1, with the minimum possible latency, on every SPI access.  
4.3.1 Features  
• 4-wire industry standard interface, supported by all MCUs  
• SPI R_SCLK maximum frequency 16 MHz (for SPI write accesses)  
• SPI R_SCLK maximum frequency 9 MHz (for SPI read accesses)  
• Write and read access to all radio registers (direct and indirect)  
• Write and read access to packet buffer  
• SPI accesses can be single-byte or burst  
• Automatic address auto-incrementing for burst accesses  
18  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Radio Peripherals  
• The entire packet buffer can be uploaded or downloaded in a single SPI burst  
• Entire packet buffer and most registers can be accessed in hibernate mode  
• Built-in synchronization inside the SPI module to/from the rest of the radio  
4.4 Antenna diversity  
To improve the reliability of RF connectivity to long range applications, the antenna  
diversity feature is supported without using the MCU through use of four dedicated  
control pins (package pins 44, 45, 46, and 47).  
Fast antenna diversity (FAD) mode supports this radio feature and, when enabled, will  
allow the choice of selection between two antennas during the preamble phase. By  
continually monitoring the received signal, the FAD block will select the first antenna  
of which the received signal has a correlation factor above a predefined progammable  
threshold. The FAD accomplishes the antenna selection by sequentially switching  
between the two antennas testing for the presence of suitably strong s0 symbol where  
the first antenna to reach this condition is then selected for the reception of the packet.  
The antenna's are monitored for a period of 28 μs each. The antenna switching is  
continued until 1.5 valid s0 symbols are detected. The demodulator then continues  
with normal preamble search before declaring “Preamble Detect”.  
4.5 RF Output Power Distribution  
The following figure shows the linear region of the output and the typical power  
distribution of the radio as a function of PA_PWR [4:0] range. The PA_PWR [4:0] is  
the lower 5 bits of the PA_PWR 0x23 direct register and has a usable range of 3 to 31  
decimal.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
19  
NXP Semiconductors  
MKW2xD operating modes  
Figure 2. MKW2xD transmit power vs. PA_PWR step  
5 MKW2xD operating modes  
For the discussion of this topic, the primary radio and MCU operating modes are  
combined so that overall power consumption can then be derived. Depending on the  
stop requirements of the user application, a variety of stop modes are available that  
provide state retention, partial power down or full power down of certain logic and/or  
memory. I/O states are held in all modes of operation. Both the radio and MCU's power  
modes are described as follows.  
The radio has 6 primary operating modes:  
• Reset / power down  
• Low power (LP) / hibernate  
• Doze (low power with reference oscillator active)  
20  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MKW2xD operating modes  
• Idle  
• Receive  
• Transmit  
Table 4 lists and describes the transceivers power modes and consumption.  
Table 4. Transceiver Power Modes  
Current  
Mode  
Definition  
consumption1  
Reset / All IC functions off, leakage only. RST asserted.  
< 100 nA  
powerdow  
n
Low  
Crystal reference oscillator off. (SPI is functional.)  
< 1 μA  
power /  
hibernate  
Doze2  
Crystal reference oscillator on but CLK_OUT output available only if selected.  
Crystal reference oscillator on with CLK_OUT output available only if selected.  
500 μA3  
(no CLK_OUT)  
700 μA3  
Idle  
(no CLK_OUT)  
< 19.5 mA 4  
Receive Crystal reference oscillator on. Receiver on.  
Transmit Crystal reference oscillator on. Transmitter on.  
15 mA, LPPS  
mode  
< 18 mA 5  
1. Conditions: VBAT and VBAT_2 = 2.7 V, nominal process @ 25°C  
2. While in Doze mode, 4 MHz max frequency can be selected for CLK_OUT.  
3. Typical  
4. Signal sensitivity = -102 dBm  
5. RF output = 0 dBm  
The MCU has a variety of operating modes. For each run mode there is a  
corresponding wait and stop mode. Wait modes are similar to ARM sleep modes. Stop  
modes (VLPS, STOP) are similar to ARM sleep deep mode. The very low power run  
(VLPR) operating mode can drastically reduce runtime power when the maximum bus  
frequency is not required to handle the application needs.  
The three primary modes of operation are run, wait and stop. The WFI instruction  
invokes both wait and stop modes for the chip. The primary modes are augmented in a  
number of ways to provide lower power based on application needs.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
21  
NXP Semiconductors  
MKW2xD electrical characteristics  
5.1 Transceiver Transmit Current Distribution  
The following figure shows the relation between the transmit power generated by the  
radio and its current consumption.  
Figure 3. MKW2xD transmit power vs transmit current (Radio Only)  
6 MKW2xD electrical characteristics  
6.1 Radio recommended operating conditions  
Table 5. Recommended operating conditions  
Characteristic  
Symbol  
Min  
1.8  
Typ  
2.7  
Max  
3.6  
Unit  
Vdc  
GHz  
°C  
Power Supply Voltage (VBAT = VDDINT  
Input Frequency  
)
VBAT, VDDINT  
fin  
2.360  
-40  
2.480  
105  
Ambient Temperature Range  
TA  
25  
Table continues on the next page...  
22  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Ratings  
Table 5. Recommended operating conditions (continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Logic Input Voltage Low  
VIL  
0
30%  
V
VDDINT  
Logic Input Voltage High  
VIH  
70%  
VDDINT  
V
VDDINT  
SPI Clock Rate  
RF Input Power  
fSPI  
Pmax  
fref  
16.0  
10  
MHz  
dBm  
Crystal Reference Oscillator Frequency ( 40 ppm over  
operating conditions to meet the 802.15.4 Standard.)  
32 MHz only  
6.2 Ratings  
6.2.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
–55  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.2.2 Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.2.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
+2000  
+500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
23  
NXP Semiconductors  
MCU Electrical characteristics  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
ILAT  
Latch-up current at ambient temperature of 105°C  
-100  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
6.2.4 Voltage and current operating ratings  
Symbol  
VDD  
Description  
Min.  
–0.3  
Max.  
3.6  
Unit  
V
Digital supply voltage  
IDD  
Digital supply current  
155  
mA  
V
VDIO  
Digital input voltage (except RESET, EXTAL, and XTAL)  
Analog1, RESET, EXTAL, and XTAL input voltage  
Maximum current single pin limit (applies to all digital pins)  
Analog supply voltage  
–0.3  
VDD + 0.3  
VDD + 0.3  
25  
VAIO  
–0.3  
V
ID  
–25  
mA  
V
VDDA  
VDD – 0.3  
–0.3  
VDD + 0.3  
3.63  
VUSB0_DP  
VUSB0_DM  
USB0_DP input voltage  
V
USB0_DM input voltage  
–0.3  
3.63  
V
1. Analog pins are defined as pins that do not have an associated general purpose I/O port function.  
7 MCU Electrical characteristics  
7.1 Maximum ratings  
Table 6. Maximum ratings  
Requirement  
Power Supply Voltage  
Digital Input Voltage  
RF Input Power  
Description  
Symbol  
VBAT, VBAT2  
Vin  
Rating level  
-0.3 to 3.6  
Unit  
Vdc  
Vdc  
dBm  
-0.3 to (VDDINT + 0.3)  
+10  
Pmax  
Note: Maximum ratings are those values beyond which damage to the device may occur. Functional operation should be  
restricted to the limits in the electrical characteristics or recommended operating conditions tables.  
Human Body  
Model  
HBM  
2000  
200  
Vdc  
Vdc  
ESD1  
Machine Model  
MM  
Table continues on the next page...  
24  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 6. Maximum ratings (continued)  
Requirement  
Description  
Symbol  
Rating level  
Unit  
Charged Device  
Model  
CDM  
750  
Vdc  
Power Electro-  
Static  
Discharge /  
Direct Contact  
No damage / latch up to 4000  
No soft failure / reset to 1000  
Vdc  
Vdc  
PESD  
Power Electro-  
Static  
Discharge /  
Indirect Contact  
No damage / latch up to 6000  
No soft failure / reset to 1000  
EMC2  
No damage / latch up to 5  
No soft failure / reset to 5  
No damage / latch up to 300  
No soft failure / reset to 150  
+125  
Langer IC / EFT /  
P201  
Vdc  
Vdc  
EFT (Electro  
Magnetic Fast  
Transient)  
Langer IC / EFT /  
P201  
Junction Temperature  
TJ  
°C  
°C  
Storage Temperature Range  
Tstg  
-65 to +165  
1. Electrostatic discharge on all device pads meet this requirement  
2. Electromagnetic compatibility for this product is low stress rating level  
Note  
Maximum ratings are those values beyond which damage to  
the device may occur. Functional operation should be  
restricted to the limits in the electrical characteristics or  
recommended operating conditions tables.  
7.2 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
25  
NXP Semiconductors  
MCU Electrical characteristics  
High  
Low  
VIH  
Midpoint1  
80%  
50%  
20%  
Input Signal  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 4. Input signal measurement reference  
7.3 Nonswitching electrical specifications  
7.3.1 Voltage and current operating requirements  
Table 7. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.8  
Max.  
3.6  
3.6  
0.1  
0.1  
3.6  
Unit  
V
Notes  
Supply voltage  
VDDA  
Analog supply voltage  
1.8  
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
–0.1  
–0.1  
1.8  
V
V
VBAT  
VIH  
RTC battery supply voltage  
Input high voltage  
V
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
V
I/O pin DC injection current — single pin  
• VIN < VSS-0.3V (Negative current injection)  
• VIN > VDD+0.3V (Positive current injection)  
1
mA  
-3  
+3  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents or sum of  
positive injection currents of 16 contiguous pins  
-25  
mA  
• Negative current injection  
• Positive current injection  
+25  
Table continues on the next page...  
26  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 7. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
1.2  
Max.  
Unit  
V
Notes  
VRAM  
VDD voltage required to retain RAM  
VRFVBAT VBAT voltage required to retain the VBAT register file  
VPOR_VBAT  
V
1. All analog pins are internally clamped to VSS and VDD through ESD protection diodes. If VIN is less than VAIO_MIN or  
greater than VAIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is  
calculated as R=(VAIO_MIN-VIN)/|IICAIO|. The positive injection current limiting resistor is calculated as R=(VIN-  
VAIO_MAX)/|IICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative  
injection currents.  
7.3.2 LVD and POR operating requirements  
Table 8. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VLVDH  
Falling low-voltage detect threshold — high  
range (LVDV=01)  
2.48  
2.56  
2.64  
V
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV=00)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
80  
mV  
V
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV=00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
1.86  
1.96  
2.06  
2.16  
V
V
V
V
• Level 2 falling (LVWV=01)  
• Level 3 falling (LVWV=10)  
• Level 4 falling (LVWV=11)  
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
60  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low power oscillator period — factory  
trimmed  
1000  
1100  
μs  
MKW2xD Data Sheet, Rev. 2, 05/2016  
27  
NXP Semiconductors  
MCU Electrical characteristics  
1. Rising threshold is the sum of falling threshold and hysteresis voltage  
Table 9. VBAT power operating requirements  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VPOR_VBAT Falling VBAT supply POR detect voltage  
0.8  
1.1  
1.5  
V
7.3.3 Voltage and current operating behaviors  
Table 10. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = - 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -3 mA  
VDD – 0.5  
VDD – 0.5  
V
V
Output high voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -0.6 mA  
VDD – 0.5  
VDD – 0.5  
V
V
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — high drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 9 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 3 mA  
100  
mA  
0.5  
0.5  
V
V
Output low voltage — low drive strength  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 2 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 0.6 mA  
0.5  
0.5  
V
V
IOLT  
IIN  
Output low current total for all ports  
Input leakage current (per pin)  
• @ full temperature range  
• @ 25 °C  
100  
mA  
1.0  
0.1  
μA  
μA  
1
IOZ  
IOZ  
Hi-Z (off-state) leakage current (per pin)  
Total Hi-Z (off-state) leakage current (all input pins)  
Internal pullup resistors  
22  
22  
1
4
μA  
μA  
kΩ  
kΩ  
RPU  
RPD  
50  
50  
2
3
Internal pulldown resistors  
1. Tested by ganged leakage method  
2. Measured at Vinput = VSS  
3. Measured at Vinput = VDD  
28  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
7.3.4 Power mode transition operating behaviors  
All specifications except tPOR, and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 50 MHz  
• Bus clock = 50 MHz  
• Flash clock = 25 MHz  
• MCG mode: FEI  
Table 11. Power mode transition operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point  
VDD reaches 1.71 V to execution of the first  
instruction across the operating temperature range  
of the chip.  
μs  
1
300  
1.7 V / (VDD  
slew rate)  
• 1.71 V/(VDD slew rate) ≤ 300 μs  
• 1.71 V/(VDD slew rate) > 300 μs  
150  
79  
79  
6
μs  
μs  
μs  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
• VLLS3 RUN  
• LLS RUN  
5.2  
5.2  
• VLPS RUN  
• STOP RUN  
1. Normal boot (FTFL_OPT[LPBOOT]=1)  
7.3.5 Power consumption operating behaviors  
Table 12. Power consumption operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDDA  
Analog supply current  
See note  
mA  
1
2
IDD_RUN Run mode current — all peripheral clocks  
disabled, code executing from flash  
• @ 1.8 V  
• @ 3.0 V  
12.98  
12.93  
14  
mA  
mA  
13.8  
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
29  
NXP Semiconductors  
MCU Electrical characteristics  
Table 12. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN Run mode current — all peripheral clocks  
enabled, code executing from flash  
3, 4  
• @ 1.8 V  
• @ 3.0 V  
• @ 25°C  
• @ 125°C  
17.04  
19.3  
mA  
17.01  
19.8  
7.95  
18.9  
21.3  
9.5  
mA  
mA  
mA  
IDD_WAIT Wait mode high frequency current at 3.0 V —  
all peripheral clocks disabled  
2
5
IDD_WAIT Wait mode reduced frequency current at 3.0 V  
— all peripheral clocks disabled  
5.88  
7.4  
mA  
μA  
IDD_STOP Stop mode current at 3.0 V  
• @ –40 to 25°C  
• @ 50°C  
320  
360  
410  
610  
754  
436  
489  
620  
1100  
• @ 70°C  
• @ 105°C  
IDD_VLPR Very-low-power run mode current at 3.0 V —  
all peripheral clocks disabled  
μA  
6
7
8
IDD_VLPR Very-low-power run mode current at 3.0 V —  
all peripheral clocks enabled  
1.1  
mA  
IDD_VLPW Very-low-power wait mode current at 3.0 V  
437  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at 3.0 V  
7.33  
14  
24.2  
32  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
• @ 105°C  
28  
48  
110  
280  
IDD_LLS Low leakage stop mode current at 3.0 V  
μA  
μA  
μA  
μA  
3.14  
6.48  
4.8  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
28.3  
44.6  
71.3  
13.85  
55.53  
• @ 105°C  
IDD_VLLS3 Very low-leakage stop mode 3 current at 3.0 V  
2.19  
4.35  
3.4  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
4.35  
24.6  
45.3  
8.92  
• @ 105°C  
35.33  
IDD_VLLS2 Very low-leakage stop mode 2 current at 3.0 V  
1.77  
2.81  
3.1  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
13.8  
22.3  
34.2  
5.20  
• @ 105°C  
19.88  
IDD_VLLS1 Very low-leakage stop mode 1 current at 3.0 V  
• @ –40 to 25°C  
1.03  
1.8  
Table continues on the next page...  
30  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
Table 12. Power consumption operating behaviors (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
• @ 50°C  
• @ 70°C  
• @ 105°C  
1.92  
7.5  
4.03  
15.9  
28.7  
17.43  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
μA  
0.543  
1.36  
1.1  
with POR detect circuit enabled  
• @ –40 to 25°C  
• @ 50°C  
7.58  
14.3  
24.1  
3.39  
• @ 70°C  
• @ 105°C  
16.52  
IDD_VLLS0 Very low-leakage stop mode 0 current at 3.0 V  
μA  
μA  
0.359  
1.03  
0.95  
6.8  
with POR detect circuit disabled  
• @ –40 to 25°C  
• @ 50°C  
2.87  
15.4  
25.3  
• @ 70°C  
• @ 105°C  
15.20  
IDD_VBAT Average current when CPU is not accessing  
9
0.91  
1.1  
1.5  
4.3  
1.1  
1.35  
1.85  
5.7  
RTC registers at 3.0 V  
• @ –40 to 25°C  
• @ 50°C  
• @ 70°C  
• @ 105°C  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See each module's specification for its supply current.  
2. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks disabled.  
3. 50 MHz core and system clock, 25 MHz bus clock, and 25 MHz flash clock. MCG configured for FEI mode. All  
peripheral clocks enabled, and peripherals are in active operation.  
4. Max values are measured with CPU executing DSP instructions  
5. 25 MHz core and system clock, 25 MHz bus clock, and 12.5 MHz flash clock. MCG configured for FEI mode.  
6. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled. Code executing from flash.  
7. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
enabled but peripherals are not in active operation. Code executing from flash.  
8. 4 MHz core, system, and bus clock and 1 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks  
disabled.  
9. Includes 32 kHz oscillator current and RTC operation.  
7.3.5.1 Diagram: Typical IDD_RUN operating behavior  
The following data was measured under these conditions:  
• MCG in FBE mode  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFL  
MKW2xD Data Sheet, Rev. 2, 05/2016  
31  
NXP Semiconductors  
MCU Electrical characteristics  
Figure 5. Run mode supply current vs. core frequency  
32  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
Figure 6. VLPR mode supply current vs. core frequency  
7.3.6 EMC radiated emissions operating behaviors  
Table 13. EMC radiated emissions operating behaviors 1  
Symbol  
Description  
Frequency  
band  
Typ.  
Unit  
Notes  
(MHz)  
VRE1  
VRE2  
Radiated emissions voltage, band 1  
Radiated emissions voltage, band 2  
Radiated emissions voltage, band 3  
Radiated emissions voltage, band 4  
IEC level  
0.15–50  
50–150  
19  
21  
19  
11  
L
dBμV  
dBμV  
dBμV  
dBμV  
2, 3  
VRE3  
150–500  
500–1000  
0.15–1000  
VRE4  
VRE_IEC  
3, 4  
1. This data was collected on a MK20DN128VLH5 64pin LQFP device.  
2. Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions,  
150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits -  
Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM  
Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic  
MKW2xD Data Sheet, Rev. 2, 05/2016  
33  
NXP Semiconductors  
MCU Electrical characteristics  
application code. The reported emission level is the value of the maximum measured emission, rounded up to the next  
whole number, from among the measured orientations in each frequency range.  
3. VDD = 3.3 V, TA = 25 °C, fOSC = 12 MHz (crystal), fSYS = 48 MHz, fBUS = 48MHz  
4. Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and  
Wideband TEM Cell Method  
7.3.7 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
• Go to www.nxp.com.  
• Perform a keyword search for “EMC design.”  
7.3.8 Capacitance attributes  
Table 14. Capacitance attributes  
Symbol  
CIN_A  
Description  
Min.  
Max.  
Unit  
pF  
Input capacitance: analog pins  
Input capacitance: digital pins  
7
7
CIN_D  
pF  
7.4 Switching specifications  
7.4.1 Device clock specifications  
Table 15. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Normal run mode  
fSYS  
System and core clock  
50  
MHz  
MHz  
System and core clock when Full Speed USB in  
operation  
20  
fBUS  
Bus clock  
50  
25  
25  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
Flash clock  
LPTMR clock  
VLPR mode1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
4
MHz  
MHz  
Table continues on the next page...  
34  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 15. Device clock specifications (continued)  
Symbol  
fFLASH  
Description  
Min.  
Max.  
1
Unit  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Notes  
Flash clock  
fERCLK  
External reference clock  
LPTMR clock  
16  
fLPTMR_pin  
25  
fLPTMR_ERCLK LPTMR external reference clock  
16  
fI2S_MCLK  
fI2S_BCLK  
I2S master clock  
I2S bit clock  
12.5  
4
1. The frequency limitations in VLPR mode here override any frequency specification listed in the timing specification for  
any other module.  
7.4.2 General switching specifications  
These general purpose specifications apply to all pins configured for:  
• GPIO signaling  
• Other peripheral module signaling not explicitly stated elsewhere  
Table 16. General switching specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock  
cycles  
1, 2  
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter enabled) — Asynchronous  
path  
100  
50  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous  
path  
External reset pulse width (digital glitch filter  
disabled)  
100  
3
4
Port rise and fall time (high drive strength)  
• Slew disabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
13  
7
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
36  
24  
ns  
ns  
Port rise and fall time (low drive strength)  
• Slew disabled  
5
12  
6
ns  
ns  
MKW2xD Data Sheet, Rev. 2, 05/2016  
35  
NXP Semiconductors  
MCU Electrical characteristics  
Table 16. General switching specifications  
Symbol  
Description  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
• Slew enabled  
Min.  
Max.  
Unit  
Notes  
36  
24  
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7V  
• 2.7 ≤ VDD ≤ 3.6V  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may  
or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can  
be recognized in that case.  
2. The greater synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and  
VLLSx modes.  
4. 75 pF load  
5. 15 pF load  
7.5 Thermal specifications  
7.5.1 Thermal operating requirements  
Table 17. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Die junction temperature  
Ambient temperature1  
TA  
105  
°C  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is:  
TJ = TA + RθJA x chip power dissipation  
7.5.2 Thermal attributes  
Board type  
Symbol  
Description  
80 LQFP  
Unit  
Notes  
Single-layer (1s)  
RθJA  
Thermal  
resistance,  
junction to ambient  
(natural  
convection)  
50  
35  
°C/W  
°C/W  
1, 2  
1, 3  
Four-layer (2s2p) RθJA  
Thermal  
resistance,  
junction to ambient  
Table continues on the next page...  
36  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Board type  
Symbol  
Description  
80 LQFP  
Unit  
Notes  
(natural  
convection)  
Single-layer (1s)  
RθJMA  
Thermal  
resistance,  
junction to ambient  
(200 ft./min. air  
speed)  
39  
29  
°C/W  
°C/W  
1,3  
1,3  
Four-layer (2s2p) RθJMA  
Thermal  
resistance,  
junction to ambient  
(200 ft./min. air  
speed)  
RθJB  
RθJC  
ΨJT  
Thermal  
resistance,  
junction to board  
19  
8
°C/W  
°C/W  
°C/W  
4
5
6
Thermal  
resistance,  
junction to case  
Thermal  
2
characterization  
parameter,  
junction to  
package top  
outside center  
(natural  
convection)  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
thermal resistance.  
2. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air) with the single layer board horizontal. For the LQFP, the board meets the  
JESD51-3 specification. For the MAPBGA, the board meets the JESD51-9 specification.  
3. Determined according to JEDEC Standard JESD51-6, Integrated Circuits Thermal Test Method Environmental  
Conditions—Forced Convection (Moving Air) with the board horizontal.  
4. Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental  
Conditions—Junction-to-Board. Board temperature is measured on the top surface of the board near the package.  
5. Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits, with the cold plate  
temperature used for the case temperature. The value includes the thermal resistance of the interface material  
between the top of the package and the cold plate.  
6. Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental  
Conditions—Natural Convection (Still Air).  
7.6 Peripheral operating requirements and behaviors  
7.6.1 Core modules  
MKW2xD Data Sheet, Rev. 2, 05/2016  
37  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.1.1 JTAG electricals  
Table 18. JTAG limited voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
2.7  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
25  
50  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
20  
10  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
J4  
J5  
TCLK rise and fall times  
20  
0
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
25  
25  
17  
17  
J6  
J7  
8
J8  
J9  
J10  
J11  
J12  
J13  
J14  
1
100  
8
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
Table 19. JTAG full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.8  
3.6  
J1  
TCLK frequency of operation  
• Boundary Scan  
MHz  
0
0
0
10  
20  
40  
• JTAG and CJTAG  
• Serial Wire Debug  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
1/J1  
ns  
50  
25  
ns  
ns  
ns  
• JTAG and CJTAG  
• Serial Wire Debug  
12.5  
Table continues on the next page...  
38  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 19. JTAG full voltage range electricals (continued)  
Symbol  
J4  
Description  
Min.  
20  
0
Max.  
3
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCLK rise and fall times  
J5  
Boundary scan input data setup time to TCLK rise  
Boundary scan input data hold time after TCLK rise  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
J6  
J7  
8
25  
J8  
25  
J9  
J10  
J11  
J12  
J13  
J14  
1.4  
100  
8
22.1  
22.1  
TCLK low to TDO high-Z  
TRST assert time  
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 7. Test clock input timing  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 8. Boundary scan (JTAG) timing  
MKW2xD Data Sheet, Rev. 2, 05/2016  
39  
NXP Semiconductors  
MCU Electrical characteristics  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 9. Test Access Port timing  
TCLK  
J14  
J13  
TRST  
Figure 10. TRST timing  
7.6.2 System modules  
There are no specifications necessary for the device's system modules.  
7.6.3 Clock modules  
40  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.3.1 MCG specifications  
Table 20. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM and SCFTRIM  
0.3  
%fdco  
1
1
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using SCTRIM only  
0.2  
0.5  
%fdco  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/-0.7  
0.3  
2
1
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70°C  
fintf_ft  
fintf_t  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25°C  
3
4
5
MHz  
MHz  
kHz  
kHz  
Internal reference frequency (fast clock) —  
user trimmed at nominal VDD and 25 °C  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
ffll_ref  
fdco  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
DCO output  
Low range (DRS=00)  
20.97  
MHz  
3, 4  
frequency range  
640 × ffll_ref  
Mid range (DRS=01)  
1280 × ffll_ref  
40  
60  
80  
41.94  
62.91  
83.89  
23.99  
47.97  
71.99  
95.98  
50  
75  
100  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Mid-high range (DRS=10)  
1920 × ffll_ref  
High range (DRS=11)  
2560 × ffll_ref  
fdco_t_DMX3 DCO output  
Low range (DRS=00)  
732 × ffll_ref  
5,6  
frequency  
2
Mid range (DRS=01)  
1464 × ffll_ref  
Mid-high range (DRS=10)  
2197 × ffll_ref  
High range (DRS=11)  
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
41  
NXP Semiconductors  
MCU Electrical characteristics  
Symbol Description  
Table 20. MCG specifications (continued)  
Min.  
Typ.  
Max.  
Unit  
Notes  
2929 × ffll_ref  
Jcyc_fll  
FLL period jitter  
ps  
180  
150  
• fDCO = 48 MHz  
• fDCO = 98 MHz  
tfll_acquire FLL target frequency acquisition time  
1
ms  
7
PLL  
fvco  
Ipll  
VCO operating frequency  
48.0  
100  
MHz  
µA  
PLL operating current  
8
8
1200  
• PLL @ 96 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
= 2 MHz, VDIV multiplier = 48)  
Ipll  
PLL operating current  
700  
µA  
• PLL @ 48 MHz (fosc_hi_1 = 8 MHz, fpll_ref  
= 2 MHz, VDIV multiplier = 24)  
fpll_ref  
PLL reference frequency range  
PLL period jitter (RMS)  
• fvco = 48 MHz  
2.0  
4.0  
MHz  
Jcyc_pll  
9
9
120  
75  
ps  
ps  
• fvco = 100 MHz  
Jacc_pll  
PLL accumulated jitter over 1µs (RMS)  
• fvco = 48 MHz  
1350  
600  
ps  
ps  
• fvco = 100 MHz  
Dlock  
Dunl  
Lock entry frequency tolerance  
Lock exit frequency tolerance  
Lock detector detection time  
1.49  
4.47  
2.98  
5.97  
150 × 10-6  
+ 1075(1/  
%
%
s
tpll_lock  
10  
fpll_ref  
)
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. 2 V <= VDD <= 3.6 V.  
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.  
4. The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature should be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,  
DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE,  
FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.  
8. Excludes any oscillator currents that are also consuming power while PLL is in operation.  
9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of  
each PCB and results will vary.  
10. This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL  
disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this  
specification assumes it is already running.  
42  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.3.2 Oscillator electrical specifications  
7.6.3.2.1 Oscillator DC electrical specifications  
Table 21. Oscillator DC electrical specifications  
Symbol Description  
VDD Supply voltage  
Min.  
Typ.  
Max.  
Unit  
Notes  
1.8  
3.6  
V
IDDOSC Supply current — low-power mode (HGO=0)  
1
• 32 kHz  
500  
200  
300  
950  
1.2  
nA  
μA  
μA  
μA  
mA  
mA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
• 24 MHz  
• 32 MHz  
1.5  
IDDOSC Supply current — high-gain mode (HGO=1)  
1
• 32 kHz  
5
500  
600  
2.5  
3
μA  
μA  
• 4 MHz  
• 8 MHz (RANGE=01)  
• 16 MHz  
μA  
mA  
mA  
mA  
• 24 MHz  
• 32 MHz  
4
Cx  
Cy  
RF  
EXTAL load capacitance  
XTAL load capacitance  
2, 3  
2, 3  
2, 4  
Feedback resistor — low-frequency, low-power  
mode (HGO=0)  
MΩ  
MΩ  
MΩ  
MΩ  
kΩ  
Feedback resistor — low-frequency, high-gain  
mode (HGO=1)  
10  
Feedback resistor — high-frequency, low-  
power mode (HGO=0)  
Feedback resistor — high-frequency, high-gain  
mode (HGO=1)  
1
RS  
Series resistor — low-frequency, low-power  
mode (HGO=0)  
Series resistor — low-frequency, high-gain  
mode (HGO=1)  
200  
kΩ  
Series resistor — high-frequency, low-power  
mode (HGO=0)  
kΩ  
Series resistor — high-frequency, high-gain  
mode (HGO=1)  
0
kΩ  
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
43  
NXP Semiconductors  
MCU Electrical characteristics  
Table 21. Oscillator DC electrical specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
5
Vpp  
Peak-to-peak amplitude of oscillation (oscillator  
0.6  
V
mode) — low-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — low-frequency, high-gain mode  
(HGO=1)  
VDD  
0.6  
V
V
V
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, low-power mode  
(HGO=0)  
Peak-to-peak amplitude of oscillation (oscillator  
mode) — high-frequency, high-gain mode  
(HGO=1)  
VDD  
1. VDD=3.3 V, Temperature =25 °C  
2. See crystal or resonator manufacturer's recommendation  
3. Cx and Cy can be provided by using either integrated capacitors or external components.  
4. When low-power mode is selected, RF is integrated and must not be attached externally.  
5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to  
any other device.  
7.6.3.2.2 Oscillator frequency specifications  
Table 22. Oscillator frequency specifications  
Symbol Description  
fosc_lo Oscillator crystal or resonator frequency — low-  
frequency mode (MCG_C2[RANGE]=00)  
Min.  
Typ.  
Max.  
Unit  
Notes  
32  
40  
kHz  
fosc_hi_1 Oscillator crystal or resonator frequency — high-  
frequency mode (low range)  
3
8
8
MHz  
MHz  
(MCG_C2[RANGE]=01)  
fosc_hi_2 Oscillator crystal or resonator frequency — high  
frequency mode (high range)  
32  
(MCG_C2[RANGE]=1x)  
fec_extal Input clock frequency (external clock mode)  
tdc_extal Input clock duty cycle (external clock mode)  
40  
50  
50  
60  
MHz  
%
1, 2  
3, 4  
tcst  
Crystal startup time — 32 kHz low-frequency,  
low-power mode (HGO=0)  
750  
ms  
Crystal startup time — 32 kHz low-frequency,  
high-gain mode (HGO=1)  
250  
0.6  
ms  
ms  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), low-power mode  
(HGO=0)  
Crystal startup time — 8 MHz high-frequency  
(MCG_C2[RANGE]=01), high-gain mode  
(HGO=1)  
1
ms  
1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.  
44  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by  
FRDIV, it remains within the limits of the DCO input clock frequency.  
3. Proper PC board layout procedures must be followed to achieve specifications.  
4. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S  
register being set.  
NOTE  
The 32 kHz oscillator works in low power mode by default  
and cannot be moved into high power/gain mode.  
7.6.3.3 32 kHz oscillator electrical characteristics  
7.6.3.3.1 32 kHz oscillator DC electrical specifications  
Table 23. 32kHz oscillator DC electrical specifications  
Symbol  
VBAT  
RF  
Description  
Min.  
1.8  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
Internal feedback resistor  
100  
5
MΩ  
pF  
Cpara  
Parasitical capacitance of EXTAL32 and  
XTAL32  
7
1
Vpp  
Peak-to-peak amplitude of oscillation  
0.6  
V
1. When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected to  
required oscillator components and must not be connected to any other devices.  
7.6.3.3.2 32 kHz oscillator frequency specifications  
Table 24. 32 kHz oscillator frequency specifications  
Symbol Description  
Min.  
Typ.  
32.768  
1000  
Max.  
Unit  
kHz  
ms  
Notes  
fosc_lo  
tstart  
Oscillator crystal  
Crystal start-up time  
1
vec_extal32 Externally provided input clock amplitude  
700  
VBAT  
mV  
2, 3  
1. Proper PC board layout procedures must be followed to achieve specifications.  
2. This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input.  
The oscillator remains enabled and XTAL32 must be left unconnected.  
3. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VBAT  
.
7.6.4 Memories and memory interfaces  
MKW2xD Data Sheet, Rev. 2, 05/2016  
45  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.4.1 Flash electrical specifications  
This section describes the electrical characteristics of the flash memory module.  
7.6.4.1.1 Flash timing specifications — program and erase  
The following specifications represent the amount of time the internal charge pumps are  
active and do not include command overhead.  
Table 25. NVM program/erase timing specifications  
Symbol Description  
Min.  
Typ.  
7.5  
Max.  
18  
Unit  
μs  
Notes  
thvpgm4  
Longword Program high-voltage time  
1
thversscr Sector Erase high-voltage time  
thversblk256k Erase Block high-voltage time for 256 KB  
13  
113  
904  
ms  
ms  
104  
1
1. Maximum time based on expectations at cycling end-of-life.  
7.6.4.1.2 Flash timing specifications — commands  
Table 26. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
Min.  
Typ.  
Max.  
Unit  
Notes  
1
trd1blk64k  
• 64 KB data flash  
0.9  
1.7  
ms  
ms  
trd1blk256k  
• 256 KB program flash  
trd1sec2k Read 1s Section execution time (flash sector)  
65  
60  
45  
μs  
μs  
μs  
μs  
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Longword execution time  
Erase Flash Block execution time  
• 64 KB data flash  
30  
1
tpgm4  
145  
2
tersblk64k  
58  
580  
985  
ms  
ms  
tersblk256k  
• 256 KB program flash  
122  
tersscr  
Erase Flash Sector execution time  
Program Section execution time  
• 512 bytes flash  
14  
114  
ms  
2
tpgmsec512  
tpgmsec1k  
tpgmsec2k  
2.4  
4.7  
9.3  
ms  
ms  
ms  
• 1 KB flash  
• 2 KB flash  
trd1all  
Read 1s All Blocks execution time  
Read Once execution time  
1.8  
25  
ms  
μs  
1
1
trdonce  
Table continues on the next page...  
46  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 26. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
65  
Max.  
Unit  
μs  
Notes  
tpgmonce Program Once execution time  
2
tersall  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Swap Control execution time  
• control code 0x01  
250  
2000  
30  
ms  
μs  
tvfykey  
1
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
70  
70  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
• control code 0x08  
Program Partition for EEPROM execution time  
• 64 KB FlexNVM  
tpgmpart64k  
138  
ms  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram64k  
70  
0.8  
1.3  
μs  
ms  
ms  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
1.2  
1.9  
Byte-write to FlexRAM for EEPROM operation  
teewr8bers Byte-write to erased FlexRAM location  
execution time  
175  
260  
μs  
3
Byte-write to FlexRAM execution time:  
teewr8b32k  
teewr8b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
385  
475  
1800  
2000  
μs  
μs  
Word-write to FlexRAM for EEPROM operation  
teewr16bers Word-write to erased FlexRAM location  
execution time  
175  
260  
μs  
Word-write to FlexRAM execution time:  
teewr16b32k  
teewr16b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
385  
475  
1800  
2000  
μs  
μs  
Longword-write to FlexRAM for EEPROM operation  
teewr32bers Longword-write to erased FlexRAM location  
execution time  
360  
540  
μs  
Longword-write to FlexRAM execution time:  
teewr32b32k  
teewr32b64k  
• 32 KB EEPROM backup  
• 64 KB EEPROM backup  
630  
810  
2050  
2250  
μs  
μs  
1. Assumes 25 MHz flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
47  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.4.1.3 Flash high voltage current behaviors  
Table 27. Flash high voltage current behaviors  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
IDD_PGM  
Average current adder during high voltage  
flash programming operation  
2.5  
6.0  
mA  
IDD_ERS  
Average current adder during high voltage  
flash erase operation  
1.5  
4.0  
mA  
7.6.4.1.4 Reliability specifications  
Table 28. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
100  
50 K  
10 K  
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
2
20  
10 K  
100  
50 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
Write endurance  
5
50  
years  
years  
3
20  
100  
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree4k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
35 K  
315 K  
1.27 M  
10 M  
175 K  
1.6 M  
6.4 M  
50 M  
writes  
writes  
writes  
writes  
• EEPROM backup to FlexRAM ratio =  
4096  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at –40 °C ≤ Tj ≤ °C.  
3. Write endurance represents the number of writes to each FlexRAM location at –40 °C ≤Tj ≤ °C influenced by the cycling  
endurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and  
typical values assume all byte-writes to FlexRAM.  
48  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.4.2 EzPort switching specifications  
Table 29. EzPort switching specifications  
Num  
Description  
Min.  
1.8  
Max.  
3.6  
Unit  
V
Operating voltage  
EP1  
EZP_CK frequency of operation (all commands except  
READ)  
fSYS/2  
MHz  
EP1a  
EP2  
EP3  
EP4  
EP5  
EP6  
EP7  
EP8  
EP9  
EZP_CK frequency of operation (READ command)  
EZP_CS negation to next EZP_CS assertion  
EZP_CS input valid to EZP_CK high (setup)  
EZP_CK high to EZP_CS input invalid (hold)  
EZP_D input valid to EZP_CK high (setup)  
EZP_CK high to EZP_D input invalid (hold)  
EZP_CK low to EZP_Q output valid  
fSYS/8  
MHz  
ns  
2 x tEZP_CK  
5
5
ns  
ns  
2
ns  
5
ns  
0
ns  
EZP_CK low to EZP_Q output invalid (hold)  
EZP_CS negation to EZP_Q tri-state  
ns  
12  
ns  
EZP_CK  
EP2  
EP3  
EP4  
EZP_CS  
EP9  
EP8  
EP7  
EZP_Q (output)  
EZP_D (input)  
EP5  
EP6  
Figure 11. EzPort Timing Diagram  
7.6.5 Security and integrity modules  
MKW2xD Data Sheet, Rev. 2, 05/2016  
49  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.5.1 DryIce Tamper Electrical Specifications  
Information about security-related modules is not included in this document and is  
available only after a nondisclosure agreement (NDA) has been signed. To request an  
NDA, contact your local NXP sales representative.  
7.6.6 Analog  
7.6.6.1 ADC electrical specifications  
The 16-bit accuracy specifications listed in Table 1 and Table 31 are achievable on the  
differential pins ADCx_DP0, ADCx_DM0.  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications.  
7.6.6.1.1 16-bit ADC operating conditions  
Table 30. 16-bit ADC operating conditions  
Symbol Description  
Conditions  
Min.  
1.8  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
ΔVDDA  
ΔVSSA  
VREFH  
Supply voltage  
Supply voltage  
Absolute  
Delta to VDD (VDD – VDDA  
)
-100  
-100  
VDDA  
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
Ground voltage Delta to VSS (VSS – VSSA  
)
0
ADC reference  
voltage high  
Absolute  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
Absolute  
VSSA  
VSSA  
VSSA  
V
V
4
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VREFL  
VREFL  
31/32 *  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
kΩ  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
5
6
5
kΩ  
fADCK  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
18.0  
MHz  
Table continues on the next page...  
50  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 30. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
fADCK  
ADC conversion 16-bit mode  
clock frequency  
2.0  
12.0  
MHz  
6
Crate  
ADC conversion ≤ 13-bit modes  
rate  
7
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
Ksps  
Ksps  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
7
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. VREFH is internally tied to VDDA  
4. VREFL is internally tied to VSSA  
.
.
5. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The  
RAS/CAS time constant should be kept to < 1 ns.  
6. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
7. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
ZAS  
leakage  
due to  
input  
ADC SAR  
ENGINE  
RAS  
RADIN  
protection  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 12. ADC input impedance equivalency diagram  
MKW2xD Data Sheet, Rev. 2, 05/2016  
51  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.6.1.2 16-bit ADC electrical characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
mA  
Notes  
IDDA_ADC Supply current  
3
ADC asynchronous  
clock source  
• ADLPC = 1, ADHSC = 0  
• ADLPC = 1, ADHSC = 1  
• ADLPC = 0, ADHSC = 0  
• ADLPC = 0, ADHSC = 1  
2.4  
4.0  
5.2  
6.2  
MHz  
MHz  
MHz  
MHz  
tADACK = 1/  
fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE  
DNL  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
Differential non-  
linearity  
• 12-bit modes  
• <12-bit modes  
0.7  
0.2  
–1.1 to  
+1.9  
–0.3 to  
0.5  
INL  
Integral non-linearity  
• 12-bit modes  
• <12-bit modes  
1.0  
0.5  
–2.7 to  
+1.9  
LSB4  
5
–0.7 to  
+0.5  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4  
LSB4  
VADIN = VDDA  
Quantization error  
0.5  
ENOB Effective number of 16-bit differential mode  
6
bits  
12.8  
11.9  
14.5  
13.8  
bits  
bits  
• Avg = 32  
• Avg = 4  
16-bit single-ended mode  
• Avg = 32  
12.2  
11.4  
13.9  
13.1  
bits  
bits  
dB  
• Avg = 4  
Signal-to-noise plus See ENOB  
SINAD  
6.02 × ENOB + 1.76  
distortion  
THD  
Total harmonic  
distortion  
16-bit differential mode  
• Avg = 32  
7
dB  
dB  
-94  
-85  
16-bit single-ended mode  
Table continues on the next page...  
52  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
• Avg = 32  
SFDR Spurious free  
dynamic range  
16-bit differential mode  
• Avg = 32  
7
dB  
dB  
82  
78  
95  
90  
16-bit single-ended mode  
• Avg = 32  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn = leakage  
current  
(refer to the  
MCU's voltage  
and current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.55  
706  
1.62  
716  
1.69  
726  
mV/°C  
mV  
8
VTEMP25 Temp sensor voltage 25 °C  
8
1. All accuracy numbers assume the ADC is calibrated with VREFH = VDDA  
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N  
5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)  
6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
8. ADC conversion clock < 3 MHz  
MKW2xD Data Sheet, Rev. 2, 05/2016  
53  
NXP Semiconductors  
MCU Electrical characteristics  
Typical ADC 16-bit Differential ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
15.00  
14.70  
14.40  
14.10  
13.80  
13.50  
13.20  
12.90  
12.60  
Hardware Averaging Disabled  
Averaging of 4 samples  
Averaging of 8 samples  
Averaging of 32 samples  
12.30  
12.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 13. Typical ENOB vs. ADC_CLK for 16-bit differential mode  
Typical ADC 16-bit Single-Ended ENOB vs ADC Clock  
100Hz, 90% FS Sine Input  
14.00  
13.75  
13.50  
13.25  
13.00  
12.75  
12.50  
12.25  
12.00  
11.75  
11.50  
11.25  
Averaging of 4 samples  
Averaging of 32 samples  
11.00  
1
2
3
4
5
6
7
8
9
10  
11  
12  
ADC Clock Frequency (MHz)  
Figure 14. Typical ENOB vs. ADC_CLK for 16-bit single-ended mode  
7.6.6.2 CMP and 6-bit DAC electrical specifications  
Table 32. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.8  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
Supply current, High-speed mode (EN=1, PMODE=1)  
200  
μA  
Table continues on the next page...  
54  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 32. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
IDDLS  
VAIN  
Description  
Min.  
Typ.  
Max.  
20  
Unit  
μA  
V
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
• CR0[HYSTCTR] = 01  
10  
20  
30  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
Output low  
VDD – 0.5  
50  
0.5  
200  
V
V
Propagation delay, high-speed mode (EN=1,  
PMODE=1)  
20  
ns  
tDLS  
Propagation delay, low-speed mode (EN=1,  
PMODE=0)  
80  
250  
600  
ns  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
7
40  
μs  
μA  
LSB3  
IDAC6b  
INL  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
MKW2xD Data Sheet, Rev. 2, 05/2016  
55  
NXP Semiconductors  
MCU Electrical characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
56  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 16. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
7.6.7 Timers  
See General switching specifications.  
7.6.8 Communication interfaces  
7.6.8.1 USB electrical specifications  
The USB electricals for the USB On-the-Go module conform to the standards  
documented by the Universal Serial Bus Implementers Forum. For the most up-to-  
date standards, visit usb.org.  
NOTE  
MKW2xD Data Sheet, Rev. 2, 05/2016  
57  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.8.2 USB DCD electrical specifications  
Table 33. USB0 DCD electrical specifications  
Symbol  
Description  
Min.  
0.5  
Typ.  
Max.  
0.7  
Unit  
V
VDP_SRC USB_DP source voltage (up to 250 μA)  
VLGC  
Threshold voltage for logic high  
USB_DP source current  
0.8  
2.0  
V
IDP_SRC  
7
10  
13  
μA  
μA  
kΩ  
V
IDM_SINK USB_DM sink current  
50  
100  
150  
24.8  
0.4  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
0.33  
7.6.8.3 VREG electrical specifications  
Table 34. VREG electrical specifications  
Symbol Description  
Min.  
2.7  
Typ.1  
Max.  
5.5  
Unit  
Notes  
VREGIN Input supply voltage  
V
IDDon  
IDDstby  
IDDoff  
Quiescent current — Run mode, load current  
equal zero, input supply (VREGIN) > 3.6 V  
125  
186  
μA  
Quiescent current — Standby mode, load  
current equal zero  
1.27  
30  
μA  
Quiescent current — Shutdown mode  
650  
4
nA  
μA  
• VREGIN = 5.0 V and temperature=25 °C  
• Across operating voltage and temperature  
ILOADrun Maximum load current — Run mode  
ILOADstby Maximum load current — Standby mode  
120  
1
mA  
mA  
VReg33out Regulator output voltage — Input supply  
(VREGIN) > 3.6 V  
• Run mode  
3
3.3  
2.8  
3.6  
3.6  
3.6  
V
V
V
• Standby mode  
2.1  
2.1  
VReg33out Regulator output voltage — Input supply  
(VREGIN) < 3.6 V, pass-through mode  
2
COUT  
ESR  
External output capacitor  
1.76  
1
2.2  
8.16  
100  
μF  
External output capacitor equivalent series  
resistance  
mΩ  
ILIM  
Short circuit current  
290  
mA  
1. Typical values assume VREGIN = 5.0 V, Temp = 25 °C unless otherwise stated.  
2. Operating in pass-through mode: regulator output voltage equal to the input voltage minus a drop proportional to ILoad  
.
58  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
7.6.8.4 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 35. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
25  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
−2  
15  
0
8.5  
ns  
ns  
ns  
ns  
1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 17. DSPI classic SPI timing — master mode  
Table 36. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
12.5  
MHz  
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
59  
NXP Semiconductors  
MCU Electrical characteristics  
Table 36. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
10  
14  
14  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2
7
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 18. DSPI classic SPI timing — slave mode  
7.6.8.5 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provides DSPI timing characteristics for classic SPI timing modes. Refer  
to the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 37. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.8  
Max.  
3.6  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
12.5  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
4 x tBUS  
(tSCK/2) - 4 (tSCK/2) + 4  
Table continues on the next page...  
ns  
60  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
MCU Electrical characteristics  
Table 37. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS3  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
ns  
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
-4.5  
20.5  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
DSPI_PCSn  
DS1  
DS3  
DS2  
DS4  
DSPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
DSPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
DSPI_SOUT  
Figure 19. DSPI classic SPI timing — master mode  
Table 38. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.8  
3.6  
Frequency of operation  
6.25  
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
8 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) - 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
20  
19  
19  
ns  
ns  
2
ns  
7
ns  
ns  
ns  
MKW2xD Data Sheet, Rev. 2, 05/2016  
61  
NXP Semiconductors  
MCU Electrical characteristics  
DSPI_SS  
DS10  
DS9  
DSPI_SCK  
(CPOL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
DSPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
DSPI_SIN  
Figure 20. DSPI classic SPI timing — slave mode  
7.6.8.6 I2C  
See General switching specifications.  
7.6.8.7 UART  
See General switching specifications.  
7.6.8.8 Normal Run, Wait and Stop mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in Normal Run, Wait and Stop modes.  
Due to a limited set of pin availability in the SiP, the I2S/SAI block is usable only for  
receive mode and must be configured as a slave.  
Table 39. I2S/SAI master mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.8  
40  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
ns  
I2S_MCLK (as an input) pulse width high/low  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
45%  
80  
55%  
MCLK period  
ns  
45%  
55%  
15  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
Table continues on the next page...  
62  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
Table 39. I2S/SAI master mode timing (continued)  
Num.  
Characteristic  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
Min.  
Max.  
Unit  
S7  
S8  
S9  
0
15  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
25  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 21. I2S/SAI timing — master modes  
Table 40. I2S/SAI slave mode timing  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.8  
80  
3.6  
V
S11  
S12  
ns  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
S13  
S14  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
10  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
29  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
10  
2
21  
ns  
ns  
ns  
MKW2xD Data Sheet, Rev. 2, 05/2016  
63  
NXP Semiconductors  
MCU Electrical characteristics  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 22. I2S/SAI timing — slave modes  
7.6.8.9 VLPR, VLPW, and VLPS mode performance over the full  
operating voltage range  
This section provides the operating performance over the full operating voltage for the  
device in VLPR, VLPW, and VLPS modes.  
Due to a limited set of pin availability in the SiP, the I2S/SAI block is usable only for  
receive mode and must be configured as a slave.  
Table 41. I2S/SAI master mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
1.8  
3.6  
V
S1  
S2  
S3  
S4  
S5  
I2S_MCLK cycle time  
62.5  
45%  
250  
45%  
ns  
I2S_MCLK pulse width high/low  
55%  
MCLK period  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low  
ns  
55%  
45  
BCLK period  
ns  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output valid  
S6  
I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/  
I2S_RX_FS output invalid  
0
ns  
S7  
S8  
S9  
I2S_TX_BCLK to I2S_TXD valid  
I2S_TX_BCLK to I2S_TXD invalid  
0
45  
ns  
ns  
ns  
I2S_RXD/I2S_RX_FS input setup before  
I2S_RX_BCLK  
75  
S10  
I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK  
0
ns  
64  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
MCU Electrical characteristics  
S1  
S2  
S2  
I2S_MCLK (output)  
S3  
S4  
I2S_TX_BCLK/  
I2S_RX_BCLK (output)  
S4  
S5  
S7  
S6  
I2S_TX_FS/  
I2S_RX_FS (output)  
S10  
S9  
I2S_TX_FS/  
I2S_RX_FS (input)  
S7  
S8  
S8  
I2S_TXD  
I2S_RXD  
S9  
S10  
Figure 23. I2S/SAI timing — master modes  
Table 42. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range)  
Num.  
Characteristic  
Min.  
Max.  
Unit  
Operating voltage  
I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)  
1.8  
3.6  
V
S11  
250  
ns  
S12  
S13  
S14  
I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low 45%  
(input)  
55%  
MCLK period  
I2S_TX_FS/I2S_RX_FS input setup before  
I2S_TX_BCLK/I2S_RX_BCLK  
30  
ns  
ns  
I2S_TX_FS/I2S_RX_FS input hold after  
I2S_TX_BCLK/I2S_RX_BCLK  
2
S15  
S16  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid  
0
87  
ns  
ns  
I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output  
invalid  
S17  
S18  
S19  
I2S_RXD setup before I2S_RX_BCLK  
I2S_RXD hold after I2S_RX_BCLK  
I2S_TX_FS input assertion to I2S_TXD output valid1  
30  
2
72  
ns  
ns  
ns  
1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear  
MKW2xD Data Sheet, Rev. 2, 05/2016  
65  
NXP Semiconductors  
Transceiver Electrical Characteristics  
S11  
S12  
I2S_TX_BCLK/  
I2S_RX_BCLK (input)  
S12  
S15  
S15  
S16  
I2S_TX_FS/  
I2S_RX_FS (output)  
S13  
S14  
I2S_TX_FS/  
I2S_RX_FS (input)  
S15  
S19  
S16  
S16  
I2S_TXD  
I2S_RXD  
S17  
S18  
Figure 24. I2S/SAI timing — slave modes  
8 Transceiver Electrical Characteristics  
8.1 DC electrical characteristics  
Table 43. DC electrical characteristics (VBAT, VBAT2 = 2.7 V, TA=25 °C, unless otherwise  
noted)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Power Supply Current (VBAT + VBAT2)  
Reset / power down1  
Hibernate1  
Ileakage  
ICCH  
ICCD  
ICCI  
<60  
<1  
<100  
nA  
μA  
μA  
μA  
mA  
mA  
Doze (No CLK_OUT)  
500  
700  
17  
Idle (No CLK_OUT)  
Transmit mode (0 dBm nominal output power)  
Receive mode (normal)  
ICCT  
ICCR  
18  
19  
19.5  
Receive mode (power preamble search)  
Input current (VIN = 0 V or VDDINT) (All digital inputs)  
Input low voltage (all digital inputs)  
15 (LPPS)  
IIN  
0
1
μA  
V
VIL  
30%  
VDDINT  
Input high voltage (all digital inputs)  
VIH  
VOH  
VOL  
70%  
VDDINT  
VDDINT  
V
V
V
Output high voltage (IOH = -1 mA) (all digital outputs)  
Output low voltage (IOL = 1 mA) (all digital outputs)  
80%  
VDDINT  
VDDINT  
0
20%  
VDDINT  
1. To attain specified low power current, all GPIO and other digital IO must be handled properly.  
66  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Transceiver Electrical Characteristics  
8.2 AC electrical characteristics  
Table 44. Receiver AC electrical characteristics (VBAT, VDDINT = 2.7 V, TA=25 °C, fref = 32 MHz  
unless otherwise noted)  
Characteristic  
Symbol  
Min  
Typ  
–99  
–102  
Max  
Unit  
dBm  
dBm  
dBm  
Sensitivity for 1% packet error rate (PER) (–40 to +105 °C) SENSper  
–97  
Sensitivity for 1% packet error rate (PER) (+25 °C)  
Saturation (maximum input level)  
SENSper  
SENSmax  
–10  
Channel rejection for dual port mode (1% PER and desired  
signal –82 dBm)  
+5 MHz (adjacent channel)  
–5 MHz (adjacent channel)  
+10 MHz (alternate channel)  
–10 MHz (alternate channel)  
>= 15 MHz  
80  
39  
33  
50  
50  
58  
dB  
dB  
dB  
dB  
dB  
Frequency error tolerance  
Symbol rate error tolerance  
200  
kHz  
ppm  
Table 45. Transmitter AC electrical characteristics (VBAT, VDDINT = 2.7 V, TA=25 °C, fref = 32  
MHz unless otherwise noted)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Power spectral density1, absolute limit from –40°C to  
+105°C  
–30  
dBm  
Power Spectral Density2, Relative limit from –40°C to  
+105°C  
–20  
dB  
Nominal output power3  
Maximum output power3  
Error vector magnitude  
Output power control range4  
Over the air data rate  
2nd harmonic5  
Pout  
EVM  
–2  
0
8
2
dBm  
dBm  
%
8
13  
40  
dB  
250  
<–50  
<–50  
kbps  
dBm  
dBm  
<–40  
<–40  
3rd harmonic5  
1. [f-fc] > 3.5 MHz, average spectral power is measured in 100 kHz resolution BW.  
2. For the relative limit, the reference level is the highest reference power measured within 1 MHz of the carrier  
frequency.  
3. Measurement is at the package pin.  
4. Measurement is at the package pin on the output of the Tx/Rx switch. It does not degrade more than 2 dB across  
temperature and an additional 1 dB across all processes. Power adjustment will span nominally from –35 dBm to +8  
dBm in 21 steps @ 2 dBm / step.  
5. Measured with output power set to nominal (0 dBm) and temperature @ 25°C. Trap filter is needed.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
67  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Characteristic  
Table 46. RF port impedance  
Symbol  
Typ  
Unit  
RFIN Pins for internal T/R switch configuration, TX mode  
Zin  
Ohm  
14.7 - j215  
2.360 GHz  
13.7 -  
j18.7  
2.420 GHz  
2.480 GHz  
13 - j16.3  
RFIN Pins for internal or external T/R switch configuration, RX mode  
Zin  
Ohm  
14 - j9.5  
13 - j7.6  
2.360 GHz  
2.420 GHz  
2.480 GHz  
12.3 - j5.6  
8.3 SPI timing: R_SSEL_B to R_SCLK  
The following diagram describes timing constraints that must be guaranteed by the  
system designer.  
R_MOSI  
R_SCLK  
t
t
ASC  
CSC  
t
t
t
DT  
CKH  
CKL  
Figure 25. SPI timing: R_SSEL_B to R_SCLK  
tCSC (CS-to-SCK delay): 31.25 ns  
tASC (After SCK delay): 31.25 ns  
tDT (Minimum CS idle time): 62.5 ns  
tCKH (Minimum R_SCLK high time): 31.25 ns (for SPI writes); 55.55 ns (for SPI reads)  
tCKL (Minimum R_SCLK low time): 31.25 ns (for SPI writes); 55.55 ns (for SPI reads)  
Note  
The SPI master device deasserts R_SSEL_B only on byte  
boundaries, and only after guaranteeing the tASC constraint  
shown above.  
68  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Crystal oscillator reference frequency  
8.4 SPI timing: R_SCLK to R_MOSI and R_MISO  
The following diagram describes timing constraints that must be guaranteed by the  
system designer. These constraints apply to the Master SPI (R_MOSI), and are  
guaranteed by the radio SPI (R_MISO).  
R_SCLK  
R_MOSI  
R_MISO  
t
DSU  
t
DH  
Figure 26. SPI timing: R_SCLK to R_MOSI and R_MISO  
tDSU (data-to-SCK setup): 10 ns  
tDH (SCK-to-data hold): 10 ns  
9 Crystal oscillator reference frequency  
This section provides application specific information regarding crystal oscillator  
reference design and recommended crystal usage.  
9.1 Crystal oscillator design considerations  
The IEEE ® 802.15.4 Standard requires that frequency tolerance be kept within 40  
ppm accuracy. This means that a total offset up to 80 ppm between transmitter and  
receiver will still result in acceptable performance. The MKW2xD transceiver  
provides on board crystal trim capacitors to assist in meeting this performance, while  
the bulk of the crystal load capacitance is external.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
69  
NXP Semiconductors  
Crystal oscillator reference frequency  
9.2 Crystal requirements  
The suggested crystal specification for the MKW2xD is shown in Table 47. A number  
of the stated parameters are related to desired package, desired temperature range and  
use of crystal capacitive load trimming.  
Table 47. MKW2xD crystal specifications  
Parameter  
Value  
32  
Unit  
MHz  
ppm  
ppm  
ppm  
Ω
Condition  
Frequency  
Frequency tolerance (cut tolerance)  
Frequency stability (temperature)  
Aging1  
10  
at 25°C  
25  
Over desired temperature range  
2
max  
max  
Equivalent series resistance  
Load capacitance  
60  
5–9  
<2  
pF  
Shunt capacitance  
Mode of oscillation  
pF  
max  
fundamental  
1. A wider aging tolerance may be acceptable if application uses trimming at production final test.  
70  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Pin diagrams and pin assignments  
10 Pin diagrams and pin assignments  
10.1 MKW21D256/MKW21D512 Pin Assignment  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
EXTAL_32M  
VBAT2_RF  
RESET_B  
1
2
3
4
42  
41  
40  
GPIO1  
GPIO2  
57 58  
59 60  
61 62  
63  
PTA19/XTAL  
PTC4/LLWU_P8  
PTC5/LLWU_P9  
PTC6/LLWU_P10  
PTA18/EXTAL/CLK_OUT  
VDD_MCU  
39  
GND flag  
5
6
38  
37  
PTA4/LLWU_P3  
7
PTC7  
PTD1  
36  
PTA3  
8
9
35  
34  
PTA2  
PTD2/LLWU_P13  
PTA1  
GND flag  
PTD3  
10  
33  
PTA0  
PTD4/LLWU_P14  
11  
12  
32  
31  
VBAT_MCU  
PTD5  
EXTAL_32  
PTD6/LLWU_P15  
13  
14  
30  
29  
XTAL_32  
PTD7  
TAMPER0/RTC_WAKEUP_B  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
MKW2xD Data Sheet, Rev. 2, 05/2016  
71  
NXP Semiconductors  
Pin diagrams and pin assignments  
10.2 MKW22/24D512V Pin Assignment  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
EXTAL_32M  
VBAT2_RF  
RESET_B  
1
2
3
4
42  
41  
40  
GPIO1  
GPIO2  
57 58  
59 60  
61 62  
63  
PTA19/XTAL  
PTC4/LLWU_P8  
PTC5/LLWU_P9  
PTC6/LLWU_P10  
PTA18/EXTAL/CLK_OUT  
VDD_MCU  
39  
GND flag  
5
6
38  
37  
PTA4/LLWU_P3  
7
PTC7  
PTD1  
36  
PTA3  
8
9
35  
34  
PTA2  
PTD2/LLWU_P13  
PTA1  
GND flag  
PTD3  
10  
33  
PTA0  
PTD4/LLWU_P14  
11  
12  
32  
31  
VBAT_MCU  
PTD5  
EXTAL_32  
PTD6/LLWU_P15  
13  
14  
30  
29  
XTAL_32  
PTD7  
TAMPER0/RTC_WAKEUP_B  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
10.3 Pin assignments  
Note  
SPI1 (ALT2): SPI1 is dedicated to the radio and is not an  
alternate MCU peripheral.  
Table 48. Pin Assignments  
MKW  
22/24  
D512  
(USB)  
MKW  
21D25  
6/512  
Pin  
Name  
EZPO  
RT  
Default  
ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7  
1
1
EXTAL  
_32M  
EXTAL_32M  
2
3
2
3
GPIO1  
GPIO2  
GPIO1  
GPIO2  
Table continues on the next page...  
72  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
Pin diagrams and pin assignments  
Table 48. Pin Assignments (continued)  
MKW  
22/24  
D512  
(USB)  
MKW  
21D25  
6/512  
Pin  
Name  
EZPO  
RT  
Default  
ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7  
4
5
6
7
8
9
4
5
6
7
8
9
PTC4/  
LLWU_  
P8  
Disabled  
PTC4/ SPI0_ UART1 FTM0_  
CMP1_  
OUT  
LLWU_ PCS0  
P8  
_TX  
CH3  
PTC5/  
LLWU_  
P9  
Disabled  
CMP0_IN0  
CMP0_IN1  
ADC0_SE5b  
Disabled  
PTC5/ SPI0_ LPTM I2S0_R  
LLWU_ SCK R0_AL XD0  
CMP0_  
OUT  
P9  
T2  
PTC6/  
LLWU_  
P10  
CMP0_ PTC6/ SPI0_ PDB0_ I2S0_R  
IN0 LLWU_ SOUT EXTR X_BCL  
I2S0_  
MCLK  
P10  
G
K
PTC7  
CMP0_ PTC7 SPI0_ USB_S I2S0_R  
IN1  
SIN  
OF_O X_FS  
UT  
PTD1  
ADC0_ PTD1 SPI0_ UART2  
SE5b  
SCK _CTS_  
b
PTD2/  
LLWU_  
P13  
PTD2/ SPI0_ UART2 I2C0_S  
LLWU_ SOUT _RX  
P13  
CL  
10  
11  
10  
11  
PTD3  
Disabled  
PTD3 SPI0_ UART2 I2C0_S  
SIN _TX DA  
PTD4/  
LLWU_  
P14  
ADC0_SE21  
ADC0_ PTD4/ SPI0_ UART0 FTM0_  
SE21 LLWU_ PCS1 _RTS_ CH4  
EWM_I  
N
P14  
b
12  
12  
PTD5  
ADC0_SE6b  
ADC0_ PTD5 SPI0_ UART0 FTM0_  
EWM_  
OUT_b  
SE6b  
PCS2 _CTS_ CH5  
b/  
UART0  
_COL_  
b
13  
13  
PTD6/  
LLWU_  
P15  
ADC0_SE7b  
ADC0_ PTD6/ SPI0_ UART0 FTM0_  
FTM0_  
FLT0  
SE7b LLWU_ PCS3  
P15  
_RX  
CH6  
14  
15  
14  
15  
PTD7  
ADC0_SE22  
ADC0_SE10  
ADC0_ PTD7 CMT_I UART0 FTM0_  
SE22 RO _TX CH7  
FTM0_  
FLT1  
PTE0  
ADC0_ PTE0 SPI1_ UART1  
SE10 PCS1 _TX  
TRAC I2C1_S RTC_C  
E_CLK  
OUT  
DA LKOUT  
16  
17  
16  
17  
PTE1/  
LLWU_  
P0  
DC0_SE11  
ADC0_DP1  
ADC0_ PTE1/ SPI1_ UART1  
SE11 LLWU_ SOUT _RX  
P0  
TRAC I2C1_S SPI1_  
E_D3  
CL  
SIN  
PTE2/  
LLWU_  
P1  
ADC0_ PTE2/ SPI1_ UART1  
DP1 LLWU_ SCK _CTS_  
TRAC  
E_D2  
P1  
b
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
73  
NXP Semiconductors  
Pin diagrams and pin assignments  
Table 48. Pin Assignments (continued)  
MKW  
22/24  
D512  
(USB)  
MKW  
21D25  
6/512  
Pin  
Name  
EZPO  
RT  
Default  
ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7  
18  
19  
20  
18  
PTE3  
ADC0_DM1  
ADC0_ PTE3 SPI1_ UART1  
TRAC  
E_D1  
SPI1_  
SOUT  
DM1  
SIN _RTS_  
b
19  
PTE4/  
LLWU_  
P2  
Disabled  
PTE4/ SPI1_  
LLWU_ PCS0  
P2  
TRAC  
E_D0  
20  
21  
22  
VDD_M  
CU  
VDD  
PTE16  
ADC0_SE4a  
ADC0_SE5a  
ADC0_ PTE16 SPI0_ UART2 FTM_C  
SE4a PCS0 _TX LKIN0  
FTM0_  
FLT3  
PTE17  
ADC0_ PTE17 SPI0_ UART2 FTM_C  
SE5a SCK _RX LKIN1  
LPTM  
R0_AL  
T3  
23  
24  
PTE18  
PTE19  
ADC0_SE6a  
ADC0_SE7a  
ADC0_ PTE18 SPI0_ UART2 I2C0_S  
SE6a  
SOUT _CTS_  
b
DA  
ADC0_ PTE19 SPI0_ UART2 I2C0_S  
SE7a  
SIN _RTS_  
b
CL  
21  
22  
23  
24  
USB0_  
DP  
USB0_DP  
USB0_DM  
VOUT33  
VREGIN  
USB0_  
DP  
USB0_  
DM  
USB0_  
DM  
VOUT3  
3
VOUT3  
3
VREGI  
N
VREGI  
N
25  
26  
25  
26  
VDDA  
VDDA  
VDDA  
VREFH  
VREFH  
VREF  
H
27  
28  
29  
27  
28  
29  
VREFL  
VSSA  
VREFL  
VSSA  
VREFL  
VSSA  
TAMP  
TAMPE  
R0/  
TAMPER0/  
RTC_WAKEUP_B ER0/  
RTC_  
WAKE  
UP_B  
RTC_  
WAKE  
UP_B  
30  
31  
32  
30  
31  
32  
XTAL3  
2
XTAL32  
EXTAL32  
XTAL3  
2
EXTAL  
32  
EXTAL  
32  
VBAT_  
MCU  
VBAT_MCU  
VBAT_  
MCU  
Table continues on the next page...  
74  
NXP Semiconductors  
MKW2xD Data Sheet, Rev. 2, 05/2016  
Pin diagrams and pin assignments  
Table 48. Pin Assignments (continued)  
MKW  
22/24  
D512  
(USB)  
MKW  
21D25  
6/512  
Pin  
Name  
EZPO  
RT  
Default  
ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7  
33  
33  
PTA0  
JTAG_TCLK/  
SWD_CLK/  
EZP_CLK  
PTA0 UART0 FTM0_  
JTAG_ EZP_C  
_CTS_ CH5  
TCLK/  
SWD_  
CLK  
LK  
b/  
UART0  
_COL_  
b
34  
35  
34  
35  
PTA1  
PTA2  
JTAG_TDI/  
EZP_DI  
PTA1 UART0 FTM0_  
JTAG_ EZP_D  
TDI  
_RX  
PTA2 UART0 FTM0_  
_TX CH7  
CH6  
I
JTAG_TDO/  
TRACE_SWO/  
EZP_DO  
JTAG_ EZP_D  
TDO/  
TRAC  
E_SW  
O
O
36  
37  
36  
37  
PTA3  
JTAG_TMS/  
SWD_DIO  
PTA3 UART0 FTM0_  
JTAG_  
TMS/  
SWD_  
DIO  
_RTS_ CH0  
b
PTA4/ NMI_b/EZP_CS_b  
LLWU_  
P3  
PTA4/  
LLWU_  
P3  
FTM0_  
CH1  
NMI_b EZP_C  
S_b  
38  
39  
40  
38  
39  
40  
VDD2_  
MCU  
VDD  
VDD  
PTA18  
EXTAL0  
XTAL0  
EXTAL PTA18  
0
FTM0_ FTM_C  
FLT2 LKIN0  
PTA19  
XTAL0 PTA19  
FTM1_ FTM_C  
FLT0 LKIN1  
LPTM  
R0_AL  
T1  
41  
42  
41  
42  
RESET  
_b  
RESET_b  
VBAT2_RF  
VDD_REGD  
RESET  
_b  
VBAT2  
_RF  
431  
431 VDD_R  
EGD  
44  
45  
46  
44  
45  
46  
ANT_A  
ANT_B  
ANT_A  
ANT_B  
RX_S  
RX_SWITCH  
WITCH  
47  
48  
49  
47  
48  
49  
TX_SW  
ITCH  
TX_SWITCH  
VSSA_PA  
RF_OUTP  
GND_P  
A
RF_OU  
TP  
Table continues on the next page...  
MKW2xD Data Sheet, Rev. 2, 05/2016  
75  
NXP Semiconductors  
Dimensions  
MKW  
Table 48. Pin Assignments (continued)  
MKW  
22/24  
D512  
(USB)  
Pin  
Name  
EZPO  
RT  
21D25  
6/512  
Default  
ALT0 ALT1 ALT2 ALT3 ALT4 ALT5 ALT6 ALT7  
50  
51  
521  
531  
541  
55  
56  
57  
58  
59  
60  
61  
62  
63  
50  
51  
RF_OU  
TN  
RF_OUTN  
VSSA_PA  
VDD_PA  
VDD_IF  
GND_P  
A
521 VDD_P  
A
531  
VDD_I  
F
541 VDD_R  
F
VDD_RF  
VBAT  
55  
56  
57  
58  
59  
60  
61  
62  
63  
VBAT_  
RF  
XTAL_  
32M  
XTAL_32M  
Factory Do not connect  
test  
Factory Do not connect  
test  
Factory Do not connect  
test  
Factory Do not connect  
test  
Factory Do not connect  
test  
Factory Do not connect  
test  
GND_P Connect to ground  
A
1. This pin is used for external bypassing of an internal regulator. DO NOT connect to power.  
11 Dimensions  
11.1 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
76  
MKW2xD Data Sheet, Rev. 2, 05/2016  
NXP Semiconductors  
Revision History  
If you want the drawing for this package  
63 MAPLGA  
Then use this document number  
98ASA00393D  
12 Revision History  
The following table provides a revision history for this document.  
Table 49. Revision History  
Rev. No.  
Date  
Substantial Changes  
2
05/2016  
• Updated features list and added pin package diagram on front  
page.  
• Added Related Resources table.  
• Updated structure of section 4 and added section 4.5 "RF Output  
Power Distribution".  
• Added section 5.1 "Transceiver Transmit Current Distribution".  
• Updated pin diagrams with correct pin assignments.  
• Replaced MKW2x with MKW2xD through out.  
MKW2xD Data Sheet, Rev. 2, 05/2016  
77  
NXP Semiconductors  
Information in this document is provided solely to enable system and software  
implementers to use NXP products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based  
on the information in this document. NXP reserves the right to make changes  
without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of  
its products for any particular purpose, nor does NXP assume any liability arising  
out of the application or use of any product or circuit, and specifically disclaims  
any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in NXP data sheets and/or  
specifications can and do vary in different applications, and actual performance  
may vary over time. All operating parameters, including “typicals,” must be  
validated for each customer application by customerʼs technical experts. NXP  
does not convey any license under its patent rights nor the rights of others. NXP  
sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER  
WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V.  
All other product or service names are the property of their respective owners.  
ARM, the ARM powered logo, and Cortex are registered trademarks of ARM  
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
© 2013 - 2016 NXP B.V.  
Document Number MKW2xDxxx  
Revision 2, 05/2016  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY