MKW36Z512VFP4 [NXP]

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller;
MKW36Z512VFP4
型号: MKW36Z512VFP4
厂家: NXP    NXP
描述:

An ultra low power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller

文件: 总91页 (文件大小:1134K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
MKW36Z512  
Data Sheet: Technical Data  
Rev. 8, 05/2020  
MKW36Z/35Z Data Sheet  
MKW36Z512VHT4  
MKW36Z512VFP4  
MKW35Z512VHT4  
An ultra low power, highly integrated Bluetooth® Low  
Energy 5.0 wireless microcontroller  
48 LQFN  
40 "Wettable" HVQFN  
7x7 mm Pitch 0.5 mm 6x6 mm Pitch 0.5 mm  
Multi-Standard Radio  
System peripherals  
• 2.4 GHz Bluetooth Low Energy (Bluetooth LE) version  
5.0 compliant supporting up to 8 simultaneous  
hardware connections  
• Nine MCU low-power modes to provide power  
optimization based on application requirements  
• DC-DC Converter supporting Buck and Bypass  
operating modes  
• Generic FSK modulation  
• Data Rate: 250, 500 and 1000 kbps  
• Modulations: GFSK BT = 0.3, 0.5, and 0.7;  
FSK/MSK  
• Direct memory access (DMA) Controller  
• Computer operating properly (COP) watchdog  
• Serial wire debug (SWD) Interface and Micro Trace  
buffer  
• Modulation Index: 0.32, 0.5, 0.7, and 1.0  
Typical Receiver Sensitivity  
(Bluetooth LE 1 Mbps) = –95 dBm  
Typical Receiver Sensitivity  
• Bit Manipulation Engine (BME)  
Analog Modules  
• 16-bit Analog-to-Digital Converter (ADC)  
• 6-bit High Speed Analog Comparator (CMP)  
• 1.2 V voltage reference (VREF)  
(250 kbps GFSK-BT=0.5, h=0.5) = –99 dBm  
• Programmable Transmitter Output Power:  
–30 dBm to 5 dBm  
• Low external component counts for low cost application  
• On-chip balun with single ended bidirectional RF port  
Timers  
• 16-bit low-power timer (LPTMR)  
• 3 Timer/PWM Modules(TPM): One 4 channel TPM  
and two 2 channel TPMs  
• Programmable Interrupt Timer (PIT)  
• Real-Time Clock (RTC)  
MCU and Memories  
• 256 KB program flash memory plus 256 KB FlexNVM  
on KW36Z  
• 8 KB FlexRAM supporting EEPROM emulation on  
KW36Z  
• 512 KB program flash memory on KW35Z  
• Up to 48 MHz Arm® Cortex®-M0+ core  
• On-chip 64 KB SRAM  
Communication interfaces  
• 2 serial peripheral interface (SPI) modules  
• 2 inter-integrated circuit (I2C) modules  
• Low Power UART (LPUART) module with LIN  
support (2x LPUART on KW36Z)  
Low Power Consumption  
• Carrier Modulator Timer (CMT)  
• Transceiver current (DC-DC buck mode, 3.6 V supply)  
• FlexCAN module (with CAN FD support up to 3.2  
Mbps baudrate) on KW36Z  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
• Typical Rx Current: 6.3 mA  
• Typical Tx current: 5.7 mA (0 dBm output)  
• Low Power Mode (VLLS0) Current: 258 nA  
Security  
• AES-128 Hardware Accelerator (AESA)  
• True Random Number Generator (TRNG)  
• Advanced flash security on Program Flash  
• 80-bit unique identification number per chip  
• 40-bit unique media access control (MAC) sub-  
address  
Clocks  
• 26 and 32 MHz supported for Bluetooth LE and  
Generic FSK modes  
• 32.768 kHz Crystal Oscillator  
• LE Secure Connections  
Operating Characteristics  
• Voltage range: 1.71 V to 3.6 V  
• Ambient temperature range: –40 to 105 °C  
• Industrial Qualification  
Human-machine interface  
• General-purpose input/output  
Orderable parts details  
Top Line  
Marking  
CAN  
FD  
Device  
Qualification  
2nd UART with LIN FlexRAM  
Package  
MKW36Z512VHT4 (F)M36Z  
MKW36Z512VFP4 M36Z9V4  
MKW35Z512VHT4 (F)M35Z  
Industrial  
Y
Y
Y
Y
N
7X7 mm 48-pin  
LQFN  
Industrial  
Industrial  
Y
N
Y
N
6X6 mm 40-pin  
"Wettable" HVQFN  
7X7 mm 48-pin  
LQFN  
Related Resources  
Description  
Type  
Resource  
Product  
Selector  
The Product Selector lets you find the right Kinetis part for your design.  
W-Series Product Selector  
Fact Sheet  
The Fact Sheet gives overview of the product key features and its uses. KW36-35-34 Fact Sheet  
Reference  
Manual  
The Reference Manual contains a comprehensive description of the  
structure and function (operation) of a device.  
MKW36A512RM1  
Data Sheet  
The Data Sheet includes electrical characteristics and signal  
connections.  
This document.  
Chip Errata  
The chip mask set Errata provides additional or corrective information for KINETIS_W_1N41U1  
a particular device mask set.  
Package  
drawing  
Package dimensions are provided in package drawings.  
• 40-pin "Wettable" HVQFN  
(6x6): 98ASA01025D1  
• 48-pin LQFN (7x7):  
98ASA00694D1  
1. To find the associated resource, go to http://www.nxp.com and perform a search using this term.  
2
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Table of Contents  
1
2
Introduction......................................................................... 4  
6.4.1 Thermal operating requirements......................45  
6.4.2 Thermal attributes............................................ 46  
6.5 Peripheral operating requirements and behaviors.......46  
6.5.1 Core modules...................................................46  
6.5.2 System modules.............................................. 47  
6.5.3 Clock modules................................................. 48  
6.5.4 Memories and memory interfaces....................52  
6.5.5 Security and integrity modules.........................54  
6.5.6 Analog..............................................................54  
6.5.7 Timers.............................................................. 62  
6.5.8 Communication interfaces................................62  
6.5.9 Human-machine interfaces (HMI).................... 67  
6.6 DC-DC Converter Operating Requirements................ 67  
6.7 Ratings.........................................................................70  
6.7.1 Thermal handling ratings................................. 70  
6.7.2 Moisture handling ratings.................................70  
6.7.3 ESD handling ratings....................................... 70  
6.7.4 Voltage and current operating ratings..............71  
Pin Diagrams and Pin Assignments....................................71  
7.1 KW36Z Signal Multiplexing and Pin Assignments....... 71  
7.2 KW36Z Pinouts............................................................74  
7.3 KW35Z Signal Multiplexing and Pin Assignments....... 75  
7.4 KW35Z Pinouts............................................................78  
7.5 Module Signal Description Tables............................... 78  
7.5.1 Core Modules...................................................79  
7.5.2 Radio Modules................................................. 79  
7.5.3 System Modules.............................................. 80  
7.5.4 Clock Modules................................................. 81  
7.5.5 Analog Modules............................................... 81  
7.5.6 Timer Modules................................................. 82  
7.5.7 Communication Interfaces............................... 83  
7.5.8 Human-Machine Interfaces(HMI).....................85  
Package Information........................................................... 85  
8.1 Obtaining package dimensions....................................85  
Part identification.................................................................85  
9.1 Description...................................................................85  
9.2 Format..........................................................................86  
9.3 Fields........................................................................... 86  
9.4 Example.......................................................................86  
Feature Descriptions........................................................... 5  
2.1 Block Diagram..............................................................5  
2.2 Radio features..............................................................6  
2.3 Microcontroller features............................................... 7  
2.4 System features...........................................................8  
2.5 Peripheral features.......................................................10  
2.6 Security Features.........................................................14  
Transceiver Description.......................................................16  
3.1 Key Specifications........................................................16  
3.2 Channel Map Frequency Plans ...................................16  
3.2.1 Channel Plan for Bluetooth Low Energy.......... 16  
3.2.2 Other Channel Plans .......................................18  
3.3 Transceiver Functions..................................................18  
Transceiver Electrical Characteristics................................. 19  
4.1 Radio operating conditions.......................................... 19  
4.2 Receiver Feature Summary.........................................19  
4.3 Transmit and PLL Feature Summary...........................22  
System and Power Management........................................ 26  
5.1 Power Management.....................................................27  
5.1.1 DC-DC Converter.............................................27  
5.2 Modes of Operation..................................................... 27  
5.2.1 Power modes................................................... 27  
KW36Z/35Z Electrical Characteristics.................................30  
6.1 AC electrical characteristics.........................................30  
6.2 Nonswitching electrical specifications..........................30  
6.2.1 Voltage and current operating requirements....30  
6.2.2 LVD and POR operating requirements............ 31  
6.2.3 Voltage and current operating behaviors......... 32  
6.2.4 Power mode transition operating behaviors.....33  
6.2.5 Power consumption operating behaviors.........34  
6.2.6 Diagram: Typical IDD_RUN operating  
3
4
5
7
6
behavior........................................................... 40  
8
9
6.2.7 SoC Power Consumption.................................42  
6.2.8 Designing with radiated emissions in mind...... 43  
6.2.9 Capacitance attributes..................................... 43  
6.3 Switching electrical specifications................................44  
6.3.1 Device clock specifications.............................. 44  
6.3.2 General switching specifications......................44  
6.4 Thermal specifications................................................. 45  
10 Revision History.................................................................. 87  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
3
NXP Semiconductors  
Introduction  
1 Introduction  
The KW36Z/35Z wireless microcontrollers (MCU), which includes the KW36Z and  
KW35Z families of devices, are highly integrated single-chip devices that enable  
Bluetooth Low Energy (Bluetooth LE) and Generic FSK connectivity for industrial and  
medical/healthcare embedded systems. The target applications center on wirelessly  
bridging the embedded world with mobile devices to enhance the human interface  
experience, share embedded data between devices and the cloud and enable wireless  
firmware updates.  
The KW36Z/35Z Wireless MCU integrates an Arm® Cortex®-M0+ CPU with up to  
512 KB flash and 64 KB SRAM and a 2.4 GHz radio that supports Bluetooth LE 5.0  
and Generic FSK modulations. The Bluetooth LE radio supports up to 8 simultaneous  
connections in any master/slave combination. The Medical Body Area Network  
(MBAN) frequencies from 2.36 to 2.4 GHz are also supported enabling wearable or  
implantable wireless medical devices.  
The KW36Z includes an integrated FlexCAN module enabling seamless integration  
into an industrial CAN communication network, enabling communication with external  
control and sensor monitoring devices over Bluetooth LE. The FlexCAN module can  
support CAN’s flexible data-rate (CAN FD) protocol for increased bandwidth and  
lower latency.  
The KW36Z/35Z devices can be used as a "BlackBox" modem in order to add  
Bluetooth LE or Generic FSK connectivity to an existing host MCU or MPU  
(microprocessor), or may be used as a standalone smart wireless sensor with embedded  
application where no host controller is required.  
The RF circuit of the KW36Z/35Z is optimized to require very few external  
components, achieving the smallest RF footprint possible on a printed circuit board.  
Extremely long battery life is achieved through the efficiency of code execution in the  
Cortex-M0+ CPU core and the multiple low power operating modes of the KW36Z/  
35Z. For power critical applications, an integrated DC-DC converter enables operation  
from a single coin cell or Li-ion battery with a significant reduction of peak receive and  
transmit current consumption.  
4
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
2 Feature Descriptions  
This section provides a simplified block diagram and highlights the KW36Z/35Z  
features.  
2.1 Block Diagram  
Arm Cortex M0+ Core  
32K Osc  
32M Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S2  
S0  
S1  
SIM  
ADC  
BME  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
LTC(AESA)  
TRNG  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART x2  
SPI x2  
Flash  
AIPS-Lite  
256 KB  
FlexNVM  
256 KB  
FlexRAM  
8 KB  
Radio  
IPS  
APB  
VREF  
VDCDC_IN  
IPS  
DCDC  
CMT  
FlexCAN  
Figure 1. KW36 Detailed Block Diagram  
Arm Cortex M0+ Core  
32K Osc  
32M Osc  
IRC  
MCG  
DMA MUX  
4ch DMA  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
4 MHz  
DWT  
MTB  
IRC  
32 kHz  
FLL  
IOPORT  
Unified Bus  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S2  
S0  
S1  
SIM  
ADC  
BME  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
LTC(AESA)  
TRNG  
Flash  
AIPS-Lite  
512 KB  
Prg Acc RAM  
8 KB  
Radio  
IPS  
VREF  
APB  
VDCDC_IN  
DCDC  
CMT  
IPS  
Figure 2. KW35 Detailed Block Diagram  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
5
NXP Semiconductors  
Feature Descriptions  
2.2 Radio features  
Operating frequencies:  
• 2.4 GHz ISM band (2400-2483.5 MHz)  
• Medical Body Area Network (MBAN) 2360-2400 MHz  
Supported standards:  
• Bluetooth Low Energy Version 5.0 compliant radio  
• Generic FSK modulation supporting data rates up to 1 Mbit/s  
• Support for up to 8 simultaneous Bluetooth LE hardware connections in any  
master, slave combination  
• Bluetooth LE Application Profiles  
Receiver performance:  
• Receive sensitivity of up to –95 dBm for Bluetooth LE  
• Receive sensitivity of up to –99 dBm for a 250 kbit/s GFSK mode with a  
modulation index of 0.5. Receive sensitivity in Generic FSK modes depends on  
mode selection and data rate.  
Other features:  
• Programmable transmit output power from –30 dBm to +5 dBm  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK modes  
• Bluetooth Low Energy version 5.0 Link Layer hardware with 1 Mbit/s PHY  
support  
• Hardware acceleration for Generic FSK packet processing  
• Generic FSK modulation at 250, 500 and 1000 kbit/s  
• Supports 8 simultaneous Bluetooth LE connections in any master/slave  
combination  
• Enhanced Bluetooth LE automatic deep sleep modes (DSM) supporting Slave  
Latency  
• Up to 26 devices supported by whitelist in hardware  
• Up to 8 private resolvable addresses supported in hardware  
• Supports DMA capture of IQ data with sampling rate of up to 2 MHz, when using a  
32 MHz crystal  
• Integrated on-chip balun  
• Single ended bidirectional RF port shared by transmit and receive  
• Low external component count  
• Supports transceiver range extension using external PA and/or LNA  
6
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
2.3 Microcontroller features  
Arm Cortex-M0+ CPU  
• Up to 48 MHz CPU  
• As compared to Cortex-M0, the Cortex-M0+ uses an optimized 2-stage pipeline  
microarchitecture for reduced power consumption and improved architectural  
performance (cycles per instruction)  
• Supports up to 32 interrupt request sources  
• Binary compatible instruction set architecture with the Cortex-M0 core  
• Thumb instruction set combines high code density with 32-bit performance  
• Serial Wire Debug (SWD) reduces the number of pins required for debugging  
• Micro Trace Buffer (MTB) provides lightweight program trace capabilities using  
system RAM as the destination memory  
Nested Vectored Interrupt Controller (NVIC)  
• 32 vectored interrupts, 4 programmable priority levels  
• Includes a single non-maskable interrupt  
Wake-up Interrupt Controller (WIC)  
• Supports interrupt handling when system clocking is disabled in low-power  
modes  
• Takes over and emulates the NVIC behavior when correctly primed by the NVIC  
on entry to very-deep-sleep  
• A rudimentary interrupt masking system with no prioritization logic signals for  
wake-up as soon as a non-masked interrupt is detected  
Debug Controller  
• Two-wire Serial Wire Debug (SWD) interface  
• Hardware breakpoint unit for 2 code addresses  
• Hardware watchpoint unit for 2 data items  
• Micro Trace Buffer for program tracing  
On-Chip Memory  
• Up to 512 KB Flash  
• KW36Z contains 256 KB program flash with ECC and 256 KB FlexNVM.  
• KW35Z contains 512 KB program flash with ECC.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
7
NXP Semiconductors  
Feature Descriptions  
• Flash implemented as two equal blocks each of 256 KB block. Code can  
execute or read from one block while the other block is being erased or  
programmed on KW35Z only.  
• Firmware distribution protection. Program flash can be marked execute-only  
on a per-sector (8 KB) basis to prevent firmware contents from being read by  
third parties.  
• 64 KB SRAM  
• KW36Z contains 8 KB FlexRAM.  
• KW35Z contains 8 KB program acceleration RAM.  
• Security circuitry to prevent unauthorized access to RAM and flash contents  
through the debugger  
2.4 System features  
Power Management Control Unit (PMC)  
• Programmable power saving modes  
• Available wake-up from power saving modes via internal and external sources  
• Integrated Power-on Reset (POR)  
• Integrated Low Voltage Detect (LVD) with reset (brownout) capability  
• Selectable LVD trip points  
• Programmable Low Voltage Warning (LVW) interrupt capability  
• Individual peripheral clocks can be gated off to reduce current consumption  
• Internal Buffered bandgap reference voltage  
• Factory programmed trim for bandgap and LVD  
• 1 kHz Low-power Oscillator (LPO)  
DC-DC Converters  
• Internal switched mode power supply supporting Buck and Bypass operating  
modes  
• Buck operation supports external voltage sources of 2.1 V to 3.6 V  
• When DC-DC is not used, the device supports an external voltage range of 1.5 V to  
3.6 V (1.5 - 3.6 V on VDD_RF1, VDD_RF2, VDD_RF3 and  
VDD_1P5OUT_PMCIN pins. 1.71 - 3.6 V on VDD_0, VDD_1, and VDDA pins)  
• An external inductor is required to support the Buck mode  
Direct Memory Access (DMA) Controller  
• All data movement via dual-address transfers: read from source, write to  
destination  
8
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
• Programmable source and destination addresses and transfer size  
• Support for enhanced addressing modes  
• 4-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Internal data buffer, used as temporary storage to support 16- and 32-byte  
transfers  
• Connections to the crossbar switch for bus mastering the data movement  
• Transfer Control Descriptor (TCD) organized to support two-deep, nested transfer  
operations  
• 32-byte TCD stored in local memory for each channel  
• An inner data transfer loop defined by a minor byte transfer count  
• An outer data transfer loop defined by a major iteration count  
• Channel activation via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests, one per channel  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via optional interrupt requests  
• One interrupt per channel, optionally asserted at completion of major iteration  
count  
• Optional error terminations per channel and logically summed together to form  
one error interrupt to the interrupt controller  
• Optional support for scatter/gather DMA processing  
• Support for complex data structures  
DMA Channel Multiplexer (DMA MUX)  
• 4 independently selectable DMA channel routers  
• 2 periodic trigger sources available  
• Each channel router can be assigned to 1 of the peripheral DMA sources  
COP Watchdog Module  
• Independent clock source input (independent from CPU/bus clock)  
• Choice between two clock sources  
• LPO oscillator  
• Bus clock  
System Clocks  
• Both 26 MHz and 32 MHz crystal reference oscillator supported for Bluetooth LE  
and Generic FSK modes  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
9
NXP Semiconductors  
Feature Descriptions  
• MCU can derive its clock either from the crystal reference oscillator or the  
Frequency-locked Loop (FLL)1  
• 32.768 kHz crystal reference oscillator used to maintain precise Bluetooth Low  
Energy timing in low-power modes  
• Multipurpose Clock Generator (MCG)  
• Internal reference clocks — Can be used as a clock source for other on-chip  
peripherals  
• On-chip RC oscillator range of 31.25 kHz to 39.0625 kHz with 2% accuracy  
across full temperature range  
• On-chip 4 MHz oscillator with 5% accuracy across full temperature range  
• Frequency-locked Loop (FLL) controlled by internal or external reference  
• 20 MHz to 48 MHz FLL output  
Unique Identifiers  
• 80-bit Unique ID represents a unique identifier for each chip  
• 40-bit unique Media Access Control (MAC) address, which can be used to build a  
unique 48-bit Bluetooth Low Energy MAC address  
2.5 Peripheral features  
16-bit Analog-to-Digital Converter (ADC)  
• Linear successive approximation algorithm with 16-bit resolution  
• Output formatted in differential-ended 16-, 13-, 11-, and 9-bit mode  
• Output formatted in single-ended 16-, 12-, 10-, and 8-bit mode  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Conversion rates in 16-bit mode with no averaging up to ~500Ksamples/sec  
• Input clock selection  
• Operation in low-power modes for lower noise operation  
• Asynchronous clock source for lower noise operation  
• Selectable asynchronous hardware conversion trigger  
• Automatic compare with interrupt for less-than, or greater than, or equal to  
programmable value  
• Temperature sensor  
• Battery voltage measurement  
• Hardware average function  
• Selectable voltage reverence  
• Self-calibration mode  
1. Clock options can have restrictions based on the chosen SoC configuration.  
10  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
High-Speed Analog Comparator (CMP)  
• 6-bit DAC programmable reference generator output  
• Up to eight selectable comparator inputs; each input can be compared with any  
input by any polarity sequence  
• Selectable interrupt on rising edge, falling edge, or either rising or falling edges of  
comparator output  
• Two performance modes:  
• Shorter propagation delay at the expense of higher power  
• Low-power, with longer propagation delay  
• Operational in all MCU power modes except VLLS0 mode  
Voltage Reference(VREF1)  
• Programmable trim register with 0.5 mV steps, automatically loaded with factory  
trimmed value upon reset  
• Programmable buffer mode selection:  
• Off  
• Bandgap enabled/standby (output buffer disabled)  
• High-power buffer mode (output buffer enabled)  
• 1.2 V output at room temperature  
• VREF_OUT output signal  
Low-power Timer (LPTMR)  
• One channel  
• Operation as timer or pulse counter  
• Selectable clock for prescaler/glitch filter  
• 1 kHz internal LPO  
• External low-power crystal oscillator  
• Internal reference clock  
• Configurable glitch filter or prescaler  
• Interrupt generated on timer compare  
• Hardware trigger generated on timer compare  
• Functional in all power modes  
Timer/PWM (TPM)  
• TPM0: 4 channels, TPM1 and TPM2: 2 channels each  
• Selectable source clock  
• Programmable prescaler  
• 16-bit counter supporting free-running or initial/final value, and counting is up or  
up-down  
• Input capture, output compare, and edge-aligned and center-aligned PWM modes  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
11  
NXP Semiconductors  
Feature Descriptions  
• Input capture and output compare modes  
• Generation of hardware triggers  
• TPM1 and TPM2: Quadrature decoder with input filters  
• Global time base mode shares single time base across multiple TPM instances  
Programmable Interrupt Timer (PIT)  
• Up to 2 interrupt timers for triggering ADC conversions  
• 32-bit counter resolution  
• Clocked by bus clock frequency  
Real-Time Clock (RTC)  
• 32-bit seconds counter with 32-bit alarm  
• Can be invalidated on detection of tamper detect  
• 16-bit prescaler with compensation  
• Register write protection  
• Hard Lock requires MCU POR to enable write access  
• Soft lock requires POR or software reset to enable write/read access  
• Capable of waking up the system from low-power modes  
Inter-Integrated Circuit (I2C)  
• Two channels  
• Compatible with I2C bus standard and SMBus Specification Version 2 features  
• Up to 400 kHz operation  
• Multi-master operation  
• Software programmable for one of 64 different serial clock frequencies  
• Programmable slave address and glitch input filter  
• Interrupt driven byte-by-byte data transfer  
• Arbitration lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• Bus busy detection broadcast and 10-bit address extension  
• Address matching causes wake-up when processor is in low-power mode  
LPUART  
• One channel (2 channels on KW36Z)  
• Full-duplex operation  
• Standard mark/space Non-return-to-zero (NRZ) format  
• 13-bit baud rate selection with fractional divide of 32  
• Programmable 8-bit or 9-bit data format  
• Programmable 1 or 2 stop bits  
12  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
• Separately enabled transmitter and receiver  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• 13-bit break character option  
• 11-bit break character detection option  
• Two receiver wake-up methods:  
• Idle line wake-up  
• Address mark wake-up  
• Address match feature in receiver to reduce address mark wake-up ISR overhead  
• Interrupt or DMA driven operation  
• Receiver framing error detection  
• Hardware parity generation and checking  
• Configurable oversampling ratio to support from 1/4 to 1/32 bit-time noise  
detection  
• Operation in low-power modes  
• Hardware Flow Control RTS\CTS  
• Functional in Stop/VLPS modes  
• Break detect supporting LIN  
Serial Peripheral Interface (SPI)  
• Two independent SPI channels  
• Master and slave mode  
• Full-duplex, three-wire synchronous transfers  
• Programmable transmit bit rate  
• Double-buffered transmit and receive data registers  
• Serial clock phase and polarity options  
• Slave select output  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Support for both transmit and receive by DMA  
Carrier Modulator Timer (CMT)  
• Four modes of operation  
• Time; with independent control of high and low times  
• Baseband  
• Frequency shift key (FSK)  
• Direct software control of CMT_IRO signal  
• Extended space operation in time, baseband, and FSK modes  
• Selectable input clock divider  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
13  
NXP Semiconductors  
Feature Descriptions  
• Interrupt on end of cycle  
• Ability to disable CMT_IRO signal and use as timer interrupt  
General Purpose Input/Output (GPIO)  
• Hysteresis and configurable pull up device on all input pins  
• Independent pin value register to read logic level on digital pin  
• All GPIO pins can generate IRQ and wake-up events  
• Configurable drive strength on some output pins  
• GPIO can be configured to function as a interrupt driven keyboard scanning matrix  
• In the 48-pin package there are a total of 25 digital pins  
• In the 40-pin package there are a total of 18 digital pins  
FlexCAN (for KW36Z only)  
• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol  
specification and CAN protocol specification, Version 2.0 B  
• Flexible Message Buffers (MBs); there are total 32 MBs of 8 bytes data length  
each, configurable as Rx or Tx, all supporting standard and extended messages  
• Programmable clock source to the CAN Protocol Interface, either peripheral clock  
or oscillator clock  
• Capability to select priority between mailboxes and Rx FIFO during matching  
process  
• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either  
128 extended, 256 standard, or 512 partial (8 bit) IDs, with up to 32 individual  
masking capability  
2.6 Security Features  
Advanced Encryption Standard Accelerator(AES-128 Accelerator)  
The Advanced Encryption Standard Accelerator (AESA) module is a standalone  
hardware coprocessor capable of accelerating the 128-bit advanced encryption standard  
(AES) cryptographic algorithms.  
The AESA engine supports the following cryptographic features.  
LTC includes the following features:  
• Cryptographic authentication  
• Message Authentication Codes (MAC)  
14  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Feature Descriptions  
• Cipher-based MAC (AES-CMAC)  
• Extended cipher block chaining message authentication code (AES-  
XCBC-MAC)  
• Auto padding  
• Integrity Check Value(ICV) checking  
• Authenticated encryption algorithms  
• Counter with CBC-MAC (AES-CCM)  
• Symmetric key block ciphers  
• AES (128-bit keys)  
• Cipher modes:  
• AES-128 modes  
• Electronic Codebook (ECB)  
• Cipher Block Chaining (CBC)  
• Counter (CTR)  
• Secure scan  
True Random Number Generator (TRNG)  
True Random Number Generator (TRNG) is a hardware accelerator module that  
constitutes a high-quality entropy source.  
• TRNG generates a 512-bit (4x 128-bit) entropy as needed by an entropy-  
consuming module, such as a deterministic random number generator.  
• TRNG output can be read and used by a deterministic pseudo-random number  
generator (PRNG) implemented in software.  
• TRNG-PRNG combination achieves NIST-compliant true randomness and  
cryptographic-strength random numbers using the TRNG output as the entropy  
source.  
• A fully FIPS 180 compliant solution can be realized using the TRNG together  
with a FIPS-compliant deterministic random number generator and the SoC-level  
security.  
Flash Memory Protection  
The on-chip flash memory controller enables the following useful features:  
• Program flash protection scheme prevents accidental program or erase of stored  
data.  
• Automated, built-in, program and erase algorithms with verify.  
• Read access to one program flash block is possible while programming or erasing  
data in the other program flash block.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
15  
NXP Semiconductors  
Transceiver Description  
3 Transceiver Description  
• Direct Conversion Receiver (Zero IF)  
• Constant Envelope Transmitter  
• 2.36 GHz to 2.483 GHz PLL Range  
• Low Transmit and Receive Current Consumption  
• Low BOM  
3.1 Key Specifications  
KW36Z/35Z meets or exceeds all Bluetooth Low Energy version 5.0 performance  
specifications. The key specifications for the KW36Z/35Z are:  
Frequency Band:  
• ISM Band: 2400 to 2483.5 MHz  
• MBAN Band: 2360 to 2400 MHz  
Bluetooth Low Energy version 5.0 modulation scheme:  
• Symbol rate: 1000 kbit/s  
• Modulation: GFSK  
• Receiver sensitivity: –95 dBm, typical  
• Programmable transmitter output power: –30 dBm to +5 dBm  
Generic FSK modulation scheme:  
• Symbol rate: 250, 500 and 1000 kbit/s  
• Modulation(s): GFSK (modulation index = 0.32, 0.5, 0.7 and 1.0, BT =0.3, 0.5, and  
0.7), FSK and MSK  
• Receiver Sensitivity: Mode and data rate dependent. –99 dBm typical for GFSK  
(r=250 kbit/s, BT = 0.5, h = 0.5)  
3.2 Channel Map Frequency Plans  
16  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Transceiver Description  
3.2.1 Channel Plan for Bluetooth Low Energy  
This section describes the frequency plan / channels associated with 2.4 GHz ISM and  
MBAN bands for Bluetooth Low Energy.  
2.4 GHz ISM Channel numbering:  
• Fc=2402 + k * 2 MHz, k=0,.........,39.  
MBAN Channel numbering:  
• Fc=2360 + k in MHz, for k=0,.....,39  
where k is the channel number.  
Table 1. 2.4 GHz ISM and MBAN frequency plan and channel designations  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
Channel  
Freq (MHz)  
2360  
2361  
2362  
2363  
2364  
2365  
2366  
2367  
2368  
2369  
2370  
2371  
2372  
2373  
2374  
2375  
2376  
2377  
2378  
2379  
2380  
2381  
2382  
2383  
Freq (MHz)  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
0
1
0
1
28  
29  
30  
31  
32  
33  
34  
35  
36  
0
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
17  
NXP Semiconductors  
Transceiver Description  
Table 1. 2.4 GHz ISM and MBAN frequency plan and channel designations (continued)  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2450  
2452  
2454  
2456  
2458  
2460  
2462  
2464  
2466  
2468  
2470  
2472  
2474  
2476  
2478  
2480  
Channel  
24  
Freq (MHz)  
2384  
2385  
2386  
2387  
2388  
2389  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2399  
Freq (MHz)  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
2454  
2456  
2476  
2478  
2480  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
37  
38  
39  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
1. ISM frequency of operation spans from 2400.0 MHz to 2483.5 MHz  
2. Per FCC guideline rules, Bluetooth Low Energy single mode operation is allowed in these channels.  
3.2.2 Other Channel Plans  
The RF synthesizer can be configured to use any channel frequency between 2.36 and  
2.487 GHz.  
3.3 Transceiver Functions  
Receive  
The receiver architecture is Zero IF (ZIF) where the received signal after passing  
through RF front end is down-converted to a baseband signal. The signal is filtered and  
amplified before it is fed to analog-to-digital converter. The digital signal then  
decimates to a baseband clock frequency before it digitally processes, demodulates and  
passes on to packet processing/link-layer processing.  
18  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Transmit  
The transmitter transmits GFSK/FSK modulation having power and channel selection  
adjustment per user application. After the channel of operation is determined, coarse  
and fine-tuning is executed within the Frac-N PLL to engage signal lock. After signal  
lock is established, the modulated buffered signal is routed to a multi-stage amplifier  
for transmission..  
4 Transceiver Electrical Characteristics  
4.1 Radio operating conditions  
Table 2. Radio operating conditions  
Characteristic  
Symbol  
fin  
Min  
2.360  
–40  
Typ  
Max  
2.480  
105  
Unit  
GHz  
°C  
Input Frequency  
Ambient Temperature Range  
Maximum RF Input Power  
TA  
25  
Pmax  
fref  
10  
dBm  
Crystal Reference Oscillator Frequency  
26 MHz or 32 MHz  
1
1. The recommended crystal accuracy is 40 ppm including initial accuracy, mechanical, temperature, and aging factors.  
4.2 Receiver Feature Summary  
Table 3. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
6.3  
Max.  
1000  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Rx On with DC-DC converter enable  
(Buck; VDCDC_IN = 3.6 V, VDD_1P5_buck=1.5 V) , 2  
IRxon  
mA  
Supply current Rx On with DC-DC converter disabled  
(Bypass) 2  
IRxon  
17.2  
mA  
Input RF Frequency  
fin  
2.360  
2.4835  
GHz  
dBm  
dBm  
dB  
GFSK Rx Sensitivity(250 kbit/s GFSK-BT=0.5, h=0.5)  
Bluetooth LE Rx Sensitivity 3  
SENSGFSK  
SENSBLE  
NFHG  
–99  
–95  
7.5  
Noise Figure for maximum gain mode @ typical  
sensitivity  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
19  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 3. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
RSSIRange  
RSSIRes  
Min.  
–100  
Typ.  
Max.  
55  
2
Unit  
dBm  
dB  
Receiver Signal Strength Indicator Range4  
Receiver Signal Strength Indicator Resolution  
Typical RSSI variation over frequency  
Typical RSSI variation over temperature  
Narrowband RSSI accuracy6  
1
–2  
dB  
–2  
2
dB  
RSSIAcc  
–3  
3
dB  
Bluetooth LE Co-channel Interference (Wanted signal at  
–67 dBm, BER <0.1%. Measurement resolution 1  
MHz).  
–7  
dB  
Adjacent/Alternate Channel Performance7  
Bluetooth LE Adjacent +/–1 MHz Interference offset  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
SELBLE, 1 MHz  
SELBLE, 2 MHz  
SELBLE, 3 MHz  
SELBLE, 4+ MHz  
2
dB  
dB  
dB  
dB  
Bluetooth LE Adjacent +/–2 MHz Interference offset  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
43  
50  
50  
Bluetooth LE Alternate +/–3 MHz Interference offset  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
Bluetooth LE Alternate ≥ +/–4 MHz Interference offset  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz.)  
Intermodulation Performance  
Bluetooth LE Intermodulation with continuous wave  
interferer at 3 MHz and modulated interferer is at  
MHz (Wanted signal at –67 dBm, BER<0.1%.)  
–23  
–24  
dBm  
dBm  
6
Bluetooth LE Intermodulation with continuous wave  
interferer at 5 MHz and modulated interferer is at 10  
MHz (Wanted signal at –67 dBm, BER<0.1%.)  
Blocking Performance  
Bluetooth LE Out of band blocking from 30 MHz to 1000  
MHz and 4000 MHz to 5000 MHz (Wanted signal at –67  
dBm, BER<0.1%. Interferer continuous wave signal.)8  
–2  
dBm  
dBm  
Bluetooth LE Out of band blocking from 1000 MHz to  
2000 MHz and 3000 MHz to 4000 MHz (Wanted signal  
at –67 dBm, BER<0.1%. Interferer continuous wave  
signal.)  
–8.4  
Bluetooth LE Out of band blocking from 2001 MHz to  
2339 MHz and 2484 MHz to 2999 MHz (Wanted signal  
at –67 dBm, BER<0.1%. Interferer continuous wave  
signal.)9  
–17  
dBm  
dBm  
Bluetooth LE Out of band blocking from 5000 MHz to  
12750 MHz (Wanted signal at –67 dBm, BER<0.1%.  
Interferer continuous wave signal.)9  
10  
Table continues on the next page...  
20  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 3. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Spurious Emission < 1.6 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|< 1.6 MHz  
–54  
dBc  
Spurious Emission > 2.5 MHz offset (Measured with  
100 kHz resolution and average detector. Device  
transmit on RF channel with center frequency fc and  
spurious power measured in 1 MHz at RF frequency f),  
where |f-fc|> 2.5 MHz10  
–70  
dBc  
1. All the Rx parameters are measured at the KW36Z/35Z RF pins.  
2. Transceiver power consumption.  
3. Measured at 0.1% BER using 37 byte long packets in maximum gain mode and nominal conditions.  
4. Narrow-band RSSI mode.  
5. With RSSI_CTRL_0.RSSI_ADJ field calibrated to account for antenna to RF input losses.  
6. With one point calibration over frequency and temperature.  
7. Bluetooth LE adjacent and alternate selectivity performance is measured with modulated interference signals.  
8. Exceptions allowed for carrier frequency sub harmonics.  
9. Exceptions allowed for carrier frequency harmonics.  
10. Exceptions allowed for twice the reference clock frequency(fref) multiples.  
Table 4. Receiver Specifications with Generic FSK Modulations  
Adjacent/Alternate Channel Selectivity (dB)1  
Modulation  
Type  
Data  
Rate  
(kbit/s)  
Channel  
BW (kHz) Sensitivity signal  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
at –/+1*  
channel  
BW  
at –/+ 2*  
channel  
BW  
at –/+ 3*  
channel  
BW  
at –/+ 4*  
channel  
BW  
(dBm)  
level  
(dBm)  
offset  
offset  
offset  
offset  
GFSK BT =  
0.5, h=0.5  
1000  
500  
2000  
1000  
500  
–95  
–97  
–99  
–89  
–92  
–93  
–97  
–98  
–99  
–91  
–93  
–95  
–96  
–97  
–67  
–85  
–85  
–67  
–85  
–85  
–85  
–85  
–85  
–85  
–85  
–85  
–85  
–85  
43  
40  
30  
10  
22  
20  
45  
40  
30  
40  
35  
30  
44  
40  
50  
50  
40  
38  
31  
25  
50  
50  
40  
46  
46  
40  
53  
50  
55  
55  
50  
42  
37  
30  
57  
55  
50  
53  
50  
40  
57  
55  
50  
55  
50  
47  
42  
34  
60  
55  
50  
55  
53  
50  
60  
55  
–7  
–7  
250  
–7  
GFSK, BT =  
0.5, h=0.3  
1000  
500  
1000  
800  
–10  
–10  
–13  
–7  
250  
500  
GFSK, BT =  
0.5, h=0.7  
1000  
500  
2000  
1000  
600  
–7  
250  
–7  
GMSK  
BT=0.3  
1000  
500  
1600  
800  
–8  
–7  
250  
500  
–7  
GMSK, BT = 1000  
2000  
1000  
–7  
0.7  
500  
–7  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
21  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 4. Receiver Specifications with Generic FSK Modulations  
(continued)  
Adjacent/Alternate Channel Selectivity (dB)1  
Modulation  
Type  
Data  
Rate  
(kbit/s)  
Channel  
BW (kHz) Sensitivity signal  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
at –/+1*  
channel  
BW  
at –/+ 2*  
channel  
BW  
at –/+ 3*  
channel  
BW  
at –/+ 4*  
channel  
BW  
(dBm)  
level  
(dBm)  
offset  
offset  
offset  
offset  
250  
1000  
500  
600  
3000  
1600  
800  
–99  
–96  
–97  
–99  
–96  
–97  
–98  
–85  
–85  
–85  
–85  
–85  
–85  
–85  
30  
43  
43  
35  
45  
40  
35  
40  
53  
50  
45  
55  
45  
45  
50  
60  
60  
55  
55  
50  
45  
50  
63  
60  
55  
59  
50  
50  
–7  
–7  
–8  
–7  
–8  
–8  
–8  
Generic  
MSK  
250  
GFSK  
BT=0.5, h=1  
1000  
500  
3000  
1400  
800  
250  
1. Selectivity measured with an unmodulated blocker except for GFSK BT=0.5, h=0.5 1 Mbit/s and GFSK BT=0.5, h=0.32 1  
Mbit/s. The desired signal is set at –85 dBm.  
4.3 Transmit and PLL Feature Summary  
• Supports constant envelope modulation of 2.4 GHz ISM and 2.36 GHz MBAN  
frequency bands  
• Fast PLL Lock time: < 25 µs  
• Reference Frequency:  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK  
modes  
Table 5. Top-Level Transmitter Specifications (TA=25 °C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Ipdn  
Min.  
Typ.  
200  
5.7  
Max.  
Unit  
nA  
Supply current power down on VDD_RFx supplies  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V,  
VDD_1P5_buck=1.5 V) , 2  
ITxone  
mA  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter disabled (Bypass) 2  
ITxond  
16  
mA  
mA  
Supply current Tx On with PRF = +3.5 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V,  
VDD_1P5_buck=1.5 V)2  
ITX3.5dBm  
6.9  
Supply current Tx On with PRF = +3.5 dBm and DC-DC  
converter disabled (Bypass)2  
ITX3.5dBmb  
19  
mA  
Table continues on the next page...  
22  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 5. Top-Level Transmitter Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Supply current Tx On with PRF = +5 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V,  
VDD_1P5_buck=1.55 V, LDO-HF bumped)2, 3  
ITX5dBm  
8.0  
mA  
Supply current Tx On with PRF = +5 dBm and DC-DC  
converter disabled (Bypass, LDO-HF bumped)2, 3  
ITX5dBmb  
21  
mA  
Output RF Frequency  
fRFout  
2.360  
+5  
2.4835  
GHz  
dBm  
dBm  
dBm  
dB  
Maximum RF Output Power; LDO-HF bumped 4  
Maximum RF Output power, nominal power supply 5  
Minimum RF Output power, nominal power supply 5  
RF Output power control range  
PRF,maxV  
PRF,maxn  
PRF,minn  
PRFCR  
+3.5  
–30  
34  
Bluetooth LE Tx Output Spectrum 20dB BW  
TXBWBLE  
Δf1avg,BLE  
1.0  
MHz  
kHz  
Bluetooth LE average frequency deviation using a  
00001111 modulation sequence  
250  
220  
Bluetooth LE average frequency deviation using a  
01010101 modulation sequence  
Δf2avg,BLE  
kHz  
Bluetooth LE RMS FSK Error  
FSKerr BLE  
,
3%  
3
Bluetooth LE Maximum Deviation of the Center  
Frequency6  
Fcdev,BLE  
kHz  
dBm  
dBm  
Bluetooth LE Adjacent Channel Transmit Power at 2  
MHz offset7  
PRF2MHz,BLE  
PRF3MHz,BLE  
–55  
–59  
Bluetooth LE Adjacent Channel Transmit Power at >= 3  
MHz offset7  
Bluetooth LE Frequency Hopping Support  
YES  
–46  
Second Harmonic of Transmit Carrier Frequency (Pout  
=
TXH2  
TXH3  
dBm/MHz  
dBm/MHz  
, 8  
PRF,max  
)
Third Harmonic of Transmit Carrier Frequency (Pout  
=
–58  
8
PRF,max  
)
1. All the Tx parameters are measured at test hardware SMA connector.  
2. Transceiver power consumption.  
3. VDD_RFx shall be equal to or higher than 1.55 V to support a TX Pout of +5 dBm.  
4. Measured at KW36Z/35Z RF pins, with BB_LDO_HF_TRIM=1.44 V.  
5. Measured at the KW36Z/35Z RF pins.  
6. Maximum drift of carrier frequency of the PLL during a Bluetooth LE packet with a nominal 32 MHz reference crystal.  
7. Measured at Pout = +5 dBm and recommended Tx match.  
8. Harmonic levels based on recommended 2 component match. Transmit harmonic levels depend on the quality of  
matching components. Additional harmonic margin using a third matching component (1x shunt capacitor) is possible.  
Transmit PA driver output as a function of the PA_POWER[5:0] field when measured  
at the IC pins is as follows:  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
23  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Figure 3. TX Pout (dBm) as function TX-PA Power Code for default LDO-HF  
Table 6. Transmit Output Power as a function of PA_POWER[5:0] with default LDO-HF  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–30.1  
–24.0  
–17.9  
–14.5  
–12.0  
–10.1  
–8.5  
T = 25 °C  
–31.1  
–25.0  
–19.0  
–15.6  
–13.1  
–11.2  
–9.6  
T = 105 °C  
–32.6  
–26.4  
–20.4  
–17.0  
–14.5  
–12.6  
–11.0  
–9.7  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
–7.2  
–8.3  
–6.1  
–7.2  
–8.6  
–5.1  
–6.2  
–7.6  
–4.2  
–5.3  
–6.7  
–3.4  
–4.5  
–5.9  
–2.7  
–3.8  
–5.2  
–2.0  
–3.1  
–4.5  
–1.4  
–2.5  
–3.9  
–0.8  
–1.9  
–3.3  
–0.3  
–1.4  
–2.8  
Table continues on the next page...  
24  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
Transceiver Electrical Characteristics  
Table 6. Transmit Output Power as a function of PA_POWER[5:0] with default LDO-HF  
(continued)  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
0.2  
T = 25 °C  
–1.0  
–0.5  
–0.1  
0.3  
T = 105 °C  
–2.4  
–1.9  
–1.5  
–1.1  
–0.7  
–0.3  
0.0  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
0.6  
1.1  
1.5  
1.9  
0.7  
2.2  
1.1  
2.6  
1.4  
2.9  
1.8  
0.3  
3.2  
2.1  
0.6  
3.5  
2.4  
0.9  
3.7  
2.6  
1.2  
3.9  
2.9  
1.5  
4.2  
3.1  
1.7  
4.4  
3.3  
1.9  
4.5  
3.5  
2.1  
1. Tx continuous wave power output at the RF pins with the recommended matching components mounted on PCB.  
Figure 4. TX Pout (dBm) as a function of TX-PA Power Code for LDO-HF bumped  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
25  
NXP Semiconductors  
System and Power Management  
Table 7. Transmit Output Power as a function of PA_POWER[5:0] with LDO-HF Bumped  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–28.5  
–22.4  
–16.4  
–12.9  
–10.4  
–8.5  
–6.9  
–5.6  
–4.4  
–3.4  
–2.5  
–1.7  
–0.9  
–0.3  
0.4  
T = 25 °C  
–29.6  
–23.4  
–17.5  
–13.9  
–11.5  
–9.5  
–8.0  
–6.6  
–5.5  
–4.5  
–3.6  
–2.8  
–2.0  
–1.4  
–0.7  
–0.1  
0.3  
T = 105 °C  
–30.4  
–24.2  
–18.3  
–14.8  
–12.3  
–10.4  
–8.8  
–7.5  
–6.3  
–5.3  
–4.4  
–3.6  
–2.9  
–2.2  
–1.6  
–1.0  
–0.5  
0.0  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
1.0  
1.4  
2.0  
0.9  
2.4  
1.3  
0.4  
2.9  
1.8  
0.9  
3.3  
2.2  
1.3  
3.7  
2.6  
1.7  
4.1  
3.0  
2.1  
4.5  
3.4  
2.5  
4.8  
3.7  
2.8  
5.2  
4.0  
3.1  
5.5  
4.4  
3.4  
5.8  
4.6  
3.7  
6.0  
4.9  
4.0  
6.3  
5.2  
4.2  
6.5  
5.4  
4.5  
6.7  
5.6  
4.7  
1. Tx continuous wave power output at the RF pins with the recommended matching components mounted on PCB.  
5 System and Power Management  
26  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
System and Power Management  
5.1 Power Management  
The KW36Z/35Z includes internal power management features that can be used to  
control the power usage. The power management of the KW36Z/35Z includes Power  
Management Controller (PMC) and a DC-DC converter which can operate in a buck  
or bypass configuration. The PMC is designed such that the RF radio remains in state-  
retention while the core is in various stop modes. It makes sure that the device can  
stay in low current consumption mode while the RF radio can wake-up quick enough  
for communication.  
5.1.1 DC-DC Converter  
The features of the DC-DC converter include the following:  
• Single inductor, multiple outputs.  
• Buck mode (pin selectable; CFG=VDCDC_IN).  
• Continuous or pulsed operation (hardware/software configurable).  
• Power switch input to allow external control of power up, and to select DC-DC  
bypass mode in which all the SoC power supplies (see Table 3) are externally  
provided.  
• Output signal to indicate power stable. Purpose is for the rest of the chip to be  
used as a POR.  
• Scaled battery output voltage suitable for SAR ADC utilization.  
• Internal oscillator for support when the reference oscillator is not present.  
5.2 Modes of Operation  
The Arm Cortex-M0+ core in the KW36Z/35Z has three primary modes of operation:  
Run, Wait, and Stop modes. For each run mode, there is a corresponding wait and stop  
mode. Wait modes are similar to Arm sleep modes. Stop modes are similar to Arm  
deep sleep modes. The very low-power run (VLPR) operation mode can drastically  
reduce runtime power when the maximum bus frequency is not required to handle the  
application needs.  
The WFI instruction invokes both wait and stop modes. The primary modes are  
augmented in a number of ways to provide lower power based on application needs.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
27  
NXP Semiconductors  
System and Power Management  
5.2.1 Power modes  
The power management controller (PMC) provides multiple power options to allow the  
user to optimize power consumption for the level of functionality needed.  
Depending on the stop requirements of the user application, various stop modes are  
available that provide state retention, partial power down, or full power down of certain  
logic and/or memory. I/O states are held in all modes of operation. The following table  
compares the various power modes available.  
For each run mode, there is a corresponding wait and stop mode. Wait modes are  
similar to Arm sleep modes. Stop modes (VLPS, STOP) are similar to Arm sleep deep  
mode. The very-low-power run (VLPR) operating mode can drastically reduce runtime  
power when the maximum bus frequency is not required to handle the application  
needs.  
The three primary modes of operation are run, wait, and stop. The WFI instruction  
invokes either wait or stop depending on the SLEEPDEEP bit in Cortex-M0+ System  
Control Register. The primary modes are augmented in a number of ways to provide  
lower power based on application needs.  
Table 8. Power modes (At 25 deg C)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
Normal Run (all  
Allows maximum performance of chip.  
Radio can be active  
peripherals clock off)  
Normal Wait - via WFI Allows peripherals to function, while allowing CPU to  
go to sleep reducing power.  
Interrupt  
Interrupt  
Interrupt  
Normal Stop - via  
WFI  
Places chip in static state. Lowest power mode that  
retains all registers while maintaining LVD protection.  
PStop2 (Partial Stop Core and system clocks are gated. Bus clock  
2)  
remains active. Masters and slaves clocked by bus  
clock remain in Run or VLPRun mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
PStop1 (Partial Stop Core, system clocks, and bus clock are gated. All  
Interrupt  
1)  
bus masters and slaves enter Stop mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
VLPR (Very Low-  
power Run) (all  
peripherals off)  
Reduced frequency (1 MHz) Flash access mode,  
regulator in low-power mode, LVD off. Internal  
oscillator can provide low-power 4 MHz source for  
core. (Values @2 MHz core/ 1 MHz bus and flash,  
module off, execution from flash).  
Radio operation is possible  
only when DC-DC is  
configured for continuous  
mode.1 However, there may  
be insufficient MIPS with a 4  
MHz MCU to support much in  
the way of radio operation.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
Table continues on the next page...  
28  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
System and Power Management  
Table 8. Power modes (At 25 deg C) (continued)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
VLPW (Very Low-  
Similar to VLPR, with CPU in sleep to further reduce  
Interrupt  
power Wait) - via WFI power. (Values @4 MHz core/ 1 MHz bus, module  
(all peripherals off)  
off)  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPS (Very Low-  
Places MCU in static state with LVD operation off.  
Interrupt  
power Stop) via WFI Lowest power mode with ADC and all pin interrupts  
functional. LPTMR, RTC, CMP can be operational.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPS.  
LLS3 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wake-up  
Interrupt  
Radio SOG is in state  
retention in LLSx. The  
Bluetooth LE/Generic FSK  
DSM2 logic can be active  
using the 32 kHz clock  
Stop)  
CMP can be operational. All of the radio Sea of  
Gates(SOG) logic is in state retention.  
LLS2 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wake-up  
Interrupt  
Stop)  
CMP can be operational. 16 KB or 32 KB of  
programmable RAM can be powered on. All of the  
radio SOG logic is in state retention.  
VLLS3 (Very Low  
Leakage Stop3)  
Full SRAM retention. LLWU, LPTMR, RTC, CMP can  
be operational. All of the radio SOG logic is in state  
retention.  
Wake-up  
Reset  
Radio SOG is in state  
retention in VLLS3/2. The  
Bluetooth LE/Generic FSK  
DSM logic can be active  
using the 32 kHz clock.  
VLLS2 (Very Low  
Leakage Stop2)  
Partial SRAM retention. 16 KB or 32 KB of  
programmable RAM can be powered on. LLWU,  
LPTMR, RTC, CMP can be operational. All of the  
radio SOG logic is in state retention.  
Wake-up  
Reset  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
RTC + 32 kHz OSC  
All SRAM powered off. The 32-byte system register  
Wake-up  
Reset  
Radio operation not  
supported. The Radio SOG is  
power-gated in VLLS1. Radio  
state is lost at VLLS1 and  
lower power states.  
LLWU, LPTMR, RTC, CMP can be operational.  
Radio logic is power gated.  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
All SRAM powered off. The 32-byte system register  
Wake-up  
Reset  
LPTMR + LPO  
LLWU, LPTMR, RTC, CMP can be operational.  
VLLS0 (Very Low  
Leakage Stop0) with  
Brown-out Detection  
VLLS0 is not supported with DC-DC.  
Wake-up  
Reset  
Radio operation not  
supported. The Radio digital  
is power-gated in VLLS0.  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection enabled, Pin  
interrupt only. Radio logic is power gated.  
VLLS0 (Very Low  
Leakage Stop0)  
without Brown-out  
Detection  
VLLS0 is not supported with DC-DC buck  
configuration but is supported with bypass  
configuration.  
Wake-up  
Reset  
The 32-byte system register file remains powered for  
customer-critical data. Disable all analog modules in  
PMC and retains I/O state and DGO state. LPO  
disabled, POR brown-out detection disabled, Pin  
interrupt only. Radio logic is power gated.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
29  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
1. Biasing is disabled, but the Flash is in a low-power mode for VLPx, so this configuration can realize some power savings  
over use of Run/Wait/Stop.  
2. DSM refers to Radio's deep sleep mode. DSM does not refer to the Arm sleep deep mode.  
6 KW36Z/35Z Electrical Characteristics  
6.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 5. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
6.2 Nonswitching electrical specifications  
6.2.1 Voltage and current operating requirements  
Table 9. Voltage and current operating requirements  
Symbol  
VDD  
Description  
Min.  
1.71  
Max.  
3.6  
Unit  
V
Notes  
Supply voltage  
VDD_1P5  
DCDC VDD_1P5 output pin  
1.425  
3.6  
V
1
Table continues on the next page...  
30  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 9. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
1.71  
–0.1  
–0.1  
Max.  
3.6  
Unit  
V
Notes  
VDDA  
Analog supply voltage  
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
0.1  
V
0.1  
V
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
–3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS–0.3V  
2
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
–25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
3
VDD voltage required to retain RAM  
1. This limit applies in any DCDC mode.  
2. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS–0.3 V) is observed, then there is no need to provide current limiting resistors at the pads.  
If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
3. Open drain outputs must be pulled to VDD  
.
6.2.2 LVD and POR operating requirements  
Table 10. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VPOR_VDD_ VDD_1P5 POR threshold  
1.25  
1.31  
1.37  
V
1P5  
VLVDH  
Falling low-voltage detect threshold — high  
2.48  
2.56  
2.64  
V
range (LVDV = 01)  
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
• Level 2 falling (LVWV = 01)  
1
VLVW1H  
VLVW2H  
2.62  
2.72  
2.70  
2.80  
2.78  
2.88  
V
V
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
31  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 10. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
VLVW3H • Level 3 falling (LVWV = 10)  
VLVW4H  
Min.  
Typ.  
Max.  
Unit  
Notes  
2.82  
2.90  
2.98  
V
• Level 4 falling (LVWV = 11)  
2.92  
3.00  
60  
3.08  
V
VHYSH  
VLVDL  
Low-voltage inhibit reset/recover hysteresis —  
high range  
mV  
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low-power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
6.2.3 Voltage and current operating behaviors  
Table 11. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
VDD – 0.35  
V
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –2.5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = –20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = –10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
Table continues on the next page...  
32  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 11. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
Min.  
Max.  
Unit  
Notes  
0.5  
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
0.5  
V
IOLT  
IIN  
Output low current total for all ports  
100  
500  
mA  
nA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
5
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
RPU  
Internal pullup resistors  
20  
50  
kΩ  
4
1. PTB0-1 and PTC0-3, PTC6, PTC7, PTC17, PTC18 I/O have both high drive and normal drive capability selected by  
the associated PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull-up device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V.  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
.
6.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following  
table assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 12. Power mode transition operating behaviors  
Symbol  
Description  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8 V to execution of the first instruction across the  
operating temperature range of the chip.  
300  
μs  
1
• VLLS0 RUN  
169.0  
168.9  
97.3  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
33  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 12. Power mode transition operating behaviors (continued)  
Symbol  
Description  
Max.  
97.3  
6.3  
Unit  
Notes  
• VLLS3 RUN  
μs  
• LLS RUN  
• VLPS RUN  
• STOP RUN  
μs  
6.2  
μs  
6.2  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11). When the DC-DC converter is in bypass mode, TPOR will not meet the 300  
µs spec when 1) VDD_1P5 < 1.6 V at 25 °C and 125 °C. 2) 1.5V ≤ VDD_1P5 ≤ 1.8 V. For the bypass mode special case  
where VDD_1P5 = VDD_1P8, TPOR did not meet the 300 µs maximum spec when the supply slew rate <=100 V/s.  
6.2.5 Power consumption operating behaviors  
Table 13. Power consumption operating behaviors - Bypass Mode  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
1
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO_C Run mode current in compute operation - 48 MHz  
2, 3  
core / 24 MHz flash / bus disabled, LPTMR running  
M
using LPO clock at 1kHz, CoreMark benchmark code  
executing from flash at 3.0 V  
6.80  
4.05  
8.41  
4.98  
mA  
mA  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
3, 4  
3, 4  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
5.00  
6.01  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4, 5  
6.48  
6.77  
7.13  
6.70  
6.96  
7.90  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
4
4
3.07  
2.29  
4.31  
3.15  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
Table continues on the next page...  
34  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 13. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
mA  
μA  
Notes  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
4
2.32  
3.11  
IDD_VLPRCO_ Very-low-power run mode current in compute  
6
7
766.9  
1538  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
CM  
disabled, LPTMR running using LPO clock at 1 kHz  
reference clock, CoreMark benchmark code  
executing from flash at 3.0 V  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
158.45  
377  
410  
μA  
μA  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
7
5, 7  
7
185.26  
240.96  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
805.3  
552.8  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4 133.95  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 105 °C  
204.98  
291.89  
599.46  
308.3  
872.5  
1662  
μA  
μA  
μA  
IDD_VLPS Very-low-power stop mode current at Bypass  
mode(3.0 V),  
6.4  
30.64  
157  
18  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
76.6  
328  
IDD_LLS3  
Low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.57  
11.76  
50.92  
4.31  
26.07  
105.4  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_LLS2  
Low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
2.35  
9.74  
3.30  
21.40  
80.23  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
42.34  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
2.13  
3.3  
μA  
at 25 °C  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
35  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 13. Power consumption operating behaviors - Bypass Mode (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 70 °C  
10.78  
22.97  
μA  
at 105 °C  
46.70  
83.54  
μA  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
1.84  
7.88  
2.40  
15.19  
57.85  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
34.76  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Bypass  
mode(3.0 V),  
851.45  
3.57  
1027.8  
6.28  
nA  
μA  
μA  
at 25°C  
at 70°C  
at 105°C  
17.62  
23.06  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
433.00  
3.15  
720.3  
6.14  
23.2  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
17.2  
IDD_VLLS0 Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
8
258.12  
2.97  
516.43  
5.81  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
16.9  
22.4  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
2. MCG configured for FEI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized for  
balanced.  
3. Radio is off.  
4. MCG configured for FEI mode.  
5. Incremental current consumption from peripheral activity is not included.  
6. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized  
for balanced.  
7. MCG configured for BLPI mode.  
8. No brownout.  
Table 14. Power consumption operating behaviors - Buck Mode1  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
2
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO Run mode current in compute operation - 48 MHz  
core / 24 MHz flash / bus clock disabled, code of  
while(1) loop executing from flash at 3.0 V  
3, 4  
3.51  
mA  
Table continues on the next page...  
36  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 14. Power consumption operating behaviors - Buck Mode1 (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks disabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4  
4.00  
mA  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus and  
flash, all peripheral clocks enabled, code of while(1)  
loop executing from flash at 3.0 V  
3, 4, 5  
5.81  
5.92  
6.36  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_WAIT Wait mode current - core disabled / 48 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
3
3
2.97  
2.51  
mA  
mA  
IDD_WAIT Wait mode current - core disabled / 24 MHz system /  
24 MHz bus / flash disabled (flash doze enabled), all  
peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking option  
- core and system disabled / 10.5 MHz bus at 3.0 V  
3
6
2.33  
mA  
μA  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus clock  
disabled, code of while(1) loop executing from flash  
at 3.0 V  
101.75  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks disabled,  
6
5, 6  
6
132.17  
167.65  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPR Very-low-power run mode current - 4 MHz core / 0.8  
MHz bus and flash, all peripheral clocks enabled,  
μA  
μA  
code of while(1) loop executing from flash at 3.0 V  
IDD_VLPW Very-low-power wait mode current - core disabled / 4 105.72  
MHz system / 0.8 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at 3.0 V  
IDD_STOP Stop mode current at 3.0 V  
at 25 °C  
at 70 °C  
at 105 °C  
1.43  
1.56  
1.99  
2.32  
4.35  
4.68  
mA  
mA  
mA  
IDD_VLPS Very-low-power stop mode current at Buck mode(3.0  
V),  
7
7
4.18  
44.30  
218.64  
14.98  
110  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
446  
IDD_LLS3  
Low-leakage stop mode 3 current at Buck mode(3.0  
V),  
2.64  
4.89  
μA  
μA  
at 25 °C  
at 70 °C  
15.27  
25.51  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
37  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 14. Power consumption operating behaviors - Buck Mode1 (continued)  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
at 105 °C  
81.93  
104.35  
μA  
IDD_LLS2  
Low-leakage stop mode 2 current at Buck mode(3.0  
V),  
7
2.46  
10.14  
63.49  
3.80  
21.14  
80.21  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS3 Very-low-leakage stop mode 3 current at Buck  
mode(3.0 V),  
7
7
7
2.03  
12.44  
62.23  
3.28  
23.8  
83.9  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS2 Very-low-leakage stop mode 2 current at Buck  
mode(3.0 V),  
1.79  
8.87  
2.43  
16.7  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
49.39  
62.94  
IDD_VLLS1 Very-low-leakage stop mode 1 current at Buck  
mode(3.0 V),  
0.830  
4.95  
1.07  
10.67  
36.14  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
27.51  
1. The device was configured in buck mode auto-start to perform the measurements. The DCDC_IN was powered with 3.0  
V. VDD_1P8OUT was configured to output 1.8 V and VDD_1P5OUT_PMCIN was configured to output 1.5 V.  
2. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
each module's specification for its supply current.  
3. MCG configured for FEI mode.  
4. Radio is off.  
5. Incremental current consumption from peripheral activity is not included.  
6. MCG configured for BLPI mode.  
7. DCDC configured in pulsed mode.  
Table 15. Low power mode peripheral adders — typical value (Bypass Mode)  
Symbol  
Description  
Temperature (°C)  
Unit  
–40  
25  
50  
70  
85  
IIREFSTEN4MHz  
4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
VLPS mode with 4 MHz IRC enabled.  
46  
46  
47  
47  
47  
µA  
IIREFSTEN32KHz  
32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP mode  
with the 32 kHz IRC enabled.  
88  
91  
90  
89  
88  
µA  
IEREFSTEN32KHz  
External 32 kHz crystal clock adder by  
means of the RTC bits. Measured by  
Table continues on the next page...  
38  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 15. Low power mode peripheral adders — typical value (Bypass Mode) (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
–40  
25  
50  
70  
85  
entering all modes with the crystal  
enabled.  
VLLS1  
VLLS2  
VLLS3  
LLS2  
1.4  
1.6  
2.7  
1.8  
1.3  
1.5  
1.9  
1.4  
1.6  
1.9  
2.9  
1.7  
2.4  
4.2  
7.7  
4.1  
4.1  
7.7  
15  
8
μA  
LLS3  
2.6  
22  
1.7  
19  
2.8  
20  
7.6  
21  
15.2  
21  
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and a  
single external input for compare. Includes  
6-bit DAC power consumption.  
µA  
µA  
IRTC  
RTC peripheral adder measured by placing  
the device in VLLS1 mode with external 32  
kHz crystal enabled by means of the  
1.4  
1.3  
1.6  
2.4  
4.3  
RTC_CR[OSCE] bit and the RTC ALARM  
set for 1 minute. Includes ERCLK32K (32  
kHz external crystal) power consumption.  
ILPUART  
LPUART peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source waiting for RX  
data at 115200 baud rate. Includes  
selected clock source power consumption.  
MCGIRCLK (4 MHz internal reference  
clock)  
53  
54  
54  
54  
54  
µA  
ILPTMR  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
30  
30  
30  
85  
100  
nA  
ITPM  
TPM peripheral adder measured by  
placing the device in STOP or VLPS mode  
with selected clock source configured for  
output compare generating 100 Hz clock  
signal. No load is placed on the I/O  
generating the clock signal. Includes  
selected clock source and I/O switching  
currents.  
58  
59  
59  
59  
59  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
39  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 15. Low power mode peripheral adders — typical value (Bypass Mode) (continued)  
Symbol  
Description  
Temperature (°C)  
Unit  
–40  
25  
50  
70  
85  
IBG  
Bandgap adder when BGEN bit is set and  
device is placed in VLPx, LLS, or VLLSx  
mode.  
76  
82  
85  
87  
87  
µA  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS mode.  
ADC is configured for low-power mode  
using the internal clock and continuous  
conversions.  
331  
327  
327  
327  
328  
µA  
6.2.6 Diagram: Typical IDD_RUN operating behavior  
The following data is measured from previous devices with same MCU core (Arm®  
Cortex-M0+) under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
NOTE  
The results in the following graphs are obtained using the  
device in Bypass mode.  
40  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Figure 6. Run mode supply current vs. core frequency  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
41  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Figure 7. VLPR mode current vs. core frequency  
6.2.7 SoC Power Consumption  
Full KW36Z/35Z system-on-chip (SoC) power consumption is a function of the many  
configurations possible for the MCU platform and its peripherals including the 2.4 GHz  
radio and the DC-DC converter. A few measured SoC configurations are as follows:  
Table 16. SoC Power Consumption with default LDO-HF  
MCU State  
Flash State  
Radio State  
DC-DC State  
Typical  
Average IC  
current  
Unit  
STOP  
STOP  
STOP  
Doze  
Doze  
Doze  
Rx  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
8.5  
7.8  
9.2  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
Table continues on the next page...  
42  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 16. SoC Power Consumption with default LDO-HF (continued)  
MCU State  
Flash State  
Radio State  
DC-DC State  
Typical  
Average IC  
current  
Unit  
RUN  
RUN  
RUN  
Enabled  
Enabled  
Enabled  
Rx  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
10.4  
9.9  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
11.7  
STOP  
STOP  
STOP  
Doze  
Doze  
Doze  
Rx  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
17.3  
15.9  
18.3  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
RUN  
RUN  
RUN  
Enabled  
Enabled  
Enabled  
Rx  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
21.5  
19.9  
22.4  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
Table 17. SoC Power Consumption with LDO-HF bumped  
MCU State  
Flash State  
Radio State  
DC-DC State  
Typical  
Average IC  
current  
Unit  
STOP  
STOP  
RUN  
Doze  
Doze  
Rx (LDO-HF Bumped)  
Tx (LDO-HF Bumped, +5 dBm)  
Rx (LDO-HF Bumped)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Disabled/Bypass (3.6 V)  
Disabled/Bypass (3.6 V)  
Disabled/Bypass (3.6 V)  
Disabled/Bypass (3.6 V)  
8.7  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
10.3  
11.3  
13.1  
18.2  
20.8  
22.6  
26.6  
Enabled  
Enabled  
Doze  
RUN  
Tx (LDO-HF Bumped, +5 dBm)  
Rx (LDO-HF Bumped)  
STOP  
STOP  
RUN  
Doze  
Tx (LDO-HF Bumped, +5 dBm)  
Rx (LDO-HF Bumped)  
Enabled  
Enabled  
RUN  
Tx (LDO-HF Bumped, +5 dBm)  
6.2.8 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com  
2. Perform a keyword search for “EMC design.”  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
43  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.2.9 Capacitance attributes  
Table 18. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
6.3 Switching electrical specifications  
6.3.1 Device clock specifications  
Table 19. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
8
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fTPM  
TPM asynchronous clock  
fLPUART0  
LPUART0 asynchronous clock  
12  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS entered from RUN or  
from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
6.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO,  
LPUART, CAN (for KW36Z only), CMT and I2C signals.  
44  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 20. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter  
disabled) — Synchronous path  
1.5  
Bus clock cycles  
1, 2  
NMI_b pin interrupt pulse width (analog filter enabled) —  
Asynchronous path  
200  
20  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter  
disabled, analog filter disabled) — Asynchronous path  
External RESET_b input pulse width (digital glitch filter  
disabled)  
100  
Port rise and fall time(high drive strength)  
4, 5  
25  
16  
ns  
ns  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
8
6
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
Port rise and fall time(low drive strength)  
6, 7  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
24  
16  
10  
6
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
ns  
ns  
1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry in run modes.  
2. The greater of synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that is guaranteed to be recognized.  
4. PTB0, PTB1, PTC0, PTC1, PTC2, PTC3, PTC6, PTC7, PTC17, PTC18.  
5. 75 pF load.  
6. Ports A, B, and C.  
7. 25 pF load.  
6.4 Thermal specifications  
6.4.1 Thermal operating requirements  
Table 21. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
45  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.4.2 Thermal attributes  
Table 22. Thermal attributes  
Board type  
Symbol  
Description  
48-pin  
LQFN  
40-pin  
"Wettable"  
HVQFN  
Unit  
Notes  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
48.3  
0.5  
19.2  
°C/W  
°C/W  
1, 2  
1, 3  
ΨJT  
Thermal characterization  
parameter, junction to package top  
(natural convection)  
0.1  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
construction.  
2. Determined according to JEDEC Standard JESD51-2A.  
3. Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2A.  
The thermal characterization parameter (ΨJT) is used to determine the junction  
temperature with a measurement of the temperature at the top of the package case using  
the following equation:  
TJ = TT + ΨJT x chip power dissipation  
where TT is the thermocouple temperature at the top of the package.  
6.5 Peripheral operating requirements and behaviors  
6.5.1 Core modules  
6.5.1.1 SWD electricals  
Table 23. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
1/J1  
SWD_CLK clock pulse width  
Table continues on the next page...  
46  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 23. SWD full voltage range electricals (continued)  
Symbol  
Description  
• Serial wire debug  
Min.  
20  
Max.  
Unit  
ns  
J4  
J9  
SWD_CLK rise and fall times  
10  
0
3
ns  
ns  
ns  
ns  
ns  
SWD_DIO input data setup time to SWD_CLK rise  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
32  
J10  
J11  
J12  
5
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 8. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 9. Serial wire data timing  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
47  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.5.2 System modules  
There are no specifications necessary for the device's system modules.  
6.5.3 Clock modules  
6.5.3.1 MCG specifications  
Table 24. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/–0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
3
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/–2  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
ffll_ref  
fdco  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
47.97  
48  
MHz  
MHz  
MHz  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
732 × ffll_ref  
frequency  
2
Mid range (DRS = 01)  
1464 × ffll_ref  
Table continues on the next page...  
48  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 24. MCG specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
180  
ps  
7
tfll_acquire FLL target frequency acquisition time  
1
ms  
8
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the following changes: FLL reference source or reference divider, trim value,  
DMX32 bit, DRS bits, or FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is  
used as the reference, this specification assumes it is already running.  
6.5.3.2 Reference Oscillator Specification  
The KW36Z/35Z has been designed to meet targeted standard specifications for  
frequency error over the life of the part, which includes the temperature, mechanical  
and aging effects.  
The table below lists the recommended crystal specifications. Note that these are  
recommendations only and deviation may be allowed. However, deviations may result  
in degraded RF performance or possibly a failure to meet RF protocol certification  
standards. Designers must ensure that the crystal(s) they use meet the requirements of  
their application.  
Table 25. Recommended Crystal and Oscillator Specification  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Unit  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
TA  
Operating  
–40  
105  
–40  
105  
°C  
1
Temperature  
Crystal initial  
frequency  
tolerance  
–10  
10  
25  
–10  
–25  
10  
24  
ppm  
2,3  
2,4  
Crystal frequency –25  
stability and aging  
ppm  
Oscillator variation –12  
15  
50  
–12  
–50  
16  
50  
ppm  
ppm  
5
6
Total reference  
–50  
oscillator tolerance  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
49  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 25. Recommended Crystal and Oscillator Specification (continued)  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Min Typ  
Unit  
Notes  
Min  
Typ  
Max  
Max  
for Bluetooth LE  
applications  
CL  
Load capacitance  
7
10  
13  
7
10  
13  
pF  
pF  
fF  
2, 7  
2,7  
2,7  
C0  
Shunt capacitance 0.469  
0.67  
2.05  
0.871  
2.665  
0.42  
0.6  
2.05  
0.78  
2.665  
Cm1  
Motional  
capacitance  
1.435  
8.47  
1.435  
Lm1  
Rm1  
ESR  
Pd  
Motional  
inductance  
12.1  
25  
15.73  
50  
12.81  
18.3  
35  
23.79  
50  
mH  
2,7  
2
Motional  
resistance  
Ohms  
Ohms  
uW  
Equivalent series  
resistance  
60  
60  
2,8  
2
Maximum crystal  
drive  
10  
200  
10  
200  
TS  
Trim sensitivity  
6.30  
9.00  
500  
11.70  
6.39  
9.12  
500  
11.86  
ppm/pF 2,7  
μs  
TOSC  
Oscillator Startup  
Time  
9
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Measured at 25 °C.  
4. Combination of frequency stability variation over desired temperature range and frequency variation due to aging over  
desired lifetime of system.  
5. Variation due to temperature, process, and aging of MCU.  
6. Sum of crystal initial frequency tolerance, crystal frequency stability and aging, oscillator variation, and PCB  
manufacturing variation must not exceed this value.  
7. Typical is target. 30% tolerances shown.  
8. ESR = Rm1 * (1 + [C0/CL])^2.  
9. Time from oscillator enable to clock ready. Dependent on the complete hardware configuration of the oscillator.  
50  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Figure 10. Crystal Electrical Model  
6.5.3.3 32 kHz Oscillator Frequency Specifications  
Table 26. 32 kHz Crystal and Oscillator Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Crystal  
32.768  
kHz  
frequency  
TA  
Operating  
temperature  
–40  
105  
500  
°C  
1
Total crystal  
frequency  
tolerance  
–500  
ppm  
2,3  
CL  
Load  
capacitance  
12.5  
pF  
2
2
ESR  
Equivalent  
series  
80  
kOhms  
resistance  
tstart  
Crystal start-up  
time  
1000  
32.768  
ms  
kHz  
V
4
5
6
fec_extal32  
vec_extal32  
External input  
clock frequency  
External input  
0.7  
VDD  
clock amplitude  
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
51  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
3. Sum of crystal initial frequency tolerance, crystal frequency stability, and aging tolerances given by crystal vendor.  
4. Time from oscillator enable to clock stable. Dependent on the complete hardware configuration of the oscillator.  
5. External oscillator connected to EXTAL32K. XTAL32K must be unconnected.  
6. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the applied  
clock must be within the range of VSS to VDD.  
6.5.4 Memories and memory interfaces  
6.5.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.5.4.1.1 Flash timing specifications — commands  
Table 27. Flash command timing specifications  
Symbol Description  
Read 1s Block execution time  
• 256 KB program/data flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
1.8  
ms  
trd1sec2k Read 1s Section execution time (2 KB flash)  
90  
75  
95  
μs  
μs  
μs  
μs  
1
1
1
tpgmchk  
trdrsrc  
Program Check execution time  
Read Resource execution time  
Program Phrase execution time  
Erase Flash Block execution time  
• 256 KB program/data flash  
40  
tpgm8  
150  
2
2
tersblk256k  
tersscr  
220  
1850  
ms  
Erase Flash Sector execution time  
15  
10  
115  
ms  
ms  
tpgmsec2k Program Section execution time (2 KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
3.4  
3.4  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
90  
30  
μs  
μs  
1
tpgmonce Program Once execution time  
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
Swap Control execution time  
• control code 0x01  
450  
3700  
30  
ms  
μs  
2
1
2
450  
3700  
ms  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
200  
90  
90  
150  
150  
30  
μs  
μs  
μs  
μs  
• control code 0x02  
• control code 0x04  
Table continues on the next page...  
52  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 27. Flash command timing specifications (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
tswapx10  
• control code 0x08  
90  
150  
μs  
• control code 0x10  
Program Partition for EEPROM execution time  
• 32 KB EEPROM backup  
tpgmpart32k  
tpgmpart256k  
230  
240  
ms  
ms  
• 256 KB EEPROM backup  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram256k  
112  
0.8  
μs  
ms  
ms  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
1.2  
4.5  
5.5  
Byte-write to FlexRAM execution time:  
• 32 KB EEPROM backup  
teewr8b32k  
385  
1700  
3250  
μs  
μs  
teewr8b256k  
• 256 KB EEPROM backup  
1000  
16-bit write to FlexRAM execution time:  
• 32 KB EEPROM backup  
teewr16b32k  
teewr16b256k  
385  
1700  
μs  
μs  
• 256 KB EEPROM backup  
1000  
360  
3250  
1500  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
μs  
32-bit write to FlexRAM execution time:  
teewr32b32k  
teewr32b256k  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
630  
2000  
3500  
μs  
μs  
1900  
1. Assumes 25MHz or greater flash clock frequency.  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
6.5.4.1.2 Reliability specifications  
Table 28. NVM reliability specifications  
Symbol Description  
Min.  
Program Flash  
Typ.1  
Max.  
Unit  
Notes  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
53  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 28. NVM reliability specifications (continued)  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
nnvmwree16 Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
140 K  
1.26 M  
5 M  
400 K  
3.2 M  
12.8 M  
50 M  
writes  
writes  
writes  
writes  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
20 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40°C ≤ Tj ≤ 125°C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the  
cycling endurance of the FlexNVM and the allocated EEPROM backup. Minimum and typical values assume all 16-bit or  
32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.  
6.5.4.1.3 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set  
size can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that  
can be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout  
the entire lifetime of a given application.  
6.5.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.5.6 Analog  
54  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.5.6.1 ADC electrical specifications  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications. The following specification is defined with the DC-DC converter  
operating in Bypass mode.  
6.5.6.1.1 16-bit ADC operating conditions  
Table 29. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
–100  
–100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
VREFH  
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VSSA  
VSSA  
31/32 ×  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
5
kΩ  
kΩ  
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
4
fADCK  
fADCK  
Crate  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
2.0  
18.0  
12.0  
MHz  
MHz  
5
5
6
ADC conversion 16-bit mode  
clock frequency  
ADC conversion ≤ 13-bit modes  
rate  
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
kS/s  
kS/s  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
55  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet are derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 11. ADC input impedance equivalency diagram  
6.5.6.1.2 16-bit ADC electrical characteristics  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
2.4  
4.0  
5.2  
6.2  
MHz tADACK  
=
1/fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
Table continues on the next page...  
56  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
6.8  
Unit  
Notes  
TUE  
Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
LSB4  
5
1.4  
2.1  
DNL  
Differential non-  
linearity  
• 12-bit mode; Buck  
Mode6  
• 12-bit mode; Bypass  
Mode  
0.7  
0.5  
–1.1 to +1.9  
–1.1 to +1.9  
LSB4  
LSB4  
5
5
INL  
Integral non-  
linearity  
• 12-bit mode; Buck  
Mode6  
• 12-bit mode; Bypass  
Mode  
1.0  
0.6  
–2.7 to +1.9  
–2.7 to +1.9  
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4 VADIN  
VDDA  
=
5
Quantization error  
LSB4  
0.5  
ENOB Effective number of 16-bit differential mode; Buck  
bits  
Mode6  
7
12  
12.75  
11.75  
bits  
• Avg = 32  
• Avg = 4  
11.25  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
• Avg = 4  
11  
11.5  
10.5  
9.5  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
12.5  
13  
12  
11.25  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
11  
10  
11.75  
10.5  
Signal-to-noise plus See ENOB  
distortion  
SINAD  
6.02 × ENOB + 1.76  
dB  
THD Total harmonic  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
–90  
–88  
dB  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
57  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 30. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
• Avg = 32  
–89  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
–87  
Signal-to-noise plus See ENOB  
distortion  
SINAD  
6.02 × ENOB + 1.76  
dB  
dB  
SFDR Spurious free  
dynamic range  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
85  
85  
89  
87  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
87  
85  
94  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
88  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(see  
Voltage  
and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.67  
706  
1.74  
716  
1.81  
726  
mV/°  
C
9
VTEMP25 Temp sensor  
voltage  
25 °C  
mV  
9
1. All accuracy numbers assume that the ADC is calibrated with VREFH = VDDA  
.
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low-  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1  
MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N.  
5. ADC conversion clock < 16 MHz, maximum hardware averaging (AVGE = %1, AVGS = %11).  
6. VREFH = Output of Voltage Reference(VREF).  
7. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
8. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
9. ADC conversion clock < 3 MHz.  
58  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.5.6.2 Voltage reference electrical specifications  
Table 31. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
Max.  
Unit  
V
Notes  
Supply voltage  
Temperature  
1.71  
3.6  
–40 to 105  
100  
°C  
nF  
CL  
Output load capacitance  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/–25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 32. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.190  
1.1950  
1.2  
V
1
nominal VDDA and temperature=25 °C  
Vout  
Voltage reference output with user trim at  
nominal VDDA and temperature=25 °C  
1.1945  
1.1950  
1.1955  
V
1
Vstep  
Vtdrift  
Voltage reference trim step  
0.5  
mV  
mV  
1
1
Temperature drift (Vmax -Vmin across the full  
temperature range)  
20  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
Low-power buffer current  
High-power buffer current  
1
1
Ihp  
ΔVLOAD Load regulation  
• current = 1.0 mA  
1, 2  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax –Vmin across the full voltage  
range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 33. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
70  
°C  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
59  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 34. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vtdrift  
Temperature drift (Vmax –Vmin across the limited  
temperature range)  
15  
mV  
6.5.6.3 CMP and 6-bit DAC electrical specifications  
Table 35. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
tDHS  
Output high  
VDD – 0.5  
50  
250  
7
0.5  
200  
600  
40  
V
V
Output low  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
6-bit DAC integral non-linearity  
20  
ns  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
μA  
LSB3  
LSB  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
60  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
0.08  
0.07  
0.06  
0.05  
0.04  
0.03  
HYSTCTR  
Setting  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 12. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
61  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.5.7 Timers  
See General switching specifications.  
6.5.8 Communication interfaces  
6.5.8.1 CAN switching specifications  
See General switching specifications.  
62  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
6.5.8.2 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 36. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
–2  
8.5  
ns  
ns  
ns  
ns  
16.2  
0
1. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 14. DSPI classic SPI timing — master mode  
Table 37. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
6
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
63  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 37. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
21.4  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2.6  
7.0  
14  
14  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 15. DSPI classic SPI timing — slave mode  
6.5.8.3 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 38. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
2 x tBUS  
(tSCK/2) – 4 (tSCK/2) + 4  
Table continues on the next page...  
ns  
64  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
KW36Z/35Z Electrical Characteristics  
Table 38. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS3  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
ns  
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
–1.2  
23.3  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 16. DSPI classic SPI timing — master mode  
Table 39. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) – 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
29.1  
ns  
ns  
3.2  
7.0  
ns  
ns  
25  
25  
ns  
ns  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
65  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
SPI_SS  
DS10  
DS9  
SPI_SCK  
DS15  
DS12  
DS16  
DS11  
(POL=0)  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 17. DSPI classic SPI timing — slave mode  
6.5.8.4 Inter-Integrated Circuit Interface (I2C) timing  
Table 40. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
400  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
0.91  
µs  
ns  
ns  
Data set-up time  
5,  
5,  
Rise time of SDA and SCL signals  
1000  
20 +0.1Cb  
300  
6
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tf  
300  
20 +0.1Cb  
300  
ns  
6
tSU; STO  
tBUF  
4
0.6  
1.3  
µs  
µs  
Bus free time between STOP and  
START condition  
4.7  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF.  
4. Set-up time in slave-transmitter mode is 1 IP Bus clock period, if the TX FIFO is empty.  
66  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 18. Timing definition for fast and standard mode devices on the I2C bus  
6.5.8.5 LPUART  
See General switching specifications.  
6.5.9 Human-machine interfaces (HMI)  
6.5.9.1 GPIO  
The maximum input voltage on PTC0/1/2/3 is VDD+0.3V. For rest of the GPIO  
specification, see General switching specifications.  
6.6 DC-DC Converter Operating Requirements  
Table 41. DC-DC Converter operating conditions  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Bypass Mode Supply Voltage (RF and Analog)  
VDDRF1  
VDDRF2  
,
,
1.425  
3.6  
Vdc  
VDDRF3, VDD_1P5  
Bypass Mode Supply Voltage (Digital)  
VDDX, VDCDC_IN  
VDDA  
,
1.71  
2.1  
3.6  
3.6  
Vdc  
Vdc  
Buck Mode Supply Voltage 1, 2  
DC-DC Inductor  
Value  
VDCDC_IN  
10  
μH  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
67  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 41. DC-DC Converter operating conditions (continued)  
Characteristic  
ESR  
Symbol  
Min  
Typ  
<0.2  
26  
Max  
<0.5  
Unit  
Ohms  
MHz  
DC-DC internal oscillator  
DCDCInt_Osc  
1. In Buck mode, DC-DC converter needs 2.1 V minimum to start, the supply can drop to 1.8 V after DC-DC converter  
settles.  
2. In Buck mode, DC-DC converter generates 1.8 V at VDD_1P8OUT and 1.5 V at VDD_1P5OUT_PMCIN pins.  
VDD_1P8OUT should supply to VDD1, VDD2 and VDDA. VDD_1P5OUT_PMCIN should supply to VDD_RF1 and  
VDD_RF2. VDD_RF3 can be either supplied by 1.5 V or 1.8 V.  
Table 42. DC-DC Converter Specifications  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
1951  
1401  
Unit  
mW  
mW  
DC-DC Converter Output  
Power (total power output of  
1p8V and 1p5V)  
VDCDC_IN above 2.7 V Pdcdc_out1  
VDCDC_IN below 2.7 V Pdcdc_out2  
Switching Frequency2  
DCDC_FREQ  
DC-DC  
reference  
MHz  
frequency  
divided by 16  
3
Half FET Threshold  
Double FET Threshold  
Buck Mode  
I_half_FET  
5
mA  
mA  
I_double_FET  
40  
DC-DC Conversion Efficiency  
DCDC_EFF_buck  
VDD_1P8_buck  
90%  
1.71  
min(VDCD Vdc  
C_IN_buck  
, 3.5)4, 5  
1.8 V Output Voltage  
VDD_1P8 = 3.0 V  
IDD_1P8_buck1  
IDD_1P8_buck2  
IDD_1P8_buck3  
39  
45  
35  
mA  
mA  
mA  
1.5 V <= VDC_1P5  
<= 1.7 V  
VDCDC_IN=3.1 V  
VDD_1P8 = 2.65 V  
1.5 V <= VDC_1P5  
<= 1.7 V  
1.8 V Output Current6, 7  
VDCDC_IN=2.7 V  
VDD_1P8 = 1.8 V  
1.5 V <= VDC_1P5  
<= 1.7 V  
VDCDC_IN=2.1 V  
Consumed by Radio VDD_1P5_buck  
for Pout<=+3.5 dBm  
1.45  
1.55  
1.58  
1.8  
1.8  
Vdc  
Vdc  
1.5 V Output Voltage  
1.5 V Output Voltage  
Consumed by Radio VDD_1P5_buck  
for Pout=+5 dBm  
1.6259  
Table continues on the next page...  
68  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
Table 42. DC-DC Converter Specifications (continued)  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
45  
Unit  
mA  
μs  
1.5 V Output Current6, 10  
IDD_1P5_buck  
DC-DC Transition Operating  
Behavior  
LSSRun  
t_DCDCbuck_LSSR  
UN  
50  
DC-DC Turn on Time  
TDCDC_ON  
2.211  
3.11  
ms  
DC-DC Settling Time for  
increasing voltage  
TDCDC_SETTLE_buck  
ms/V  
DC-DC Settling Time for  
decreasing voltage  
C = capacitance  
attached to the DC-  
DC V1P8 output rail.  
TDCDC_SETTLE_buck  
(C*(V1–  
V2)/I2  
s
V1 = the initial output  
voltage of the DC-DC  
V2 = the final output  
voltage of the DC-DC  
I2 = the load on the  
DC-DC output  
expressed in  
Amperes.  
VDD_1P8 ripple  
Typical ripple based  
on NXP  
VDD_1P8ripple  
30  
mV  
recommended  
hardware  
configuration and  
typical loading (MCU  
only; no extra loads  
placed on DC-DC  
outputs)  
VDD_1P5 ripple  
Typical ripple based  
on NXP  
VDD_1P5ripple  
30  
mV  
recommended  
hardware  
configuration and  
typical loading (MCU  
only; no extra loads  
placed on DC-DC  
outputs)  
1. This is the steady state DC output power. Excessive transient current load from external device causes 1p8V and 1P5  
output voltage unregulated temporary.  
2. This is the frequency that is observed at LN and LP pins.  
3. DC-DC reference frequency derives from the RF oscillator or the DC-DC internal oscillator.  
4. The voltage output level can be controlled by programming DCDC_VDD1P8CTRL_TRG field in DCDC_REG3.  
5. In Buck mode, the maximum VDD_1P8 output is the minimum of either VDCDC_IN_BUCK minus 50 mV or 3.5 V. For  
example, if VDCDC_IN = 2.1 V, maximum VDD_1P8 is 2.05 V. If VDCDC_IN = 3.6 V, maximum VDD_1P8 is 3.5 V.  
6. The output current specification in buck mode represents the maximum current the DC-DC converter can deliver. The  
KW36Z/35Z radio and MCU blocks current consumption is not excluded. The maximum output power of the DC-DC  
converter is 140 mW when VDCDC_IN is below 2.7 V and 195 mW when VDCDC_IN is above 2.7 V. The available supply  
current for external device depends on the energy consumed by the internal peripherals in KW36Z/35Z.  
7. When using DC-DC in low-power mode (pulsed mode), current load must be less than 1 mA.  
8. User needs to program DCDC_VDD1P5CTRL_TRG_BUCK field in DCDC_REG3 register to ensure that a worst case  
minimum of 1.45 V is available as VDD_1P5_buck. VDD_1P5 must not be programmed higher than VDD_1P8.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
69  
NXP Semiconductors  
KW36Z/35Z Electrical Characteristics  
9. User needs to program DCDC_VDD1P5CTRL_TRG_BUCK field in DCDC_REG3 register to ensure that a worst case  
minimum of 1.55 V is available as VDD_1P5_buck. VDD_1P5 must not be programmed higher than VDD_1P8.  
10. 1.5 V is intended to supply power to KW36Z/35Z. It is not designed to supply power to an external device.  
11. Turn on time is measured from the application of power (to DCDC_IN) till the DCDC_REG0[DCDC_STS_DC_OK] bit is  
set. Code execution may begin before the DCDC_REG0[DCDC_STS_DC_OK] bit is set. The full device specification is  
not guaranteed until the bit sets.  
6.7 Ratings  
6.7.1 Thermal handling ratings  
Table 43. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.7.2 Moisture handling ratings  
Table 44. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.7.3 ESD handling ratings  
Table 45. ESD handling ratings  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
VCDM  
Electrostatic discharge voltage, human body model  
–2000  
+2000  
V
1
2
Electrostatic discharge voltage, charged-device model  
All pins except the corner pins  
–500  
–750  
–100  
500  
750  
V
V
Corner pins only  
ILAT  
Latch-up current at ambient temperature of 105 °C  
+100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
70  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
6.7.4 Voltage and current operating ratings  
Table 46. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
GND  
VDD + 0.3  
VDCDC  
V
V
VIO_DCDC  
IO pins in the DC-DC voltage domain (DCDC_CFG and  
PSWITCH)  
7 Pin Diagrams and Pin Assignments  
7.1 KW36Z Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt  
Module is used to select the functionality for each GPIO pin. ALT0 is reserved for  
analog functions on some GPIO pins. ALT1 – ALT9 are assigned to the available  
digital functions on each GPIO pin. GPIO pins with a default of “disabled” are high  
impedance after reset – their input and output buffers are disabled.  
40  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
QFN  
4
5
6
PTA16  
PTA17  
PTA18  
DISABLED  
DISABLED  
DISABLED  
PTA16/  
LLWU_P4  
SPI1_  
SOUT  
LPUART1_  
RTS_b  
TPM0_CH0  
PTA17/  
LLWU_P5  
SPI1_SIN  
LPUART1_  
RX  
CAN0_TX  
CAN0_RX  
TPM_  
CLKIN1  
PTA18/  
LLWU_P6  
SPI1_SCK  
LPUART1_  
TX  
TPM2_CH0  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
71  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
40  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
QFN  
7
PTA19  
ADC0_SE5 ADC0_SE5 PTA19/  
SPI1_PCS0 LPUART1_  
CTS_b  
TPM2_CH1  
LLWU_P7  
24  
ADC0_DP0 ADC0_  
DP0/  
ADC0_  
DP0/  
CMP0_IN0  
CMP0_IN0  
25  
41  
ADC0_DM0 ADC0_  
DM0/  
ADC0_  
DM0/  
CMP0_IN1  
CMP0_IN1  
PTC5  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
TPM2_CH0  
BSM_CLK  
LLWU_P13/  
RF_NOT_  
ALLOWED  
42  
PTC6  
DISABLED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
LPUART0_  
RX  
BSM_  
FRAME  
RFOSC_  
EN  
1
43  
48  
PTC7  
DISABLED  
DISABLED  
PTC7/  
LLWU_P15  
SPI0_PCS2 I2C1_SDA  
SPI0_PCS0 I2C0_SCL  
LPUART0_  
TX  
TPM2_CH1  
BSM_CLK  
BSM_DATA  
PTC19  
PTC19/  
LLWU_P3/  
RF_  
LPUART0_  
CTS_b  
LPUART1_  
CTS_b  
EARLY_  
WARNING  
2
3
4
5
6
1
2
3
8
9
PTA0  
SWD_DIO  
SWD_CLK  
RESET_b  
PSWITCH  
PTA0  
PTA1  
PTA2  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
TPM0_CH3  
SWD_DIO  
SWD_CLK  
RESET_b  
PTA1  
PTA2  
PSWITCH  
PSWITCH  
DCDC_  
CFG  
DCDC_  
CFG  
DCDC_  
CFG  
7
8
9
10  
11  
13  
VDCDC_IN VDCDC_IN VDCDC_IN  
DCDC_LP  
DCDC_LP  
DCDC_LP  
DCDC_  
GND  
DCDC_  
GND  
DCDC_  
GND  
10  
11  
12  
14  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
12  
13  
DCDC_LN  
DCDC_LN  
DCDC_LN  
15  
VDD_  
VDD_  
VDD_  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
14  
16  
PTB0  
DISABLED  
PTB0/  
LLWU_P8/  
RF_  
I2C0_SCL  
CMP0_  
OUT  
TPM0_CH1  
CLKOUT  
CAN0_TX  
RFOSC_  
EN  
72  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
Pin Diagrams and Pin Assignments  
40  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
QFN  
15  
16  
17  
17  
18  
19  
PTB1  
PTB2  
PTB3  
ADC0_SE1/ ADC0_SE1/ PTB1/  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
CMT_IRO  
CAN0_RX  
CMP0_IN5  
CMP0_IN5  
RF_  
PRIORITY  
ADC0_SE3/ ADC0_SE3/ PTB2/  
CMP0_IN3  
CMP0_IN3  
RF_NOT_  
ALLOWED  
ADC0_SE2/ ADC0_SE2/ PTB3/  
LPUART1_  
CLKOUT  
RTC_  
CMP0_IN4  
CMP0_IN4  
ERCLK32K RTS_b  
CLKOUT  
18  
19  
20  
21  
VDD_0  
PTB16  
VDD_0  
VDD_0  
EXTAL32K  
EXTAL32K  
PTB16  
PTB17  
LPUART1_  
RX  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
20  
21  
22  
23  
22  
23  
26  
27  
PTB17  
PTB18  
XTAL32K  
NMI_b  
XTAL32K  
LPUART1_  
TX  
BSM_CLK  
NMI_b  
ADC0_SE4/ PTB18  
CMP0_IN2  
LPUART1_  
CTS_b  
TPM_  
CLKIN0  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT VREF_OUT VREF_OUT  
VDDA VDDA VDDA  
XTAL_OUT XTAL_OUT XTAL_OUT  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
EXTAL  
XTAL  
EXTAL  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
BSM_CLK  
EARLY_  
WARNING  
34  
35  
36  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10 SWITCH  
TX_  
I2C1_SCL  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
SPI1_  
SOUT  
BSM_  
FRAME  
PTC3/ RX_  
LLWU_P11 SWITCH  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
SPI1_SIN  
CAN0_TX  
PTC4/  
LPUART0_  
CTS_b  
BSM_DATA SPI1_PCS0 CAN0_RX  
LLWU_P12/  
BLE_RF_  
ACTIVE  
37  
38  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
SPI0_SCK  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH3  
LPUART1_  
RTS_b  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
73  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
40  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
QFN  
RF_  
STATUS  
39  
46  
47  
PTC17  
PTC18  
DISABLED  
PTC17/  
SPI0_  
SOUT  
I2C1_SCL  
I2C1_SDA  
LPUART0_  
RX  
BSM_  
FRAME  
DTM_RX  
DTM_TX  
LPUART1_  
RX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
40  
41  
DISABLED  
NA  
PTC18/  
LLWU_P2  
SPI0_SIN  
LPUART0_  
TX  
BSM_DATA  
LPUART1_  
TX  
49-64 Ground  
7.2 KW36Z Pinouts  
KW36Z device pinouts are shown in the figures below.  
GANT  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
PTC19  
PTA0  
1
2
41  
ANT  
VDD_RF3  
XTAL  
PTA1  
3
PTA2  
4
EXTAL  
XTAL_OUT  
VDDA  
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_GND  
DCDC_LN  
5
6
7
VREFH/VREF_OUT  
VREFL/VSSA  
PTB18  
8
9
10  
*pin 41 is ground  
Figure 19. 40-pin "Wettable" HVQFN pinout diagram  
74  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
PTA1  
1
2
PTA2  
3
49  
53  
57  
61  
50  
54  
58  
62  
51  
55  
59  
63  
52  
56  
60  
64  
ANT  
PTA16  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
XTAL_OUT  
VDDA  
8
9
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
*pin 49 - 64 are ground  
Figure 20. 48-pin LQFN pinout diagram  
7.3 KW35Z Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt  
Module is used to select the functionality for each GPIO pin. ALT0 is reserved for  
analog functions on some GPIO pins. ALT1 – ALT9 are assigned to the available  
digital functions on each GPIO pin. GPIO pins with a default of “disabled” are high  
impedance after reset – their input and output buffers are disabled.  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
75  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
49-64 Ground  
NA  
1
2
3
4
PTA0  
PTA1  
PTA2  
PTA16  
SWD_DIO  
SWD_CLK  
RESET_b  
DISABLED  
PTA0  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
TPM0_CH3  
TPM0_CH0  
SWD_DIO  
SWD_CLK  
RESET_b  
PTA1  
PTA2  
PTA16/  
LLWU_P4  
SPI1_SOUT  
SPI1_SIN  
5
6
7
PTA17  
DISABLED  
DISABLED  
ADC0_SE5  
PSWITCH  
PTA17/  
LLWU_P5  
TPM_  
CLKIN1  
PTA18  
PTA18/  
LLWU_P6  
SPI1_SCK  
SPI1_PCS0  
TPM2_CH0  
PTA19  
ADC0_SE5  
PSWITCH  
PTA19/  
LLWU_P7  
TPM2_CH1  
8
PSWITCH  
9
DCDC_CFG DCDC_CFG DCDC_CFG  
10  
11  
12  
13  
14  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
DCDC_GND DCDC_GND DCDC_GND  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
15  
16  
VDD_  
1P5OUT_  
PMCIN  
VDD_  
1P5OUT_  
PMCIN  
VDD_  
1P5OUT_  
PMCIN  
PTB0  
DISABLED  
PTB0/  
I2C0_SCL  
CMP0_OUT  
TPM0_CH1  
CLKOUT  
LLWU_P8/  
RF_  
RFOSC_EN  
17  
18  
19  
PTB1  
PTB2  
PTB3  
ADC0_SE1/  
CMP0_IN5  
ADC0_SE1/  
CMP0_IN5  
PTB1/  
RF_  
PRIORITY  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
TPM1_CH1  
CMT_IRO  
ADC0_SE3/  
CMP0_IN3  
ADC0_SE3/  
CMP0_IN3  
PTB2/  
RF_NOT_  
ALLOWED  
ADC0_SE2/  
CMP0_IN4  
ADC0_SE2/  
CMP0_IN4  
PTB3/  
ERCLK32K  
CLKOUT  
RTC_  
CLKOUT  
20  
21  
22  
23  
VDD_0  
PTB16  
PTB17  
PTB18  
VDD_0  
VDD_0  
EXTAL32K  
XTAL32K  
NMI_b  
EXTAL32K  
XTAL32K  
PTB16  
PTB17  
PTB18  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
BSM_CLK  
NMI_b  
ADC0_SE4/  
CMP0_IN2  
TPM_  
CLKIN0  
24  
25  
ADC0_DP0  
ADC0_DM0  
ADC0_DP0/  
CMP0_IN0  
ADC0_DP0/  
CMP0_IN0  
ADC0_DM0/ ADC0_DM0/  
CMP0_IN1 CMP0_IN1  
76  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
Pin Diagrams and Pin Assignments  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
26  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
27  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT  
EXTAL  
XTAL  
XTAL_OUT  
EXTAL  
XTAL_OUT  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_EARLY_  
WARNING  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
BSM_CLK  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10  
TX_SWITCH I2C1_SCL  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
SPI1_SOUT  
SPI1_SIN  
BSM_  
FRAME  
PTC3/  
LLWU_P11  
RX_  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
SWITCH  
PTC4/  
LPUART0_  
CTS_b  
BSM_DATA  
SPI1_PCS0  
LLWU_P12/  
BLE_RF_  
ACTIVE  
41  
42  
43  
PTC5  
PTC6  
PTC7  
DISABLED  
DISABLED  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
TPM2_CH0  
BSM_CLK  
LLWU_P13/  
RF_NOT_  
ALLOWED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
I2C1_SDA  
LPUART0_  
RX  
BSM_  
FRAME  
RFOSC_EN  
PTC7/  
LLWU_P15  
SPI0_PCS2  
LPUART0_  
TX  
TPM2_CH1  
TPM0_CH3  
BSM_DATA  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
RF_STATUS  
SPI0_SCK  
I2C0_SDA  
I2C1_SCL  
LPUART0_  
RTS_b  
46  
PTC17  
DISABLED  
PTC17/  
SPI0_SOUT  
LPUART0_  
RX  
BSM_  
FRAME  
DTM_RX  
DTM_TX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
47  
48  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC18/  
LLWU_P2  
SPI0_SIN  
I2C1_SDA  
I2C0_SCL  
LPUART0_  
TX  
BSM_DATA  
BSM_CLK  
PTC19/  
LLWU_P3/  
SPI0_PCS0  
LPUART0_  
CTS_b  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
77  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
LQF  
N
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
RF_EARLY_  
WARNING  
7.4 KW35Z Pinouts  
KW35Z device pinouts are shown in the figures below.  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
PTA1  
1
2
PTA2  
3
49  
53  
57  
61  
50  
54  
58  
62  
51  
55  
59  
63  
52  
56  
60  
64  
ANT  
PTA16  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
DCDC_CFG  
VDCDC_IN  
DCDC_LP  
DCDC_LN  
XTAL_OUT  
VDDA  
8
9
VREFH/VREF_OUT  
VREFL/VSSA  
10  
11  
12  
ADC0_DM0  
*pin 49 - 64 are ground  
Figure 21. 48-pin LQFN pinout diagram  
78  
NXP Semiconductors  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
Pin Diagrams and Pin Assignments  
7.5 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the chapter of the module. They also briefly describe the signal function and  
direction.  
7.5.1 Core Modules  
This section contains tables describing the core module signal descriptions.  
Table 47. SWD Module Signal Descriptions  
SoC Signal Name  
SWD_DIO  
Module Signal Name  
SWD_DIO  
Description  
I/O  
Serial Wire Debug Data  
Input/Output1  
Serial Wire Clock2  
I/O  
I
SWD_CLK  
SWD_CLK  
1. Pulled up internally by default  
2. Pulled down internally by default  
7.5.2 Radio Modules  
This section contains tables describing the radio signals.  
Table 48. Radio Module Signal Descriptions  
Module Signal Name  
ANT  
Pin Direction  
Pin Name  
Pin Description  
O
O
ANT  
Antenna  
BLE_RF_ACTIVE  
BLE_RF_ACTIVE  
An output which is asserted prior to any Radio  
event and remains asserted for the duration of the  
event.  
BSM_CLK  
O
BSM_CLK  
Bit Streaming Mode (BSM) clock signal. 1 MHz bit  
rate clock. BSM_DATA and BSM_FRAME are  
synchronized to BSM_CLK. External device should  
capture BSM_FRAME and BSM_DATA on rising  
edge of BSM_CLK.  
BSM_DATA  
O
O
BSM_DATA  
Serial Bluetooth LE packet bit stream, LSB-first.  
Valid on rising edge of BSM_CLK.  
BSM_FRAME  
BSM_FRAME  
Framing signal to indicate the start of reception.  
Active high.  
DTM_RX  
DTM_TX  
GANT  
I
DTM_RX  
DTM_TX  
GANT  
Direct Test Mode Receive  
Direct Test Mode Transmit  
Antenna ground  
O
I
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
79  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 48. Radio Module Signal Descriptions (continued)  
Module Signal Name  
Pin Direction  
Pin Name  
RF_STATUS  
Pin Description  
RF_STATUS  
O
O
An output which indicates when the Radio is in an  
Rx or Tx event; software can also control this  
signal directly.  
RF_PRIORITY  
RF_PRIORITY  
An output which indicates to the external WiFi  
device that the Radio event is a high priority and it  
needs access to the 2.4 GHz antenna.  
RF_EARLY_WARNING O  
RF_EARLY_WARNING Bluetooth LE LL generated signal which can be  
used to wake an external sensor to make a  
measurement before a Bluetooth LE event.  
RF_NOT_ALLOWED  
RF_TX_CONF  
I
I
RF_NOT_ALLOWED  
RF_TX_CONF  
External signal which causes the internal Radio to  
cease radio activity.  
Signal from an external Radio which indicates the  
availability of the 2.4 GHz antenna to the internal  
Radio.  
NOTE: This is a GPIO, not a dedicated PIN.  
RX_SWITCH  
TX_SWITCH  
O
O
RX_SWITCH  
TX_SWITCH  
Front End Module receive mode signal.  
Front End Module transmit mode signal.  
Table 49. Radio Module Miscellaneous Pin Descriptions  
Pin Name  
Pad Direction  
Pin Name  
Pin Description  
RF_INT_OSC_EN  
I
RF_RFOSC_EN  
External request to turn on the Radio's internal RF  
oscillator.  
RF_EXT_OSC_EN  
O
RF_EXT_OSC_EN  
Internal request to turn on an External oscillator for  
use by the internal Radio. The request can also be  
from the SoC if it is using the RF oscillator as its  
clock.  
7.5.3 System Modules  
This section contains tables describing the system signals.  
Table 50. System Module Signal Descriptions  
SoC Signal Name  
NMI_b  
Module Signal Name  
Description  
Non-maskable interrupt  
Reset bidirectional signal  
Power supply  
I/O  
I
RESET_b  
VDD_[1:0]  
Ground  
I/O  
VDD  
I
I
I
I
VSS  
Ground  
VDD_RF[3:1]  
VDCDC_IN  
VDD_RF  
VDCDC_IN  
Radio power supply  
VDCDC_IN  
Table continues on the next page...  
80  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 50. System Module Signal Descriptions (continued)  
SoC Signal Name  
VDD_1P8OUT  
Module Signal Name  
VDD_1P8  
Description  
I/O  
DC-DC 1.8 V Regulated  
Output / Input in bypass  
I/O  
I/O  
VDD_1P5OUT_PMCIN  
VDD_1P5/VDD_PMC  
DC-DC 1.5 V Regulated  
Output / PMC Input in bypass  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DCDC_LN  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DCDC_LN  
DC-DC enable switch  
I
I
DC-DC switch mode select  
DC-DC inductor input positive I/O  
DC-DC inductor input  
negative  
I/O  
DCDC_GND  
DCDC_GND  
DC-DC ground  
I
Table 51. LLWU Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
LLWU_P[15:0]  
Description  
Wake-up inputs  
I/O  
LLWU_P[15:0]  
I
7.5.4 Clock Modules  
This section contains tables for Clock signal descriptions.  
Table 52. Clock Module Signal Descriptions  
SoC Signal Name  
EXTAL  
Module Signal Name  
EXTAL  
Description  
I/O  
26 MHz/32 MHz External  
clock/Oscillator input  
I
XTAL  
XTAL  
26 MHz/32 MHz Oscillator  
input  
I
XTAL_OUT  
XTAL_OUT_EN  
EXTAL32K  
XTAL_OUT  
XTAL_OUT_ENABLE  
EXTAL32K  
26 MHz/32 MHz Clock  
output  
O
I
26 MHz/32 MHz Clock  
output enable for XTAL_OUT  
32 kHz External clock/  
Oscillator input  
I
XTAL32K  
CLKOUT  
XTAL32K  
CLKOUT  
32 kHz Oscillator input  
Internal clocks monitor  
I
O
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
81  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.5.5 Analog Modules  
This section contains tables for Analog signal descriptions.  
Table 53. ADC0 Signal Descriptions  
SoC Signal Name  
ADC0_DM0  
Module Signal Name  
DADM0  
Description  
I/O  
ADC Channel 0 Differential  
Input Negative  
I
I
ADC0_DP0  
ADC0_SE[5:1]  
VREFH  
DADP0  
AD[5:1]  
VREFSH  
ADC Channel 0 Differential  
Input Positive  
ADC Channel 0 Single-ended I  
Input n  
Voltage Reference Select  
High  
I
VDDA  
VSSA  
VDDA  
VSSA  
Analog Power Supply  
Analog Ground  
I
I
Table 54. CMP0 Signal Descriptions  
SoC Signal Name  
Module Signal Name  
IN[5:0]  
CMP0  
Description  
Analog voltage inputs  
Comparator output  
I/O  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
I
O
Table 55. VREF Signal Descriptions  
SoC Signal Name  
VREF_OUT  
Module Signal Name  
VREF_OUT  
Description  
Internally generated voltage  
reference output  
O
7.5.6 Timer Modules  
This section contains tables describing timer module signals.  
Table 56. TPM0 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[3:0]  
Description  
External clock  
TPM channel  
I/O  
I
TPM0_CH[3:0]  
I/O  
82  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 57. TPM1 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
I/O  
I/O  
I
I/O  
Table 58. TPM2 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM2_CH[1:0]  
I
I/O  
Table 59. LPTMR0 Module Signal Descriptions  
SoC Signal Name  
LPTMR0_ALT[2:1]  
Module Signal Name  
Description  
I/O  
I/O  
LPTMR0_ALT[2:1]  
Pulse counter input pin  
I
Table 60. RTC Module Signal Descriptions  
SoC Signal Name  
RTC_CLKOUT  
Module Signal Name  
RTC_CLKOUT  
Description  
1 Hz square-wave output  
O
7.5.7 Communication Interfaces  
This section contains tables for the signal descriptions for the communication  
modules.  
Table 61. SPI0 Module Signal Descriptions  
SoC Signal Name  
SPI0_PCS0  
Module Signal Name  
PCS0/SS  
Description  
Chip Select/Slave Select  
Chip Select  
I/O  
I/O  
O
SPI0_PCS[2:1]  
SPI0_SCK  
PCS[2:1]  
SCK  
Serial Clock  
I/O  
I
SPI0_SIN  
SIN  
Data In  
SPI0_SOUT  
SOUT  
Data Out  
O
Table 62. SPI1 Module Signal Descriptions  
SoC Signal Name  
SPI1_PCS0  
Module Signal Name  
SPI1_PCS0  
Description  
I/O  
Chip Select/Slave Select  
I/O  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
83  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 62. SPI1 Module Signal Descriptions (continued)  
SoC Signal Name  
SPI1_SCK  
Module Signal Name  
SCK  
Description  
Serial Clock  
I/O  
I/O  
I
SPI1_SIN  
SIN  
Data In  
SPI1_SOUT  
SOUT  
Data Out  
O
Table 63. I2C0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I/O  
I2C0_SCL  
I2C0_SDA  
I/O  
I/O  
Table 64. I2C1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I/O  
I/O  
I/O  
I2C1_SCL  
I2C1_SDA  
I/O  
I/O  
Table 65. CAN0 Signal Descriptions (KW36 only)  
SoC Signal Name  
Module Signal Name  
CAN RX  
CAN TX  
Description  
CAN Receive Pin  
CAN Transmit Pin  
CAN0_RX  
CAN0_TX  
I
O
Table 66. LPUART0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
LPUART0_CTS_b  
LPUART0_RTS_b  
LPUART0_RX  
I
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
O
I
Receive Data  
Transmit Data1  
LPUART0_TX  
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
Table 67. LPUART1 Module Signal Descriptions (KW36 only)  
SoC Signal Name  
LPUART1_CTS_b  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
I/O  
I
LPUART1_RTS_b  
LPUART1_RX  
LPUART1_TX  
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
I/O  
84  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Package Information  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
7.5.8 Human-Machine Interfaces(HMI)  
This section contains tables describing the HMI signals.  
Table 68. GPIO Module Signal Descriptions  
SoC Signal Name  
PTA[19:16][2:0]  
Module Signal Name  
Description  
I/O  
PORTA19-16, 2-0  
General Purpose Input/  
Output  
I/O  
I/O  
I/O  
PTB[18:16][3:0]  
PTC[19:16][7:1]  
PORTB18-16, 3-0  
PORTC19-16, 7-1  
General Purpose Input/  
Output  
General Purpose Input/  
Output  
8 Package Information  
8.1 Obtaining package dimensions  
Package dimensions are available in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
document number of the drawing:  
Table 69. Packaging Dimensions  
If you want the drawing for this package  
40-pin "Wettable" HVQFN (6x6)  
Then use this document number  
98ASA01025D  
98ASA00694D  
48-pin LQFN (7x7)  
9 Part identification  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
85  
NXP Semiconductors  
Part identification  
9.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
9.2 Format  
Part numbers for this device have the following format:  
Q KW## A FFF R T PP CC N  
9.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 70. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KW##  
Kinetis Wireless family  
• KW35  
• KW36  
A
Key attribute  
• Z = Industrial Qualification  
• 512 = 512 KB  
FFF  
T
Program flash memory size  
Temperature range (°C)  
• V = –40 to 105  
• C = –40 to 85  
PP  
Package identifier  
• HT = 48 LQFN (7 mm x 7 mm)  
• FP = 40 "Wettable" HVQFN (6 mm x 6 mm)  
CC  
N
Maximum CPU frequency (MHz)  
Packaging type  
• 4 = 48 MHz  
• (Blank) = Tray  
• R = Tape and reel  
9.4 Example  
This is an example part number:  
MKW35Z512VHT4  
86  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Revision History  
10 Revision History  
Table 71. Revision History  
Rev. No.  
Date  
Substantial Changes  
Rev 8  
05/2020  
• Updated Tx output power to 5 dBm from 3.5 dBm throughout.Also preceded 5 dBM with a  
plus "+" sign.  
• Replaced VDD_XTAL with VDD_RF3.  
• Appended the second row 'Supply current Rx On with DC-DC converter enable' with the  
following text: VDD_1P5_buck=1.5 V in Receiver Feature Summary.  
• In Top level Transmitter Specifications - Table 5 :  
• Appended the rows for supply current Tx On with PRF and DC-DC converter enabled  
for 0 dBM with VDD_1P5_buck=1.5 V.  
• Added rows related to supply current Tx On with PRF = +3.5 dBm and 5dBm along  
with associated footnotes.  
• Updated symbol of Output RF Frequency to fRFout from fin.  
• Added row for maximum RF Output Power; LDO-HF bumped along with an  
associated footnote.  
• Added Figure 4.  
• Added Table 7. Also modified title of Table 6.  
• Added VDD_1P5 specification in Voltage and current operating requirements.  
• Added VPOR_VDD_1P5 specification in LVD and POR operating requirements  
• Added VOH performance for normal drive pad at 1.71 V ≤ VDD ≤ 2.7 V, IOH = –1 mA in  
Voltage and current operating behaviors.  
• Added Table 17. Also updated title of Table 16.  
• Updated VCDM ratings in ESD handling ratings.  
• Added VDD_1P5 symbol to "Bypass Mode Supply Voltage (RF and Analog)" in Table 41.  
• In Table 42 :  
• Updated specifications of DC-DC Converter Output Power. Added conditions,  
VDCDC_IN above 2.7 V and below 2.7 V.  
• Updated specifications of 1.8 V Output Current.  
• Updated minimum value to 1.45 V in "1.5 V Voltage Output" for Pout<=+3.5 dBM.  
Updated the corresponding footnote with the correct value of 1.45 V.  
• Added a separate row for "1.5 V Voltage Output" for Pout=+5 dBM along with a  
footnote.  
• Updated maximum value of 1.5 V Output Current to 45.  
Rev 7  
09/2019  
• Changed 40-pin "Wettable" QFN to 40-pin "Wettable" HVQFN throughout.  
• Applied new NXP Brand Guidelines for Bluetooth Low Energy. Removed references of  
BLE and replaced with Bluetooth LE.  
• Added "Top Line Marking" column to the Orderable parts details table.  
• Removed "Galois counter mode (AES-GCM)" and "DES modes" features of LTC, and  
flash access control feature from Security Features.  
• Removed "Logic Input Voltage Low/High" rows from Table 2.  
• Added the following footnote in Table 6 : "TX continuous wave power output at the RF  
pins with the recommended matching components mounted on PCB.".  
• Removed the following footnote from Table 13 : "Supported through the connectivity  
software in its pre-defined Deep Sleep Modes.".  
• Added the following footnote to Table 14 : "The device was configured in buck mode auto-  
start to perform the measurements. The DCDC_IN was powered with 3.0 V.  
VDD_1P8OUT was configured to output 1.8 V and VDD_1P5OUT_PMCIN was configured  
to output 1.5 V."  
• Updated Typical value of IDD_RUN at 70 °C to 5.92 in Table 14.  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
87  
NXP Semiconductors  
Revision History  
Table 71. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added the following footnote to VLPS, LLSx and VLLSx modes in Table 14 : "DCDC  
configured in pulsed mode.".  
• Replaced standard JESD51-2 with JESD51-2A in the footnotes in Thermal attributes.  
• Corrected name of vec_xtal32 to vec_extal32 in 32 kHz Oscillator Frequency Specifications.  
• Removed "Flash timing specifications – program and erase" and "Flash high voltage  
current behaviors" tables.  
• Added DCDC internal oscillator row in Table 41.  
• Updated Table 42 as follows:  
• In Switching Frequency row, updated the Typical value to DCDC reference  
frequency divided by 16 and added the following footnote to it: "DCDC reference  
frequency is derived from the RF oscillator or the DCDC internal oscillator".  
• Corrected maximum value of VDD_1P8 output in the footnote 6, in Table 42. DC-DC  
Converter Specifications, from 3 V to 3.5 V.  
• Updated minimum and maximum values of "1.5V Output Voltage". Also specified the  
condition as "Consumed by radio".  
• Added VDD_1P8 ripple and VDD_1P5 ripple rows.  
• Updated introductory text beginning "The Port Control and Interrupt Module is used to  
select the functionality for...." in KW36Z Signal Multiplexing and Pin Assignments. Same  
update done for KW35Z as well.  
• Updated "DEFAULT" column to correct "DISABLED" status of PTA19, PTB1/2/3 pin  
names in KW36/35 pinouts.  
• Corrected location of ground pins in 48-pin LQFN pinout diagram - Figure 20.  
• Removed silicon revision (R) field from Table 68. Part number fields descriptions.  
Rev 6  
09/2018  
• Changed ARM to Arm and applied registered trademark to Cortex on first instance.  
• Updated Related Resources table for Web release.  
• Added space between value and unit throughout.  
• Removed SPI Clock Rate row from Radio Operating Conditions.  
• Added figure title to Figure 3 in the topic Transmit and PLL Feature Summary.  
• Updated max values of IDD_STOP, IDD_LLS3/LLS2, IDD_VLLS0 (POR PO = ) in Table  
13  
• Updated Table 25 and Table 26.  
• Footnote 3 - "Write endurance represents the number of writes......" was added to Table  
28 - NVM reliability specifications. It was missed out in the last release Rev 5.  
• Backpage was also updated.  
Rev 5  
07/2018  
• Updated title of the document to 'MKW36Z/35Z Data Sheet' from 'MKW35Z/36Z Data  
Sheet'.  
• Updated SoC name KW35A with KW36A/35A throughout.  
• Replaced QFN with "Wettable" QFN throughout  
• Added package drawings on front page and updated features under Multi-Standard Radio  
section as follows: Modulation index: added 1.0 to the list.  
• Updated Typical Rx Current and Typical Tx current values to 6.3 mA and 5.7 mA  
respectively.  
• Updated Receiver Sensitivity to –99 from –100 dBm in Radio features. Also added support  
of 1 Mbps PHY to BLE link Layer hardware.  
• Updated Low Power Mode (VLLS0) Current value to 258 nA from 182 nA.  
• Added "Industrial Qualification" under Operating Characteristics on front page feature list.  
• Replaced column name "Tier" with "Qualification" in this table.  
• Updated Introduction section.  
• Removed Radio version number "V2.1" from Block Diagram.  
• Updated Radio features, Microcontroller features, and System features.  
• Appended "(Zero IF)" to Direct Conversion Receiver in Transceiver Description.  
• Edited Key Specifications.  
Table continues on the next page...  
88  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
Revision History  
Table 71. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Updated typical and minimum values in Table 3. Also updated footnote 7 to "BLE adjacent  
and alternate selectivity performance is measured with modulated interference signals.".  
• In Table 4 :  
• updated and added receiver specifications with GFSK modulations, and  
• updated footnote as follows: Selectivity measured with an unmodulated blocker  
except for GFSK BT=0.5, h=0.5 1mbps and GFSK BT=0.5, h=0.32 1mbps. The  
desired signal is set at –85 dBm.  
.
• Updated typical and maximum values in Table 5. Also updated footnote for TXH2 and  
TXH3 symbols as follows: "Harmonic Levels based on recommended 2 component match.  
Transmit harmonic levels depend on the quality of matching components. Additional  
harmonic margin using a 3rd matching component (1x shunt capacitor) is possible."  
• Updated typical and maximum values in Table 13 and Table 14.  
• Updated typical values in Table 16. Also added specifications of STOP and RUN modes of  
radio state Tx (at +3.5 dBm).  
• Updated 48-pin LQFN and 40-pin QFN values in Thermal attributes table. Removed  
thermal metrics and kept thermal attributes RθJA and ΨJT. Also updated notes and added  
information about how to use the thermal characterization parameter, ΨJT.  
• Added following text in Reference Oscillator Specification : "The table below shows the  
recommended crystal specifications. Note that these are recommendations.....". Also  
updated 32M/26M typical values of Oscillator Startup Time to 500 μs.  
• Updated typical and maximum values in Table 1  
• Updated minimum, typical and maximum value of Temp sensor slope in Table 30  
• Corrected spec name of Buck mode in DC-DC configuration to VDCDC_IN from VDDDCDC_IN  
throughout.  
• In Table 42,  
• updated footnote example corresponding to '1.8V Output Voltage',  
• updated maximum value in '1.8V Output Voltage' from "min(VDCDC_IN_buck, 3)" to  
"min(VDCDC_IN_buck, 3.5)", and  
• added the following information to the footnote corresponding to '1.5V Output  
Voltage': "VDD_1P5 must not be programmed higher than VDD_1P8."  
• Added VIO_DCDC row in Voltage and current operating ratings.  
• Removed 40-pin "Wettable" QFN pinout diagram and signal names from KW35Z Signal  
Multiplexing and Pin Assignments. Also updated signal name at pin 17 and pin 19 of 40  
"Wettable" QFN and 48 LQFN in ALT1 functionality to PTB3/ERCLK32K in KW36A Signal  
Multiplexing and Pin Assignments and KW35Z Signal Multiplexing and Pin Assignments.  
Rev 4  
10/2017  
• BLE version 4.2 updated to 5.0.  
• Updated maximum value of voltage range to 3.6 V.  
• Minimum voltage range updated to 1.71 V.  
• Updated Generic FSK modulation BT and receiver sensitivity from –100 dBm to –99 dBm.  
• Added support of up to 26 devices by Whitelist and 8 private resolvable addresses in  
hardware in the section Radio features.  
• Updated number of GPIO digital pins in the 48-pin package to 25 in Peripheral features.  
• Updated note text in Radio operating conditions as follows: "The recommended crystal  
accuracy is 40 ppm including initial accuracy, mechanical, temperature and aging  
factors."  
• Updated maximum values in Power mode transition operating behaviors.  
• Updated Typical values in Table 13 and Table 14. Also added the following note to the  
tables for Run mode: "Radio is off".  
• Updated Typical values in Table 16 as TBDs.  
• Minor updates in introductory text of Reference Oscillator Specification section. Also  
updated typical value of TOSC to 680 μs in .  
Table continues on the next page...  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
89  
NXP Semiconductors  
Revision History  
Table 71. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added 32 kHz Oscillator Frequency Specifications section.  
• Updated Table 42 section.  
• Added the following parameters: Switching Frequency, Half FET Threshold, Double  
FET Threshold, DC-DC Conversion Efficiency, DCDC Settling Time for increasing  
voltage and DCDC Settling Time for decreasing voltage.  
• Updated Typ. value of the 'DCDC Turn on Time' parameter and added a footnote.  
Rev 3  
Rev 2  
06/2017  
03/2017  
Updated Typical values in Table 13 and Table 14.  
• Modified structure of the document to include orderable part numbers and Related  
Resources table after the features list.  
• Specified all supported part numbers on the front page.  
• Specified the baudrate supported by FlexCAN in the features list.  
• Removed support of DCDC Boost mode.  
• Changed RSSI Range maximum value to 5 dBm in Table 3 and added the following  
footnote: "With RSSI_CTRL_0.RSSI_ADJ field calibrated to account for antenna to RF  
input losses.".  
• Added Table 6 to show mapping relationship between TX_POWER and DBM. Also added  
the corresponding graph.  
• Added DCDC Inductor specifications in Table 41.  
• Updated Table 42 :  
• Removed repetitive fields from the table.  
• Specified Typ. value of "DCDC Transition Operating Behavior" as 50 μs.  
• Updated footnote 3 as follows: "In Buck mode, the maximum VDD_1P8 output is the  
minimum of either VDCDC_IN_BUCK minus 50 mV or 3 V. For example, if  
VDCDC_IN = 1.85 V, maximum VDD_1P8 is 1.8 V. If VDCDC_IN = 4.2 V, maximum  
VDD_1P8 is 3 V".  
• Replaced Laminate QFN with LQFN throughout.  
• Added radio signals in Table 48.  
• Added document numbers of the supported package drawings in Table 69.  
• Added Part identification section.  
Rev 1  
01/2017  
• Updated maximum supply voltage from 4.2 to 4.25 V.  
• Corrected MBAN Channel numbering in Channel Plan for Bluetooth Low Energy.  
• Corrected "Radio" description for VLLS1 and VLLS0 power modes in Table 8.  
• Updated Section 9 Pin Diagrams and Pin Assignments.  
• Corrected pin name from VDD_1P45OUT_PMCIN to VDD_1P5OUT_PMCIN  
• Added ground pads in the pin diagrams  
• Added the following note in Diagram: Typical IDD_RUN operating behavior : "The results  
in the following graphs are obtained using the device in Bypass mode."  
• Added TOSC row in , Reference Crystal Specification.  
• Added DCDC Transition Operating Behavior and DCDC turn on Time in Table 42, DC-DC  
Converter Specifications.  
• Added the following note in Table 48 for the RF_TX_CONF pin: "This is a GPIO, not a  
dedicated PIN."  
Rev 0  
11/2016  
Initial Internal Release  
90  
MKW36Z/35Z Data Sheet, Rev. 8, 05/2020  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,  
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,  
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony,  
VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP  
B.V. All other product or service names are the property of their respective owners. AMBA, Arm,  
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,  
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,  
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and  
trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its  
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org.  
© 2016-2020 NXP B.V.  
Document Number MKW36Z512  
Revision 8, 05/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY