MKW37Z512VFT4 [NXP]

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller;
MKW37Z512VFT4
型号: MKW37Z512VFT4
厂家: NXP    NXP
描述:

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller

文件: 总95页 (文件大小:1140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NXP Semiconductors  
MKW39A512  
Data Sheet: Technical Data  
Rev. 7, 03/2020  
MKW39/38/37 Data Sheet  
MKW39A512VFT4  
An ultra low-power, highly integrated Bluetooth® Low  
Energy 5.0 wireless microcontroller  
MKW38A512VFT4  
MKW38Z512VFT4  
MKW37A512VFT4  
MKW37Z512VFT4  
48 "Wettable" HVQFN  
7x7 mm Pitch 0.5 mm  
Multi-Standard Radio  
System peripherals  
• 2.4 GHz Bluetooth Low Energy (Bluetooth LE) version  
5.0 compliant supporting up to 8 simultaneous  
hardware connections and all optional features  
including:  
• Nine MCU low-power modes to provide power  
optimization based on application requirements  
• DC-DC Converter supporting Buck and Bypass  
operating modes  
• High speed (2M PHY)  
• Long range  
• Advertising Extension  
• High duty cycle non-connectable advertising  
• Channel selection algorithm #2  
• Direct Memory Access (DMA) controller  
• Computer Operating Properly (COP) watchdog  
• Serial Wire Debug (SWD) Interface and Micro Trace  
buffer  
• Bit Manipulation Engine (BME)  
• Typical Bluetooth LE Receiver Sensitivity  
• Bluetooth LE 2 Mbit/s: –95.5 dBm  
• Bluetooth LE 1 Mbit/s: –98 dBm  
• Bluetooth LE LR 500 kbit/s: –101 dBm  
• Bluetooth LE LR 125 kbit/s: –105 dBm  
• Generic FSK modulation  
Timers  
• 16-bit Low-power Timer (LPTMR)  
• 3 Timer/PWM Modules(TPM): One 4 channel TPM  
and two 2 channel TPMs  
• Programmable Interrupt Timer (PIT)  
• Real-Time Clock (RTC)  
• Data Rate: 250, 500, 1000 and 2000 kbit/s  
• Modulations: GFSK BT = 0.5, MSK  
• Modulation Index: 0.32, 0.5, 0.7, and 1.0  
• Typical Receiver Sensitivity (250 kbit/s GFSK-  
BT=0.5, h=0.5) = –101 dBm  
Communication interfaces  
• 2 Serial Peripheral Interface (SPI) modules  
• 2 Inter-integrated Circuit (I2C) modules  
• Low-power UART (LPUART) module with LIN  
support (2x LPUART on KW38)  
• Carrier Modulator Timer (CMT)  
• FlexCAN module (with CAN FD support up to 3.2  
Mbit/s baudrate) on KW38  
• Programmable Transmitter Output Power: –30 dBm to  
+5 dBm  
• Low external component count for low-cost application  
• On-chip balun with single ended bidirectional RF port  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Analog Modules  
Security  
• AES-128 Hardware Accelerator (AESA)  
• 16-bit Analog-to-Digital Converter (ADC)  
• 6-bit High-Speed Analog Comparator (CMP)  
• 1.2 V Voltage Reference (VREF)  
• True Random Number Generator (TRNG)  
• Advanced flash security on Program Flash  
• 80-bit unique identification number per chip  
• 40-bit unique Media Access Control (MAC) sub-  
address  
MCU and Memories  
• 256 KB program flash memory plus 256 KB FlexNVM  
on KW39/38  
• LE Secure Connections  
• 512 KB program flash memory on KW37  
• 8 KB FlexRAM supporting EEPROM emulation on  
KW39/38  
• 8 KB program acceleration RAM on KW37  
• On-chip 64 KB SRAM  
Clocks  
• 26 and 32 MHz supported for Bluetooth LE and  
Generic FSK modes  
• 32.768 kHz Crystal Oscillator  
• Up to 48 MHz Arm® Cortex®-M0+ core  
Operating Characteristics  
Low-power Consumption  
• Voltage range: 1.71 V to 3.6 V  
• Ambient temperature range: –40 to 105 °C  
• AEC Q100 Grade 2 Automotive Qualification  
• Industrial Qualification  
• Transceiver current (DC-DC buck mode, 3.6 V supply)  
• Typical Rx current: 6.3 mA  
• Typical Tx current: 5.7 mA  
• Low-power Mode (VLLS0) Current: 266.6 nA  
Human-machine Interface (HMI)  
• General-purpose input/output (GPIO)  
KW39/38/37 Part Numbers  
256 KB P-  
512 KB Flash/256 Second LPUART  
8 KB  
Qualification  
Tier  
Device  
CAN FD  
FlexRAM Package  
EEPROM  
P-Flash  
KB  
with LIN  
FlexNVM  
MKW39A512VFT4 Auto AEC-Q100  
Grade 2  
N
Y
N
N
Y
N
Y
Y
Y
7X7 mm 48-  
pin "Wettable"  
HVQFN  
MKW38A512VFT4 Auto AEC-Q100  
Grade 2  
Y
MKW38Z512VFT4  
Industrial  
Y
N
N
Y
Y
N
Y
N
Y
N
MKW37A512VFT4 Auto AEC-Q100  
Grade 2  
MKW37Z512VFT4  
Industrial  
N
Y
N
N
N
Related Resources  
Type  
Product Selector  
Fact Sheet  
Description  
The Product Selector lets you find the right Kinetis part for your design.  
The Fact Sheet gives overview of the product key features and its uses.  
Reference Manual The Reference Manual contains a comprehensive description of the structure and function  
(operation) of a device.  
Data Sheet  
Chip Errata  
The Data Sheet includes electrical characteristics and signal connections.  
The chip mask set Errata provides additional or corrective information for a particular device mask  
set.  
Package drawing  
Package dimensions are available in package drawings.  
2
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
3
NXP Semiconductors  
Table of Contents  
1
2
Introduction........................................................................... 5  
6.4.1 Thermal operating requirements....................... 51  
6.4.2 Thermal attributes..............................................51  
6.5 Peripheral operating requirements and behaviors.........52  
6.5.1 Core modules.................................................... 52  
6.5.2 System modules................................................53  
6.5.3 Clock modules...................................................54  
6.5.4 Memories and memory interfaces..................... 57  
6.5.5 Security and integrity modules.......................... 61  
6.5.6 Analog............................................................... 61  
6.5.7 Timers................................................................68  
6.5.8 Communication interfaces................................. 68  
6.5.9 Human-machine interfaces (HMI)......................73  
6.6 DC-DC Converter Operating Requirements.................. 73  
6.7 Ratings...........................................................................75  
6.7.1 Thermal handling ratings...................................75  
6.7.2 Moisture handling ratings.................................. 75  
6.7.3 ESD handling ratings.........................................76  
6.7.4 Voltage and current operating ratings............... 76  
Pin Diagrams and Pin Assignments......................................76  
7.1 KW39/37 Signal Multiplexing and Pin Assignments...... 77  
7.2 KW38 Signal Multiplexing and Pin Assignments........... 79  
7.3 KW39/38/37 Pinouts......................................................82  
7.4 Module Signal Description Tables................................. 83  
7.4.1 Core Modules.................................................... 83  
7.4.2 Radio Modules...................................................84  
7.4.3 System Modules................................................85  
7.4.4 Clock Modules...................................................85  
7.4.5 Analog Modules.................................................86  
7.4.6 Timer Modules...................................................87  
7.4.7 Communication Interfaces.................................87  
7.4.8 Human-Machine Interfaces(HMI)...................... 89  
Package Information............................................................. 89  
8.1 Obtaining package dimensions......................................89  
Part identification...................................................................90  
9.1 Description.....................................................................90  
9.2 Format........................................................................... 90  
9.3 Fields............................................................................. 90  
9.4 Example.........................................................................91  
Feature Descriptions.............................................................6  
2.1 Block Diagram............................................................... 6  
2.2 Radio features............................................................... 8  
2.3 Microcontroller features................................................. 9  
2.4 System features.............................................................10  
2.5 Peripheral features........................................................ 12  
2.6 Security Features...........................................................17  
Transceiver Description........................................................ 18  
3.1 Transceiver Functions................................................... 18  
3.2 Key Specifications......................................................... 19  
3.3 Channel Map Frequency Plans .................................... 19  
3.3.1 Channel Plan for Bluetooth Low Energy............19  
3.3.2 Other Channel Plans ........................................ 21  
Transceiver Electrical Characteristics...................................21  
4.1 Radio operating conditions............................................ 21  
4.2 Receiver Feature Summary...........................................22  
4.3 Transmit and PLL Feature Summary.............................26  
System and Power Management..........................................31  
5.1 Power Management.......................................................31  
5.1.1 DC-DC Converter.............................................. 32  
5.2 Modes of Operation....................................................... 32  
5.2.1 Power modes.....................................................32  
KW39/38/37 Electrical Characteristics..................................35  
6.1 AC electrical characteristics...........................................35  
6.2 Nonswitching electrical specifications............................35  
6.2.1 Voltage and current operating requirements..... 35  
6.2.2 LVD and POR operating requirements..............36  
6.2.3 Voltage and current operating behaviors...........37  
6.2.4 Power mode transition operating behaviors...... 38  
6.2.5 Power consumption operating behaviors.......... 39  
6.2.6 Diagram: Typical IDD_RUN operating behavior46  
6.2.7 SoC Power Consumption.................................. 48  
6.2.8 Designing with radiated emissions in mind........49  
6.2.9 Capacitance attributes.......................................49  
6.3 Switching electrical specifications..................................49  
6.3.1 Device clock specifications................................49  
6.3.2 General switching specifications....................... 50  
6.4 Thermal specifications...................................................51  
3
4
5
7
6
8
9
10 Revision History.................................................................... 91  
4
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Introduction  
1 Introduction  
The KW39/38/37 wireless microcontrollers (MCU), which includes the KW39A,  
KW38A/Z and KW37A/Z families of devices, are highly integrated single-chip  
devices that enable Bluetooth Low Energy 5.0 and Generic FSK connectivity for  
automotive, and industrial embedded systems. To meet the stringent requirements of  
automotive applications, the KW39/38/37 is fully AEC Q100 Grade 2 Automotive  
Qualified. The target applications center on wirelessly bridging the embedded world  
with mobile devices to enhance the human interface experience, share embedded data  
between devices and the cloud and enable wireless firmware updates. Leading the  
automotive applications is the Digital Key, where a smartphone can be used by the  
owner as an alternative to the key FOB for unlocking and personalizing the driving  
experience. For a car sharing experience, the owner can provide selective, temporary  
authorization for access to the car allowing the authorized person to unlock, start, and  
operate the car using their mobile device using Bluetooth LE.  
The KW39/38/37 Wireless MCU integrates an Arm® Cortex-M0+ CPU with up to  
512 KB flash and 64 KB SRAM and a 2.4 GHz radio that supports Bluetooth LE 5.0  
and Generic FSK modulations. The Bluetooth LE radio supports up to 8 simultaneous  
connections in any master/slave combination.  
The KW38 includes an integrated FlexCAN module enabling seamless integration  
into a cars in-vehicle or an industrial CAN communication network, enabling  
communication with external control and sensor monitoring devices over Bluetooth  
LE. The FlexCAN module can support CAN’s flexible data-rate (CAN FD) protocol  
for increased bandwidth and lower latency required by many automotive applications.  
The KW39/38/37 devices can be used as a "BlackBox" modem to add Bluetooth LE  
or Generic FSK connectivity to an existing host MCU or MPU (microprocessor). The  
devices may also be used as a standalone smart wireless sensor with embedded  
application where no host controller is required.  
The RF circuit of the KW39/38/37 is optimized to require very few external  
components, achieving the smallest RF footprint possible on a printed circuit board.  
Extremely long battery life is achieved through the efficiency of code execution in the  
Cortex-M0+ CPU core and the multiple low-power operating modes of the  
KW39/38/37. For power critical applications, an integrated DC-DC converter enables  
operation from a single coin cell or Li-ion battery with a significant reduction of peak  
receive and transmit current consumption.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
5
NXP Semiconductors  
Feature Descriptions  
2 Feature Descriptions  
This section provides a simplified block diagram and highlights the KW39/38/37  
features.  
2.1 Block Diagram  
32K Osc  
32M Osc  
IRC  
MCG  
Arm Cortex M0+ Core  
4 MHz  
DMA MUX  
4ch DMA  
IRC  
32 kHz  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
FLL  
DWT  
MTB  
IOPORT  
Unified Bus  
Data stream  
AHBLite  
AHBLite  
M2A  
M3  
M0  
Crossbar-Lite Switch (AXBS)  
S3  
S2  
S0  
S1  
SIM  
ADC  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
BME  
LTC(AESA)  
Flash  
256 KB  
Radio  
FlexNVM  
256 KB  
AIPS-Lite  
TRNG  
FlexRAM  
8 KB  
IPS  
(for RSIM)  
IPS  
IPS  
VREF  
VDCDC_IN  
DCDC  
CMT  
Figure 1. KW39 Detailed Block Diagram  
32K Osc  
32M Osc  
IRC  
MCG  
Arm Cortex M0+ Core  
DMA MUX  
4 MHz  
IRC  
32 kHz  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
FLL  
DWT  
MTB  
IOPORT  
Unified Bus  
4ch DMA  
Data stream  
AHBLite  
AHBLite  
M2A  
M3  
M0  
Crossbar-Lite Switch (AXBS)  
S3  
S2  
S0  
S1  
SIM  
ADC  
FlexCAN  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART x2  
SPI x2  
BME  
LTC(AESA)  
Flash  
256 KB  
FlexNVM  
256 KB  
Radio  
AIPS-Lite  
TRNG  
FlexRAM  
8 KB  
IPS  
(for RSIM)  
IPS  
IPS  
VREF  
VDCDC_IN  
DCDC  
CMT  
Figure 2. KW38 Detailed Block Diagram  
6
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
32K Osc  
32M Osc  
IRC  
MCG  
Arm Cortex M0+ Core  
4 MHz  
DMA MUX  
4ch DMA  
IRC  
32 kHz  
Serial Wire Debug  
DAP MDM  
NVIC  
WIC  
FLL  
DWT  
MTB  
IOPORT  
Unified Bus  
Data stream  
M3  
AHBLite  
AHBLite  
M2A  
M0  
Crossbar-Lite Switch (AXBS)  
S3  
S2  
S0  
S1  
SIM  
ADC  
PIT  
I2C x2  
GPIO  
Flash  
Controller  
64 KByte  
SRAM  
SMC  
RCM  
PMC  
CMP  
TPM x3  
LPTMR  
RTC  
LPUART  
SPI x2  
BME  
LTC(AESA)  
Flash  
512 KB  
Radio  
Prg Acc RAM  
8 KB  
AIPS-Lite  
TRNG  
IPS  
(for RSIM)  
IPS  
IPS  
VREF  
VDCDC_IN  
DCDC  
CMT  
Figure 3. KW37 Detailed Block Diagram  
Table 1. List of IPs in block diagrams  
Acronym  
Definition  
Analog-to-Digital Converter  
ADC  
AESA  
AIPS  
BME  
CMP  
CMT  
DAP  
DMA  
Advanced Encryption Standard Accelerator  
Peripheral Bridge  
Bit Manipulation Engine  
Comparator  
Carrier Modulator Timer  
Debug Access Port  
Direct Memory Access  
Direct Memory Access Multiplexer  
Data Watchpoint and Trace  
Frequency-Locked Loop  
General Purpose Input/Output  
Inter-integrated Circuit  
Internal Reference Clock  
Low-Power Timer  
DMAMUX  
DWT  
FLL  
GPIO  
I2C  
IRC  
LPTMR  
LPUART  
LTC  
Low-Power UART  
LP Trusted Cryptography  
Multipurpose Clock Generator  
Miscellaneous Debug Module  
Micro Trace Buffer  
MCG  
MDM  
MTB  
NVIC  
OSC  
Nested Vectored Interrupt Controller  
Oscillator  
PIT  
Periodic Interrupt Timer  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
7
NXP Semiconductors  
Feature Descriptions  
Table 1. List of IPs in block diagrams (continued)  
Acronym  
Definition  
Power Management Control  
PMC  
PORT  
Prg Acc RAM  
RCM  
Port Control and Interrupt  
Flash Programming Acceleration RAM  
Reset Control Module  
RSIM  
RTC  
Radio System Integration Module  
Real-Time Clock  
SIM  
System Integration Module  
System Mode Controller  
Serial Peripheral Interface  
True Random Number Generator  
Voltage Reference  
SMC  
SPI  
TRNG  
VREF  
2.2 Radio features  
Operating frequencies:  
• 2.4 GHz ISM band (2400-2483.5 MHz)  
• Medical Body Area Network frequency band (MBAN) 2360-2400 MHz  
Supported standards:  
• Bluetooth Low Energy Version 5.0 compliant radio supporting all mandatory and  
optional features including:  
• Bluetooth LE 4.2 errata  
• 2 Mbit/s high-speed mode  
• Long range coded PHY (125/500 kbit/s)  
• Advertising Extensions  
• High duty cycle non-connectable advertising  
• Channel selection algorithm #2  
• Support for up to 8 simultaneous Bluetooth LE hardware connections in any  
master, slave combination  
• Bluetooth LE Application Profiles  
• Generic FSK modulation supporting data rates of 250, 500, 1000 and 2000 kbit/s  
Other features:  
• Programmable transmit output power up to +5 dBm with greater than 30 dB power  
control dynamic range  
8
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK  
modes  
• Up to 26 devices supported by whitelist in hardware  
• Up to 8 private resolvable addresses supported in hardware  
• Supports DMA capture of IQ data and phase for localization applications  
• Support for distance estimation and direction finding applications  
• Integrated on-chip balun  
• Single ended bidirectional RF port shared by transmit and receive  
• Low external component count  
• Supports transceiver range extension using external PA and/or LNA  
2.3 Microcontroller features  
Arm Cortex-M0+ CPU  
• Up to 48 MHz CPU  
• As compared to Cortex-M0, the Cortex-M0+ uses an optimized 2-stage pipeline  
microarchitecture for reduced power consumption and improved architectural  
performance (cycles per instruction)  
• Supports up to 32 interrupt request sources  
• Binary compatible instruction set architecture with the Cortex-M0 core  
• Thumb instruction set combines high code density with 32-bit performance  
• Serial Wire Debug (SWD) reduces the number of pins required for debugging  
• Micro Trace Buffer (MTB) provides lightweight program trace capabilities using  
system RAM as the destination memory  
Nested Vectored Interrupt Controller (NVIC)  
• 32 vectored interrupts, 4 programmable priority levels  
• Includes a single non-maskable interrupt  
Wake-up Interrupt Controller (WIC)  
• Supports interrupt handling when system clocking is disabled in low-power  
modes  
• Takes over and emulates the NVIC behavior when correctly primed by the NVIC  
on entry to very-deep-sleep  
• A rudimentary interrupt masking system with no prioritization logic signals for  
wake-up as soon as a non-masked interrupt is detected  
Debug Controller  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
9
NXP Semiconductors  
Feature Descriptions  
• Two-wire Serial Wire Debug (SWD) interface  
• Hardware breakpoint unit for 2 code addresses  
• Hardware watchpoint unit for 2 data items  
• Micro Trace Buffer for program tracing  
On-Chip Memory  
• Up to 512 KB Flash  
• KW39/38 contains 256 KB program flash with ECC and 256 KB FlexNVM  
enabling EEPROM emulation.  
• KW37 contains 512 KB program flash with ECC.  
• Flash implemented as two equal blocks each of 256 KB block. Code can  
execute or read from one block while the other block is being erased or  
programmed on KW37 only.  
• Firmware distribution protection. Program flash can be marked execute-only  
on a per-sector (8 KB) basis to prevent firmware contents from being read by  
third parties.  
• 64 KB SRAM  
• KW39/38 contains 8 KB FlexRAM enabling EEPROM emulation.  
• KW37 contains 8 KB program acceleration RAM.  
• Security circuitry to prevent unauthorized access to RAM and flash contents  
through the debugger  
2.4 System features  
Power Management Control Unit (PMC)  
• Programmable power saving modes  
• Available wake-up from power saving modes via internal and external sources  
• Integrated Power-on Reset (POR)  
• Integrated Low Voltage Detect (LVD) with reset (brownout) capability  
• Selectable LVD trip points  
• Programmable Low Voltage Warning (LVW) interrupt capability  
• Individual peripheral clocks can be gated off to reduce current consumption  
• Internal Buffered bandgap reference voltage  
• Factory programmed trim for bandgap and LVD  
• 1 kHz Low-power Oscillator (LPO)  
DC-DC Converters  
10  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
• Internal switched mode power supply supporting Buck and Bypass operating  
modes  
• Buck operation supports external voltage sources of 2.1 V to 3.6 V  
• When DC-DC is not used, the device supports an external voltage range of 1.5 V  
to 3.6 V (1.5 - 3.6 V on VDD_RF1, VDD_RF2, VDD_RF3 and  
VDD_1P5OUT_PMCIN pins. 1.71 - 3.6 V on VDD_0, VDD_1, and VDDA pins)  
• An external inductor is required to support the Buck mode  
• The DC-DC Converter VDD_1P8OUT current drive for external devices (MCU  
in RUN mode, Radio is enabled, other peripherals are disabled)  
• Up to 45 mA in buck mode with VDD_1P8OUT = 1.8 V  
• Up to 27 mA in buck mode with VDD_1P8OUT = 3.0 V  
Direct Memory Access (DMA) Controller  
• All data movement via dual-address transfers: read from source, write to  
destination  
• Programmable source and destination addresses and transfer size  
• Support for enhanced addressing modes  
• 4-channel implementation that performs complex data transfers with minimal  
intervention from a host processor  
• Internal data buffer, used as temporary storage to support 16- and 32-byte  
transfers  
• Connections to the crossbar switch for bus mastering the data movement  
• Transfer Control Descriptor (TCD) organized to support two-deep, nested transfer  
operations  
• 32-byte TCD stored in local memory for each channel  
• An inner data transfer loop defined by a minor byte transfer count  
• An outer data transfer loop defined by a major iteration count  
• Channel activation via one of three methods:  
• Explicit software initiation  
• Initiation via a channel-to-channel linking mechanism for continuous  
transfers  
• Peripheral-paced hardware requests, one per channel  
• Fixed-priority and round-robin channel arbitration  
• Channel completion reported via optional interrupt requests  
• One interrupt per channel, optionally asserted at completion of major iteration  
count  
• Optional error terminations per channel and logically summed together to form  
one error interrupt to the interrupt controller  
• Optional support for scatter/gather DMA processing  
• Support for complex data structures  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
11  
NXP Semiconductors  
Feature Descriptions  
DMA Channel Multiplexer (DMA MUX)  
• 4 independently selectable DMA channel routers  
• 2 periodic trigger sources available  
• Each channel router can be assigned to 1 of the peripheral DMA sources  
COP Watchdog Module  
• Independent clock source input (independent from CPU/bus clock)  
• Choice between two clock sources  
• LPO oscillator  
• Bus clock  
System Clocks  
• Both 26 MHz and 32 MHz crystal reference oscillator supported for Bluetooth LE  
and Generic FSK modes  
• MCU can derive its clock either from the crystal reference oscillator or the  
Frequency-locked Loop (FLL)1  
• 32.768 kHz crystal reference oscillator used to maintain precise Bluetooth Low  
Energy timing in low-power modes  
• Multipurpose Clock Generator (MCG)  
• Internal reference clocks — Can be used as a clock source for other on-chip  
peripherals  
• On-chip RC oscillator range of 31.25 kHz to 39.0625 kHz with 3% accuracy  
across full temperature range  
• On-chip 4 MHz oscillator with 11% accuracy across full temperature range  
• Frequency-locked Loop (FLL) controlled by internal or external reference  
• 20 MHz to 48 MHz FLL output  
Unique Identifiers  
• 80-bit Unique ID represents a unique identifier for each chip  
• 40-bit unique Media Access Control (MAC) address, which can be used to build a  
unique 48-bit Bluetooth Low Energy MAC address  
2.5 Peripheral features  
16-bit Analog-to-Digital Converter (ADC)  
• Linear successive approximation algorithm with 16-bit resolution  
• Output formatted in differential-ended 16-, 13-, 11-, and 9-bit mode  
1. Clock options can have restrictions based on the chosen SoC configuration.  
12  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
• Output formatted in single-ended 16-, 12-, 10-, and 8-bit mode  
• Single or continuous conversion  
• Configurable sample time and conversion speed/power  
• Conversion rates in 16-bit mode with no averaging up to ~500Ksamples/sec  
• Input clock selection  
• Operation in low-power modes for lower noise operation  
• Asynchronous clock source for lower noise operation  
• Selectable asynchronous hardware conversion trigger  
• Automatic compare with interrupt for less-than, or greater than, or equal to  
programmable value  
• Temperature sensor  
• Battery voltage measurement  
• Hardware average function  
• Selectable voltage reverence  
• Self-calibration mode  
High-Speed Analog Comparator (CMP)  
• 6-bit DAC programmable reference generator output  
• Up to eight selectable comparator inputs; each input can be compared with any  
input by any polarity sequence  
• Selectable interrupt on rising edge, falling edge, or either rising or falling edges of  
comparator output  
• Two performance modes:  
• Shorter propagation delay at the expense of higher power  
• Low-power, with longer propagation delay  
• Operational in all MCU power modes except VLLS0 mode  
Voltage Reference(VREF1)  
• Programmable trim register with 0.5 mV steps, automatically loaded with factory  
trimmed value upon reset  
• Programmable buffer mode selection:  
• Off  
• Bandgap enabled/standby (output buffer disabled)  
• High-power buffer mode (output buffer enabled)  
• 1.2 V output at room temperature  
• VREF_OUT output signal  
Low-power Timer (LPTMR)  
• One channel  
• Operation as timer or pulse counter  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
13  
NXP Semiconductors  
Feature Descriptions  
• Selectable clock for prescaler/glitch filter  
• 1 kHz internal LPO  
• External low-power crystal oscillator  
• Internal reference clock  
• Configurable glitch filter or prescaler  
• Interrupt generated on timer compare  
• Hardware trigger generated on timer compare  
• Functional in all power modes  
Timer/PWM (TPM)  
• TPM0: 4 channels, TPM1 and TPM2: 2 channels each  
• Selectable source clock  
• Programmable prescaler  
• 16-bit counter supporting free-running or initial/final value, and counting is up or  
up-down  
• Input capture, output compare, and edge-aligned and center-aligned PWM modes  
• Input capture and output compare modes  
• Generation of hardware triggers  
• TPM1 and TPM2: Quadrature decoder with input filters  
• Global time base mode shares single time base across multiple TPM instances  
Programmable Interrupt Timer (PIT)  
• Up to 2 interrupt timers for triggering ADC conversions  
• 32-bit counter resolution  
• Clocked by bus clock frequency  
Real-Time Clock (RTC)  
• 32-bit seconds counter with 32-bit alarm  
• Can be invalidated on detection of tamper detect  
• 16-bit prescaler with compensation  
• Register write protection  
• Hard Lock requires MCU POR to enable write access  
• Soft lock requires POR or software reset to enable write/read access  
• Capable of waking up the system from low-power modes  
Inter-Integrated Circuit (I2C)  
• Two channels  
• Compatible with I2C bus standard and SMBus Specification Version 2 features  
• Up to 400 kHz operation  
14  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
• Multi-master operation  
• Software programmable for one of 64 different serial clock frequencies  
• Programmable slave address and glitch input filter  
• Interrupt driven byte-by-byte data transfer  
• Arbitration lost interrupt with automatic mode switching from master to slave  
• Calling address identification interrupt  
• Bus busy detection broadcast and 10-bit address extension  
• Address matching causes wake-up when processor is in low-power mode  
LPUART  
• One channel (2 channels on KW38)  
• Full-duplex operation  
• Standard mark/space Non-return-to-zero (NRZ) format  
• 13-bit baud rate selection with fractional divide of 32  
• Programmable 8-bit or 9-bit data format  
• Programmable 1 or 2 stop bits  
• Separately enabled transmitter and receiver  
• Programmable transmitter output polarity  
• Programmable receive input polarity  
• 13-bit break character option  
• 11-bit break character detection option  
• Two receiver wake-up methods:  
• Idle line wake-up  
• Address mark wake-up  
• Address match feature in receiver to reduce address mark wake-up ISR overhead  
• Interrupt or DMA driven operation  
• Receiver framing error detection  
• Hardware parity generation and checking  
• Configurable oversampling ratio to support from 1/4 to 1/32 bit-time noise  
detection  
• Operation in low-power modes  
• Hardware Flow Control RTS\CTS  
• Functional in Stop/VLPS modes  
• Break detect supporting LIN  
Serial Peripheral Interface (SPI)  
• Two independent SPI channels  
• Master and slave mode  
• Full-duplex, three-wire synchronous transfers  
• Programmable transmit bit rate  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
15  
NXP Semiconductors  
Feature Descriptions  
• Double-buffered transmit and receive data registers  
• Serial clock phase and polarity options  
• Slave select output  
• Control of SPI operation during wait mode  
• Selectable MSB-first or LSB-first shifting  
• Support for both transmit and receive by DMA  
Carrier Modulator Timer (CMT)  
• Four modes of operation  
• Time; with independent control of high and low times  
• Baseband  
• Frequency shift key (FSK)  
• Direct software control of CMT_IRO signal  
• Extended space operation in time, baseband, and FSK modes  
• Selectable input clock divider  
• Interrupt on end of cycle  
• Ability to disable CMT_IRO signal and use as timer interrupt  
General Purpose Input/Output (GPIO)  
• Hysteresis and configurable pull up device on all input pins  
• Independent pin value register to read logic level on digital pin  
• All GPIO pins can generate IRQ and wake-up events  
• Configurable drive strength on some output pins  
• GPIO can be configured to function as a interrupt driven keyboard scanning matrix;  
in the 48-pin package there are a total of 25 digital pins  
FlexCAN (for KW38 only)  
• Full implementation of the CAN with Flexible Data Rate (CAN FD) protocol  
specification and CAN protocol specification, Version 2.0 B  
• Flexible Message Buffers (MBs); there are total 32 MBs of 8 bytes data length  
each, configurable as Rx or Tx, all supporting standard and extended messages  
• Programmable clock source to the CAN Protocol Interface, either peripheral clock  
or oscillator clock  
• Capability to select priority between mailboxes and Rx FIFO during matching  
process  
16  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Feature Descriptions  
• Powerful Rx FIFO ID filtering, capable of matching incoming IDs against either  
128 extended, 256 standard, or 512 partial (8 bit) IDs, with up to 32 individual  
masking capability  
• Each individual MB forms by 16, 24, 40, or 72 bytes, depending on the quantity  
of data bytes allocated for the message payload: 8, 16, 32, or 64 data bytes,  
respectively  
2.6 Security Features  
Advanced Encryption Standard Accelerator(AES-128 Accelerator)  
The Advanced Encryption Standard Accelerator (AESA) module is a standalone  
hardware coprocessor capable of accelerating the 128-bit advanced encryption  
standard (AES) cryptographic algorithms.  
The AESA engine supports the following cryptographic features.  
LTC includes the following features:  
• Cryptographic authentication  
• Message Authentication Codes (MAC)  
• Cipher-based MAC (AES-CMAC)  
• Extended cipher block chaining message authentication code (AES-  
XCBC-MAC)  
• Auto padding  
• Integrity Check Value(ICV) checking  
• Authenticated encryption algorithms  
• Counter with CBC-MAC (AES-CCM)  
• Symmetric key block ciphers  
• AES (128-bit keys)  
• Cipher modes:  
• AES-128 modes  
• Electronic Codebook (ECB)  
• Cipher Block Chaining (CBC)  
• Counter (CTR)  
• Secure scan  
True Random Number Generator (TRNG)  
True Random Number Generator (TRNG) is a hardware accelerator module that  
constitutes a high-quality entropy source.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
17  
NXP Semiconductors  
Transceiver Description  
• TRNG generates a 512-bit (4x 128-bit) entropy as needed by an entropy-consuming  
module, such as a deterministic random number generator.  
• TRNG output can be read and used by a deterministic pseudo-random number  
generator (PRNG) implemented in software.  
• TRNG-PRNG combination achieves NIST-compliant true randomness and  
cryptographic-strength random numbers using the TRNG output as the entropy  
source.  
• A fully FIPS 180 compliant solution can be realized using the TRNG together with  
a FIPS-compliant deterministic random number generator and the SoC-level  
security.  
Flash Memory Protection  
The on-chip flash memory controller enables the following useful features:  
• Program flash protection scheme prevents accidental program or erase of stored  
data.  
• Automated, built-in, program and erase algorithms with verify.  
• Read access to one program flash block is possible while programming or erasing  
data in the other program flash block.  
3 Transceiver Description  
• Direct Conversion Receiver (Zero IF)  
• Constant Envelope Transmitter  
• Low Transmit and Receive Current Consumption  
• Low bill of material (BOM) radio  
3.1 Transceiver Functions  
Receive  
The receiver architecture is Zero IF (ZIF) where the received signal after passing  
through RF front end is down-converted to a baseband signal. The signal is filtered and  
amplified before it is fed to analog-to-digital converter. The digital signal then  
decimates to a baseband clock frequency before it digitally processes, demodulates and  
passes on to packet processing/link-layer processing.  
Transmit  
18  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Transceiver Description  
The transmitter transmits GFSK/FSK modulation having power and channel selection  
adjustment per user application. After the channel of operation is determined, coarse  
and fine-tuning is executed within the Frac-N PLL to engage signal lock. After signal  
lock is established, the modulated buffered signal is routed to a multi-stage amplifier  
for transmission..  
3.2 Key Specifications  
KW39/38/37 meets or exceeds all Bluetooth Low Energy version 5.0 performance  
specifications. The key specifications for the KW39/38/37 are:  
Frequency Band:  
• ISM Band: 2400 to 2483.5 MHz  
• MBAN Band: 2360 to 2400 MHz  
Full Bluetooth Low Energy version 5.0 modulation scheme:  
• Symbol rate: Uncoded PHY (1, 2 Mbit/s), Coded PHY (125, 500 kbit/s)  
• Modulation: GFSK BT=0.5, h=0.5  
• Receiver sensitivity: –98 dBm, typical for Bluetooth LE 1 Mbit/s, –105 dBm for  
Bluetooth LE-LR 125 kbit/s; for all other modes, refer Receiver Feature  
Summary.  
• Programmable transmitter output power: –30 dBm to +5 dBm  
Generic FSK modulation scheme:  
• Symbol rate: 250, 500, 1000, and 2000 kbit/s  
• Modulation(s): GFSK (modulation index = 0.32, 0.5, 0.7, and 1.0, BT = 0.5), and  
MSK  
• Receiver Sensitivity: Mode and data rate dependent. –101 dBm typical for GFSK  
(r=250 kbit/s, BT = 0.5, h = 0.5)  
3.3 Channel Map Frequency Plans  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
19  
NXP Semiconductors  
Transceiver Description  
3.3.1 Channel Plan for Bluetooth Low Energy  
This section describes the frequency plan / channels associated with 2.4 GHz ISM and  
MBAN bands for Bluetooth Low Energy.  
2.4 GHz ISM Channel numbering:  
• Fc=2402 + k * 2 MHz, k=0,.........,39.  
MBAN Channel numbering:  
• Fc=2360 + k in MHz, for k=0,.....,39  
where k is the channel number.  
Table 2. 2.4 GHz ISM and MBAN frequency plan and channel designations  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
Channel  
Freq (MHz)  
2360  
2361  
2362  
2363  
2364  
2365  
2366  
2367  
2368  
2369  
2370  
2371  
2372  
2373  
2374  
2375  
2376  
2377  
2378  
2379  
2380  
2381  
2382  
2383  
Freq (MHz)  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2402  
2404  
2406  
2408  
2410  
2412  
2414  
2416  
2418  
2420  
2422  
2424  
2426  
2428  
2430  
0
1
0
1
28  
29  
30  
31  
32  
33  
34  
35  
36  
0
2
2
3
3
4
4
5
5
6
6
7
7
8
8
9
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
Table continues on the next page...  
20  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
Transceiver Electrical Characteristics  
Table 2. 2.4 GHz ISM and MBAN frequency plan and channel designations (continued)  
2.4 GHz ISM1  
MBAN2  
2.4GHz ISM + MBAN  
Channel  
Channel  
Freq (MHz)  
2450  
2452  
2454  
2456  
2458  
2460  
2462  
2464  
2466  
2468  
2470  
2472  
2474  
2476  
2478  
2480  
Channel  
24  
Freq (MHz)  
2384  
2385  
2386  
2387  
2388  
2389  
2390  
2391  
2392  
2393  
2394  
2395  
2396  
2397  
2398  
2399  
Freq (MHz)  
2432  
2434  
2436  
2438  
2440  
2442  
2444  
2446  
2448  
2450  
2452  
2454  
2456  
2476  
2478  
2480  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
37  
38  
39  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
1. ISM frequency of operation spans from 2400.0 MHz to 2483.5 MHz  
2. Per FCC guideline rules, Bluetooth Low Energy single mode operation is allowed in these channels.  
3.3.2 Other Channel Plans  
The RF synthesizer can be configured to use any channel frequency between 2.36 and  
2.487 GHz.  
4 Transceiver Electrical Characteristics  
4.1 Radio operating conditions  
Table 3. Radio operating conditions  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Input Frequency  
fin  
2.360  
2.480  
GHz  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
21  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 3. Radio operating conditions (continued)  
Characteristic  
Symbol  
TA  
Min  
–40  
Typ  
25  
Max  
105  
10  
Unit  
°C  
Ambient Temperature Range  
Maximum RF Input Power  
Pmax  
fref  
dBm  
Crystal Reference Oscillator Frequency  
26 MHz or 32 MHz  
1
1. The recommended crystal accuracy is 40 ppm including initial accuracy, mechanical, temperature, and aging factors.  
4.2 Receiver Feature Summary  
Table 4. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Receiver General Specifications  
Supply current power down on VDD_RFx supplies  
Ipdn  
200  
1000  
nA  
Supply current Rx On with DC-DC converter enable  
(Buck; VDCDC_IN = 3.6 V) , 2  
IRxon  
6.36  
mA  
Supply current Rx On with DC-DC converter disabled  
(Bypass) 2  
IRxon  
17.78  
mA  
Input RF Frequency  
fin  
2.360  
–101  
2.4835  
GHz  
dBm  
dBm  
dB  
GFSK Rx Sensitivity(250 kbit/s GFSK-BT=0.5, h=0.5)  
Max Rx RF Input Signal Level  
SENSGFSK  
RFin,max  
NFHG  
10  
Noise Figure for maximum gain mode @ typical  
sensitivity  
7.5  
Receiver Signal Strength Indicator Range3  
Receiver Signal Strength Indicator Resolution  
Typical RSSI variation over frequency  
Typical RSSI variation over temperature  
Narrowband RSSI accuracy5  
RSSIRange  
RSSIRes  
–100  
1
54  
2
dBm  
dB  
–2  
–54  
dB  
–2  
2
dB  
RSSIAcc  
–3  
3
dB  
Spurious Emission < 1.6 MHz offset (Measured with 100  
kHz resolution and average detector. Device transmit on  
RF channel with center frequency fc and spurious power  
measured in 1 MHz at RF frequency f), where |f-fc|< 1.6  
MHz  
dBc  
Spurious Emission > 2.5 MHz offset (Measured with 100  
kHz resolution and average detector. Device transmit on  
RF channel with center frequency fc and spurious power  
measured in 1 MHz at RF frequency f), where |f-fc|> 2.5  
MHz6  
–70  
dBc  
Bluetooth LE coded 125 kbit/s (Long Range, 8x Spreading)  
Bluetooth LE LR 125 kbit/s Sensitivity7  
SENSBLELR125  
Table continues on the next page...  
–105  
dBm  
22  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 4. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Bluetooth LE LR 125 kbit/s Co-channel Interference  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz).  
COSELBLELR125  
–2  
dB  
Adjacent/Alternate Channel Performance8  
Bluetooth LE LR 125 kbit/s Adjacent +/–1 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR125, 1  
10  
50  
55  
60  
dB  
dB  
dB  
dB  
MHz  
Bluetooth LE LR 125 kbit/s Adjacent +/–2 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR125, 2  
MHz  
Bluetooth LE LR 125 kbit/s Alternate +/–3 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR125, 3  
MHz  
Bluetooth LE LR 125 kbit/s Alternate > +/–5 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR125, 5+  
MHz  
Bluetooth LE coded 500 kbit/s (Long Range, 2x Spreading)  
Bluetooth LE LR 500 kbit/s Sensitivity7  
SENSBLELR500  
–101  
–4  
dBm  
dB  
Bluetooth LE LR 500 kbit/s Co-channel Interference  
(Wanted signal at –67 dBm, BER <0.1%. Measurement  
resolution 1 MHz).  
COSELBLELR500  
Adjacent/Alternate Channel Performance8  
Bluetooth LE LR 500 kbit/s Adjacent +/–1 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR500, 1  
9
dB  
dB  
dB  
dB  
MHz  
Bluetooth LE LR 500 kbit/s Adjacent +/–2 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR500, 2  
50  
55  
60  
MHz  
Bluetooth LE LR 500 kbit/s Alternate +/–3 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR500, 3  
MHz  
Bluetooth LE LR 500 kbit/s Alternate > +/–5 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 1 MHz.)  
SELBLELR500, 5+  
MHz  
Bluetooth LE uncoded 1 Mbit/s  
Bluetooth LE 1 Mbit/s Sensitivity7  
SENSBLE1M  
–98  
–7  
dBm  
dB  
Bluetooth LE 1 Mbit/s Co-channel Interference (Wanted  
signal at –67 dBm, BER <0.1%. Measurement resolution  
1 MHz).  
Adjacent/Alternate Channel Selectivity Performance8  
COSELBLE1M  
Bluetooth LE 1 Mbit/s Selectivity +/–1 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 1 MHz.)  
SELBLE1M, 1 MHz  
0
dB  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
23  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 4. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Bluetooth LE 1 Mbit/s Adjacent +/–2 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 1 MHz.)  
SELBLE1M, 2 MHz  
42  
dB  
Bluetooth LE 1 Mbit/s Selectivity +/–3 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 1 MHz.)  
SELBLE1M, 3 MHz  
50  
55  
dB  
dB  
Bluetooth LE 1 Mbit/s Alternate ≥ +/–5 MHz Interference SELBLE1M, 5+ MHz  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 1 MHz.)  
Intermodulation Performance  
Bluetooth LE 1 Mbit/s Intermodulation with continuous  
wave interferer at 3 MHz and modulated interferer is at  
6 MHz (Wanted signal at –67 dBm, BER<0.1%.)  
IM3-6BLE1M  
–42  
–23  
dBm  
dBm  
Bluetooth LE 1 Mbit/s Intermodulation with continuous  
wave interferer at 5 MHz and modulated interferer is at  
10 MHz (Wanted signal at –67 dBm, BER<0.1%.)  
IM5-10BLE1M  
Blocking Performance  
Bluetooth LE 1 Mbit/s Out of band blocking from 30 MHz  
to 1000 MHz and 4000 MHz to 5000 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.), 9, 10  
3
3
dBm  
dBm  
dBm  
dBm  
Bluetooth LE 1 Mbit/s Out of band blocking from 1000  
MHz to 2000 MHz and 3000 MHz to 4000 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.)  
Bluetooth LE 1 Mbit/s Out of band blocking from 2001  
MHz to 2339 MHz and 2484 MHz to 2999 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.)10  
–12  
5
Bluetooth LE 1 Mbit/s Out of band blocking from 5000  
MHz to 12750 MHz (Wanted signal at –67 dBm,  
BER<0.1%. Interferer continuous wave signal.)10  
Bluetooth LE uncoded 2 Mbit/s (High Speed)  
Bluetooth LE 2 Mbit/s Sensitivity7  
SENSBLE2M  
–95.5  
–7  
dBm  
dB  
Bluetooth LE 2 Mbit/s Co-channel Interference (Wanted  
signal at –67 dBm, BER <0.1%. Measurement resolution  
2 MHz).  
COSELBLE2M  
Adjacent/Alternate Channel Performance8  
Bluetooth LE 2 Mbit/s Adjacent +/–2 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 2 MHz.)  
SELBLE2M, 2 MHz  
3
dB  
dB  
Bluetooth LE 2 Mbit/s Alternate +/–4 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 2 MHz.)  
SELBLE2M, 4 MHz  
42  
Table continues on the next page...  
24  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 4. Top-Level Receiver Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Bluetooth LE 2 Mbit/s Selectivity +/–6 MHz Interference  
offset (Wanted signal at –67 dBm, BER <0.1%.  
Measurement resolution 2 MHz.)  
SELBLE2M, 6 MHz  
50  
dB  
Bluetooth LE 2 Mbit/s Selectivity ≥ +/–10 MHz  
Interference offset (Wanted signal at –67 dBm, BER  
<0.1%. Measurement resolution 2 MHz.)  
SELBLE2M, 10+ MHz  
55  
dB  
Intermodulation Performance  
Bluetooth LE 2 Mbit/s Intermodulation with continuous  
wave interferer at 6 MHz and modulated interferer is at  
12 MHz (Wanted signal at –67 dBm, BER<0.1%.)  
IM6-12BLE2M  
IM10-20BLE2M  
–23  
–24  
dBm  
dBm  
Bluetooth LE 2 Mbit/s Intermodulation with continuous  
wave interferer at 10 MHz and modulated interferer is  
at 20 MHz (Wanted signal at –67 dBm, BER<0.1%.)  
Blocking Performance  
Bluetooth LE 2 Mbit/s Out of band blocking from 30 MHz  
to 1000 MHz and 4000 MHz to 5000 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.)9,10  
3
–6  
–12  
5
dBm  
dBm  
dBm  
dBm  
Bluetooth LE 2 Mbit/s Out of band blocking from 1000  
MHz to 2000 MHz and 3000 MHz to 4000 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.)  
Bluetooth LE 2 Mbit/s Out of band blocking from 2001  
MHz to 2339 MHz and 2484 MHz to 2999 MHz (Wanted  
signal at –67 dBm, BER<0.1%. Interferer continuous  
wave signal.)10  
Bluetooth LE 2 Mbit/s Out of band blocking from 5000  
MHz to 12750 MHz (Wanted signal at –67 dBm,  
BER<0.1%. Interferer continuous wave signal.)10  
1. All the Rx parameters are measured at the KW39/38/37 RF pins.  
2. Transceiver power consumption.  
3. Narrow-band RSSI mode.  
4. With RSSI_CTRL_0.RSSI_ADJ field calibrated to account for antenna to RF input losses.  
5. With one point calibration over frequency and temperature.  
6. Exceptions allowed for twice the reference clock frequency(fref) multiples.  
7. Measured at 0.1% BER using 37 byte long packets in maximum gain mode and nominal conditions.  
8. Bluetooth LE adjacent and alternate selectivity performance is measured with modulated interference signals.  
9. Exceptions allowed for carrier frequency sub harmonics.  
10. Exceptions allowed for carrier frequency harmonics.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
25  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 5. Receiver Specifications with Generic FSK Modulations  
Adjacent/Alternate channel selectivity (dB)1  
Modulation  
type  
Data  
rate  
(kb/s)  
Channel  
BW (kHz) sensitivity  
(dBm)  
Typical  
Desired Interferer Interferer Interferer Interferer  
Co-  
channel  
signal  
level  
at 1ꢀ  
channel  
at 2ꢀ  
channel  
at 3ꢀ  
channel  
at 4ꢀ  
channel  
(dBm) BW offset BW offset BW offset BW offset  
GFSK BT =  
0.5, h = 0.32  
2000  
1000  
2000  
1000  
500  
2000  
1000  
4000  
2000  
1000  
500  
–90.5  
–93.5  
–94  
–67  
–67  
–67  
–67  
–85  
–85  
–85  
–85  
–85  
39  
36  
46  
44  
43  
39  
44  
47  
50  
48  
47  
56  
56  
49  
43  
53  
55  
58  
52  
50  
59  
59  
56  
46  
56  
59  
61  
54  
53  
60  
60  
57  
50  
59  
61  
64  
–9  
–8  
–7  
–7  
–6  
–6  
–6  
–5  
–4  
GFSK BT =  
0.5, h = 0.5  
–97  
–98.5  
–100  
–95  
250  
GFSK, BT =  
0.5, h = 0.7  
2000  
1000  
1000  
4000  
2000  
1600  
–97.5  
–96  
GFSK, BT =  
0.5, h = 1.0  
1. Selectivity measured with an unmodulated blocker.  
4.3 Transmit and PLL Feature Summary  
• Supports constant envelope modulation of 2.4 GHz ISM and 2.36 GHz MBAN  
frequency bands  
• Fast PLL Lock time: < 25 µs  
• Reference Frequency:  
• 26 MHz and 32 MHz crystals supported for Bluetooth LE and Generic FSK  
modes  
Table 6. Top-Level Transmitter Specifications (TA=25 °C, nominal process unless otherwise  
noted)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Transmitter General Specifications  
Supply current power down on VDD_RFx supplies  
Ipdn  
200  
5.7  
nA  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V) , 2  
ITX0dBm  
mA  
Supply current Tx On with PRF = 0 dBm and DC-DC  
converter disabled (Bypass) 2  
ITX0dBmb  
ITX3.5dBm  
ITX3.5dBmb  
16  
6.9  
19  
mA  
mA  
mA  
Supply current Tx On with PRF = +3.5 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V)2  
Supply current Tx On with PRF = +3.5 dBm and DC-DC  
converter disabled (Bypass)2  
Table continues on the next page...  
26  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Table 6. Top-Level Transmitter Specifications (TA=25 °C, nominal process unless otherwise  
noted) (continued)  
Characteristic1  
Symbol  
Min.  
Typ.  
Max.  
Unit  
Supply current Tx On with PRF = +5 dBm and DC-DC  
converter enabled (Buck; VDDDCDC_in = 3.6 V, LDO-HF  
bumped)2  
ITX5dBm  
8.0  
mA  
Supply current Tx On with PRF = +5 dBm and DC-DC  
converter disabled (Bypass, LDO-HF bumped)2  
ITX5dBmb  
21  
mA  
Output RF Frequency  
fRFout  
2.360  
+5  
2.4835  
GHz  
dBm  
dBm  
dBm  
dB  
Maximum RF Output Power; LDO-HF bumped 3  
Maximum RF Output power, nominal power supply 4  
Minimum RF Output power, nominal power supply 4  
RF Output power control range  
PRF,maxV  
PRF,maxn  
PRF,minn  
PRFCR  
+3.5  
–30  
35  
Bluetooth LE Maximum Deviation of the Center  
Frequency5  
Fcdev,BLE  
3
kHz  
Bluetooth LE Frequency Hopping Support  
YES  
–46  
Second Harmonic of Transmit Carrier Frequency (Pout  
=
TXH2  
TXH3  
dBm/MHz  
dBm/MHz  
, 6  
PRF,max  
)
Third Harmonic of Transmit Carrier Frequency (Pout  
=
–50  
6
PRF,max  
)
Bluetooth LE uncoded 1 Mbit/s / coded 125 kbit/s / coded 500 kbit/s  
Bluetooth LE 1 Mbit/s Tx Output Spectrum 20dB BW  
TXBWBLE1M  
1.0  
MHz  
kHz  
Bluetooth LE 1 Mbit/s average frequency deviation using  
a 00001111 modulation sequence  
Δf1avg,BLE1M  
250  
220  
Bluetooth LE 1 Mbit/s average frequency deviation using  
a 01010101 modulation sequence  
Δf2avg,BLE1M  
kHz  
Bluetooth LE 1 Mbit/s RMS FSK Error  
FSKerr,BLE1M  
3%  
Bluetooth LE 1 Mbit/s Adjacent Channel Transmit Power  
at 2 MHz offset, 7  
PRF2MHz,BLE1M  
–53  
–59  
dBm  
dBm  
Bluetooth LE 1 Mbit/s Adjacent Channel Transmit Power  
at >= 3 MHz offset7  
PRF3MHz,BLE1M  
Bluetooth LE uncoded 2 Mbit/s  
Bluetooth LE 2 Mbit/s Tx Output Spectrum 20dB BW  
TXBWBLE2M  
2.2  
MHz  
kHz  
Bluetooth LE 2 Mbit/s average frequency deviation using  
a 00001111 modulation sequence  
Δf1avg,BLE2M  
500  
420  
Bluetooth LE 2 Mbit/s average frequency deviation using  
a 01010101 modulation sequence  
Δf2avg,BLE2M  
kHz  
Bluetooth LE RMS FSK Error  
FSKerr,BLE2M  
4%  
Bluetooth LE 2 Mbit/s Adjacent Channel Transmit Power  
at 4 MHz offset7  
PRF2MHz,BLE2M  
–57  
–60  
dBm  
dBm  
Bluetooth LE 2 Mbit/s Adjacent Channel Transmit Power  
at >= 6 MHz offset7  
PRF3MHz,BLE2M  
1. All the Tx parameters are measured at test hardware SMA connector.  
2. Transceiver power consumption.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
27  
NXP Semiconductors  
Transceiver Electrical Characteristics  
3. Measured at KW39/38/37 RF pins, with Vdd_RFx over 1.44 V and assuming an average Tx duty cycle <=24%. For Tx  
output over +3.5 dBm, powered Vdd_RFx has to be higher than 1.44 V.  
4. Measured at the KW39/38/37 RF pins.  
5. Maximum drift of carrier frequency of the PLL during a Bluetooth LE packet with a nominal 32 MHz reference crystal.  
6. Harmonic levels based on recommended 2 component match. Transmit harmonic levels depend on the quality of  
matching components. Additional harmonic margin using a third matching component (1x shunt capacitor) is possible.  
7. Measured at Pout = +5 dBm and recommended Tx match.  
Transmit PA driver output as a function of the PA_POWER[5:0] field when measured  
at the IC pins is as follows:  
Figure 4. TX Pout (dBm) as function TX-PA Power Code at RF pins  
Table 7. Transmit Output Power as a function of PA_POWER[5:0]  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–30.15  
–24.05  
–18.06  
–14.56  
–12.08  
T = 25 °C  
–31.38  
–25.25  
–19.26  
–15.76  
–13.29  
T = 105 °C  
–32.25  
–26.09  
–20.11  
–16.61  
–14.15  
1
2
4
6
8
Table continues on the next page...  
28  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
Transceiver Electrical Characteristics  
Table 7. Transmit Output Power as a function of PA_POWER[5:0] (continued)  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–10.16  
–8.59  
–7.27  
–6.16  
–5.15  
–4.25  
–3.44  
–2.70  
–2.02  
–1.39  
–0.81  
–0.34  
0.18  
T = 25 °C  
–11.39  
–9.82  
–8.50  
–7.39  
–6.38  
–5.48  
–4.67  
–3.94  
–3.26  
–2.64  
–2.06  
–1.58  
–1.07  
–0.59  
–0.15  
0.27  
T = 105 °C  
–12.24  
–10.67  
–9.36  
–8.24  
–7.24  
–6.34  
–5.53  
–4.81  
–4.14  
–3.52  
–2.95  
–2.45  
–1.95  
–1.48  
–1.04  
–0.64  
–0.24  
0.14  
10  
12  
14  
16  
18  
20  
22  
24  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
0.66  
1.10  
1.52  
1.92  
0.65  
2.30  
1.03  
2.67  
1.39  
0.49  
2.99  
1.71  
0.80  
3.32  
2.04  
1.14  
3.63  
2.35  
1.44  
3.92  
2.64  
1.74  
4.19  
2.91  
2.00  
4.44  
3.17  
2.27  
4.68  
3.41  
2.51  
4.90  
3.64  
2.74  
1. Tx continuous wave power output at the RF pins with the recommended matching components mounted on PCB.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
29  
NXP Semiconductors  
Transceiver Electrical Characteristics  
Figure 5. TX Pout (dBm) as function TX-PA Power Code at RF pins (LDO-HF bumped)  
Table 8. Transmit Output Power as a function of PA_POWER[5:0] at elevated PA supply  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–28.48  
–22.37  
–16.39  
–12.88  
–10.38  
–8.46  
T = 25 °C  
–29.55  
–23.43  
–17.45  
–13.94  
–11.45  
–9.53  
T = 105 °C  
–30.38  
–24.23  
–18.26  
–14.75  
–12.27  
–10.36  
–8.79  
1
2
4
6
8
10  
12  
14  
16  
18  
20  
22  
24  
–6.89  
–7.96  
–5.56  
–6.63  
–7.47  
–4.43  
–5.50  
–6.34  
–3.41  
–4.49  
–5.33  
–2.51  
–3.59  
–4.43  
–1.69  
–2.77  
–3.62  
–0.94  
–2.03  
–2.89  
Table continues on the next page...  
30  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
System and Power Management  
Table 8. Transmit Output Power as a function of PA_POWER[5:0] at elevated PA supply  
(continued)  
TX Pout (dBm)1  
PA_POWER[5:0]  
T = –40 °C  
–0.26  
0.36  
0.96  
1.44  
1.95  
2.42  
2.88  
3.32  
3.74  
4.14  
4.50  
4.83  
5.16  
5.46  
5.75  
6.02  
6.26  
6.49  
6.71  
T = 25 °C  
–1.35  
–0.72  
–0.14  
0.34  
T = 105 °C  
–2.22  
–1.60  
–1.03  
–0.54  
–0.04  
0.44  
26  
28  
30  
32  
34  
36  
38  
40  
42  
44  
46  
48  
50  
52  
54  
56  
58  
60  
62  
0.85  
1.32  
1.77  
0.88  
2.20  
1.31  
2.62  
1.71  
3.01  
2.09  
3.38  
2.45  
3.71  
2.78  
4.04  
3.11  
4.35  
3.41  
4.64  
3.70  
4.91  
3.96  
5.16  
4.22  
5.40  
4.45  
5.62  
4.67  
1. Tx continuous wave power output at the RF pins with the recommended matching components mounted on PCB.  
5 System and Power Management  
5.1 Power Management  
The KW39/38/37 includes internal power management features that can be used to  
control the power usage. The power management of the KW39/38/37 includes Power  
Management Controller (PMC) and a DC-DC converter which can operate in a buck  
or bypass configuration. The PMC is designed such that the RF radio remains in state-  
retention while the core is in various stop modes. It makes sure that the device can  
stay in low current consumption mode while the RF radio can wake-up quick enough  
for communication.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
31  
NXP Semiconductors  
System and Power Management  
5.1.1 DC-DC Converter  
The features of the DC-DC converter include the following:  
• Single inductor, multiple outputs.  
• Buck mode (pin selectable; CFG=VDCDC_IN).  
• Continuous or pulsed operation (hardware/software configurable).  
• Power switch input to allow external control of power up, and to select DC-DC  
bypass mode in which all the SoC power supplies (see Table 4) are externally  
provided.  
• Output signal to indicate power stable. Purpose is for the rest of the chip to be used  
as a POR.  
• Scaled battery output voltage suitable for SAR ADC utilization.  
• Internal oscillator for support when the reference oscillator is not present.  
5.2 Modes of Operation  
The Arm Cortex-M0+ core in the KW39/38/37 has three primary modes of operation:  
Run, Wait, and Stop modes. For each run mode, there is a corresponding wait and stop  
mode. Wait modes are similar to Arm sleep modes. Stop modes are similar to Arm deep  
sleep modes. The very low-power run (VLPR) operation mode can drastically reduce  
runtime power when the maximum bus frequency is not required to handle the  
application needs.  
The WFI instruction invokes both wait and stop modes. The primary modes are  
augmented in a number of ways to provide lower power based on application needs.  
5.2.1 Power modes  
The power management controller (PMC) provides multiple power options to allow the  
user to optimize power consumption for the level of functionality needed.  
Depending on the stop requirements of the user application, various stop modes are  
available that provide state retention, partial power down, or full power down of certain  
logic and/or memory. I/O states are held in all modes of operation. The following table  
compares the various power modes available.  
32  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
System and Power Management  
For each run mode, there is a corresponding wait and stop mode. Wait modes are  
similar to Arm sleep modes. Stop modes (VLPS, STOP) are similar to Arm sleep deep  
mode. The very-low-power run (VLPR) operating mode can drastically reduce  
runtime power when the maximum bus frequency is not required to handle the  
application needs.  
The three primary modes of operation are run, wait, and stop. The WFI instruction  
invokes either wait or stop depending on the SLEEPDEEP bit in Cortex-M0+ System  
Control Register. The primary modes are augmented in a number of ways to provide  
lower power based on application needs.  
Table 9. Power modes (At 25 deg C)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
Normal Run (all  
Allows maximum performance of chip.  
Radio can be active  
peripherals clock off)  
Normal Wait - via  
WFI  
Allows peripherals to function, while allowing CPU  
to go to sleep reducing power.  
Interrupt  
Interrupt  
Normal Stop - via  
WFI  
Places chip in static state. Lowest power mode that  
retains all registers while maintaining LVD  
protection.  
PStop2 (Partial Stop Core and system clocks are gated. Bus clock  
Interrupt  
2)  
remains active. Masters and slaves clocked by bus  
clock remain in Run or VLPRun mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
PStop1 (Partial Stop Core, system clocks, and bus clock are gated. All  
Interrupt  
1)  
bus masters and slaves enter Stop mode. The clock  
generators in MCG and the on-chip regulator in the  
PMC also remain in Run or VLPRun mode.  
VLPR (Very Low-  
power Run) (all  
peripherals off)  
Reduced frequency (1 MHz) Flash access mode,  
regulator in low-power mode, LVD off. Internal  
oscillator can provide low-power 4 MHz source for  
core. (Values @2 MHz core/ 1 MHz bus and flash,  
module off, execution from flash).  
Radio operation is possible  
only when DC-DC is  
configured for continuous  
mode.1 However, there may  
be insufficient MIPS with a 4  
MHz MCU to support much  
in the way of radio operation.  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPW (Very Low-  
Similar to VLPR, with CPU in sleep to further reduce  
Interrupt  
Interrupt  
power Wait) - via WFI power. (Values @4 MHz core/ 1 MHz bus, module  
(all peripherals off)  
off)  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPR/W  
VLPS (Very Low-  
Places MCU in static state with LVD operation off.  
power Stop) via WFI Lowest power mode with ADC and all pin interrupts  
functional. LPTMR, RTC, CMP can be operational.  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
33  
NXP Semiconductors  
System and Power Management  
Table 9. Power modes (At 25 deg C) (continued)  
Power mode  
Description  
CPU  
Radio  
recovery  
method  
Biasing is disabled when DC-DC is configured for  
continuous mode in VLPS.  
LLS3 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wake-up  
Interrupt  
Radio SOG is in state  
retention in LLSx. The  
Bluetooth LE/Generic FSK  
DSM2 logic can be active  
using the 32 kHz clock  
Stop)  
CMP can be operational. All of the radio Sea of  
Gates(SOG) logic is in state retention.  
LLS2 (Low Leakage State retention power mode. LLWU, LPTMR, RTC,  
Wake-up  
Interrupt  
Stop)  
CMP can be operational. 16 KB or 32 KB of  
programmable RAM can be powered on. All of the  
radio SOG logic is in state retention.  
VLLS3 (Very Low  
Leakage Stop3)  
Full SRAM retention. LLWU, LPTMR, RTC, CMP  
can be operational. Radio SoG logic is power gated  
and Radio Tx/Rx RAM keeps state retention.  
Wake-up  
Reset  
Radio SoG is power gated in  
VLLS3/2. Radio Tx/Rx RAM  
keeps state retention in  
VLLS3 and can be  
configurable power gated in  
VLLS2. The Bluetooth LE/  
Generic FSK DSM logic can  
be active using the 32 KHz  
clock.  
VLLS2 (Very Low  
Leakage Stop2)  
Partial SRAM retention. 16 KB or 32 KB of  
programmable RAM can be powered on. LLWU,  
LPTMR, RTC, CMP can be operational. All of the  
Radio SoG logic is power gated. Radio Tx/Rx  
SRAM can be configurable power gated.  
Wake-up  
Reset  
VLLS1 (Very Low  
All SRAM powered off. The 32-byte system register  
Wake-up  
Reset  
Radio operation not  
supported. The Radio SOG  
is power-gated in VLLS1.  
Radio state is lost at VLLS1  
and lower power states.  
Leakage Stop1) with file remains powered for customer-critical data.  
RTC + 32 kHz OSC LLWU, LPTMR, RTC, CMP can be operational.  
Radio logic is power gated.  
VLLS1 (Very Low  
Leakage Stop1) with file remains powered for customer-critical data.  
All SRAM powered off. The 32-byte system register  
Wake-up  
Reset  
LPTMR + LPO  
LLWU, LPTMR, RTC, CMP can be operational.  
VLLS0 is not supported with DC-DC.  
VLLS0 (Very Low  
Wake-up  
Reset  
Radio operation not  
supported. The Radio digital  
is power-gated in VLLS0.  
Leakage Stop0) with  
Brown-out Detection  
The 32-byte system register file remains powered  
for customer-critical data. Disable all analog  
modules in PMC and retains I/O state and DGO  
state. LPO disabled, POR brown-out detection  
enabled, Pin interrupt only. Radio logic is power  
gated.  
VLLS0 (Very Low  
Leakage Stop0)  
without Brown-out  
Detection  
VLLS0 is not supported with DC-DC buck  
configuration but is supported with bypass  
configuration.  
Wake-up  
Reset  
The 32-byte system register file remains powered  
for customer-critical data. Disable all analog  
modules in PMC and retains I/O state and DGO  
state. LPO disabled, POR brown-out detection  
disabled, Pin interrupt only. Radio logic is power  
gated.  
1. Biasing is disabled, but the Flash is in a low-power mode for VLPx, so this configuration can realize some power savings  
over use of Run/Wait/Stop.  
2. DSM refers to Radio's deep sleep mode. DSM does not refer to the Arm sleep deep mode.  
34  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6 KW39/38/37 Electrical Characteristics  
6.1 AC electrical characteristics  
Unless otherwise specified, propagation delays are measured from the 50% to the 50%  
point, and rise and fall times are measured at the 20% and 80% points, as shown in the  
following figure.  
High  
Low  
VIH  
80%  
50%  
20%  
Input Signal  
Midpoint1  
VIL  
Fall Time  
Rise Time  
The midpoint is VIL + (VIH - VIL) / 2  
Figure 6. Input signal measurement reference  
All digital I/O switching characteristics, unless otherwise specified, assume that the  
output pins have the following characteristics.  
• CL=30 pF loads  
• Slew rate disabled  
• Normal drive strength  
6.2 Nonswitching electrical specifications  
6.2.1 Voltage and current operating requirements  
Table 10. Voltage and current operating requirements  
Symbol  
Description  
Min.  
1.71  
1.425  
1.71  
–0.1  
–0.1  
Max.  
3.6  
3.6  
3.6  
0.1  
0.1  
Unit  
V
Notes  
VDD  
Supply voltage  
VDD_1P5 DCDC VDD_1P5 output pin  
VDDA Analog supply voltage  
V
1
V
VDD – VDDA VDD-to-VDDA differential voltage  
VSS – VSSA VSS-to-VSSA differential voltage  
V
V
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
35  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 10. Voltage and current operating requirements (continued)  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
VIH  
Input high voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.7 × VDD  
V
V
0.75 × VDD  
VIL  
Input low voltage  
• 2.7 V ≤ VDD ≤ 3.6 V  
• 1.7 V ≤ VDD ≤ 2.7 V  
0.35 × VDD  
0.3 × VDD  
V
V
VHYS  
IICIO  
Input hysteresis  
0.06 × VDD  
–3  
V
IO pin negative DC injection current — single pin  
• VIN < VSS–0.3V  
2
mA  
IICcont  
Contiguous pin DC injection current —regional limit,  
includes sum of negative injection currents of 16  
contiguous pins  
–25  
mA  
• Negative current injection  
VODPU  
VRAM  
Open drain pullup voltage level  
VDD  
1.2  
VDD  
V
V
3
VDD voltage required to retain RAM  
1. This limit applies in any DCDC mode.  
2. All I/O pins are internally clamped to VSS through an ESD protection diode. There is no diode connection to VDD. If VIN  
greater than VIO_MIN (= VSS–0.3 V) is observed, then there is no need to provide current limiting resistors at the pads. If  
this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting  
resistor is calculated as R = (VIO_MIN - VIN)/|IICIO|.  
3. Open drain outputs must be pulled to VDD  
.
6.2.2 LVD and POR operating requirements  
Table 11. VDD supply LVD and POR operating requirements  
Symbol Description  
Min.  
0.8  
Typ.  
1.1  
Max.  
1.5  
Unit  
V
Notes  
VPOR  
Falling VDD POR detect voltage  
VPOR_VDD_ VDD_1P5 POR threshold  
1.25  
1.31  
1.37  
V
1P5  
VLVDH  
Falling low-voltage detect threshold — high  
2.48  
2.56  
2.64  
V
range (LVDV = 01)  
Low-voltage warning thresholds — high range  
• Level 1 falling (LVWV = 00)  
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
• Level 4 falling (LVWV = 11)  
1
VLVW1H  
VLVW2H  
VLVW3H  
VLVW4H  
2.62  
2.72  
2.82  
2.92  
2.70  
2.80  
2.90  
3.00  
2.78  
2.88  
2.98  
3.08  
V
V
V
V
Table continues on the next page...  
36  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 11. VDD supply LVD and POR operating requirements (continued)  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
VHYSH Low-voltage inhibit reset/recover hysteresis —  
60  
mV  
high range  
VLVDL  
Falling low-voltage detect threshold — low  
range (LVDV=00)  
1.54  
1.60  
1.66  
V
Low-voltage warning thresholds — low range  
• Level 1 falling (LVWV = 00)  
1
VLVW1L  
VLVW2L  
VLVW3L  
VLVW4L  
1.74  
1.84  
1.94  
2.04  
1.80  
1.90  
2.00  
2.10  
40  
1.86  
1.96  
2.06  
2.16  
V
V
• Level 2 falling (LVWV = 01)  
• Level 3 falling (LVWV = 10)  
V
• Level 4 falling (LVWV = 11)  
V
VHYSL  
Low-voltage inhibit reset/recover hysteresis —  
low range  
mV  
VBG  
tLPO  
Bandgap voltage reference  
0.97  
900  
1.00  
1.03  
V
Internal low-power oscillator period — factory  
trimmed  
1000  
1100  
μs  
1. Rising thresholds are falling threshold + hysteresis voltage  
6.2.3 Voltage and current operating behaviors  
Table 12. Voltage and current operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
1, 2  
VOH  
Output high voltage — Normal drive pad (except  
RESET_b)  
VDD – 0.5  
VDD – 0.5  
VDD – 0.35  
V
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -2.5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -1 mA  
VOH  
Output high voltage — High drive pad (except  
RESET_b)  
1, 2  
VDD – 0.5  
VDD – 0.5  
V
V
• 2.7 V ≤ VDD ≤ 3.6 V, IOH = -20 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOH = -10 mA  
IOHT  
VOL  
Output high current total for all ports  
Output low voltage — Normal drive pad  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 5 mA  
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 2.5 mA  
100  
mA  
1
1
0.5  
0.5  
V
V
VOL  
Output low voltage — High drive pad  
0.5  
V
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
37  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 12. Voltage and current operating behaviors (continued)  
Symbol  
Description  
• 2.7 V ≤ VDD ≤ 3.6 V, IOL = 20 mA  
Min.  
Max.  
Unit  
Notes  
0.5  
V
• 1.71 V ≤ VDD ≤ 2.7 V, IOL = 10 mA  
IOLT  
IIN  
Output low current total for all ports  
100  
500  
mA  
nA  
Input leakage current (per pin) for full temperature  
range  
3
IIN  
IIN  
Input leakage current (per pin) at 25 °C  
0.025  
5
μA  
μA  
3
3
Input leakage current (total all pins) for full  
temperature range  
RPU  
Internal pullup resistors  
20  
50  
kΩ  
4
1. PTB0-1, PTC1-4, PTC6-7, PTC16-19 I/O have both high drive and normal drive capability selected by the associated  
PTx_PCRn[DSE] control bit. All other GPIOs are normal drive only.  
2. The reset pin only contains an active pull-up device when configured as the RESET signal or as a GPIO. When  
configured as a GPIO output, it acts as a pseudo open drain output.  
3. Measured at VDD = 3.6 V.  
4. Measured at VDD supply voltage = VDD min and Vinput = VSS  
.
6.2.4 Power mode transition operating behaviors  
All specifications except tPOR and VLLSxRUN recovery times in the following table  
assume this clock configuration:  
• CPU and system clocks = 48 MHz  
• Bus and flash clock = 24 MHz  
• FEI clock mode  
POR and VLLSxRUN recovery use FEI clock mode at the default CPU and system  
frequency of 21 MHz, and a bus and flash clock frequency of 10.5 MHz.  
Table 13. Power mode transition operating behaviors  
Symbol  
Description  
Max.  
Unit  
Notes  
tPOR  
After a POR event, amount of time from the point VDD  
reaches 1.8 V to execution of the first instruction across the  
operating temperature range of the chip.  
300  
μs  
1
• VLLS0 RUN  
169.0  
168.9  
97.3  
μs  
μs  
μs  
• VLLS1 RUN  
• VLLS2 RUN  
Table continues on the next page...  
38  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 13. Power mode transition operating behaviors (continued)  
Symbol  
Description  
Max.  
97.3  
6.3  
Unit  
Notes  
• VLLS3 RUN  
μs  
• LLS RUN  
• VLPS RUN  
• STOP RUN  
μs  
6.2  
μs  
6.2  
μs  
1. Normal boot (FTFA_FOPT[LPBOOT]=11). When the DC-DC converter is in bypass mode, TPOR will not meet the 300  
µs spec when 1) VDD_1P5 < 1.6 V at 25 °C and 125 °C. 2) 1.5V ≤ VDD_1P5 ≤ 1.8 V. For the bypass mode special  
case where VDD_1P5 = VDD_1P8, TPOR did not meet the 300 µs maximum spec when the supply slew rate <=100  
V/s.  
6.2.5 Power consumption operating behaviors  
Table 14. Power consumption operating behaviors - Bypass Mode  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
1
0
1
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO_CM Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus disabled,  
LPTMR running using LPO clock at 1kHz,  
CoreMark benchmark code executing from  
flash at 3.0 V  
2, 3  
6.73  
3.84  
9.94  
6.95  
mA  
mA  
2
3
IDD_RUNCO  
Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus clock disabled,  
code of while(1) loop executing from flash at  
3.0 V  
3, 4  
2, 3  
IDD_RUN_CM Run mode current - 48 MHz core/24 MHz bus  
and flash, all peripheral clocks disabled,  
CoreMark benchmark code executing from  
flash at 3.0 V  
6.72  
4.46  
9.93  
7.50  
mA  
mA  
4
5
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks disabled, code  
of while(1) loop executing from flash at 3.0 V  
3, 4  
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks enabled, code of  
while(1) loop executing from flash at 3.0 V  
3, 4, 5  
5.59  
5.72  
6.22  
6.03  
6.96  
8.60  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
39  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 14. Power consumption operating behaviors - Bypass Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
6
IDD_WAIT  
Wait mode current - core disabled / 48 MHz  
system / 24 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at  
3.0 V  
4
2.48  
5.70  
mA  
7
IDD_WAIT  
Wait mode current - core disabled / 24 MHz  
system / 24 MHz bus / flash disabled (flash  
doze enabled), all peripheral clocks disabled at  
3.0 V  
4
1.95  
5.20  
mA  
8
9
IDD_PSTOP2 Stop mode current with partial stop 2 clocking  
option - core and system disabled / 10.5 MHz  
bus at 3.0 V  
4
6
2.31  
5.60  
mA  
μA  
IDD_VLPRCO_CM Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, LPTMR running using LPO  
750.90  
2162.15  
clock at 1 kHz reference clock, CoreMark  
benchmark code executing from flash at 3.0 V  
10  
11  
12  
13  
14  
15  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, code of while(1) loop executing  
from flash at 3.0 V  
7
7
157.56  
1197.82  
μA  
IDD_VLPR_CM Very-low-power run mode current -4 MHz  
core/0.8 MHz bus and flash, all peripheral  
clocks disabled, CoreMark benchmark code  
executing from flash at 3.0 V  
749.12  
176.75  
2169.25  
1217.35  
μA  
μA  
IDD_VLPR  
IDD_VLPR  
IDD_VLPW  
IDD_STOP  
Very-low-power run mode current - 4 MHz  
core / 0.8 MHz bus and flash, all peripheral  
clocks disabled, code of while(1) loop  
executing from flash at 3.0 V  
7
Very-low-power run mode current - 4 MHz  
core / 0.8 MHz bus and flash, all peripheral  
clocks enabled, code of while(1) loop executing  
from flash at 3.0 V  
5, 7  
7
225.92  
115.97  
1261.85  
988.58  
μA  
μA  
Very-low-power wait mode current - core  
disabled / 4 MHz system / 0.8 MHz bus / flash  
disabled (flash doze enabled), all peripheral  
clocks disabled at 3.0 V  
Stop mode current at 3.0 V  
at 25 °C  
233.19  
334.36  
714.91  
395.00  
1238.67  
2854.74  
μA  
μA  
μA  
at 70 °C  
at 105 °C  
16  
IDD_VLPS  
Very-low-power stop mode current at Bypass  
mode(3.0 V),  
5.99  
44.41  
181.39  
37.86  
239.01  
740.69  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
Table continues on the next page...  
40  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 14. Power consumption operating behaviors - Bypass Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
17  
IDD_LLS3  
Low-leakage stop mode 3 current at Bypass  
mode(3.0 V),  
3.04  
16.27  
61.37  
7.96  
54.57  
185.22  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
18  
19  
20  
21  
IDD_LLS2  
Low-leakage stop mode 2 current at Bypass  
mode(3.0 V),  
2.67  
13.39  
50.32  
6.17  
49.00  
142.43  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS3  
Very-low-leakage stop mode 3 current at  
Bypass mode(3.0 V),  
2.23  
12.14  
46.73  
5.35  
46.10  
126.37  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at  
Bypass mode(3.0 V),  
1.67  
6.58  
2.53  
25.82  
57.92  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
25.32  
IDD_VLLS2_32KB Very-low-leakage stop mode 2 current at  
Bypass mode (3.0 V) (set  
SMC_STOPCTRL[RAM2PO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.84  
8.10  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
29.47  
at 105 °C  
22  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at  
Bypass mode (3.0 V) (set  
_RF_Tx_RAM  
RSIM_CONTROL[TXRAMPO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.75  
7.83  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
28.32  
at 105 °C  
23  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at  
Bypass mode (3.0 V) (set  
_RF_Rx_RAM  
RSIM_CONTROL[RXRAMPO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.75  
7.65  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
27.73  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
41  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 14. Power consumption operating behaviors - Bypass Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
24  
IDD_VLLS1  
Very-low-leakage stop mode 1 current at  
Bypass mode(3.0 V),  
917.42  
3.24  
1355.71  
13.32  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
15.62  
32.08  
25  
26  
IDD_VLLS0  
Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 0) at 3.0 V  
467.55  
2.78  
998.32  
13.05  
31.48  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
15.11  
IDD_VLLS0  
Very-low-leakage stop mode 0 current  
(SMC_STOPCTRL[PORPO] = 1) at 3.0 V  
8
266.64  
2.54  
737.22  
13.02  
31.12  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
14.78  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. See  
specifications of each module for its supply current.  
2. MCG configured for FEI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized for  
balanced.  
3. Radio is off.  
4. MCG configured for FEI mode.  
5. Incremental current consumption from peripheral activity is not included.  
6. MCG configured for BLPI mode. CoreMark benchmark compiled using IAR 7.70 with optimization level high, optimized  
for balanced.  
7. MCG configured for BLPI mode.  
8. No brownout.  
Table 15. Power consumption operating behaviors - Buck Mode  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
1
0
1
IDDA  
Analog supply current  
See note  
mA  
IDD_RUNCO_CM Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus clock disabled,  
LPTMR running using LPO clock at 1 kHz,  
CoreMark benchmark code executing from flash  
at 3.0 V  
2, 3  
4.97  
3.13  
mA  
mA  
2
3
IDD_RUNCO Run mode current in compute operation - 48  
MHz core / 24 MHz flash / bus clock disabled,  
code of while(1) loop executing from flash at 3.0  
V
2, 3  
2, 3  
IDD_RUN_CM Run mode current - 48 MHz core/24 MHz bus  
and flash, all peripheral clocks disabled,  
CoreMark benchmark code executing from flash  
at 3.0 V  
4.88  
mA  
Table continues on the next page...  
42  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 15. Power consumption operating behaviors - Buck Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
4
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks disabled, code of  
while(1) loop executing from flash at 3.0 V  
2, 3  
3.37  
mA  
5
IDD_RUN  
Run mode current - 48 MHz core / 24 MHz bus  
and flash, all peripheral clocks enabled, code of  
while(1) loop executing from flash at 3.0 V  
2, 3, 4  
4.09  
4.22  
4.60  
mA  
mA  
mA  
at 25 °C  
at 70 °C  
at 105 °C  
6
7
8
9
IDD_WAIT  
Wait mode current - core disabled / 48 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled at 3.0 V  
2
2
2
5
2.36  
2.09  
2.32  
mA  
mA  
mA  
IDD_WAIT  
Wait mode current - core disabled / 24 MHz  
system / 24 MHz bus / flash disabled (flash doze  
enabled), all peripheral clocks disabled at 3.0 V  
IDD_PSTOP2 Stop mode current with partial stop 2 clocking  
option - core and system disabled / 10.5 MHz  
bus at 3.0 V  
IDD_VLPRCO_C Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
M
clock disabled, CoreMark benchmark code  
executing from flash at 3.0 V  
563.18  
152.88  
μA  
μA  
10  
11  
12  
13  
14  
15  
IDD_VLPRCO Very-low-power run mode current in compute  
operation - 4 MHz core / 0.8 MHz flash / bus  
clock disabled, code of while(1) loop executing  
from flash at 3.0 V  
5
5
IDD_VLPR_CM Very-low-power run mode current - 4 MHz  
core/0.8 MHz bus and flash, all peripheral clocks  
disabled, CoreMark benchmark code executing  
from flash at 3.0 V  
558.88  
150.33  
μA  
μA  
IDD_VLPR  
IDD_VLPR  
IDD_VLPW  
IDD_STOP  
Very-low-power run mode current - 4 MHz core /  
0.8 MHz bus and flash, all peripheral clocks  
disabled, code of while(1) loop executing from  
flash at 3.0 V  
5
Very-low-power run mode current - 4 MHz core /  
0.8 MHz bus and flash, all peripheral clocks  
enabled, code of while(1) loop executing from  
flash at 3.0 V  
4, 5  
5
207.02  
113.53  
μA  
μA  
Very-low-power wait mode current - core  
disabled / 4 MHz system / 0.8 MHz bus / flash  
disabled (flash doze enabled), all peripheral  
clocks disabled at 3.0 V  
Stop mode current at 3.0 V  
at 25 °C  
1.65  
1.82  
2.15  
2.712  
4.728  
7.686  
mA  
mA  
mA  
at 70 °C  
at 105 °C  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
43  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 15. Power consumption operating behaviors - Buck Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
16  
IDD_VLPS  
Very-low-power stop mode current at Buck  
mode(3.0 V),  
7.34  
58.34  
276.96  
39.203  
252.935  
836.252  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
17  
18  
19  
20  
21  
IDD_LLS3  
IDD_LLS2  
IDD_VLLS3  
Low-leakage stop mode 3 current at Buck  
mode(3.0 V),  
2.95  
20.42  
86.84  
7.547  
58.722  
210.696  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
Low-leakage stop mode 2 current at Buck  
mode(3.0 V),  
2.61  
13.90  
47.87  
5.975  
49.512  
139.983  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
Very-low-leakage stop mode 3 current at Buck  
mode(3.0 V),  
2.17  
11.14  
40.37  
5.283  
45.099  
120.006  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at Buck  
mode(3.0 V),  
1.41  
5.69  
2.236  
24.923  
53.843  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
21.24  
IDD_VLLS2_32KB Very-low-leakage stop mode 2 current at Buck  
mode (3.0 V) (set  
SMC_STOPCTRL[RAM2PO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.85  
7.92  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
28.84  
at 105 °C  
22  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at Buck  
mode (3.0 V) (set  
_RF_Tx_RAM  
RSIM_CONTROL[TXRAMPO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.68  
7.56  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
27.97  
Table continues on the next page...  
44  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 15. Power consumption operating behaviors - Buck Mode (continued)  
Mode#  
Symbol  
Description  
Typ.  
Max.  
Unit  
Notes  
23  
IDD_VLLS2_16KB Very-low-leakage stop mode 2 current at Buck  
mode (3.0 V) (set  
_RF_Rx_RAM  
RSIM_CONTROL[RXRAMPO]=1 based on  
IDD_VLLS2_16KB configuration),  
1.91  
6.81  
μA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
25.64  
24  
IDD_VLLS1  
Very-low-leakage stop mode 1 current at Buck  
mode(3.0 V),  
976.17  
2.98  
1414.459  
13.053  
nA  
μA  
μA  
at 25 °C  
at 70 °C  
at 105 °C  
13.18  
29.640  
1. The analog supply current is the sum of the active or disabled current for each of the analog modules on the device.  
See specification of each module for its supply current.  
2. MCG configured for FEI mode.  
3. Radio is off.  
4. Incremental current consumption from peripheral activity is not included.  
5. MCG configured for BLPI mode.  
Table 16. Low power mode peripheral adders — typical value (Bypass Mode)  
Adder#  
Symbol  
Description  
Temperature (°C)  
25 50 70  
Unit  
–40  
85  
1
IIREFSTEN4MHz 4 MHz internal reference clock (IRC)  
adder. Measured by entering STOP or  
47.50 47.50 47.51 47.39 47.12  
µA  
VLPS mode with 4 MHz IRC enabled.  
2
3
IIREFSTEN32KHz 32 kHz internal reference clock (IRC)  
adder. Measured by entering STOP  
92.82 92.82 92.61 91.89 91.91  
µA  
mode with the 32 kHz IRC enabled.  
IEREFSTEN32KHz External 32 kHz crystal clock adder by  
means of the RTC bits. Measured by  
entering all modes with the crystal  
enabled.  
1.24  
1.23  
1.22  
1.22  
1.21  
1.23  
1.22  
1.22  
1.21  
1.21  
1.25  
1.23  
1.12  
1.12  
1.22  
1.29  
1.16  
1.16  
1.28  
1.32  
1.25  
1.26  
1.21  
1.30  
1.26  
VLLS1  
VLLS2  
VLLS3  
LLS2  
μA  
µA  
LLS3  
4
ICMP  
CMP peripheral adder measured by  
placing the device in VLLS1 mode with  
CMP enabled using the 6-bit DAC and  
a single external input for compare.  
Includes 6-bit DAC power  
21.15 21.15 21.39 21.55 21.76  
consumption.  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
45  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 16. Low power mode peripheral adders — typical value (Bypass Mode) (continued)  
Adder#  
Symbol  
Description  
Temperature (°C)  
Unit  
–40  
25  
1.24  
50  
70  
1.32  
85  
5
IRTC  
RTC peripheral adder measured by  
placing the device in VLLS1 mode with  
external 32 kHz crystal enabled by  
means of the RTC_CR[OSCE] bit and  
the RTC ALARM set for 1 minute.  
Includes ERCLK32K (32 kHz external  
crystal) power consumption.  
1.25  
1.25  
1.31  
µA  
6
7
8
ILPUART  
ILPTMR  
ITPM  
LPUART peripheral adder measured  
by placing the device in STOP or  
VLPS mode with selected clock source  
waiting for Rx data at 115200 baud  
rate. Includes selected clock source  
power consumption.  
58.73 58.73 59.13 59.32 59.67  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
LPTMR peripheral adder measured by  
placing the device in VLLS1 mode with  
LPTMR enabled using LPO.  
31.32 31.30 34.49 65.73 100.58 nA  
TPM peripheral adder measured by  
placing the device in STOP or VLPS  
mode with selected clock source  
configured for output compare  
generating 100 Hz clock signal. No  
load is placed on the I/O generating  
the clock signal. Includes selected  
clock source and I/O switching  
currents.  
56.93 56.92 56.99 56.92 56.84  
90.49 90.48 91.85 91.74 88.16  
µA  
µA  
MCGIRCLK (4 MHz internal reference  
clock)  
9
IBG  
Bandgap adder when BGEN bit is set  
and device is placed in VLPx, LLS, or  
VLLSx mode.  
10  
IADC  
ADC peripheral adder combining the  
measured values at VDD and VDDA by  
placing the device in STOP or VLPS  
mode. ADC is configured for low-  
power mode using the internal clock  
and continuous conversions.  
347.96 347.96 346.12 347.88 346.43 µA  
46  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
6.2.6 Diagram: Typical IDD_RUN operating behavior  
The following data is measured from previous devices with same MCU core (Arm®  
Cortex-M0+) under these conditions:  
• No GPIOs toggled  
• Code execution from flash with cache enabled  
• For the ALLOFF curve, all peripheral clocks are disabled except FTFA  
NOTE  
The results in the following graphs are obtained using the  
device in Bypass mode.  
Figure 7. Run mode supply current vs. core frequency  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
47  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Figure 8. VLPR mode current vs. core frequency  
6.2.7 SoC Power Consumption  
Full KW39/38/37 system-on-chip (SoC) power consumption is a function of the many  
configurations possible for the MCU platform and its peripherals including the 2.4 GHz  
radio and the DC-DC converter. A few measured SoC configurations are as follows:  
Table 17. SoC Power Consumption  
MCU State  
Flash State  
Radio State  
DC-DC State  
Typical  
Average IC  
current  
Unit  
STOP  
STOP  
STOP  
Doze  
Doze  
Doze  
Rx  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
8.5  
7.8  
9.2  
mA  
mA  
mA  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
STOP  
RUN  
RUN  
Doze  
Tx (at +5 dBm)1  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
Buck (VDCDC_IN=3.6 V)  
10.3  
10.4  
9.9  
mA  
mA  
mA  
Enabled  
Enabled  
Rx  
Tx (at 0 dBm)  
Table continues on the next page...  
48  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 17. SoC Power Consumption (continued)  
MCU State  
Flash State  
Radio State  
DC-DC State  
Typical  
Average IC  
current  
Unit  
RUN  
Enabled  
Tx (at +3.5  
dBm)  
Buck (VDCDC_IN=3.6 V)  
11.7  
mA  
RUN  
STOP  
STOP  
STOP  
Enabled  
Doze  
Tx (at +5 dBm)1  
Buck (VDCDC_IN=3.6 V)  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
12.8  
17.3  
15.9  
18.3  
mA  
mA  
mA  
mA  
Rx  
Doze  
Tx (at 0 dBm)  
Doze  
Tx (at +3.5  
dBm)  
STOP  
RUN  
RUN  
RUN  
Doze  
Tx (at +5 dBm)1  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
Disabled/Bypass  
20.3  
21.5  
19.9  
22.4  
mA  
mA  
mA  
mA  
Enabled  
Enabled  
Enabled  
Rx  
Tx (at 0 dBm)  
Tx (at +3.5  
dBm)  
RUN  
Enabled  
Tx (at +5 dBm)1  
Disabled/Bypass  
24.4  
mA  
1. MCU configured to use an FLL-based 20 MHz clock.  
6.2.8 Designing with radiated emissions in mind  
To find application notes that provide guidance on designing your system to minimize  
interference from radiated emissions:  
1. Go to www.nxp.com  
2. Perform a keyword search for “KW38, HW guideline, RF system evaluation.”  
6.2.9 Capacitance attributes  
Table 18. Capacitance attributes  
Symbol  
Description  
Min.  
Max.  
Unit  
CIN  
Input capacitance  
7
pF  
6.3 Switching electrical specifications  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
49  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.3.1 Device clock specifications  
Table 19. Device clock specifications  
Symbol  
Description  
Min.  
Max.  
Unit  
Normal run mode  
fSYS  
fBUS  
fFLASH  
fLPTMR  
System and core clock  
Bus clock  
48  
24  
24  
24  
MHz  
MHz  
MHz  
MHz  
Flash clock  
LPTMR clock  
VLPR and VLPS modes1  
fSYS  
fBUS  
System and core clock  
Bus clock  
4
1
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
fFLASH  
fLPTMR  
fERCLK  
Flash clock  
LPTMR clock2  
1
24  
16  
16  
8
External reference clock  
fLPTMR_ERCLK LPTMR external reference clock  
fTPM  
TPM asynchronous clock  
fLPUART0  
LPUART0 asynchronous clock  
12  
1. The frequency limitations in VLPR and VLPS modes here override any frequency specification listed in the timing  
specification for any other module. These same frequency limits apply to VLPS, whether VLPS entered from RUN or  
from VLPR.  
2. The LPTMR can be clocked at this speed in VLPR or VLPS only when the source is an external pin.  
6.3.2 General switching specifications  
These general-purpose specifications apply to all signals configured for GPIO,  
LPUART, CAN (for KW38 only), CMT and I2C signals.  
Table 20. General switching specifications  
Description  
Min.  
Max.  
Unit  
Notes  
GPIO pin interrupt pulse width (digital glitch filter disabled)  
— Synchronous path  
1.5  
Bus clock cycles  
1, 2  
NMI_b pin interrupt pulse width (analog filter enabled) —  
Asynchronous path  
200  
20  
ns  
ns  
ns  
3
3
GPIO pin interrupt pulse width (digital glitch filter disabled,  
analog filter disabled) — Asynchronous path  
External RESET_b input pulse width (digital glitch filter  
disabled)  
100  
Port rise and fall time(high drive strength)  
• Slew enabled  
4, 5  
25  
16  
ns  
ns  
Table continues on the next page...  
50  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 20. General switching specifications (continued)  
Description  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
Min.  
Max.  
Unit  
Notes  
8
ns  
6
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
Port rise and fall time(low drive strength)  
6, 7  
• Slew enabled  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
• Slew disabled  
24  
16  
10  
6
ns  
ns  
• 1.71 ≤ VDD ≤ 2.7 V  
• 2.7 ≤ VDD ≤ 3.6 V  
ns  
ns  
1. This is the minimum pulse width that guarantees to pass through the pin synchronization circuitry in run modes.  
2. The greater of synchronous and asynchronous timing must be met.  
3. This is the minimum pulse width that guarantees to be recognized.  
4. PTB0, PTB1, PTC1, PTC2, PTC3, PTC4, PTC6, PTC7, PTC16, PTC17, PTC18, PTC19.  
5. 75 pF load.  
6. Ports A, B, and C.  
7. 25 pF load.  
6.4 Thermal specifications  
6.4.1 Thermal operating requirements  
Table 21. Thermal operating requirements  
Symbol  
TJ  
Description  
Min.  
–40  
–40  
Max.  
125  
Unit  
°C  
Notes  
Die junction temperature  
Ambient temperature  
TA  
105  
°C  
1
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed the maximum. The simplest method to  
determine TJ is: TJ = TA + RθJA × chip power dissipation.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
51  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.4.2 Thermal attributes  
Table 22. Thermal attributes  
Board type  
Symbol  
Description  
48-pin  
"Wettable"  
HVQFN  
Unit  
Notes  
Four-layer (2s2p)  
RθJA  
Thermal resistance, junction to  
ambient (natural convection)  
21.4  
°C/W  
°C/W  
1, 2  
1, 3  
ΨJT  
Thermal characterization parameter,  
junction to package top (natural  
convection)  
0.2  
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board  
construction.  
2. Determined according to JEDEC Standard JESD51-2A.  
3. Thermal characterization parameter indicating the temperature difference between the package top and the junction  
temperature per JEDEC JESD51-2A.  
The thermal characterization parameter (ΨJT) is used to determine the junction  
temperature with a measurement of the temperature at the top of the package case using  
the following equation:  
TJ = TT + ΨJT x chip power dissipation  
where TT is the thermocouple temperature at the top of the package.  
6.5 Peripheral operating requirements and behaviors  
6.5.1 Core modules  
6.5.1.1 SWD electricals  
Table 23. SWD full voltage range electricals  
Symbol  
Description  
Min.  
Max.  
Unit  
Operating voltage  
1.71  
3.6  
V
J1  
SWD_CLK frequency of operation  
• Serial wire debug  
0
25  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1/J1  
20  
3
ns  
ns  
J4  
SWD_CLK rise and fall times  
Table continues on the next page...  
52  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 23. SWD full voltage range electricals (continued)  
Symbol  
J9  
Description  
SWD_DIO input data setup time to SWD_CLK rise  
Min.  
10  
Max.  
Unit  
ns  
J10  
SWD_DIO input data hold time after SWD_CLK rise  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
0
5
32  
ns  
J11  
ns  
J12  
ns  
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 9. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 10. Serial wire data timing  
6.5.2 System modules  
There are no specifications necessary for the device's system modules.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
53  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.5.3 Clock modules  
6.5.3.1 MCG specifications  
Table 24. MCG specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fints_ft Internal reference frequency (slow clock) —  
32.768  
kHz  
factory trimmed at nominal VDD and 25 °C  
fints_t  
Internal reference frequency (slow clock) —  
user trimmed  
31.25  
39.0625  
0.6  
kHz  
Δfdco_res_t Resolution of trimmed average DCO output  
frequency at fixed voltage and temperature —  
using C3[SCTRIM] and C4[SCFTRIM]  
0.3  
%fdco  
1
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over voltage and temperature  
+0.5/–0.7  
0.4  
3
%fdco  
%fdco  
1, 2  
1, 2  
Δfdco_t  
Total deviation of trimmed average DCO output  
frequency over fixed voltage and temperature  
range of 0–70 °C  
1.5  
fintf_ft  
Internal reference frequency (fast clock) —  
factory trimmed at nominal VDD and 25 °C  
4
MHz  
Δfintf_ft  
Frequency deviation of internal reference clock  
(fast clock) over temperature and voltage —  
factory trimmed at nominal VDD and 25 °C  
+1/–2  
11  
%fintf_ft  
2
fintf_t  
Internal reference frequency (fast clock) — user  
trimmed at nominal VDD and 25 °C  
3
5
MHz  
kHz  
kHz  
floc_low  
Loss of external clock minimum frequency —  
RANGE = 00  
(3/5) x  
fints_t  
floc_high Loss of external clock minimum frequency —  
RANGE = 01, 10, or 11  
(16/5) x  
fints_t  
FLL  
FLL reference frequency range  
31.25  
20  
39.0625  
25  
kHz  
ffll_ref  
fdco  
DCO output  
Low range (DRS = 00)  
20.97  
MHz  
3, 4  
5, 6  
frequency range  
640 × ffll_ref  
Mid range (DRS = 01)  
1280 × ffll_ref  
40  
41.94  
23.99  
47.97  
180  
48  
1
MHz  
MHz  
MHz  
ps  
fdco_t_DMX3 DCO output  
Low range (DRS = 00)  
732 × ffll_ref  
frequency  
2
Mid range (DRS = 01)  
1464 × ffll_ref  
Jcyc_fll  
FLL period jitter  
• fVCO = 48 MHz  
7
8
tfll_acquire FLL target frequency acquisition time  
ms  
54  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock  
mode).  
2. The deviation is relative to the factory trimmed frequency at nominal VDD and 25 °C, fints_ft  
.
3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 0.  
4. The resulting system clock frequencies must not exceed their maximum specified values. The DCO frequency  
deviation (Δfdco_t) over voltage and temperature must be considered.  
5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32 = 1.  
6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.  
7. This specification is based on standard deviation (RMS) of period or frequency.  
8. This specification applies to any time the following changes: FLL reference source or reference divider, trim value,  
DMX32 bit, DRS bits, or FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is  
used as the reference, this specification assumes it is already running.  
6.5.3.2 Reference Oscillator Specification  
The KW39/38/37 has been designed to meet targeted standard specifications for  
frequency error over the life of the part, which includes the temperature, mechanical  
and aging effects.  
The table below lists the recommended crystal specifications. Note that these are  
recommendations only and deviation may be allowed. However, deviations may result  
in degraded RF performance or possibly a failure to meet RF protocol certification  
standards. Designers must ensure that the crystal(s) they use meet the requirements of  
their application.  
Table 25. Recommended Crystal and Oscillator Specification  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Unit  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
TA  
Operating  
–40  
105  
–40  
105  
°C  
1
Temperature  
Crystal initial  
frequency  
tolerance  
–10  
10  
25  
–10  
–25  
10  
24  
ppm  
2,3  
2,4  
Crystal frequency –25  
stability and aging  
ppm  
Oscillator variation –12  
15  
50  
–12  
–50  
16  
50  
ppm  
ppm  
5
6
Total reference  
oscillator tolerance  
for Bluetooth LE  
applications  
–50  
CL  
Load capacitance  
7
10  
13  
7
10  
13  
pF  
pF  
fF  
2, 7  
2,7  
2,7  
C0  
Shunt capacitance 0.469  
0.67  
2.05  
0.871  
2.665  
0.42  
1.435  
0.6  
2.05  
0.78  
2.665  
Cm1  
Motional  
1.435  
capacitance  
Lm1  
Motional  
8.47  
12.1  
15.73  
12.81  
18.3  
23.79  
mH  
2,7  
inductance  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
55  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 25. Recommended Crystal and Oscillator Specification (continued)  
Symbol  
Description  
F0 = 32.0 MHz  
F0 = 26.0 MHz  
Unit  
Notes  
Min  
Typ  
Max  
Min  
Typ  
Max  
Rm1  
ESR  
Pd  
Motional  
resistance  
25  
50  
35  
10  
50  
Ohms  
Ohms  
uW  
2
Equivalent series  
resistance  
60  
60  
2,8  
2
Maximum crystal  
drive  
10  
200  
200  
TS  
Trim sensitivity  
6.30  
9.00  
500  
11.70  
6.39  
9.12  
500  
11.86  
ppm/pF 2,7  
μs  
TOSC  
Oscillator Startup  
Time  
9
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Measured at 25 °C.  
4. Combination of frequency stability variation over desired temperature range and frequency variation due to aging over  
desired lifetime of system.  
5. Variation due to temperature, process, and aging of MCU.  
6. Sum of crystal initial frequency tolerance, crystal frequency stability and aging, oscillator variation, and PCB  
manufacturing variation must not exceed this value.  
7. Typical is target. 30% tolerances shown.  
8. ESR = Rm1 * (1 + [C0/CL])^2.  
9. Time from oscillator enable to clock ready. Dependent on the complete hardware configuration of the oscillator.  
Figure 11. Crystal Electrical Model  
56  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.5.3.3 32 kHz Oscillator Frequency Specifications  
Table 26. 32 kHz Crystal and Oscillator Specifications  
Symbol  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
fosc_lo  
Crystal  
32.768  
kHz  
frequency  
TA  
Operating  
temperature  
–40  
105  
500  
°C  
1
Total crystal  
frequency  
tolerance  
–500  
ppm  
2,3  
CL  
Load  
capacitance  
12.5  
pF  
2
2
ESR  
Equivalent  
series  
80  
kOhms  
resistance  
tstart  
Crystal start-up  
time  
1000  
32.768  
ms  
kHz  
V
4
5
6
fec_extal32  
vec_extal32  
External input  
clock frequency  
External input  
0.7  
VDD  
clock amplitude  
1. Full temperature range of this device. A reduced range can be chosen to meet application needs.  
2. Recommended crystal specification.  
3. Sum of crystal initial frequency tolerance, crystal frequency stability, and aging tolerances given by crystal vendor.  
4. Time from oscillator enable to clock stable. Dependent on the complete hardware configuration of the oscillator.  
5. External oscillator connected to EXTAL32K. XTAL32K must be unconnected.  
6. The parameter specified is a peak-to-peak value and VIH and VIL specifications do not apply. The voltage of the  
applied clock must be within the range of VSS to VDD.  
6.5.4 Memories and memory interfaces  
6.5.4.1 Flash (FTFE) electrical specifications  
This section describes the electrical characteristics of the FTFE module.  
6.5.4.1.1 Flash timing specifications — commands  
Table 27. Flash command timing specifications  
Symbol Description1  
Read 1s Block execution time  
• 256 KB program/data flash  
Min.  
Typ.  
Max.  
Unit  
Notes  
trd1blk256k  
2
ms  
trd1sec2k Read 1s Section execution time (2 KB flash)  
tpgmchk Program Check execution time  
75  
95  
μs  
μs  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
57  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 27. Flash command timing specifications (continued)  
Symbol Description1  
trdrsrc Read Resource execution time  
tpgm8  
Min.  
Typ.  
Max.  
40  
Unit  
μs  
Notes  
Program Phrase execution time  
Erase Flash Block execution time  
• 256 KB program/data flash  
90  
225  
μs  
2
2
tersblk256k  
tersscr  
125  
2125  
ms  
Erase Flash Sector execution time  
12  
10  
130  
ms  
ms  
tpgmsec2k Program Section execution time (2 KB flash)  
Read 1s All Blocks execution time  
trd1allx  
trd1alln  
• FlexNVM devices  
3.5  
3.5  
ms  
ms  
• Program flash only devices  
trdonce  
Read Once execution time  
90  
30  
μs  
μs  
tpgmonce Program Once execution time  
tersall  
tvfykey  
tersallu  
Erase All Blocks execution time  
Verify Backdoor Access Key execution time  
Erase All Blocks Unsecure execution time  
Swap Control execution time  
• control code 0x01  
262  
4380  
35  
ms  
μs  
2
2
262  
4380  
ms  
tswapx01  
tswapx02  
tswapx04  
tswapx08  
tswapx10  
280  
100  
100  
μs  
μs  
μs  
μs  
μs  
• control code 0x02  
235  
235  
35  
• control code 0x04  
• control code 0x08  
• control code 0x10  
100  
235  
Program Partition for EEPROM execution time  
• 32 KB EEPROM backup  
tpgmpart32k  
tpgmpart256k  
252  
262  
ms  
ms  
• 256 KB EEPROM backup  
Set FlexRAM Function execution time:  
• Control Code 0xFF  
tsetramff  
tsetram32k  
tsetram256k  
115  
0.8  
μs  
ms  
ms  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
1.2  
4.5  
6.1  
Byte-write to FlexRAM execution time:  
• 32 KB EEPROM backup  
3
3
3
teewr8b32k  
385  
1700  
3800  
μs  
μs  
teewr8b256k  
• 256 KB EEPROM backup  
1015  
16-bit write to FlexRAM execution time:  
• 32 KB EEPROM backup  
teewr16b32k  
teewr16b256k  
385  
1700  
μs  
μs  
• 256 KB EEPROM backup  
1015  
360  
3800  
2000  
teewr32bers 32-bit write to erased FlexRAM location  
execution time  
μs  
Table continues on the next page...  
58  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 27. Flash command timing specifications (continued)  
Symbol Description1  
32-bit write to FlexRAM execution time:  
Min.  
Typ.  
Max.  
Unit  
Notes  
3
teewr32b32k  
teewr32b256k  
• 32 KB EEPROM backup  
• 256 KB EEPROM backup  
630  
2000  
4100  
μs  
μs  
1890  
1. All command times assume 25 MHz or greater flash clock frequency (for synchronization time between internal/  
external clocks).  
2. Maximum times for erase parameters based on expectations at cycling end-of-life.  
3. First time EERAM writes after a Reset or SETRAM command may incur additional overhead for EEE cleanup,  
resulting in up to 2x the times shown.  
NOTE  
Under certain circumstances maximum times for writes to  
FlexRAM may be exceeded. In this case the user or  
application may wait, or assert reset to the FTFE module to  
stop the operation.  
6.5.4.1.2 Reliability specifications (Automotive)  
Table 28. NVM reliability specifications  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Program and Data Flash  
tnvmret1k Data retention after up to 1 K cycles  
nnvmcyc Cycling endurance  
20  
years  
1
2
1 K  
cycles  
FlexRAM as Emulated EEPROM  
5
tnvmretee Data retention  
Write endurance  
nnvmwree16  
years  
1, 3  
4, 5, 6  
• EEPROM backup to FlexRAM used ratio =  
100 K  
1.6 M  
writes  
writes  
16  
nnvmwree256  
• EEPROM backup to FlexRAM used ratio =  
256  
1. Data retention period per block begins upon initial user factory programming or after each subsequent erase.  
2. Program and Erase are supported across product temperature specification. Cycling endurance is per flash sector.  
3. Background maintenance operations during normal FlexRAM usage extend effective data retention life beyond 5  
years.  
4. FlexMemory write endurance specified for 16-bit and/or 32-bit writes to FlexRAM and is supported across product  
temperature specification. Greater write endurance may be achieved with larger ratios of EEPROM backup to  
FlexRAM.  
5. For usage of any EEE driver other than the FlexMemory feature, the endurance specification falls back to the Data  
Flash endurance value of 1 K.  
6. FlexMemory calculator tool is available on the NXP web site for help in estimating the maximum write endurance  
achievable at specific EEPROM/FlexRAM ratios. The "In Spec" portions of the online calculator refer to the NVM  
reliability specifications section of the data sheet. This calculator only applies to the Kinetis FlexMemory feature.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
59  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.5.4.1.3 Reliability specifications (Industrial)  
Table 29. NVM reliability specifications  
Symbol Description  
Min.  
Typ.1  
Max.  
Unit  
Notes  
Program Flash  
tnvmretp10k Data retention after up to 10 K cycles  
tnvmretp1k Data retention after up to 1 K cycles  
nnvmcycp Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
2
2
Data Flash  
tnvmretd10k Data retention after up to 10 K cycles  
tnvmretd1k Data retention after up to 1 K cycles  
nnvmcycd Cycling endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
10 K  
FlexRAM as EEPROM  
tnvmretee100 Data retention up to 100% of write endurance  
tnvmretee10 Data retention up to 10% of write endurance  
nnvmcycee Cycling endurance for EEPROM backup  
Write endurance  
5
50  
years  
years  
cycles  
20  
100  
50 K  
20 K  
2
3
nnvmwree16  
nnvmwree128  
nnvmwree512  
nnvmwree2k  
• EEPROM backup to FlexRAM ratio = 16  
• EEPROM backup to FlexRAM ratio = 128  
• EEPROM backup to FlexRAM ratio = 512  
• EEPROM backup to FlexRAM ratio = 2,048  
140 K  
1.26 M  
5 M  
400 K  
3.2 M  
12.8 M  
50 M  
writes  
writes  
writes  
writes  
20 M  
1. Typical data retention values are based on measured response accelerated at high temperature and derated to a  
constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in  
Engineering Bulletin EB619.  
2. Cycling endurance represents number of program/erase cycles at -40 °C ≤ Tj ≤ 125 °C.  
3. Write endurance represents the number of writes to each FlexRAM location at -40 °C ≤Tj ≤ 125 °C influenced by the  
cycling endurance of the FlexNVM and the allocated EEPROM backup. Minimum and typical values assume all 16-bit or  
32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.  
6.5.4.1.4 Write endurance to FlexRAM for EEPROM  
When the FlexNVM partition code is not set to full data flash, the EEPROM data set  
size can be set to any of several non-zero values.  
The bytes not assigned to data flash via the FlexNVM partition code are used by the  
FTFE to obtain an effective endurance increase for the EEPROM data. The built-in  
EEPROM record management system raises the number of program/erase cycles that  
can be attained prior to device wear-out by cycling the EEPROM data through a larger  
EEPROM NVM storage space.  
60  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
While different partitions of the FlexNVM are available, the intention is that a single  
choice for the FlexNVM partition code and EEPROM data set size is used throughout  
the entire lifetime of a given application.  
6.5.5 Security and integrity modules  
There are no specifications necessary for the device's security and integrity modules.  
6.5.6 Analog  
6.5.6.1 ADC electrical specifications  
All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy  
specifications. The following specification is defined with the DC-DC converter  
operating in Bypass mode.  
6.5.6.1.1 16-bit ADC operating conditions  
Table 30. 16-bit ADC operating conditions  
Symbol Description  
VDDA Supply voltage  
ΔVDDA Supply voltage  
Conditions  
Min.  
1.71  
–100  
–100  
1.13  
Typ.1  
Max.  
3.6  
Unit  
V
Notes  
Absolute  
Delta to VDD (VDD – VDDA  
)
0
+100  
+100  
VDDA  
mV  
mV  
V
2
2
3
ΔVSSA  
Ground voltage Delta to VSS (VSS – VSSA  
)
0
VREFH  
ADC reference  
voltage high  
VDDA  
VREFL  
VADIN  
ADC reference  
voltage low  
VSSA  
VSSA  
VSSA  
V
V
3
Input voltage  
• 16-bit differential mode  
• All other modes  
• 16-bit mode  
VSSA  
VSSA  
31/32 ×  
VREFH  
VREFH  
CADIN  
Input  
capacitance  
8
4
10  
5
pF  
kΩ  
• 8-bit / 10-bit / 12-bit  
modes  
RADIN  
RAS  
Input series  
resistance  
2
5
Analog source  
resistance  
(external)  
13-bit / 12-bit modes  
fADCK < 4 MHz  
4
5
5
kΩ  
fADCK  
ADC conversion ≤ 13-bit mode  
clock frequency  
1.0  
18.0  
MHz  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
61  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 30. 16-bit ADC operating conditions (continued)  
Symbol Description  
Conditions  
Min.  
Typ.1  
Max.  
Unit  
Notes  
fADCK  
ADC conversion 16-bit mode  
clock frequency  
2.0  
12.0  
MHz  
5
Crate  
ADC conversion ≤ 13-bit modes  
rate  
6
No ADC hardware averaging  
20.000  
37.037  
818.330  
461.467  
kS/s  
kS/s  
Continuous conversions  
enabled, subsequent  
conversion time  
Crate  
ADC conversion 16-bit mode  
6
rate  
No ADC hardware averaging  
Continuous conversions  
enabled, subsequent  
conversion time  
1. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 1.0 MHz, unless otherwise stated. Typical values are for  
reference only, and are not tested in production.  
2. DC potential difference.  
3. For packages without dedicated VREFH and VREFL pins, VREFH is internally tied to VDDA, and VREFL is internally tied to  
VSSA  
.
4. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as  
possible. The results in this data sheet are derived from a system that had < 8 Ω analog source resistance. The RAS/CAS  
time constant should be kept to < 1 ns.  
5. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.  
6. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.  
SIMPLIFIED  
INPUT PIN EQUIVALENT  
ZADIN  
CIRCUIT  
SIMPLIFIED  
CHANNEL SELECT  
CIRCUIT  
Pad  
leakage  
ZAS  
ADC SAR  
ENGINE  
RAS  
RADIN  
VADIN  
CAS  
VAS  
RADIN  
RADIN  
RADIN  
INPUT PIN  
INPUT PIN  
INPUT PIN  
CADIN  
Figure 12. ADC input impedance equivalency diagram  
62  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
6.5.6.1.2 16-bit ADC electrical characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA  
)
Symbol Description  
Conditions1  
Min.  
0.215  
1.2  
Typ.2  
Max.  
1.7  
3.9  
6.1  
7.3  
9.5  
Unit  
Notes  
IDDA_ADC Supply current  
mA  
3
ADC asynchronous  
clock source  
• ADLPC=1, ADHSC=0  
• ADLPC=1, ADHSC=1  
• ADLPC=0, ADHSC=0  
• ADLPC=0, ADHSC=1  
2.4  
4.0  
5.2  
6.2  
MHz tADACK =  
1/fADACK  
2.4  
fADACK  
3.0  
4.4  
Sample Time  
See Reference Manual chapter for sample times  
TUE Total unadjusted  
error  
• 12-bit modes  
• <12-bit modes  
4
6.8  
2.1  
LSB4  
LSB4  
5
5
1.4  
DNL Differential non-  
linearity  
• 12-bit mode; Buck  
Mode6  
• 12-bit mode; Bypass  
Mode  
0.7  
0.5  
–1.1 to +1.9  
–1.1 to +1.9  
INL  
Integral non-  
linearity  
• 12-bit mode; Buck  
Mode6  
• 12-bit mode; Bypass  
Mode  
1.0  
0.6  
–2.7 to +1.9  
–2.7 to +1.9  
LSB4  
5
EFS  
EQ  
Full-scale error  
• 12-bit modes  
• <12-bit modes  
• 16-bit modes  
• ≤13-bit modes  
–4  
–1.4  
–1 to 0  
–5.4  
–1.8  
LSB4 VADIN  
VDDA  
=
5
Quantization error  
LSB4  
0.5  
ENOB Effective number of 16-bit differential mode; Buck  
7
bits  
Mode6  
12  
12.75  
11.75  
bits  
• Avg = 32  
• Avg = 4  
11.25  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
• Avg = 4  
11  
11.5  
10.5  
9.5  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
• Avg = 4  
12.5  
13  
12  
11.25  
16-bit single-ended mode;  
Bypass Mode  
11  
11.75  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
63  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
• Avg = 32  
• Avg = 4  
10  
10.5  
Signal-to-noise  
SINAD  
See ENOB  
6.02 × ENOB + 1.76  
dB  
plus distortion  
THD Total harmonic  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
–90  
–88  
dB  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
–89  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
See ENOB  
–87  
Signal-to-noise  
SINAD  
6.02 × ENOB + 1.76  
dB  
dB  
plus distortion  
SFDR Spurious free  
dynamic range  
distortion  
16-bit differential mode; Buck  
Mode6  
8
• Avg = 32  
85  
85  
89  
87  
16-bit single-ended mode;  
Buck Mode6  
• Avg = 32  
16-bit differential mode;  
Bypass Mode  
• Avg = 32  
87  
85  
94  
16-bit single-ended mode;  
Bypass Mode  
• Avg = 32  
88  
EIL  
Input leakage error  
IIn × RAS  
mV  
IIn =  
leakage  
current  
(see  
Voltage  
and  
current  
operating  
ratings)  
Temp sensor slope Across the full temperature  
range of the device  
1.67  
1.74  
1.81  
mV/°  
C
9
Table continues on the next page...  
64  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 31. 16-bit ADC characteristics (VREFH = VDDA, VREFL = VSSA) (continued)  
Symbol Description  
Conditions1  
Min.  
Typ.2  
Max.  
Unit  
Notes  
VTEMP25 Temp sensor  
voltage  
25 °C  
706  
716  
726  
mV  
9
1. All accuracy numbers assume that the ADC is calibrated with VREFH = VDDA  
.
2. Typical values assume VDDA = 3.0 V, Temp = 25 °C, fADCK = 2.0 MHz unless otherwise stated. Typical values are for  
reference only and are not tested in production.  
3. The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low-  
power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with  
1 MHz ADC conversion clock speed.  
4. 1 LSB = (VREFH - VREFL)/2N.  
5. ADC conversion clock < 16 MHz, maximum hardware averaging (AVGE = %1, AVGS = %11).  
6. VREFH = Output of Voltage Reference(VREF).  
7. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.  
8. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.  
9. ADC conversion clock < 3 MHz.  
6.5.6.2 Voltage reference electrical specifications  
Table 32. VREF full-range operating requirements  
Symbol  
VDDA  
TA  
Description  
Min.  
Max.  
Unit  
V
Notes  
Supply voltage  
Temperature  
1.71  
3.6  
–40 to 105  
100  
°C  
nF  
CL  
Output load capacitance  
1, 2  
1. CL must be connected to VREF_OUT if the VREF_OUT functionality is being used for either an internal or external  
reference.  
2. The load capacitance should not exceed +/–25% of the nominal specified CL value over the operating temperature  
range of the device.  
Table 33. VREF full-range operating behaviors  
Symbol Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Vout  
Voltage reference output with factory trim at  
1.190  
1.1950  
1.2  
V
1
nominal VDDA and temperature=25 °C  
Vout  
Voltage reference output with user trim at  
nominal VDDA and temperature=25 °C  
1.1945  
1.1950  
1.1955  
V
1
Vstep  
Vtdrift  
Voltage reference trim step  
0.5  
mV  
mV  
1
1
Temperature drift (Vmax -Vmin across the full  
temperature range)  
20  
Ibg  
Ilp  
Bandgap only current  
80  
360  
1
µA  
uA  
mA  
µV  
Low-power buffer current  
High-power buffer current  
1
1
Ihp  
ΔVLOAD Load regulation  
1, 2  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
65  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 33. VREF full-range operating behaviors (continued)  
Symbol Description  
• current = 1.0 mA  
Min.  
Typ.  
Max.  
Unit  
Notes  
200  
Tstup  
Buffer startup time  
100  
35  
µs  
Tchop_osc_st Internal bandgap start-up delay with chop  
ms  
oscillator enabled  
up  
Vvdrift  
Voltage drift (Vmax –Vmin across the full voltage  
range)  
2
mV  
1
1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.  
2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load  
Table 34. VREF limited-range operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
TA  
Temperature  
0
70  
°C  
Table 35. VREF limited-range operating behaviors  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Vtdrift  
Temperature drift (Vmax –Vmin across the limited  
temperature range)  
15  
mV  
6.5.6.3 CMP and 6-bit DAC electrical specifications  
Table 36. Comparator and 6-bit DAC electrical specifications  
Symbol  
VDD  
Description  
Min.  
1.71  
Typ.  
Max.  
3.6  
Unit  
V
Supply voltage  
IDDHS  
IDDLS  
VAIN  
Supply current, High-speed mode (EN=1, PMODE=1)  
Supply current, low-speed mode (EN=1, PMODE=0)  
Analog input voltage  
200  
20  
μA  
μA  
V
VSS – 0.3  
VDD  
20  
VAIO  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
mV  
VH  
5
mV  
mV  
mV  
mV  
10  
20  
30  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
VCMPOh  
VCMPOl  
Output high  
Output low  
VDD – 0.5  
V
V
0.5  
Table continues on the next page...  
66  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 36. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
tDHS  
Description  
Min.  
20  
Typ.  
50  
250  
Max.  
200  
600  
40  
Unit  
ns  
Propagation delay, high-speed mode (EN=1, PMODE=1)  
Propagation delay, low-speed mode (EN=1, PMODE=0)  
Analog comparator initialization delay2  
6-bit DAC current adder (enabled)  
tDLS  
80  
ns  
μs  
IDAC6b  
INL  
7
μA  
LSB3  
6-bit DAC integral non-linearity  
–0.5  
–0.3  
0.5  
0.3  
DNL  
6-bit DAC differential non-linearity  
LSB  
1. Typical hysteresis is measured with input voltage range limited to 0.6 to VDD–0.6 V.  
2. Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to  
CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and  
CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.  
3. 1 LSB = Vreference/64  
0.08  
0.07  
0.06  
HYSTCTR  
Setting  
0.05  
0.04  
0.03  
00  
01  
10  
11  
0.02  
0.01  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 13. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
67  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
0.18  
0.16  
0.14  
0.12  
HYSTCTR  
Setting  
0.1  
00  
01  
10  
11  
0.08  
0.06  
0.04  
0.02  
0
0.1  
0.4  
0.7  
1
1.3  
1.6  
1.9  
2.2  
2.5  
2.8  
3.1  
Vin level (V)  
Figure 14. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)  
6.5.7 Timers  
See General switching specifications.  
6.5.8 Communication interfaces  
6.5.8.1 CAN switching specifications  
See General switching specifications.  
68  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
6.5.8.2 DSPI switching specifications (limited voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See  
the DSPI chapter of the Reference Manual for information on the modified transfer  
formats used for communicating with slower peripheral devices.  
Table 37. Master mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
2.7  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DS3  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
DSPI_PCSn valid to DSPI_SCK delay  
2 x tBUS  
(tSCK/2) − 2 (tSCK/2) + 2  
ns  
(tBUS x 2) −  
2
ns  
1
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
2
ns  
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
–2  
8.5  
ns  
ns  
ns  
ns  
16.2  
0
1. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 15. DSPI classic SPI timing — master mode  
Table 38. Slave mode DSPI timing (limited voltage range)  
Num  
Description  
Min.  
Max.  
3.6  
6
Unit  
V
Operating voltage  
2.7  
Frequency of operation  
MHz  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
69  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 38. Slave mode DSPI timing (limited voltage range) (continued)  
Num  
DS9  
Description  
DSPI_SCK input cycle time  
Min.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) − 2  
(tSCK/2) + 2  
DSPI_SCK to DSPI_SOUT valid  
0
21.4  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
2.6  
7.0  
14  
14  
SPI_SS  
DS10  
DS9  
SPI_SCK  
(POL=0)  
DS15  
DS12  
DS16  
DS11  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 16. DSPI classic SPI timing — slave mode  
6.5.8.3 DSPI switching specifications (full voltage range)  
The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with  
master and slave operations. Many of the transfer attributes are programmable. The  
tables below provide DSPI timing characteristics for classic SPI timing modes. See the  
DSPI chapter of the Reference Manual for information on the modified transfer formats  
used for communicating with slower peripheral devices.  
Table 39. Master mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
1.71  
Max.  
3.6  
12  
Unit  
V
Notes  
Operating voltage  
1
Frequency of operation  
MHz  
ns  
DS1  
DS2  
DSPI_SCK output cycle time  
DSPI_SCK output high/low time  
2 x tBUS  
(tSCK/2) – 4 (tSCK/2) + 4  
Table continues on the next page...  
ns  
70  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
KW39/38/37 Electrical Characteristics  
Table 39. Master mode DSPI timing (full voltage range) (continued)  
Num  
Description  
Min.  
Max.  
Unit  
Notes  
DS3  
DSPI_PCSn valid to DSPI_SCK delay  
(tBUS x 2) −  
4
ns  
2
DS4  
DSPI_SCK to DSPI_PCSn invalid delay  
(tBUS x 2) −  
4
ns  
3
DS5  
DS6  
DS7  
DS8  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
–1.2  
23.3  
0
10  
ns  
ns  
ns  
ns  
1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage  
range the maximum frequency of operation is reduced.  
2. The delay is programmable in SPIx_CTARn[PCSSCK] and SPIx_CTARn[CSSCK].  
3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].  
SPI_PCSn  
DS1  
DS3  
DS2  
DS4  
SPI_SCK  
(CPOL=0)  
DS8  
DS7  
Data  
Last data  
First data  
SPI_SIN  
DS5  
DS6  
First data  
Data  
Last data  
SPI_SOUT  
Figure 17. DSPI classic SPI timing — master mode  
Table 40. Slave mode DSPI timing (full voltage range)  
Num  
Description  
Min.  
Max.  
Unit  
V
Operating voltage  
1.71  
3.6  
Frequency of operation  
6
MHz  
ns  
DS9  
DSPI_SCK input cycle time  
4 x tBUS  
DS10  
DS11  
DS12  
DS13  
DS14  
DS15  
DS16  
DSPI_SCK input high/low time  
(tSCK/2) – 4  
(tSCK/2) + 4  
ns  
DSPI_SCK to DSPI_SOUT valid  
DSPI_SCK to DSPI_SOUT invalid  
DSPI_SIN to DSPI_SCK input setup  
DSPI_SCK to DSPI_SIN input hold  
DSPI_SS active to DSPI_SOUT driven  
DSPI_SS inactive to DSPI_SOUT not driven  
0
29.1  
ns  
ns  
3.2  
7.0  
ns  
ns  
25  
25  
ns  
ns  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
71  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
SPI_SS  
DS10  
DS9  
SPI_SCK  
DS15  
DS12  
DS16  
DS11  
(POL=0)  
First data  
DS14  
Last data  
SPI_SOUT  
Data  
Data  
DS13  
First data  
Last data  
SPI_SIN  
Figure 18. DSPI classic SPI timing — slave mode  
6.5.8.4 Inter-Integrated Circuit Interface (I2C) timing  
Table 41. I 2C timing  
Characteristic  
Symbol  
Standard Mode  
Minimum Maximum  
100  
Fast Mode  
Unit  
Minimum  
Maximum  
400  
SCL Clock Frequency  
fSCL  
0
0
kHz  
µs  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated.  
tHD; STA  
4
0.6  
LOW period of the SCL clock  
HIGH period of the SCL clock  
tLOW  
tHIGH  
4.7  
4
1.3  
0.6  
0.6  
µs  
µs  
µs  
Set-up time for a repeated START  
condition  
tSU; STA  
4.7  
Data hold time for I2C bus devices  
tHD; DAT  
tSU; DAT  
tr  
01  
2504  
3.452  
03  
1002, 5  
0.91  
µs  
ns  
ns  
Data set-up time  
5,  
5,  
Rise time of SDA and SCL signals  
1000  
20 +0.1Cb  
300  
6
Fall time of SDA and SCL signals  
Set-up time for STOP condition  
tf  
300  
20 +0.1Cb  
300  
ns  
6
tSU; STO  
tBUF  
4
0.6  
1.3  
µs  
µs  
Bus free time between STOP and  
START condition  
4.7  
Pulse width of spikes that must be  
suppressed by the input filter  
tSP  
N/A  
N/A  
0
50  
ns  
1. The master mode I2C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves  
acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL  
lines.  
2. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.  
3. Input signal Slew = 10 ns and Output Load = 50 pF.  
4. Set-up time in slave-transmitter mode is 1 IP Bus clock period, if the TX FIFO is empty.  
72  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
5. A Fast mode I2C bus device can be used in a Standard mode I2C bus system, but the requirement tSU; DAT ≥ 250 ns  
must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If  
such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line trmax  
+ tSU; DAT = 1000 + 250 = 1250 ns (according to the Standard mode I2C bus specification) before the SCL line is  
released.  
6. Cb = total capacitance of the one bus line in pF.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 19. Timing definition for fast and standard mode devices on the I2C bus  
6.5.8.5 LPUART  
See General switching specifications.  
6.5.9 Human-machine interfaces (HMI)  
6.5.9.1 GPIO  
The maximum input voltage on PTC0/1/2/3 is VDD+0.3V. For rest of the GPIO  
specification, see General switching specifications.  
6.6 DC-DC Converter Operating Requirements  
Table 42. DC-DC Converter operating conditions  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Bypass Mode Supply Voltage (RF and Analog)  
VDDRF1  
VDDRF2  
,
,
1.425  
3.6  
Vdc  
VDDRF3, VDD_1P5  
Bypass Mode Supply Voltage (Digital)  
VDDX, VDCDC_IN  
VDDA  
,
1.71  
2.1  
3.6  
3.6  
Vdc  
Vdc  
Buck Mode Supply Voltage 1, 2  
DC-DC Inductor  
Value  
VDCDC_IN  
10  
μH  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
73  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 42. DC-DC Converter operating conditions (continued)  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
ESR  
<0.2  
<0.5  
Ohms  
1. In Buck mode, DC-DC converter needs 2.1 V minimum to start, the supply can drop to 1.8 V after DC-DC converter  
settles.  
2. In Buck mode, DC-DC converter generates 1.8 V at VDD_1P8OUT and 1.5 V at VDD_1P5OUT_PMCIN pins.  
VDD_1P8OUT should supply to VDD1, VDD2 and VDDA. VDD_1P5OUT_PMCIN should supply to VDD_RF1 and  
VDD_RF2. VDD_RF3 can be either supplied by 1.5 V or 1.8 V.  
Table 43. DC-DC Converter Specifications  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
1951  
1401  
Unit  
mW  
mW  
DC-DC Converter Output  
Power (total power output of  
1p8V and 1p5V)  
VDCDC_IN above 2.7 V Pdcdc_out1  
VDCDC_IN below 2.7 V Pdcdc_out2  
Switching Frequency2  
Half FET Threshold  
Double FET Threshold  
Buck Mode  
DCDC_FREQ  
I_half_FET  
2
5
MHz  
mA  
I_double_FET  
40  
mA  
DC-DC Conversion Efficiency  
DCDC_EFF_buck  
VDD_1P8_buck  
90%  
1.71  
min(VDCD Vdc  
C_IN_buck  
, 3.5)3, 4  
1.8 V Output Voltage  
VDD_1P8 = 3.0 V  
IDD_1P8_buck1  
IDD_1P8_buck2  
IDD_1P8_buck3  
39  
45  
35  
mA  
mA  
mA  
1.5 V <= VDC_1P5  
<= 1.7 V  
VDCDC_IN=3.1 V  
VDD_1P8 = 2.65 V  
1.5 V <= VDC_1P5  
<= 1.7 V  
1.8 V Output Current5, 6  
VDCDC_IN=2.7 V  
VDD_1P8 = 1.8 V  
1.5 V <= VDC_1P5  
<= 1.7 V  
VDCDC_IN=2.1 V  
7
1.5 V Output Voltage  
1.5 V Output Current5, 8  
Consumed by Radio VDD_1P5_buck  
IDD_1P5_buck  
1.5  
1.8  
45  
Vdc  
mA  
μs  
DC-DC Transition Operating  
Behavior  
LSSRun  
t_DCDCbuck_LSSR  
50  
UN  
DC-DC Turn on Time  
TDCDC_ON  
TDCDC_SETTLE_buck  
2.29  
3.11  
ms  
DC-DC Settling Time for  
increasing voltage  
ms/V  
Table continues on the next page...  
74  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
KW39/38/37 Electrical Characteristics  
Table 43. DC-DC Converter Specifications (continued)  
Characteristics  
Conditions  
Symbol  
Min  
Typ  
Max  
Unit  
DC-DC Settling Time for  
decreasing voltage  
C = capacitance  
attached to the DC-  
DC V1P8 output rail.  
TDCDC_SETTLE_buck  
(C*(V1–  
V2)/I2  
s
V1 = the initial output  
voltage of the DC-DC  
V2 = the final output  
voltage of the DC-DC  
I2 = the load on the  
DC-DC output  
expressed in  
Amperes.  
1. This is the steady state DC output power. Excessive transient current load from external device will cause 1p8V and  
1P5 output voltage unregulated temporary.  
2. This is the frequency that is observed at LN and LP pins.  
3. The voltage output level can be controlled by programming DCDC_VDD1P8CTRL_TRG field in DCDC_REG3.  
4. In Buck mode, the maximum VDD_1P8 output is the minimum of either VDCDC_IN_BUCK minus 50 mV or 3.5 V. For  
example, if VDCDC_IN = 2.1 V, maximum VDD_1P8 is 2.05 V. If VDCDC_IN = 3.6 V, maximum VDD_1P8 is 3.5 V.  
5. The output current specification in buck mode represents the maximum current the DC-DC converter can deliver. The  
KW39/38/37 radio and MCU blocks current consumption is not excluded. The maximum output power of the DC-DC  
converter is 140 mW when VDCDC_IN is below 2.7 V and 195 mW when VDCDC_IN is above 2.7 V. The available supply  
current for external device depends on the energy consumed by the internal peripherals in KW39/38/37.  
6. When using DC-DC in low-power mode (pulsed mode), current load must be less than 1 mA.  
7. User needs to program DCDC_VDD1P5CTRL_TRG_BUCK field in DCDC_REG3 register to ensure that a worst case  
minimum of 1.5 V is available as VDD_1P5_buck. VDD_1P5 must not be programmed higher than VDD_1P8.  
8. 1.5 V is intended to supply power to KW39/38/37. It is not designed to supply power to an external device.  
9. Turn on time is measured from the application of power (to DCDC_IN) till the DCDC_REG0[DCDC_STS_DC_OK] bit  
is set. Code execution may begin before the DCDC_REG0[DCDC_STS_DC_OK] bit is set. The full device  
specification is not guaranteed until the bit sets.  
6.7 Ratings  
6.7.1 Thermal handling ratings  
Table 44. Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
–55  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
75  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
6.7.2 Moisture handling ratings  
Table 45. Moisture handling ratings  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
MSL  
Moisture sensitivity level  
3
1
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
6.7.3 ESD handling ratings  
Table 46. ESD handling ratings  
Symbol Description  
Min.  
Max.  
Unit  
Notes  
VHBM  
VCDM  
Electrostatic discharge voltage, human body model  
–2000  
+2000  
V
1
2
Electrostatic discharge voltage, charged-device model  
All pins except the corner pins  
–500  
–750  
–100  
500  
750  
V
V
Corner pins only  
ILAT  
Latch-up current at ambient temperature of 105 °C  
+100  
mA  
3
1. Determined according to JEDEC Standard JS001, Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM).  
2. Determined according to JEDEC Standard JS002, Field-Induced Charged-Device Model Test Method for Electrostatic-  
Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
6.7.4 Voltage and current operating ratings  
Table 47. Voltage and current operating ratings  
Symbol  
VDD  
IDD  
Description  
Min.  
–0.3  
Max.  
3.8  
Unit  
V
Digital supply voltage  
Digital supply current  
IO pin input voltage  
120  
mA  
V
VIO  
–0.3  
–25  
VDD + 0.3  
25  
ID  
Instantaneous maximum current single pin limit (applies to  
all port pins)  
mA  
VDDA  
Analog supply voltage  
VDD – 0.3  
GND  
VDD + 0.3  
VDCDC  
V
V
VIO_DCDC  
IO pins in the DC-DC voltage domain (DCDC_CFG and  
PSWITCH)  
7 Pin Diagrams and Pin Assignments  
76  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.1 KW39/37 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt  
module is used to select the functionality for each GPIO pin. ALT0 is reserved for  
analog functions on some GPIO pins. ALT1 – ALT9 are assigned to the available  
digital functions on each GPIO pin. GPIO pins with a default of “disabled” are high  
impedance after reset – their input and output buffers are disabled.  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
1
PTA0  
PTA1  
SWD_DIO  
SWD_CLK  
PTA0/  
RF_ACTIVE  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
SWD_DIO  
SWD_CLK  
2
PTA1/  
RF_  
STATUS  
3
4
PTA2  
RESET_b  
PTA2  
TPM0_CH3  
TPM0_CH0  
RESET_b  
PTA16  
DISABLED  
PTA16/  
LLWU_P4  
SPI1_SOUT  
SPI1_SIN  
5
6
7
PTA17  
DISABLED  
DISABLED  
ADC0_SE5  
PSWITCH  
PTA17/  
LLWU_P5  
TPM_  
CLKIN1  
PTA18  
PTA18/  
LLWU_P6  
SPI1_SCK  
SPI1_PCS0  
TPM2_CH0  
TPM2_CH1  
PTA19  
ADC0_SE5  
PSWITCH  
PTA19/  
LLWU_P7  
8
9
PSWITCH  
DCDC_  
CFG/  
DCDC_  
CFG/  
DCDC_  
CFG/  
VDCDC_IN  
VDCDC_IN  
VDCDC_IN  
10  
11  
12  
13  
DCDC_LP  
DCDC_LP  
DCDC_LP  
DCDC_GND DCDC_GND DCDC_GND  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
14  
15  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
16  
PTB0  
DISABLED  
PTB0/  
I2C0_SCL  
CMP0_OUT TPM0_CH1  
CLKOUT  
LLWU_P8/  
RF_  
RFOSC_EN  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
77  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
17  
PTB1  
PTB2  
ADC0_SE1/ ADC0_SE1/ PTB1/  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
CMT_IRO  
CMP0_IN5  
CMP0_IN5  
RF_  
PRIORITY  
18  
ADC0_SE3/ ADC0_SE3/ PTB2/  
TPM0_CH0  
TPM2_CH0  
TPM2_CH1  
CMP0_IN3  
CMP0_IN3  
RF_NOT_  
ALLOWED/  
LLWU_P9  
19  
PTB3  
ADC0_SE2/ ADC0_SE2/ PTB3/  
TPM0_CH1  
CLKOUT  
TPM1_CH1  
RTC_  
CMP0_IN4  
CMP0_IN4  
ERCLK32K/  
RF_ACTIVE  
CLKOUT  
20  
21  
22  
23  
VDD_0  
PTB16  
PTB17  
PTB18  
VDD_0  
VDD_0  
EXTAL32K  
XTAL32K  
NMI_b  
EXTAL32K  
XTAL32K  
PTB16  
PTB17  
I2C1_SCL  
I2C1_SDA  
I2C1_SCL  
TPM2_CH0  
TPM2_CH1  
TPM0_CH0  
ADC0_SE4/ PTB18  
CMP0_IN2  
TPM_  
CLKIN0  
NMI_b  
24  
25  
26  
27  
ADC0_DP0  
ADC0_DM0  
ADC0_DP0/ ADC0_DP0/  
CMP0_IN0 CMP0_IN0  
ADC0_DM0/ ADC0_DM0/  
CMP0_IN1  
CMP0_IN1  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT  
EXTAL  
XTAL  
XTAL_OUT  
EXTAL  
XTAL_OUT  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_EARLY_  
WARNING  
ANT_B  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10  
TX_  
SWITCH  
I2C1_SCL  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
I2C0_SCL  
SPI1_SOUT  
SPI1_SIN  
PTC3/  
LLWU_P11  
RX_  
SWITCH  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
PTC4/  
LLWU_P12/  
RF_ACTIVE  
ANT_A  
LPUART0_  
CTS_b  
SPI1_PCS0  
78  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
41  
PTC5  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
LLWU_P13/  
RF_NOT_  
ALLOWED/  
RF_  
PRIORITY  
42  
43  
PTC6  
PTC7  
DISABLED  
DISABLED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
LPUART0_  
RX  
TPM2_CH0  
RFOSC_EN  
PTC7/  
LLWU_P15  
SPI0_PCS2  
SPI0_SCK  
I2C1_SDA  
I2C0_SDA  
LPUART0_  
TX  
TPM2_CH1  
TPM0_CH3  
44  
45  
VDD_1  
PTC16  
VDD_1  
VDD_1  
DISABLED  
PTC16/  
LLWU_P0/  
RF_  
LPUART0_  
RTS_b  
STATUS  
46  
PTC17  
DISABLED  
PTC17/  
SPI0_SOUT I2C1_SCL  
LPUART0_  
RX  
DTM_RX  
DTM_TX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
47  
48  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC18/  
LLWU_P2  
SPI0_SIN  
I2C1_SDA  
I2C0_SCL  
LPUART0_  
TX  
PTC19/  
SPI0_PCS0  
LPUART0_  
CTS_b  
LLWU_P3/  
RF_EARLY_  
WARNING  
49  
Ground  
NA  
7.2 KW38 Signal Multiplexing and Pin Assignments  
The following table shows the signals available on each pin and the locations of these  
pins on the devices supported by this document. The Port Control and Interrupt  
module is used to select the functionality for each GPIO pin. ALT0 is reserved for  
analog functions on some GPIO pins. ALT1 – ALT9 are assigned to the available  
digital functions on each GPIO pin. GPIO pins with a default of “disabled” are high  
impedance after reset – their input and output buffers are disabled.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
79  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
1
PTA0  
SWD_DIO  
SWD_CLK  
PTA0/  
RF_ACTIVE  
SPI0_PCS1  
SPI1_PCS0  
TPM1_CH0  
TPM1_CH1  
SWD_DIO  
SWD_CLK  
RESET_b  
2
PTA1  
PTA1/  
RF_STATUS  
3
4
PTA2  
RESET_b  
PTA2  
TPM0_CH3  
TPM0_CH0  
PTA16  
DISABLED  
PTA16/  
LLWU_P4  
SPI1_SOUT  
SPI1_SIN  
LPUART1_  
RTS_b  
5
6
7
PTA17  
DISABLED  
DISABLED  
ADC0_SE5  
PSWITCH  
PTA17/  
LLWU_P5  
LPUART1_  
RX  
CAN0_TX  
CAN0_RX  
TPM_  
CLKIN1  
PTA18  
PTA18/  
LLWU_P6  
SPI1_SCK  
SPI1_PCS0  
LPUART1_  
TX  
TPM2_CH0  
PTA19  
ADC0_SE5  
PSWITCH  
PTA19/  
LLWU_P7  
LPUART1_  
CTS_b  
TPM2_CH1  
8
9
PSWITCH  
DCDC_CFG/ DCDC_CFG/ DCDC_CFG/  
VDCDC_IN  
VDCDC_IN  
VDCDC_IN  
10  
11  
12  
13  
DCDC_LP  
DCDC_LP  
DCDC_LP  
DCDC_GND DCDC_GND DCDC_GND  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P8OUT  
1P8OUT  
1P8OUT  
14  
15  
DCDC_LN  
DCDC_LN  
DCDC_LN  
VDD_  
VDD_  
VDD_  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
1P5OUT_  
PMCIN  
16  
PTB0  
DISABLED  
PTB0/  
I2C0_SCL  
CMP0_OUT  
TPM0_CH1  
CLKOUT  
CAN0_TX  
LLWU_P8/  
RF_  
RFOSC_EN  
17  
18  
PTB1  
PTB2  
ADC0_SE1/  
CMP0_IN5  
ADC0_SE1/  
CMP0_IN5  
PTB1/  
RF_  
PRIORITY  
DTM_RX  
I2C0_SDA  
DTM_TX  
LPTMR0_  
ALT1  
TPM0_CH2  
TPM1_CH0  
CMT_IRO  
CAN0_RX  
ADC0_SE3/  
CMP0_IN3  
ADC0_SE3/  
CMP0_IN3  
PTB2/  
TPM0_CH0  
TPM2_CH0  
RF_NOT_  
ALLOWED/  
LLWU_P9  
19  
PTB3  
ADC0_SE2/  
CMP0_IN4  
ADC0_SE2/  
CMP0_IN4  
PTB3/  
ERCLK32K/  
RF_ACTIVE  
LPUART1_  
RTS_b  
TPM0_CH1  
CLKOUT  
TPM1_CH1  
RTC_  
CLKOUT  
TPM2_CH1  
20  
21  
VDD_0  
PTB16  
VDD_0  
VDD_0  
EXTAL32K  
EXTAL32K  
PTB16  
PTB17  
LPUART1_  
RX  
I2C1_SCL  
I2C1_SDA  
TPM2_CH0  
TPM2_CH1  
22  
PTB17  
XTAL32K  
XTAL32K  
LPUART1_  
TX  
80  
NXP Semiconductors  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
23  
24  
25  
26  
27  
PTB18  
NMI_b  
ADC0_SE4/  
CMP0_IN2  
PTB18  
LPUART1_  
CTS_b  
I2C1_SCL  
TPM_  
CLKIN0  
TPM0_CH0  
NMI_b  
ADC0_DP0  
ADC0_DM0  
ADC0_DP0/  
CMP0_IN0  
ADC0_DP0/  
CMP0_IN0  
ADC0_DM0/ ADC0_DM0/  
CMP0_IN1  
CMP0_IN1  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFL/  
VSSA  
VREFH/  
VREFH/  
VREFH/  
VREF_OUT  
VREF_OUT  
VREF_OUT  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
VDDA  
VDDA  
VDDA  
XTAL_OUT  
EXTAL  
XTAL  
XTAL_OUT  
EXTAL  
XTAL_OUT  
EXTAL  
XTAL  
XTAL  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
VDD_RF3  
ANT  
GANT  
GANT  
GANT  
VDD_RF2  
VDD_RF1  
PTC1  
VDD_RF2  
VDD_RF1  
DISABLED  
VDD_RF2  
VDD_RF1  
PTC1/  
RF_EARLY_  
WARNING  
ANT_B  
I2C0_SDA  
LPUART0_  
RTS_b  
TPM0_CH2  
SPI1_SCK  
38  
39  
40  
PTC2  
PTC3  
PTC4  
DISABLED  
DISABLED  
DISABLED  
PTC2/  
LLWU_P10  
TX_SWITCH I2C1_SCL  
LPUART0_  
RX  
CMT_IRO  
DTM_RX  
DTM_TX  
I2C0_SCL  
SPI1_SOUT  
SPI1_SIN  
PTC3/  
LLWU_P11  
RX_  
I2C1_SDA  
EXTRG_IN  
LPUART0_  
TX  
TPM0_CH1  
TPM1_CH0  
CAN0_TX  
CAN0_RX  
SWITCH  
PTC4/  
LLWU_P12/  
RF_ACTIVE  
ANT_A  
LPUART0_  
CTS_b  
SPI1_PCS0  
41  
PTC5  
DISABLED  
PTC5/  
LPTMR0_  
ALT2  
LPUART0_  
RTS_b  
TPM1_CH1  
LLWU_P13/  
RF_NOT_  
ALLOWED/  
RF_  
PRIORITY  
42  
PTC6  
DISABLED  
PTC6/  
LLWU_P14/  
RF_  
I2C1_SCL  
I2C1_SDA  
LPUART0_  
RX  
TPM2_CH0  
TPM2_CH1  
RFOSC_EN  
43  
44  
PTC7  
DISABLED  
VDD_1  
PTC7/  
LLWU_P15  
SPI0_PCS2  
LPUART0_  
TX  
VDD_1  
VDD_1  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
81  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
48  
Pin Name  
Default  
ALT0  
ALT1  
ALT2  
ALT3  
ALT4  
ALT5  
ALT6  
ALT7  
ALT8  
ALT9  
"Wett  
able"  
HVQ  
FN  
45  
PTC16  
PTC17  
DISABLED  
DISABLED  
PTC16/  
LLWU_P0/  
RF_STATUS  
SPI0_SCK  
I2C0_SDA  
I2C1_SCL  
LPUART0_  
RTS_b  
TPM0_CH3  
LPUART1_  
RTS_b  
46  
PTC17/  
SPI0_SOUT  
LPUART0_  
RX  
DTM_RX  
DTM_TX  
LPUART1_  
RX  
LLWU_P1/  
RF_EXT_  
OSC_EN  
47  
48  
PTC18  
PTC19  
DISABLED  
DISABLED  
PTC18/  
LLWU_P2  
SPI0_SIN  
I2C1_SDA  
I2C0_SCL  
LPUART0_  
TX  
LPUART1_  
TX  
PTC19/  
SPI0_PCS0  
LPUART0_  
CTS_b  
LPUART1_  
CTS_b  
LLWU_P3/  
RF_EARLY_  
WARNING  
49  
Ground  
NA  
7.3 KW39/38/37 Pinouts  
KW39/38/37 device pinouts are shown in the figure below.  
82  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
VDD_RF1  
VDD_RF2  
GANT  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
PTA0  
PTA1  
1
2
49  
PTA2  
3
ANT  
PTA16  
4
VDD_RF3  
XTAL  
PTA17  
5
PTA18  
6
PTA19  
EXTAL  
7
PSWITCH  
DCDC_CFG/VDCDC_IN  
DCDC_LP  
DCDC_GND  
DCDC_LN  
XTAL_OUT  
VDDA  
8
9
VREFH/VREF_OUT  
VREFL/VSSA  
ADC0_DM0  
10  
11  
12  
*pin 49 is ground  
Figure 20. 48-pin "Wettable" HVQFN pinout diagram  
7.4 Module Signal Description Tables  
The following sections correlate the chip-level signal name with the signal name used  
in the chapter of the module. They also briefly describe the signal function and  
direction.  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
83  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.4.1 Core Modules  
This section contains tables describing the core module signal descriptions.  
Table 48. SWD Module Signal Descriptions  
SoC Signal Name  
SWD_DIO  
Module Signal Name  
SWD_DIO  
Description  
I/O  
Serial Wire Debug Data  
Input/Output1  
Serial Wire Clock2  
I/O  
I
SWD_CLK  
SWD_CLK  
1. Pulled up internally by default  
2. Pulled down internally by default  
7.4.2 Radio Modules  
This section contains tables describing the radio signals.  
Table 49. Radio Module Signal Descriptions  
Module Signal Name  
ANT  
Pin Direction  
Pin Name  
Pin Description  
O
O
O
O
ANT  
Antenna  
ANT_A  
ANT_A  
ANT_B  
Antenna selection A for Front End Module support  
Antenna selection B for Front End Module support  
ANT_B  
RF_ACTIVE  
RF_ACTIVE  
An output which is asserted prior to any Radio event  
and remains asserted for the duration of the event.  
DTM_RX  
DTM_TX  
GANT  
I
DTM_RX  
DTM_TX  
GANT  
Direct Test Mode Receive  
Direct Test Mode Transmit  
Antenna ground  
O
I
RF_STATUS  
O
RF_STATUS  
An output which indicates when the Radio is in an  
Rx or Tx event; software can also control this signal  
directly.  
RF_PRIORITY  
O
O
RF_PRIORITY  
An output which indicates to the external WiFi  
device that the Radio event is a high priority and it  
needs access to the 2.4 GHz antenna.  
RF_EARLY_WARNING  
RF_EARLY_WARNING Bluetooth LE LL generated signal which can be  
used to wake an external sensor to make a  
measurement before a Bluetooth LE event.  
RF_NOT_ALLOWED  
RF_TX_CONF  
I
I
RF_NOT_ALLOWED  
RF_TX_CONF  
External signal which causes the internal Radio to  
cease radio activity.  
Signal from an external Radio which indicates the  
availability of the 2.4 GHz antenna to the internal  
Radio.  
NOTE: This is a GPIO, not a dedicated PIN.  
RX_SWITCH  
TX_SWITCH  
O
O
RX_SWITCH  
TX_SWITCH  
Front End Module receive mode signal.  
Front End Module transmit mode signal.  
84  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 50. Radio Module Miscellaneous Pin Descriptions  
Pin Name  
Pad Direction  
Pin Name  
Pin Description  
RF_INT_OSC_EN  
I
RF_RFOSC_EN  
External request to turn on the Radio's internal RF  
oscillator.  
RF_EXT_OSC_EN  
O
RF_EXT_OSC_EN  
Internal request to turn on an External oscillator for  
use by the internal Radio. The request can also be  
from the SoC if it is using the RF oscillator as its  
clock.  
7.4.3 System Modules  
This section contains tables describing the system signals.  
Table 51. System Module Signal Descriptions  
SoC Signal Name  
NMI_b  
Module Signal Name  
Description  
Non-maskable interrupt  
Reset bidirectional signal  
Power supply  
I/O  
I
RESET_b  
I/O  
VDD_[1:0]  
Ground  
VDD  
I
VSS  
Ground  
I
VDD_RF[3:1]  
VDCDC_IN  
VDD_1P8OUT  
VDD_RF  
VDCDC_IN  
VDD_1P8  
Radio power supply  
VDCDC_IN  
I
I
DC-DC 1.8 V Regulated  
Output / Input in bypass  
I/O  
VDD_1P5OUT_PMCIN  
VDD_1P5/VDD_PMC  
DC-DC 1.5 V Regulated  
Output / PMC Input in  
bypass  
I/O  
PSWITCH  
DCDC_CFG  
DCDC_LP  
PSWITCH  
DCDC_CFG  
DCDC_LP  
DC-DC enable switch  
I
DC-DC switch mode select  
I
DC-DC inductor input  
positive  
I/O  
DCDC_LN  
DCDC_LN  
DC-DC inductor input  
negative  
I/O  
I
DCDC_GND  
DCDC_GND  
DC-DC ground  
Table 52. LLWU Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
LLWU_P[15:0]  
Description  
Wake-up inputs  
I/O  
LLWU_P[15:0]  
I
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
85  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.4.4 Clock Modules  
This section contains tables for Clock signal descriptions.  
Table 53. Clock Module Signal Descriptions  
SoC Signal Name  
EXTAL  
Module Signal Name  
EXTAL  
Description  
I/O  
26 MHz/32 MHz External  
clock/Oscillator input  
I
I
XTAL  
XTAL  
26 MHz/32 MHz Oscillator  
input  
XTAL_OUT  
XTAL_OUT  
26 MHz/32 MHz Clock output O  
XTAL_OUT_EN  
XTAL_OUT_ENABLE  
26 MHz/32 MHz Clock output I  
enable for XTAL_OUT  
EXTAL32K  
EXTAL32K  
32 kHz External clock/  
Oscillator input  
I
XTAL32K  
CLKOUT  
XTAL32K  
CLKOUT  
32 kHz Oscillator input  
Internal clocks monitor  
I
O
7.4.5 Analog Modules  
This section contains tables for Analog signal descriptions.  
Table 54. ADC0 Signal Descriptions  
SoC Signal Name  
ADC0_DM0  
Module Signal Name  
DADM0  
Description  
I/O  
ADC Channel 0 Differential  
Input Negative  
I
I
ADC0_DP0  
ADC0_SE[5:1]  
VREFH  
DADP0  
AD[5:1]  
VREFSH  
ADC Channel 0 Differential  
Input Positive  
ADC Channel 0 Single-ended I  
Input n  
Voltage Reference Select  
High  
I
VDDA  
VSSA  
VDDA  
VSSA  
Analog Power Supply  
Analog Ground  
I
I
Table 55. CMP0 Signal Descriptions  
SoC Signal Name  
Module Signal Name  
IN[5:0]  
CMP0  
Description  
Analog voltage inputs  
Comparator output  
I/O  
CMP0_IN[5:0]  
CMP0_OUT  
I
O
86  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
Table 56. VREF Signal Descriptions  
SoC Signal Name  
VREF_OUT  
Module Signal Name  
VREF_OUT  
Description  
I/O  
Internally generated voltage  
reference output  
O
7.4.6 Timer Modules  
This section contains tables describing timer module signals.  
Table 57. TPM0 Module Signal Descriptions  
SoC Signal Name  
TPM_CLKIN[1:0]  
TPM0_CH[3:0]  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[3:0]  
Description  
External clock  
TPM channel  
I/O  
I/O  
I/O  
I
I/O  
Table 58. TPM1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM1_CH[1:0]  
I
I/O  
Table 59. TPM2 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
TPM_EXTCLK  
TPM_CH[1:0]  
Description  
External clock  
TPM channel  
TPM_CLKIN[1:0]  
TPM2_CH[1:0]  
I
I/O  
Table 60. LPTMR0 Module Signal Descriptions  
SoC Signal Name  
LPTMR0_ALT[2:1]  
Module Signal Name  
Description  
I/O  
I/O  
LPTMR0_ALT[2:1]  
Pulse counter input pin  
I
Table 61. RTC Module Signal Descriptions  
SoC Signal Name  
RTC_CLKOUT  
Module Signal Name  
RTC_CLKOUT  
Description  
1 Hz square-wave output  
O
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
87  
NXP Semiconductors  
Pin Diagrams and Pin Assignments  
7.4.7 Communication Interfaces  
This section contains tables for the signal descriptions for the communication modules.  
Table 62. SPI0 Module Signal Descriptions  
SoC Signal Name  
SPI0_PCS0  
Module Signal Name  
PCS0/SS  
Description  
Chip Select/Slave Select  
Chip Select  
I/O  
I/O  
O
SPI0_PCS[2:1]  
SPI0_SCK  
PCS[2:1]  
SCK  
Serial Clock  
I/O  
I
SPI0_SIN  
SIN  
Data In  
SPI0_SOUT  
SOUT  
Data Out  
O
Table 63. SPI1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SPI1_PCS0  
Description  
Chip Select/Slave Select  
Serial Clock  
I/O  
SPI1_PCS0  
SPI1_SCK  
SPI1_SIN  
I/O  
I/O  
I
SCK  
SIN  
Data In  
SPI1_SOUT  
SOUT  
Data Out  
O
Table 64. I2C0 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I/O  
I/O  
I/O  
I2C0_SCL  
I2C0_SDA  
I/O  
I/O  
Table 65. I2C1 Module Signal Descriptions  
SoC Signal Name  
Module Signal Name  
SCL  
SDA  
Description  
I2C serial clock line  
I2C serial data line  
I2C1_SCL  
I2C1_SDA  
I/O  
I/O  
Table 66. CAN0 Signal Descriptions (KW38 only)  
SoC Signal Name  
Module Signal Name  
CAN RX  
CAN TX  
Description  
CAN Receive Pin  
CAN Transmit Pin  
CAN0_RX  
CAN0_TX  
I
O
88  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Package Information  
Table 67. LPUART0 Module Signal Descriptions  
SoC Signal Name  
LPUART0_CTS_b  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
I/O  
I
LPUART0_RTS_b  
LPUART0_RX  
LPUART0_TX  
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
Table 68. LPUART1 Module Signal Descriptions (KW38 only)  
SoC Signal Name  
LPUART1_CTS_b  
Module Signal Name  
LPUART CTS  
Description  
Clear To Send  
I/O  
I
LPUART1_RTS_b  
LPUART1_RX  
LPUART1_TX  
LPUART RTS  
LPUART RxD  
LPUART TxD  
Request To Send  
Receive Data  
Transmit Data1  
O
I
I/O  
1. This pin is normally an output, but is an input (tristated) in single wire mode whenever the transmitter is disabled or  
transmit direction is configured for receive data  
7.4.8 Human-Machine Interfaces(HMI)  
This section contains tables describing the HMI signals.  
Table 69. GPIO Module Signal Descriptions  
SoC Signal Name  
PTA[19:16][2:0]  
Module Signal Name  
Description  
I/O  
PORTA19-16, 2-0  
General Purpose Input/  
Output  
I/O  
I/O  
I/O  
PTB[18:16][3:0]  
PTC[19:16][7:1]  
PORTB18-16, 3-0  
PORTC19-16, 7-1  
General Purpose Input/  
Output  
General Purpose Input/  
Output  
8 Package Information  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
89  
NXP Semiconductors  
Part identification  
8.1 Obtaining package dimensions  
Package dimensions are available in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
document number of the drawing:  
Table 70. Packaging Dimensions  
If you want the drawing for this package  
48-pin "Wettable" HVQFN (7x7)  
Then use this document number  
98ASA01307D  
9 Part identification  
9.1 Description  
Part numbers for the chip have fields that identify the specific part. You can use the  
values of these fields to determine the specific part you have received.  
9.2 Format  
Part numbers for this device have the following format:  
Q KW## A FFF R T PP CC N  
9.3 Fields  
This table lists the possible values for each field in the part number (not all  
combinations are valid):  
Table 71. Part number fields descriptions  
Field  
Description  
Values  
Q
Qualification status  
• M = Fully qualified, general market flow  
• P = Prequalification  
KW##  
Kinetis Wireless family  
• KW39  
• KW38  
• KW37  
Table continues on the next page...  
90  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Revision History  
Table 71. Part number fields descriptions (continued)  
Field  
Description  
Values  
A
Key attribute  
• A = Automotive Qualification  
• Z = Industrial Qualification  
FFF  
T
Program flash memory size  
Temperature range (°C)  
• 512 = 512 KB  
• V = –40 to 105  
• C = –40 to 85  
PP  
CC  
N
Package identifier  
• FT = 48 "Wettable" HVQFN (7 mm x 7 mm)  
• 4 = 48 MHz  
Maximum CPU frequency (MHz)  
Packaging type  
• (Blank) = Tray  
• R = Tape and reel  
9.4 Example  
This is an example part number:  
MKW38A512VFT4  
10 Revision History  
Table 72. Revision History  
Rev. No.  
Date  
Substantial Changes  
Rev 7  
03/2020  
• Replaced VDD_XTAL with VDD_RF3.  
• Preceded Tx output power value, 5 dBM, with a plus "+" sign.  
• Added "256 KB P-Flash" to the fifth column name in the KW39/38/37 Part Numbers table.  
• Corrected Figure 3 to show Prg Acc RAM 8 KB in place of FlexRAM 8 KB. Also added  
"Prg Acc RAM" entry in Table 1.  
• Corrected accuracy percentage of on-chip 4 MHz oscillator to 11% in System Clocks.  
• Updated minimum and typical values in Table 4 - Top-Level Receiver Specifications.  
• Updated maximum and typical values in Table 6 - Top-Level Transmitter Specifications.  
Also updated footnote 3 as follows: "Measured at KW39/38/37 RF pins, with Vdd_RFx  
over 1.44 V and assuming an average Tx duty cycle <=24%. For Tx output over +3.5 dBm,  
powered Vdd_RFx has to be higher than 1.44 V.".  
• Added VDD_1P5 specification in Voltage and current operating requirements.  
• Added VPOR_VDD_1P5 specification in LVD and POR operating requirements.  
• Updated maximum value of Frequency deviation of internal reference clock to 11 in  
MCG specifications.  
• In Power consumption operating behaviors :  
• Removed the following note: "The maximum values specified in the following tables  
represent characterized results equivalent to the mean plus three times the standard  
deviation (mean + 3 sigma)."  
• Updated maximum values of Power consumption operating behaviors - Bypass and  
Buck Modes in Table 14 and Table 15.  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
91  
NXP Semiconductors  
Revision History  
Table 72. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Added VDD_1P5 symbol to "Bypass Mode Supply Voltage (RF and Analog)" in DC-  
DC Converter operating conditions.  
• Updated minimum value to 1.5 V and removed typical value in "1.5 V Voltage  
Output" in Table 43. Also updated the corresponding footnote with the correct value  
of 1.5 V.  
Rev 6  
01/2020  
• Updated Low-power Mode (VLLS0) current value to 266.6 nA in front page features under  
"Low-power Consumption" section.  
• Updated through out typical value of Bluetooth LE Receiver Sensitivity (2 Mbit/s and 1  
Mbit/s) to -95.5 dBm and -98 dBm respectively.  
• Updated typical values of Top-level receiver specifications in Table 4.  
• Updated typical and maximum values in Table 14 and Table 15.  
• Updated typical values of Tx (at 5 dBm) radio state at STOP and RUN MCU states in SoC  
Power Consumption.  
• Updated VCDM ratings in ESD handling ratings. Also updated the JEDEC standard to  
JS001 and JS002.  
Rev 5  
12/2019  
• Editorial fixes.  
• Specified typical value of Rx current as 6.3 mA in front page features of the Data sheet  
(under Low-power Consumption section). Also added 256 KB FlexNVM column in  
KW39/38/37 Part Numbers table.  
• Added Table 1.  
• Corrected accuracy percentage of RC oscillator and on-chip 4 MHz oscillator to 3% and  
6% respectively in System Clocks.  
• Updated receiver sensitivity value to -101 dBm in Key Specifications.  
• In section 4.2 - Receiver Feature Summary:  
• Specified typical values of IRxon with respect to DC-DC converter buck and bypass  
modes in Table 4.  
• Updated receiver specifications with generic FSK modulations in Table 5.  
• Updated VOH - Normal drive pad in Voltage and current operating behaviors to include  
output high voltage at -1 mA.  
• Added the following paragraph to Power consumption operating behaviors : "The  
maximum values specified in the following tables represent characterized results  
equivalent to the mean plus three times the standard deviation (mean + 3 sigma)." Also  
updated units of IDD_VLLS1 typical values in Table 15.  
• Updated maximum values in Table 14 and Table 15. Also updated mode# 20 and 21,  
IDD_VLLS2 and IDD_VLLS2_16KB_16KB, to IDD_VLLS2_16KB and IDD_VLLS2_32KB.  
• Updated Run mode supply current/VLPR mode current vs. core frequency images in  
Diagram: Typical IDD_RUN operating behavior.  
• Updated Table 26 to include operating temperature (TA), load capacitance (CL), and ESR  
specifications.  
• Updated value of VDCDC_IN to 2.1 V for IDD_1P8_buck3 in 1.8V Output Current row in  
Table 43.  
Rev 4  
08/2019  
• Updated value of Typical Receiver Sensitivity to -101 dBm.  
• Corrected radio block in KW39 Detailed Block Diagram. Also M1 port (connected from  
AXBS to Data Stream) corrected to M3.  
• Added new item ("Each individual MB is formed by 16, 24, .....") to the list of features in  
FlexCAN section in Peripheral features.  
• Updated typical values in Receiver Feature Summary.  
• In Transmit and PLL Feature Summary :  
• Specified typical value of "Bluetooth LE 2 Mbit/s Adjacent Channel Transmit Power  
at 4 MHz and >=6 MHz offset".  
• Updated Figure 4. TX Pout (dBm) as function TX-PA Power Code at RF pins.  
Table continues on the next page...  
92  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
Revision History  
Table 72. Revision History (continued)  
Rev. No.  
Date  
Substantial Changes  
• Updated numbers of "Transmit Output Power as a function of PA_POWER[5:0]" in  
Table 7 and Table 8.  
• Added Figure 5. TX Pout (dBm) as function TX-PA Power Code at RF pins (LDO-HF  
bumped).  
• Updated numbers in Table 16.  
• Replaced "EMC design" with "KW38, HW guideline, RF system evaluation" in Designing  
with radiated emissions in mind.  
• Updated maximum value of Δfintf_ft to 6 in MCG specifications.  
• Updated Table 43 with the following:  
• Added conditions, VDCDC_IN above 2.7 V and below 2.7 V, in the first row, "DC-DC  
Converter Output Power".  
• Updated conditions in the "1.8 V Output Current" row. Also added IDD_1P8_buck3  
condition to the row and updated maximum values.  
• Updated "1.5 V Output Current" maximum value to 45 mA.  
• Updated footnote 5 as follows: "The output current specification in buck mode  
represents..... Note that the maximum output power of the DC-DC converter is 140  
mW when VDCDC_IN is below 2.7 V and 195 mW when VDCDC_IN is above 2.7 V......".  
Rev 3  
Rev 2  
06/2019  
04/2019  
• Removed "Input Voltage High/Low" rows from Radio operating conditions.  
• Removed the following footnote from Table 14 - "Supported through the connectivity  
software in its pre-defined Deep Sleep Modes". Also updated Typical values in Table 14  
and Table 15.  
• Removed "Flash timing specifications – program and erase" and "Flash high voltage  
current behaviors" tables.  
• Updated 48-pin "Wettable" HVQFN pinout diagram - added ground pin 49 to the diagram.  
• Updated typical value of Bluetooth LE Receiver sensitivity at 2 Mbit/s from -94 to -95 dBm.  
• Updated pin package drawing.  
• Updated Low-power Mode (VLLS0) Current value to 252 nA and typical value of Tx  
current to 5.7 mA.  
• Added "512 KB P-Flash" column to this table. Also modified column name to "8 KB  
FlexRAM EEPROM" from 8 KB EEPROM.  
• Replaced "Prg Acc RAM 8 KB" with "FlexRAM 8 KB" in KW37 Detailed Block Diagram.  
• Removed "Galois counter mode (AES-GCM)" and "DES modes" features of LTC from  
Security Features.  
• Updated typical values in Receiver Feature Summary. Also updated measurement  
resolution to 2 MHz from 1 MHz in "Bluetooth LE uncoded 2 Mbit/s (High Speed)" section.  
• Updated typical values in Table 5.  
• Updated typical values of ITX0dBm, ITX0dBmb, ITX3.5dBm, ITX3.5dBmb, ITX5dBm, and ITX5dBmb  
Also updated minimum value of TXBWBLE2M to 2.2 MHz in Table 6.  
• Removed 48-pin LQFN package from Thermal attributes and specified values for  
HVQFN48. Also replaced JESD51-2 standard with JESD51-2A in footnotes.  
• In Table 14 and Table 15 :  
.
• Added "Mode#" column.  
• Added the following measurements—IDD_RUN_CM, IDD_VLPR_CM,  
IDD_VLLS2_16KB_16KB, IDD_VLLS2_16KB_RF_Tx_RAM,  
IDD_VLLS2_16KB_RF_Rx_RAM.  
• Updated typical values.  
• Added "Adder#" column to Table 16.  
• Updated minimum and maximum values of "1.5 V Output Voltage" in Table 43. Also  
specified the condition as "Consumed by Radio.".  
• Removed support of DIAG1-3 signals and updated "DEFAULT" column to correct  
"DISABLED" status of PTA19, PTB1/2/3 pin names in Signal Multiplexing and Pin  
Assignments tables.  
Table continues on the next page...  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
93  
NXP Semiconductors  
Revision History  
Table 72. Revision History (continued)  
Rev. No.  
Date  
12/2018  
Substantial Changes  
Rev 1  
• Updated Features list on the front page:  
• Updated Typical Receiver Sensitivity value of BLE LR 500 kbit/s from -99 to -101  
dBm.  
• Added 0.7 in the Generic FSK modulation index.  
• Updated topic Radio features.  
• Restructured section 3 Transceiver Description.  
• Updated Full Bluetooth Low Energy version 5.0 modulation and Generic FSK modulation  
values in Key Specifications.  
• Updated Table 4, Table 5, and Table 6. Added Table 8.  
• Added the following footnote in : "Tx continuous wave power output at the RF pins with the  
recommended matching components mounted on PCB.".  
Rev 1  
Draft  
11/2018  
• Removed the following part numbers: MKW38A512VHT4, MKW38Z512VHT4, and  
MKW37Z512VHT4.  
• Added the following part numbers: MKW38Z512VFT4 and MKW37Z512VFT4.  
• Removed 48-pin LQFN package.  
• Changed 48 "Wettable" QFN to 48 "Wettable" HVQFN throughout.  
• Applied new NXP Brand Guidelines for Bluetooth Low Energy. Removed references of  
BLE and replaced with Bluetooth LE.  
• Updated Features list on the front page:  
• Corrected Typical Receiver Sensitivity value of BLE LR 500 kbit/s from -100.5 to -99  
dBm.  
• Corrected Typical Receiver Sensitivity (250 kbit/s GFSK-BT=0.5, h=0.5) from -100  
to -103 dBm.  
• Added 8 KB program acceleration RAM on KW37 to MCU and Memories section.  
• Updated topic 2.2 Radio Features.  
• Updated topic 2.3 Microcontroller features in the "On-Chip Memory" section to include  
support of EEPROM emulation.  
• Updated values of VDD_1P8OUT=1.8 V and VDD_1P8OUT=3.0 V to 45 mA and 27 mA.  
• Updated maximum value of Programmable transmitter output power to 5 dBm.  
• Updated typical value of RF Output power control range to 35 dB in Table 5. Top level  
Transmitter Specifications.  
• Removed silicon revision (R) field from Table 71. Part number fields descriptions.  
Rev 0  
09/2018  
Initial Internal Release  
94  
MKW39/38/37 Data Sheet, Rev. 7, 03/2020  
NXP Semiconductors  
How to Reach Us:  
Information in this document is provided solely to enable system and software implementers to use  
NXP products. There are no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits based on the information in this document. NXP reserves the right to  
make changes without further notice to any products herein.  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any  
particular purpose, nor does NXP assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without limitation  
consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets  
and/or specifications can and do vary in different applications, and actual performance may vary over  
time. All operating parameters, including "typicals," must be validated for each customer application  
by customer's technical experts. NXP does not convey any license under its patent rights nor the  
rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be  
found at the following address: nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to unidentified  
vulnerabilities. Customers are responsible for the design and operation of their applications and  
products to reduce the effect of these vulnerabilities on customer's applications and products, and  
NXP accepts no liability for any vulnerability that is discovered. Customers should implement  
appropriate design and operating safeguards to minimize the risks associated with their applications  
and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE CLASSIC,  
MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,  
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,  
the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV, mobileGT, PEG, PowerQUICC,  
Processor Expert, QorIQ, QorIQ Qonverge, SafeAssure, the SafeAssure logo, StarCore, Symphony,  
VortiQa, Vybrid, Airfast, BeeKit, BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC  
Engine, Tower, TurboLink, EdgeScale, EdgeLock, eIQ, and Immersive3D are trademarks of NXP  
B.V. All other product or service names are the property of their respective owners. AMBA, Arm,  
Arm7, Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex,  
DesignStart, DynamIQ, Jazelle, Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore,  
Socrates, Thumb, TrustZone, ULINK, ULINK2, ULINK-ME, ULINK-PLUS, ULINKpro, µVision,  
Versatile are trademarks or registered trademarks of Arm Limited (or its subsidiaries) in the US and/or  
elsewhere. The related technology may be protected by any or all of patents, copyrights, designs and  
trade secrets. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its  
affiliates. The Power Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by Power.org.  
© 2018-2020 NXP B.V.  
Document Number MKW39A512  
Revision 7, 03/2020  

相关型号:

MKW38

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW38A512VFT4

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW38Z512VFT4

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW39

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW39A512

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW39A512VFT4

An ultra low-power, highly integrated Bluetooth® Low Energy 5.0 wireless microcontroller
NXP

MKW40

DC/DC CONVERTER 40W, Highest Power Density
MINMAX

MKW40

Smallest Encapsulated 40W Converter
TOTAL-POWER

MKW40-12D12

DC/DC CONVERTER 40W, Highest Power Density
MINMAX

MKW40-12D12

Smallest Encapsulated 40W Converter
TOTAL-POWER

MKW40-12D15

Smallest Encapsulated 40W Converter
TOTAL-POWER

MKW40-12D15

DC/DC CONVERTER 40W, Highest Power Density
MINMAX