MMA1606WR2 [NXP]

MMA1606WR2;
MMA1606WR2
型号: MMA1606WR2
厂家: NXP    NXP
描述:

MMA1606WR2

文件: 总48页 (文件大小:523K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MMA16xxWR2  
Rev 1, 10/2010  
Freescale Semiconductor  
Technical Data  
DSI Inertial Sensor  
The MMA16xxWR2 family of devices are DSI2.5 compatible overdamped Z-axis  
satellite accelerometers.  
MMA16xxWR2  
Features  
• ±50g to ±312.5g Nominal Full-Scale Range  
DSI INERTIAL SENSOR  
Bottom View  
• Selectable 180 Hz, 2-pole, 400Hz, 4-pole, or 800Hz, 4-pole LPF  
• DSI2.5 Compatible with full support of Mandatory Commands  
• Internal High Side Bus Switch for DSI2.5 Daisy Chain Applications  
• 16μs internal sample rate, with interpolation to 1ms  
• -40°C to 125°C Operating Temperature Range  
• Pb-Free 16-Pin QFN-6x6 Package  
• Qualified AEC-Q100, Revision G, Grade 1 (-40°C to +125°C)  
Typical Applications  
• Airbag Front and Side Crash Detection  
16-PIN QFN  
CASE 2086-01  
Top View  
ORDERING INFORMATION  
Device  
Axis  
Range  
50g  
Package  
2086-01  
2086-01  
2086-01  
2086-01  
2086-01  
Shipping  
MMA1605WR2  
MMA1606WR2  
MMA1612WR2  
MMA1618WR2  
MMA1631WR2  
Z
Z
Z
Z
Z
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
Tape & Reel  
16 15 14 13  
62.5g  
125g  
187g  
312g  
1
2
3
4
12  
11  
10  
9
TEST2  
TEST3  
V
SSA  
17  
C
REGA  
TEST1  
TEST4  
BUSRTN  
C
REG  
5
6
7
8
PIN CONNECTIONS  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
Application Diagram  
BUSIN  
TEST2  
TEST1  
TEST3  
BUSIN  
C1  
MMA16xx  
TEST4  
TEST5  
TEST6  
BUSRTN  
BUSOUT  
BUSRTN  
C2  
TEST7  
CREG  
BUSOUT  
HCAP  
CREGA  
C4  
C5  
C3  
VSSA  
VSS  
PCM  
Figure 1. Application Diagram  
External Component Recommendations  
Description  
Ref Des  
C1  
Type  
Ceramic  
Purpose  
100 pF C1 1000 pF 10%, 50V, X7R BUSIN Power Supply Decoupling, ESD  
100 pF C2 1000 pF, 10%, 50V, X7R BUSOUT Power Supply Decoupling, ESD  
1 μF C3 100 μF, 10%, 50V, X7R Reservoir Capacitor for Keep Alive during Signaling  
C2  
Ceramic  
C3  
Ceramic, Tantalum  
Ceramic  
C4  
1 μF, 10%, 10V, X7R  
1 μF, 10%, 10V, X7R  
Voltage Regulator Output Capacitor (CREG  
)
C5  
Ceramic  
Voltage Regulator Output Capacitor (CREGA)  
Device Orientation  
x x x x x x x  
x x x x x x x  
xxxxxxx  
xxxxxxx  
Z: 0 g  
Z: 0 g  
Z: +1 g  
Z: -1 g  
Z: 0 g  
Z: 0 g  
EARTH GROUND  
Figure 2. Device Orientation Diagram  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
2
Internal Block Diagram  
HCAP  
BUSIN  
HCAP  
CREG  
DIGITAL  
VOLTAGE  
REGULATOR  
VREG  
ANALOG  
VOLTAGE  
REGULATOR  
VREGA  
CREGA  
VSSA  
VDSI_REF  
VREF  
REFERENCE  
VOLTAGE  
VDSI_REF  
BUSOUT  
LOW-VOLTAGE  
RESET  
TEST3  
TEST4  
BUSRTN  
VSS  
CONTROL  
LOGIC  
SERIAL  
ENCODER  
TEST  
OTP  
FUSE  
ARRAY  
TEST5  
TEST6  
OSCILLATOR  
VREG  
SELF-TEST  
INTERFACE  
CONTROL STATUS  
OUT  
IN  
VREGA  
VREG  
DSP  
IIR  
SINC Filter  
Low-Pass Filter  
3
–D  
ΣΔ  
CONVERTER  
Compensation  
PCM Encoder  
PCM  
1 – z  
---------------------------------  
–1  
D × (1 – z  
)
Figure 3. Block Diagram  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
3
1
Pin Connections  
16 15 14 13  
17  
1
2
3
4
12  
11  
10  
9
TEST2  
TEST3  
V
SSA  
C
REGA  
TEST1  
TEST4  
BUSRTN  
C
REG  
5
6
7
8
Figure 4. Block Diagram  
Table 1. Pin Description  
Pin  
Pin  
Formal Name  
Definition  
Name  
1
2
3
4
TEST2  
Test Pin  
Test Pin  
Test Pin  
Ground  
This pin must be left unconnected in the application.  
This pin must be grounded in the application.  
This pin must be grounded in the application.  
This pin is the common return for power and signalling.  
TEST3  
TEST1  
BUSRTN  
PCM  
Output  
This pin provides a 4 MHz PCM signal proportional to the acceleration data for test purposes. The output can be enabled or  
disabled via OTP. If unused, this pin must be left unconnected in the application. Reference Section 3.5.3.6.  
5
6
7
8
PCM  
BUSOUT  
BUSIN  
HCAP  
This pin is internally connected to BUSIN through a switch. For daisy chain configurations, this pin is connected to the BUSIN  
pin of the next slave on the DSI bus. The internal bus switch is open following reset, and is closed when an Initialization com-  
mand is received.  
BUS output  
Supply /  
Comm  
This pin is connected to the DSI positive bus node & provides the power supply & communication to the system master. An  
external capacitor must be connected to between this pin and the BUSRTN pin. Reference Figure 1.  
This pin rectifies the supply voltage on the BUSIN pin to create the supply voltage for the device. An external capacitor must  
Hold Capacitor be connected between this pin and the BUSRTN pin to store energy for operation during master communication signalling.  
Reference Figure 1.  
Digital  
Supply  
This pin is connected to the power supply for the internal digital circuitry. An external capacitor must be connected between  
9
C
REG  
this pin and V . Reference Figure 1.  
SS  
10  
11  
TEST4  
Test Pin  
This pin must be grounded in the application.  
Analog  
Supply  
This pin is connected to the power supply for the internal analog circuitry. An external capacitor must be connected between  
C
REGA  
this pin and V  
. Reference Figure 1.  
SSA  
12  
13  
VSSA  
Analog GND  
Test Pin  
This pin is the power supply return node for analog circuitry.  
This pin enables test mode, and provides the SPI programming voltage in test mode. This pin is must be grounded in the  
application.  
TEST5  
14  
15  
16  
17  
TEST6  
TEST7  
Test Pin  
Test Pin  
This pin must be grounded in the application.  
This pin must be grounded in the application.  
V
Digital GND  
This pin is the power supply return node for the digital circuitry.  
SS  
PAD  
Die Attach Pad This pin is the die attach flag, & should be connected to VSS in the application. Reference Section 5.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
4
2
Electrical Characteristics  
2.1  
Maximum Ratings  
Maximum ratings are the extreme limits to which the device can be exposed without permanently damaging it. Do not apply  
voltages higher than those shown in the table below.  
#
Rating  
Symbol  
Value  
Unit  
1
2
Supply Voltage (continuous) (BUSIN,BUSOUT, HCAP)  
Supply Voltage (pulsed < 400 ms, repetition rate 60s) (BUSIN,BUSOUT, HCAP)  
V
V
-0.3 to +30.0  
-0.3 to +34.0  
V
V
(3)  
(3)  
CC  
CC  
3
C
, C  
PCM, TEST1, TEST2, TEST3, TEST4, TEST5, TEST6, TEST7  
REGA,  
-0.3 to +3.0  
V
(3)  
REG  
BUSIN,BUSOUT, BUSRTN and H  
Maximum duration 1 s  
Continuous  
Current  
CAP  
4
5
I
I
400  
75  
mA  
mA  
(3)  
(3)  
IN  
IN  
6
7
8
Powered Shock (six sides, 0.5 ms duration)  
g
±2000  
±2000  
1.2  
g
g
(5)  
(5)  
(5)  
pms  
shock  
DROP  
Unpowered Shock (six sides, 0.5 ms duration)  
g
Drop Shock (to concrete, tile or steel surface, 10 drops, any orientation)  
h
m
Electrostatic Discharge (per AEC-Q100)  
HBM (100pF, 1.5kΩ)  
9
10  
11  
V
V
V
±2000  
±500  
±200  
V
V
V
(5)  
(5)  
(5)  
ESD  
ESD  
ESD  
CDM (R = 0Ω)  
MM (200pF, 0Ω)  
Temperature Range  
Storage  
12  
13  
T
T
-40 to +125  
-40 to +150  
°C  
°C  
(3)  
(3)  
stg  
Junction  
J
14 Thermal Resistance  
θ
2.5  
°C/W  
(11)  
JC  
2.2  
Operating Range  
The operating ratings are the limits normally expected in the application.  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Supply Voltage  
V
V
H
L
15  
V
V
V
6.3  
-0.3  
30  
30  
V
V
(1,12)  
(1,12)  
HCAP  
HCAP  
16  
17  
18  
BUSIN  
BUS  
Programming Voltage  
Applied to BUSIN (DSI)  
V
14.0  
85  
30.0  
V
(3)  
(3)  
PP  
Programming Current  
BUSIN  
I
mA  
PP  
T
-40  
-40  
T
H
+105  
+125  
L
Operating Temperature Range  
19  
20  
T
A
°C  
°C  
(1)  
(3)  
T
A
MMA16xxWR  
Sensors  
Freescale Semiconductor  
5
2.3  
Electrical Characteristics - Supply and I/O  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
21 Quiescent Supply Current  
*
I
8.0  
mA  
(1)  
(3)  
DD  
Inrush Current (excluding HCAP Capacitor charge current)  
Power On until V Stable  
22  
I
20  
mA  
REG  
INRUSH  
Internally Regulated Voltages  
23  
24  
V
V
V
2.425  
2.425  
2.50  
2.50  
2.575  
2.575  
V
V
(1)  
(1)  
REG  
REG  
V
REGA  
REGA  
V
Undervoltage Detection (See Figure 5)  
HCAP  
25  
26  
27  
Under-Voltage Detection Threshold  
V
V
V
5.8  
70  
6.0  
100  
6.2  
6.3  
140  
V
V
mV  
(3,6)  
(3,6)  
(3)  
PORHCAP_f  
PORHCAP_r  
HYST_HCAP  
V
Recovery Threshold  
HCAP  
Hysteresis (V  
- V  
)
PORHCAP_f  
PORHCAP_r  
Internal Regulator Low Voltage Detection Threshold  
28  
29  
V
V
Falling  
V
2.15  
2.15  
2.25  
2.25  
2.40  
2.40  
V
V
(3.6)  
(3.6)  
REG  
PORVREG_f  
Falling  
V
REGA  
PORVREGA_f  
Hysteresis  
30  
31  
V
V
V
0.05  
0.05  
0.10  
0.10  
0.15  
0.15  
V
V
(3)  
(3)  
REG  
HYST_VREG  
V
REGA  
HYST_VREGA  
External Capacitor (C  
Capacitance  
, C  
)
REGA  
REG  
C
R
R
, C  
REGA  
REG  
32  
33  
500  
1000  
1500  
200  
nF  
mΩ  
(9)  
(9)  
,
CREGESR  
ESR (including interconnect resistance)  
CREGAESR  
Output High Voltage ( PCM)  
34 I  
= 100 μA  
V
V - 0.1  
REG  
V
V
(9)  
(9)  
Load  
OH  
Output Low Voltage ( PCM)  
35 I = 100 μA  
V
0.1  
Load  
OL  
Temperature Monitoring  
36  
37  
Under-Temperature Monitor Threshold  
Over-Temperature Monitor Threshold  
T
T
155  
-55  
°C  
°C  
(9)  
(9)  
UNDER  
OVER  
2.4  
Electrical Characteristics - DSI  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
4.0  
Max  
8.0  
Units  
Ω
BUSOUT Bus Switch Resistance  
38  
*
*
R
(1)  
(1)  
0V V  
30 V, I  
= 160mA  
SW  
SW  
BUSIN  
HCAP Rectifier Leakage Current  
= 0 V, V = 9.0V  
39  
V
I
100  
μA  
BUSIN  
HCAP  
RLKG  
BUSIN to HCAP Rectifier Voltage Drop (V  
= 7 V)  
BUSIN  
40  
41  
I
I
= -15 mA  
= -100 mA  
*
*
V
V
0.75  
0.9  
1.0  
1.2  
V
V
(1)  
(1)  
HCAP  
HCAP  
RECT  
RECT  
BUSIN Bias Current  
42  
43  
V
V
= 8.0 V, V  
= 4.5 V, V  
= 9.0V  
*
*
I
I
-100  
-100  
100  
100  
μA  
μA  
(1)  
(1)  
BUSIN  
BUSIN  
HCAP  
HCAP  
BUSIN_BIAS  
BUSIN_BIAS  
= 24 V, No Response Current  
BUSOUT Bias Current  
44  
45  
V
V
= 8.0 V, V  
= 4.5 V, V  
= 9.0V  
I
I
-100  
-100  
100  
100  
μA  
μA  
(1)  
(1)  
BUSOUT  
BUSOUT  
HCAP  
BUSOUT_BIAS  
BUSOUT_BIAS  
= 24 V, No Response Current  
HCAP  
46 BUSOUT Discharge Resistance  
BUSIN Response Current  
R
3500  
8000  
Ω
(3)  
BUSOUT_Discharge  
*
*
47  
V
= 4.0 V  
I
9.9  
11  
12.1  
mA  
(1)  
BUSIN  
RESP  
BUSIN to BUSOUT Leakage Current (BUS SWITCH open)  
48  
49  
V
V
= 24.0 V, V  
= 0 V, V  
= 0 V  
= 16 V  
I
SW_Leak  
-20  
-20  
20  
20  
μA  
μA  
(1)  
(1)  
BUSIN  
BUSIN  
BUSOUT  
I
BUSOUT  
RSW_Leak  
BUSIN Logic Thresholds  
Signal Threshold  
50  
51  
*
*
V
V
2.8  
5.5  
3.0  
6.0  
3.2  
6.5  
V
V
(1)  
(1)  
THS  
THF  
Frame Threshold  
BUSIN Logic Hysteresis  
52  
53  
Signal  
Frame  
*
*
V
V
30  
100  
90  
300  
mV  
mV  
(3)  
(3)  
HYSS  
HYSF  
MMA16xxWR  
Sensors  
6
Freescale Semiconductor  
2.5  
Electrical Characteristics - Signal Chain  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Sensitivity (10-bit @ 100Hz referenced to 0Hz)  
*
*
*
*
54  
50g Range  
62.5g Range  
125g Range  
187g Range  
SENS  
SENS  
SENS  
SENS  
SENS  
10.24  
8.192  
4.096  
2.731  
1.638  
LSB/g  
LSB/g  
LSB/g  
LSB/g  
LSB/g  
(1,14)  
(1,14)  
(1,14)  
(1,14)  
(1,14)  
55  
56  
57  
58  
*
312g Range  
Total Sensitivity Error (including non-linearity)  
59  
60  
T
T
= 25°C  
A
ΔSENS_25  
ΔSENS  
-5  
-7  
+5  
+7  
%
%
(1)  
(1)  
*
*
A
L
T T  
H
Digital Offset  
61  
10-bit output  
*
OFF  
460  
512  
564  
LSB  
(1)  
10Bit  
Range of Output (10-Bit Mode)  
Acceleration  
62  
63  
RANGE  
RANGE  
1
0
1023  
LSB  
LSB  
(3)  
(3)  
ACC  
ERR  
Internal Error  
Cross-Axis Sensitivity  
X-axis to Z-axis  
64  
65  
V
V
-5  
-5  
+5  
+5  
%
%
(3)  
(3)  
XZ  
YZ  
Y-axis to Z-axis  
66 ADC Output Noise Peak (1Hz - 1kHz, 10-Bit)  
67 System Output Noise (10-Bit, RMS, All Ranges)  
68 Non-linearity (all ranges)  
n
-4  
-2  
+4  
+1.2  
+2  
LSB  
LSB  
%
(3)  
(3)  
(3)  
SD  
n
RMS  
NL  
OUT  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
7
2.6  
Electrical Characteristics - Self Test and Overload  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified.  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Acceleration (without hitting internal g-cell stops)  
±50g, ±62.5g, ±125g Positive  
69  
70  
g
g
425  
-1205  
642  
-720  
980  
-512  
g
g
(9)  
(9)  
g-cell_Clip60ZP  
g-cell_Clip60ZN  
±50g, ±62.5g, ±125g Negative  
Acceleration (without hitting internal g-cell stops)  
±187g, ±312g Positive  
71  
72  
g
g
1450  
-3100  
2180  
-2210  
2800  
-1800  
g
g
(9)  
(9)  
g-cell_Clip240ZP  
g-cell_Clip240ZN  
±187g, ±312g Negative  
ΣΔ and Sinc Filter Clipping Limit  
±50g Range Positive  
73  
74  
g
g
160  
-333  
238  
-274  
335  
-216  
g
g
(9)  
(9)  
ADC_Clip60ZP  
ADC_Clip60ZN  
±50g Range Negative  
ΣΔ and Sinc Filter Clipping Limit  
±62.5g Range Positive  
75  
76  
g
g
160  
-333  
238  
-274  
335  
-216  
g
g
(9)  
(9)  
ADC_Clip60ZP  
ADC_Clip60ZN  
±62.5g Range Negative  
ΣΔ and Sinc Filter Clipping Limit  
±125g Range Positive  
77  
78  
g
g
306  
-693  
433  
-544  
577  
-415  
g
g
(9)  
(9)  
ADC_Clip120ZP  
ADC_Clip120ZN  
±125g Range Negative  
ΣΔ and Sinc Filter Clipping Limit  
±187g Range Positive  
79  
80  
g
g
836  
-1909  
1178  
-1566  
1599  
-1245  
g
g
(9)  
(9)  
ADC_Clip240ZP  
ADC_Clip240ZN  
±187g Range Negative  
ΣΔ and Sinc Filter Clipping Limit  
±312g Range Positive  
81  
82  
g
g
836  
-1909  
1178  
-1566  
1599  
-1245  
g
g
(9)  
(9)  
ADC_Clip480ZP  
ADC_Clip480ZN  
±312g Range Negative  
Deflection, 10-Bit, Self Test - Offset, 30sample ave, T = 25°C)  
A
83  
84  
85  
86  
87  
50g Range  
*
*
*
*
*
ΔDFLCT_Z50  
ΔDFLCT_Z62  
ΔDFLCT_Z125  
ΔDFLCT_Z187  
ΔDFLCT_Z312  
307  
245  
299  
205  
123  
LSB  
LSB  
LSB  
LSB  
LSB  
(1)  
(1)  
(1)  
(1)  
(1)  
62.5g Range  
125g Range  
187g Range  
312g Range  
88 Self-test deflection range, T = 25 °C  
ΔDFLCT  
ΔDFLCT  
-10  
-20  
+10  
+20  
%
%
(1)  
(1)  
A
89 Self-test deflection range, T T T  
H
L
A
MMA16xxWR  
Sensors  
8
Freescale Semiconductor  
2.7  
Dynamic Electrical Characteristics - DSI  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
Max  
Units  
Reset Recovery (See Figure 20)  
90  
91  
92  
93  
POR negated to 1st DSI Command (Initialization Command)  
POR negated to Acceleration Data Valid (Including LPF Init)  
DSI Clear Command to 1st DSI Command (Initialization Command)  
DSI Clear Command to Acceleration Data Valid (Including LPF Init)  
t
400 / f  
10000 / f  
s
s
s
s
(7)  
(7)  
(7)  
(7)  
DSI_INIT  
OSC  
t
400 / f  
DSP_INIT  
OSC  
OSC  
t
DSI_INIT  
OSC  
t
10000 / f  
DSP_INIT  
HCAP Undervoltage Reset Delay (See Figure 5)  
94  
95  
96  
V
< V  
to POR assertion  
t
t
880 / f  
5
s
(7)  
(3)  
(3)  
HCAP  
PORHCAP_f  
HCAP_POR  
OSC  
V
V
Undervoltage Reset Delay (See Figure 6)  
REG  
REG  
< V  
to POR assertion  
μs  
μs  
PORVREG_f  
VREG_POR  
V
V
Undervoltage Reset Delay (See Figure 7)  
< V  
REGA  
REGA  
to POR assertion  
t
5
PORVREGA_f  
VREGA_POR  
V
, V  
Capacitor Monitor  
REG  
REGA  
97  
98  
99  
POR to first Capacitor Test Disconnect  
Disconnect Time ()  
Disconnect Rate ()  
t
12000 / f  
6 / f  
s
s
s
(7)  
(7)  
(7)  
POR_CAPTEST  
OSC  
t
CAPTEST_TIME  
OSC  
t
256 / f  
CAPTEST_RATE  
OSC  
100 Initialization to Bus Switch Closing  
BUSOUT Discharge Resistance  
t
89  
138  
μs  
(7)  
BS  
101  
Activation Time  
t
9.5  
10  
10.5  
200  
μs  
(3)  
(7)  
BUSOUT_Discharge  
102 Communication Data Rate  
Loss of Signal Reset Time  
D
100  
kbps  
RATE  
103  
Maximum time below frame threshold  
t
2.00  
0.33  
4.00  
10.0  
ms  
(7)  
(3)  
TO  
BUSIN Response Current Slew Rate  
1.0 mA to 9.0 mA, 9.0 to 1.0 mA  
104  
t
mA/μs  
ITR  
BUSIN Timing to Response Current  
105  
106  
BUSIN Negative Voltage Transition =3.0V to I  
BUSIN Negative Voltage Transition =3.0V to I  
= 7.0mA rise  
= 5.0mA fall  
t
t
2.50  
2.50  
μs  
μs  
(7)  
(7)  
RSP  
RSP  
RSP_R  
RSP_F  
DSI BUSIN Signal Duty Cycle  
107  
108  
Logic ‘0’  
Logic ‘1’  
*
*
D
10  
60  
33  
67  
40  
90  
%
%
(7)  
(7)  
CL  
D
CH  
Inter-frame Separation Time (See Figure 8)  
Following Read Write NVM Command  
Following Initialization, BS = 1  
109  
110  
111  
112  
t
2
200  
20  
ms  
μs  
μs  
μs  
(7)  
(7)  
(7)  
(7)  
IFS  
IFS  
IFS  
IFS  
t
t
t
Following Initialization, BS = 0  
Following other DSI bus commands  
20  
113 DSI Data Latency  
Bus Switch Open Time  
t
t
4 / f  
5 / f  
OSC  
s
(7)  
(3)  
LAT_DSI  
OSC  
500  
256  
μs  
BSOPEN  
114  
Reset Asserted to I  
20μA  
SW_LEAK  
OTP Program Timing  
115  
Time to program one OTP bit  
t
64  
μs  
(7)  
PROG_BIT  
Self Test Response Time  
t
ST_ACT_180  
116  
117  
118  
119  
120  
121  
Self Test Activation time (EOF  
Self Test Deactivation time (EOF  
Self Test Activation time (EOF  
Self Test Deactivation time (EOF  
Self Test Activation time (EOF  
Self Test Deactivation time (EOF  
to 90% ΔDFLCT_xxx, 180Hz LPF)  
to 10% ΔDFLCT_xxx, 180Hz LPF)  
2.00  
2.00  
1.00  
1.00  
0.50  
0.50  
5.00  
5.00  
2.50  
2.50  
1.75  
1.75  
ms  
ms  
ms  
ms  
ms  
ms  
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
Slave  
t
t
t
ST_DEACT_180  
t
Slave  
ST_ACT_400  
to 90% ΔDFLCT_xxx, 400Hz LPF)  
to 10% ΔDFLCT_xxx, 400Hz LPF)  
Slave  
ST_DEACT_400  
t
Slave  
ST_ACT_800  
to 90% ΔDFLCT_xxx, 800Hz LPF)  
Slave  
ST_DEACT_800  
to 10% ΔDFLCT_xxx, 800Hz LPF)  
Slave  
Error Detection Response Time  
122  
Mirror Register CRC Error to Status Flag (S) set (Factory or User Array)  
t
75 / f  
s
(7)  
CRC_Err  
OSC  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
9
2.8  
Dynamic Electrical Characteristics - Signal Chain  
VL (VCC - VSS) VH, TL TA TH, ΔT 25 K/min, unless otherwise specified  
#
Characteristic  
Symbol  
Min  
Typ  
4
Max  
Units  
MHz  
s
123 Internal Oscillator Frequency  
124 Data Interpolation Latency  
DSP Low-Pass Filter  
*
f
3.80  
4.20  
(1)  
(7)  
OSC  
t
64 / f  
65 / f  
OSC  
LAT_INTERP  
OSC  
125  
126  
127  
128  
129  
130  
Cutoff frequency LPF0 (referenced to 0 Hz)  
Filter Order LPF0  
Cutoff frequency LPF1 (referenced to 0 Hz)  
Filter Order LPF1  
Cutoff frequency LPF2 (referenced to 0 Hz)  
Filter Order LPF2  
f
O
171  
380  
760  
180  
2
400  
4
800  
4
189  
420  
840  
Hz  
1
Hz  
1
Hz  
1
(7)  
(7)  
(7)  
(7)  
(7)  
(7)  
C_LPF0  
LPF0  
f
C_LPF1  
O
LPF1  
f
C_LPF2  
O
LPF2  
Sensing Element Rolloff Frequency (-3db)  
±50g, ±62.5g, ±125g  
131  
132  
f
f
798  
1437  
1349  
1805  
2211  
2425  
Hz  
Hz  
(9)  
(9)  
gcell_3dB_zlo  
gcell_3dB_zhi  
±187g, ±312g  
Sensing Element Natural Frequency  
±50g, ±62.5g, ±125g  
133  
134  
f
f
7000  
13600  
7491  
14249  
8000  
15100  
Hz  
Hz  
(9)  
(9)  
gcell_zlo  
gcell_zhi  
±187g, ±312g  
Sensing Element Damping Ratio  
±50g, ±62.5g, ±125g  
±187g, ±312g  
135  
136  
ζ
ζ
1.870  
2.040  
2.940  
4.000  
4.610  
7.580  
(9)  
(9)  
gcell_zlo  
gcell_zhi  
Sensing Element Delay (@100Hz)  
±50g, ±62.5g, ±125g  
137  
138  
f
f
77  
47  
121  
89  
200  
160  
μs  
μs  
(9)  
(9)  
gcell_delay100_zlo  
gcell_delay100_zhi  
±187g, ±312g  
139 Package Resonance Frequency  
f
100  
kHz  
(9)  
Package  
Notes:  
1. Parameters tested 100% at final test at -40°C, 25°C, and 105°C.  
2. Parameters tested 100% at probe.  
3. Verified by characterization.  
4. * Indicates critical characteristic.  
5. Verified by qualification testing, not tested in production.  
6. Parameters verified by pass/fail testing in production.  
7. Functionality verified 100% via boundary scan. (Timing is directly determined by internal oscillator frequency.)  
8. Verified by user system level characterization, not tested in production, or at component level.  
9. Verified by Simulation.  
10.Measured at final test. Self-test activation occurs under control of the test program.  
11.Thermal resistance between the die junction and the exposed pad; cold plate is attached to the exposed pad.  
12.Maximum voltage characterized. Minimum voltage tested 100% at final test. Maximum voltage tested 100% to 24 V at final test.  
13.N/A  
14.Sensitivity, and overload capability specifications will be reduced when 800Hz filter is selected.  
15.Filter cut-off frequencies are directly dependent upon the internal oscillator frequency  
16.Target values. Actual values to be determined during device characterization  
MMA16xxWR  
Sensors  
10  
Freescale Semiconductor  
UV: UNDERVOLTAGE CONDITION  
EXISTS  
VPORHCAP_r  
VPORHCAP_f  
VHCAP  
VHYST_HCAP  
UV  
UV  
tHCAP_POR  
POR  
Figure 5. VHCAP Under Voltage Detection  
VREG  
VPORVREG_r  
VPORVREG_f  
VHYST_VREG  
tVREG_POR  
POR  
Figure 6. VREG Under Voltage Detection  
VREGA  
VPORVREGA_r  
VPORVREGA_f  
VHYST_VREGA  
tVREGA_POR  
POR  
Figure 7. VREGA Under Voltage Detection  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
11  
tSTART_master  
VTHF  
VTHS  
BUSIN’  
tIFS_master  
tIFS_slave  
LOGIC ‘1’  
LOGIC ‘0’  
tSTART_slave  
EOFslave  
9mA  
1mA  
IRESPONSE  
tITR  
tRSP_F  
tITR  
tRSP_R  
tLAT_DSI  
tLAT_INTERP  
DSP_OUT  
Figure 8. DSI Bus Inter-frame Timing  
MMA16xxWR  
Sensors  
12  
Freescale Semiconductor  
3
Functional Description  
3.1  
User Accessible Data Array  
A user accessible data array allows for each device to be customized. The array consists of an OTP factory programmable  
array, an OTP user programmable array, and read only registers for device status. The OTP arrays incorporate independent CRC  
circuitry for fault detection (reference Section 3.2). Portions of the factory programmable array are reserved for factory-pro-  
grammed trim values. The user accessible data is shown in the table below.  
Table 2. User Accessible Data  
Byte  
Addr  
RA[3:0]  
Bit Function  
Bit Function  
Nibble Addr  
WA[3:0]  
Nibble Addr  
(WA[3:0])  
Register  
Type  
7
6
5
4
3
2
1
0
$00  
$01  
$02  
$03  
$04  
$05  
$06  
$07  
$08  
$09  
$0A  
$0B  
$0C  
$0D  
$0E  
$0F  
SN0  
SN1  
SN[7]  
SN[15]  
SN[6]  
SN[14]  
SN[22]  
SN[30]  
LPF[0]  
SN[5]  
SN[13]  
SN[21]  
SN[29]  
0
SN[4]  
SN[12]  
SN[20]  
SN[28]  
0
SN[3]  
SN[11]  
SN[19]  
SN[27]  
RNG[3]  
SN[2]  
SN[10]  
SN[18]  
SN[26]  
RNG[2]  
SN[1]  
SN[9]  
SN[0]  
SN[8]  
F
SN2  
SN[23]  
SN[17]  
SN[25]  
RNG[1]  
SN[16]  
SN[24]  
RNG[0]  
SN3  
SN[31]  
TYPE  
DEVCFG  
DEVCFG1  
DEVCFG2  
UD01  
LPF[1]  
DEVID  
UNUSED UNUSED UNUSED  
UNUSED CRC_U[2] CRC_U[1] CRC_U[0]  
UD00[5]  
LOCK_U  
UD01[7]  
UD02[7]  
UD03[7]  
UD04[7]  
UD05[7]  
UD06[7]  
UD07[7]  
UD08[7]  
UD00[4]  
UNUSED  
UD01[6]  
UD02[6]  
UD03[6]  
UD04[6]  
UD05[6]  
UD06[6]  
UD07[6]  
UD08[6]  
UD00[3]  
PCM  
UD00[2]  
RESERVED  
UD01[4]  
UD02[4]  
UD03[4]  
UD04[4]  
UD05[4]  
UD06[4]  
UD07[4]  
UD08[4]  
UD00[1]  
ADDR[3]  
UD01[3]  
UD02[3]  
UD03[3]  
UD04[3]  
UD05[3]  
UD06[3]  
UD07[3]  
UD08[3]  
UD00[0] AT_OTP[1] AT_OTP[0]  
ADDR[2]  
UD01[2]  
UD02[2]  
UD03[2]  
UD04[2]  
UD05[2]  
UD06[2]  
UD07[2]  
UD08[2]  
ADDR[1]  
UD01[1]  
UD02[1]  
UD03[1]  
UD04[1]  
UD05[1]  
UD06[1]  
UD07[1]  
UD08[1]  
ADDR[0]  
UD01[0]  
UD02[0]  
UD03[0]  
UD04[0]  
UD05[0]  
UD06[0]  
UD07[0]  
UD08[0]  
UD01[5]  
UD02[5]  
UD03[5]  
UD04[5]  
UD05[5]  
UD06[5]  
UD07[5]  
UD08[5]  
UD02  
Reference  
Table 39  
Reference  
Table 39  
U/F  
UD03  
UD04  
UD05  
UD06  
UD07  
UD08  
Type codes  
F:  
Freescale programmed OTP locationU/F:User and/or Freescale programmed OTP location  
Read-only registerU:User Programmed OTP location  
R:  
Note: Unused and Unprogrammed Spare bits always read ‘0’.  
3.1.1 Device Serial Number Registers  
A unique serial number is programmed into the serial number registers of each device during manufacturing. The serial num-  
ber is composed of the following information:  
Bit Range  
SN[12:0]  
Content  
Serial Number  
Lot Number  
SN[31:13]  
Serial numbers begin at 1 for all produced devices in each lot, and are sequentially assigned. Lot numbers begin at 1 and are  
sequentially assigned. No lot will contain more devices than can be uniquely identified by the 13-bit serial number. Depending on  
lot size and quantities, all possible lot numbers and serial numbers may not be assigned.  
The serial number registers are included in the factory programmed OTP CRC verification. Reference Section 3.2.1 for details  
regarding the CRC verification. Beyond this, the contents of the serial number registers have no impact on device operation or  
performance, and are only used for traceability purposes.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
13  
3.1.2 Device Type Register (TYPE)  
The Device Type Register is an OTP configuration register which contains device configuration information. Bit 5 - Bit 0 are  
factory programmed and are included in the factory programmed OTP CRC verification. These bits are read only to the user. Bit  
7 - Bit 6 are user programmable OTP bits and are included in the user programmable OTP CRC verification.  
Table 3. Factory Configuration Register  
Location  
RA[3:0] Register WA[3:0]  
Bit  
WA[3:0]  
7
LPF[1]  
0
6
LPF[0]  
0
5
0
0
4
0
0
3
RNG[3]  
0
2
RNG[2]  
0
1
RNG[1]  
0
0
RNG[0]  
0
$04  
TYPE  
Bnk0 $08  
Factory Default  
3.1.2.1  
The Low Pass Filter selection bit selects between one of three low pass filter options. These bits can be factory or user pro-  
grammed.  
Low-Pass Filter Selection Bits (LPF[1:0]) (TYPE[7:6])  
LPF[1]  
LPF[0]  
Low Pass Filter Selected  
0
0
1
1
0
1
0
1
400 Hz, 4 Pole  
1
Not Enabled  
180 Hz, 2 Pole  
800 Hz, 4 Pole  
This filter option is not implemented. LPF[1:0] must not be set to this value to guarantee proper operation and performance.  
3.1.2.2  
Range Selection Bits (RNG[3:0]) (TYPE[3:0])  
The Range Selection Bits indicate the full scale range of the device, as shown below. These bits are factory programmed.  
RNG[3] RNG[2] RNG[1] RNG[0]  
Full-Scale Range  
g-Cell Design  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
N/A  
N/A  
N/A  
N/A  
50g  
M62N  
M62N  
M62N  
M63N  
M63N  
N/A  
62g  
125g  
187g  
312g  
N/A  
Reserved  
N/A  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
14  
3.1.3 Device Configuration Register (DEVCFG)  
The Device configuration register is a user programmable OTP register which contains device configuration information. This  
register is included in the user register CRC check. Refer to Section 3.2.2 for details regarding the CRC for the user programma-  
ble OTP array.  
Table 4. Device Control Register  
Location  
RA[3:0] Register WA[3:0]  
Bit  
WA[3:0]  
7
DEVID  
1
6
0
0
5
0
0
4
0
0
3
0
0
2
1
0
$05  
DEVCFG  
Bnk0 $0A  
Bnk0 $09  
CRC_U[2] CRC_U[1] CRC_U[0]  
Factory Default  
0
0
0
3.1.3.1  
Device ID Bit (DEVCFG[7])  
The Device ID Bit is a user programmable bit which allows the user to select between 2 device IDs. The Device ID is trans-  
mitted in response to the Request ID DSI command. Reference Section 4.2.1.5 for more information regarding the Request ID  
DSI command. This bit can be factory or user programmed.  
DEVID  
Device ID  
‘00110’  
0
1
‘00100’  
3.1.3.2  
User Configuration CRC (CRC_U[2:0], DEVCFG[2:0])  
The User Configuration CRC bits contain the 3-bit CRC used for verification of the user programmable OTP array. Reference  
Section 3.2.2 for details regarding the CRC for the user programmable OTP array. These bits can be factory or user programmed.  
3.1.4 Device Configuration Register 1 (DEVCFG1)  
The Device configuration register is a user programmable OTP register which contains device configuration information. This  
register is included in the user register CRC check. Refer to Section 3.2.2 for details.  
Table 5. Device Control Register 1  
Location  
RA[3:0] Register WA[3:0]  
Bit  
WA[3:0]  
7
UD00[5]  
0
6
UD00[4]  
0
5
UD00[3]  
0
4
UD00[2]  
0
3
UD00[1]  
0
2
1
0
$06  
DEVCFG1  
Bnk2 $06  
Bnk1 $06  
UD00[0] AT_OTP[1] AT_OTP[0]  
Factory Default  
0
0
0
3.1.4.1  
User Specific Data 00 Bits (UD00[5:0], DEVCFG1[7:2])  
The User Specific Data bits have no impact on the device function or performance. The bits can be programmed with user or  
assembly specific information. These bits can be factory or user programmed.  
3.1.4.2  
Attribute Bits (AT_OTP[1:0], DEVCFG1[1:0])  
The Attribute Bits are user defined bits which are transmitted in response to the Request Status, Disable Self-Test Stimulus or  
Enable Self-Test Stimulus DSI commands. The transmitted values are qualified by the LOCK_U bit as shown in the table below.  
These bits can be factory or user programmed.  
DEVCFG1 Values  
DSI Transmitted Values  
LOCK_U  
AT_OTP[1]  
AT_OTP[0]  
AT[1]  
AT[0]  
0
X
0
0
1
1
X
0
1
0
1
1
0
0
1
1
0
0
1
0
1
1
MMA16xxWR  
Sensors  
Freescale Semiconductor  
15  
3.1.5 Device Configuration 2 Register (DEVCFG2)  
Device configuration register 2 is a user programmable OTP register which contains device configuration information. This  
register is included in the user register CRC check. Refer to Section 3.2.2 for details regarding the CRC for the user programma-  
ble OTP array.  
Table 6. Device Control Register  
Location  
Bit  
RA[3:0]  
Register WA[3:0]  
7
6
5
PCM  
0
4
WA[3:0]  
3
2
1
0
Bnk0 $07  
Bnk2 $07  
Bnk3 $07  
Bnk3 $0F  
RESERVED  
0
$07  
DEVCFG2  
LOCK_U UNUSED  
Bnk1 $07  
ADDR[3] ADDR[2] ADDR[1] ADDR[0]  
Factory Default  
0
0
0
0
0
0
3.1.5.1  
User Configuration Lock Bit (LOCK_U, DEVCFG2[7])  
The LOCK_U bit is a factory or user programmed OTP bit which inhibits writes to the user configuration array when active.  
Reference Section 3.2.2 for details regarding the LOCK_U bit and CRC verification.  
3.1.5.2  
PCM Bit (DEVCFG2[5])  
The PCM Bit enables the PCM output pin. When the PCM bit is set, the PCM output pin is active and outputs a Pulse Code  
Modulated signal proportional to the acceleration response. Reference Section 3.5.3.6 for more information regarding the PCM  
output. When the PCM output is cleared, the PCM output pin is actively pulled low. This bit can be factory or user programmed.  
3.1.5.3  
Device Address (ADDR[3:0], DEVCFG2[3:0])  
The Device Address bits define the pre-programmed DSI Bus device address. If the Device Address bits are programmed to  
‘0000’, there is not pre-programmed address, and the address must be assigned via the Initialization DSI command. Reference  
Section 4.2.1.1 for more details regarding the Initialization DSI command. These bits can be factory or user programmed.  
3.1.6 User Data Registers (UDx)  
The User Data Registers are user programmable OTP register which can be programmed with user or assembly specific in-  
formation. These registers have no impact on the device performance, but are included in the user register CRC check. Refer to  
Section 3.2.2 for details regarding the user register CRC check. These registers can be factory or user programmed.  
Location  
RA[3:0] Register WA[3:0]  
Bit  
7
6
5
4
WA[3:0]  
Bnk1 $08  
Bnk1 $09  
Bnk1 $0A  
Bnk1 $0B  
Bnk1 $0C  
Bnk1 $0D  
Bnk1 $0E  
Bnk1 $0F  
3
2
1
0
$08  
$09  
$0A  
$0B  
$0C  
$0D  
$0E  
$0F  
UD01  
UD02  
UD03  
UD04  
UD05  
UD06  
UD07  
UD08  
Bnk2 $08  
Bnk2 $09  
Bnk2 $0A  
Bnk2 $0B  
Bnk2 $0C  
Bnk2 $0D  
Bnk2 $0E  
Bnk2 $0F  
UD01[7] UD01[6] UD01[5] UD01[4]  
UD02[7] UD02[6] UD02[5] UD02[4]  
UD03[7] UD03[6] UD03[5] UD03[4]  
UD04[7] UD04[6] UD04[5] UD04[4]  
UD05[7] UD05[6] UD05[5] UD05[4]  
UD06[7] UD06[6] UD06[5] UD06[4]  
UD07[7] UD07[6] UD07[5] UD07[4]  
UD08[7] UD08[6] UD08[5] UD08[4]  
UD01[3] UD01[2] UD01[1] UD01[0]  
UD02[3] UD02[2] UD02[1] UD02[0]  
UD03[3] UD03[2] UD03[1] UD03[0]  
UD04[3] UD04[2] UD04[1] UD04[0]  
UD05[3] UD05[2] UD05[1] UD05[0]  
UD06[3] UD06[2] UD06[1] UD06[0]  
UD07[3] UD07[2] UD07[1] UD07[0]  
UD08[3] UD08[2] UD08[1] UD08[0]  
Factory Default  
0
0
0
0
0
0
0
0
MMA16xxWR  
Sensors  
16  
Freescale Semiconductor  
3.2  
OTP Array Lock and CRC Verification  
3.2.1 Factory Programmed OTP Array Lock and CRC Verification  
The Factory programmed OTP array is verified for errors with a 3-bit CRC. The CRC verification is enabled only when the  
Factory programmed OTP array is locked and the lock is active. The lock is active only after an automatic OTP readout in which  
the internal lock bit is read as ‘1’. Automatic OTP readouts occur only after POR or a DSI Clear Command is received.  
Lock Bit Value in Mirror Register  
After Automatic Readout  
CRC Verification  
Enabled?  
Factory Lock Bit Value in Fuse Array  
Lock Bit Active?  
0
1
1
N/A  
0
NO  
NO  
NO  
NO  
1
YES  
YES  
The Factory programmed OTP array is locked by Freescale and will always be active after POR. The CRC is continuously  
calculated on the factory programmed OTP array, which includes the registers listed below:  
Register Name  
Serial Number Registers  
Type Register  
Register Addresses  
SN0, SN1, SN2, SN3  
TYPE[5:0]  
Included in Factory CRC?  
Yes  
Yes  
Factory Programmable Device Configuration  
Bits  
Internal Register Map  
Yes  
Factory OTP Array CRC  
CRC_F[2:0]  
LOCK_F  
No  
No  
Factory OTP Array Lock Bit  
Bits are fed in from right to left (LSB first), and top to bottom (lower addresses first) in the register map. The CRC verification  
uses a generator polynomial of g(x) = X3+X+1, with a seed value = ‘111’. The calculated CRC is compared against the  
CRC_F[2:0] bits. If a CRC mismatch is detected, an internal data error is set and the device responds to DSI messages as spec-  
ified in Section 4.3. The CRC verification is completed on the memory registers which hold a copy of the fuse array values, not  
the fuse array values.  
3.2.2 User Programmable OTP Array Lock and CRC Verification  
The User Programmable OTP array is independently verified for errors with a 3-bit CRC. The CRC verification is enabled only  
when the User Programmable OTP array is locked and the lock is active. The lock is active only after an automatic OTP readout  
in which the LOCK_U bit is read as ‘1’. Automatic OTP readouts occur only after POR or a DSI Clear Command is received.  
Lock Bit Value in Mirror Register  
After Automatic Readout  
CRC Verification  
Enabled?  
Factory Lock Bit Value in Fuse Array  
Lock Bit Active?  
0
1
1
N/A  
0
NO  
NO  
NO  
NO  
1
YES  
YES  
Once the LOCK_U bit is active, the CRC is continuously calculated on the user programmable OTP Array, which includes the  
registers listed below:  
Register Name  
Type Register  
Register Addresses  
TYPE[7:6]  
Included in User CRC?  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
No  
Device ID Bit  
DEVCFG[7]: DEVID  
DEVCFG1[7:2]: UD00[5:0]  
DEVCFG1[1:0]: AT_OTP[1:0]  
DEVCFG2[5]: PCM  
User Data Register 0  
Attribute Bits  
PCM Bit  
RESERVED Bit  
DEVCFG2[4]  
Device Address  
DEVCFG2[3:0]: ADDR[3:0]  
UD01 - UD08  
User Data Registers 1 - 8  
User Programmable OTP Array CRC  
User Programmable OTP Array Lock Bit  
DEVCFG[2:0]: CRC_U[2:0]  
DEVCFG2[7]: LOCK_U  
No  
Bits are fed in from right to left (LSB first), and top to bottom (lower addresses first) in the register map. The CRC verification  
uses a generator polynomial of g(x) = X3+X+1, with a seed value = ‘111’. The calculated CRC is compared against the user pro-  
grammed CRC, CRC_U[2:0], which is also included in the user programmable array. If a CRC mismatch is detected, an internal  
data error is set, and the device responds to DSI messages as specified in Section 4.3. The CRC verification is completed on the  
memory registers which hold a copy of the fuse array values, not the fuse array values. Writes to the User Programmable OTP  
array using the Write NVM Command will update the mirror registers and result in a change to the CRC calculation regardless  
of the state of the LOCK_U bit. A CRC mismatch will only be detected if the LOCK_U bit is active.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
17  
3.3  
VOLTAGE REGULATORS  
The device derives its internal supply voltage from the HCAP supply voltage. The device includes separate internal voltage  
regulators for the analog (VREGA) and digital circuitry (VREG). External filter capacitors are required, as shown in Figure 1.  
The voltage regulator module includes voltage monitoring circuitry which holds the device in reset following power-on until the  
HCAP and internal voltages have stabilized sufficiently for proper operation. The voltage monitor asserts internal reset when the  
HCAP supply or internally regulated voltages fall below predetermined levels. A reference generator provides a stable voltage  
which is used by the ΣΔ converter.  
VBUF  
VOLTAGE  
REGULATOR  
HCAP  
VREGA = 2.50 V  
OSCILLATOR  
TRIM  
VOLTAGE  
REGULATOR  
CREGA  
BIAS  
GENERATOR  
VREF  
BANDGAP  
REFERENCE  
TRIM  
ΣΔ  
CONVERTER  
VREF_MOD = 1.250 V  
REFERENCE  
GENERATOR  
VBUF  
OTP  
ARRAY  
V
REG = 2.50 V  
VREGA  
VOLTAGE  
REGULATOR  
CREG  
DIGITAL  
LOGIC  
DSP  
Digital Delay  
HCAP  
COMPARATOR  
t
HCAP_POR  
POR  
Analog Filter Delay  
V
REG  
COMPARATOR  
COMPARATOR  
t
VREG_POR  
Analog Filter Delay  
V
REGA  
t
VREG_POR  
V
REF  
Figure 9. Voltage Regulation and Monitoring  
3.3.1 CREG and CREGA Regulator Capacitor  
The internal regulator requires an external capacitor between the CREG pin and VSS pin, and the CREGA pin and VSSA pin for  
stability. Figure 1 shows the recommended types and values for each of these capacitors.  
3.3.2 VHCAP Voltage Monitor  
The device includes a circuit to monitor the voltage on the HCAP pin. If the voltage falls below the specified threshold in Section  
2, the device will be reset within the reset delay time (tHCAP_POR) specified in Section 2.7.  
MMA16xxWR  
Sensors  
18  
Freescale Semiconductor  
3.3.3 VREG, and VREGA Undervoltage Monitor  
The device includes a circuit to monitor the internally regulated voltages (VREG and VREGA). If either of the internal regulator  
voltages fall below the specified thresholds in Section 2, the device will be reset within the reset delay time (tVREG_POR  
,
t
VREGA_POR) specified in Section 2.7.  
3.3.4 VREG and VREGA Capacitance Monitor  
A monitor circuit is incorporated to ensure predictable operation if the connection to the external CREG or CREGA capacitor  
becomes open. At a continuous rate specified in Section 2.7 (tCAPTEST_RATE), both regulators are simultaneously disabled for a  
short duration (tCAPTEST_TIME). If either of the external capacitors are not present, the associated regulator voltage will fall below  
the internal reset threshold, forcing a device reset.  
tCAPTEST_RATE  
tCAPTEST_TIME  
CAP_Test  
VREG  
Capacitor Present  
Capacitor Open  
VPORVREG_f  
POR  
Time  
Figure 10. VREG Capacitor Monitor  
tCAPTEST_RATE  
tCAPTEST_TIME  
CAP_Test  
VREGA  
Capacitor Present  
Capacitor Open  
VPORREGA_f  
POR  
Time  
Figure 11. VREGA Capacitor Monitor  
3.4  
Internal Oscillator  
The device includes a factory trimmed oscillator as specified in Section 2.8.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
19  
3.5  
Acceleration Signal Path  
3.5.1 Transducer  
The device transducer is an overdamped mass-spring-damper system described by the following transfer function:  
2
n
ω
------------------------------------------------------  
H(s) =  
2
2
n
s + 2 ⋅ ξ ⋅ ω s + ω  
n
where:  
ζ = Damping Ratio  
ωn = Natural Frequency = 2∗Π∗fn  
Reference Section 2.8 for transducer parameters.  
3.5.2 ΣΔ Converter  
The sigma delta converter provides the interface between the g-cell and the DSP block. The output of the ΣΔ converter is a  
data stream at a nominal frequency of 1 MHz.  
g-cell  
1-BIT  
QUANTIZER  
FIRST  
INTEGRATOR  
SECOND  
INTEGRATOR  
V
X
α
=
1
α
C
2
-1  
-1  
C
C
INT1  
TOP  
z
z
ΣΔ_OUT  
-1  
-1  
1 - z  
1 - z  
BOT  
ADC  
DAC  
V = ΔC x V / C  
X INT1  
Δ
C = C  
- C  
TOP BOT  
β
β
2
1
V = ±2 × V  
REF  
Figure 12. ΣΔ Converter Block Diagram  
3.5.3 Digital Signal Processing Block  
A digital signal processing (DSP) block is used to perform signal filtering and compensation operations. A diagram illustrating  
the signal processing flow within the DSP block is shown in Figure 13.  
ΣΔ_OUT  
A
F
Low Pass Filter  
Sinc Filter  
B
D
E
C
3
–D  
–1  
+ (n z ) + (n z  
–2  
–1  
+ (n z ) + (n z  
–2  
Output  
Scaling  
1 – z  
OUTPUT  
n
)
n
)
Interpolation  
Compensation  
---------------------------------  
11  
12 13  
21  
22 23  
----------------------------------------------------------------------------- ----------------------------------------------------------------------------  
a
–1  
0
D × (1 – z  
)
–1  
–2  
–1  
–2  
d
+ (d z ) + (d z  
)
d
+ (d z ) + (d z  
)
11  
12 13  
21  
22 23  
Figure 13. Signal Chain Diagram  
Table 7. Signal Chain Characteristics  
Sample Time  
Data Width  
(Bits)  
Over Range Signal Width Signal Noise Signal Margin Typical Block  
Description  
Reference  
(μs)  
(Bits  
(Bits)  
(Bits)  
(Bits)  
Latency  
A
B
ΣΔ  
1
1
1
Section 3.5.2  
112/f  
osc  
SINC Filter  
16  
20  
12  
4
4
3
Section 3.5.3.1  
Reference Sec-  
tion 3.5.3.2  
C
D
Low Pass Filter  
16  
16  
26  
26  
1
4
12  
10  
9
9
Section 3.5.3.2  
Section 3.5.3.3  
Compensation  
DSP Sampling  
24/f  
osc  
E
F
16  
1
10  
10  
4/f  
Section 3.5.3.5  
Section 3.5.3.5  
osc  
10-Bit Output Scaling  
Interpolation  
64/f  
osc  
MMA16xxWR  
Sensors  
20  
Freescale Semiconductor  
3.5.3.1  
Decimation Sinc Filter  
The serial data stream produced by the ΣΔ converters is decimated and converted to parallel values by a 3rd order 16:1 sinc  
filter with a decimation factor of 16.  
3
–16  
1 – z  
----------------------------------  
H(z) =  
–1  
16 × (1 – z  
)
Figure 14. Sinc Filter Response, tS = 16 μs  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
21  
3.5.3.2  
Low Pass Filter  
Data from the Sinc filter is processed by an infinite impulse response (IIR) low pass filter.  
0
–1  
–2  
0
–1  
–2  
(n z ) + (n z ) + (n z ) (n z ) + (n z ) + (n z  
)
11 12 13 21 22 23  
-------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------  
H(z) = a ⋅  
0
0
–1  
–2  
0
–1  
–2  
(d z ) + (d z ) + (d z ) (d z ) + (d z ) + (d z  
11 12 13 11 22 23  
)
The device provides the option for one of three low-pass filters. The filter is selected with the LPF[1:0] bits in the TYPE register.  
The filter selection options are listed in Section 3.1.2.1, Table 8. Response parameters for the low-pass filter are specified in Sec-  
tion 2.8. Filter characteristics are illustrated in the figures below.  
Table 8. Low Pass Filter Coefficients  
Description  
Filter Coefficients  
Group Delay  
a
0.000534069200512  
0
n
n
n
n
n
n
0.25  
d
d
d
d
d
d
1
11  
12  
13  
21  
22  
23  
11  
12  
13  
21  
22  
23  
0.499999985098839  
0.25  
-1.959839582443237  
180 Hz LPF  
0.960373640060425  
4608/f  
3392/f  
1728/f  
osc  
osc  
osc  
1
1
0
0
0
0
a
0.003135988372378  
0.000999420881271  
0.001998946070671  
0.000999405980110  
0.250004753470421  
0.499986037611961  
0.250009194016457  
0.011904109735042  
0.003841564059258  
0.007683292031288  
0.003841534256935  
0.250001862645149  
0.499994158744812  
0.250003993511200  
0
n
n
n
n
n
n
d
d
d
d
d
d
1.0  
11  
12  
13  
21  
22  
23  
11  
12  
13  
21  
22  
23  
-1.892452478408814  
0.89558845758438  
1.0  
400 Hz LPF  
-1.919075012207031  
0.923072755336761  
a
0
n
n
n
n
n
n
d
d
d
d
d
d
1.0  
11  
12  
13  
21  
22  
23  
11  
12  
13  
21  
22  
23  
-1.790004611015320  
0.801908731460571  
1.0  
800 Hz LPF  
-1.836849451065064  
0.852215826511383  
Note: Low Pass Filter Figures do not include g-cell frequency response.  
MMA16xxWR  
Sensors  
22  
Freescale Semiconductor  
Figure 15. Low-Pass Filter Characteristics: fC = 180 Hz, 2-Pole, tS = 16 μs  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
23  
Figure 16. Low-Pass Filter Characteristics: fC = 400 Hz, 4-Pole, tS = 16 μs  
MMA16xxWR  
Sensors  
24  
Freescale Semiconductor  
Figure 17. Low-Pass Filter Characteristics: fC = 800 Hz, 4-Pole, tS = 16 μs  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
25  
3.5.3.3  
Compensation  
The device includes internal compensation circuitry to compensate for sensor offset, sensitivity and non-linearity.  
3.5.3.4  
Data Interpolation  
The device includes 16 to 1 linear data interpolation to minimize the system sample jitter. Each result produced by the digital  
signal processing chain is delayed one sample time. On reception of an acceleration data request, the transmitted data is inter-  
polated from the 2 previous samples, resulting in a latency of one sample time, and a maximum signal jitter of ±1/16 of a sample  
time. Reference Figure 8 for more information regarding interpolation and data latency.  
3.5.3.5  
Output Scaling  
The 26 bit digital output from the DSP is clipped and scaled to a 10-bit or 8-Bit word which covers the acceleration range of  
the device. Figure 18 shows the method used to establish the acceleration data word from the 26-bit DSP output.  
Over Range  
Signal  
Noise  
Margin  
D2 D1 D0  
D25 D24 D23 D22 D21 D20 D19 D18 D17 D16 D15 D14 D13 D12 D11 D10 D9 D8  
...  
10 Bit Data Word  
9 Bit Data Word  
8 Bit Data Word  
D21 D20 D19 D18 D17 D16 D15 D14 D13 D12  
D21 D20 D19 D18 D17 D16 D15 D14 D13  
D21 D20 D19 D18 D17 D16 D15 D14  
Using Truncation  
Using Truncation  
Using Truncation  
Figure 18. Output Scaling Diagram  
3.5.3.6  
PCM Output Function  
The device provides the option for a PCM output function. The PCM output is activated if the PCM bit is set in the DEVCFG2  
register. When the PCM function is enabled, a 4 MHz Pulse Code Modulated signal proportional to the upper 9 bits of the accel-  
eration response is output onto the PCM pin. The PCM output is intended for test use only. A block diagram of the PCM output  
is shown in Figure 19.  
Output Scaling  
D_x[9:1]  
A
CARRY  
PCM  
9
9 Bit ADDER  
9
Sample updated every 16μS  
B
SUM  
D
Q
CLK  
FF  
fCLK = 4 MHz  
Q
9
Figure 19. PCM Output Function Block Diagram  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
26  
3.6  
Device Initialization  
Following power-up, under-voltage reset or reception of a DSI Clear Command, the device proceeds through an initialization  
process as described in the following tables:  
Table 9. Power-up or Under-Voltage Reset Initialization Process  
#
1
3
Description  
Power up to a Known State  
Time  
S Flag ST Flag  
DSI Response  
No Response  
No Response  
0
N/A  
1
N/A  
0
Read Fuse Array and Copy to Memory Array (Mirror Registers)  
Initialize DSI State Machine (the device is ready for DSI Messages)  
Initialize the DSP (Acceleration Data is Valid)  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = invalid data.  
4
5
t
1
0
0
0
DSI_INIT  
t
Normal  
DSP_INIT  
Table 10. DSI Clear Command Initialization Process  
#
1
3
Description  
the device logic comes out of reset  
Time  
S Flag ST Flag  
DSI Response  
No Response  
No Response  
0
1
1
0
0
Read Fuse Array and Copy to Memory Array (Mirror Registers)  
Initialize DSI State Machine (the device is ready for DSI Messages)  
Initialize the DSP (Acceleration Data is Valid)  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = invalid data.  
4
5
t
1
0
0
0
DSI_INIT  
t
Normal  
DSP_INIT  
BUSIN’  
VPORHCAP_r  
VHCAP  
VPORVREG_r  
VREG  
VPORVREGA_r  
VREGA  
POR  
Internal Delay  
tINT_INIT  
DSI Ready  
DSP_OUT  
tDSI_INIT  
tDSP_INIT  
Figure 20. Initialization Timing  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
27  
3.7  
Overload Response  
3.7.1 Overload Performance  
The device is designed to operate within a specified range. however, acceleration beyond that range (overload) impacts the  
operating range output of the sensor. Acceleration beyond the range of the device can generate a DC shift at the output of the  
device that is dependent upon the overload frequency and amplitude. The device g-cell is overdamped, providing the optimal  
design for overload performance. However, the performance of the device during an overload condition is affected by many other  
parameters, including:  
• g-cell damping  
• Non-linearity  
• Clipping limits  
• Symmetry  
Figure 21 shows the g-cell, Sigma Delta, and output clipping of the device over frequency. The relevant parameters are spec-  
ified in Section 2.  
Acceleration (g)  
g-cellRolloff  
Region Clipped  
LPFRolloff  
by Output  
Determined by g-cell  
roll-off and ADC clipping  
gg-cell_Clip  
Determined by g-cell  
roll-off and full scale range  
gADC_Clip  
gRange_Norm  
Region of Interest  
fLPF  
Region of No Signal Distortion Beyond  
Specification  
fg-Cell  
5kHz  
10kHz  
Frequency (kHz)  
Figure 21. Output Clipping Vs. Frequency  
3.7.2 Sigma Delta Overrange Response  
Overrange conditions exist when the signal level is beyond the full-scale range of the device but within the computational limits  
of the DSP. The ΣΔ converter can saturate at levels above those specified in Section 2 (GADC_CLIP). The DSP operates predict-  
ably under all cases of overrange, although the signal may include residual high frequency components for some time after re-  
turning to the normal range of operation due to non-linear effects of the sensor.  
MMA16xxWR  
Sensors  
28  
Freescale Semiconductor  
4
DSI Protocol layer  
4.1  
Communication Interface Overview  
The device is compatible with the DSI Bus Standard V2.5.  
4.1.1 DSI Physical Layer  
Reference DSI Bus Standard V2.5, Section 3 for information regarding the physical layer.  
4.1.2 DSI Data Link Layer  
Reference DSI Bus Standard,V2.5, Section 4 for information regarding the DSI data link layer. The sections below describe  
the DSI data link layer features supported.  
4.2  
DSI Protocol  
4.2.1 DSI Bus Commands  
DSI Bus Commands are summarized in Table 11. The device supports only the command formats specified in Section 4.2.1.  
The device will ignore commands of any other format. If a CRC error is detected, or a reserved or un-implemented command is  
received, the device will not respond.  
Following all messages, the device requires a minimum inter-frame separation (tIFS). As long as the minimum inter-frame sep-  
aration times defined in Section 4.2.1 are met, all supported commands are guaranteed to be executed, and the device will be  
ready for the next message. The device will respond as appropriate during the subsequent DSI transfer. Exactly one response  
is attempted.  
Table 11. DSI Bus Command Summary  
Command  
C3 C2 C1 C0 Hex  
$0 Initialization  
$1 Request Status  
Command Format  
Data  
Description  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Standard Long Only  
NV  
BS  
Bnk[1] Bnk[0] PA[3] PA[2] PA[1] PA[0]  
Standard/Enhanced L/S  
$2 Read Acceleration Data Standard/Enhanced L/S  
$3 Not Implemented Not Implemented  
$4 Request ID Information Standard/Enhanced L/S  
Not Implemented  
$5 Not Implemented  
$6 Not Implemented  
$7 Clear  
Not Implemented  
Not Implemented  
Not Implemented  
Not Implemented  
Standard/Enhanced L/S  
Not Implemented  
$8 Not Implemented  
$9 Read Write NVM  
$A Format Control  
$B Read Register Data  
$C Disable Self-Test  
$D Activate Self-Test  
$E Not Implemented  
$F Reverse Initialization  
Not Implemented  
Standard/Enhanced L WA[3] WA[2] WA[1] WA[0] RD[3] RD[2] RD[1] RD[0]  
Standard/Enhanced L  
Standard/Enhanced L  
Standard/Enhanced L/S  
Standard/Enhanced L/S  
Not Implemented  
R/W  
0
FA[2] FA[1] FA[0] FD[3] FD[2] FD[1] FD[0]  
0
0
0
RA[3] RA[2] RA[1] RA[0]  
Not Implemented  
Not Implemented  
Not Implemented  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
29  
4.2.1.1  
Initialization Command  
The initialization command conforms to the description provided in Section 6.1.1 of the DSI Bus Standard V2.5. The initializa-  
tion command is only supported as a standard long command. No other commands are recognized by the device until a valid  
standard long initialization command is received.  
Table 12. Initialization Command  
Data  
D[4] D[3]  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
NV  
BS  
Bnk[1] Bnk[0] PA[3]  
PA[2]  
PA[1]  
PA[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
4 bits  
Table 13. Initialization Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
Initialization Command = ‘0000’  
DSI device address. This address is set to the pre-programmed device address following reset, or to ‘0000’ if no pre-programmed address  
has been assigned.  
A[3:0]  
PA[3:0]  
DSI Address to be programmed.  
These bits select the bank address for the user writable data registers. Bank selection affects the Read/Write NVM command operation.  
Invalid combinations of B1 and B0 result in no response from the device to the associated initialization. Refer to Section 4.2.1.10 for fur-  
ther details regarding register programming and bank selection.  
Bnk[1:0]  
BS  
Bus Switch state. This bit controls the state of the DSI bus switch.  
1 - Close the bus switch.  
0 - Do not close the bus switch.  
NVM Program Enable. This bit enables programming of the user-programmed OTP locations. Data to be programmed is transferred to the  
device during subsequent Read Write NVM commands.  
1 - Enable OTP programming  
NV  
0 - Disable OTP programming  
Figure 22 illustrates the sequence of operations performed following negation of internal power-on reset (POR) and execution  
of a DSI Initialization command. The BUSOUT node is tested for a bus short to high voltage condition, and the bus fault (BF) flag  
is set if an error condition is detected. If no bus fault condition is detected and the BS bit is set in the Initialization command mes-  
sage, the bus switch will be closed. The device implements a blanking time (tDSI_BLANK_INIT) to allow for the bus voltage to re-  
cover following closure of the bus switch.  
If the device has been pre-programmed, PA[3:0] and A[3:0] must match the pre-programmed address.  
If no device address has been previously programmed into the OTP array, PA[3:0] contains the device address, and A[3:0]  
must be zero. If either addressing condition is not met, the device address is not assigned, the bus switch will remain open and  
the device will not respond to the Initialization command. If the addressing conditions are met, the new device address is as-  
signed to A[3:0]. Once the device address is assigned, the new address (A[3:0]) is not protected by the User Programmable OTP  
Array CRC Verification. The User Programmable OTP array CRC is calculated and verified using the OTP programmed values  
of A[3:0] = ‘0000’.  
Once initialized, the device will no longer recognize or respond to Initialization commands.  
Table 14. Initialization Command Response  
Response  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
PA[3]  
PA[2]  
PA[1]  
PA[0]  
0
0
0
BF  
NV  
BS  
Bnk[1] Bnk[0] PA[3]  
PA[2]  
PA[1]  
PA[0]  
4 bits  
MMA16xxWR  
Sensors  
30  
Freescale Semiconductor  
Table 15. Initialization Response Bit Definitions  
Bit Field  
Definition  
DSI device address. This field contains the device address. If the device is unprogrammed when the initialization command is issued, the  
device address is assigned. This field contains the programmed address. An Initialization command which attempts to assign a device  
address of zero is ignored.  
PA[3:0]  
Bnk[1:0]  
BS  
These bits select the bank address for the user writable data registers. Bank selection affects the Read/Write NVM command operation.  
Invalid combinations of B1 and B0 result in no response from the device to the associated initialization. Refer to Section 4.2.1.10 for fur-  
ther details regarding register programming and bank selection.  
Bus Switch state. This bit controls the state of the bus switch:  
1 - Close the bus switch  
0 - Do not close the bus switch  
NVM Program Enable. This bit indicates if programming of the user-accessible OTP is enabled.  
1 - OTP programming Enabled  
NV  
0 - OTP programming Disabled  
This bit indicates the success or failure of the bus test performed as part of the Initialization command.  
BF  
1 - Bus fault detected  
0 - Bus test passed  
N
INITIALIZATION  
COMMAND?  
Y
N
BS == 1?  
Y
ENABLE IRESP CURRENT  
Delay tBUSOUT_DISCHARGE  
MEASURE VBUSOUT  
N
VBUSOUT < VTHH  
?
SET BF FLAG  
DELAY  
Y
CLOSE BUS SWITCH  
WAIT FOR NEXT DSI  
BUS COMMAND  
Figure 22. Initialization Sequence  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
31  
4.2.1.2  
Request Status Command  
The Request Status command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The device ignores the Request Status command if the DSI device address is set to the DSI Global Device Address of ‘0000’.  
The data bits D[7:0] in the command are only used in the CRC calculation.  
Table 16. Request Status Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
1
0 to 8 bits  
Table 17. Request Status Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
A[3:0]  
D[7:0]  
Request Status Command = ‘0001’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
Used for CRC calculation only  
Table 18. Short Response - Request Status Command  
Response  
CRC  
D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
NV  
U
ST  
BS  
AT[1]  
AT[0]  
S
0
0 to 8 bits  
Table 19. Long Response - Request Status Command  
Data  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
BS  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
NV  
U
ST  
AT[1]  
AT[0]  
S
0
0 to 8 bits  
Table 20. Request Status Response Bit Definitions  
Bit Field  
Definition  
This bit indicates whether the device has detected an internal device error.  
1 - Internal Error detected.  
0 - No Internal Error detected  
S
Reference Table 59 for conditions that set the S bit.  
AT[1:0]  
BS  
Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)  
Bus Switch state. This bit controls the state of the bus switch:  
1 - Close the bus switch  
0 - Do not close the bus switch  
This bit indicates whether internal self-test circuitry is active  
1 - Self-test active  
0 - Self-test disabled  
ST  
U
This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.  
NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled.  
NV  
1 - OTP programming Enabled  
0 - OTP programming Disabled  
A[3:0]  
DSI device address. This field contains the device address.  
Shaded bits are transmitted to meet the response message length of the received message  
MMA16xxWR  
Sensors  
32  
Freescale Semiconductor  
4.2.1.3  
Read Acceleration Data Command  
The Read Acceleration Data command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Form at Control Command (Reference Section 4.2.1.11)  
The device ignores the Request Status command if the DSI device address is set to the DSI Global Device Address of ‘0000’.  
The data bits D[7:0] in the command are only used in the CRC calculation.  
Table 21. Read Acceleration Data Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
1
0
0 to 8 bits  
Table 22. Read Acceleration Data Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
A[3:0]  
D[7:0]  
Read Acceleration Data Command = ‘0010’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
Used for CRC calculation only  
Table 23. Short Response - Read Acceleration Data Command  
Response  
Response  
Length  
CRC  
D[14]  
D[13] D[12] D[11] D[10] D[9] D[8] D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0]  
AD[9] AD[8] AD[7] AD[6] AD[5] AD[4] AD[3] AD[2]  
8
9
AD[9] AD[8] AD[7] AD[6] AD[5] AD[4] AD[3] AD[2] AD[1]  
10  
11  
12  
13  
14  
15  
0 to 8 bits  
AD[9] AD[8] AD[7] AD[6] AD[5] AD[4] AD[3] AD[2] AD[1] AD[0]  
S
0
ST  
AT_OTP[0]  
AT_OTP[1]  
Table 24. Long Response - Read Acceleration Data Command  
Response  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
S
AD[9]  
AD[8]  
AD[7]  
AD[6]  
AD[5]  
AD[4]  
AD[3]  
AD[2]  
AD[1]  
AD[0] 0 to 8 bits  
Table 25. Read Acceleration Response Bit Definitions  
Bit Field  
Definition  
AD[9:0]  
Ten-bit acceleration result produced by the device.  
This bit indicates whether the device has detected an internal device error.  
1 - Internal Error detected.  
0 - No Internal Error detected  
S
Reference Table 59 for conditions that set the S bit.  
This bit indicates whether internal self-test circuitry is active  
1 - Self-test active  
ST  
0 - Self-test disabled  
A[3:0]  
DSI device address. This field contains the device address.  
AT_OTP[1:0]  
Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)  
Shaded bits are transmitted to meet the response message length of the received message  
The device truncates the LSBs for Acceleration Data Responses of length less than 10. If the result of the truncation is 0, the  
minimum acceleration value is transmitted as defined in Table 26.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
33  
Table 26. Acceleration Data Values  
8-Bit Data Value  
Decimal Hex  
9-Bit Data Value  
10-Bit Data Value  
Description  
Decimal  
Hex  
Decimal  
Hex  
255  
0xFF  
511  
0x1FF  
1023  
0x3FF  
Maximum positive acceleration value  
Positive acceleration values  
131  
130  
129  
128  
127  
126  
125  
0x83  
0x82  
0x81  
0x80  
0x7F  
0x7E  
0x7D  
259  
258  
257  
256  
127  
126  
125  
0x103  
0x102  
0x101  
0x100  
0x0FF  
0x0FE  
0x0FD  
515  
514  
513  
512  
511  
510  
509  
0x203  
0x202  
0x201  
0x200  
0x1FF  
0x1FE  
0x1FD  
Typical 0 g level  
Negative acceleration values  
1
0
1
0
1
0
1
0
1
0
1
0
Maximum negative acceleration value  
Sensor Error  
4.2.1.4  
DSI Command #3  
DSI Command ‘0011’ is not implemented. The device ignores all command formats with a command ID of ‘0011’.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
34  
4.2.1.5  
Request ID Information Command  
The Request ID Information command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The device ignores the Request ID Information command if the DSI device address is set to the DSI Global Device Address  
of ‘0000’. The data bits D[7:0] in the command are only used in the CRC calculation.  
Table 27. Request ID Information Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
1
0
0
0 to 8 bits  
Table 28. Request ID Information Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
A[3:0]  
D[7:0]  
Request ID Information Data Command = ‘0100’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
Used for CRC calculation only  
Table 29. Short Response - Request ID Information Command  
Response  
CRC  
D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
V2  
V1  
V0  
0
DEVID  
1
0
0
0 to 8 bits  
Table 30. Long Response - Request ID Information Command  
Response  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
V[2]  
V[1]  
V[0]  
0
DEVID  
1
0
0
0 to 8 bits  
Table 31. Request ID Response Bit Definitions  
Bit Field  
Definition  
Device Identifier:‘00100’, or ‘01100’  
DEVID: Bit 7 of the DEVCFG regIster  
D[4:0] = {1’b0,DEVID, 3’b100}  
V[2:0]  
A[3:0]  
Version ID. This field indicates the device / silicon revision of the device.  
DSI device address. This field contains the device address.  
Shaded bits are transmitted to meet the response message length of the received message  
4.2.1.6  
DSI Command #5  
DSI Command ‘0101’ is not implemented. The device ignores all command formats with a command ID of ‘0101’.  
4.2.1.7  
DSI Command #6  
DSI Command ‘0110’ is not implemented. The device ignores all command formats with a command ID of ‘0110’.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
35  
4.2.1.8  
Clear Command  
The Clear command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
When the device successfully decodes a Clear Command, and the address field matches either the assigned device address  
(PA[3:0]) or the DSI Global address of ‘0000’, the bus switch is opened within TBSOPEN, and the device logic is reset. Reference  
Section 3.6 for the initialization sequence following a Clear Command. The data bits D[7:0] in the command are only used in the  
CRC calculation. There is no response to the Clear Command.  
Table 32. Clear Command  
Data  
Address  
Command  
CRC  
D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] A[3] A[2] A[1] A[0] C[3] C[2] C[1] C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
1
1
1
0 to 8 bits  
Table 33. Clear Command Bit Definitions  
Bit Field  
Definition  
Clear Command = ‘0111’.  
When a Clear Command is successfully decoded and the address field matches either the assigned device address or the DSI Global  
C[3:0]  
Device Address of ‘0000’, the bus switch is opened within t  
sequence following a Clear Command.  
, and the device logic is reset. Reference Section 3.6 for the initialization  
BSOPEN  
DSI device address. This field contains the device address. This field must match the internal programmed address field or the Global  
Device Address of ‘0000’. Otherwise, the command is ignored.  
A[3:0]  
D[7:0]  
Used for CRC calculation only  
4.2.1.9  
DSI Command #8  
DSI Command ‘1000’ is not implemented. The device ignores all command formats with a command ID of ‘1000’.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
36  
4.2.1.10  
Write NVM Command  
The Write NVM command is supported in the following command formats:  
• Standard Long Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The device ignores the Write NVM command if the command is in any other format, or if the DSI device address is set to the  
DSI Global Device Address of ‘0000’.  
The Write NVM command uses the nibble address definitions in Table 2 and summarized in Table 39.  
Table 34. Write NVM Command  
Data  
D[4] D[3]  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
WA[3] WA[2] WA[1] WA[0] RD[3]  
RD[2]  
RD[1]  
RD[0]  
A[3]  
A[2]  
A[1]  
A[0]  
1
0
0
1
0 to 8 bits  
Table 35. Write NVM Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
Write NVM Command = ‘1001’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is  
ignored.  
A[3:0]  
RD[3:0] RD[3:0] contains the data to be written to the OTP location addressed by WA[3:0] when the NV bit is set.  
WA[3:0] WA[3:0] contains the nibble address of the OTP register to be written to when the NV bit is set.  
Table 36. Long Response - Write NVM Command (NV = 1)  
Data  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
WA[3] WA[2] WA[1] WA[0]  
1
1
Bnk[1] Bnk[0] RD[3]  
RD[2]  
RD[1]  
RD[0] 0 to 8 bits  
Table 37. Long Response - Write NVM Command (NV = 0)  
Data  
CRC  
D[0]  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
1
1
1
1
A[3]  
A[2]  
A[1]  
A[0]  
0 to 8 bits  
Table 38. Write NVM Response Bit Definitions  
Bit Field  
Definition  
Bnk[1:0] These bits provide the bank address selected in the Initialization command.  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the command is  
ignored.  
A[3:0]  
RD[3:0] RD[3:0] contains the contents of the registers addressed by WA[3:0] after the execution of the NVM write.  
WA[3:0] WA[3:0] contains the nibble address of the OTP register to be written to when the NV bit is set.  
Writes to OTP occur only if the NV bit is set. The NV bit is set by the Initialization Command (reference Section 4.2.1.1). If the  
NV bit is cleared when the command is executed, the mirror registers addressed by WA[3:0] are updated with the contents of  
RD[3:0] and the DSI Device Address is returned regardless of the WA[3:0] value. If the Write NVM command is a request to  
change the Device Address, the new Device Address is returned.  
The DSI Bus idle voltage must exceed the minimum VPP voltage when programming the OTP array. No internal verification of  
the VPP voltage is completed while writing is in process. To verify proper writes, it is recommend that the registers be read back  
after writes to verify proper contents. The total Execution time for the Write NVM command is tPROG_BIT times the number of bits  
being programmed (1 - 4 bits). Inter-frame spacing between the Write NVM command and the subsequent DSI command must  
accommodate this timing.  
Writes to the User Programmable OTP array using the Write NVM Command will update the mirror registers and result in a  
change to the CRC calculation regardless of the state of the NV bit and the LOCK_U bit. A CRC mismatch will only be detected  
if the LOCK_U bit is active (reference Section 3.2.2).  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
37  
Table 39. OTP Register Nibble Address Assignments  
Bank Address  
Register Address (Nibble)  
Register  
Description  
Bnk[1] Bnk[0] WA[3] WA[2] WA[1] WA[0]  
x
x
x
x
x
x
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
x
x
x
x
x
x
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
UNUSED  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
UNUSED  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
UNUSED  
DEVCFG2[7]  
TYPE[7:6]  
DEVCFG[3:0]  
DEVCFG[7:4]  
UNUSED  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
Only RD[3] is written to the LOCK_U bit  
Only RD[3:2] is written to LPF[1:0]  
RD[3] is written to DEVCFG[3] - UNUSED, RD[2:0] is written to CRC_U[2:0]  
RD[3] is written to the DEVID bit, RD[2:0] is written to DEVCFG[6:4] - UNUSED  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
RD[3:2] is written to UD00[1:0], RD[1:0] is written to AT[1:0]  
RD[3:0] is written to ADDR[3:0]  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
DEVCFG1[3:0]  
DEVCFG2[3:0]  
UD01[3:0]  
UD02[3:0]  
UD03[3:0]  
UD04[3:0]  
UD05[3:0]  
UD06[3:0]  
UD07[3:0]  
UD08[3:0]  
DEVCFG1[7:4]  
DEVCFG2[5]  
UD01[7:4]  
UD02[7:4]  
UD03[7:4]  
UD04[7:4]  
UD05[7:4]  
UD06[7:4]  
UD07[7:4]  
UD08[7:4]  
UNUSED  
RD[3:0] is written to UD01[3:0]  
RD[3:0] is written to UD02[3:0]  
RD[3:0] is written to UD03[3:0]  
RD[3:0] is written to UD04[3:0]  
RD[3:0] is written to UD05[3:0]  
RD[3:0] is written to UD06[3:0]  
RD[3:0] is written to UD07[3:0]  
RD[3:0] is written to UD08[3:0]  
RD[3:0] is written to UD00[5:2]  
Only RD[1] is written to the PCM bit  
RD[3:0] is written to UD01[7:4]  
RD[3:0] is written to UD02[7:4]  
RD[3:0] is written to UD03[7:4]  
RD[3:0] is written to UD04[7:4]  
RD[3:0] is written to UD05[7:4]  
RD[3:0] is written to UD06[7:4]  
RD[3:0] is written to UD07[7:4]  
RD[3:0] is written to UD08[7:4]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
Only RD[2] is written to the DEVCFG2[6] bit (UNUSED)  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
No Write to NVM executed, Normal Response: RD[3:0] = Device Address ADDR[3:0]  
Only RD[0] is written to DEVCFG2[4]  
DEVCFG2[6]  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
UNUSED  
DEVCFG2[4]  
MMA16xxWR  
Sensors  
38  
Freescale Semiconductor  
4.2.1.11  
Format Control Command  
The Format Control command is supported in the following command formats:  
• Standard Long Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The device ignores the Format Control command if the command is in any other format. The device supports the Format Con-  
trol command with the DSI Global Address of ‘0000’, but does not provide a response.  
Table 40. Format Control Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
R/W  
FA[2]  
FA[1]  
FA[0]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
A[3]  
A[2]  
A[1]  
A[0]  
1
0
1
0
0 to 8 bits  
Table 41. Format Control Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
Format Control Command = ‘1010’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
A[3:0]  
FD[3:0]  
FA[2:0]  
Data to be written to the Format Control Register addressed by FA[2:0] if the R/W bit is set to ‘1’.  
The Address of the Format Control Register to read or written.  
Read/Write determines if the register at address FA[2:0] is to be read or written.  
1 - Write FD[3:0] to the Format Control Register addressed by FA[2:0]  
0 - Read the Format Control Register addressed by FA[2:0]  
R/W  
Table 42. Long Response - Format Control Command  
Response  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
1
1
0
R/W  
FA[2]  
FA[1]  
FA[0]  
FD[3]  
FD[2]  
FD[1]  
FD[0]  
0 to 8 bits  
Table 43. Format Control Response Bit Definitions  
Bit Field  
Definition  
FD[3:0]  
FA[2:0]  
The contents of the Format Control Register addressed by FA[2:0].  
The Address of the Format Control Register that was read or written.  
Read/Write indicates if the register at address FA[2:0] was read or written.  
R/W  
1 - FD[3:0] contains the data written to the Format Control Register addressed by FA[2:0]  
0 - FD[3:0] contains the contents for the Format Control Register addressed by FA[2:0]  
A[3:0]  
DSI device address. This field contains the device address.  
The format control registers defined in the DSI Bus Standard V2.5 are shown in Table 44. The reset values assigned to each  
register are also indicated.  
Table 44. Format Control Register Values  
Register Address  
Reset Values  
DSI Standard Values  
Format Control Register  
Definition  
FA[2] FA[1] FA[0] FD[3] FD[2] FD[1] FD[0] FD[3] FD[2] FD[1] FD[0]  
CRC Polynomial - Low Nibble  
CRC Polynomial - High Nibble  
Seed - Low Nibble  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
1
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
1
0
0
0
0
0
0
1
0
0
0
0
0
1
0
0
0
0
0
1
1
0
0
0
0
0
0
4
CRC Polynomial = X +1  
Seed = ‘1010’  
Seed - High Nibble  
CRC Length (0 to 8)  
CRC Length = 4  
Short Word Data Length (8 to 15)  
Reserved  
Short Command Length = 8  
N/A  
N/A  
Format Selection  
The following restrictions apply to format control register operations:  
• Writes to the CRC Length Register of values greater than 8 are ignored. The contents of the register are  
unchanged.  
• Writes to the Short Word Data Length register of values less than 8 are ignored. The contents of the register are  
unchanged.  
The contents of the Format Selection register determine whether the standard DSI values or the values in the format control  
registers are used. If the Format Selection register contains ‘1111’, the Format Control register values are active. Any write to the  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
39  
Format Control registers will become active upon completion of the write. In this case, the response to a Format Control Com-  
mand will maintain the format of the previous command resulting in an invalid response.  
A write of ‘0000’ to the Format Selection register activates the standard DSI values.  
A write to the Format Selection register of any other value is ignored.  
4.2.1.12  
Read Register Data Command  
The Read Register Data command is supported in the following command formats:  
• Standard Long Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The device ignores the Register Data command if the command is in any other format, or if the DSI device address is set to  
the DSI Global Device Address of ‘0000’.  
The read register command uses the byte address definitions shown in Table 2. Readable registers along with their Byte ad-  
dresses are shown in Table 2.  
Table 45. Read Register Data Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
0
0
0
0
RA[3]  
RA[2]  
RA[1]  
RA[0]  
A[3]  
A[2]  
A[1]  
A[0]  
1
0
1
1
0 to 8 bits  
Table 46. Read Register Data Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
Read Register Data Command = ‘1011’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
A[3:0]  
RA[3:0]  
RA[3:0] contains the byte address of the register to be read.  
Table 47. Long Response - Read Register Data Command  
Data  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
RA[3]  
RA[2]  
RA[1]  
RA[0]  
RD[7]  
RD[6]  
RD[5]  
RD[4]  
RD[3]  
RD[2]  
RD[1]  
RD[0] 0 to 8 bits  
Table 48. Read Register Data Response Bit Definitions  
Bit Field  
Definition  
RD7:0]  
RA[3:0]  
RD[7:0] contains the data of the register addressed by RA[3:0].  
RA[3:0] contains the byte address of the register to be read.  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
A[3:0]  
MMA16xxWR  
Sensors  
40  
Freescale Semiconductor  
4.2.1.13  
Disable Self-Test Command  
The Disable Self Test command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The data bits D[7:0] in the command are only used in the CRC calculation. The device supports the Disable Self Test command  
with the DSI Global Address of ‘0000’, but does not provide a response.  
The Disable Self Test Command removes the voltage from the self test plate of the transducer which results in the acceleration  
output value returning to the 0g offset value within tST_DEACT_xxx, as specified in Section 2.  
Table 49. Disable Self-Test Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
1
1
0
0
0 to 8 bits  
Table 50. Disable Self-Test Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
A[3:0]  
D[7:0]  
Disable Self-Test Command = ‘1100’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
Used for CRC calculation only  
Table 51. Short Response - Disable Self-Test Command  
Response  
CRC  
D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
NV  
U
ST  
BS  
AT[1]  
AT[0]  
S
0
0 to 8 bits  
Table 52. Long Response - Disable Self-Test Command  
Data  
D[8] D[7]  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[6]  
D[5]  
D[4]  
BS  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
NV  
U
ST  
AT[1]  
AT[0]  
S
0
0 to 8 bits  
Table 53. Disable Self Test Response Bit Definitions  
Bit Field  
Definition  
This bit indicates whether the device has detected an internal device error.  
1 - Internal Error detected.  
0 - No Internal Error detected  
S
Reference Table 59 for conditions that set the S bit.  
AT[1:0]  
BS  
Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)  
Bus Switch state. This bit controls the state of the bus switch:  
1 - Close the bus switch  
0 - Do not close the bus switch  
This bit indicates whether internal self-test circuitry is active  
1 - Self-test active  
0 - Self-test disabled  
ST  
U
This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.  
NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled.  
NV  
1 - OTP programming Enabled  
0 - OTP programming Disabled  
A[3:0]  
DSI device address. This field contains the device address.  
A self-test lockout is activated when the device receives two consecutive Disable Self-Test commands Once self-test lockout  
is activated, the internal self-test circuitry is disabled until one of the following conditions occurs:  
• HCAP undervoltage  
• A Clear command is received  
• Internal regulator undervoltage resulting in a reset.  
• A Frame Timeout resulting in a reset.  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
41  
4.2.1.14  
Enable Self-Test Command  
The Enable Self Test command is supported in the following command formats:  
• Standard Long Command  
• Standard Short Command  
• Enhanced Long Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
• Enhanced Short Command as configured by the Format Control Command (Reference Section 4.2.1.11)  
The data bits D[7:0] in the command are only used in the CRC calculation. The device ignores the Enable Self Test command  
when it is sent to the DSI Global Address of ‘0000’.  
The Enable Self Test Command applies a voltage to the self test plate of the transducer which results in a delta in the accel-  
eration output value of ΔDFLCT_xxx within tST_ACT_xxx, as specified in Section 2. This remains present until the Disable Self Test  
command is received.  
Activation of the self test circuit is inhibited if the self-test locking has been activated. If self-test locking is activated, the internal  
self test circuitry remains disabled, and the ST bit is cleared in the response. Self-test locking is described in Section 4.2.1.13.  
Table 54. Enable Self-Test Command  
Data  
Address  
Command  
CRC  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
C[3]  
C[2]  
C[1]  
C[0]  
A[3]  
A[2]  
A[1]  
A[0]  
1
1
0
1
4 bits  
Table 55. Enable Self-Test Command Bit Definitions  
Bit Field  
Definition  
C[3:0]  
A[3:0]  
D[7:0]  
Enable Self-Test Command = ‘1101’  
DSI device address. This field contains the device address. This field must match the internal programmed address field. Otherwise, the  
command is ignored.  
Used for CRC calculation only  
Table 56. Short Response - Enable Self-Test Command  
Response  
CRC  
D[14] D[13] D[12] D[11] D[10] D[9]  
D[8]  
D[7]  
D[6]  
D[5]  
D[4]  
D[3]  
D[2]  
D[1]  
D[0]  
0
0
0
0
0
0
0
NV  
U
ST  
BS  
AT[1]  
AT[0]  
S
0
4 bits  
Table 57. Long Response - Enable Self-Test Command  
Data  
D[8] D[7]  
CRC  
D[15] D[14] D[13] D[12] D[11] D[10] D[9]  
D[6]  
D[5]  
D[4]  
BS  
D[3]  
D[2]  
D[1]  
D[0]  
A[3]  
A[2]  
A[1]  
A[0]  
0
0
0
0
NV  
U
ST  
AT[1]  
AT[0]  
S
0
4 bits  
Table 58. Enable Self Test Response Bit Definitions  
Bit Field  
Definition  
This bit indicates whether the device has detected an internal device error.  
1 - Internal Error detected.  
0 - No Internal Error detected  
S
Reference Table 59 for conditions that set the S bit.  
AT[1:0]  
BS  
Attribute bits located in Register DEVCFG1 (Reference Section 3.1.4.2)  
Bus Switch state. This bit controls the state of the bus switch:  
1 - Close the bus switch  
0 - Do not close the bus switch  
This bit indicates whether internal self-test circuitry is active  
1 - Self-test active  
0 - Self-test disabled  
ST  
U
This bit is set if the voltage at HCAP is below the threshold specified in Section 2. Refer to Section 3.3.2 for details.  
NVM Program Enable. This bit indicates whether programming of the user-programmable OTP locations is enabled.  
NV  
1 - OTP programming Enabled  
0 - OTP programming Disabled  
A[3:0]  
DSI device address. This field contains the device address.  
MMA16xxWR  
Sensors  
42  
Freescale Semiconductor  
4.2.1.15  
DSI Command #14  
DSI Command ‘1110’ is not implemented. The device ignores all command formats with a command ID of ‘1110’.  
4.2.1.16  
Reverse Initialization Command  
The Reverse Initialization Command is not implemented. The device ignores all command formats with a command ID of  
‘1111’. The device ignores all command received on the BUSOUT pin.  
4.3  
Exception Handling  
Table 59 summarizes the exception conditions detected by the device and the response for each exception.  
Table 59. Exception Handling  
Condition  
Description  
S
ST  
U
Response  
Self Test  
Request  
Exception  
Power On  
Reset  
Power Applied  
Clear Command  
N/A  
1
1
0
Reference Section 3.6  
Device held in Reset.  
V
No response to DSI commands.  
REG  
N/A  
V
< V  
PORCREG_f  
REG  
Bus switch open within t  
Device must be re-initialized when V  
.
Undervoltage  
BSOPEN  
returns above V  
PORCREG_r  
REG  
Device held in Reset.  
V
No response to DSI commands.  
REGA  
N/A  
V
V
< V  
REGA  
HCAP  
PORCREG_f  
Bus switch open within t  
Device must be re-initialized when V  
.
Undervoltage  
BSOPEN  
returns above V  
PORCREGA_r  
REGA  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = normal.  
< V  
for less  
PORCREG_f  
Disabled  
Enabled  
0
0
0
1
1
1
Device does not need to be re-initialized if  
V
returns above  
than t  
, ST Disabled  
for less  
PORCREG_f  
HCAP  
HCAP_POR  
V
HCAP  
V
before t  
PORHCAP_r  
HCAP_POR  
Undervoltage  
Transient  
DSI Read Acceleration Data Short response = self test data.  
DSI Read Acceleration Data Long response = self test data.  
V
than t  
< V  
HCAP  
Device does not need to be re-initialized if  
before t  
V
returns above  
, ST Enabled  
HCAP  
HCAP_POR  
V
PORHCAP_r  
HCAP_POR  
Device is Reset and will continue to Reset every t  
until VHCAP  
HCAP_POR  
returns above V  
occurs.  
, or an internal supply undervoltage condition  
PORHCAP_r  
V
V
< V  
for longer  
HCAP  
HCAP  
PORCREG_f  
than t  
HCAP_POR  
N/A  
No response to DSI commands.  
Undervoltage  
Bus switch open within t  
.
BSOPEN  
Device must be re-initialized when V  
returns above V  
PORHCAP_r  
HCAP  
Device is Reset and will continue to be reset every t  
until the  
POR_CAPTEST  
capacitor failure is removed.  
Capacitor Test  
Failure  
N/A  
N/A  
No response to DSI commands.  
Bus switch open within t  
.
BSOPEN  
Device must be re-initialized when capacitor failure is removed.  
Device is Reset and will continue to be reset every t until the BUSIN  
TO  
voltage returns above V  
or a supply undervoltage condition occurs.  
THF  
DSI Frame  
Timeout  
V
< V  
for longer than t  
TO  
No response to DSI commands.  
Bus switch open within t  
BUSIN  
THF  
.
BSOPEN  
Device must be re-initialized when V  
returns above V  
THF  
BUSIN  
CRC failure detected in factory  
Disabled programmed OTP array and the  
LOCK_F bit is set. ST Disabled  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = normal.  
1
1
1
1
0
1
0
1
0
0
0
0
Fuse CRC  
Fault  
(Factory Array)  
CRC failure detected in factory  
Enabled programmed OTP array and the  
LOCK_F bit is set. ST Enabled  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = self test data.  
CRC failure detected in User pro-  
Disabled grammed OTP array and the  
LOCK_U bit is set. ST Disabled  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = normal.  
Fuse CRC  
Fault  
(User Array)  
CRC failure detected in User pro-  
Enabled grammed OTP array and the  
LOCK_U bit is set. ST Enabled  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = self test data.  
Temperature out of range, ST  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = normal.  
Disabled  
Disabled.  
1
1
0
1
0
0
Temperature  
Out of Range  
Temperature out of range, ST  
DSI Read Acceleration Data Short response = zero.  
DSI Read Acceleration Data Long response = self test data.  
Enabled  
Enabled.  
Internal self test circuitry enabled.  
Self Test  
Enabled  
Enabled ST Enabled  
1
0
1
0
0
0
DSI Read Acceleration Data Short response = self test data.  
DSI Read Acceleration Data Long response = self test data.  
Internal self test circuitry disabled.  
Self Test  
Lockout  
2 consecutive Disable Self Test  
Disabled  
Enable Self Test DSI command does not enable Self Test. Normal  
response to Enable Self Test DSI command except the ST bit is not set.  
DSI Clear command or Reset disables lockout.  
DSI commands received.  
MMA16xxWR  
43  
Sensors  
Freescale Semiconductor  
5
Recommended Footprint  
Reference Freescale Application Note AN3111, latest revision:  
http://www.freescale.com/files/sensors/doc/app_note/AN3111.pdf  
MMA16xxWR  
Sensors  
44  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
CASE 2086-01  
ISSUE B  
16 LEAD QFN  
MMA16xxWR  
45  
Sensors  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
CASE 2086-01  
ISSUE B  
16 LEAD QFN  
MMA16xxWR  
Sensors  
Freescale Semiconductor  
46  
PACKAGE DIMENSIONS  
CASE 2086-01  
ISSUE B  
16 LEAD QFN  
MMA16xxWR  
47  
Sensors  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. Xtrinsic is a trademark of FreescaleSemiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or +1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
© Freescale Semiconductor, Inc., 2010. All rights reserved.  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical  
characteristics of their non-RoHS-compliant and/or non-Pb-free counterparts. For further  
information, see http:/www.freescale.com or contact your Freescale sales representative.  
For information on Freescale’s Environmental Products program, go to http://www.freescale.com/epp.  
MMA16xxWR2  
Rev 1, 10/2010  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY