MMPF0100FCANES [NXP]

14 channel configurable power management integrated circuit;
MMPF0100FCANES
型号: MMPF0100FCANES
厂家: NXP    NXP
描述:

14 channel configurable power management integrated circuit

文件: 总136页 (文件大小:1311K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMPF0100  
Rev. 18, 7/2019  
NXP Semiconductors  
Data sheet: Technical Data  
14 channel configurable power  
management integrated circuit  
PF0100  
The PF0100 SMARTMOS power management integrated circuit (PMIC)  
provides a highly programmable/ configurable architecture, with fully integrated  
power devices and minimal external components. With up to six buck  
converters, six linear regulators, RTC supply, and coin-cell charger, the  
PF0100 can provide power for a complete system, including applications  
processors, memory, and system peripherals, in a wide range of applications.  
With on-chip one time programmable (OTP) memory, the PF0100 is available  
in pre-programmed standard versions, or non-programmed to support custom  
programming. The PF0100 is defined to power an entire embedded MCU  
platform solution such as i.MX 6 based eReader, IPTV, medical monitoring, and  
home/factory automation.  
POWER MANAGEMENT  
EP SUFFIX (E-TYPE)  
ES SUFFIX (WF-TYPE)  
98ASA00589D  
98ASA00405D  
56 QFN 8X8  
56 QFN 8X8  
Features:  
Applications:  
• Four to six buck converters, depending on configuration  
• Tablets  
• IPTV  
Single/Dual phase/ parallel options  
DDR termination tracking mode option  
• eReaders  
• Boost regulator to 5.0 V output  
• Set top boxes  
• Industrial control  
• Medical monitoring  
• Six general purpose linear regulators  
• Programmable output voltage, sequence, and timing  
• OTP (one time programmable) memory for device configuration  
• Coin cell charger and RTC supply  
• Home automation/ alarm/ energy management  
• DDR termination reference voltage  
• Power control logic with processor interface and event detection  
• I2C control  
• Individually programmable ON, OFF, and standby modes  
PF0100  
i.MX 6X  
VREFDDR  
DDR MEMORY  
INTERFACE  
DDR Memory  
SW4  
1000 mA  
SW3A/B  
2500 mA  
SW1A/B  
2500 mA  
Processor Core  
Voltages  
SW1C  
2000 mA  
External AMP  
Microphones  
Speakers  
SW2  
2000 mA  
SATA - FLASH  
SD-MMC/  
NAND Mem.  
SATA  
HDD  
NAND  
- NOR  
SWBST  
600 mA  
Interfaces  
Audio  
Codec  
Parallel control/GPIOS  
I2C Communication  
Control Signals  
I2C Communication  
Sensors  
VGEN1  
100 mA  
Camera  
Camera  
VGEN2  
250 mA  
GPS  
MIPI  
uPCIe  
WAM  
GPS  
MIPI  
VGEN3  
100 mA  
VGEN4  
350 mA  
HDMI  
LDVS Display  
VGEN5  
100 mA  
USB  
Ethernet  
CAN  
LICELL  
Charger  
VGEN6  
200 mA  
Main Supply  
2.8 – 4.5 V  
COINCELL  
Front USB  
POD  
Rear Seat  
Infotaiment  
Rear USB  
POD  
Cluster/HUD  
Figure 1. Simplified application diagram  
© NXP B.V. 2019.  
Table of Contents  
1
2
3
Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.2.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.3.1 General specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
4.3.2 Current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3.1 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
5.3.2 Control logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1.1 Device start-up configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
6.1.2 One time programmability (OTP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
6.1.3 OTP prototyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1.4 Reading OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.1.5 Programming OTP fuses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.2.1 Clock adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3.1 Internal core voltage references . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
6.3.2 VREFDDR voltage reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.4.1 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
6.4.2 State machine flow summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
6.4.3 Power tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
6.4.4 Buck regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
6.4.5 Boost regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77  
6.4.6 LDO regulators description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80  
6.4.7 VSNVS LDO/switch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.5.1 I2C device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.5.2 I2C operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100  
6.5.3 Interrupt handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.5.4 Interrupt bit summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101  
6.5.5 Specific registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106  
6.5.6 Register bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107  
4
5
6
PF0100  
2
NXP Semiconductors  
7
Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
7.1.1 Application diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118  
7.1.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119  
7.2 PF0100 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.2.1 General board recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.2.2 Component placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.2.3 General routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.2.4 Parallel routing requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123  
7.2.5 Switching regulator layout recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124  
7.3 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
7.3.1 Rating data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
7.3.2 Estimation of junction temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125  
Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126  
Reference section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
9.1 Reference documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133  
8
9
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134  
PF0100  
NXP Semiconductors  
3
ORDERABLE PARTS  
1
Orderable parts  
The PF0100 is available with both pre-programmed and non-programmed OTP memory configurations. The non-programmed device uses  
“NP” as the programming code. The pre-programmed devices are identified using the program codes from Table 1, which also list the  
associated NXP reference designs where applicable. Details of the OTP programming for each device can be found in Table 10.  
Table 1. Orderable Part Variations  
Temperature (T )  
Part Number  
Package  
Programming  
Reference Designs  
N/A  
Notes  
A
MMPF0100NPAEP  
NP  
MCIMX6Q-SDP  
MCIMX6Q-SDB  
MCIMX6DL-SDP  
(1), (2)  
MMPF0100F0AEP  
F0  
MMPF0100F1AEP  
MMPF0100F2AEP  
MMPF0100F3AEP  
MMPF0100F4AEP  
MMPF0100F6AEP  
MMPF0100FCAEP  
MMPF0100FDAEP  
MMPF0100NPANES  
F1  
F2  
F3  
F4  
F6  
FC  
FD  
NP  
MCIMX6SLEVK  
(1), (2), (3)  
(1), (2)  
-40 °C to 85 °C  
(for use in consumer  
applications)  
N/A  
56 QFN 8x8 mm - 0.5 mm pitch  
E-Type QFN (full lead)  
N/A  
N/A  
MCIMX6SX-SDB  
N/A  
(1), (2)  
MCIMX6SLLEVK  
N/A  
(1), (2), (4)  
MCIMX6Q-SDP  
MCIMX6Q-SDB  
MCIMX6DL-SDP  
MMPF0100F0ANES  
F0  
(1), (2)  
MMPF0100F3ANES  
MMPF0100F4ANES  
MMPF0100F6ANES  
MMPF0100F9ANES  
MMPF0100FAANES  
MMPF0100FBANES  
MMPF0100FCANES  
Notes  
F3  
F4  
F6  
F9  
FA  
FB  
FC  
N/A  
-40 °C to 105 °C  
(for use in extended  
industrial applications)  
N/A  
56 QFN 8x8 mm - 0.5 mm pitch  
WF-Type QFN (wettable flank)  
MCIMX6SX-SDB  
N/A  
N/A  
N/A  
N/A  
(1), (2), (4)  
(1), (2)  
1.  
2.  
For tape and reel, add an R2 suffix to the part number.  
For programming details see Table 10. The available OTP options are not restricted to the listed reference designs. They can be used in any  
application where the listed voltage and sequence details are acceptable.  
3.  
4.  
For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option and F4 OTP option instead of  
the F2 OTP option.  
SW2 can support an output current rating of 2.5 A in NP, F9, and FA Industrial versions only (ANES suffix) when SW2ILIM=0  
PF0100  
4
NXP Semiconductors  
 
 
 
 
 
ORDERABLE PARTS  
1.1  
PF0100 version differences  
PF0100A is an improved version of the PF0100 power management IC. Table 2 summarizes the difference between the two versions and  
should be referred to when migrating from the PF0100 to the PF0100A. Note that programming options are the same for both versions of  
the device.  
Table 2. Differences between PF0100 and PF0100A  
Description  
PF0100  
PF0100A  
Reading SILICON REV register at address 0x03  
Reading SILICON REV register at address 0x03  
Version identification  
returns 0x11. DEVICEID register at address 0x00 returns 0x21. DEVICEID register at address 0x00  
reads 0x10 in PF0100 and PF0100A  
reads 0x10 in PF0100 and PF0100A  
VSNVS current limit  
VSNVS current limit increased in the PF0100A  
In the PF0100, FUSE_POR1, FUSE_POR2, and  
FUSE_POR3 bits are XOR’ed into the  
OTP_FUSE_PORxregister settingduringOTP FUSE_POR_XOR bit. The FUSE_POR_XOR bit  
In the PF0100A, the XOR function is removed. It is  
required to set FUSE_POR1, FUSE_POR2, and  
FUSE_POR3 bits during OTP programming.  
programming  
has to be 1 for fuses to be loaded during startup.  
This can be achieved by setting any one or all of the  
FUSE_PORx bits during OTP programming.  
Erratum ER19 applicable to PF0100. Applications Errata ER19 fixed in PF0100A. External  
expecting to operate in the conditions mentioned in workaround not required  
ER19 need to implement an external workaround to  
Erratum ER19  
overcome the problem. Refer to the product errata  
for details  
Erratum ER20  
Erratum ER22  
Erratum ER20 applicable to PF0100  
Erratum ER22 applicable to PF0100  
Errata ER20 fixed in PF0100A  
Errata ER22 fixed in PF0100A. Workaround not  
required  
In addition to the version differences, Table 3 shows the differences on the test temperature rating for each version of PF0100 covered  
on this datasheet.  
Table 3. Ambient temperature range  
Ambient temperature range  
Device  
Qualification tier  
(TMIN to TMAX  
)
MMPF0100  
Consumer and Industrial  
TA = -40 °C to 85 °C  
TA = -40 °C to 85 °C  
TA = -40 °C to 105 °C  
MMPF0100A  
Consumer  
MMPF0100AN  
Extended Industrial  
PF0100  
NXP Semiconductors  
5
 
 
INTERNAL BLOCK DIAGRAM  
2
Internal block diagram  
SW1FB  
VGEN1  
100 mA  
VIN1  
PF0100  
SW1AIN  
SW1ALX  
VGEN1  
O/P  
Drive  
SW1A/B  
Single/Dual  
2500 mA  
Buck  
VGEN2  
250 mA  
VGEN2  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
VGEN3  
100 mA  
VGEN3  
SW1CLX  
SW1CIN  
O/P  
Drive  
SW1C  
2000 mA  
Buck  
VGEN4  
350 mA  
VGEN4  
SW1CFB  
Core Control logic  
SW1VSSSNS  
VIN3  
VGEN5  
100 mA  
VGEN5  
SW2LX  
SW2IN  
SW2IN  
SW2FB  
Initialization State Machine  
SW2  
2000 mA  
Buck  
O/P  
Drive  
VGEN6  
200 mA  
VGEN6  
Supplies  
Control  
OTP  
SW3AFB  
SW3AIN  
SW3ALX  
O/P  
Drive  
VDDOTP  
VDDIO  
SW3A/B  
Single/Dual  
DDR  
2500 mA  
Buck  
CONTROL  
I2C  
Interface  
SW3BLX  
SW3BIN  
O/P  
Drive  
SCL  
SDA  
DVS CONTROL  
SW3BFB  
DVS Control  
SW3VSSSNS  
SW4FB  
SW4  
1000 mA  
Buck  
SW4IN  
O/P  
Drive  
I2C Register  
map  
SW4LX  
Trim-In-Package  
VCOREDIG  
VCOREREF  
GNDREF1  
Reference  
Generation  
SWBSTLX  
Clocks and  
resets  
SWBST  
600 mA  
Boost  
O/P  
Drive  
VCORE  
SWBSTIN  
SWBSTFB  
GNDREF  
VREFDDR  
VINREFDDR  
Clocks  
32 kHz and 16 MHz  
VHALF  
VIN  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
VSNVS  
Figure 2. Simplified internal block diagram  
PF0100  
6
NXP Semiconductors  
PIN CONNECTIONS  
3
Pin connections  
3.1  
Pinout diagram  
56 55 54 53 52 51 50 49 48 47 46 45 44 43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
INTB  
SDWNB  
1
2
3
4
5
6
7
8
9
LICELL  
VGEN6  
RESETBMCU  
STANDBY  
ICTEST  
VIN3  
VGEN5  
SW3AFB  
SW3AIN  
SW3ALX  
SW3BLX  
SW3BIN  
SW3BFB  
SW3VSSSNS  
VREFDDR  
VINREFDDR  
VHALF  
SW1FB  
SW1AIN  
EP  
SW1ALX  
SW1BLX  
SW1BIN 10  
SW1CLX 11  
SW1CIN 12  
SW1CFB 13  
SW1VSSSNS 14  
15 16 17 18 19 20 21 22 23 24 25 26 27 28  
Figure 3. Pinout diagram  
PF0100  
NXP Semiconductors  
7
PIN CONNECTIONS  
3.2  
Pin definitions  
Table 4. PF0100 pin definitions  
Pin  
function  
Pin number  
Pin name  
Max rating  
Type  
Definition  
Open drain interrupt signal to processor  
1
2
INTB  
O
O
3.6 V  
3.6 V  
Digital  
Digital  
SDWNB  
Open drain signal to indicate an imminent system shutdown  
Open drain reset output to processor. Alternatively can be used as a power  
good output.  
3
4
5
RESETBMCU  
STANDBY  
ICTEST  
O
I
3.6 V  
3.6 V  
7.5 V  
Digital  
Digital  
Standby input signal from processor  
Digital/  
Analog  
I
Reserved pin. Connect to GND in application.  
Output voltage feedback for SW1A/B. Route this trace separately from the  
high current path and terminate at the output capacitance.  
6
7
SW1FB (6)  
SW1AIN (6)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW1A regulator. Bypass with at least a 4.7 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
8
9
SW1ALX (6)  
SW1BLX (6)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 1A switch node connection  
Regulator 1B switch node connection  
Input to SW1B regulator. Bypass with at least a 4.7 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
10  
11  
12  
SW1BIN (6)  
SW1CLX (6)  
SW1CIN (6)  
I
O
I
4.8 V  
4.8 V  
4.8 V  
Analog  
Analog  
Analog  
Regulator 1C switch node connection  
Input to SW1C regulator. Bypass with at least a 4.7 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
Output voltage feedback for SW1C. Route this trace separately from the  
high current path and terminate at the output capacitance.  
13  
14  
SW1CFB (6)  
I
3.6V  
-
Analog  
GND  
Ground reference for regulators SW1ABC. It is connected externally to  
GNDREF through a board ground plane.  
SW1VSSSNS  
GND  
Ground reference for regulators SW2 and SW4. It is connected externally to  
GNDREF, via board ground plane.  
15  
16  
17  
18  
19  
GNDREF1  
VGEN1  
VIN1  
GND  
-
GND  
O
I
2.5 V  
3.6 V  
2.5 V  
3.6 V  
Analog  
Analog  
Analog  
Analog  
VGEN1 regulator output, Bypass with a 2.2 μF ceramic output capacitor.  
VGEN1, 2 input supply. Bypass with a 1.0 μF decoupling capacitor as close  
to the pin as possible.  
VGEN2  
SW4FB (6)  
O
I
VGEN2 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
Output voltage feedback for SW4. Route this trace separately from the high  
current path and terminate at the output capacitance.  
Input to SW4 regulator. Bypass with at least a 4.7μF ceramic capacitor and  
a 0.1 μF decoupling capacitor as close to the pin as possible.  
20  
SW4IN (6)  
I
4.8 V  
Analog  
21  
22  
23  
24  
SW4LX (6)  
SW2LX (6)  
SW2IN (6)  
SW2IN (6)  
O
O
I
4.8 V  
4.8 V  
4.8 V  
4.8 V  
Analog  
Analog  
Analog  
Analog  
Regulator 4 switch node connection  
Regulator 2 switch node connection  
Input to SW2 regulator. Connect pin 23 together with pin 24 and bypass with  
at least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as  
close to these pins as possible.  
I
Output voltage feedback for SW2. Route this trace separately from the high  
current path and terminate at the output capacitance.  
25  
26  
27  
28  
SW2FB (6)  
VGEN3  
VIN2  
I
3.6 V  
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
Analog  
O
I
VGEN3 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
VGEN3,4 input. Bypass with a 1.0 μF decoupling capacitor as close to the  
pin as possible.  
VGEN4  
O
VGEN4 regulator output, Bypass with a 4.7 μF ceramic output capacitor.  
PF0100  
8
NXP Semiconductors  
 
PIN CONNECTIONS  
Table 4. PF0100 pin definitions (continued)  
Pin  
Pin number  
Pin name  
Max rating  
Type  
Definition  
Half supply reference for VREFDDR  
function  
29  
30  
31  
32  
VHALF  
I
3.6 V  
3.6 V  
3.6 V  
-
Analog  
Analog  
Analog  
GND  
VREFDDR regulator input. Bypass with at least 1.0 μF decoupling capacitor  
as close to the pin as possible.  
VINREFDDR  
VREFDDR  
I
O
VREFDDR regulator output  
Ground reference for the SW3 regulator. Connect to GNDREF externally via  
the board ground plane.  
SW3VSSSNS  
GND  
Output voltage feedback for SW3B. Route this trace separately from the high  
current path and terminate at the output capacitance.  
33  
34  
SW3BFB (6)  
SW3BIN (6)  
I
I
3.6 V  
4.8 V  
Analog  
Analog  
Input to SW3B regulator. Bypass with at least a 4.7 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
35  
36  
SW3BLX (6)  
SW3ALX (6)  
O
O
4.8 V  
4.8 V  
Analog  
Analog  
Regulator 3B switch node connection  
Regulator 3A switch node connection  
Input to SW3A regulator. Bypass with at least a 4.7 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
37  
SW3AIN (6)  
I
4.8 V  
Analog  
Output voltage feedback for SW3A. Route this trace separately from the high  
current path and terminate at the output capacitance.  
38  
39  
40  
SW3AFB (6)  
VGEN5  
VIN3  
I
O
I
3.6 V  
3.6 V  
4.8 V  
Analog  
Analog  
Analog  
VGEN5 regulator output. Bypass with a 2.2 μF ceramic output capacitor.  
VGEN5, 6 input. Bypass with a 1.0 μF decoupling capacitor as close to the  
pin as possible.  
41  
42  
43  
VGEN6  
LICELL  
VSNVS  
O
I/O  
O
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
VGEN6 regulator output. By pass with a 2.2 μF ceramic output capacitor.  
Coin cell supply input/output  
LDO or coin cell output to processor  
Boost regulator feedback. Connect this pin to the output rail close to the  
load. Keep this trace away from other noisy traces and planes.  
44  
SWBSTFB (6)  
I
5.5 V  
Analog  
Input to SWBST regulator. Bypass with at least a 2.2 μF ceramic capacitor  
and a 0.1 μF decoupling capacitor as close to the pin as possible.  
45  
46  
47  
SWBSTIN (6)  
SWBSTLX (6)  
VDDOTP  
I
O
I
4.8 V  
7.5 V  
Analog  
Analog  
SWBST switch node connection  
Digital and  
Analog  
10 V(5)  
Supply to program OTP fuses  
48  
49  
50  
51  
52  
53  
54  
55  
56  
GNDREF  
VCORE  
VIN  
GND  
-
GND  
Ground reference for the main band gap regulator.  
Analog Core supply  
O
I
3.6 V  
4.8 V  
1.5 V  
1.5 V  
3.6 V  
3.6 V  
3.6 V  
3.6 V  
Analog  
Analog  
Analog  
Analog  
Digital  
Digital  
Analog  
Digital  
Main chip supply  
VCOREDIG  
VCOREREF  
SDA  
O
O
I/O  
I
Digital Core supply  
Main band gap reference  
I2C data line (Open drain)  
I2C clock  
SCL  
VDDIO  
I
Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor  
Power On/off from processor  
PWRON  
I
Expose pad. Functions as ground return for buck regulators. Tie this pad to  
the inner and external ground planes through vias to allow effective thermal  
dissipation.  
-
EP  
GND  
-
GND  
Notes  
5.  
6.  
10 V Maximum voltage rating during OTP fuse programming. 7.5 V Maximum DC voltage rated otherwise.  
Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be  
connected to VIN with a 0.1 μF bypass capacitor.  
PF0100  
NXP Semiconductors  
9
 
 
GENERAL PRODUCT CHARACTERISTICS  
4
General product characteristics  
4.1  
Absolute maximum ratings  
Table 5. Absolute maximum ratings  
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage  
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.  
Symbol  
Description  
Value  
Unit  
Notes  
Electrical ratings  
V
Main input supply voltage  
-0.3 to 4.8  
-0.3 to 10  
-0.3 to 3.6  
V
V
V
IN  
V
OTP programming input supply voltage  
Coin cell voltage  
DDOTP  
V
LICELL  
ESD ratings  
Human body model  
Charge device model  
(7)  
V
±2000  
±500  
V
ESD  
Notes  
7.  
ESD testing is performed in accordance with the human body model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the charge device model (CDM),  
robotic (CZAP = 4.0 pF).  
PF0100  
10  
NXP Semiconductors  
 
GENERAL PRODUCT CHARACTERISTICS  
4.2  
Thermal characteristics  
Table 6. Thermal ratings  
Symbol  
Description (rating)  
Min.  
Max.  
Unit  
Notes  
Thermal ratings  
Ambient operating temperature range  
• PF0100  
• PF0100A  
• PF0100AN  
-40  
-40  
-40  
85  
85  
105  
TA  
°C  
(8)  
TJ  
Operating junction temperature range  
Storage temperature range  
-40  
-65  
125  
150  
°C  
°C  
°C  
TST  
(9)(10)  
TPPRT  
Peak package reflow temperature  
Note 10  
QFN56 thermal resistance and package dissipation ratings  
Junction to ambient  
• Natural convection  
• Four layer board (2s2p)  
• Eight layer board (2s6p)  
(11)(12)(13)  
(11)(13)  
RθJA  
°C/W  
°C/W  
28  
15  
Junction to ambient (@200 ft/min)  
RθJMA  
• Four layer board (2s2p)  
22  
10  
(14)  
(15)  
RθJB  
Junction to board  
°C/W  
°C/W  
RΘJCBOTTOM Junction to case bottom  
1.2  
Junction to package top  
ΨJT  
(16)  
2.0  
°C/W  
• Natural convection  
Notes  
8.  
Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 7 for  
thermal protection features.  
9.  
Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a  
malfunction or permanent damage to the device.  
10.  
NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and  
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable  
parts, and review parametrics.  
11.  
Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient  
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.  
Per JEDEC JESD51-6 with the board horizontal.  
12.  
13.  
14.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the  
board near the package.  
15.  
16.  
Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-  
2. When Greek letter ( ) are not available, the thermal characterization parameter is written as Psi-JT.  
Ψ
4.2.1 Power dissipation  
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 6. To optimize the  
thermal management and to avoid overheating, the PF0100 provides thermal protection. An internal comparator monitors the die  
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I are generated when the respective thresholds specified  
in Table 7 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register  
INTSENSE0.  
In the event of excessive power dissipation, thermal protection circuitry shuts down the PF0100. This thermal protection acts above the  
thermal protection threshold listed in Table 7. To avoid any unwanted power downs resulting from internal noise, the protection is  
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured so  
protection is not tripped under normal conditions.  
PF0100  
NXP Semiconductors  
11  
 
 
 
 
 
 
 
 
 
 
 
 
GENERAL PRODUCT CHARACTERISTICS  
Table 7. Thermal protection thresholds  
Parameter  
Min.  
Typ.  
Max.  
Units  
Thermal 110 °C Threshold (THERM110)  
Thermal 120 °C Threshold (THERM120)  
Thermal 125 °C Threshold (THERM125)  
Thermal 130 °C Threshold (THERM130)  
Thermal Warning Hysteresis  
100  
110  
115  
120  
2.0  
110  
120  
125  
130  
120  
130  
135  
140  
4.0  
°C  
°C  
°C  
°C  
°C  
°C  
Thermal Protection Threshold  
130  
140  
150  
4.3  
Electrical characteristics  
4.3.1 General specifications  
Table 8. General PMIC static characteristics.  
TMIN to TMAX (See Table 3), VIN = 2.8 to 4.5 V, VDDIO = 1.7 to 3.6 V, typical external component values and full load current range, unless  
otherwise noted.  
Pin name  
Parameter  
Load condition  
Min.  
Max.  
Unit  
VIL  
VIH  
VOL  
VOH  
VIL  
0.0  
0.8 * VSNVS  
0.0  
0.2 * VSNVS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
PWRON  
RESETBMCU  
SCL  
3.6  
-2.0 mA  
0.4  
Open Drain  
0.7* VIN  
0.0  
VIN  
0.2 * VDDIO  
VIH  
VIL  
0.8 * VDDIO  
0.0  
3.6  
0.2 * VDDIO  
3.6  
VIH  
VOL  
VOH  
VOL  
VOH  
VOL  
VOH  
VIL  
0.8 * VDDIO  
0.0  
SDA  
-2.0 mA  
0.4  
Open Drain  
0.7*VDDIO  
0.0  
VDDIO  
0.4  
-2.0 mA  
INTB  
Open Drain  
0.7* VIN  
0.0  
VIN  
-2.0 mA  
0.4  
SDWNB  
STANDBY  
VDDOTP  
Open Drain  
0.7* VIN  
0.0  
VIN  
0.2 * VSNVS  
3.6  
VIH  
VIL  
0.8 * VSNVS  
0.0  
0.3  
VIH  
1.1  
1.7  
PF0100  
12  
NXP Semiconductors  
GENERAL PRODUCT CHARACTERISTICS  
4.3.2 Current consumption  
Table 9. Current consumption summary  
TMIN to TMAX (See Table 3), VIN = 3.6 V, VDDIO = 1.7 V to 3.6 V, LICELL = 1.8 V to 3.3 V, VSNVS = 3.0 V, typical external component  
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VDDIO = 3.3 V, LICELL = 3.0 V, VSNVS = 3.0 V and  
25 °C, unless otherwise noted.  
Mode  
PF0100 conditions  
System conditions  
Typical  
MAX  
Unit  
Notes  
VSNVS from LICELL  
All other blocks off  
VIN = 0.0 V  
(17),(19),  
(23)  
Coin Cell  
No load on VSNVS  
4.0  
7.0  
μA  
VSNVSVOLT[2:0] = 110  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 k RC on  
All other blocks off  
VIN UVDET  
Off  
MMPF0100  
(18),(19)  
(18),(19)  
No load on VSNVS, PMIC able to wake-up  
No load on VSNVS, PMIC able to wake-up  
16  
17  
21  
25  
μA  
μA  
VSNVS from VIN or LICELL  
Wake-up from PWRON active  
32 k RC on  
Off  
MMPF0100A  
All other blocks off  
VIN UVDET  
VSNVS from VIN  
Wake-up from PWRON active  
Trimmed reference active  
SW3A/B PFM  
Trimmed 16 MHz RC off  
32 k RC on  
122  
122  
220(22)  
250(21)  
No load on VSNVS. DDR memories in self  
refresh  
(19)  
Sleep  
μA  
μA  
VREFDDR disabled  
VSNVS from either VIN or LICELL  
SW1A/B combined in PFM  
SW1C in PFM  
SW2 in PFM  
SW3A/B combined in PFM  
SW4 in PFM  
297  
297  
450 (20)  
No load on VSNVS. Processor enabled in  
low power mode. All rails powered on  
except boost (load = 0 mA)  
Standby  
MMPF0100  
(19)  
1000 (22)  
SWBST off  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VGEN1-6 enabled  
VREFDDR enabled  
VSNVS from either VIN or LICELL  
SW1A/B combined in PFM  
SW1C in PFM  
SW2 in PFM  
SW3A/B combined in PFM  
SW4 in PFM  
297  
297  
450 (22)  
550(21)  
No load on VSNVS. Processor enabled in  
low power mode. All rails powered on  
except boost (load = 0 mA)  
Standby  
MMPF0100A  
(19)  
μA  
SWBST off  
Trimmed 16 MHz RC enabled  
Trimmed reference active  
VGEN1-6 enabled  
VREFDDR enabled  
Notes  
17.  
18.  
Refer to Figure 4 for coin cell mode characteristics over temperature.  
When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.  
19.  
20.  
21.  
22.  
23.  
For PFM operation, headroom should be 300 mV or greater.  
From 0 °C to 85 °C  
From -40 °C to 105 °C, applicable only to extended industrial parts.  
From -40 °C to 85 °C, applicable to consumer, industrial and extended industrial part numbers.  
Additional current may be drawn in the coin cell mode when RESETBMCU is pulled up to VSNVS due an internal path from RESETBMCU to VIN  
.
The additional current is < 30 μA with a pull up resistor of 100 kΩ. The i.MX 6x processors have an internal pull up from the POR_B pin to the  
VDD_SNVS_IN pin. For i.MX 6x applications, if additional current in the coin cell mode is not desired, use an external switch to disconnect the  
RESETBMCU path when VIN is removed. For non-i.MX 6 applications, pull-up RESETBMCU to a rail off in the coin cell mode.  
PF0100  
NXP Semiconductors  
13  
 
 
 
 
 
 
 
 
GENERAL PRODUCT CHARACTERISTICS  
Coin cell mode  
100  
10  
1
MMPF0100  
MMPF0100A  
-40  
-20  
0
20  
40  
60  
80  
Temperature(°C)  
Figure 4. Coin cell mode current vs temperature  
PF0100  
14  
NXP Semiconductors  
GENERAL DESCRIPTION  
5
General description  
The PF0100 is the power management integrated circuit (PMIC) designed primarily for use with NXP’s i.MX 6 series of application  
processors.  
5.1  
Features  
This section summarizes the PF0100 features.  
• Input voltage range to PMIC: 2.8 V - 4.5 V  
• Buck regulators  
Four to six channel configurable  
• SW1A/B/C, 4.5 A (single); 0.3 V to 1.875 V  
• SW1A/B, 2.5 A (single/dual); SW1C 2.0 A (independent); 0.3 V to 1.875 V  
• SW2, 2.0 A; 0.4 V to 3.3 V (2.5 A; 1.2 V to 3.3 V (24)  
• SW3A/B, 2.5 A (single/dual); 0.4 V to 3.3 V  
)
• SW3A, 1.25 A (independent); SW3B, 1.25 A (independent); 0.4 V to 3.3 V  
• SW4, 1.0 A; 0.4 V to 3.3 V  
• SW4, VTT mode provide DDR termination at 50% of SW3A  
Dynamic voltage scaling  
Modes: PWM, PFM, APS  
Programmable output voltage  
Programmable current limit  
Programmable soft start  
Programmable PWM switching frequency  
Programmable OCP with fault interrupt  
• Boost regulator  
SWBST, 5.0 V to 5.15 V, 0.6 A, OTG support  
Modes: PFM and auto  
OCP fault interrupt  
• LDOs  
Six user programable LDO  
• VGEN1, 0.80 V to 1.55 V, 100 mA  
• VGEN2, 0.80 V to 1.55 V, 250 mA  
• VGEN3, 1.8 V to 3.3 V, 100 mA  
• VGEN4, 1.8 V to 3.3 V, 350 mA  
• VGEN5, 1.8 V to 3.3 V, 100 mA  
• VGEN6, 1.8 V to 3.3 V, 200 mA  
Soft start  
LDO/switch supply  
• VSNVS (1.0/1.1/1.2/1.3/1.5/1.8/3.0 V), 400 μA  
• DDR memory reference voltage  
VREFDDR, 0.6 V to 0.9 V, 10 mA  
• 16 MHz internal master clock  
• OTP(one time programmable) memory for device configuration  
User programmable start-up sequence and timing  
• Battery backed memory including coin cell charger  
• I2C interface  
• User programmable standby, sleep, and off modes  
Notes  
24.  
SW2 capable of 2.5 A in NP, F9, and FA Industrial versions only (ANES suffix)  
PF0100  
NXP Semiconductors  
15  
 
GENERAL DESCRIPTION  
5.2  
Functional block diagram  
MMPF0100 functional internal block diagram  
OTP startup configuration  
Power generation  
OTP prototyping  
Voltage  
Switching regulators  
Linear regulators  
(Try before buy)  
VGEN1  
(0.8 V to 1.55 V, 100 mA)  
SW1A/B/C  
(0.3 V to 1.875 V)  
Configurable 4.5 A or  
2.5 A+2.0 A  
Sequence and  
timing  
Phasing and  
frequency selection  
VGEN2  
(0.8 V to 1.55 V, 250 mA)  
Bias & references  
SW2  
Internal core voltage reference  
DDR voltage reference  
VGEN3  
(1.8 V to 3.3 V, 100 mA)  
(0.4 V to 3.3 V, 2.0 A)  
VGEN4  
(1.8 V to 3.3 V, 350 mA)  
SW3A/B  
(0.4 V to 3.3 V)  
Configurable 2.5 A  
or 1.25 A+1.25 A  
Logic and control  
VGEN5  
Parallel MCU interface  
Regulator control  
(1.8 V to 3.3 V, 100 mA)  
I2C communication and registers  
SW4  
VGEN6  
(1.8 V to 3.3 V, 200 mA)  
(0.4 V to 3.3 V, 1.0 A)  
Fault detection and protection  
VSNVS  
(1.0 V to 3.0 V, 400 μA)  
RTC supply with coin cell  
charger  
Boost Regulator  
(5.0 V to 5.15 V, 600 mA)  
USB OTG Supply  
Thermal  
Current limit  
Short-circuit  
Figure 5. Functional block diagram  
5.3  
Functional description  
5.3.1 Power generation  
The PF0100 PMIC features four buck regulators (up to six independent outputs), one boost regulator, six general purpose LDOs, one  
switch/LDO combination and a DDR voltage reference to supply voltages for the application processor and peripheral devices.  
The number of independent buck regulator outputs can be configured from four to six, thereby providing flexibility to operate with higher  
current capability, or to operate as independent outputs for applications requiring more voltage rails with lower current demands. Further,  
SW1 and SW3 regulators can be configured as single/dual phase and/or independent converters. One of the buck regulators, SW4, can  
also operate as a tracking regulator when used for memory termination. The buck regulators provide the supply to processor cores and  
to other low voltage circuits such as IO and memory. Dynamic voltage scaling is provided to allow controlled supply rail adjustments for  
the processor cores and/or other circuitry.  
Depending on the system power path configuration, the six general purpose LDO regulators can be directly supplied from the main input  
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific VREFDDR  
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination. The  
VSNVS block behaves as an LDO, or as a bypass switch to supply the SNVS/SRTC circuitry on the i.MX processors; VSNVS may be  
powered from VIN, or from a coin cell.  
5.3.2 Control logic  
The PF0100 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including  
interrupt and reset. Start-up sequence of the device is selected upon the initial OTP configuration explained in the Start-up section, or by  
configuring the “Try Before Buy” feature to test different power up sequences before choosing the final OTP configuration.  
The PF0100 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor. It also ensures supply  
of critical internal logic and other circuits from the coin cell in case of brief interruptions from the main battery. A charger for the coin cell  
is included as well.  
PF0100  
16  
NXP Semiconductors  
GENERAL DESCRIPTION  
5.3.2.1  
Interface signals  
PWRON  
5.3.2.1.1  
PWRON is an input signal to the IC generating a turn-on event. It can be configured to detect a level, or an edge using the PWRON_CFG  
bit. Refer to section 6.4.2.1 Turn on events, page 31 for more details.  
5.3.2.1.2  
STANDBY  
STANDBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby  
mode. STANDBY can be configured as active high or active low using the STANDBYINV bit. Refer to the section 6.4.1.3 Standby mode,  
page 29 for more details.  
Note: When operating the PMIC at VIN 2.85 V and VSNVS is programmed for a 3.0 V output, a coin cell must be present to provide  
VSNVS, or the PMIC does not reliably enter and exit the STANDBY mode.  
5.3.2.1.3  
RESETBMCU  
RESETBMCU is an open drain, active low output configurable for two modes of operation. In its default mode, it is de-asserted 2.0 ms to  
4.0 ms after the last regulator in the start-up sequence is enabled; refer to Figure 6 as an example. In this mode, the signal can be used  
to bring the processor out of reset, or as an indicator that all supplies have been enabled; it is only asserted for a turn-off event.  
When configured for its fault mode, RESETBMCU is de-asserted after the start-up sequence is completed only if no faults occurred during  
start-up. At anytime, if a fault occurs and persists for 1.8 ms typically, RESETBMCU is asserted, LOW. The PF0100 is turned off if the  
fault persists for more than 100 ms typically. The PWRON signal restarts the part, though if the fault persists, the sequence described  
above is repeated. To enter the fault mode, set bit OTP_PG_EN of register OTP PWRGD EN to “1”. This register, 0xE8, is located on  
Table 137 of the register map. To test the fault mode, the bit may be set during TBB prototyping, or the mode may be permanently chosen  
by programming OTP fuses.  
5.3.2.1.4  
SDWNB  
SDWNB is an open drain, active low output notifying the processor of an imminent PMIC shut down. It is asserted low for one 32 kHz clock  
cycle before powering down and is then de-asserted in the OFF state.  
5.3.2.1.5  
INTB  
INTB is an open drain, active low output. It is asserted when any fault occurs, provided the fault interrupt is unmasked. INTB is de-asserted  
after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.  
PF0100  
NXP Semiconductors  
17  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6
Functional block requirements and behaviors  
6.1  
Start-up  
The PF0100 can be configured to start-up from either the internal OTP configuration, or with a hard-coded configuration built in to the  
device. The internal hard-coded configuration is enabled by connecting the VDDOTP pin to VCOREDIG through a 100 kΩ resistor. The  
OTP configuration is enabled by connecting VDDOTP to GND.  
For NP devices, selecting the OTP configuration causes the PF0100 to not start-up. However, the PF0100 can be controlled through the  
I2C port for prototyping and programming. Once programmed, the NP device starts up with the customer programmed configuration.  
6.1.1 Device start-up configuration  
Table 10 shows the default configuration, which can be accessed on all devices as described previously, as well as the pre-programmed  
OTP configurations.  
Table 10. Start-up configuration  
Default  
configuration  
Pre-programmed OTP configuration  
Registers  
All devices  
F0  
F1(25)  
F2(25)  
F3  
F4  
F6  
F9  
FA  
FB  
FC  
FD  
Default I2C Address  
VSNVS_VOLT  
SW1AB_VOLT  
SW1AB_SEQ  
SW1C_VOLT  
SW1C_SEQ  
0x08  
0x08  
3.0 V  
1.375 V  
1
0x08  
0x08  
0x08  
0x08  
0x08  
3.0 V  
1.375 V  
2
0x08  
0x08  
3.0 V  
1.375 V  
5
0x08  
3.0 V  
1.375 V  
2
0x08  
3.0 V  
1.375 V  
2
0x08  
3.0 V  
1.2 V  
2
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
3.0 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1
1
1
2
2
5
1.375 V  
1.375 V  
2
1.375 V  
1.375 V  
1.375 V  
1.375 V  
1.375 V  
2
1.375 V  
1.375 V  
5
1.375 V  
2
1.375 V  
2
1.2 V  
2
1
1
1
2
2
5
SW2_VOLT  
3.0 V  
3.3 V  
5
3.15 V  
3.15 V  
3.15 V  
3.15 V  
3.3 V  
4
1.375 V  
1.375 V  
5
3.3 V  
6
3.3 V  
5
3.15 V  
1
SW2_SEQ  
2
2
2
1
1
5
SW3A_VOLT  
SW3A_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.2 V  
1.5 V  
1.35 V  
3
1.350 V  
1.5 V  
6
1.2 V  
4
1.35 V  
3
1.2 V  
4
3
4
4
4
4
6
1.350 V  
6
SW3B_VOLT  
SW3B_SEQ  
1.5 V  
1.5 V  
3
1.2 V  
1.5 V  
1.2 V  
1.5 V  
1.35 V  
3
1.5 V  
6
1.2 V  
4
1.35 V  
3
1.2 V  
4
3
4
4
4
4
SW4_VOLT  
1.8 V  
3.15 V  
6
1.8 V  
1.8 V  
1.8 V  
1.8 V  
1.8 V  
4
1.825 V  
7
1.825 V  
7
1.8 V  
3
3.15 V  
6
1.8 V  
3
SW4_SEQ  
3
3
3
3
3
SWBST_VOLT  
SWBST_SEQ  
VREFDDR_SEQ  
VGEN1_VOLT  
VGEN1_SEQ  
VGEN2_VOLT  
VGEN2_SEQ  
VGEN3_VOLT  
VGEN3_SEQ  
VGEN4_VOLT  
VGEN4_SEQ  
VGEN5_VOLT  
-
5.0 V  
13  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
5.0 V  
Off  
5.0 V  
10  
5.0 V  
10  
5.0 V  
Off  
5.0 V  
13  
5.0 V  
6
-
6
6
6
6
3
3
4
4
4
4
3
6
6
4
3
4
-
1.5 V  
9
1.2 V  
1.2 V  
1.2 V  
1.2 V  
1.2 V  
5
1.2 V  
-
1.2 V  
-
1.5 V  
3
1.5 V  
9
1.2 V  
-
-
4
4
4
4
1.5 V  
1.5 V  
10  
-
-
-
-
1.5 V  
Off  
1.5 V  
8
1.5 V  
8
1.5 V  
Off  
1.5 V  
10  
1.5 V  
7
2
-
-
-
-
-
-
2.5 V  
11  
-
-
-
-
-
-
-
-
2.8 V  
5
1.8 V  
8
1.8 V  
8
2.5 V  
Off  
2.5 V  
11  
1.8 V  
7
1.8 V  
3
1.8 V  
7
1.8 V  
3
1.8 V  
3
1.8 V  
3
1.8 V  
3
1.8 V  
4
3.0 V  
4
3.0 V  
4
1.8 V  
7
1.8V  
7
1.8 V  
3
2.5 V  
2.8 V  
2.5 V  
2.5 V  
2.5 V  
2.5 V  
3.3 V  
2.5 V  
2.5 V  
2.8 V  
2.8 V  
2.5 V  
PF0100  
18  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 10. Start-up configuration (continued)  
Default  
Pre-programmed OTP configuration  
configuration  
Registers  
All devices  
F0  
F1(25)  
F2(25)  
F3  
F4  
F6  
F9  
FA  
FB  
FC  
FD  
VGEN5_SEQ  
VGEN6_VOLT  
VGEN6_SEQ  
3
2.8 V  
3
12  
3.3 V  
8
5
-
5
-
5
-
5
-
5
3.0 V  
1
8
2.8 V  
7
8
2.8 V  
7
1
3.3 V  
8
1
3.3 V  
8
5
2.8 V  
7
-
-
-
-
PU CONFIG,  
SEQ_CLK_SPEED  
1.0 ms  
2.0 ms  
1.0 ms  
1.0 ms  
1.0 ms  
1.0 ms  
0.5 ms  
0.5 ms  
0.5 ms  
2.0 ms  
2.0 ms  
1.0 ms  
1.5625 mV/ 1.5625 mV/  
PU CONFIG,  
SWDVS_CLK  
1.5625 mV 12.5 mV/  
/μs μs  
12.5 mV/  
μs  
12.5 mV/  
μs  
12.5 mV/  
μs  
6.25 mV/  
μs  
6.25 mV/μs  
6.25 mV/μs 6.25 mV/μs  
12.5 mV/μs  
μs  
μs  
PU CONFIG,  
PWRON  
Level sensitive  
SW1ABC Single  
Phase, 2.0 MHz  
SW1AB Single Phase, SW1C  
Independent mode, 2.0 MHz  
SW1AB CONFIG  
SW1AB Single Phase, SW1C Independent Mode, 2.0 MHz  
2.0 MHz  
SW1C CONFIG  
SW2 CONFIG  
SW3A CONFIG  
SW3B CONFIG  
SW4 CONFIG  
PG EN  
2.0 MHz  
SW3AB Single Phase, 2.0 MHz  
2.0 MHz  
No VTT, 2.0 MHz  
RESETBMCU in default mode  
Notes  
25.  
For designs using the i.MX 6SoloLite, it is recommended to use the F3 OTP option instead of the F1 OTP option  
and F4 OTP option instead of the F2 OTP option.  
PF0100  
NXP Semiconductors  
19  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
LICELL  
UVDET  
VIN  
td1  
tr1  
1V  
td2  
tr2  
VSNVS  
PWRON  
SW1A/B  
SW1C  
td3  
tr3  
td4  
tr3  
SW2  
VGEN2  
SW3A/B  
td4  
tr3  
SW4  
VREFDDR  
VGEN4  
VGEN5  
td5  
tr4  
VGEN6  
RESETBMCU  
*VSNVS starts from 1.0 V if LICELL is valid before VIN.  
Figure 6. Default start-up sequence  
Table 11. Default start-up sequence timing  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
(26)  
tD1  
tR1  
tD2  
tR2  
Turn-on delay of VSNVS  
Rise time of VSNVS  
5.0  
3.0  
ms  
ms  
ms  
ms  
User determined delay  
Rise time of PWRON  
1.0  
(27)  
Turn-on delay of first regulator  
• SEQ_CLK_SPEED[1:0] = 00  
• SEQ_CLK_SPEED[1:0] = 01  
• SEQ_CLK_SPEED[1:0] = 10  
• SEQ_CLK_SPEED[1:0] = 11  
Rise time of regulators  
2.0  
2.5  
4.0  
7.0  
0.2  
(28)  
(29)  
tD3  
ms  
ms  
tR3  
PF0100  
20  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 11. Default start-up sequence timing (continued)  
Parameter  
Description  
Min.  
Typ.  
Max.  
Unit  
Notes  
Delay between regulators  
• SEQ_CLK_SPEED[1:0] = 00  
• SEQ_CLK_SPEED[1:0] = 01  
• SEQ_CLK_SPEED[1:0] = 10  
• SEQ_CLK_SPEED[1:0] = 11  
0.5  
1.0  
2.0  
tD4  
ms  
4.0  
0.2  
2.0  
tR4  
tD5  
Rise time of RESETBMCU  
ms  
ms  
Turn-on delay of RESETBMCU  
Notes  
26.  
Assumes LICELL voltage is valid before VIN is applied. If LICELL is not valid before VIN is applied then VSNVS turn-on delay may extend to a  
maximum of 24 ms.  
27.  
28.  
29.  
Depends on the external signal driving PWRON.  
Default configuration.  
Rise time is a function of slew rate of regulators and nominal voltage selected.  
6.1.2 One time programmability (OTP)  
OTP allows the programming of start-up configurations for a variety of applications. Before permanently programming the IC by  
programming fuses, a configuration may be prototyped by using the “Try Before Buy” (TBB) feature. Further, an error correction  
code(ECC) algorithm is available to correct a single bit error and to detect multiple bit errors when fuses are programmed.  
The parameters which can be configured by OTP are listed below.  
• General: I2C slave address, PWRON pin configuration, start-up sequence and timing  
• Buck regulators: Output voltage, dual/single phase or independent mode configuration, switching frequency, and soft start ramp  
rate  
• Boost regulator and LDOs: Output voltage  
NOTE: When prototyping or programming fuses, the user must ensure register settings are consistent with the hardware configuration.  
This is most important for the buck regulators, where the quantity, size, and value of the inductors depend on the configuration (single/  
dual phase or independent mode) and the switching frequency. Additionally, if an LDO is powered by a buck regulator, it is gated by the  
buck regulator in the start-up sequence.  
6.1.2.1  
Start-up sequence and timing  
Each regulator has 5-bit allocated to program its start-up time slot from a turn on event; therefore, each can be placed from position one  
to thirty-one in the start-up sequence. The all zeros code indicates a regulator is not part of the start-up sequence and remains off. See  
Table 12. The delay between each position is equal; however, four delay options are available. See Table 13. The start-up sequence  
terminates at the last programmed regulator.  
PF0100  
NXP Semiconductors  
21  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 12. Start-up sequence  
SWxx_SEQ[4:0]/  
VGENx_SEQ[4:0]/  
Sequence  
VREFDDR_SEQ[4:0]  
00000  
Off  
00001  
SEQ_CLK_SPEED[1:0] * 1  
00010  
SEQ_CLK_SPEED[1:0] * 2  
*
*
*
*
*
*
*
*
11111  
SEQ_CLK_SPEED[1:0] * 31  
Table 13. Start-up sequence clock speed  
SEQ_CLK_SPEED[1:0]  
Time (μs)  
00  
01  
10  
11  
500  
1000  
2000  
4000  
6.1.2.2  
PWRON pin configuration  
The PWRON pin can be configured as either a level sensitive input (PWRON_CFG = 0), or as an edge sensitive input  
(PWRON_CFG = 1). As a level sensitive input, an active high signal turns on the part and an active low signal turns off the part, or puts it  
into sleep mode. As an edge sensitive input, such as when connected to a mechanical switch, a falling edge turns on the part and if the  
switch is held low for greater than or equal to 4.0 seconds, the part turns off or enters sleep mode.  
Table 14. PWRON configuration  
PWRON_CFG  
Mode  
PWRON pin HIGH = ON  
PWRON pin LOW = OFF or Sleep mode  
0
PWRON pin pulled LOW momentarily = ON  
PWRON pin LOW for 4.0 seconds = OFF or Sleep mode  
1
2
6.1.2.3  
I C address configuration  
The I2C device address can be programmed from 0x08 to 0x0F. This allows flexibility to change the I2C address to avoid bus conflicts.  
Address bit, I2C_SLV_ADDR[3] in OTP_I2C_ADDR register is hard coded to “1” while the lower three LSBs of the I2C address  
(I2C_SLV_ADDR[2:0]) are programmable as shown in Table 15.  
Table 15. I2C address configuration  
I2C_SLV_ADDR[3]  
hard coded  
I2C device address  
(Hex)  
I2C_SLV_ADDR[2:0]  
1
1
1
1
000  
001  
010  
011  
0x08  
0x09  
0x0A  
0x0B  
PF0100  
22  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 15. I2C address configuration (continued)  
I2C_SLV_ADDR[3]  
I2C_SLV_ADDR[2:0]  
hard coded  
I2C device address  
(Hex)  
1
1
1
1
100  
101  
110  
111  
0x0C  
0x0D  
0x0E  
0x0F  
6.1.2.4  
Soft start ramp rate  
The start-up ramp rate or soft start ramp rate can be chosen from the same options as shown in 6.4.4.2.1 Dynamic voltage scaling, page  
35.  
6.1.3 OTP prototyping  
Before permanently programming fuses, it is possible to test the desired configuration by using the “Try Before Buy” feature. With this  
feature, the configuration is loaded from the OTP registers. These registers merely serve as temporary storage for the values to be written  
to the fuses, for the values read from the fuses, or for the values read from the default configuration. To avoid confusion, these registers  
are referred to as the TBBOTP registers. The portion of the register map concerned with OTP is shown in Table 137 and Table 138.  
The contents of the TBBOTP registers are initialized to zero when a valid VIN is first applied. The values loaded into the TBBOTP registers  
depend on the setting of the VDDOTP pin and on the value of the TBB_POR and FUSE_POR_XOR bits. Refer to Table 16.  
• If VDDOTP = VCOREDIG (1.5 V), the values are loaded from the default configuration.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1, the values are loaded from the fuses. In the MMPF0100,  
FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1 for  
fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In the MMPF0100A, the XOR function  
is removed. It is required to set all of the FUSE_PORx bits to be able to load the fuses.  
• If VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 0, the TBBOTP registers remain initialized at zero.  
The initial value of TBB_POR is always “0”; only when VDDOTP = 0.0 V and TBB_POR is set to “1” are the values from the TBBOTP  
registers maintained and not loaded from a different source.  
The contents of the TBBOTP registers are modified by I2C. To communicate with I2C, VIN must be valid and VDDIO, to which SDA and  
SCL are pulled up, must be powered by a 1.7 V to 3.6 V supply. VIN, or the coin cell voltage must be valid to maintain the contents of the  
registers. To power on with the contents of the TBBOTP registers, the following conditions must exist; VIN is valid, VDDOTP = 0.0 V,  
TBB_POR = 1 and there is a valid turn-on event. Refer to the application note AN4536 for an example of prototyping.  
6.1.4 Reading OTP fuses  
As described in the previous section, the contents of the fuses are loaded to the TBBOTP registers when the following conditions are met;  
VIN is valid, VDDOTP = 0.0 V, TBB_POR = 0 and FUSE_POR_XOR = 1. If ECC were enabled at the time the fuses were programmed,  
the error corrected values can be loaded into the TBBOTP registers if desired. Once the fuses are loaded and a turn-on event occurs, the  
PMIC powers on with the configuration programmed in the fuses. For more details on reading the OTP fuses, see application note  
AN4536.  
6.1.5 Programming OTP fuses  
The parameters which can be programmed are shown in the TBBOTP registers in Table 137. Extended page 1, page 111 of the register  
map. The PF0100 offers ECC, the control registers for which functions are located in Extended Page 2 of the register map. There are ten  
banks of twenty-six fuses each which can be programmed. Programming the fuses requires an 8.25 V, 100 mA supply powering the  
VDDOTP pin, bypassed with 10 to 20 μF of capacitance. For more details on programming the OTP fuses, see application note AN4536.  
PF0100  
NXP Semiconductors  
23  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 16. Source of start-up sequence  
VDDOTP(V)  
TBB_POR FUSE_POR_XOR  
Start-up sequence  
0
0
0
0
1
x
0
1
x
x
None  
OTP fuses  
0
TBBOTP registers  
Factory defined  
1.5  
6.2  
16 MHz and 32 kHz clocks  
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within  
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:  
• VIN < UVDET  
• All regulators are in sleep mode  
• All regulators are in PFM switching mode  
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:  
• During start-up, VIN > UVDET  
• PWRON_CFG = 1, for power button debounce timing  
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 27 are referenced to the 32 kHz derived from the  
16 MHz clock. The exceptions are the LOWVINI and PWRONI interrupts, which are referenced to the 32 kHz untrimmed clock.  
Table 17. 16 MHz clock specifications  
TMIN to TMAX (See Table 3), VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V and typical external component values. Typical values are  
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
VIN16MHz  
f16MHZ  
f2MHZ  
Operating voltage from VIN  
16 MHz clock frequency  
2.0 MHz clock frequency  
2.8  
16  
4.5  
V
14.7  
1.84  
17.2  
2.15  
MHz  
MHz  
(30)  
Notes  
30.  
2.0 MHz clock is derived from the 16 MHz clock.  
6.2.1 Clock adjustment  
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By  
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as 3.0% of the nominal frequency. Contact  
your NXP representative for detailed information on this feature.  
6.3  
Bias and references block description  
6.3.1 Internal core voltage references  
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VCOREREF. The bandgap and  
the rest of the core circuitry are supplied from VCORE. The performance of the regulators is directly dependent on the performance of the  
bandgap. No external DC loading is allowed on VCORE, VCOREDIG, or VCOREREF. VCOREDIG is kept powered as long as there is a  
valid supply and/or valid coin cell. Table 18 shows the main characteristics of the core circuitry.  
PF0100  
24  
NXP Semiconductors  
 
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 18. Core voltages electrical specifications(32)  
TMIN to TMAX (See Table 3), VIN = 2.8 V to 4.5 V, LICELL = 1.8 V to 3.3 V, and typical external component values. Typical values are  
characterized at VIN = 3.6 V, LICELL = 3.0 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
VCOREDIG (digital core supply)  
Output voltage  
(31)  
VCOREDIG  
• ON mode  
• Coin cell mode and OFF  
1.5  
1.3  
V
VCORE (analog core supply)  
Output voltage  
(31)  
VCORE  
• ON mode and charging  
• OFF and coin cell mode  
2.775  
0.0  
V
VCOREREF (bandgap / regulator reference)  
(31)  
VCOREREF  
Output voltage  
1.2  
0.5  
V
%
%
VCOREREFACC  
Absolute accuracy  
VCOREREFTACC Temperature drift  
0.25  
Notes  
31.  
3.0 V < VIN < 4.5 V, no external loading on VCOREDIG, VCORE, or VCOREREF. Extended operation down to UVDET, but no system malfunction.  
For information only.  
32.  
6.3.1.1  
External components  
Table 19. External components for core voltages  
Regulator  
Capacitor value (μF)  
VCOREDIG  
VCORE  
1.0  
1.0  
VCOREREF  
0.22  
6.3.2 VREFDDR voltage reference  
VREFDDR is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input  
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.  
This divider then utilizes a voltage follower to drive the load.  
VINREFDDR  
VINREFDDR  
CHALF1  
100 nf  
VHALF  
_
+
CHALF2  
100 nf  
Discharge  
VREFDDR  
VREFDDR  
CREFDDR  
1.0 uf  
Figure 7. VREFDDR block diagram  
PF0100  
NXP Semiconductors  
25  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.3.2.1  
VREFDDR control register  
The VREFDDR voltage reference is controlled by a single bit in VREFDDCRTL register in Table 20.  
Table 20. Register VREFDDCRTL - ADDR 0x6A  
Name  
UNUSED  
Bit #  
R/W Default  
Description  
3:0  
R/W  
0x00  
0x00  
0x00  
UNUSED  
Enable or disables VREFDDR output voltage  
• 0 = VREFDDR Disabled  
VREFDDREN  
UNUSED  
4
• 1 = VREFDDR Enabled  
7:5  
UNUSED  
6.3.2.1.1  
External components  
Table 21. VREFDDR external components(33)  
Capacitor  
Capacitance (μF)  
VINREFDDR(34) to VHALF  
0.1  
0.1  
1.0  
VHALF to GND  
VREFDDR  
Notes  
33.  
34.  
Use X5R or X7R capacitors.  
VINREFDDR to GND, 1.0 μF minimum capacitance is provided by buck regulator output.  
6.3.2.1.2  
VREFDDR specifications  
Table 22. VREFDDR electrical characteristics  
TMIN to TMAX (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless otherwise  
noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VREFDDR  
VINREFDDR Operating input voltage range  
1.2  
0.0  
1.8  
10  
V
IREFDDR  
IREFDDRLIM  
IREFDDRQ  
Operating load current range  
mA  
Current limit  
10.5  
15  
25  
mA  
• IREFDDR when VREFDDR is forced to VINREFDDR/4  
(35)  
Quiescent Current  
8.0  
μA  
Active mode – DC  
Output voltage  
VREFDDR  
• 1.2 V < VINREFDDR < 1.8 V  
• 0.0 mA < IREFDDR < 10 mA  
V
INREFDDR/2  
V
Output voltage tolerance (TA = -40 °C to 85 °C)  
• 1.2 V < VINREFDDR < 1.8 V  
VREFDDRTOL  
–1.0  
1.0  
%
• 0.6 mA IREFDDR 10 mA  
Output voltage tolerance (TA = -40 °C to 105 °C), applicable only  
to the extended industrial version  
VREFDDRTOL  
–1.2  
1.2  
%
• 1.2 V < VINREFDDR < 1.8 V  
• 0.6 mA IREFDDR 10 mA  
Load regulation  
VREFDDRLOR  
• 1.0 mA < IREFDDR < 10 mA  
• 1.2 V < VINREFDDR < 1.8 V  
0.40  
mV/mA  
PF0100  
26  
NXP Semiconductors  
 
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 22. VREFDDR electrical characteristics (continued)  
TMIN to TMAX (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V and typical external component values, unless otherwise  
noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VINREFDDR = 1.5 V, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
100  
10  
Unit  
Notes  
Active mode – AC  
Turn-on time  
• Enable to 90% of end value  
tONREFDDR  
μs  
• VINREFDDR = 1.2 V, 1.8 V  
• IREFDDR = 0.0 mA  
Turn-off time  
• Disable to 10% of initial value  
• VINREFDDR = 1.2 V, 1.8 V  
• IREFDDR = 0.0 mA  
tOFFREFDDR  
ms  
Start-up overshoot  
VREFDDROSH  
• VINREFDDR = 1.2 V, 1.8 V  
• IREFDDR = 0.0 mA  
1.0  
5.0  
6.0  
%
Transient load response  
VREFDDRTLR  
mV  
• VINREFDDR = 1.2 V, 1.8 V  
Notes  
35.  
When VREFDDR is off there is a quiescent current of 1.5 μA typical.  
PF0100  
NXP Semiconductors  
27  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4  
Power generation  
6.4.1 Modes of operation  
The operation of the PF0100 can be reduced to five states, or modes: on, off, sleep, standby, and coin cell. Figure 8 shows the state  
diagram of the PF0100, along with the conditions to enter and exit from each state.  
Coin Cell  
VIN < UVDET  
VIN < UVDET  
VIN > UVDET  
PWRON = 0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
Thermal shutdown  
OFF  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
Sleep  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
VIN < UVDET  
PWRON = 0  
Any SWxOMODE bits=1  
(PWRON_CFG=0)  
Or  
PWRON=0 held >= 4.0 sec  
Any SWxOMODE bits=1  
& PWRONRSTEN = 1  
(PWRON_CFG=1)  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
PWRON=1  
& VIN > UVDET  
(PWRON_CFG =0)  
Or  
PWRON= 0 < 4.0 sec  
& VIN > UVDET  
(PWRON_CFG=1)  
ON  
Thermal shudown  
PWRON = 0  
All SWxOMODE bits= 0  
(PWRON_CFG = 0)  
Or  
STANDBY asserted  
STANDBY de-asserted  
PWRON = 0 held >= 4.0 sec  
All SWxOMODE bits= 0  
& PWRONRSTEN = 1  
(PWRON_CFG = 1)  
Thermal shutdown  
Standby  
Figure 8. State diagram  
To complement the state diagram in Figure 8, a description of the states is provided in following sections. Note that VIN must exceed the  
rising UVDET threshold to allow a power up. Refer to Table 29 for the UVDET thresholds. Additionally, I2C control is not possible in the  
coin cell mode and the interrupt signal, INTB, is only active in sleep, standby, and on states.  
6.4.1.1  
ON mode  
The PF0100 enters the On mode after a turn-on event. RESETBMCU is de-asserted, high, in this mode of operation.  
6.4.1.2  
OFF mode  
The PF0100 enters the off mode after a turn-off event. A thermal shutdown event also forces the PF0100 into the off mode. Only  
VCOREDIG and VSNVS are powered in the mode of operation. To exit the off mode, a valid turn-on event is required. RESETBMCU is  
asserted, low, in this mode.  
PF0100  
28  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.1.3  
Standby mode  
• Depending on STANDBY pin configuration, standby is entered when the STANDBY pin is asserted. This is typically used for low-  
power mode of operation.  
• When STANDBY is de-asserted, standby mode is exited.  
A product may be designed to go into a low-power mode after periods of inactivity. The STANDBY pin is provided for board level control  
of going in and out of such deep sleep modes (DSM).  
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the  
operating mode of the regulators or disabling some regulators. The configuration of the regulators in standby is pre-programmed through  
the I2C interface.  
Note that the STANDBY pin is programmable for active high or active low polarity, and decoding of a standby event takes into account  
the programmed input polarity as shown in Table 23. When the PF0100 is powered up first, regulator settings for the standby mode are  
mirrored from the regulator settings for the on mode. To change the STANDBY pin polarity to Active Low, set the STANDBYINV bit via  
software first, and then change the regulator settings for Standby mode as required. For simplicity, STANDBY generally is referred to as  
active high throughout this document.  
Table 23. Standby pin and polarity control  
STANDBY (pin)(37)  
STANDBYINV (I2C bit)(38)  
STANDBY control (36)  
0
0
1
0
1
0
1
1
0
0
1
1
Notes  
36.  
37.  
38.  
STANDBY = 0: System is not in standby, STANDBY = 1: System is in standby  
The state of the STANDBY pin only has influence in on mode.  
Bit 6 in power control register (ADDR - 0x1B)  
Since STANDBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond  
to the pin level changes. A programmable delay is provided to hold off the system response to a standby event. This allows the processor  
and peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into  
standby mode.  
When enabled (STBYDLY = 01, 10, or 11) per Table 24, STBYDLY delays the standby initiated response for the entire IC, until the  
STBYDLY counter expires.  
An allowance should be made for three additional 32 k cycles required to synchronize the standby event.  
Table 24. STANDBY delay - initiated response  
STBYDLY[1:0](39)  
Function  
00  
01  
10  
11  
No delay  
One 32 k period (default)  
Two 32 k periods  
Three 32 k periods  
Notes  
39.  
Bits [5:4] in power control register (ADDR - 0x1B)  
6.4.1.4  
Sleep mode  
• Depending on PWRON pin configuration, sleep mode is entered when PWRON is de-asserted and SWxOMODE bit is set.  
• To exit sleep mode, assert the PWRON pin.  
In the sleep mode, the regulator uses the set point as programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/  
B, and SW4. The activated regulators maintains settings for this mode and voltage until the next turn-on event. Table 25 shows the control  
bits in sleep mode. During sleep mode, interrupts are active and the INTB pin reports any unmasked fault event.  
PF0100  
NXP Semiconductors  
29  
 
 
 
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 25. Regulator mode control  
SWxOMODE  
Off operational mode (Sleep) (40)  
0
1
Off  
PFM  
Notes  
40.  
For sleep mode, an activated switching regulator, should use the off  
mode set point as programmed by SW1xOFF[5:0] for SW1A/B/C and  
SWxOFF[6:0] for SW2, SW3A/B, and SW4.  
6.4.1.5  
Coin cell mode  
In the coin cell state, the coin cell is the only valid power source (VIN = 0.0 V) to the PMIC. No turn-on event is accepted in the coin cell  
state. Transition to the off state requires VIN surpasses UVDET threshold. RESETBMCU is held low in this mode.  
If the coin cell is depleted, a complete system reset occurs. At the next application of power and the detection of a turn-on event, the system  
is re-initialized with all I2C bits including those reset on COINPORB, which are restored to their default states.  
6.4.2 State machine flow summary  
Table 26 provides a summary matrix of the PF0100 flow diagram to show the conditions needed to transition from one state to another.  
Table 26. State machine flow summary  
Next state  
STATE  
OFF  
X
Coin cell  
IN < UVDET  
X
Sleep  
Standby  
ON  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
OFF  
Coin cell  
Sleep  
V
V
V
X
X
X
X
X
X
PWRON_CFG = 1  
PWRON = 0 < 4.0 s  
& VIN > UNDET  
V
IN > UVDET  
X
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 1 & VIN > UVDET  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
IN < UVDET  
PWRON_CFG = 1  
PWRON = 0 < 4.0 s &  
VIN > UNDET  
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
Standby  
IN < UVDET  
X
Standby de-asserted  
Thermal shutdown  
PWRON_CFG = 0  
PWRON = 0  
Any SWxOMODE = 1  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
Any SWxOMODE = 1 &  
PWRONRSTEN = 1  
PWRON_CFG = 0  
PWRON = 0  
All SWxOMODE = 0  
or  
PWRON_CFG = 1  
PWRON = 0 ≥ 4.0 s  
All SWxOMODE = 0 &  
PWRONRSTEN = 1  
ON  
VIN < UVDET  
Standby asserted  
X
PF0100  
30  
NXP Semiconductors  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.2.1  
Turn on events  
From off and sleep modes, the PMIC is powered on by a turn-on event. The type of turn-on event depends on the configuration of PWRON.  
PWRON may be configured as an active high when PWRON_CFG = 0, or as the input of a mechanical switch when PWRON_CFG = 1.  
VIN must be greater than UVDET for the PMIC to turn-on. When PWRON is configured as an active high and PWRON is high (pulled up  
to VSNVS) before VIN is valid, a VIN transition from 0.0 V to a voltage greater than UVDET is also a Turn-on event. See the state diagram,  
Figure 8, and the Table 26 for more details. Any regulator enabled in the sleep mode remains enabled when transitioning from sleep to  
on, i.e., the regulator does not turn off and then on again to match the start-up sequence. The following is a more detailed description of  
the PWRON configurations:  
• If PWRON_CFG = 0, the PWRON signal is high and VIN > UVDET, the PMIC turns on; the interrupt and sense bits, PWRONI and  
PWRONS respectively, is set.  
• If PWRON_CFG = 1, VIN > UVDET and PWRON transitions from high to low, the PMIC turns on; the interrupt and sense bits,  
PWRONI and PWRONS respectively, sets.  
The sense bit shows the real time status of the PWRON pin. In this configuration, the PWRON input can be a mechanical switch  
debounced through a programmable debouncer, PWRONDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press.  
The interrupt is generated for both the falling and the rising edge of the PWRON pin. By default, a 30 ms interrupt debounce is applied to  
both falling and rising edges. The falling edge debounce timing can be extended with PWRONDBNC[1:0] as defined in Table 27. The  
interrupt is cleared by software, or when cycling through the OFF mode.  
Table 27. PWRON hardware debounce bit settings  
Turn on  
debounce (ms)  
Falling edge INT  
debounce (ms)  
Rising edge INT  
debounce (ms)  
Bits  
State  
00  
01  
10  
11  
0.0  
31.25  
125  
31.25  
31.25  
125  
31.25  
31.25  
31.25  
31.25  
PWRONDBNC[1:0]  
Notes  
750  
750  
41.  
The sense bit, PWRONS, is not debounced and follows the state of the PWRON pin.  
6.4.2.2  
Turn off events  
PWRON pin  
6.4.2.2.1  
The PWRON pin is used to power off the PF0100. The PWRON pin can be configured with OTP to power off the PMIC under the following  
two conditions:  
1. PWRON_CFG bit = 0, SWxOMODE bit = 0 and PWRON pin is low.  
2. PWRON_CFG bit = 1, SWxOMODE bit = 0, PWRONRSTEN = 1 and PWRON is held low for longer than 4.0 seconds.  
Alternatively, the system can be configured to restart automatically by setting the RESTARTEN bit.  
6.4.2.2.2  
Thermal protection  
If the die temperature surpasses a given threshold, the thermal protection circuit powers off the PMIC to avoid damage. A turn-on event  
does not power on the PMIC while it is in thermal protection. The part remains in off mode until the die temperature decreases below a  
given threshold. There are no specific interrupts related to this other than the warning interrupt. See 4.2.1 Power dissipation, page 11  
section for more detailed information.  
6.4.2.2.3  
Undervoltage detection  
When the voltage at VIN drops below the undervoltage falling threshold, UVDET, the state machine transitions to the coin cell mode.  
PF0100  
NXP Semiconductors  
31  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.3 Power tree  
The PF0100 PMIC features six buck regulators, one boost regulator, six general purpose LDOs, one switch/LDO combination, and a DDR  
voltage reference to supply voltages for the application processor and peripheral devices. The buck regulators as well as the boost  
regulator are supplied directly from the main input supply (VIN). The inputs to all of the buck regulators must be tied to VIN, whether they  
are powered on or off. The six general use LDO regulators are directly supplied from the main input supply or from the switching regulators  
depending on the application requirements. Since VREFDDR is intended to provide DDR memory reference voltage, it should be supplied  
by any rail supplying voltage to DDR memories; the typical application recommends the use of SW3 as the input supply for VREFDDR.  
VSNVS is supplied by either the main input supply or the coin cell. Refer to Table 28 for a summary of all power supplies provided by the  
PF0100.  
Table 28. Power tree summary  
Supply  
Output voltage (V)  
Step size (mV)  
Maximum load current (mA)  
SW1A/B  
SW1C  
0.3 - 1.875  
0.3 - 1.875  
25  
25  
2500  
2000  
2000 (43)  
1250 (42)  
1000  
600  
SW2  
0.4 - 3.3  
25/50  
25/50  
25/50  
50  
SW3A/B  
SW4  
0.4 - 3.3  
0.5*SW3A_OUT, 0.4 - 3.3  
5.00/5.05/5.10/5.15  
0.80 – 1.55  
0.80 – 1.55  
1.8 – 3.3  
SWBST  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
VSNVS  
VREFDDR  
50  
100  
50  
250  
100  
100  
100  
100  
NA  
100  
1.8 – 3.3  
350  
1.8 – 3.3  
100  
1.8 – 3.3  
200  
1.0 - 3.0  
0.4  
0.5*SW3A_OUT  
NA  
10  
Notes  
42.  
Current rating per independent phase, when SW3A/B is set in single or dual phase, current capability is up  
to 2500 mA.  
43.  
SW2 capable of 2500 mA in NP, F9, and FA Industrial versions only (ANES suffix)  
Figure 9 shows a simplified power map with various recommended options to supply the different block within the PF0100, as well as the  
typical application voltage domain on the i.MX 6X processor. Note that each application power tree is dependent upon the system’s voltage  
and current requirements, therefore a proper input voltage should be selected for the regulators.  
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial  
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative  
tables and text specifying each supply for information on performance metrics and operating ranges. Table 29 summarizes the UVDET  
thresholds.  
Table 29. UVDET threshold  
UVDET threshold  
VIN  
Rising  
Falling  
3.1 V  
2.65 V  
PF0100  
32  
NXP Semiconductors  
 
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
i.MX6X  
MCU  
SW1A  
CORE  
VDDARM_IN  
(0.3 to 1.875 V), 1.25 A  
SW1B  
CORE  
(0.3 to 1.875 V), 1.25 A  
SW1C  
SOC  
(0.3 to 1.875 V), 2.0 A  
VDDSOC_IN  
VDDHIGH_IN  
SW2  
VDDHIGH  
VIN  
2.8 - 4.5 V  
(0.4 to 3.3 V), 2.0 A  
SW3A  
DDR CORE  
(0.4 to 3.3 V), 1.25 A  
SW3B  
DDR IO  
VDD_DDR_IO  
(0.4 to 3.3 V), 1.25 A  
SW4  
System/VTT  
(0.4 to 3.3 V)  
(0.5*VDDR)  
1.0 A  
SWBST  
5.0 V, 0.6 A  
LDO_3p0  
VREFDDR  
0.5*VDDR, 10 mA  
SW3A/B  
VIN  
VSNVS  
MUX /  
VSNVS_IN  
COIN  
CHRG  
1.0 to 3.0 V,  
400 uA  
Coincell  
VGEN1  
(0.80 to 1.55 V),  
100 mA  
USB_OTG  
VIN  
SW2  
VINMAX = 3.4 V  
VINMAX = 3.6 V  
VINMAX = 4.5 V  
VGEN2  
(0.80 to 1.55 V),  
250 mA  
SW4  
DDR3  
VGEN3  
(1.8 to 3.3 V),  
100 mA  
Peripherals  
VIN  
SW2  
VGEN4  
(1.8 to 3.3 V),  
350 mA  
SW4  
VGEN5  
(1.8 to 3.3 V),  
100 mA  
VIN  
SW2  
VGEN6  
(1.8 to 3.3 V),  
200 mA  
SW4  
Figure 9. PF0100 typical power map  
PF0100  
NXP Semiconductors  
33  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4 Buck regulators  
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.  
6.4.4.1  
Current limit  
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit  
condition persists for more than 8.0 ms, a fault interrupt is generated.  
6.4.4.2  
General control  
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur  
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current  
variation. Available switching modes for buck regulators are presented in Table 30.  
Table 30. Switching mode description  
Mode  
Description  
OFF  
PFM  
PWM  
The regulator is switched off and the output voltage is discharged.  
In this mode, the regulator is always in PFM mode, which is useful at light loads for optimized efficiency.  
In this mode, the regulator is always in PWM mode operation regardless of load conditions.  
In this mode, the regulator moves automatically between pulse skipping mode and PWM mode  
depending on load conditions.  
APS  
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after  
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching  
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.  
Table 31 summarizes the buck regulator programmability for normal and standby modes.  
Table 31. Regulator mode control  
SWxMODE[3:0]  
Normal mode  
Standby mode  
Off  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
Off  
PWM  
Off  
Reserved  
PFM  
Reserved  
Off  
APS  
Off  
PWM  
PWM  
PWM  
APS  
Reserved  
APS  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
APS  
Reserved  
Reserved  
Reserved  
PFM  
PWM  
PFM  
Reserved  
Reserved  
Reserved  
Reserved  
PF0100  
34  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Transitioning between normal and standby modes can affect a change in switching modes as well as output voltage. The rate of the output  
voltage change is controlled by the dynamic voltage scaling (DVS), explained in 6.4.4.2.1 Dynamic voltage scaling, page 35. For each  
regulator, the output voltage options are the same for normal and standby modes.  
When in standby mode, the regulator outputs the voltage programmed in its standby voltage register and operates in the mode selected  
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator returns to its normal switching mode and its output voltage  
programmed in its voltage register.  
Any regulators whose SWxOMODE bit is set to “1” enters Sleep mode if a PWRON turn-off event occurs, and any regulator whose  
SWxOMODE bit is set to “0” turns off. In sleep mode, the regulator outputs the voltage programmed in its off (sleep) voltage register and  
operates in the PFM mode. The regulator exits the sleep mode when a turn-on event occurs. Any regulator whose SWxOMODE bit is set  
to “1” remains on and change to its normal configuration settings when exiting the sleep state to the on state. Any regulator whose  
SWxOMODE bit is set to “0” is powered up with the same delay in the start-up sequence as when powering on from off. At this point, the  
regulator returns to its default on state output voltage and switch mode settings.  
Table 25 shows the control bits in sleep mode. When sleep mode is activated by the SWxOMODE bit, the regulator uses the set point as  
programmed by SW1xOFF[5:0] for SW1A/B/C and by SWxOFF[6:0] for SW2, SW3A/B, and SW4.  
6.4.4.2.1  
Dynamic voltage scaling  
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.  
1. Normal operation: The output voltage is selected by I2C bits SW1x[5:0] for SW1A/B/C and SWx[6:0] for SW2, SW3A/B, and SW4.  
A voltage transition initiated by I2C is governed by the DVS stepping rates shown in Table 34 and Table 35.  
2. Standby mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SW1xSTBY[5:0] for SW1A/B/C and by bits SWxSTBY[6:0] for SW2,  
SW3A/B, and SW4. Voltage transitions initiated by a Standby event are governed by the SW1xDVSSPEED[1:0] and  
SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.  
3. Sleep mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state  
retention voltage of a given processor; it is selected by I2C bits SW1xOFF[5:0] for SW1A/B/C and by bits SWxOFF[6:0] for SW2,  
SW3A/B, and SW4. Voltage transitions initiated by a turn-off event are governed by the SW1xDVSSPEED[1:0] and  
SWxDVSSPEED[1:0] I2C bits shown in Table 34 and Table 35, respectively.  
Table 32, Table 33, Table 34, and Table 35 summarize the set point control and DVS time stepping applied to all regulators.  
Table 32. DVS control logic for SW1A/B/C  
STANDBY  
Set point selected by  
0
1
SW1x[5:0]  
SW1xSTBY[5:0]  
Table 33. DVS control logic for SW2, SW3A/B, and SW4  
STANDBY  
Set Point Selected by  
0
1
SWx[6:0]  
SWxSTBY[6:0]  
Table 34. DVS speed selection for SW1A/B/C  
SW1xDVSSPEED[1:0]  
Function  
00  
01 (default)  
10  
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
25 mV step each 8.0 μs  
25 mV step each 16 μs  
11  
PF0100  
NXP Semiconductors  
35  
 
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 35. DVS speed selection for SW2, SW3A/B, and SW4  
Function  
SWx[6] = 0 or SWxSTBY[6] = 0  
Function  
SWx[6] = 1 or SWxSTBY[6] = 1  
SWxDVSSPEED[1:0]  
00  
01 (default)  
10  
25 mV step each 2.0 μs  
25 mV step each 4.0 μs  
25 mV step each 8.0 μs  
25 mV step each 16 μs  
50 mV step each 4.0 μs  
50 mV step each 8.0 μs  
50 mV step each 16 μs  
50 mV step each 32 μs  
11  
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are  
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the  
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in  
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.  
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control. During the  
DVS period the overcurrent condition on the regulator should be masked.  
Requested  
Set Point  
Output Voltage  
with light Load  
Internally  
Controlled Steps  
Example  
Output  
Voltage  
Actual Output  
Voltage  
Initial  
Set Point  
Actual  
Output Voltage  
Internally  
Possible  
Output Voltage  
Window  
Controlled Steps  
Request for  
Higher Voltage  
Request for  
Lower Voltage  
Voltage  
Change  
Request  
Initiated by I2C Programming, Standby Control  
Figure 10. Voltage stepping with DVS  
6.4.4.2.2  
Regulator phase clock  
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 36. By default, each regulator is initialized at 90 ° out  
of phase with respect to each other. For example, SW1x is set to 0 °, SW2 is set to 90 °, SW3A/B is set to 180 °, and SW4 is set to 270 °  
by default at power up.  
Table 36. Regulator phase clock selection  
SWxPHASE[1:0]  
Phase of clock sent to regulator (degrees)  
00  
01  
10  
11  
0
90  
180  
270  
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 38 shows the  
selectable options for SWxFREQ[1:0]. For each frequency, all phases are available, allowing regulators operating at different frequencies  
to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and 4.0 MHz, 180 °  
are the same in terms of phasing. Table 37 shows the optimum phasing when using more than one switching frequency.  
PF0100  
36  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 37. Optimum phasing  
Frequencies  
Optimum Phasing  
1.0 MHz  
2.0 MHz  
0 °  
180 °  
1.0 MHz  
4.0 MHz  
0 °  
180 °  
2.0 MHz  
4.0 MHz  
0 °  
180 °  
1.0 MHz  
2.0 MHz  
4.0 MHz  
0 °  
90 °  
90 °  
Table 38. Regulator frequency configuration  
SWxFREQ[1:0]  
Frequency  
00  
01  
10  
11  
1.0 MHz  
2.0 MHz  
4.0 MHz  
Reserved  
6.4.4.2.3  
Programmable maximum current  
The maximum current, ISWxMAX, of each buck regulator is programmable. This allows the use of smaller inductors where lower currents  
are required. Programmability is accomplished by choosing the number of paralleled power stages in each regulator. The  
SWx_PWRSTG[2:0] bits in Table 138. Extended Page 2, page 115 of the register map control the number of power stages. See Table 39  
for the programmable options. Bit[0] must always be enabled to ensure the stage with the current sensor is chosen. The default setting,  
SWx_PWRSTG[2:0] = 111, represents the highest maximum current. The current limit for each option is also scaled by the percentage  
of power stages enabled.  
Table 39. Programmable current configuration  
Regulators  
Control bits  
% of power stages enabled  
Rated current (A)  
SW1AB_PWRSTG[2:0]  
ISW1ABMAX  
1.0  
0
0
1
1
0
1
1
1
1
40%  
80%  
SW1AB  
1
2.0  
0
60%  
1.5  
1
100%  
2.5  
SW1C_PWRSTG[2:0]  
ISW1CMAX  
0.9  
0
0
1
1
0
1
1
1
1
43%  
58%  
SW1C  
1
1.2  
0
86%  
1.7  
1
100%  
2.0  
SW2_PWRSTG[2:0]  
ISW2MAX  
0.75  
0
0
1
1
0
1
0
1
1
1
1
1
38%  
75%  
SW2  
1.5  
63%  
1.25  
100%  
2.0  
PF0100  
NXP Semiconductors  
37  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 39. Programmable current configuration (continued)  
Regulators  
Control bits  
% of power stages enabled  
Rated current (A)  
SW3A_PWRSTG[2:0]  
ISW3AMAX  
0.5  
0
0
1
1
0
1
1
1
1
40%  
80%  
SW3A  
1
1.0  
0
60%  
0.75  
1
100%  
1.25  
SW3B_PWRSTG[2:0]  
ISW3BMAX  
0.5  
0
0
1
1
0
1
1
1
1
40%  
80%  
SW3B  
1
1.0  
0
60%  
0.75  
1
100%  
1.25  
SW4_PWRSTG[2:0]  
ISW4MAX  
0.5  
0
0
1
1
0
1
0
1
1
1
1
1
50%  
75%  
SW4  
0.75  
75%  
0.75  
100%  
1.0  
6.4.4.3  
SW1A/B/C  
SW1/A/B/C are 2.5 A to 4.5 A buck regulators which can be configured in various phasing schemes, depending on the desired cost/  
performance trade-offs. The following configurations are available:  
• SW1A/B/C single phase with one inductor  
• SW1A/B as a single phase with one inductor and SW1C in independent mode with one inductor  
• SW1A/B as a dual phase with two inductors and SW1C in independent mode with one inductor  
The desired configuration is programmed by OTP by using SW1_CONFIG[1:0] bits in the register map Table 137. Extended page 1, page  
111, as shown in Table 40.  
.
Table 40. SW1 configuration  
SW1_CONFIG[1:0]  
Description  
A/B/C single phase  
00  
01  
10  
11  
A/B single phase, C independent mode  
A/B dual phase, C independent mode  
Reserved  
6.4.4.3.1  
SW1A/B/C single phase  
In this configuration, all phases A, B, and C, are connected together to a single inductor, thus, providing up to 4.50 A current capability for  
high current applications. The feedback and all other controls are accomplished by use of pin SW1CFB and SW1C control registers,  
respectively. Figure 11 shows the connection for SW1A/B/C in single phase mode.  
During single phase mode operation, all three phases use the same configuration for frequency, phase, and DVS speed set in  
SW1CCONF register. However, the same configuration settings for frequency, phase, and DVS speed setting on SW1AB registers should  
be used. The SW1FB pin should be left floating in this configuration.  
PF0100  
38  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1A/B/C  
Driver  
LSW1  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
I2C  
Interface  
SW1BLX  
Driver  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1CLX  
EP  
Driver  
SW1CFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 11. SW1A/B/C single phase block diagram  
6.4.4.3.2  
SW1A/B single phase - SW1C independent mode  
In this configuration, SW1A/B is connected as a single phase with a single inductor, while SW1C is used as an independent output, using  
its own inductor and configurations parameters. This configuration allows reduced component count by using only one inductor for SW1A/  
B. As mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage  
set point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 12 shows the physical  
connection for SW1A/B in single phase and SW1C as an independent output.  
PF0100  
NXP Semiconductors  
39  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VIN  
SW1AIN  
SW1AMODE  
SW1AFAULT  
ISENSE  
CINSW1A  
Controller  
SW1A/B  
SW1ALX  
Driver  
LSW1A  
COSW1A  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BMODE  
ISENSE  
CINSW1B  
Controller  
I2C  
Interface  
SW1BLX  
Driver  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1C  
SW1CLX  
Driver  
LSW1C  
COSW1C  
SW1CFAULT  
EP  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 12. SW1A/B single phase, SW1C independent mode block diagram  
Both SW1ALX and SW1BLX nodes operate at the same DVS, frequency, and phase configured by the SW1ABCONF register, while  
SW1CLX node operates independently, using the configuration in the SW1CCONF register.  
6.4.4.3.3  
SW1A/B dual phase - SW1C independent mode  
In this mode, SW1A/B is connected in dual phase mode using one inductor per switching node, while SW1C is used as an independent  
output using its own inductor and configuration parameters. This mode provides a smaller output voltage ripple on the SW1A/B output. As  
mentioned before, SW1A/B and SW1C operate independently from one another, thus, they can be operated with a different voltage set  
point for normal, standby, and sleep modes, as well as switching mode selection and on/off control. Figure 13 shows the physical  
connection for SW1A/B in dual phase and SW1C as an independent output.  
PF0100  
40  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
VIN  
SW1AIN  
SW1ALX  
SW1AMODE  
ISENSE  
CINSW1A  
Controller  
SW1AB  
Driver  
LSW1A  
COSW1A  
SW1AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1FB  
Z1  
EA  
VREF  
DAC  
VIN  
SW1BIN  
SW1BLX  
SW1BMODE  
ISENSE  
CINSW1B  
I2C  
Interface  
Controller  
Driver  
LSW1B  
COSW1B  
SW1BFAULT  
SW1CMODE  
VIN  
SW1CIN  
ISENSE  
CINSW1C  
Controller  
SW1C  
SW1CLX  
EP  
Driver  
LSW1C  
COSW1C  
SW1CFAULT  
Internal  
I2C  
Compensation  
Z2  
SW1CFB  
Z1  
VREF  
EA  
DAC  
Figure 13. SW1A/B dual phase, SW1C independent mode block diagram  
In this mode of operation, SW1ALX and SW1BLX nodes operate automatically at 180 ° phase shift from each other and use the same  
frequency and DVS configured by SW1ABCONF register, while SW1CLX node operate independently using the configuration in the  
SW1CCONF register.  
6.4.4.3.4  
SW1A/B/C setup and control registers  
SW1A/B and SW1C output voltages are programmable from 0.300 V to 1.875 V in steps of 25 mV. The output voltage set point is  
independently programmed for normal, standby, and sleep mode by setting the SW1x[5:0], SW1xSTBY[5:0], and SW1xOFF[5:0] bits  
respectively. Table 41 shows the output voltage coding for SW1A/B or SW1C.  
Note: Voltage set points of 0.6 V and below are not supported.  
PF0100  
NXP Semiconductors  
41  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 41. SW1A/B/C output voltage configuration  
SW1x[5:0]  
SW1x[5:0]  
Set point  
SW1xSTBY[5:0]  
SW1xOFF[5:0]  
SW1x output (V)  
Set point  
SW1xSTBY[5:0]  
SW1xOFF[5:0]  
SW1x output (V)  
0
000000  
000001  
000010  
000011  
000100  
000101  
000110  
000111  
001000  
001001  
001010  
001011  
001100  
001101  
001110  
001111  
010000  
010001  
010010  
010011  
010100  
010101  
010110  
010111  
011000  
011001  
011010  
011011  
011100  
011101  
011110  
011111  
0.3000  
0.3250  
0.3500  
0.3750  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
100000  
100001  
100010  
100011  
100100  
100101  
100110  
100111  
101000  
101001  
101010  
101011  
101100  
101101  
101110  
101111  
110000  
110001  
110010  
110011  
110100  
110101  
110110  
110111  
111000  
111001  
111010  
111011  
111100  
111101  
111110  
111111  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
PF0100  
42  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 42 provides a list of registers used to configure and operate SW1A/B/C and a detailed description on each one of these register is  
provided in Table 43 through Table 52.  
Table 42. SW1A/B/C register summary  
Register  
SW1ABVOLT  
Address  
Output  
0x20  
0x21  
0x22  
0x23  
0x24  
0x2E  
0x2F  
0x30  
0x31  
0x32  
SW1AB output voltage set point in normal operation  
SW1AB output voltage set point on standby  
SW1AB output voltage set point on sleep  
SW1ABSTBY  
SW1ABOFF  
SW1ABMODE  
SW1ABCONF  
SW1CVOLT  
SW1CSTBY  
SW1COFF  
SW1AB switching mode selector register  
SW1AB DVS, phase, frequency and ILIM configuration  
SW1C output voltage set point in normal operation  
SW1C output voltage set point in standby  
SW1C output voltage set point in sleep  
SW1CMODE  
SW1CCONF  
SW1C switching mode selector register  
SW1C DVS, phase, frequency and ILIM configuration  
Table 43. Register SW1ABVOLT - ADDR 0x20  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during normal  
operation mode. See Table 41 for all possible  
configurations.  
SW1AB  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
unused  
Table 44. Register SW1ABSTBY - ADDR 0x21  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during standby  
mode. See Table 41 for all possible  
configurations.  
SW1ABSTBY  
UNUSED  
5:0  
7:6  
R/W  
0x00  
0x00  
unused  
Table 45. Register SW1ABOFF - ADDR 0x22  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB output voltage during sleep  
mode. See Table 41 for all possible  
configurations.  
SW1ABOFF  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
unused  
PF0100  
NXP Semiconductors  
43  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 46. Register SW1ABMODE - ADDR 0x23  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1AB switching operation mode.  
See Table 31 for all possible configurations.  
SW1ABMODE  
UNUSED  
3:0  
4
R/W  
0x08  
0x00  
unused  
Set status of SW1AB when in sleep mode  
SW1ABOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 47. Register SW1ABCONF - ADDR 0x24  
Name  
Bit #  
R/W Default  
Description  
SW1AB current limit level selection  
• 0 = High level current limit  
• 1 = Low level current limit  
SW1ABILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
unused  
SW1A/B switching frequency selector. See  
Table 38.  
SW1ABFREQ  
3:2  
SW1ABPHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW1A/B phase clock selection. See Table 36.  
SW1A/B DVS speed selection. See Table 34.  
SW1ABDVSSPEED  
Table 48. Register SW1CVOLT - ADDR 0x2E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during normal  
operation mode. See Table 41 for all possible  
configurations.  
SW1C  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
unused  
Table 49. Register SW1CSTBY - ADDR 0x2F  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during standby  
mode. See Table 41 for all possible  
configurations.  
SW1CSTBY  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
unused  
Table 50. Register SW1COFF - ADDR 0x30  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C output voltage during sleep  
mode. See Table 41 for all possible  
configurations.  
SW1COFF  
5:0  
7:6  
R/W  
0x00  
0x00  
UNUSED  
unused  
PF0100  
44  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 51. Register SW1CMODE - ADDR 0x31  
Name  
Bit #  
R/W Default  
Description  
Sets the SW1C switching operation mode.  
See Table 30 for all possible configurations.  
SW1CMODE  
UNUSED  
3:0  
4
R/W  
0x08  
0x00  
unused  
Set status of SW1C when in sleep mode  
SW1COMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 52. Register SW1CCONF - ADDR 0x32  
Name  
Bit #  
R/W Default  
Description  
SW1C current limit level selection  
• 0 = High level current limit  
• 1 = Low level current limit  
SW1CILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
unused  
SW1C switching frequency selector. See  
Table 38.  
SW1CFREQ  
3:2  
SW1CPHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW1C phase clock selection.See Table 36.  
SW1C DVS speed selection. See Table 34.  
SW1CDVSSPEED  
6.4.4.3.5  
SW1A/B/C external components  
Table 53. SW1A/B/C external component recommendations  
Mode  
Components  
Description  
A/B/C single  
phase  
A/B Single - C  
independent mode independent mode  
A/B Dual - C  
(44)  
CINSW1A  
SW1A input capacitor  
SW1A decoupling input capacitor  
SW1B input capacitor  
SW1B decoupling input capacitor  
SW1C input capacitor  
SW1C decoupling input capacitor  
SW1A/B output capacitor  
SW1C output capacitor  
SW1A inductor  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
6 x 22 μF  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
2 x 22 μF  
3 x 22 μF  
1.0 μH  
4.7 μF  
0.1 μF  
(44)  
CIN1AHF  
(44)  
CINSW1B  
4.7 μF  
(44)  
CIN1BHF  
0.1 μF  
(44)  
CINSW1C  
4.7 μF  
(44)  
CIN1CHF  
0.1 μF  
(44)  
COSW1AB  
4 x 22 μF  
3 x 22 μF  
1.0 μH  
1.0 μH  
1.0 μH  
(44)  
COSW1C  
LSW1A  
LSW1B  
LSW1C  
Notes  
1.0 μH  
SW1B inductor  
SW1C inductor  
1.0 μH  
44.  
Use X5R or X7R capacitors.  
PF0100  
NXP Semiconductors  
45  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.3.6  
SW1A/B/C specifications  
Table 54. SW1A/B/C electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1A/B/C (single phase)  
VINSW1A  
VINSW1B  
VINSW1C  
Operating input voltage  
2.8  
4.5  
V
V
VSW1ABC  
Nominal output voltage  
Output voltage accuracy  
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 4.5 A  
• 0.625 V VSW1ABC 1.450 V  
• 1.475 V VSW1ABC 1.875 V  
-25  
-3.0%  
25  
3.0%  
mV  
%
VSW1ABCACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1ABC < 150 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
• 0.625 V < VSW1ABC < 0.675 V  
• 0.7 V < VSW1ABC < 0.85 V  
• 0.875 V < VSW1ABC < 1.875 V  
Rated output load current,  
ISW1ABC  
4500  
mA  
A
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1ABC < 1.875 V  
Current limiter peak current detection  
Current through inductor  
• SW1ABILIM = 0  
ISW1ABCLIM  
7.1  
5.3  
10.5  
7.9  
13.7  
10.3  
• SW1ABILIM = 1  
Start-up overshoot  
VSW1ABCOSH  
• ISW1ABC = 0 mA  
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1ABC = 1.875 V  
66  
mV  
µs  
Turn-on time  
• Enable to 90% of end value  
• ISW1x = 0 mA  
tONSW1ABC  
500  
• DVS clk = 25 mV/4.0 μs, VIN = VINSW1x = 4.5 V,  
V
SW1ABC = 1.875 V  
Switching frequency  
• SW1xFREQ[1:0] = 00  
• SW1xFREQ[1:0] = 01  
• SW1xFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1ABC  
MHz  
Efficiency  
VIN = 3.6 V, fSW1ABC = 2.0 MHz, LSW1ABC = 1.0 μH  
77  
82  
86  
84  
80  
68  
• PFM, 0.9 V, 1.0 mA  
• PFM, 1.2 V, 50 mA  
• APS, PWM, 1.2 V, 850 mA  
• APS, PWM, 1.2 V, 1275 mA  
• APS, PWM, 1.2 V, 2125 mA  
• APS, PWM, 1.2 V, 4500 mA  
ηSW1ABC  
%
ΔVSW1ABC  
VSW1ABCLIR  
VSW1ABCLOR  
Output ripple  
10  
mV  
mV  
mV  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
20  
20  
PF0100  
46  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 54. SW1A/B/C electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1A/B/C (single phase) (continued)  
Transient load regulation  
Transient load = 0 to 2.25 A, di/dt = 100 mA/μs  
• Overshoot  
• Undershoot  
VSW1ABCLOTR  
mV  
50  
50  
Quiescent current  
• PFM Mode  
ISW1ABCQ  
18  
145  
µA  
• APS Mode  
RSW1ABCDIS  
Discharge resistance  
600  
Ω
SW1A/B (single/dual phase)  
VINSW1A  
VINSW1B  
Operating input voltage  
2.8  
4.5  
V
V
VSW1AB  
Nominal output voltage  
Output voltage accuracy  
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 2.5 A  
• 0.625 V VSW1AB 1.450 V  
• 1.475 V VSW1AB 1.875 V  
-25  
-3.0%  
-
-
25  
3.0%  
mV  
%
VSW1ABACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1AB < 150 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
• 0.625 V < VSW1AB < 0.675 V  
• 0.7 V < VSW1AB < 0.85 V  
• 0.875 V < VSW1AB < 1.875 V  
Rated output load current,  
(46)  
(46)  
ISW1AB  
2500  
mA  
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1AB < 1.875 V  
Current limiter peak current detection  
SW1A/B single phase (current through inductor)  
• SW1ABILIM = 0  
• SW1ABILIM = 1  
4.5  
3.3  
6.5  
4.9  
8.5  
6.4  
ISW1ABLIM  
A
SW1A/B dual phase (current through inductor per phase)  
• SW1ABILIM = 0  
2.2  
1.6  
3.2  
2.4  
4.3  
3.2  
• SW1ABILIM = 1  
Start-up overshoot  
VSW1ABOSH  
• ISW1AB = 0.0 mA  
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
66  
mV  
µs  
Turn-on time  
• Enable to 90% of end value  
• ISW1AB = 0.0 mA  
tONSW1AB  
500  
• DVS clk = 25 mV/4 μs, VIN = VINSW1x = 4.5 V, VSW1AB = 1.875 V  
Switching frequency  
• SW1ABFREQ[1:0] = 00  
• SW1ABFREQ[1:0] = 01  
• SW1ABFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1AB  
MHz  
PF0100  
NXP Semiconductors  
47  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 54. SW1A/B/C electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1A/B (single/dual phase) (continued)  
Efficiency (single phase)  
VIN = 3.6 V, fSW1AB = 2.0 MHz, LSW1AB = 1.0 μH  
82  
84  
86  
87  
82  
71  
• PFM, 0.9 V, 1.0 mA  
• PFM, 1.2 V, 50 mA  
• APS, PWM, 1.2 V, 500 mA  
• APS, PWM, 1.2 V, 750 mA  
• APS, PWM, 1.2 V, 1250 mA  
• APS, PWM, 1.2 V, 2500 mA  
ηSW1AB  
%
ΔVSW1AB  
VSW1ABLIR  
VSW1ABLOR  
Output ripple  
10  
mV  
mV  
mV  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
Transient load regulation  
20  
20  
Transient load = 0 to 1.25 A, di/dt = 100 mA/μs  
• Overshoot  
• Undershoot  
VSW1ABLOTR  
mV  
µA  
50  
50  
Quiescent current  
• PFM mode  
ISW1ABQ  
18  
235  
• APS mode  
SW1A P-MOSFET RDS(on)  
• VINSW1A = 3.3 V  
RONSW1AP  
RONSW1AN  
ISW1APQ  
215  
258  
245  
326  
7.5  
mΩ  
mΩ  
µA  
SW1A N-MOSFET RDS(on)  
• VINSW1A = 3.3 V  
SW1A P-MOSFET leakage current  
• VINSW1A = 4.5 V  
SW1A N-MOSFET leakage current  
• VINSW1A = 4.5 V  
ISW1ANQ  
2.5  
µA  
SW1B P-MOSFET RDS(on)  
• VINSW1B = 3.3 V  
RONSW1BP  
RONSW1BN  
ISW1BPQ  
215  
258  
245  
326  
7.5  
mΩ  
mΩ  
µA  
SW1B N-MOSFET RDS(on)  
• VINSW1B = 3.3 V  
SW1B P-MOSFET leakage current  
• VINSW1B = 4.5 V  
SW1B N-MOSFET leakage current  
• VINSW1B = 4.5 V  
ISW1BNQ  
2.5  
µA  
RSW1ABDIS  
Discharge resistance  
600  
Ω
PF0100  
48  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 54. SW1A/B/C electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1C (independent)  
VINSW1C  
VSW1C  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Output voltage accuracy  
Table 41  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1C < 2.0 A  
• 0.625 V VSW1C 1.450 V  
• 1.475 V VSW1C 1.875 V  
-25  
-3.0%  
25  
3.0%  
VSW1CACC  
mV  
PFM, steady state 2.8 V < VIN < 4.5 V, 0 < ISW1C < 50 mA  
-65  
-45  
-3.0%  
65  
45  
3.0%  
• 0.625 V < VSW1C < 0.675 V  
• 0.7 V < VSW1C < 0.85 V  
• 0.875 V < VSW1C < 1.875 V  
Rated output load current  
ISW1C  
2000  
mA  
A
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW1C < 1.875 V  
Current limiter peak current detection  
Current through inductor  
• SW1CILIM = 0  
ISW1CLIM  
(45)  
2.6  
1.95  
4.0  
3.0  
5.2  
3.9  
• SW1CILIM = 1  
Start-up overshoot  
VSW1COSH  
• ISW1C = 0 mA  
66  
mV  
µs  
• DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V  
Turn-on time  
• Enable to 90% of end value  
• ISW1C = 0 mA  
tONSW1C  
500  
• DVS clk = 25 mV/4 μs, VIN = VINSW1C = 4.5 V, VSW1C = 1.875 V  
Switching frequency  
• SW1CFREQ[1:0] = 00  
• SW1CFREQ[1:0] = 01  
• SW1CFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW1C  
MHz  
Efficiency  
VIN = 3.6 V, fSW1C = 2.0 MHz, LSW1C = 1.0 μH  
77  
78  
86  
84  
78  
65  
• PFM, 0.9 V, 1.0 mA  
• PFM, 1.2 V, 50 mA  
• APS, PWM, 1.2 V, 400 mA  
• APS, PWM, 1.2 V, 600 mA  
• APS, PWM, 1.2 V, 1000 mA  
• APS, PWM, 1.2 V, 2000 mA  
ηSW1C  
%
ΔVSW1C  
VSW1CLIR  
VSW1CLOR  
Output ripple  
10  
mV  
mV  
mV  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
Transient load regulation  
20  
20  
Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs  
• Overshoot  
• Undershoot  
VSW1CLOTR  
mV  
µA  
50  
50  
Quiescent current  
• PFM mode  
ISW1CQ  
22  
145  
• APS mode  
PF0100  
NXP Semiconductors  
49  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 54. SW1A/B/C electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA,  
SW1x_PWRSTG[2:0] = [111], typical external component values, fSW1x = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW1x = 3.6 V, VSW1x = 1.2 V, ISW1x = 100 mA, SW1x_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
SW1C (independent) (continued)  
SW1C P-MOSFET RDS(on)  
RONSW1CP  
RONSW1CN  
ISW1CPQ  
mΩ  
mΩ  
µA  
• at VINSW1C = 3.3 V  
184  
206  
SW1C N-MOSFET RDS(on)  
• at VINSW1C = 3.3 V  
211  
260  
SW1C P-MOSFET leakage current  
• VINSW1C = 4.5 V  
10.5  
SW1C N-MOSFET leakage current  
• VINSW1C = 4.5 V  
ISW1CNQ  
3.5  
µA  
RSW1CDIS  
Discharge resistance  
600  
Ω
Notes  
45.  
Meets 1.89 A current rating for VDDSOC_IN domain on i.MX 6X processor.  
Current rating of SW1AB supports the power virus mode of operation of the i.MX 6X processor.  
46.  
Figure 14. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version  
PF0100  
50  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 15. SW1AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; extended industrial version  
Figure 16. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; consumer version  
Figure 17. SW1C efficiency waveforms: VIN = 4.2 V; VOUT = 1.375 V; extended industrial version  
PF0100  
NXP Semiconductors  
51  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4  
SW2  
SW2 is a single phase, 2.0 A rated buck regulator (2.5 A in NP, F9, and FA Industrial versions only (ANES suffix)). Table 30 describes the  
modes, and Table 31 show the options for the SWxMODE[3:0] bits. Figure 18 shows the block diagram and the external component  
connections for SW2 regulator.  
VIN  
SW2IN  
SW2MODE  
ISENSE  
CINSW2  
Controller  
SW2  
SW2LX  
EP  
Driver  
LSW2  
COSW2  
SW2FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
SW2FB  
Z1  
VREF  
EA  
DAC  
Figure 18. SW2 block diagram  
6.4.4.4.1  
SW2 setup and control registers  
SW2 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal  
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW2[6] is  
set to “0”, the output is limited to the lower output voltages from 0.400 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0].  
Likewise, once bit SW2[6] is set to “1”, the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV  
increments, as determined by bits SW2[5:0].  
In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range,  
and the lower range be used for voltages from 0.400 V to 1.975 V.  
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]  
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits.  
Therefore, the output voltage range remains the same in all three operating modes. Table 55 shows the output voltage coding valid for  
SW2.  
Note: Voltage set points of 0.6 V and below are not supported.  
Table 55. SW2 output voltage configuration  
Low output voltage range(47)  
High output voltage range  
Set point  
SW2[6:0]  
SW2 output  
Set point  
SW2[6:0]  
SW2 output  
0
1
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
2
3
4
5
6
7
8
9
10  
11  
PF0100  
52  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 55. SW2 output voltage configuration (continued)  
Low output voltage range(47)  
High output voltage range  
Set point  
SW2[6:0]  
SW2 output  
Set point  
SW2[6:0]  
SW2 output  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
76  
77  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
PF0100  
NXP Semiconductors  
53  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 55. SW2 output voltage configuration (continued)  
Low output voltage range(47)  
High output voltage range  
Set point  
SW2[6:0]  
SW2 output  
Set point  
SW2[6:0]  
SW2 output  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
47.  
For voltages less than 2.0 V, only use set points 0 to 63.  
Setup and control of SW2 is done through I2C registers listed in Table 56, and a detailed description of each one of the registers is provided  
in Tables 57 to Table 61.  
Table 56. SW2 register summary  
Register  
SW2VOLT  
Address  
Description  
0x35  
0x36  
0x37  
0x38  
0x39  
Output voltage set point on normal operation  
Output voltage set point on standby  
Output voltage set point on sleep  
SW2STBY  
SW2OFF  
SW2MODE  
SW2CONF  
Switching mode selector register  
DVS, phase, frequency, and ILIM configuration  
Table 57. Register SW2VOLT - ADDR 0x35  
Name  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during normal operation  
mode. See Table 55 for all possible configurations.  
SW2  
SW2  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2. Set  
during OTP or TBB configuration only. See Table 55  
for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
unused  
PF0100  
54  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 58. Register SW2STBY - ADDR 0x36  
Name  
SW2STBY  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during standby mode.  
See Table 55 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
standby mode. This bit inherits the value configured  
on bit SW2[6] during OTP or TBB configuration. See  
Table 55 for all possible configurations.  
SW2STBY  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 59. Register SW2OFF - ADDR 0x37  
Name  
SW2OFF  
Bit #  
R/W Default  
Description  
Sets the SW2 output voltage during sleep mode. See  
Table 55 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW2 on  
sleep mode. This bit inherits the value configured on  
bit SW2[6] during OTP or TBB configuration. See  
Table 55 for all possible configurations.  
SW2OFF  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 60. Register SW2MODE - ADDR 0x38  
Name  
SW2MODE  
Bit #  
R/W Default  
Description  
Sets the SW2 switching operation mode.  
See Table 30 for all possible configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
unused  
Set status of SW2 when in sleep mode  
SW2OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 61. Register SW2CONF - ADDR 0x39  
Name  
Bit #  
R/W Default  
Description  
SW2 current limit level selection (48)  
• 0 = High level current limit  
• 1 = Low level current limit  
SW2ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
unused  
SW2FREQ  
SW2PHASE  
SW2DVSSPEED  
Notes  
3:2  
5:4  
7:6  
SW2 switching frequency selector. See Table 38.  
SW2 phase clock selection. See Table 36.  
SW2 DVS speed selection. See Table 35.  
48.  
SW2ILIM = 0 must be used in NP/F9/FA versions (Industrial only) if 2.5 A output load current is  
desired  
PF0100  
NXP Semiconductors  
55  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4.2  
SW2 external components  
Table 62. SW2 external component recommendations  
Components  
Description  
SW2 input capacitor  
Values  
(49)  
CINSW2  
4.7 μF  
0.1 μF  
(49)  
CIN2HF  
COSW2  
LSW2  
SW2 decoupling input capacitor  
SW2 output capacitor  
SW2 inductor  
(49)  
3 x 22 μF  
1.0 μH  
Notes  
49.  
Use X5R or X7R capacitors.  
6.4.4.4.3  
SW2 Specifications  
Table 63. SW2 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Switch mode supply SW2  
(50)  
VINSW2  
VSW2  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
Output voltage accuracy  
Table 55  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A  
• 0.625 V < VSW2 < 0.85 V  
• 0.875 V < VSW2 < 1.975 V  
• 2.0 V < VSW2 < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
VSW2ACC  
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
• 0.625 V < VSW2 < 0.675 V  
• 0.7 V < VSW2 < 0.85 V  
• 0.875 V < VSW2 < 1.975 V  
• 2.0 V < VSW2 < 3.3 V  
Rated output load current  
(51)  
(52)  
ISW2  
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V  
• 2.8 V < VIN < 4.5 V, 1.2 V < VSW2 < 3.3 V, SW2LIM = 0  
2000  
2500  
mA  
A
Current limiter peak current detection  
Current through inductor  
• SW2ILIM = 0  
• SW2ILIM = 1  
ISW2LIM  
VSW2OSH  
tONSW2  
2.8  
2.1  
4.0  
3.0  
5.2  
3.9  
Start-up overshoot  
• ISW2 = 0.0 mA  
• DVS clk = 25 mV/4 μs, VIN = VINSW2 = 4.5 V  
66  
mV  
µs  
Turn-on time  
• Enable to 90% of end value  
• ISW2 = 0.0 mA  
550  
• DVS clk = 50 mV/8 μs, VIN = VINSW2 = 4.5 V  
Switching frequency  
• SW2FREQ[1:0] = 00  
• SW2FREQ[1:0] = 01  
• SW2FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW2  
MHz  
PF0100  
56  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 63. SW2 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA,  
SW2_PWRSTG[2:0] = [111], typical external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are  
characterized at VIN = VINSW2 = 3.6 V, VSW2 = 3.15 V, ISW2 = 100 mA, SW2_PWRSTG[2:0] = [111], and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Switch mode supply SW2 (continued)  
Efficiency  
VIN = 3.6 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH  
94  
95  
96  
94  
92  
86  
• PFM, 3.15 V, 1.0 mA  
• PFM, 3.15 V, 50 mA  
• APS, PWM, 3.15 V, 400 mA  
• APS, PWM, 3.15 V, 600 mA  
• APS, PWM, 3.15 V, 1000 mA  
• APS, PWM, 3.15 V, 2000 mA  
ηSW2  
%
ΔVSW2  
VSW2LIR  
VSW2LOR  
Output ripple  
10  
mV  
mV  
mV  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
Transient load regulation  
20  
20  
Transient load = 0.0 mA to 1.0 A, di/dt = 100 mA/μs  
• Overshoot  
• Undershoot  
VSW2LOTR  
mV  
µA  
50  
50  
Quiescent current  
• PFM mode  
• APS mode (low output voltage settings)  
• APS mode (high output voltage settings)  
23  
145  
305  
ISW2Q  
SW2 P-MOSFET RDS(on)  
• at VIN = VINSW2 = 3.3 V  
RONSW2P  
RONSW2N  
ISW2PQ  
190  
212  
209  
255  
12  
mΩ  
mΩ  
µA  
SW2 N-MOSFET RDS(on)  
• at VIN = VINSW2 = 3.3 V  
SW2 P-MOSFET leakage current  
• VIN = VINSW2 = 4.5 V  
SW2 N-MOSFET leakage current  
• VIN = VINSW2 = 4.5 V  
ISW2NQ  
4.0  
µA  
RSW2DIS  
Discharge resistance  
600  
Ω
Notes  
50.  
When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.  
51.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).  
52.  
Applies to NP, F9, and FA Industrial versions only (ANES suffix)  
PF0100  
NXP Semiconductors  
57  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 19. sw2 Efficiency Waveforms: VIN = 4.2 V; VOUT = 3.0 V; consumer version  
Figure 20. sw2 efficiency waveforms: vin = 4.2 v; vout = 3.0 v; Extended Industrial Version  
6.4.4.4.4  
SW3A/B  
SW3A/B are 1.25 to 2.5 A rated buck regulators, depending on the configuration. Table 30 describes the available switching modes and  
Table 31 show the actual configuration options for the SW3xMODE[3:0] bits. SW3A/B can be configured in various phasing schemes,  
depending on the desired cost/performance trade-offs. The following configurations are available:  
• A single phase  
• A dual phase  
• Independent regulators  
The desired configuration is programmed in OTP by using the SW3_CONFIG[1:0] bits.Table 64 shows the options for the SW3CFG[1:0]  
bits.  
PF0100  
58  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 64. SW3 configuration  
SW3_CONFIG[1:0]  
Description  
00  
01  
10  
11  
A/B single phase  
A/B single phase  
A/B dual phase  
A/B independent  
6.4.4.4.5  
SW3A/B single phase  
In this configuration, SW3ALX and SW3BLX are connected in single phase with a single inductor a shown in Figure 21. This configuration  
reduces cost and component count. Feedback is taken from the SW3AFB pin and the SW3BFB pin must be left open. Although control  
is from SW3A, registers of both regulators, SW3A and SW3B, must be identically set.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
I2C  
Interface  
Z1  
VREF  
EA  
DAC  
VIN  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3BLX  
Driver  
SW3BFAULT  
EP  
I2C  
Internal  
Compensation  
Z2  
VREF  
SW3BFB  
Z1  
DAC  
EA  
Figure 21. SW3A/B single phase block diagram  
PF0100  
NXP Semiconductors  
59  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4.6  
SW3A/B dual phase  
SW3A/B can be connected in dual phase configuration using one inductor per switching node, as shown in Figure 22. This mode allows  
a smaller output voltage ripple. Feedback is taken from pin SW3AFB and pin SW3BFB must be left open. Although control is from SW3A,  
registers of both regulators, SW3A and SW3B, must be identically set. In this configuration, the regulators switch 180 degrees apart.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
I2C  
Interface  
SW3AFB  
SW3BIN  
Z1  
VREF  
EA  
DAC  
VIN  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3BLX  
EP  
Driver  
LSW3B  
COSW3B  
SW3BFAULT  
I2C  
Internal  
Compensation  
Z2  
VREF  
SW3BFB  
Z1  
DAC  
EA  
Figure 22. SW3A/B dual phase block diagram  
PF0100  
60  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4.7  
SW3A - SW3B independent outputs  
SW3A and SW3B can be configured as independent outputs as shown in Figure 23, providing flexibility for applications requiring more  
voltage rails with less current capability. Each output is configured and controlled independently by its respective I2C registers as shown  
in Table 66.  
VIN  
SW3AIN  
SW3ALX  
SW3AMODE  
ISENSE  
CINSW3A  
Controller  
SW3A  
Driver  
LSW3A  
COSW3A  
SW3AFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3AFB  
SW3BIN  
Z1  
VREF  
EA  
DAC  
VIN  
I2C  
Interface  
SW3BMODE  
ISENSE  
CINSW3B  
Controller  
SW3B  
SW3BLX  
EP  
Driver  
LSW3B  
COSW3B  
SW3BFAULT  
Internal  
I2C  
Compensation  
Z2  
SW3BFB  
Z1  
VREF  
EA  
DAC  
Figure 23. SW3A/B independent output block diagram  
6.4.4.4.8  
SW3A/B Setup and Control Registers  
SW3A/B output voltage is programmable from 0.400 V to 3.300 V; however, bit SW3x[6] in register SW3xVOLT is read-only during normal  
operation. Its value is determined by the default configuration, or may be changed by using the OTP registers. Therefore, once SW3x[6]  
is set to “0”, the output is limited to the lower output voltages from 0.40 V to 1.975 V with 25 mV increments, as determined by bits  
SW3x[5:0]. Likewise, once bit SW3x[6] is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V  
with 50 mV increments, as determined by bits SW3x[5:0].  
In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range  
and the lower range be used for voltages from 0.400 V to 1.975 V.  
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3x[5:0],  
SW3xSTBY[5:0], and SW3xOFF[5:0] bits respectively; however, the initial state of the SW3x[6] bit is copied into the SW3xSTBY[6] and  
SW3xOFF[6] bits. Therefore, the output voltage range remains the same on all three operating modes. Table 65 shows the output voltage  
coding valid for SW3x.  
Note: Voltage set points of 0.6 V and below are not supported.  
PF0100  
NXP Semiconductors  
61  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 65. SW3A/B output voltage configuration  
Low output voltage range (53)  
High output voltage range  
Set point  
SW3x[6:0]  
SW3x output  
Set point  
SW3x[6:0]  
SW3x output  
0
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
1.2750  
1.3000  
1.3250  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
101  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
1100011  
1100100  
1100101  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
2.5500  
2.6000  
2.6500  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
PF0100  
62  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 65. SW3A/B output voltage configuration  
Low output voltage range (53)  
High output voltage range  
Set point  
SW3x[6:0]  
SW3x output  
Set point  
SW3x[6:0]  
SW3x output  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
53.  
For voltages less than 2.0 V, only use set points 0 to 63.  
PF0100  
NXP Semiconductors  
63  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 66 provides a list of registers used to configure and operate SW3A/B. A detailed description on each of these register is provided  
on Tables 67 through Table 76.  
Table 66. SW3AB register summary  
Register  
SW3AVOLT  
Address  
Output  
0x3C  
0x3D  
0x3E  
0x3F  
0x40  
0x43  
0x44  
0x45  
0x46  
0x47  
SW3A output voltage set point on normal operation  
SW3A output voltage set point on standby  
SW3A output voltage set point on sleep  
SW3ASTBY  
SW3AOFF  
SW3AMODE  
SW3ACONF  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
SW3A switching mode selector register  
SW3A DVS, phase, frequency and ILIM configuration  
SW3B output voltage set point on normal operation  
SW3B output voltage set point on standby  
SW3B output voltage set point on sleep  
SW3BMODE  
SW3BCONF  
SW3B switching mode selector register  
SW3B DVS, phase, frequency and ILIM configuration  
Table 67. Register SW3AVOLT - ADDR 0x3C  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (independent) or  
SW3A/B output voltage (single/dual phase),  
during normal operation mode. See Table 65 for  
all possible configurations.  
SW3A  
SW3A  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(independent) or SW3A/B (single/dual phase).  
Set during OTP or TBB configuration only. See  
Table 65 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
unused  
Table 68. Register SW3ASTBY - ADDR 0x3D  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (independent) or  
SW3A/B output voltage (single/dual phase),  
during standby mode. See Table 65 for all  
possible configurations.  
SW3ASTBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(independent) or SW3A/B (single/dual phase) on  
standby mode. This bit inherits the value  
configured on bit SW3A[6] during OTP or TBB  
configuration. See Table 65 for all possible  
configurations.  
SW3ASTBY  
UNUSED  
6
7
R
0x00  
0x00  
unused  
PF0100  
64  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 69. Register SW3AOFF - ADDR 0x3E  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A output voltage (independent) or  
SW3A/B output voltage (Single/Dual phase),  
during Sleep mode. See Table 65 for all possible  
configurations.  
SW3AOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3A  
(independent) or SW3A/B (single/dual phase) on  
sleep mode. This bit inherits the value configured  
on bit SW3A[6] during OTP or TBB configuration.  
See Table 65 for all possible configurations.  
SW3AOFF  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 70. Register SW3AMODE - ADDR 0x3F  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3A (independent) or SW3A/B (single/  
dual phase) switching operation mode.  
See Table 30 for all possible configurations.  
SW3AMODE  
UNUSED  
3:0  
4
R/W  
0x08  
0x00  
unused  
Set status of SW3A (independent) or SW3A/B  
(single/dual phase) when in sleep mode.  
SW3AOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 71. Register SW3ACONF - ADDR 0x40  
Name  
Bit #  
R/W Default  
Description  
SW3A current limit level selection  
• 0 = High level current limit  
• 1 = Low level current limit  
SW3AILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
0x00  
0x00  
unused  
SW3A switching frequency selector. See  
Table 38.  
SW3AFREQ  
3:2  
SW3APHASE  
5:4  
7:6  
R/W  
R/W  
0x00  
0x00  
SW3A phase clock selection. See Table 36.  
SW3A DVS speed selection. See Table 35.  
SW3ADVSSPEED  
Table 72. Register SW3BVOLT - ADDR 0x43  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (independent)  
during normal operation mode. See Table 65 for  
all possible configurations.  
SW3B  
SW3B  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(independent). Set during OTP or TBB  
configuration only. See Table 65 for all possible  
configurations.  
6
7
R
0x00  
0x00  
UNUSED  
unused  
PF0100  
NXP Semiconductors  
65  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 73. Register SW3BSTBY - ADDR 0x44  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (independent)  
during standby mode. See Table 65 for all  
possible configurations.  
SW3BSTBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(Independent) on standby mode. This bit inherits  
the value configured on bit SW3B[6] during OTP  
or TBB configuration. See Table 65 for all  
possible configurations.  
SW3BSTBY  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 74. Register SW3BOFF - ADDR 0x45  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B output voltage (independent)  
during sleep mode. See Table 65 for all possible  
configurations.  
SW3BOFF  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW3B  
(independent) on sleep mode. This bit inherits the  
value configured on bit SW3B[6] during OTP or  
TBB configuration. See Table 65 for all possible  
configurations.  
SW3BOFF  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 75. Register SW3BMODE - ADDR 0x46  
Name  
Bit #  
R/W Default  
Description  
Sets the SW3B (independent) switching  
operation mode. See Table 30 for all possible  
configurations.  
SW3BMODE  
UNUSED  
3:0  
4
R/W  
0x08  
0x00  
unused  
Set status of SW3B (independent) when in sleep  
mode.  
SW3BOMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 76. Register SW3BCONF - ADDR 0x47  
Name  
Bit #  
R/W Default  
Description  
SW3B current limit level selection  
• 0 = High level Current limit  
• 1 = Low level Current limit  
SW3BILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
Unused  
SW3BFREQ  
SW3BPHASE  
SW3BDVSSPEED  
3:2  
5:4  
7:6  
SW3B switching frequency selector. See Table 38.  
SW3B phase clock selection. See Table 36.  
SW3B DVS speed selection. See Table 35.  
PF0100  
66  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.4.9  
SW3A/B external components  
Table 77. SW3A/B external component requirements  
Mode  
Components  
Description  
SW3A/B single  
phase  
SW3A/B dual  
phase  
SW3A independent  
SW3B independent  
(54)  
CINSW3A  
SW3A input capacitor  
SW3A decoupling input capacitor  
SW3B input capacitor  
SW3B decoupling input capacitor  
SW3A output capacitor  
SW3B output capacitor  
SW3A inductor  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
3 x 22 μF  
4.7 μF  
0.1 μF  
4.7 μF  
0.1 μF  
(54)  
CIN3AHF  
(54)  
CINSW3B  
4.7 μF  
4.7 μF  
(54)  
CIN3BHF  
0.1 μF  
0.1 μF  
(54)  
COSW3A  
2 x 22 μF  
2 x 22 μF  
1.0 μH  
2 x 22 μF  
2 x 22 μF  
1.0 μH  
(54)  
COSW3B  
LSW3A  
LSW3B  
Notes  
1.0 μH  
SW3B inductor  
1.0 μH  
1.0 μH  
54.  
Use X5R or X7R capacitors.  
6.4.4.4.10 SW3A/B specifications  
Table 78. SW3A/B electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,  
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3a/B  
(55)  
VINSW3x  
VSW3x  
Operating input voltage  
2.8  
-
4.5  
-
V
V
Nominal output voltage  
Table 65  
Output voltage accuracy  
PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3x < ISW3xMAX  
• 0.625 V < VSW3x < 0.85 V  
• 0.875 V < VSW3x < 1.975 V  
• 2.0 V < VSW3x < 3.3 V  
-25  
-3.0%  
-6.0%  
25  
3.0%  
6.0%  
mV  
%
VSW3xACC  
PFM , steady state (2.8 V < VIN < 4.5 V, 0 < ISW3x < 50 mA)  
-65  
-45  
-3.0%  
-3.0%  
65  
45  
3.0%  
3.0%  
• 0.625 V < VSW3x < 0.675 V  
• 0.7 V < VSW3x < 0.85 V  
• 0.875 V < VSW3x < 1.975 V  
• 2.0 V < VSW3x < 3.3 V  
Rated output load current  
2.8 V < VIN < 4.5 V, 0.625 V < VSW3x < 3.3 V  
(56)  
ISW3x  
mA  
2500  
1250  
• PWM, APS mode single/dual phase  
• PWM, APS mode independent (per phase)  
PF0100  
NXP Semiconductors  
67  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 78. SW3A/B electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,  
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW3a/B (continued)  
Current limiter peak current detection  
Single phase (current through inductor)  
• SW3xILIM = 0  
3.5  
2.7  
5.0  
3.8  
6.5  
4.9  
• SW3xILIM = 1  
ISW3xLIM  
A
Independent mode or dual phase (current through inductor per  
phase)  
1.8  
1.3  
2.5  
1.9  
3.3  
2.5  
• SW3xILIM = 0  
• SW3xILIM = 1  
Start-up overshoot  
VSW3xOSH  
• ISW3x = 0.0 mA  
• DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V  
66  
mV  
µs  
Turn-on time  
• Enable to 90% of end value  
• ISW3x = 0 mA  
tONSW3x  
500  
• DVS clk = 25 mV/4 μs, VIN = VINSW3x = 4.5 V  
Switching frequency  
• SW3xFREQ[1:0] = 00  
• SW3xFREQ[1:0] = 01  
• SW3xFREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW3x  
MHz  
Efficiency (single phase)  
fSW3 = 2.0 MHz, LSW3x 1.0 μH  
84  
85  
85  
84  
80  
74  
• PFM, 1.5 V, 1.0 mA  
• PFM, 1.5 V, 50 mA  
• APS, PWM 1.5 V, 500 mA  
• APS, PWM 1.5 V, 750 mA  
• APS, PWM 1.5 V, 1250 mA  
• APS, PWM 1.5 V, 2500 mA  
ηSW3AB  
%
ΔVSW3x  
VSW3xLIR  
VSW3xLOR  
Output ripple  
10  
mV  
mV  
mV  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
Transient load regulation  
20  
20  
Transient load = 0.0 mA to ISW3x/2, di/dt = 100 mA/μs  
VSW3xLOTR  
mV  
50  
50  
• Overshoot  
• Undershoot  
Quiescent current  
• PFM mode (single/dual phase)  
• APS mode (single/dual phase)  
• PFM mode (independent mode)  
• APS mode (SW3A independent mode)  
• APS mode (SW3B independent mode)  
22  
300  
50  
250  
150  
ISW3xQ  
µA  
SW3A P-MOSFET RDS(on)  
• at VIN = VINSW3A = 3.3 V  
RONSW3AP  
mΩ  
mΩ  
215  
258  
245  
326  
SW3A N-MOSFET RDS(on)  
• at VIN = VINSW3A = 3.3 V  
RONSW3AN  
PF0100  
68  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 78. SW3A/B electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA,  
SW3x_PWRSTG[2:0] = [111], typical external component values, fSW3x = 2.0 MHz, single/dual phase and independent mode unless,  
otherwise noted. Typical values are characterized at VIN = VINSW3x = 3.6 V, VSW3x = 1.5 V, ISW3x = 100 mA, SW3x_PWRSTG[2:0] = [111],  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch Mode Supply SW3a/B (Continued)  
SW3A P-MOSFET leakage current  
• VIN = VINSW3A = 4.5 V  
ISW3APQ  
7.5  
2.5  
µA  
µA  
SW3A N-MOSFET leakage current  
• VIN = VINSW3A = 4.5 V  
ISW3ANQ  
SW3B P-MOSFET RDS(on)  
• at VIN = VINSW3B = 3.3 V  
RONSW3BP  
RONSW3BN  
ISW3BPQ  
mΩ  
mΩ  
µA  
215  
245  
SW3B N-MOSFET RDS(on)  
• at VIN = VINSW3B = 3.3 V  
258  
326  
7.5  
SW3B P-MOSFET leakage current  
• VIN = VINSW3B = 4.5 V  
SW3B N-MOSFET leakage current  
• VIN = VINSW3B = 4.5 V  
ISW3BPQ  
2.5  
µA  
RSW3xDIS  
Discharge resistance  
600  
Ω
Notes  
55.  
When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.  
56.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW3x - VSW3x) = ISW3x* (DCR of inductor +RONSW3xP + PCB trace resistance).  
Figure 24. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; consumer version  
PF0100  
NXP Semiconductors  
69  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 25. SW3AB efficiency waveforms: VIN = 4.2 V; VOUT = 1.5 V; extended industrial version  
6.4.4.5  
SW4  
SW4 is a 1.0 A rated single phase buck regulator capable of operating in two modes. In its default mode, it operates as a normal buck  
regulator with a programmable output between 0.400 V and 3.300 V. It is capable of operating in the three available switching modes:  
PFM, APS, and PWM, described on Table 30 and configured by the SW4MODE[3:0] bits, as shown in Table 31.  
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage tracks the  
output voltage of SW3A, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The VTT mode can  
be configured by use of VTT bit in the OTP_SW4_CONFIG register.  
Figure 26 shows the block diagram and the external component connections for the SW4 regulator.  
VIN  
SW4IN  
SW4MODE  
ISENSE  
CINSW4  
Controller  
SW4  
SW4LX  
EP  
Driver  
LSW4  
COSW4  
SW4FAULT  
I2C  
Interface  
Internal  
I2C  
Compensation  
Z2  
SW4FB  
Z1  
VREF  
EA  
DAC  
Figure 26. SW4 block diagram  
6.4.4.5.1  
SW4 setup and control registers  
To set the SW4 in regulator or VTT mode, bit VTT of the register OTP_SW4_CONF register in Table 137. Extended page 1, page 111, is  
programmed during OTP or TBB configuration; setting bit VTT to “1” enables SW4 to operate in VTT mode and “0” in regulator mode. See  
6.1.2 One time programmability (OTP), page 21 for detailed information on OTP configuration.  
In regulator mode, the SW4 output voltage is programmable from 0.400 V to 3.300 V; however, bit SW4[6] in the SW4VOLT register is  
read-only during normal operation. Its value is determined by the default configuration, or may be changed by using the OTP registers.  
Once SW4[6] is set to “0”, the output is limited to the lower output voltages, from 0.400 V to 1.975 V with 25 mV increments, as determined  
by the SW4[5:0] bits. Likewise, once the SW4[6] bit is set to "1", the output voltage is limited to the higher output voltage range from 0.800 V  
to 3.300 V with 50 mV increments, as determined by the SW4[5:0] bits.  
To optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range and the  
lower range be used for voltages from 0.400 V to 1.975 V.  
PF0100  
70  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW4[5:0], SW4STBY[5:0],  
and SW4OFF[5:0] bits, respectively. However, the initial state of the SW4[6] bit is copied into bits SW4STBY[6], and SW4OFF[6] bits, so  
the output voltage range remains the same on all three operating modes. Table 79 shows the output voltage coding valid for SW4.  
Note: Voltage set points of 0.6 V and below are not supported, except in the VTT mode.  
Table 79. SW4 output voltage configuration  
Low output voltage range(57)  
High output voltage range  
Set point  
SW4[6:0]  
SW4 output  
Set point  
SW4[6:0]  
SW4 output  
0
0000000  
0000001  
0000010  
0000011  
0000100  
0000101  
0000110  
0000111  
0001000  
0001001  
0001010  
0001011  
0001100  
0001101  
0001110  
0001111  
0010000  
0010001  
0010010  
0010011  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0.4000  
0.4250  
0.4500  
0.4750  
0.5000  
0.5250  
0.5500  
0.5750  
0.6000  
0.6250  
0.6500  
0.6750  
0.7000  
0.7250  
0.7500  
0.7750  
0.8000  
0.8250  
0.8500  
0.8750  
0.9000  
0.9250  
0.9500  
0.9750  
1.0000  
1.0250  
1.0500  
1.0750  
1.1000  
1.1250  
1.1500  
1.1750  
1.2000  
1.2250  
1.2500  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
1000000  
1000001  
1000010  
1000011  
1000100  
1000101  
1000110  
1000111  
1001000  
1001001  
1001010  
1001011  
1001100  
1001101  
1001110  
1001111  
1010000  
1010001  
1010010  
1010011  
1010100  
1010101  
1010110  
1010111  
1011000  
1011001  
1011010  
1011011  
1011100  
1011101  
1011110  
1011111  
1100000  
1100001  
1100010  
0.8000  
0.8500  
0.9000  
0.9500  
1.0000  
1.0500  
1.1000  
1.1500  
1.2000  
1.2500  
1.3000  
1.3500  
1.4000  
1.4500  
1.5000  
1.5500  
1.6000  
1.6500  
1.7000  
1.7500  
1.8000  
1.8500  
1.9000  
1.9500  
2.0000  
2.0500  
2.1000  
2.1500  
2.2000  
2.2500  
2.3000  
2.3500  
2.4000  
2.4500  
2.5000  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
PF0100  
NXP Semiconductors  
71  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 79. SW4 output voltage configuration (continued)  
Low output voltage range(57)  
High output voltage range  
Set point  
SW4[6:0]  
SW4 output  
Set point  
SW4[6:0]  
SW4 output  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1.2750  
1.3000  
1.3250  
1.3500  
1.3750  
1.4000  
1.4250  
1.4500  
1.4750  
1.5000  
1.5250  
1.5500  
1.5750  
1.6000  
1.6250  
1.6500  
1.6750  
1.7000  
1.7250  
1.7500  
1.7750  
1.8000  
1.8250  
1.8500  
1.8750  
1.9000  
1.9250  
1.9500  
1.9750  
99  
1100011  
1100100  
1100101  
1100110  
1100111  
1101000  
1101001  
1101010  
1101011  
1101100  
1101101  
1101110  
1101111  
1110000  
1110001  
1110010  
1110011  
1110100  
1110101  
1110110  
1110111  
1111000  
1111001  
1111010  
1111011  
1111100  
1111101  
1111110  
1111111  
2.5500  
2.6000  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
121  
122  
123  
124  
125  
126  
127  
2.6500  
2.7000  
2.7500  
2.8000  
2.8500  
2.9000  
2.9500  
3.0000  
3.0500  
3.1000  
3.1500  
3.2000  
3.2500  
3.3000  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes  
57.  
For voltages less than 2.0 V, only use set points 0 to 63.  
PF0100  
72  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Full setup and control of SW4 is done through the I2C registers listed on Table 80, and a detailed description of each one of the registers  
is provided in Tables 81 to Table 85.  
Table 80. SW4 register summary  
Register  
SW4VOLT  
Address  
Description  
0x4A  
0x4B  
0x4C  
0x4D  
0x4E  
Output voltage set point on normal operation  
Output voltage set point on standby  
Output voltage set point on sleep  
SW4STBY  
SW4OFF  
SW4MODE  
SW4CONF  
Switching mode selector register  
DVS, phase, frequency and ILIM configuration  
Table 81. Register SW4VOLT - ADDR 0x4A  
Name  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during normal  
operation mode. See Table 79 for all possible  
configurations.  
SW4  
SW4  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4.  
Set during OTP or TBB configuration only. See  
Table 79 for all possible configurations.  
6
7
R
0x00  
0x00  
UNUSED  
unused  
Table 82. Register SW4STBY - ADDR 0x4B  
Name  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during standby  
mode. See Table 79 for all possible  
configurations.  
SW4STBY  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4  
on standby mode. This bit inherits the value  
configured on bit SW4[6] during OTP or TBB  
configuration. See Table 79 for all possible  
configurations.  
SW4STBY  
UNUSED  
6
7
R
0x00  
0x00  
unused  
Table 83. Register SW4OFF - ADDR 0x4C  
Name  
SW4OFF  
Bit #  
R/W Default  
Description  
Sets the SW4 output voltage during sleep mode.  
See Table 79 for all possible configurations.  
5:0  
R/W  
0x00  
Sets the operating output voltage range for SW4  
on sleep mode. This bit inherits the value  
configured on bit SW4[6] during OTP or TBB  
configuration. See Table 79 for all possible  
configurations.  
SW4OFF  
UNUSED  
6
7
R
0x00  
0x00  
unused  
PF0100  
NXP Semiconductors  
73  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 84. Register SW4MODE - ADDR 0x4D  
Name  
SW4MODE  
Bit #  
R/W Default  
Description  
Sets the SW4 switching operation mode.  
See Table 30 for all possible configurations.  
3:0  
4
R/W  
0x08  
0x00  
UNUSED  
unused  
Set status of SW4 when in sleep mode  
SW4OMODE  
UNUSED  
5
R/W  
0x00  
0x00  
• 0 = OFF  
• 1 = PFM  
7:6  
unused  
Table 85. Register SW4CONF - ADDR 0x4E  
Name  
Bit #  
R/W Default  
Description  
SW4 current limit level selection  
• 0 = High level current limit  
• 1 = Low level current limit  
SW4ILIM  
0
R/W  
0x00  
UNUSED  
1
R/W  
R/W  
R/W  
R/W  
0x00  
0x00  
0x00  
0x00  
unused  
SW4FREQ  
3:2  
5:4  
7:6  
SW4 switching frequency selector. See Table 38.  
SW4 phase clock selection. See Table 36.  
SW4 DVS speed selection. See Table 35.  
SW4PHASE  
SW4DVSSPEED  
6.4.4.5.2  
SW4 external components  
Table 86. SW4 external component requirements  
Components  
Description  
SW4 input capacitor  
Values  
(58)  
CINSW4  
4.7 μF  
0.1 μF  
(58)  
CIN4HF  
SW4 decoupling input capacitor  
SW4 output capacitor  
SW4 inductor  
(58)  
COSW4  
3 x 22 μF  
1.0 μH  
LSW4  
Notes  
58.  
Use X5R or X7R capacitors  
PF0100  
74  
NXP Semiconductors  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.4.5.3  
SW4 specifications  
Table 87. SW4 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode unless,  
otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101],  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW4  
(59)  
VINSW4  
Operating input voltage  
2.8  
4.5  
V
V
Nominal output voltage  
• Normal operation  
• VTT mode  
VSW4  
Table 79  
VSW3AFB/2  
Output voltage accuracy  
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
• 0.625 V < VSW4 < 0.85 V  
• 0.875 V < VSW4 < 1.975 V  
• 2.0 V < VSW4 < 3.3 V  
-25  
-3.0  
-6.0  
25  
3.0  
6.0  
mV  
%
%
VSW4ACC  
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA  
-65  
-45  
-3.0  
-3.0  
-40  
65  
45  
3.0  
3.0  
40  
mV  
mV  
%
%
mV  
• 0.625 V < VSW4 < 0.675 V  
• 0.7 V < VSW4 < 0.85 V  
• 0.875 V < VSW4 < 1.975 V  
• 2.0 V < VSW4 < 3.3 V  
VTT Mode , 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A  
Rated output load current  
(60)  
ISW4  
1000  
mA  
A
• 2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 3.3 V  
Current limiter peak current detection  
Current through inductor  
• SW4ILIM = 0  
ISW4LIM  
1.4  
1.0  
2.0  
1.5  
3.0  
2.4  
• SW4ILIM = 1  
Start-up overshoot  
VSW4OSH  
• ISW4 = 0.0 mA  
• DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V  
66  
mV  
µs  
Turn-on time  
• Enable to 90% of end value  
• ISW4 = 0.0 mA  
tONSW4  
500  
• DVS clk = 25 mV/4 μs, VIN = VINSW4 = 4.5 V  
Switching frequency  
• SW4FREQ[1:0] = 00  
• SW4FREQ[1:0] = 01  
• SW4FREQ[1:0] = 10  
1.0  
2.0  
4.0  
fSW4  
MHz  
Efficiency  
fSW4 = 2.0 MHz, LSW4 = 1.0 μH  
81  
78  
87  
88  
83  
• PFM, 1.8 V, 1.0 mA  
• PFM, 1.8 V, 50 mA  
• APS, PWM 1.8 V, 200 mA  
• APS, PWM 1.8 V, 500 mA  
• APS, PWM 1.8 V, 1000 mA  
ηSW4  
%
78  
76  
66  
• PWM 0.75 V, 200 mA  
• PWM 0.75 V, 500 mA  
• PWM 0.75 V, 1000 mA  
ΔVSW4  
Output ripple  
10  
mV  
PF0100  
NXP Semiconductors  
75  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 87. SW4 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,  
SW4_PWRSTG[2:0] = [101], typical external component values, fSW4 = 2.0 MHz, single/dual phase and independent mode unless,  
otherwise noted. Typical values are characterized at VIN = VINSW4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, SW4_PWRSTG[2:0] = [101],  
and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Switch mode supply SW4 (continued)  
VSW4LIR  
Line regulation (APS, PWM)  
DC load regulation (APS, PWM)  
Transient load regulation  
20  
20  
mV  
mV  
VSW4LOR  
Transient load = 0.0 mA to 500 mA, di/dt = 100 mA/μs  
• Overshoot  
• Undershoot  
VSW4LOTR  
mV  
µA  
50  
50  
Quiescent current  
• PFM mode  
ISW4Q  
22  
145  
• APS mode  
SW4 P-MOSFET RDS(on)  
• at VIN = VINSW4 = 3.3 V  
RONSW4P  
RONSW4N  
ISW4PQ  
236  
293  
274  
378  
6.0  
mΩ  
mΩ  
µA  
SW4 N-MOSFET RDS(on)  
• at VIN = VINSW4 = 3.3 V  
SW4 P-MOSFET leakage current  
• VIN = VINSW4 = 4.5 V  
SW4 N-MOSFET leakage current  
• VIN = VINSW4 = 4.5 V  
ISW4NQ  
2.0  
µA  
RSW4DIS  
Discharge resistance  
600  
Ω
Notes  
59.  
When output is set to > 2.6 V the output follows the input down when VIN gets near 2.8 V.  
60.  
The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:  
(VINSW4 - VSW4) = ISW4* (DCR of inductor +RONSW4P + PCB trace resistance).  
Figure 27. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; consumer version  
PF0100  
76  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Figure 28. SW4 efficiency waveforms: VIN = 4.2 V; VOUT = 1.8 V; extended industrial version  
6.4.5 Boost regulator  
SWBST is a boost regulator with a programmable output from 5.0 V to 5.15 V. SWBST can supply the VUSB regulator for the USB PHY  
in OTG mode, as well as the VBUS voltage. Note that the parasitic leakage path for a boost regulator causes the SWBSTOUT and  
SWBSTFB voltage to be a Schottky drop below the input voltage whenever SWBST is disabled. The switching NMOS transistor is  
integrated on-chip. Figure 29 shows the block diagram and component connection for the boost regulator.  
VIN  
CINBST  
SWBSTIN  
SWBSTLX  
LBST  
DBST  
SWBSTMODE  
SWBSTFAULT  
VOBST  
Driver  
I2C  
Interface  
OC  
Controller  
RSENSE  
EP  
VREFSC  
VREFUV  
SC  
UV  
SWBSTFB  
Internal  
Compensation  
COSWBST  
Z2  
Z1  
EA  
VREF  
Figure 29. Boost regulator architecture  
PF0100  
NXP Semiconductors  
77  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.1  
SWBST setup and control  
Boost regulator control is done through a single register SWBSTCTL described in Table 88. SWBST is included in the power-up sequence  
if its OTP power-up timing bits, SWBST_SEQ[4:0], are not all zeros.  
Table 88. Register SWBSTCTL - ADDR 0x66  
Name  
Bit #  
R/W  
Default  
Description  
Set the output voltage for SWBST  
• 00 = 5.000 V  
SWBST1VOLT  
1:0  
R/W  
0x00  
• 01 = 5.050 V  
• 10 = 5.100 V  
• 11 = 5.150 V  
Set the Switching mode on normal operation  
• 00 = OFF  
SWBST1MODE  
UNUSED  
3:2  
4
R
0x02  
0x00  
0x02  
0x00  
• 01 = PFM  
• 10 = Auto (Default)(61)  
• 11 = APS  
unused  
Set the switching mode on standby  
• 00 = OFF  
SWBST1STBYMODE  
6:5  
7
R/W  
• 01 = PFM  
• 10 = Auto (Default)(61)  
• 11 = APS  
UNUSED  
Notes  
unused  
61.  
In auto mode, the controller automatically switches between PFM and APS modes depending on the load current.  
The SWBST regulator starts up by default in the auto mode if SWBST is part of the startup sequence.  
6.4.5.2  
SWBST external components  
Table 89. SWBST external component requirements  
Components  
Description  
Values  
(62)  
CINBST  
SWBST input capacitor  
SWBST decoupling input capacitor  
SWBST output capacitor  
SWBST inductor  
10 μF  
0.1 μF  
(62)  
CINBSTHF  
(62)  
COBST  
LSBST  
DBST  
2 x 22 μF  
2.2 μH  
SWBST boost diode  
1.0 A, 20 V Schottky  
Notes  
62.  
Use X5R or X7R capacitors.  
PF0100  
78  
NXP Semiconductors  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.5.3  
SWBST specifications  
Table 90. SWBST Electrical Specifications  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V, ISWBST = 100 mA, typical external  
component values, fSWBST = 2.0 MHz, otherwise noted. Typical values are characterized at VIN = VINSWBST = 3.6 V, VSWBST = 5.0 V,  
ISWBST = 100 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameters  
Min.  
Typ.  
Max.  
Units  
Notes  
Switch mode supply SWBST  
VINSWBST  
VSWBST  
Input voltage range  
2.8  
4.5  
V
V
Nominal output voltage  
Table 88  
Output voltage accuracy  
VSWBSTACC  
• 2.8 V VIN 4.5 V  
• 0 < ISWBST < ISWBSTMAX  
-4.0  
3.0  
%
Output ripple  
• 2.8 V VIN 4.5 V  
• 0 < ISWBST < ISWBSTMAX, excluding reverse recovery of  
Schottky diode  
ΔVSWBST  
120  
mV Vp-p  
DC load regulation  
VSWBSTLOR  
0.5  
50  
mV/mA  
mV  
• 0 < ISWBST < ISWBSTMAX  
DC line regulation  
VSWBSTLIR  
• 2.8 V VIN 4.5 V, ISWBST = ISWBSTMAX  
Continuous load current  
• 2.8 V VIN 3.0 V  
• 3.0 V VIN 4.5 V  
ISWBST  
500  
600  
mA  
Quiescent current  
• Auto  
ISWBSTQ  
222  
289  
μA  
RDSONBST  
ISWBSTLIM  
MOSFET on resistance  
Peak current limit  
206  
306  
mΩ  
(63)  
1400  
2200  
3200  
mA  
Start-up overshoot  
• ISWBST = 0.0 mA  
VSWBSTOSH  
500  
300  
mV  
mV  
Transient load response  
VSWBSTTR  
• ISWBST from 1.0 mA to 100 mA in 1.0 µs  
• Maximum transient amplitude  
Transient load response  
VSWBSTTR  
• ISWBST from 100 mA to 1.0 mA in 1.0 µs  
• Maximum transient amplitude  
300  
500  
mV  
µs  
Transient load response  
tSWBSTTR  
• ISWBST from 1.0 mA to 100 mA in 1.0 µs  
• Time to settle 80% of transient  
Transient load response  
tSWBSTTR  
• ISWBST from 100 mA to 1.0 mA in 1.0 µs  
• Time to settle 80% of transient  
20  
ms  
µA  
NMOS Off leakage  
ISWBSTHSQ  
1.0  
5.0  
• SWBSTIN = 4.5 V, SWBSTMODE [1:0] = 00  
Turn-on time  
tONSWBST  
fSWBST  
2.0  
ms  
MHz  
%
• Enable to 90% of VSWBST, ISWBST = 0.0 mA  
Switching frequency  
2.0  
86  
Efficiency  
ηSWBST  
• ISWBST = ISWBSTMAX  
Notes  
63.  
Only in auto mode.  
PF0100  
NXP Semiconductors  
79  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6 LDO regulators description  
This section describes the LDO regulators provided by the PF0100. All regulators use the main bandgap as reference. Refer to 6.3 Bias  
and references block description, page 24 for further information on the internal reference voltages.  
A low-power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest  
bias currents may be attained by forcing the part into its low-power mode by setting the VGENxLPWR bit. The use of this bit is only  
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.  
When a regulator is disabled, the output is discharged by an internal pull-down. The pull-down is also activated when RESETBMCU is low.  
VINx  
VINx  
VREF  
_
+
VGENxEN  
VGENxLPWR  
VGENx  
VGENx  
I2C  
Interface  
CGENx  
VGENx  
Discharge  
Figure 30. General LDO block diagram  
6.4.6.1  
Transient response waveforms  
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 31. Note that the transient line  
and load response refers to the overshoot, or undershoot only, excluding the DC shift.  
IL = IMAX/10  
IL = IMAX  
IMAX  
ILOAD  
Overshoot  
VOUT  
IMAX/10  
Undershoot  
1.0 us  
1.0 us  
Transient Load Stimulus  
VOUT Transient Load Response  
VINx_FINAL  
VINx_INITIAL  
VOUT  
Overshoot  
VINx_INITIAL  
VINx  
VINx_FINAL  
Undershoot  
10 us  
10 us  
Transient Line Stimulus  
VOUT Transient Line Response  
Figure 31. Transient waveforms  
PF0100  
80  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.2  
Short-circuit protection  
All general purpose LDOs have short-circuit protection capability. The short-circuit protection (SCP) system includes debounced fault  
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product  
damage. If a short-circuit condition is detected, the LDO is disabled by resetting its VGENxEN bit, while at the same time, an interrupt  
VGENxFAULTI is generated to flag the fault to the system processor. The VGENxFAULTI interrupt is maskable through the  
VGENxFAULTM mask bit.  
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators do not automatically disable upon a short-  
circuit detection. However, the current limiter continues to limit the output current of the regulator. By default, the REGSCPEN is not set;  
therefore, at start-up none of the regulators is disabled if an overloaded condition occurs. A fault interrupt, VGENxFAULTI, is generated  
in an overload condition regardless of the state of the REGSCPEN bit. See Table 91 for SCP behavior configuration.  
Table 91. Short-circuit behavior  
REGSCPEN[0]  
Short-circuit behavior  
0
1
Current limit  
Shutdown  
6.4.6.3  
LDO regulator control  
Each LDO is fully controlled through its respective VGENxCTL register. This register enables the user to set the LDO output voltage  
according to Table 92 for VGEN1 and VGEN2; and uses the voltage set point on Table 93 for VGEN3 through VGEN6.  
Table 92. VGEN1, VGEN2 output voltage configuration  
Set point  
VGENx[3:0]  
VGENx output (V)  
0
1
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0.800  
0.850  
0.900  
0.950  
1.000  
1.050  
1.100  
1.150  
1.200  
1.250  
1.300  
1.350  
1.400  
1.450  
1.500  
1.550  
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration  
Set point  
VGENx[3:0]  
VGENx output (V)  
0
1
2
0000  
0001  
0010  
1.80  
1.90  
2.00  
PF0100  
NXP Semiconductors  
81  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 93. VGEN3/ 4/ 5/ 6 output voltage configuration (continued)  
Set point  
VGENx[3:0]  
VGENx output (V)  
3
4
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
2.10  
2.20  
2.30  
2.40  
2.50  
2.60  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
5
6
7
8
9
10  
11  
12  
13  
14  
15  
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as  
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 94  
presents a summary of all valid combinations of the control bits on VGENxCTL register and the expected behavior of the LDO output.  
Table 94. LDO control  
VGENxEN  
VGENxLPWR  
VGENxSTBY STANDBY(64)  
VGENxOUT  
0
1
1
1
1
1
X
0
1
X
0
1
X
0
0
1
1
1
X
X
X
0
Off  
On  
Low power  
On  
1
Off  
1
Low power  
Notes  
64.  
STANDBY refers to a standby event as described earlier.  
For more detail information, Table 95 through Table 100 provide a description of all registers necessary to operate all six general purpose  
LDO regulators.  
Table 95. Register VGEN1CTL - ADDR 0x6C  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN1 output voltage.  
See Table 92 for all possible configurations.  
VGEN1  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN1 output  
VGEN1EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN1 output state when in standby. Refer  
to Table 94.  
VGEN1STBY  
R/W  
Enable low-power mode for VGEN1. Refer to  
Table 94.  
VGEN1LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
PF0100  
82  
NXP Semiconductors  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 96. Register VGEN2CTL - ADDR 0x6D  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN2 output voltage.  
See Table 92 for all possible configurations.  
VGEN2  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN2 output  
VGEN2EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN2 output state when in standby. Refer  
to Table 94.  
VGEN2STBY  
R/W  
Enable low-power mode for VGEN2. Refer to  
Table 94.  
VGEN2LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
Table 97. Register VGEN3CTL - ADDR 0x6E  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN3 output voltage.  
See Table 93 for all possible configurations.  
VGEN3  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN3 output  
VGEN3EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN3 output state when in standby. Refer  
to Table 94.  
VGEN3STBY  
R/W  
Enable low-power mode for VGEN3. Refer to  
Table 94.  
VGEN3LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
Table 98. Register VGEN4CTL - ADDR 0x6F  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN4 output voltage.  
See Table 93 for all possible configurations.  
VGEN4  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN4 output  
VGEN4EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN4 output state when in standby. Refer  
to Table 94.  
VGEN4STBY  
R/W  
Enable low-power mode for VGEN4. Refer to  
Table 94.  
VGEN4LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
PF0100  
NXP Semiconductors  
83  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 99. Register VGEN5CTL - ADDR 0x70  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN5 output voltage.  
See Table 93 for all possible configurations.  
VGEN5  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN5 output  
VGEN5EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN5 output state when in standby. Refer  
to Table 94.  
VGEN5STBY  
R/W  
Enable low-power mode for VGEN5. Refer to  
Table 94.  
VGEN5LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
Table 100. Register VGEN6CTL - ADDR 0x71  
Name  
Bit #  
R/W Default  
Description  
Sets VGEN6 output voltage.  
See Table 93 for all possible configurations.  
VGEN6  
3:0  
R/W  
0x80  
0x00  
0x00  
Enables or disables VGEN6 output  
VGEN6EN  
4
5
• 0 = OFF  
• 1 = ON  
Set VGEN6 output state when in standby. Refer  
to Table 94.  
VGEN6STBY  
R/W  
Enable low-power mode for VGEN6. Refer to  
Table 94.  
VGEN6LPWR  
UNUSED  
6
7
R/W  
0x00  
0x00  
unused  
6.4.6.4  
External components  
Table 101 lists the typical component values for the general purpose LDO regulators.  
Table 101. LDO external components  
Regulator  
Output capacitor (μF)(65)  
VGEN1  
VGEN2  
VGEN3  
VGEN4  
VGEN5  
VGEN6  
2.2  
4.7  
2.2  
4.7  
2.2  
2.2  
Notes  
65.  
Use X5R/X7R ceramic capacitors.  
PF0100  
84  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.5  
LDO specifications  
VGEN1  
6.4.6.5.1  
Table 102. VGEN1 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111,  
IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN1  
VIN1  
VGEN1NOM Nominal output voltage  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
1.75  
Table 92  
3.40  
V
V
IGEN1  
Operating load current  
0.0  
100  
mA  
VGEN1 DC  
Output voltage tolerance  
• 1.75 V < VIN1 < 3.4 V  
VGEN1TOL  
-3.0  
3.0  
%
• 0.0 mA < IGEN1 < 100 mA  
• VGEN1[3:0] = 0000 to 1111  
Load regulation  
VGEN1LOR  
• (VGEN1 at IGEN1 = 100 mA) - (VGEN1 at IGEN1 = 0.0 mA)  
• For any 1.75 V < VIN1 < 3.4 V  
0.15  
mV/mA  
Line regulation  
VGEN1LIR  
IGEN1LIM  
IGEN1OCP  
• (VGEN1 at VIN1 = 3.4 V) - (VGEN1 at VIN1 = 1.75 V)  
• For any 0.0 mA < IGEN1 < 100 mA  
0.30  
167  
mV/mA  
mA  
Current limit  
122  
115  
200  
200  
• IGEN1 when VGEN1 is forced to VGEN1NOM/2  
Overcurrent protection threshold  
mA  
• IGEN1 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent current  
IGEN1Q  
• No load, change in IVIN and IVIN1  
• When VGEN1 enabled  
14  
μA  
VGEN1 AC and transient  
PSRR  
IGEN1 = 75 mA, 20 Hz to 20 kHz  
(66)  
PSRRVGEN1  
dB  
50  
37  
60  
45  
• VGEN1[3:0] = 0000 - 1101  
• VGEN1[3:0] = 1110, 1111  
Output noise density  
• VIN1 = 1.75 V, IGEN1 = 75 mA  
• 100 Hz – <1.0 kHz  
dBV/  
Hz  
NOISEVGEN1  
-108  
-118  
-124  
-100  
-108  
-112  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
1.75 V VIN1 3.4 V, IGEN1 = 0.0 mA  
SLWRVGEN1  
mVs  
μs  
12.5  
16.5  
• VGEN1[3:0] = 0000 to 0111  
• VGEN1[3:0] = 1000 to 1111  
Turn-on time  
• Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
• IGEN1 = 0.0 mA  
GEN1tON  
60  
500  
PF0100  
NXP Semiconductors  
85  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 102. VGEN1 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN1[3:0] = 1111, IGEN1 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IN1 = 3.0 V, VGEN1[3:0] = 1111,  
IGEN1 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN1 AC and transient (continued)  
Turn-off time  
GEN1tOFF  
GEN1OSHT  
• Disable to 10% of initial value, VIN1 = 1.75 V  
• IGEN1 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN1 = 1.75 V, 3.4 V, IGEN1 = 0.0 mA  
Transient load response  
VIN1 = 1.75 V, 3.4 V  
VGEN1LOTR  
3.0  
8.0  
%
• IGEN1 = 10 mA to 100 mA in 1.0 μs. Peak of overshoot or  
undershoot of VGEN1 with respect to final value  
Refer to Figure 31  
Transient line response  
IGEN1 = 75 mA  
• VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for  
VGEN1[3:0] = 0000 to 1101  
VGEN1LITR  
5.0  
mV  
• VIN1INITIAL = VGEN1+0.3 V to VIN1FINAL = VGEN1+0.8 V for  
VGEN1[3:0] = 1110, 1111  
Refer to Figure 31  
Notes  
66.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test.  
6.4.6.5.2  
VGEN2  
Table 103. VGEN2 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,  
IGEN2 = 10 mA and 25 °C, unless otherwise noted.  
Symbol  
VGEN2  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VIN1  
VGEN2NOM  
IGEN2  
Operating input voltage  
Nominal output voltage  
Operating load current  
1.75  
Table 92  
3.40  
V
V
0.0  
250  
mA  
VGEN2 active mode - DC  
Output voltagetolerance  
• 1.75 V < VIN1 < 3.4 V  
• 0.0 mA < IGEN2 < 250 mA  
• VGEN2[3:0] = 0000 to 1111  
VGEN2TOL  
-3.0  
3.0  
%
Load regulation  
VGEN2LOR  
• (VGEN2 at IGEN2 = 250 mA) - (VGEN2 at IGEN2 = 0.0 mA)  
• For any 1.75 V < VIN1 < 3.4 V  
0.05  
0.50  
mV/mA  
mV/mA  
Line regulation  
VGEN2LIR  
• (VGEN2 at VIN1 = 3.4 V) - (VGEN2 at VIN1 = 1.75 V)  
• For any 0.0 mA < IGEN2 < 250 mA  
PF0100  
86  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 103. VGEN2 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,  
IGEN2 = 10 mA and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN2 active mode - DC (continued)  
Current limit  
• IGEN2 when VGEN2 is forced to VGEN2NOM/2  
• MMPF0100  
• MMPF0100A  
IGEN2LIM  
mA  
333  
305  
417  
417  
510  
510  
Overcurrent protection threshold  
• IGEN2 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
IGEN2OCP  
mA  
• MMPF0100  
• MMPF0100A  
300  
290  
500  
500  
Quiescent current  
IGEN2Q  
• No load, change in IVIN and IVIN1  
• When VGEN2 enabled  
16  
μA  
VGEN2 AC and transient  
PSRR  
IGEN2 = 187.5 mA, 20 Hz to 20 kHz  
(67)  
PSRRVGEN2  
dB  
50  
37  
60  
45  
• VGEN2[3:0] = 0000 - 1101  
• VGEN2[3:0] = 1110, 1111  
Output noise density  
VIN1 = 1.75 V, IGEN2 = 187.5 mA  
NOISEVGEN2  
-108  
-118  
-124  
-100  
-108  
-112  
dBV/Hz  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
1.75 V VIN1 3.4 V, IGEN2 = 0.0 mA  
SLWRVGEN2  
mVs  
μs  
12.5  
16.5  
• VGEN2[3:0] = 0000 to 0111  
• VGEN2[3:0] = 1000 to 1111  
Turn-on time  
• Enable to 90% of end value, VIN1 = 1.75 V, 3.4 V  
• IGEN2 = 0.0 mA  
GEN2tON  
60  
500  
Turn-off time  
GEN2tOFF  
GEN2OSHT  
• Disable to 10% of initial value, VIN1 = 1.75 V  
• IGEN2 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN1 = 1.75 V, 3.4 V, IGEN2 = 0.0 mA  
Transient load response  
• VIN1 = 1.75 V, 3.4 V  
• IGEN2 = 25 to 250 mA in 1.0 μs  
• Peak of overshoot or undershoot of VGEN2 with respect to final  
value  
VGEN2LOTR  
3.0  
%
• Refer to Figure 31  
PF0100  
NXP Semiconductors  
87  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 103. VGEN2 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111, IGEN2 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN1 = 3.0 V, VGEN2[3:0] = 1111,  
IGEN2 = 10 mA and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN2 AC and transient (continued)  
Transient line response  
• IGEN2 = 187.5 mA  
• VIN1INITIAL = 1.75 V to VIN1FINAL = 2.25 V for  
VGEN2[3:0] = 0000 to 1101  
VGEN2LITR  
5.0  
8.0  
mV  
• VIN1INITIAL = VGEN2+0.3 V to VIN1FINAL = VGEN2+0.8 V for  
VGEN2[3:0] = 1110, 1111  
• Refer to Figure 31  
Notes  
67.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test.  
6.4.6.5.3  
VGEN3  
Table 104. VGEN3 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111,  
IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN3  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
2.8  
VGEN3NO  
M+ 0.250  
VIN2  
• 1.8 V VGEN3NOM 2.5 V  
• 2.6 V VGEN3NOM 3.3 V  
3.6  
3.6  
V
(68)  
VGEN3NOM  
IGEN3  
Nominal output voltage  
Operating load current  
Table 93  
V
0.0  
100  
mA  
VGEN3 DC  
Output voltage tolerance  
• VIN2MIN < VIN2 < 3.6 V  
• 0.0 mA < IGEN3 < 100 mA  
• VGEN3[3:0] = 0000 to 1111  
VGEN3TOL  
-3.0  
3.0  
%
Load regulation  
VGEN3LOR  
• (VGEN3 at IGEN3 = 100 mA) - (VGEN3 at IGEN3 = 0.0 mA)  
• For any VIN2MIN < VIN2 < 3.6 V  
0.07  
mV/mA  
Line regulation  
VGEN3LIR  
IGEN3LIM  
IGEN3OCP  
• (VGEN3 at VIN2 = 3.6 V) - (VGEN3 at VIN2MIN  
• For any 0.0 mA < IGEN3 < 100 mA  
)
0.8  
167  
mV/mA  
mA  
Current limit  
127  
120  
200  
200  
• IGEN3 when VGEN3 is forced to VGEN3NOM/2  
Overcurrent protection threshold  
mA  
• IGEN3 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent current  
IGEN3Q  
• No load, Change in IVIN and IVIN2  
• When VGEN3 enabled  
13  
μA  
PF0100  
88  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 104. VGEN3 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111, IGEN3 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN3[3:0] = 1111,  
IGEN3 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN3 AC and transient  
PSRR  
IGEN3 = 75 mA, 20 Hz to 20 kHz  
(69)  
PSRRVGEN3  
dB  
35  
55  
40  
60  
• VGEN3[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
• VGEN3[3:0] = 0000 - 1000, VIN2 = VGEN3NOM + 1.0 V  
Output noise density  
VIN2 = VIN2MIN, IGEN3 = 75 mA  
NOISEVGEN3  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
VIN2MIN VIN2 3.6 V, IGEN3 = 0.0 mA  
SLWRVGEN3  
22.0  
26.5  
30.5  
34.5  
mVs  
• VGEN3[3:0] = 0000 to 0011  
• VGEN3[3:0] = 0100 to 0111  
• VGEN3[3:0] = 1000 to 1011  
• VGEN3[3:0] = 1100 to 1111  
Turn-on time  
• Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
• IGEN3 = 0.0 mA  
GEN3tON  
60  
500  
μs  
Turn-off time  
GEN3tOFF  
GEN3OSHT  
• Disable to 10% of initial value, VIN2 = VIN2MIN  
• IGEN3 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN2 = VIN2MIN, 3.6 V, IGEN3 = 0.0 mA  
Transient load response  
• VIN2 = VIN2MIN, 3.6 V  
VGEN3LOTR  
3.0  
8.0  
%
• IGEN3 = 10 to 100 mA in 1.0μs  
• Peak of overshoot or undershoot of VGEN3 with respect to final  
value. Refer to Figure 31  
Transient line response  
• IGEN3 = 75 mA  
• VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for GEN3[3:0] = 0000 to  
0111  
• VIN2INITIAL = VGEN3+0.3 V to VIN2FINAL = VGEN3+0.8 V for  
VGEN3[3:0] = 1000 to 1010  
VGEN3LITR  
5.0  
mV  
• VIN2INITIAL = VGEN3+0.25 V to VIN2FINAL = 3.6 V for VGEN3[3:0]  
= 1011 to 1111  
• Refer to Figure 31  
Notes  
68.  
When the LDO output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
69.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.  
PF0100  
NXP Semiconductors  
89  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.4.6.5.4  
VGEN4  
Table 105. VGEN4 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111,  
IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN4  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
2.8  
VGEN4NO  
M+ 0.250  
VIN2  
• 1.8 V VGEN4NOM 2.5 V  
• 2.6 V VGEN4NOM 3.3 V  
3.6  
3.6  
V
(70)  
VGEN4NOM  
IGEN4  
Nominal output voltage  
Operating load current  
Table 93  
V
0.0  
350  
mA  
VGEN4 DC  
Output voltage tolerance  
• VIN2MIN < VIN2 < 3.6 V  
• 0.0 mA < IGEN4 < 350 mA  
• VGEN4[3:0] = 0000 to 1111  
VGEN4TOL  
-3.0  
3.0  
%
Load regulation  
VGEN4LOR  
• (VGEN4 at IGEN4 = 350 mA) - (VGEN4 at IGEN4 = 0.0 mA )  
• For any VIN2MIN < VIN2 < 3.6 V  
0.07  
mV/mA  
Line regulation  
VGEN4LIR  
IGEN4LIM  
IGEN4OCP  
• (VGEN4 at 3.6 V) - (VGEN4 at VIN2MIN  
• For any 0.0 mA < IGEN4 < 350 mA  
)
0.80  
584.5  
mV/mA  
mA  
Current limit  
435  
420  
700  
700  
• IGEN4 when VGEN4 is forced to VGEN4NOM/2  
Overcurrent protection threshold  
mA  
• IGEN4 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent current  
IGEN4Q  
• No load, Change in IVIN and IVIN2  
• When VGEN4 enabled  
13  
μA  
VGEN4 AC and transient  
PSRR  
IGEN4 = 262.5 mA, 20 Hz to 20 kHz  
(71)  
PSRRVGEN4  
dB  
35  
55  
40  
60  
• VGEN4[3:0] = 0000 - 1110, VIN2 = VIN2MIN + 100 mV  
• VGEN4[3:0] = 0000 - 1000, VIN2 = VGEN4NOM + 1.0 V  
Output noise density  
VIN2 = VIN2MIN, IGEN4 = 262.5 mA  
NOISEVGEN4  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
VIN2MIN VIN2 3.6 V, IGEN4 = 0.0 mA  
SLWRVGEN4  
22.0  
26.5  
30.5  
34.5  
mVs  
• VGEN4[3:0] = 0000 to 0011  
• VGEN4[3:0] = 0100 to 0111  
• VGEN4[3:0] = 1000 to 1011  
• VGEN4[3:0] = 1100 to 1111  
PF0100  
90  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 105. VGEN4 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111, IGEN4 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN2 = 3.6 V, VGEN4[3:0] = 1111,  
IGEN4 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN4 AC AND tRANSIENT (Continued)  
Turn-on time  
GEN4tON  
• Enable to 90% of end value, VIN2 = VIN2MIN, 3.6 V  
• IGEN4 = 0.0 mA  
60  
500  
μs  
Turn-off time  
GEN4tOFF  
GEN4OSHT  
• Disable to 10% of initial value, VIN2 = VIN2MIN  
• IGEN4 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN2 = VIN2MIN, 3.6 V, IGEN4 = 0.0 mA  
Transient load response  
• VIN2 = VIN2MIN, 3.6 V  
VGEN4LOTR  
3.0  
8.0  
%
• IGEN4 = 35 to 350 mA in 1.0 μs  
• Peak of overshoot or undershoot of VGEN4 with respect to final  
value. Refer to Figure 31  
Transient line response  
• IGEN4 = 262.5 mA  
• VIN2INITIAL = 2.8 V to VIN2FINAL = 3.3 V for VGEN4[3:0] = 0000  
to 0111  
• VIN2INITIAL = VGEN4+0.3 V to VIN2FINAL = VGEN4+0.8 V for  
VGEN4[3:0] = 1000 to 1010  
VGEN4LITR  
5.0  
mV  
• VIN2INITIAL = VGEN4+0.25 V to VIN2FINAL = 3.6 V for VGEN4[3:0]  
= 1011 to 1111  
• Refer to Figure 31  
Notes  
70.  
When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
71.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN2MIN refers to the minimum allowed input voltage for a particular output voltage.  
6.4.6.5.5  
VGEN5  
Table 106. VGEN5 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,  
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN5  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
2.8  
VGEN5NO  
M+ 0.250  
VIN3  
• 1.8 V VGEN5NOM 2.5 V  
• 2.6 V VGEN5NOM 3.3 V  
4.5  
4.5  
V
(72)  
VGEN5NOM  
IGEN5  
Nominal output voltage  
Operating load current  
Table 93  
V
0.0  
100  
mA  
PF0100  
NXP Semiconductors  
91  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 106. VGEN5 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,  
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN5 active mode – DC  
Output voltage tolerance  
• VIN3MIN < VIN3 < 4.5 V  
VGEN5TOL  
-3.0  
3.0  
%
• 0.0 mA < IGEN5 < 100 mA  
• VGEN5[3:0] = 0000 to 1111  
Load regulation  
VGEN5LOR  
• (VGEN5 at IGEN5 = 100 mA) - (VGEN5 at IGEN5 = 0.0 mA)  
• For any VIN3MIN < VIN3 < 4.5 mV  
0.10  
mV/mA  
Line regulation  
VGEN5LIR  
IGEN5LIM  
IGEN5OCP  
• (VGEN5 at VIN3 = 4.5 V) - (VGEN5 at VIN3MIN  
• For any 0.0 mA < IGEN5 < 100 mA  
)
0.50  
167  
mV/mA  
mA  
Current limit  
122  
120  
200  
200  
• IGEN5 when VGEN5 is forced to VGEN5NOM/2  
Overcurrent protection threshold  
mA  
• IGEN5 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
Quiescent current  
IGEN5Q  
• No load, Change in IVIN and IVIN3  
• When VGEN5 enabled  
13  
μA  
VGEN5 AC and transient  
PSRR  
IGEN5 = 75 mA, 20 Hz to 20 kHz  
(73)  
PSRRVGEN5  
dB  
35  
52  
40  
60  
• VGEN5[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
• VGEN5[3:0] = 0000 - 1111, VIN3 = VGEN5NOM + 1.0 V  
Output noise density  
VIN3 = VIN3MIN, IGEN5 = 75 mA  
NOISEVGEN5  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 mV, IGEN5 = 0.0 mA  
SLWRVGEN5  
22.0  
26.5  
30.5  
34.5  
mVs  
• VGEN5[3:0] = 0000 to 0011  
• VGEN5[3:0] = 0100 to 0111  
• VGEN5[3:0] = 1000 to 1011  
• VGEN5[3:0] = 1100 to 1111  
Turn-on time  
• Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
• IGEN5 = 0.0 mA  
GEN5tON  
60  
500  
μs  
Turn-off time  
GEN5tOFF  
GEN5OSHT  
• Disable to 10% of initial value, VIN3 = VIN3MIN  
• IGEN5 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN3 = VIN3MIN, 4.5 V, IGEN5 = 0.0 mA  
PF0100  
92  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 106. VGEN5 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111, IGEN5 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN5[3:0] = 1111,  
IGEN5 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN5 active mode – DC (continued)  
Transient load response  
• VIN3 = VIN3MIN, 4.5 V  
• IGEN5 = 10 to 100 mA in 1.0 μs  
• Peak of overshoot or undershoot of VGEN5 with respect to final  
value.  
VGEN5LOTR  
3.0  
%
• Refer to Figure 31  
Transient line response  
• IGEN5 = 75 mA  
• VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for VGEN5[3:0] = 0000 to  
0111  
VGEN5LITR  
-
5.0  
8.0  
mV  
• VIN3INITIAL = VGEN5+0.3 V to VIN3FINAL = VGEN5+0.8 V for  
VGEN5[3:0] = 1000 to 1111  
• Refer to Figure 31  
Notes  
72.  
When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
73.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.  
6.4.6.5.6  
VGEN6  
Table 107. VGEN6 electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,  
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
VGEN6  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
Operating input voltage  
2.8  
VIN3  
• 1.8 V VGEN6NOM 2.5 V  
• 2.6 V VGEN6NOM 3.3 V  
4.5  
4.5  
V
(74)  
VGEN6NO  
M+ 0.250  
VGEN6NOM  
IGEN6  
Nominal output voltage  
Operating load current  
Table 93  
V
0.0  
200  
mA  
VGEN6 DC  
Output voltage tolerance  
• VIN3MIN < VIN3 < 4.5 V  
• 0.0 mA < IGEN6 < 200 mA  
• VGEN6[3:0] = 0000 to 1111  
VGEN6TOL  
-3.0  
3.0  
%
Load regulation  
VGEN6LOR  
• (VGEN6 at IGEN6 = 200 mA) - (VGEN6 at IGEN6 = 0.0 mA)  
• For any VIN3MIN < VIN3 < 4.5 V  
0.10  
0.50  
mV/mA  
mV/mA  
Line regulation  
VGEN6LIR  
• (VGEN6 at VIN3 = 4.5 V) - (VGEN6 at VIN3MIN  
• For any 0.0 mA < IGEN6 < 200 mA  
)
Current limit  
• IGEN6 when VGEN6 is forced to VGEN6NOM/2  
• MMPF0100  
• MMPF0100A  
IGEN6LIM  
mA  
232  
232  
333  
333  
400  
475  
PF0100  
NXP Semiconductors  
93  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 107. VGEN6 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,  
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN6 DC (continued)  
Overcurrent protection threshold  
• IGEN6 required to cause the SCP function to disable LDO when  
REGSCPEN = 1  
IGEN6OCP  
mA  
• MMPF0100  
• MMPF0100A  
220  
220  
400  
475  
Quiescent current  
IGEN6Q  
• No load, Change in IVIN and IVIN3  
• When VGEN6 enabled  
13  
μA  
VGEN6 AC and transient  
PSRR  
IGEN6 = 150 mA, 20 Hz to 20 kHz  
(75)  
PSRRVGEN6  
dB  
35  
52  
40  
60  
• VGEN6[3:0] = 0000 - 1111, VIN3 = VIN3MIN + 100 mV  
• VGEN6[3:0] = 0000 - 1111, VIN3 = VGEN6NOM + 1.0 V  
Output noise density  
VIN3 = VIN3MIN, IGEN6 = 150 mA  
NOISEVGEN6  
-114  
-129  
-135  
-102  
-123  
-130  
dBV/Hz  
• 100 Hz – <1.0 kHz  
• 1.0 kHz – <10 kHz  
• 10 kHz – 1.0 MHz  
Turn-on slew rate  
10% to 90% of end value  
VIN3MIN VIN3 4.5 V. IGEN6 = 0.0 mA  
SLWRVGEN6  
22.0  
26.5  
30.5  
34.5  
mVs  
• VGEN6[3:0] = 0000 to 0011  
• VGEN6[3:0] = 0100 to 0111  
• VGEN6[3:0] = 1000 to 1011  
• VGEN6[3:0] = 1100 to 1111  
Turn-on time  
• Enable to 90% of end value, VIN3 = VIN3MIN, 4.5 V  
• IGEN6 = 0.0 mA  
GEN6tON  
60  
500  
μs  
Turn-off time  
GEN6tOFF  
GEN6OSHT  
• Disable to 10% of initial value, VIN3 = VIN3MIN  
• IGEN6 = 0.0 mA  
10  
ms  
%
Start-up overshoot  
1.0  
2.0  
• VIN3 = VIN3MIN, 4.5 V, IGEN6 = 0 mA  
Transient load response  
• VIN3 = VIN3MIN, 4.5 V  
VGEN6LOTR  
3.0  
%
• IGEN6 = 20 to 200 mA in 1.0 μs  
• Peak of overshoot or undershoot of VGEN6 with respect to final  
value. Refer to Figure 31  
PF0100  
94  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 107. VGEN6 electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111, IGEN6 = 10 mA, typical external  
component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VIN3 = 3.6 V, VGEN6[3:0] = 1111,  
IGEN6 = 10 mA, and 25 °C, unless otherwise noted.  
Symbol  
Parameter  
Min.  
Typ.  
Max.  
Unit  
Notes  
VGEN6 AC and transient (continued)  
Transient line response  
• IGEN6 = 150 mA  
• VIN3INITIAL = 2.8 V to VIN3FINAL = 3.3 V for VGEN6[3:0] = 0000  
to 0111  
VGEN6LITR  
5.0  
8.0  
mV  
• VIN3INITIAL = VGEN6+0.3 V to VIN3FINAL = VGEN6+0.8 V for  
VGEN6[3:0] = 1000 to 1111  
• Refer to Figure 31  
Notes  
74.  
When the LDO output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper  
regulation due to the dropout voltage generated through the internal LDO transistor.  
75.  
The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately  
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout  
region of the regulator under test. VIN3MIN refers to the minimum allowed input voltage for a particular output voltage.  
6.4.7 VSNVS LDO/switch  
VSNVS powers the low-power, SNVS/RTC domain on the processor. It derives its power from either VIN, or coin cell, and cannot be  
disabled. When powered by both, VIN takes precedence when above the appropriate comparator threshold. When powered by VIN,  
VSNVS is an LDO capable of supplying seven voltages: 3.0, 1.8, 1.5, 1.3, 1.2, 1.1, and 1.0 V. The bits VSNVSVOLT[2:0] in register  
VSNVS_CONTROL determine the output voltage. When powered by coin cell, VSNVS is an LDO capable of supplying 1.8, 1.5, 1.3, 1.2,  
1.1, or 1.0 V as shown in Table 108. If the 3.0 V option is chosen with the coin cell, VSNVS tracks the coin cell voltage by means of a  
switch, whose maximum resistance is 100 Ω. In this case, the VSNVS voltage is simply the coin cell voltage minus the voltage drop across  
the switch, which is 40 mV at a rated maximum load current of 400 μA.  
The default setting of the VSNVSVOLT[2:0] is 110, or 3.0 V, unless programmed otherwise in OTP. However, when the coin cell is applied  
for the very first time, VSNVS outputs 1.0 V. Only when VIN is applied thereafter does VSNVS transition to its default, or programmed  
value if different. Upon subsequent removal of VIN, with the coin cell attached, VSNVS changes configuration from an LDO to a switch for  
the “110” setting, and remains as an LDO for the other settings, continuing to output the same voltages as when VIN is applied, providing  
certain conditions are met as described in Table 108.  
PF0100  
VIN  
2.25 V (VTL0) -  
LDO/SWITCH  
4.5 V  
Input  
LICELL  
Charger  
VREF  
Sense/  
Selector  
_
+
VSNVS  
Z
Coin Cell  
1.8 - 3.3 V  
I2C Interface  
Figure 32. VSNVS supply switch architecture  
Table 108 provides a summary of the VSNVS operation at different input voltage VIN and with or without coin cell connected to the system.  
PF0100  
NXP Semiconductors  
95  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 108. VSNVS modes of operation  
VSNVSVOLT[2:0]  
110  
VIN  
Mode  
> VTH1  
< VTL1  
> VTH0  
< VTL0  
VIN LDO 3.0 V  
Coin cell switch  
VIN LDO  
110  
000 – 101  
000 – 101  
Coin cell LDO  
6.4.7.0.1  
VSNVS control  
The VSNVS output level is configured through the VSNVSVOLT[2:0]bits on VSNVSCTL register as shown in Table 109.  
Table 109. Register VSNVSCTL - ADDR 0x6B  
Name  
Bit #  
R/W Default  
Description  
Configures VSNVS output voltage.(76)  
• 000 = 1.0 V  
• 001 = 1.1 V  
• 010 = 1.2 V  
VSNVSVOLT  
2:0  
7:3  
R/W  
0x80  
0x00  
• 011 = 1.3 V  
• 100 = 1.5 V  
• 101 = 1.8 V  
• 110 = 3.0 V  
• 111 = RSVD  
UNUSED  
Notes  
unused  
76.  
Only valid when a valid input voltage is present.  
6.4.7.0.2  
VSNVS external components  
Table 110. VSNVS external components  
Capacitor  
Value (μF)  
VSNVS  
0.47  
6.4.7.0.3  
VSNVS specifications  
Table 111. VSNVS electrical characteristics  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,  
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise  
noted.  
Symbol  
VSNVS  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
Operating Input Voltage  
• Valid coin cell range  
• Valid VIN  
VINSNVS  
1.8  
2.25  
3.3  
4.5  
V
Operating load current  
• VINMIN < VIN < VINMAX  
ISNVS  
5.0  
400  
μA  
PF0100  
96  
NXP Semiconductors  
 
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 111. VSNVS electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,  
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise  
noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VSNVS DC, LDO  
Output voltage  
5.0 μA < ISNVS < 400 μA (OFF)  
• 3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
• VTL0/VTH < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
-5.0%  
-8.0%  
3.0  
1.0 - 1.8  
7.0%  
7.0%  
5.0μA < ISNVS < 400 μA (ON)  
VSNVS  
V
-5.0%  
-4.0%  
3.0  
1.0 - 1.8  
5.0%  
4.0%  
• 3.20 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
• UVDET < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
5.0 μA < ISNVS < 400 μA (Coin Cell mode)  
VCOIN-0.04  
-8.0%  
VCOIN  
7.0%  
• 2.84 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = 110  
• 1.8 V < VCOIN < 3.3 V, VSNVSVOLT[2:0] = [000] - [101]  
(77)  
1.0 - 1.8  
Dropout voltage  
VSNVSDROP  
50  
mV  
• VIN = VCOIN = 2.85 V, VSNVSVOLT[2:0] = 110, ISNVS = 400 μA  
Current limit  
• MMPF0100  
• VIN > VTH1, VSNVSVOLT[2:0] = 110  
• VIN > VTH0, VSNVSVOLT[2:0] = 000 to 101  
• VIN < VTL0, VSNVSVOLT[2:0] = 000 to 101  
• MMPF0100A  
750  
500  
480  
5900  
5900  
3600  
ISNVSLIM  
μA  
• VIN > VTH1, VSNVSVOLT[2:0] = 110  
• VIN > VTH0, VSNVSVOLT[2:0] = 000 to 101  
• VIN < VTL0, VSNVSVOLT[2:0] = 000 to 101  
1100  
500  
480  
6750  
6750  
4500  
VIN Threshold (coin cell powered to VIN powered) VIN going high with  
valid coin cell  
VTH0  
V
V
• VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
2.25  
2.40  
2.55  
VIN threshold (VIN powered to coin cell powered) VIN going low with  
valid coin cell  
VTL0  
• VSNVSVOLT[2:0] = 000, 001, 010, 011, 100, 101  
2.20  
5.0  
2.35  
2.50  
VHYST1  
VHYST0  
VIN threshold hysteresis for VTH1-VTL1  
mV  
mV  
VIN threshold hysteresis for VTH0-VTL0  
5.0  
Output voltage during crossover  
• VSNVSVOLT[2:0] = 110  
(80)  
VSNVSCROSS  
• VCOIN > 2.9 V  
2.7  
V
• Switch to LDO: VIN > 2.825 V, ISNVS = 100 μA  
• LDO to Switch: VIN < 3.05 V, ISNVS = 100 μA  
VSNVS AC and transient  
Turn-on time (load capacitor, 0.47 μF)  
• VIN > UVDET to 90% of VSNVS  
• VCOIN = 0.0 V, ISNVS = 5.0 μA  
• VSNVSVOLT[2:0] = 000 to 110  
(78),(79)  
tONSNVS  
24  
70  
ms  
Start-up overshoot  
• VSNVSVOLT[2:0] = 000 to 110  
• ISNVS = 5.0 μA  
• dVIN/dt = 50 mV/μs  
VSNVSOSH  
40  
mV  
mV  
Transient line response ISNVS = 75% of ISNVSMAX  
• 3.2 V < VIN < 4.5 V, VSNVSVOLT[2:0] = 110  
32  
22  
VSNVSLITR  
• 2.45 V < VIN < 4.5 V, VSNVSVOLT[2:0] = [000] - [101]  
PF0100  
NXP Semiconductors  
97  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 111. VSNVS electrical characteristics (continued)  
All parameters are specified at TMIN to TMAX (See Table 3), VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, typical external component values,  
unless otherwise noted. Typical values are characterized at VIN = 3.6 V, VSNVS = 3.0 V, ISNVS = 5.0 μA, and 25 °C, unless otherwise  
noted.  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
Notes  
VSNVS AC and transient (continued)  
Transient load response  
• VSNVSVOLT[2:0] = 110  
• 3.1 V (UVDETL)< VIN 4.5 V  
• ISNVS = 75 to 750 μA  
• VSNVSVOLT[2:0] = 000 to 101  
• 2.45 V < VIN 4.5 V  
2.8  
V
VSNVSLOTR  
1.0  
2.0  
%
• VTL0 > VIN, 1.8 V VCOIN 3.3 V  
• ISNVS = 40 to 400 μA  
• Refer to Figure 31  
VSNVS DC, switch  
Operating input voltage  
• Valid coin cell range  
VINSNVS  
ISNVS  
1.8  
5.0  
3.3  
400  
100  
V
μA  
Ω
Operating load current  
Internal switch RDS(on)  
• VCOIN = 2.6 V  
RDSONSNVS  
VIN threshold (VIN powered to coin cell powered)  
• VSNVSVOLT[2:0] = 110  
(80)  
VTL1  
VTH1  
2.725  
2.775  
2.90  
2.95  
3.00  
3.1  
V
V
VIN threshold (coin cell powered to VIN powered)  
• VSNVSVOLT[2:0] = 110  
Notes  
77.  
For 1.8 V ISNVS limited to 100 μA for VCOIN < 2.1 V  
78.  
The start-up of VSNVS is not monotonic. It first rises to 1.0 V and then settles to its programmed value within the specified tr1 time.  
From coin cell insertion to VSNVS =1.0 V, the delay time is typically 400 ms.  
During crossover from VIN to LICELL, the VSNVS output voltage may drop to 2.7 V before going to the LICELL voltage. Though this is outside  
the specified DC voltage level for the VDD_SNVS_IN pin of the i.MX 6, this momentary drop does not cause any malfunction. The i.MX 6’s RTC  
continues to operate through the transition, and as a worst case it may switch to the internal RC oscillator for a few clock cycles before switching  
back to the external crystal oscillator.  
79.  
80.  
6.4.7.1  
Coin cell battery backup  
The LICELL pin provides for a connection of a coin cell backup battery or a “super” capacitor. If the voltage at VIN goes below the VIN  
threshold (VTL1 and VTL0), contact-bounced, or removed, the coin cell maintained logic is powered by the voltage applied to LICELL. The  
supply for internal logic and the VSNVS rail switches over to the LICELL pin when VIN goes below VTL1 or VTL0, even in the absence of  
a voltage at the LICELL pin, resulting in clearing of memory and turning off of VSNVS. When system operation below VTL1 is required,  
for systems not utilizing a coin cell, connect the LICELL pin to any system voltage between 1.8 V and 3.0 V. A small capacitor should be  
placed from LICELL to ground under all circumstances.  
6.4.7.1.1  
Coin cell charger control  
The coin cell charger circuit functions as a current-limited voltage source, resulting in the CC/CV taper characteristic typically used for  
rechargeable Lithium-Ion batteries. The coin cell charger is enabled via the COINCHEN bit while the coin cell voltage is programmable  
through the VCOIN[2:0] bits on register COINCTL on Table 113. The coin cell charger voltage is programmable. In the on state, the  
charger current is fixed at ICOINHI. In Sleep and Standby modes, the charger current is reduced to a typical 10 μA. In the off state, coin  
cell charging is not available as the main battery could be depleted unnecessarily. The coin cell charging stops when VIN is below UVDET.  
PF0100  
98  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 112. Coin cell charger voltage  
VCOIN[2:0]  
VCOIN (V)(81)  
000  
001  
010  
011  
100  
101  
110  
111  
2.50  
2.70  
2.80  
2.90  
3.00  
3.10  
3.20  
3.30  
Notes  
81.  
Coin cell voltages selected based on the  
type of LICELL used on the system.  
Table 113. Register COINCTL - ADDR 0x1A  
Name  
Bit #  
R/W Default  
Description  
Coin cell charger output voltage selection.  
VCOIN  
2:0  
R/W  
0x00  
See Table 112 for all options selectable through  
these bits.  
COINCHEN  
UNUSED  
3
R/W  
0x00  
0x00  
Enable or disable the coin cell charger  
unused  
7:4  
6.4.7.1.2  
External components  
Table 114. Coin cell charger external components  
Component  
Value  
Units  
LICELL bypass capacitor  
100  
nF  
6.4.7.1.3  
Coin cell specifications  
Table 115. Coin cell charger specifications  
Parameter  
Typ  
Unit  
Voltage accuracy  
100  
60  
mV  
μA  
%
Coin cell charge current in on mode ICOINHI  
Current accuracy  
30  
PF0100  
NXP Semiconductors  
99  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
2
6.5  
Control interface I C block description  
The PF0100 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers  
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.  
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL  
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be  
accomplished by reducing the drive strength of the I2C master via software. The i.MX6 I2C driver defaults to a 40 Ω drive strength. It is  
recommended to use a drive strength of 80 Ω or higher to increase the edge times. Alternatively, this can be accomplished by using small  
capacitors from SCL and SDA to ground. For example, use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of  
4.8 kΩ.  
2
6.5.1 I C device ID  
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. To allow flexibility in addressing for bus  
conflict avoidance, fuse programmability is provided to allow configuration for the lower 3 address LSB(s). Refer to 6.1.2 One time  
programmability (OTP), page 21 for more details. This product supports 7-bit addressing only; support is not provided for 10-bit or general  
call addressing. Note, when the TBB bits for the I2C slave address are written, the next access to the chip, must then use the new slave  
address; these bits take affect right away.  
6.5.2 I2C operation  
The I2C mode of the interface is implemented generally following the fast mode definition which supports up to 400 kbits/s operation  
(exceptions to the standard are noted to be 7-bit only addressing and no support for general call addressing.) Timing diagrams, electrical  
specifications, and further details can be found in the I2C specification, which is available for download at:  
http://www.nxp.com/acrobat_download/literature/9398/39340011.pdf  
I2C read operations are also performed in byte increments separated by an ACK. Read operations also begin with the MSB and each byte  
is sent out unless a STOP command or NACK is received prior to completion.  
The following examples show how to write and read data to and from the IC. The host initiates and terminates all communication. The host  
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains  
the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from  
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.  
Host can  
also drive  
another  
Start instead  
Packet  
Type  
Device  
Master Driven Data  
Register Address  
Address  
(
byte 0 )  
of Stop  
7
0
7
0
0
7
0
START  
STOP  
Host SDA  
R / W  
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 33. I2C write example  
Host can also  
Packet  
Type  
Device  
Address  
Register Address  
Device Address  
PMIC Driven Data  
drive another  
Start instead of  
Stop  
23  
16  
0
15  
8
7
0
1
NA  
CK  
Host SDA  
START  
START  
STOP  
R/W  
R/W  
7
0
A
C
K
A
C
K
A
C
K
Slave SDA  
Figure 34. I2C read example  
PF0100  
100  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.3 Interrupt handling  
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving  
the INTB pin low.  
Each interrupt is latched so even if the interrupt source becomes inactive, the interrupt remains set until cleared. Each interrupt can be  
cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this also causes the INTB pin to go high. If there are multiple  
interrupt bits set the INTB pin remains low until all are either masked or cleared. If a new interrupt occurs while the processor clears an  
existing interrupt bit, the INTB pin remains low.  
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB  
pin does not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling  
for status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any  
interrupts are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the  
INTB pin goes low after unmasking.  
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are  
read only, and not latched or clearable.  
Interrupts generated by external events are debounced; therefore, the event needs to be stable throughout the debounce period before  
an interrupt is generated. Nominal debounce periods for each event are documented in the INT summary Table 116. Due to the  
asynchronous nature of the debounce timer, the effective debounce time can vary slightly.  
6.5.4 Interrupt bit summary  
Table 116 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer  
to the related chapters.  
Table 116. Interrupt, mask and sense bits  
Interrupt  
LOWVINI  
Mask  
LOWVINM  
Sense  
LOWVINS  
Purpose  
Trigger  
Debounce time (ms)  
Low input voltage detect  
Sense is 1 if below 2.80 V threshold  
H to L  
3.9(82)  
Power on button event  
H to L  
L to H  
31.25(82)  
31.25  
PWRONI  
PWRONM  
PWRONS  
Sense is 1 if PWRON is high.  
Thermal 110 °C threshold  
Sense is 1 if above threshold  
THERM110  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
SW1AFAULTM  
SW1BFAULTM  
SW1CFAULTM  
SW2FAULTM  
SW3AFAULTM  
SW3BFAULTM  
SW4FAULTM  
THERM110S  
THERM120S  
THERM125S  
THERM130S  
SW1AFAULTS  
SW1BFAULTS  
SW1CFAULTS  
SW2FAULTS  
SW3AFAULTS  
SW3BFAULTS  
SW4FAULTS  
Dual  
Dual  
3.9  
3.9  
3.9  
3.9  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
Thermal 120 °C threshold  
Sense is 1 if above threshold  
THERM120  
Thermal 125 °C threshold  
Sense is 1 if above threshold  
THERM125  
Dual  
Thermal 130 °C threshold  
Sense is 1 if above threshold  
THERM130  
Dual  
Regulator 1A overcurrent limit  
Sense is 1 if above current limit  
SW1AFAULTI  
SW1BFAULTI  
SW1CFAULTI  
SW2FAULTI  
SW3AFAULTI  
SW3BFAULTI  
SW4FAULTI  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
Regulator 1B overcurrent limit  
Sense is 1 if above current limit  
Regulator 1C overcurrent limit  
Sense is 1 if above current limit  
Regulator 2 overcurrent limit  
Sense is 1 if above current limit  
Regulator 3A overcurrent limit  
Sense is 1 if above current limit  
Regulator 3B overcurrent limit  
Sense is 1 if above current limit  
Regulator 4 overcurrent limit  
Sense is 1 if above current limit  
PF0100  
NXP Semiconductors  
101  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 116. Interrupt, mask and sense bits (continued)  
Interrupt  
Mask  
Sense  
Purpose  
Trigger  
Debounce time (ms)  
SWBST overcurrent limit  
Sense is 1 if above current limit  
SWBSTFAULTI  
SWBSTFAULTM  
SWBSTFAULTS  
L to H  
8.0  
VGEN1 overcurrent limit  
Sense is 1 if above current limit  
VGEN1FAULTI  
VGEN2FAULTI  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
VGEN1FAULTM  
VGEN2FAULTM  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
OTP_ECCM  
VGEN1FAULTS  
VGEN2FAULTS  
VGEN3FAULTS  
VGEN4FAULTS  
VGEN1FAULTS  
VGEN6FAULTS  
OTP_ECCS  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
L to H  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
8.0  
VGEN2 overcurrent limit  
Sense is 1 if above current limit  
VGEN3 overcurrent limit  
Sense is 1 if above current limit  
VGEN4 overcurrent limit  
Sense is 1 if above current limit  
VGEN5 overcurrent limit  
Sense is 1 if above current limit  
VGEN6 overcurrent limit  
Sense is 1 if above current limit  
1 or 2 bit error detected in OTP registers  
Sense is 1 if error detected  
OTP_ECCI  
Notes  
82.  
Debounce timing for the falling edge can be extended with PWRONDBNC[1:0].  
A full description of all interrupt, mask, and sense registers is provided in Tables 117 to 128.  
Table 117. Register INTSTAT0 - ADDR 0x05  
Name  
PWRONI  
Bit #  
R/W  
Default  
Description  
Power on interrupt bit  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
LOWVINI  
Low-voltage interrupt bit  
110 °C Thermal interrupt bit  
120 °C Thermal interrupt bit  
125 °C Thermal interrupt bit  
130 °C Thermal interrupt bit  
unused  
THERM110I  
THERM120I  
THERM125I  
THERM130I  
UNUSED  
2
0
3
0
4
0
5
0
7:6  
00  
Table 118. Register INTMASK0 - ADDR 0x06  
Name  
PWRONM  
Bit #  
R/W  
Default  
Description  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
1
1
Power on interrupt mask bit  
Low-voltage interrupt mask bit  
110 °C thermal interrupt mask bit  
120 °C thermal interrupt mask bit  
125 °C thermal interrupt mask bit  
130 °C thermal interrupt mask bit  
unused  
LOWVINM  
THERM110M  
THERM120M  
THERM125M  
THERM130M  
UNUSED  
2
1
3
1
4
1
5
1
7:6  
00  
PF0100  
102  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 119. Register INTSENSE0 - ADDR 0x07  
Name  
Bit #  
R/W  
Default  
Description  
Power on sense bit  
PWRONS  
0
R
0
• 0 = PWRON low  
• 1 = PWRON high  
Low-voltage sense bit  
• 0 = VIN > 2.8 V  
• 1 = VIN 2.8 V  
LOWVINS  
1
2
3
4
R
R
R
R
0
0
0
0
110 °C thermal sense bit  
• 0 = Below threshold  
• 1 = Above threshold  
THERM110S  
THERM120S  
THERM125S  
120 °C thermal sense bit  
• 0 = Below threshold  
• 1 = Above threshold  
125 °C thermal sense bit  
• 0 = Below threshold  
• 1 = Above threshold  
130 °C thermal sense bit  
• 0 = Below threshold  
• 1 = Above threshold  
THERM130S  
UNUSED  
5
6
7
R
0
0
unused  
Additional VDDOTP voltage sense pin  
• 0 = VDDOTP grounded  
VDDOTPS  
R
00  
• 1 = VDDOTP to VCOREDIG or greater  
Table 120. Register INTSTAT1 - ADDR 0x08  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTI  
SW1BFAULTI  
SW1CFAULTI  
SW2FAULTI  
SW3AFAULTI  
SW3BFAULTI  
SW4FAULTI  
UNUSED  
0
1
2
3
4
5
6
7
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
0
0
0
0
0
0
SW1A overcurrent interrupt bit  
SW1B overcurrent interrupt bit  
SW1C overcurrent interrupt bit  
SW2 overcurrent interrupt bit  
SW3A overcurrent interrupt bit  
SW3B overcurrent interrupt bit  
SW4 overcurrent interrupt bit  
unused  
Table 121. Register INTMASK1 - ADDR 0x09  
Name  
Bit #  
R/W  
Default  
Description  
SW1AFAULTM  
SW1BFAULTM  
SW1CFAULTM  
SW2FAULTM  
SW3AFAULTM  
SW3BFAULTM  
0
1
2
3
4
5
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
1
1
1
1
SW1A overcurrent interrupt mask bit  
SW1B overcurrent interrupt mask bit  
SW1C overcurrent interrupt mask bit  
SW2 overcurrent interrupt mask bit  
SW3A overcurrent interrupt mask bit  
SW3B overcurrent interrupt mask bit  
PF0100  
NXP Semiconductors  
103  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 121. Register INTMASK1 - ADDR 0x09 (continued)  
Name  
Bit #  
R/W  
Default  
Description  
SW4FAULTM  
UNUSED  
6
7
R/W  
1
0
SW4 overcurrent interrupt mask bit  
unused  
Table 122. Register INTSENSE1 - ADDR 0x0A  
Name  
Bit #  
R/W  
Default  
Description  
SW1A overcurrent sense bit  
• 0 = Normal operation  
SW1AFAULTS  
0
R
0
• 1 = Above current limit  
SW1B overcurrent sense bit  
• 0 = Normal operation  
SW1BFAULTS  
SW1CFAULTS  
SW2FAULTS  
SW3AFAULTS  
SW3BFAULTS  
1
2
3
4
5
R
R
R
R
R
0
0
0
0
0
• 1 = Above current limit  
SW1C overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
SW2 overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
SW3A overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
SW3B overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
SW4 overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
SW4FAULTS  
UNUSED  
6
7
R
0
0
unused  
Table 123. Register INTSTAT3 - ADDR 0x0E  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTI  
UNUSED  
0
6:1  
7
R/W1C  
0
0x00  
0
SWBST overcurrent limit interrupt bit  
unused  
OTP_ECCI  
R/W1C  
OTP error interrupt bit  
Table 124. Register INTMASK3 - ADDR 0x0F  
Name  
Bit #  
R/W  
Default  
Description  
SWBSTFAULTM  
UNUSED  
0
6:1  
7
R/W  
1
0x00  
1
SWBST overcurrent limit interrupt mask bit  
unused  
OTP_ECCM  
R/W  
OTP error interrupt mask bit  
PF0100  
104  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 125. Register INTSENSE3 - ADDR 0x10  
Name  
Bit #  
R/W  
Default  
Description  
SWBST overcurrent limit sense bit  
• 0 = Normal operation  
SWBSTFAULTS  
UNUSED  
0
6:1  
7
R
0
0x00  
0
• 1 = Above current limit  
unused  
OTP error sense bit  
OTP_ECCS  
R
• 0 = No error detected  
• 1 = OTP error detected  
Table 126. Register INTSTAT4 - ADDR 0x11  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTI  
VGEN2FAULTI  
VGEN3FAULTI  
VGEN4FAULTI  
VGEN5FAULTI  
VGEN6FAULTI  
UNUSED  
0
1
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
R/W1C  
0
0
VGEN1 overcurrent interrupt bit  
VGEN2 overcurrent interrupt bit  
VGEN3 overcurrent interrupt bit  
VGEN4 overcurrent interrupt bit  
VGEN5 overcurrent interrupt bit  
VGEN6 overcurrent interrupt bit  
unused  
2
0
3
0
4
0
5
0
7:6  
00  
Table 127. Register INTMASK4 - ADDR 0x12  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1FAULTM  
VGEN2FAULTM  
VGEN3FAULTM  
VGEN4FAULTM  
VGEN5FAULTM  
VGEN6FAULTM  
UNUSED  
0
1
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
1
VGEN1 overcurrent interrupt mask bit  
VGEN2 overcurrent interrupt mask bit  
VGEN3 overcurrent interrupt mask bit  
VGEN4 overcurrent interrupt mask bit  
VGEN5 overcurrent interrupt mask bit  
VGEN6 overcurrent interrupt mask bit  
unused  
2
1
3
1
4
1
5
1
7:6  
00  
Table 128. Register INTSENSE4 - ADDR 0x13  
Name  
Bit #  
R/W  
Default  
Description  
VGEN1 overcurrent sense bit  
• 0 = Normal operation  
VGEN1FAULTS  
0
R
0
• 1 = Above current limit  
VGEN2 overcurrent sense bit  
• 0 = Normal operation  
VGEN2FAULTS  
VGEN3FAULTS  
VGEN4FAULTS  
1
2
3
R
R
R
0
0
0
• 1 = Above current limit  
VGEN3 overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
VGEN4 overcurrent sense bit  
• 0 = Normal operation  
• 1 = Above current limit  
PF0100  
NXP Semiconductors  
105  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 128. Register INTSENSE4 - ADDR 0x13 (continued)  
Name  
Bit #  
R/W  
Default  
Description  
VGEN5 overcurrent sense bit  
• 0 = Normal operation  
VGEN5FAULTS  
4
R
0
• 1 = Above current limit  
VGEN6 overcurrent sense bit  
• 0 = Normal operation  
VGEN6FAULTS  
UNUSED  
5
R
0
• 1 = Above current limit  
7:6  
00  
unused  
6.5.5 Specific registers  
6.5.5.1  
IC and version identification  
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 129 to 131.  
Table 129. Register DEVICEID - ADDR 0x00  
Name  
DEVICEID  
UNUSED  
Bit #  
R/W  
Default  
Description  
Die version.  
• 0000 = PF0100  
3:0  
7:4  
R
0x00  
0x01  
unused  
Table 130. Register SILICON REV- ADDR 0x03  
Name  
Bit #  
R/W  
Default  
Description  
Represents the metal mask revision  
• Pass 0.0 = 0000  
METAL_LAYER_REV  
3:0  
R
0x00  
• .  
• .  
• Pass 0.15 = 1111  
Represents the full mask revision  
• Pass 1.0 = 0001  
FULL_LAYER_REV  
7:4  
R
0x01  
• .  
• .  
• Pass 15.0 = 1111  
Table 131. Register FABID - ADDR 0x04  
Name  
Bit #  
R/W  
Default  
Description  
Allows for characterizing different options within  
the same reticule  
FIN  
1:0  
R
0x00  
FAB  
3:2  
7:0  
R
R
0x00  
0x00  
Represents the wafer manufacturing facility  
unused  
Unused  
6.5.5.2  
Embedded memory  
There are four register banks of general purpose embedded memory to store critical data. The data written to MEMA[7:0], MEMB[7:0],  
MEMC[7:0], and MEMD[7:0] is maintained by the coin cell when the main battery is deeply discharged, removed, or contact-bounced. The  
contents of the embedded memory are reset by COINPORB. The banks can be used for any system need for bit retention with coin cell  
backup.  
PF0100  
106  
NXP Semiconductors  
 
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 132. Register MEMA ADDR 0x1C  
Name  
Bit #  
R/W  
Default  
Description  
Description  
Description  
Description  
MEMA  
7:0  
R/W  
0
Memory bank A  
Memory bank B  
Memory bank C  
Memory bank D  
Table 133. Register MEMB ADDR 0x1D  
Name  
Bit #  
R/W  
Default  
MEMB  
7:0  
R/W  
0
Table 134. Register MEMC ADDR 0x1E  
Name  
Bit #  
R/W  
Default  
MEMC  
7:0  
R/W  
0
Table 135. Register MEMD ADDR 0x1F  
Name  
Bit #  
R/W  
Default  
MEMD  
7:0  
R/W  
0
6.5.6 Register bitmap  
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can  
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,  
the functional registers are the same, but the extended registers are different. To access registers in Table 137. Extended page 1, page  
111, one must first write 0x01 to the page register at address 0x7F, and to access registers in Table 138. Extended Page 2, page 115,  
one must first write 0x02 to the page register at address 0x7F. To access Table 136. Functional page, page 108 from one of the extended  
pages, no write to the page register is necessary.  
Registers missing in the sequence are reserved; reading from them returns a value 0x00, and writing to them has no effect.  
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:  
Name: Name of the bit.  
Bit #: The bit location in the register (7-0)  
R/W: Read / Write access and control  
• R is read-only access  
• R/W is read and write access  
• RW1C is read and write access with write 1 to clear  
Reset: Reset signals are color coded based on the following legend.  
Bits reset by SC and VCOREDIG_PORB  
Bits reset by PWRON or loaded default or OTP configuration  
Bits reset by DIGRESETB  
Bits reset by PORB or RESETBMCU  
Bits reset by VCOREDIG_PORB  
Bits reset by POR or OFFB  
Default: The value after reset, as noted in the default column of the memory map.  
• Fixed defaults are explicitly declared as 0 or 1.  
• “X” corresponds to read/write bits which are initialized at start-up, based on the OTP fuse settings or default if VDDOTP = 1.5 V. Bits  
are subsequently I2C modifiable, when their reset has been released. “X” may also refer to bits which may have other dependencies.  
For example, some bits may depend on the version of the IC, or a value from an analog block, for instance the sense bits for the  
interrupts.  
PF0100  
NXP Semiconductors  
107  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
6.5.6.1  
Register map  
Table 136. Functional page  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
6
0
5
0
4
1
3
2
1
0
DEVICE ID [3:0]  
00  
DeviceID  
R
8'b0001_0000  
0
0
0
0
FULL_LAYER_REV[3:0]  
METAL_LAYER_REV[3:0]  
03  
04  
05  
06  
07  
08  
09  
0A  
SILICONREVID  
FABID  
R
R
8'b0001_0000  
8'b0000_0000  
X
X
X
X
0
X
0
X
X
X
FAB[1:0]  
FIN[1:0]  
0
0
0
0
0
0
THERM130I  
THERM125I  
THERM120I  
THERM110I  
LOWVINI  
PWRONI  
INTSTAT0  
INTMASK0  
INTSENSE0  
INTSTAT1  
INTMASK1  
INTSENSE1  
RW1C 8'b0000_0000  
0
0
0
0
0
0
0
0
THERM130M  
THERM125M  
THERM120M  
THERM110M  
LOWVINM  
PWRONM  
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
0
0
1
1
1
1
1
1
VDDOTPS  
RSVD  
THERM130S  
THERM125S  
THERM120S  
THERM110S  
LOWVINS  
PWRONS  
x
0
0
0
0
0
x
x
x
x
x
SW4FAULTI  
SW3BFAULTI  
0
SW3AFAULTI  
0
SW2FAULTI  
SW1CFAULTI  
0
SW1BFAULTI  
0
SW1AFAULTI  
RW1C 8'b0000_0000  
0
0
0
SW4FAULTM  
SW3BFAULTM SW3AFAULTM  
SW2FAULTM  
SW1CFAULTM SW1BFAULTM  
SW1AFAULTM  
R/W  
R
8'b0111_1111  
8'b0xxx_xxxx  
1
1
1
1
1
1
1
SW4FAULTS  
x
SW3BFAULTS  
x
SW3AFAULTS  
x
SW2FAULTS  
x
SW1CFAULTS  
x
SW1BFAULTS  
x
SW1AFAULTS  
x
OTP_ECCI  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
SWBSTFAULTI  
0E  
0F  
10  
11  
INTSTAT3  
INTMASK3  
INTSENSE3  
INTSTAT4  
RW1C 8'b0000_0000  
0
0
OTP_ECCM  
SWBSTFAULTM  
R/W  
R
8'b1000_0001  
8'b0000_000x  
1
1
OTP_ECCS  
SWBSTFAULTS  
0
0
x
VGEN6FAULTI VGEN5FAULTI VGEN4FAULTI VGEN3FAULTI VGEN2FAULTI  
VGEN1FAULTI  
0
RW1C 8'b0000_0000  
0
0
0
0
0
VGEN6  
FAULTM  
VGEN5  
FAULTM  
VGEN4  
FAULTM  
VGEN3  
FAULTM  
VGEN2  
FAULTM  
VGEN1  
FAULTM  
0
0
0
0
12  
13  
INTMASK4  
R/W  
R
8'b0011_1111  
8'b00xx_xxxx  
1
1
1
1
1
1
VGEN6  
FAULTS  
VGEN5  
FAULTS  
VGEN4  
FAULTS  
VGEN3  
FAULTS  
VGEN2  
FAULTS  
VGEN1  
FAULTS  
INTSENSE4  
x
x
x
x
x
x
0
0
0
0
COINCHEN  
0
VCOIN[2:0]  
0
1A  
COINCTL  
R/W  
8'b0000_0000  
0
0
PF0100  
108  
NXP Semiconductors  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 136. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
6
5
0
0
0
0
0
x
x
x
4
1
0
0
0
0
x
3
2
1
0
REGSCPEN  
0
STANDBYINV  
0
STBYDLY[1:0]  
PWRONBDBNC[1:0]  
PWRONRSTEN  
0
RESTARTEN  
0
1B  
1C  
1D  
1E  
1F  
20  
21  
22  
23  
24  
PWRCTL  
MEMA  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0001_0000  
0
0
0
0
0
x
x
x
1
0
0
0
0
0
x
MEMA[7:0]  
MEMB[7:0]  
MEMC[7:0]  
MEMD[7:0]  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
x
x
x
0
0
0
0
x
x
x
MEMB  
MEMC  
MEMD  
0
0
0
0
0
0
0
0
0
0
SW1AB[5:0]  
SW1ABVOLT  
SW1ABSTBY  
SW1ABOFF  
SW1ABMODE  
SW1ABCONF  
R/W/M 8'b00xx_xxxx  
SW1ABSTBY[5:0]  
R/W  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b0000_1000  
8'bxx00_xx00  
x
x
SW1ABOFF[5:0]  
x
x
0
SW1ABOMODE  
0
SW1ABMODE[3:0]  
0
0
0
SW1ABDVSSPEED[1:0]  
SW1BAPHASE[1:0]  
SW1ABFREQ[1:0]  
SW1ABILIM  
0
x
x
0
0
x
x
0
0
0
0
0
0
0
0
0
SW1C[5:0]  
2E  
2F  
30  
31  
32  
SW1CVOLT  
SW1CSTBY  
SW1COFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b00xx_xxxx  
8'b0000_1000  
8'bxx00_xx00  
x
x
x
x
x
x
x
1
x
x
x
x
x
x
SW1CSTBY[5:0]  
x
SW1COFF[5:0]  
x
x
0
x
x
SW1CMODE[3:0]  
0
SW1COMODE  
0
SW1CMODE  
SW1CCONF  
0
x
0
SW1CILIM  
0
SW1CDVSSPEED[1:0]  
SW1CPHASE[1:0]  
SW1CFREQ[1:0]  
x
x
0
0
x
0
0
0
0
SW2[6:0]  
35  
36  
37  
SW2VOLT  
SW2STBY  
SW2OFF  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
x
SW2STBY[6:0]  
x
SW2OFF[6:0]  
x
PF0100  
NXP Semiconductors  
109  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 136. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
6
0
5
4
0
3
1
x
2
0
x
1
0
SW2OMODE  
0
SW2MODE[3:0]  
38  
39  
SW2MODE  
SW2CONF  
R/W  
R/W  
8'b0000_1000  
0
0
0
SW2ILIM  
0
SW2DVSSPEED[1:0]  
SW2PHASE[1:0]  
SW2FREQ[1:0]  
8'bxx01_xx00  
x
x
0
1
0
0
0
SW3A[6:0]  
3C  
3D  
3E  
3F  
40  
SW3AVOLT  
SW3ASTBY  
SW3AOFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx10_xx00  
x
x
x
0
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
SW3ASTBY[6:0]  
x
SW3AOFF[6:0]  
x
x
x
0
SW3AOMODE  
0
SW3AMODE[3:0]  
SW3AMODE  
SW3ACONF  
0
1
x
0
0
0
SW3AILIM  
0
SW3ADVSSPEED[1:0]  
SW3APHASE[1:0]  
SW3AFREQ[1:0]  
x
x
1
0
x
0
0
0
0
SW3B[6:0]  
43  
44  
45  
46  
47  
SW3BVOLT  
SW3BSTBY  
SW3BOFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx10_xx00  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
SW3BSTBY[6:0]  
x
SW3BOFF[6:0]  
x
x
0
x
x
0
SW3BOMODE  
0
SW3BMODE[3:0]  
SW3BMODE  
SW3BCONF  
1
0
0
0
SW3BILIM  
0
SW3BDVSSPEED[1:0]  
SW3BPHASE[1:0]  
SW3BFREQ[1:0]  
x
x
1
0
x
0
0
0
0
SW4[6:0]  
4A  
4B  
4C  
4D  
4E  
SW4VOLT  
SW4STBY  
SW4OFF  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0xxx_xxxx  
8'b0000_1000  
8'bxx11_xx00  
x
x
x
x
x
x
x
x
x
x
0
x
x
x
x
x
x
x
SW4STBY[6:0]  
x
SW4OFF[6:0]  
x
x
0
x
x
0
SW4OMODE  
0
SW4MODE[3:0]  
SW4MODE  
SW4CONF  
1
0
0
0
SW4ILIM  
0
SW4DVSSPEED[1:0]  
SW4PHASE[1:0]  
SW4FREQ[1:0]  
x
x
1
1
x
PF0100  
110  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 136. Functional page (continued)  
BITS[7:0]  
Add Register name R/W  
Default  
7
0
6
5
4
0
3
2
1
0
SWBST1STBYMODE[1:0]  
SWBST1MODE[1:0]  
SWBST1VOLT[1:0]  
66  
SWBSTCTL  
R/W  
8'b0xx0_10xx  
x
x
1
0
x
x
0
0
0
0
0
0
0
0
VREFDDREN  
0
0
0
0
6A  
6B  
6C  
6D  
6E  
6F  
70  
71  
VREFDDRCTL  
VSNVSCTL  
VGEN1CTL  
VGEN2CTL  
VGEN3CTL  
VGEN4CTL  
VGEN5CTL  
VGEN6CTL  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b000x_0000  
8'b0000_0xxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
0
0
x
0
VSNVSVOLT[2:0]  
x
0
0
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
VGEN1LPWR  
VGEN1STBY  
VGEN1EN  
VGEN1[3:0]  
0
0
x
x
x
x
x
x
x
x
x
x
x
x
x
VGEN2LPWR  
VGEN2STBY  
VGEN2EN  
VGEN2[3:0]  
VGEN3[3:0]  
VGEN4[3:0]  
VGEN5[3:0]  
VGEN6[3:0]  
0
0
x
VGEN3LPWR  
VGEN3STBY  
VGEN3EN  
0
0
x
VGEN4LPWR  
VGEN4STBY  
VGEN4EN  
0
0
x
VGEN5LPWR  
VGEN5STBY  
VGEN5EN  
0
0
x
VGEN6LPWR  
0
VGEN6STBY  
0
VGEN6EN  
x
0
0
0
PAGE[4:0]  
0
7F  
Page Register  
R/W  
8'b0000_0000  
0
0
0
0
Table 137. Extended page 1  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
6
5
0
4
x
3
x
2
x
1
x
0
OTP FUSE  
READ EN  
0
OTP FUSE READ  
80  
84  
R/W  
R/W  
8'b000x_xxx0  
EN  
0
RL TRIM  
FUSE  
START  
0
RL PWBRTN FORCE PWRCTL RL PWRCTL  
RL OTP  
0
RL OTP ECC RL OTP FUSE  
OTP LOAD MASK  
8'b0000_0000  
0
0
0
0
0
0
x
x
x
x
x
x
x
x
x
ECC5_SE  
ECC4_SE  
ECC3_SE  
ECC2_SE  
ECC1_SE  
8A  
8B  
8C  
OTP ECC SE1  
OTP ECC SE2  
OTP ECC DE1  
R
R
R
8'bxxx0_0000  
8'bxxx0_0000  
8'bxxx0_0000  
0
0
0
0
0
ECC10_SE  
ECC9_SE  
ECC8_SE  
ECC7_SE  
ECC6_SE  
0
ECC5_DE  
0
0
ECC4_DE  
0
0
ECC3_DE  
0
0
ECC2_DE  
0
0
ECC1_DE  
0
PF0100  
NXP Semiconductors  
111  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 137. Extended page 1 (continued)  
BITS[7:0]  
Address Register name TYPE  
Default  
7
x
6
x
5
x
4
3
ECC9_DE  
0
2
ECC8_DE  
0
1
ECC7_DE  
0
0
ECC6_DE  
0
ECC10_DE  
0
8D  
OTP ECC DE2  
R
8'bxxx0_0000  
0
0
0
0
SW1AB_VOLT[5:0]  
x
A0  
A1  
A2  
OTP SW1AB VOLT  
OTP SW1AB SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxXx  
8'b0000_xxxx  
x
x
x
x
x
x
x
SW1AB_SEQ[4:0]  
x
0
0
0
0
x
0
x
X
SW1_CONFIG[1:0]  
SW1AB_FREQ[1:0]  
OTP SW1AB  
CONFIG  
x
x
x
0
0
0
0
SW1C_VOLT[5:0]  
x
A8  
A9  
AA  
OTP SW1C VOLT  
OTP SW1C SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
x
x
x
x
x
x
SW1C_SEQ[4:0]  
0
0
0
0
x
0
x
0
x
0
SW1C_FREQ[1:0]  
OTP SW1C  
CONFIG  
x
x
0
0
0
SW2_VOLT[5:0]  
x
AC  
AD  
AE  
OTP SW2 VOLT  
OTP SW2 SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
x
SW2_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW2_FREQ[1:0]  
OTP SW2 CONFIG  
x
0
0
0
SW3A_VOLT[6:0]  
x
B0  
B1  
B2  
OTP SW3A VOLT  
OTP SW3A SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_xxxx  
x
0
0
x
x
x
x
x
x
x
SW3A_SEQ[4:0]  
x
0
0
x
0
x
x
SW3_CONFIG[1:0]  
SW3A_FREQ[1:0]  
OTP SW3A  
CONFIG  
x
x
x
0
0
0
SW3B_VOLT[6:0]  
x
B4  
B5  
B6  
OTP SW3B VOLT  
OTP SW3B SEQ  
R/W  
R/W  
R/W  
8'b0xxx_xxxx  
8'b000x_xxxx  
8'b0000_00xx  
x
0
0
x
x
x
x
x
x
x
SW3B_SEQ[4:0]  
0
0
x
0
x
0
x
0
SW3B_CONFIG[1:0]  
OTP SW3B  
CONFIG  
x
x
PF0100  
112  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 137. Extended page 1 (continued)  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
0
0
6
5
4
3
2
1
x
x
0
x
x
x
SW4_VOLT[6:0]  
x
B8  
B9  
BA  
OTP SW4 VOLT  
OTP SW4 SEQ  
R/W  
R/W  
R/W  
8'b00xx_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
0
0
0
x
0
0
x
x
SW4_SEQ[4:0]  
x
VTT  
x
x
x
x
x
SW4_FREQ[1:0]  
OTP SW4 CONFIG  
x
0
0
0
0
0
0
0
0
SWBST_VOLT[1:0]  
BC  
BD  
OTP SWBST VOLT  
OTP SWBST SEQ  
R/W  
R/W  
8'b0000_00xx  
8'b0000_xxxx  
0
x
x
SWBST_SEQ[4:0]  
x
0
x
x
x
0
0
0
0
0
VSNVS_VOLT[2:0]  
x
C0  
C4  
OTP VSNVS VOLT  
R/W  
R/W  
8'b0000_0xxx  
8'b000x_x0xx  
0
x
x
0
0
0
VREFDDR_SEQ[4:0]  
0
OTP VREFDDR  
SEQ  
x
x
x
0
0
0
0
0
0
0
VGEN1_VOLT[3:0]  
C8  
C9  
OTP VGEN1 VOLT  
OTP VGEN1 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN1_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN2_VOLT[3:0]  
CC  
CD  
OTP VGEN2 VOLT  
OTP VGEN2 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN2_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN3_VOLT[3:0]  
D0  
D1  
OTP VGEN3 VOLT  
OTP VGEN3 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN3_SEQ[4:0]  
x
x
x
0
0
0
0
0
0
0
VGEN4_VOLT[3:0]  
D4  
D5  
OTP VGEN4 VOLT  
OTP VGEN4 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN4_SEQ[4:0]  
x
x
x
PF0100  
NXP Semiconductors  
113  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 137. Extended page 1 (continued)  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
0
6
0
0
5
0
0
4
0
3
x
x
2
1
0
x
x
VGEN5_VOLT[3:0]  
D8  
D9  
OTP VGEN5 VOLT  
OTP VGEN5 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
VGEN5_SEQ[4:0]  
x
x
0
0
0
0
0
0
0
VGEN6_VOLT[3:0]  
DC  
DD  
OTP VGEN6 VOLT  
OTP VGEN6 SEQ  
R/W  
R/W  
8'b0000_xxxx  
8'b000x_xxxx  
x
x
x
x
x
x
VGEN6_SEQ[4:0]  
x
x
x
PWRON_  
CFG1  
0
0
0
0
0
0
0
0
0
SWDVS_CLK1[1:0]  
SEQ_CLK_SPEED1[1:0]  
E0  
E1  
E2  
OTP PU CONFIG1  
OTP PU CONFIG2  
OTP PU CONFIG3  
R/W  
R/W  
R/W  
8'b000x_xxxx  
8'b000x_xxxx  
8'b000x_xxxx  
x
x
x
x
x
PWRON_  
CFG2  
SWDVS_CLK2[1:0]  
SEQ_CLK_SPEED2[1:0]  
x
x
x
x
x
PWRON_  
CFG3  
SWDVS_CLK3[1:0]  
SEQ_CLK_SPEED3[1:0]  
x
x
x
x
x
PWRON_CFG  
_XOR  
0
SWDVS_CLK3_XOR  
SEQ_CLK_SPEED_XOR  
OTP PU CONFIG  
XOR  
E3  
R
8'b000x_xxxx  
8'b0000_00x0  
0
0
x
x
x
x
x
SOFT_FUSE_  
POR  
TBB_POR  
FUSE_POR1  
(83)  
E4  
OTP FUSE POR1  
R/W  
0
RSVD  
0
0
RSVD  
0
0
0
0
0
0
0
0
0
0
0
0
0
x
0
0
0
FUSE_POR2  
E5  
E6  
OTP FUSE POR1  
OTP FUSE POR1  
R/W  
R/W  
8'b0000_00x0  
8'b0000_00x0  
x
RSVD  
0
RSVD  
0
FUSE_POR3  
x
FUSE_POR_X  
OR  
RSVD  
RSVD  
OTP FUSE POR  
XOR  
E7  
E8  
R
8'b0000_00x0  
0
0
0
0
0
0
0
0
0
0
0
0
x
x
0
OTP_PG_EN  
0
OTP PWRGD EN  
OTP EN ECCO  
R/W/M 8'b0000_000x  
EN_ECC_  
BANK5  
EN_ECC_  
BANK4  
EN_ECC_  
BANK3  
EN_ECC_  
BANK2  
EN_ECC_  
BANK1  
0
0
0
F0  
R/W  
8'b000x_xxxx  
x
x
x
x
x
EN_ECC_  
BANK10  
EN_ECC_  
BANK9  
EN_ECC_  
BANK8  
EN_ECC_  
BANK7  
EN_ECC_  
BANK6  
F1  
F4  
OTP EN ECC1  
R/W  
R/W  
8'b000x_xxxx  
8'b0000_xxxx  
0
0
0
0
0
0
x
0
x
x
x
x
RSVD  
OTP SPARE2_4  
x
x
x
x
PF0100  
114  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 137. Extended page 1 (continued)  
BITS[7:0]  
Address Register name TYPE  
Default  
7
0
0
0
6
0
0
0
5
0
0
0
4
0
0
0
3
0
0
0
2
1
RSVD  
x
0
F5  
F6  
F7  
OTP SPARE4_3  
OTP SPARE6_2  
OTP SPARE7_1  
R/W  
R/W  
R/W  
8'b0000_0xxx  
8'b0000_00xx  
8'b0000_0xxx  
x
0
x
x
RSVD  
x
x
x
RSVD  
x
0
0
0
0
0
0
0
OTP_DONE  
x
FE  
FF  
OTP DONE  
R/W  
R/W  
8'b0000_000x  
8'b0000_0xxx  
I2C_SLV  
ADDR[3]  
0
0
0
0
I2C_SLV ADDR[2:0]  
x
OTP I2C ADDR  
1
x
x
Notes  
83.  
In the MMPF0100 FUSE_POR1, FUSE_POR2, and FUSE_POR3 are XOR’ed into the FUSE_POR_XOR bit. The FUSE_POR_XOR has to be 1  
for fuses to be loaded. This can be achieved by setting any one or all of the FUSE_PORx bits. In MMPF0100A, the XOR function is removed. It is  
required to set all of the FUSE_PORx bits to be able to load the fuses.  
Table 138. Extended Page 2  
BITS[7:0]  
Address  
Register name  
TYPE  
Default  
7
6
5
4
3
2
1
0
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW1AB_PWRSTG[2:0]  
1
81  
82  
83  
84  
85  
86  
SW1AB PWRSTG  
PWRSTG RSVD  
SW1C PWRSTG  
SW2 PWRSTG  
SW3A PWRSTG  
SW3B PWRSTG  
R/W  
R
8'b1111_1111  
8'b0000_0000  
8'b1111_1111  
8'b1111_1111  
8'b1111_1111  
8'b1111_1111  
1
0
1
1
1
1
1
0
1
1
1
1
PWRSTGRSVD  
0
RSVD  
1
0
RSVD  
1
0
RSVD  
1
0
RSVD  
1
0
RSVD  
1
0
SW1C_PWRSTG[2:0]  
R
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW2_PWRSTG[2:0]  
R
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW3A_PWRSTG[2:0]  
R
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
RSVD  
1
SW3B_PWRSTG[2:0]  
1
R
FSLEXT_  
THERM_  
DISABLE  
PWRGD_  
SHDWN_  
DISABLE  
RSVD  
RSVD  
RSVD  
SW4_PWRSTG[2:0]  
87  
88  
SW4 PWRSTG  
R
8'b0111_1111  
8'b0000_0001  
0
0
0
0
1
0
1
0
1
0
1
0
1
1
OTP_  
SHDWN_EN  
PWRGD_EN  
PWRCTRL OTP  
CTRL  
R/W  
0
0
1
I2C_WRITE_ADDRESS_TRAP[7:0]  
I2C WRITE  
ADDRESS TRAP  
8D  
R/W  
8'b0000_0000  
0
0
0
0
0
0
0
PF0100  
NXP Semiconductors  
115  
 
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 138. Extended Page 2 (continued)  
BITS[7:0]  
Address  
Register name  
I2C TRAP PAGE  
I2C TRAP CNTR  
IO DRV  
TYPE  
R/W  
Default  
7
6
RSVD  
0
5
RSVD  
0
4
3
2
1
0
0
0
0
0
LET_IT_ ROLL  
0
I2C_TRAP_PAGE[4:0]  
0
8E  
8F  
90  
8'b0000_0000  
8'b0000_0000  
8'b00xx_xxxx  
0
0
I2C_WRITE_ADDRESS_COUNTER[7:0]  
R/W  
0
0
0
0
0
x
0
x
0
x
SDA_DRV[1:0]  
SDWNB_DRV[1:0]  
INTB_DRV[1:0]  
RESETBMCU_DRV[1:0]  
R/W  
0
x
x
x
AUTO_ECC  
_BANK5  
AUTO_ECC AUTO_ECC_B AUTO_ECC AUTO_ECC_B  
0
0
0
0
0
0
_BANK4  
ANK3  
_BANK2  
ANK1  
DO  
D1  
OTP AUTO ECC0  
OTP AUTO ECC1  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
AUTO_ECC_B AUTO_ECC AUTO_ECC_B AUTO_ECCBA AUTO_ECC_B  
ANK10  
_BANK9  
ANK8  
NK7  
ANK6  
0
0
0
0
0
RSVD  
RSVD  
(84)  
D8  
Reserved  
Reserved  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
(84)  
D9  
ECC1_EN_  
TBB  
ECC1_CALC_  
CIN  
ECC1_CIN_TBB[5:0]  
E1  
E2  
E3  
E4  
E5  
E6  
E7  
E8  
OTP ECC CTRL1  
OTP ECC CTRL2  
OTP ECC CTRL3  
OTP ECC CTRL4  
OTP ECC CTRL5  
OTP ECC CTRL6  
OTP ECC CTRL7  
OTP ECC CTRL8  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
ECC2_EN_  
TBB  
ECC2_CALC_  
CIN  
ECC2_CIN_TBB[5:0]  
0
0
0
0
ECC3_EN_  
TBB  
ECC3_CALC_  
CIN  
ECC3_CIN_TBB[5:0]  
0
0
0
0
ECC4_EN_  
TBB  
ECC4_CALC_  
CIN  
ECC4_CIN_TBB[5:0]  
0
0
0
0
ECC5_EN_  
TBB  
ECC5_CALC_  
CIN  
ECC5_CIN_TBB[5:0]  
0
0
0
0
ECC6_EN_  
TBB  
ECC6_CALC_  
CIN  
ECC6_CIN_TBB[5:0]  
0
0
0
0
ECC7_EN_  
TBB  
ECC7_CALC_  
CIN  
ECC7_CIN_TBB[5:0]  
0
0
0
0
ECC8_EN_  
TBB  
ECC8_CALC_  
CIN  
ECC8_CIN_TBB[5:0]  
0
0
0
0
PF0100  
116  
NXP Semiconductors  
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS  
Table 138. Extended Page 2 (continued)  
BITS[7:0]  
Address  
Register name  
TYPE  
Default  
7
6
5
0
0
4
0
0
3
2
1
0
0
0
0
0
ECC9_EN_  
TBB  
ECC9_CALC_  
CIN  
ECC9_CIN_TBB[5:0]  
E9  
OTP ECC CTRL9  
R/W  
8'b0000_0000  
0
0
0
0
ECC10_EN_T ECC10_CALC  
ECC10_CIN_TBB[5:0]  
BB  
_CIN  
EA  
OTP ECC CTRL10  
R/W  
8'b0000_0000  
0
0
0
0
ANTIFUSE1_E ANTIFUSE1_L ANTIFUSE1_R  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
BYPASS1  
N
OAD  
W
F1  
F2  
F3  
F4  
F5  
F6  
F7  
F8  
F9  
OTP FUSE CTRL1  
OTP FUSE CTRL2  
OTP FUSE CTRL3  
OTP FUSE CTRL4  
OTP FUSE CTRL5  
OTP FUSE CTRL6  
OTP FUSE CTRL7  
OTP FUSE CTRL8  
OTP FUSE CTRL9  
OTP FUSE CTRL10  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
8'b0000_0000  
0
0
0
0
ANTIFUSE2_E ANTIFUSE2_L ANTIFUSE2_R  
BYPASS2  
N
OAD  
W
0
0
0
0
ANTIFUSE3_E ANTIFUSE3_L ANTIFUSE3_R  
BYPASS3  
N
OAD  
W
0
0
0
0
ANTIFUSE4_E ANTIFUSE4_L ANTIFUSE4_R  
BYPASS4  
N
OAD  
W
0
0
0
0
ANTIFUSE5_E ANTIFUSE5_L ANTIFUSE5_R  
BYPASS5  
N
OAD  
W
0
0
0
0
ANTIFUSE6_E ANTIFUSE6_L ANTIFUSE6_R  
BYPASS6  
N
OAD  
W
0
0
0
0
ANTIFUSE7_E ANTIFUSE7_L ANTIFUSE7_R  
BYPASS7  
N
OAD  
W
0
0
0
0
ANTIFUSE8_E ANTIFUSE8_L ANTIFUSE8_R  
BYPASS8  
N
OAD  
W
0
0
0
0
ANTIFUSE9_E ANTIFUSE99_ ANTIFUSE9_R  
BYPASS9  
N
LOAD  
W
0
0
0
0
ANTIFUSE10_ ANTIFUSE10_ ANTIFUSE10_  
BYPASS10  
0
EN  
LOAD  
RW  
FA  
0
0
0
Notes  
84.  
Do not write in reserved registers.  
PF0100  
NXP Semiconductors  
117  
TYPICAL APPLICATIONS  
7
Typical applications  
7.1  
Introduction  
Figure 35 provides a typical application diagram of the PF0100 PMIC together with its functional components. For details on component  
references and additional components such as filters, refer to the individual sections.  
7.1.1 Application diagram  
VIN1  
SW1AB Output  
SW1FB  
1.0uF  
2.2uF  
4.7uF  
Vin  
VIN1  
4.7uF  
PF0100  
VGEN1  
100mA  
SW1AIN  
SW1ALX  
VGEN1  
O/P  
Drive  
1.0uH  
SW1A/B  
Single/Dual  
2500 mA  
Buck  
VGEN2  
250mA  
VGEN2  
2 x22uF  
SW1BLX  
SW1BIN  
O/P  
Drive  
VIN2  
1.0uF  
2.2uF  
VIN2  
4.7uF  
4.7uF  
Vin  
Vin  
VGEN3  
100mA  
SW1C Output  
VGEN3  
1.0uH  
SW1CLX  
SW1CIN  
O/P  
Drive  
SW1C  
2000 mA  
Buck  
VGEN4  
350mA  
3 x 22uF  
4.7uF  
VGEN4  
VIN3  
SW1CFB  
VIN3  
SW1VSSSNS  
Core Control logic  
1.0uF  
2.2uF  
VGEN5  
100mA  
SW2 Output  
1.0uH  
VGEN5  
VGEN6  
SW2LX  
SW2IN  
SW2IN  
SW2FB  
Initialization State Machine  
SW2  
2000 mA  
Buck  
O/P  
Drive  
VGEN6  
200mA  
2.2uF  
3 x 22uF  
4.7uF  
Vin  
SW3AFB  
OTP  
Supplies  
Control  
SW3A Output  
2 x 22uF  
Vin  
4.7uF  
SW3AIN  
SW3ALX  
VDDOTP  
O/P  
Drive  
VDDOTP  
VDDIO  
1.0uH  
1.0uH  
VDDIO  
SW3A/B  
Single/Dual  
DDR  
2500 mA  
Buck  
CONTROL  
SW3BLX  
SW3BIN  
I2C  
Interface  
0.1uF  
O/P  
Drive  
2 x 22uF  
SCL  
SDA  
To  
MCU  
4.7uF  
Vin  
Vin  
SW3BFB  
SW3B Output  
DVS CONTROL  
SW3VSSSNS  
DVS Control  
SW4FB  
SW4 Output  
3 x 22uF  
4.7uF  
2.2uH  
SW4  
1000 mA  
Buck  
SW4IN  
O/P  
Drive  
1.0uH  
I2C  
Register  
map  
SW4LX  
1uF  
Trim-In-Package  
VCOREDIG  
VCOREREF  
GNDREF1  
Vin  
10uF  
220nF  
1uF  
SWBSTLX  
SWBSTIN  
SWBSTFB  
Reference  
Generation  
SWBST  
Output  
Clocks and  
resets  
SWBST  
600 mA  
Boost  
O/P  
Drive  
Vin  
VCORE  
2 x 22uF  
GNDREF  
2.2uF  
1uF  
VREFDDR  
VSW3A  
VINREFDDR  
100nF  
100nF  
Vin  
Clocks  
32kHz and 16MHz  
Package Pin Legend  
VHALF  
Output Pin  
Input Pin  
Bi-directional Pin  
VIN  
1uF  
Best  
of  
Supply  
Li Cell  
Charger  
LICELL  
100nF  
VSNVS  
Coin Cell  
Battery  
VSW2  
VSW2  
VSW2  
VSW2  
0.47uF  
To/From  
AP  
Figure 35. Typical application schematic  
PF0100  
118  
NXP Semiconductors  
 
TYPICAL APPLICATIONS  
7.1.2 Bill of materials  
The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40  
°C to 85 °C applications. Components are provided with an example part number; equivalent components may be used.  
(85)  
Table 139. Bill of materials -40 °C to 85 °C applications  
Value  
PMIC  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
1
Power management IC  
MMPF0100  
Freescale  
Buck, SW1AB - (0.300-1.875 V), 2.5 A  
2.5 x 2 x 1.2  
1.0 μH  
1
DFE252012R-H-1R0M  
TOKO INC.  
Output inductor  
ISAT = 3.4 A for 10% drop,  
DCRMAX = 49 mΩ  
22 μH  
4.7 μF  
0.1 μF  
4
2
1
10 V X5R 0603  
10 V X5R 0402  
10 V X5R 0201  
GRM188R61A226ME15  
GRM155R61A475MEAA  
GRM033R61A104ME84  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW1C - (0.300-1.875 V), 2.0 A  
2.5 x 2 x 1.2  
1.0 μH  
1
DFE252012C-1R0M  
TOKO INC.  
Output inductor  
ISAT = 3.0 A for 10% drop,  
DCRMAX = 59 mΩ  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X5R 0603  
10 V X5R 0402  
10 V X5R 0201  
GRM188R61A226ME15  
GRM155R61A475MEAA  
GRM033R61A104ME84  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW2 - (0.400-3.300 V), 2.0 A  
2.5 x 2 x 1.2  
1.0 μH  
1
DFE252012C-1R0M  
TOKO INC.  
Output inductor  
ISAT = 3.0 A for 10% drop,  
DCRMAX = 59 mΩ  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X5R 0603  
10 V X5R 0402  
10 V X5R 0201  
GRM188R61A226ME15  
GRM155R61A475MEAA  
GRM033R61A104ME84  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW3AB - (0.400-3.300 V), 2.5 A  
2.5 x 2 x 1.2  
1.0 μH  
1
DFE252012R-1R0M  
TOKO INC.  
Output inductor  
ISAT = 3.4 A for 10% drop,  
DCRMAX = 49 mΩ  
22 μF  
4.7 μF  
0.1 μF  
3
2
1
10 V X5R 0603  
10 V X5R 0402  
10 V X5R 0201  
GRM188R61A226ME15  
GRM155R61A475MEAA  
GRM033R61A104ME84  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW4 - (0.400-3.300V), 1.0 A  
2 x 1.6 x 0.9  
1.0 μH  
1
LQM2MPN1R0MGH  
Murata  
Output inductor  
ISAT = 2.0 A for 30% drop,  
DCRMAX = 80 mΩ  
22 μF  
4.7 μF  
0.1 μF  
3
2
1
10 V X5R 0603  
10 V X5R 0402  
10 V X5R 0201  
GRM188R61A226ME15  
GRM155R61A475MEAA  
GRM033R61A104ME84  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
PF0100  
NXP Semiconductors  
119  
 
TYPICAL APPLICATIONS  
Table 139. Bill of materials -40 °C to 85 °C applications (continued) (85)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
BOOST, SWBST - 5.0 V, 600 mA  
2 x 1.6 x 1  
ISAT = 2.4 A for 10% drop  
2.2 μH  
1
DFE201610E-2R2M  
TOKO INC.  
Output inductor  
22 μF  
10 μF  
2.2 μF  
0.1 μF  
1.0 A  
2
3
1
1
1
10 V X5R 0603  
GRM188R61A226ME15D Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Input capacitance  
Schottky diode  
10 V X5R 0402  
GRM155R61A106ME11  
GRM033R61A225ME47  
GRM033R61A104KE84  
Murata  
10 V X5R 0201  
Murata  
10 V X5R 0201  
Murata  
DIODE SCH PWR RECT 1.0 A 20V SMT MBR120LSFT3G  
ON Semiconductor  
LDO, VGEN1, 2, 3, 4, 5, 6  
4.7 μF  
2.2 μF  
1
1
10 V X5R 0402  
10 V X5R 0201  
GRM155R61A475MEAA  
GRM033R61A225ME47  
Murata  
Murata  
VGEN2,4 output capacitors  
VGEN1,3,5,6 output  
capacitors  
VGEN1,2,3,4,5,6 input  
capacitors  
1.0 μF  
1
10 V X5R 0402  
GRM033R61A105ME44  
Murata  
Miscellaneous  
VCORE, VCOREDIG,  
VREFDDR, VINREFDDR,  
VIN capacitors  
1.0 μF  
1
10 V X5R 0402  
GRM033R61A105ME44  
Murata  
0.22 μF  
0.47 μF  
1
1
10 V X5R 0201  
10 V X5R 0201  
GRM033R61A224ME90  
GRM033R61A474ME90  
Murata  
Murata  
VCOREREF output capacitor  
VSNVS output capacitor  
VHALF, VINREFDDR,  
VDDIO, LICELL capacitors  
0.1 μF  
1
10 V X5R 0201  
GRM033R61A104KE84  
Murata  
100 kΩ  
4.7 kΩ  
Notes  
2
2
RES MF 100 k 1/16 W 1% 0402  
RES MF 4.70K 1/20W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
Yageo America  
Yageo America  
Pull-up resistors  
I2C pull-up resistors  
85.  
NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP  
offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
PF0100  
120  
NXP Semiconductors  
 
TYPICAL APPLICATIONS  
The following table provides a complete list of the recommended components on a full featured system using the PF0100 Device for -40  
°C to 105 °C applications. Components are provided with an example part number; equivalent components may be used.  
(86)  
Table 140. Bill of materials -40 °C to 105 °C applications  
Value  
PMIC  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
1
Power management IC  
MMPF0100  
Freescale  
Buck, SW1AB - (0.300-1.875 V), 2.5 A  
2.5 x 2 x 1.2  
1.0 μH  
1
ISAT = 3.4 A for 10% drop  
DFE252012R-H-1R0M  
TOKO INC.  
Output inductor  
DCRMAX = 49 mΩ  
22 μH  
4.7 μF  
0.1 μF  
4
2
1
10 V X7T 0805  
10 V X7S 0603  
10 V X7S 0201  
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW1C - (0.300-1.875 V), 2.0 A  
2 x 1.6 x 1  
1.0 μH  
1
DFE201610E-1R0M  
TOKO INC.  
Output inductor  
ISAT = 2.9 A for 10% drop  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X7T 0805  
10 V X7S 0603  
10 V X7S 0201  
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW1ABC - (0.300-1.875 V), 4.5 A  
4.2 x 4.2 x 2  
1.0 μH  
1
ISAT = 5.1 A for 10% drop,  
FDSD0420-H-1R0M  
TOKO INC.  
Output inductor  
DCRMAX = 29 mΩ  
10 V X7T 0805  
10 V X7S 0603  
10 V X7S 0201  
22 μF  
4.7 μF  
0.1 μF  
6
2
1
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW2 - (0.400-3.300 V), 2.0 A  
2 x 1.6 x 1  
1.0 μH  
1
DFE201610E-1R0M  
TOKO INC.  
Output inductor  
ISAT = 2.9 A for 10% drop  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X7T 0805  
10 V X7S 0603  
10 V X7S 0201  
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Buck, SW3AB - (0.400-3.300 V), 2.5 A  
2 x 1.6 x 1  
ISAT = 2.9 A for 10% drop  
1.0 μH  
1
DFE201610E-1R0M  
TOKO INC.  
Output inductor  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X7T 0805  
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
10 V X7S 0603  
10 V X7S 0201  
Buck, SW4 - (0.400-3.300V), 1.0 A  
2 x 1.6 x 1  
ISAT = 2.9 A for 30% drop  
1.0 μH  
1
DFE201610E-1R0M  
Murata  
Output inductor  
22 μF  
4.7 μF  
0.1 μF  
3
1
1
10 V X7T 0805  
GRM21BD71A226ME44  
GRM188C71A475KE11  
GRM033C71A104KE14  
Murata  
Murata  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
10 V X7S 0603  
10 V X7S 0201  
PF0100  
NXP Semiconductors  
121  
 
TYPICAL APPLICATIONS  
Table 140. Bill of materials -40 °C to 105 °C applications (continued) (86)  
Value  
Qty  
Description  
Part#  
Manufacturer  
Component/pin  
BOOST, SWBST - 5.0 V, 600 mA  
2 x 1.6 x 1  
ISAT = 2.4 A for 10% drop  
2.2 μH  
1
DFE201610E-2R2M  
TOKO INC.  
Output inductor  
22 μF  
10 μF  
2.2 μF  
0.1 μF  
1.0 A  
2
3
1
1
1
10 V X7T 0805  
GRM21BD71A226ME44  
GRM188D71A106MA73  
GRM155C71A225KE11  
GRM033C71A104KE14  
MBR120LSFT3G  
Murata  
Output capacitance  
Input capacitance  
Input capacitance  
Input capacitance  
Schottky diode  
10 V X7T 0603  
Murata  
10 V X7S 0402  
Murata  
10 V X7S 0201  
Murata  
DIODE SCH PWR RECT 1A 20V SMT  
ON Semiconductor  
LDO, VGEN1, 2, 3, 4, 5, 6  
4.7 μF  
2.2 μF  
1
1
10 V X7S 0603  
10 V X7S 0402  
GRM188C71A475KE11  
GRM155C71A225KE11  
Murata  
Murata  
VGEN2,4 output capacitors  
VGEN1,3,5,6 output  
capacitors  
VGEN1,2,3,4,5,6 input  
capacitors  
1.0 μF  
1
10 V X7S 0402  
GRM155C71A105KE11  
Murata  
Miscellaneous  
VCORE, VCOREDIG,  
VREFDDR, VINREFDDR,  
VIN capacitors  
1.0 μF  
1
10 V X7S 0402  
GRM155C71A105KE11  
Murata  
0.22 μF  
0.47 μF  
1
1
10 V X7R 0402  
10 V X7R 0402  
GRM155R71A224KE01  
GRM155R71A474KE01  
Murata  
Murata  
VCOREREF output capacitor  
VSNVS output capacitor  
VHALF, VINREFDDR,  
VDDIO, LICELL capacitors  
0.1 μF  
1
10 V X7S 0201  
GRM033C71A104KE14  
Murata  
100 kΩ  
4.7 kΩ  
Notes  
2
2
RES MF 100 k 1/16 W 1% 0402  
RES MF 4.70K 1/20W 1% 0201  
RC0402FR-07100KL  
RC0201FR-074K7L  
Yageo America  
Yageo America  
Pull-up resistors  
I2C pull-up resistors  
86.  
NXP does not assume liability, endorse, or warrant components from external manufacturers referenced in circuit drawings or tables. While NXP  
offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.  
PF0100  
122  
NXP Semiconductors  
TYPICAL APPLICATIONS  
7.2  
PF0100 layout guidelines  
7.2.1 General board recommendations  
1. It is recommended to use an eight layer board stack-up arranged as follows:  
• High current signal  
• GND  
• Signal  
• Power  
• Power  
• Signal  
• GND  
• High current signal  
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.  
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.  
7.2.2 Component placement  
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output  
capacitors.  
7.2.3 General routing requirements  
1. Some recommended things to keep in mind for manufacturability:  
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole  
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper  
Minimum allowed spacing between line and hole pad is 3.5 mils  
Minimum allowed spacing between line and line is 3.0 mils  
2. Care must be taken with SWxFB pins traces. These signals are susceptible to noise and must be routed far away from power,  
clock, or high power signals, like the ones on the SWxIN, SWx, SWxLX, SWBSTIN, SWBST, and SWBSTLX pins. They could be  
also shielded.  
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power  
planes shield these traces).  
4. Avoid coupling traces between important signal/low noise supplies (like REFCORE, VCORE, VCOREDIG) from any switching node  
(i.e. SW1ALX, SW1BLX, SW1CLX, SW2LX, SW3ALX, SW3BLX, SW4LX, and SWBSTLX).  
5. Make sure all components related to a specific block are referenced to the corresponding ground.  
7.2.4 Parallel routing requirements  
1. I2C signal routing  
CLK is the fastest signal of the system, so it must be given special care.  
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to  
shield them with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal  
trace length.  
PF0100  
NXP Semiconductors  
123  
TYPICAL APPLICATIONS  
Figure 36. Recommended shielding for critical signals  
These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.  
Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good  
practice is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.  
7.2.5 Switching regulator layout recommendations  
1. Per design, the switching regulators in PF0100 are designed to operate with only one input bulk capacitor. However, it is  
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor  
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.  
2. Make high-current ripple traces low-inductance (short, high W/L ratio).  
3. Make high-current traces wide or copper islands.  
4. Make high-current traces symetrical for dual–phase regulators (SW1, SW3).  
VIN  
SWxIN  
CIN_HF  
CIN  
SWx  
SWxLX  
Driver Controller  
L
COUT  
SWxFB  
Compensation  
Figure 37. Generic buck regulator architecture  
PF0100  
124  
NXP Semiconductors  
TYPICAL APPLICATIONS  
Figure 38. Layout example for buck regulators  
7.3  
Thermal information  
7.3.1 Rating data  
The thermal rating data of the packages has been simulated with the results listed in Table 6.  
Junction to ambient thermal resistance nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for  
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) is used for both  
junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and 2s2p  
test boards. It is anticipated the generic name, Theta-JA, continues to be commonly used.  
The JEDEC standards can be consulted at http://www.jedec.org.  
7.3.2 Estimation of junction temperature  
An estimation of the chip junction temperature TJ can be obtained from the equation:  
TJ = TA + (RθJA x PD)  
with:  
TA = Ambient temperature for the package in °C  
RθJA = Junction to ambient thermal resistance in °C/W  
PD = Power dissipation in the package in W  
The junction to ambient thermal resistance is an industry standard value providing a quick and easy estimation of thermal performance.  
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four  
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be  
somewhat degraded in case of significant power dissipated by other components placed close to the device.  
At a known board temperature, the junction temperature TJ is estimated using the following equation  
TJ = TB + (RθJB x PD) with  
TB = Board temperature at the package perimeter in °C  
RθJB = Junction to board thermal resistance in °C/W  
PD = Power dissipation in the package in W  
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.  
See 6 Functional block requirements and behaviors, page 18 for more details on thermal management.  
PF0100  
NXP Semiconductors  
125  
PACKAGING  
8
Packaging  
8.1  
Packaging dimensions  
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and  
perform a keyword search for the drawing’s document number. See the 4.2 Thermal characteristics, page 11 section for specific thermal  
characteristics for each package.  
Table 141. Package drawing information  
Package  
Suffix  
Package outline drawing number  
98ASA00405D  
98ASA00589D  
56 QFN 8x8 mm - 0.5 mm pitch. E-Type (full lead)  
EP  
ES  
56 QFN 8x8 mm - 0.5 mm pitch. WF-Type (wettable flank)  
PF0100  
126  
NXP Semiconductors  
PACKAGING  
PF0100  
NXP Semiconductors  
127  
PACKAGING  
PF0100  
128  
NXP Semiconductors  
PACKAGING  
PF0100  
NXP Semiconductors  
129  
PACKAGING  
PF0100  
130  
NXP Semiconductors  
PACKAGING  
PF0100  
NXP Semiconductors  
131  
PACKAGING  
PF0100  
132  
NXP Semiconductors  
REFERENCE SECTION  
9
Reference section  
9.1  
Reference documents  
Table 142. PF0100 reference documents  
Reference  
Description  
AN4536  
MMPF0100 OTP programming instructions  
PF0100  
NXP Semiconductors  
133  
REVISION HISTORY  
10 Revision history  
Revision  
1.0  
Date  
7/2011  
8/2012  
10/2012  
5/2013  
Description of changes  
Preliminary specification release  
NPI phase: prototype major updates throughout cycle  
Initial production release  
2.0  
3.0  
Table 4. Added recommended pin connection when regulators are unused  
Update Table 9. Current Consumption summary  
Table 10. Removed VREFDDR_VOLT row  
4.0  
Removed automatic fuse programming feature  
Updated Max frequency specification for the 16 MHz clock to 17.2 MHz  
Table 17. Added specification for derived 2.0 Mhz clock  
Added Clock adjustment  
Table 22. Updated VREFDDR minimum Current limit specification  
Updated Block diagram for all Switching Regulators  
Updated current limit and overcurrent protection minimum specification on LDOS  
Table 111. Update VTH0 and VTL0 specification on VSNVS  
Updated Table 137, Address FF  
Updated Table 138, address D8 and D9  
Update Figure 35. Typical application diagram  
Removed Part Identification section  
Added part numbers to the ordering information for the MMPF0100A  
Added corrections and notes to the document to accomodate the new part numbers, where identified  
by MMPF0100A  
5.0  
7/2013  
VIN threshold (coin cell powered to VIN powered) Max. changed to 3.1  
Removed LICELL connection to VIN on PF0100A  
Removed 4.7 μF LICELL bypass capacitor as coin cell replacement  
Updated typical and max Off Current  
Add bypass capacitor in VDDIO  
Added industrial part numbers PMPF0100xxANES  
Added parts F3 and F4  
Added Table 3, Ambient temperature range and updated specification headers accordingly.  
Increased max standby and sleep currents on Extended Industrial parts.  
Update output accuracy on SW1A/B, SW1C, SW2, SW3A/B and SW4.  
Corrected the default value on DEVICEID register, bit4 (unused) from 0 to 1.  
Corrected default register values on Table 118.  
6.0  
7.0  
8/2013  
12/2013  
Added VDDIO capacitor to Miscellaneous in the BOM  
Corrected VDDOTP maximum rating  
8.0  
4/2014  
Corrected SWBSTFB maximum rating  
Corrected inductor Isat for SW1ABC single phase mode from 4.5 A to 6.0 A  
Added note to clarify SWBST default operation in Auto mode  
Corrected default value of bits in SILICONREVID register in Table 136  
Changed VSNVS current limit for PF0100A  
Noted that voltage settings 0.6V and below are not supported  
VSNVS Turn On Delay (td1) spec corrected from 15 ms to 5.0 ms  
Updated per GPCN 16298  
Corrected GPCN number in the revision history table (16220 changed to 16298)  
6/2014  
7/2014  
Updated VTL1, VTH1, and VSNVSCROSS threshold specifications  
Added F6 part  
Changes documented in GPCN 16369  
9.0  
Added new part numbers MMPF0100F9ANES and MMPF0100FAANES to Table 1  
Updated Table 10  
10.0  
11.0  
7/2015  
8/2015  
Removed MMPF0100F3EP and MMPF0100F4EP from Orderable Parts table  
PF0100  
134  
NXP Semiconductors  
REVISION HISTORY  
Revision  
Date  
Description of changes  
Updated Table 53  
Updated Table 62  
Updated Table 77  
Updated Table 86  
Fixed typo in Table 138  
Updated Table 139  
Added Table 140  
Corrected the default register value for SW1ABMODE in Table 46  
Corrected the default register value for SW1CMODE in Table 51  
Corrected the default register value for SW2MODE in Table 60  
Corrected the default register value for SW3AMODE in Table 70  
Corrected the default register value for SW3BMODE in Table 75  
Corrected the default register value for SW4MODE in Table 84  
Updated Figure 35  
12.0  
9/2015  
Removed MMPF0100NPEP, MMPF0100F0EP, MMPF0100F1EP, and MMPF0100F2EP from  
Orderable Part Variations. No longer manufactured.  
Updated Table 10  
13.0  
12/2015  
Reformatted to newer template form and style  
Updated SW2 current capability from 2000 mA to 2500 mA for F9/FA versions  
Changed Table 10 row - Default I2C Address from 0x80 to 0x08 for F9 and FA  
14.0  
15.0  
3/2016  
5/2016  
Added NP version to OTP's with SW2 current capability of 2500 mA  
Added MMPF0100FBANES part number to Table 1  
Added FB OTP option to Table 10  
16.0  
9/2016  
Added MMPF0100FCAEP, MMPF0100FDAEP, and MMPF0100FCANES part numbers to Table 1  
Added OTP configurations for FC and FD to Table 10  
17.0  
18.0  
1/2017  
7/2019  
Updated 98ASA00405D drawing as per PCN 201906034F01  
Changed document status from Advance Information to Technical Data  
PF0100  
NXP Semiconductors  
135  
Information in this document is provided solely to enable system and software implementers to use NXP products.  
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits  
based on the information in this document. NXP reserves the right to make changes without further notice to any  
products herein.  
How to Reach Us:  
Home Page:  
NXP.com  
Web Support:  
http://www.nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular  
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"  
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,  
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each  
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor  
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the  
following address:  
http://www.nxp.com/terms-of-use.html.  
NXP, the NXP logo, Freescale, the Freescale logo, and SMARTMOS, are trademarks of NXP B.V. All other product or  
service names are the property of their respective owners. All rights reserved.  
© NXP B.V. 2019.  
Document Number: MMPF0100  
Rev. 18  
7/2019  

相关型号:

MMPF0100FDAEP

14 channel configurable power management integrated circuit
NXP

MMPF0100NPAEP

Power Management IC, i.MX6, no-prog ,4/6 buck, 6 LDO, 1 boost, QFN 56, Reel
NXP

MMPF0100NPANES

14-CHANNEL POWER SUPPLY SUPPORT CKT, QCC56, 8 X 8 MM, 0.85 MM HEIGHT, 0.50 MM PITCH, ROHS COMPLIANT, QFN-56
NXP

MMPF0100NPAZES

Power Management IC, i.MX6, no-prog ,4/6 buck, 6 LDO, 1 boost, QFN 56, Tray
NXP

MMPF0100NPAZESR2

POWER SUPPLY SUPPORT CKT
NXP

MMPF0100NPEP

Four to six buck converters, depending on configuration
FREESCALE

MMPF0100NPEP

Power Management IC, i.MX6, no-prog ,4/6 buck, 6 LDO, 1 boost, QFN 56, Tray
NXP

MMPF0100Z

14 channel configurable power management integrated circuit
NXP

MMPF0200

12 channel configurable power management integrated circuit
NXP

MMPF0200F0AEP

12 channel configurable power management integrated circuit
NXP

MMPF0200F0AEP,557

Power Supply Support Circuit, Adjustable, 12 Channel, MOS
NXP

MMPF0200F0ANES

12 channel configurable power management integrated circuit
NXP