MMRF1006HR5 [NXP]

RF Power Field Effect Transistors;
MMRF1006HR5
型号: MMRF1006HR5
厂家: NXP    NXP
描述:

RF Power Field Effect Transistors

文件: 总13页 (文件大小:754K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MMRF1006H  
Rev. 1, 11/2015  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
MMRF1006HR5  
MMRF1006HSR5  
N--Channel Enhancement--Mode Lateral MOSFETs  
Designed for pulse and CW wideband applications with frequencies up to  
500 MHz. Devices are unmatched and are suitable for use in communications,  
radar and industrial applications.  
10--500 MHz, 1000 W, 50 V  
LATERAL N--CHANNEL  
BROADBAND  
Typical Pulse Performance at 450 MHz: VDD = 50 Vdc, IDQ = 150 mA,  
P
out = 1000 W Peak (200 W Avg.), Pulse Width = 100 μsec,  
Duty Cycle = 20%  
Power Gain — 20 dB  
Drain Efficiency — 64%  
RF POWER MOSFETs  
Capable of Handling 10:1 VSWR @ 50 Vdc, 450 MHz, 1000 W Peak  
Power  
Features  
Characterized with Series Equivalent Large--Signal Impedance Parameters  
CW Operation Capability with Adequate Cooling  
Qualified Up to a Maximum of 50 VDD Operation  
Integrated ESD Protection  
Designed for Push--Pull Operation  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
NI--1230H--4S  
MMRF1006HR5  
In Tape and Reel. R5 Suffix = 50 Units, 56 mm Tape Width, 13--inch Reel.  
NI--1230S--4S  
MMRF1006HSR5  
PARTS ARE PUSH--PULL  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
RF /V  
inB GSB  
RF /V  
outB DSB  
(Top View)  
Figure 1. Pin Connections  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
--0.5, +120  
-- 6 , + 1 0  
-- 65 to +150  
150  
Unit  
Drain--Source Voltage  
V
Vdc  
Vdc  
°C  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
T
C
°C  
(1)  
T
J
225  
°C  
(2)  
Total Device Dissipation @ T = 25°C, CW only  
P
1333  
W
C
D
1. Continuous use at maximum temperature will affect MTTF.  
2. Refer to Fig. 12, Transient Thermal Impedance, for information to calculate value for pulsed operation.  
© Freescale Semiconductor, Inc., 2013, 2015. All rights reserved.  
Table 2. Thermal Characteristics  
(1)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Impedance, Junction to Case  
Z
θ
0.03  
°C/W  
JC  
Pulse: Case Temperature 80°C, 1000 W Peak, 100 μsec Pulse Width, 20% Duty Cycle,  
(2)  
450 MHz  
Thermal Resistance, Junction to Case  
R
θ
0.15  
°C/W  
JC  
CW: Case Temperature 84°C, 1000 W CW, 352.2 MHz  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2, passes 2000 V  
A, passes 125 V  
IV, passes 2000 V  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(3)  
Off Characteristics  
Gate--Source Leakage Current  
(V = 5 Vdc, V = 0 Vdc)  
I
120  
10  
μAdc  
Vdc  
GSS  
GS  
DS  
Drain--Source Breakdown Voltage  
(I = 300 mA, V = 0 Vdc)  
V
(BR)DSS  
D
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
I
100  
5
μAdc  
mA  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
(3)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 1600 μAdc)  
V
1
1.68  
2.2  
3
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
(4)  
Gate Quiescent Voltage  
(V = 50 Vdc, I = 150 mAdc, Measured in Functional Test)  
V
1.5  
3.5  
DD  
D
(3)  
Drain--Source On--Voltage  
(V = 10 Vdc, I = 4 Adc)  
V
0.28  
GS  
D
(3)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
3.3  
147  
506  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc ± 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
iss  
(V = 50 Vdc, V = 0 Vdc ± 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(4)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I = 150 mA, P = 1000 W Peak (200 W Avg.), f = 450 MHz,  
DD DQ out  
100 μsec Pulse Width, 20% Duty Cycle  
Power Gain  
G
19  
60  
20  
64  
22  
-- 9  
dB  
%
ps  
Drain Efficiency  
η
D
Input Return Loss  
IRL  
-- 1 8  
dB  
1. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
2. Refer to Fig. 12, Transient Thermal Impedance, for other pulsed conditions.  
3. Each side of device measured separately.  
4. Measurement made with device in push--pull configuration.  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
2
B1  
V
SUPPLY  
+
+
V
BIAS  
+
L3  
C25 C26 C27 C28  
C29 C30  
C1  
C2  
C3  
C4  
L1  
Z14  
COAX3  
COAX1  
C22  
C23  
Z12 Z16 Z18  
Z20 Z22  
Z8  
Z2  
Z3  
Z4 Z6  
Z10  
RF  
RF  
OUTPUT  
INPUT  
C5  
Z1  
Z24  
DUT  
C15 C16 C17 C18 C19  
C24  
C7 C8  
Z5 Z7  
C9  
C10  
Z11  
C6  
Z13  
Z17 Z19  
Z21 Z23  
Z9  
L2  
C21  
C20  
Z15  
L4  
COAX2  
COAX4  
B2  
V
SUPPLY  
V
BIAS  
+
+
+
C31 C32 C33 C34 C35 C36  
C11  
C12 C13 C14  
Z1  
0.366x 0.082Microstrip  
0.170x 0.100Microstrip  
0.220x 0.451Microstrip  
0.117x 0.726Microstrip  
0.792x 0.058Microstrip  
0.316x 0.726Microstrip  
0.262x 0.507Microstrip  
Z14*, Z15*  
Z16, Z17  
Z18, Z19  
Z20, Z21, Z22, Z23  
Z24  
0.764x 0.150Microstrip  
0.290x 0.430Microstrip  
0.100x 0.430Microstrip  
0.080x 0.430Microstrip  
0.257x 0.215Microstrip  
Z2*, Z3*  
Z4*, Z5*  
Z6, Z7  
Z8*, Z9*  
Z10, Z11  
Z12, Z13  
PCB  
Arlon CuClad 250GX--0300--55--22, 0.030, ε = 2.55  
r
* Line length includes microstrip bends  
Figure 2. MMRF1006HR5(HSR5) Pulse Test Circuit Schematic — 450 MHz  
Table 5. MMRF1006HR5(HSR5) Pulse Test Circuit Component Designations and Values — 450 MHz  
Part  
Description  
47 , 100 MHz Short Ferrite Beads  
47 μF, 50 V Electrolytic Capacitors  
0.1 μF Chip Capacitors  
Part Number  
Manufacturer  
B1, B2  
2743019447  
Fair--Rite  
C1, C11  
476KXM063M  
Illinois  
C2, C12, C28, C34  
CDR33BX104AKYS  
C1812C224K5RAC  
C1825C225J5RAC  
ATC100B270JT500XT  
27291SL  
Kemet  
C3, C13, C27, C33  
220 nF, 50 V Chip Capacitors  
2.2 μF, 50 V Chip Capacitors  
27 pF Chip Capacitors  
Kemet  
C4, C14  
C5, C6, C8, C15  
C7, C10  
C9  
Kemet  
ATC  
0.8--8.0 pF Variable Capacitors  
33 pF Chip Capacitor  
Johanson Components  
ATC100B330JT500XT  
ATC100B120JT500XT  
ATC100B100JT500XT  
ATC100B9R1CT500XT  
ATC100B8R2CT500XT  
ATC100B241JT200XT  
ATC  
ATC  
ATC  
ATC  
ATC  
ATC  
C16  
12 pF Chip Capacitor  
C17  
10 pF Chip Capacitor  
C18  
9.1 pF Chip Capacitor  
C19  
8.2 pF Chip Capacitor  
C20, C21, C22, C23,  
C25, C32  
240 pF Chip Capacitors  
C24  
5.6 pF Chip Capacitor  
ATC100B5R6CT500XT  
2225X7R225KT3AB  
EMVY630GTR331MMH0S  
UT--141C--25  
ATC  
C26, C31  
C29, C30, C35, C36  
Coax1, 2, 3, 4  
L1, L2  
2.2 μF, 100 V Chip Capacitors  
330 μF, 63 V Electrolytic Capacitors  
25 Semi Rigid Coax, 2.2Shield Length  
2.5 nH, 1 Turn Inductors  
ATC  
Nippon Chemi--Con  
Micro--Coax  
Coilcraft  
A01TKLC  
L3, L4  
43 nH, 10 Turn Inductors  
B10TJLC  
Coilcraft  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
3
C29  
C27  
C1  
C2 C3  
B1  
C30  
C28  
C4  
C25  
C26  
L1  
COAX1  
COAX3  
L3  
C22  
C23  
C19  
C18  
C7  
C10  
C5  
C8 C9  
C16  
C15  
C17  
C6  
L2  
C20  
C21  
C24  
L4  
COAX2  
COAX4  
C32  
C31  
C35  
C36  
C33  
B2  
C14  
C12  
C11  
C13  
C34  
Figure 3. MMRF1006HR5(HSR5) Pulse Test Circuit Component Layout — 450 MHz  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
4
TYPICAL CHARACTERISTICS  
1000  
100  
10  
100  
C
iss  
C
oss  
T = 200°C  
J
T = 175°C  
J
T = 150°C  
J
Measured with ±30 mV(rms)ac @ 1 MHz  
= 0 Vdc  
10  
V
GS  
C
rss  
T
= 25°C  
C
1
1
0
10  
20  
30  
40  
50  
1
10  
V , DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
100  
V
, DRAIN--SOURCE VOLTAGE (VOLTS)  
DS  
Note: Each side of device measured separately.  
Figure 4. Capacitance versus Drain--Source Voltage  
Note: Each side of device measured separately.  
Figure 5. DC Safe Operating Area  
21  
80  
70  
60  
50  
40  
30  
20  
10  
0
65  
Ideal  
P3dB = 60.70 dBm (1174.89 W)  
V
= 50 Vdc  
= 150 mA  
DD  
64  
63  
62  
61  
60  
59  
58  
57  
20  
19  
18  
17  
16  
15  
14  
13  
I
DQ  
G
ps  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
P1dB = 60.33 dBm (1078.94 W)  
Actual  
η
D
V
= 50 Vdc  
DD  
I
= 150 mA  
DQ  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
56  
55  
1
10  
100  
1000 2000  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P
, OUTPUT POWER (WATTS) PEAK  
P , INPUT POWER (dBm) PEAK  
in  
out  
Figure 6. Power Gain and Drain Efficiency  
versus Output Power  
Figure 7. Output Power versus Input Power  
23  
22  
22  
20  
18  
I
= 6000 mA  
DQ  
3600 mA  
21  
20  
19  
18  
17  
1500 mA  
50 V  
45 V  
750 mA  
375 mA  
16  
14  
40 V  
35 V  
V
= 30 V  
DD  
V
= 50 Vdc  
DD  
I
= 150 mA, f = 450 MHz  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
DQ  
150 mA  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
12  
10  
100  
, OUTPUT POWER (WATTS) PEAK  
1000  
2000  
0
200  
400  
600  
800  
1000  
1200  
1400  
P
P
, OUTPUT POWER (WATTS) PEAK  
out  
out  
Figure 9. Power Gain versus Output Power  
Figure 8. Power Gain versus Output Power  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
5
TYPICAL CHARACTERISTICS  
65  
60  
55  
50  
45  
40  
35  
22  
100  
V
= 50 Vdc  
= 150 mA  
DD  
T
= --30_C  
21  
90  
80  
70  
60  
50  
C
T
= --30_C  
85_C  
C
I
DQ  
20 f = 450 MHz  
25_C  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
19  
18  
17  
16  
15  
14  
85_C  
25_C  
G
ps  
40  
30  
20  
10  
0
V
= 50 Vdc  
DD  
η
D
I
= 150 mA  
DQ  
f = 450 MHz  
Pulse Width = 100 μsec  
Duty Cycle = 20%  
13  
12  
20  
25  
30  
35  
40  
45  
1
10  
100  
1000 2000  
P , INPUT POWER (dBm) PEAK  
in  
P
, OUTPUT POWER (WATTS) PEAK  
out  
Figure 10. Output Power versus Input Power  
Figure 11. Power Gain and Drain Efficiency  
versus Output Power  
9
8
7
10  
0.18  
0.16  
0.14  
0.12  
0.1  
f = 450 MHz  
D = 0.7  
V
P
η
= 50 Vdc  
= 1000 W CW  
= 67%  
DD  
out  
10  
10  
D
P
D
t
1
D = 0.5  
D = 0.3  
0.08  
0.06  
0.04  
0.02  
0
t
2
T
Z
= Case Temperature  
C
JC  
6
10  
10  
= Thermal Impedance (from graph)  
= Peak Power Dissipation  
P
D
D = 0.1  
D = Duty Factor = t /t  
1 2  
2
θ
t = Pulse Width; t = Pulse Period  
1
J
5
T (peak) = P * Z + T  
D
JC  
C
90  
110  
130  
150  
170  
190  
210  
230  
250  
0.00001 0.0001  
0.001  
0.01  
0.1  
1
10  
T , JUNCTION TEMPERATURE (°C)  
J
RECTANGULAR PULSE WIDTH (S)  
MTTF calculator available at http:/www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 12. Transient Thermal Impedance  
NOTE: For pulse applications or CW conditions, use the MTTF  
calculator referenced above.  
Figure 13. MTTF versus Junction Temperature -- CW  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
6
Z = 2 Ω  
o
f = 450 MHz  
f = 450 MHz  
Z
source  
Z
load  
V
= 50 Vdc, I = 150 mA, P = 1000 W Peak  
DQ out  
DD  
f
Z
Z
load  
source  
MHz  
450  
0.86 + j1.06  
1.58 + j1.22  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
--  
+
Z
Z
source  
load  
Figure 14. Series Equivalent Source and Load Impedance — 450 MHz  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
7
PACKAGE DIMENSIONS  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
8
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
9
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
11  
PRODUCT DOCUMENTATION  
Refer to the following documents to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Dec. 2013  
Nov. 2015  
Initial Release of Data Sheet  
Maximum Ratings table: changed Drain--Source Voltage value from +110 to +120 to reflect the true  
performance of the device, p. 1  
Off Characteristics: changed Drain--Source Breakdown Voltage minimum value from 110 to 120 to reflect  
the true performance of the device, p. 2  
MMRF1006HR5 MMRF1006HSR5  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners.  
E 2013, 2015 Freescale Semiconductor, Inc.  
Document Number: MMRF1006H  
Rev. 1,11/2015

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY