MPC8308VMADDA [NXP]

PowerQUICC, Power Architecture SoC 266MHz, DDR2, PCIe, GbE, USB, 0 to 105C, Rev 1.1;
MPC8308VMADDA
型号: MPC8308VMADDA
厂家: NXP    NXP
描述:

PowerQUICC, Power Architecture SoC 266MHz, DDR2, PCIe, GbE, USB, 0 to 105C, Rev 1.1

PC 双倍数据速率 外围集成电路
文件: 总95页 (文件大小:959K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC8308EC  
Freescale Semiconductor  
Rev. 4, 12/2014  
MPC8308 PowerQUICC II Pro  
Processor Hardware Specification  
Contents  
This document provides an overview of the MPC8308  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
features and its hardware specifications, including a block  
diagram showing the major functional components. The  
MPC8308 is a cost-effective, low-power, highly integrated  
host processor. The MPC8308 extends the PowerQUICC  
family, adding higher CPU performance, additional  
functionality, and faster interfaces while addressing the  
requirements related to time-to-market, price, power  
consumption, and package size.  
2. Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . 2  
3. Power characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 6  
4. Clock input timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
5. RESET initialization . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6. DDR2 SDRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
7. DUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
8. Ethernet: Three-Speed Ethernet, MII management . 15  
9. USB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
10. High-Speed Serial interfaces (HSSI) . . . . . . . . . . . . 25  
11. PCI Express . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  
12. Enhanced Local Bus . . . . . . . . . . . . . . . . . . . . . . . . . 41  
13. Enhanced Secure Digital Host Controller (eSDHC) . 44  
14. JTAG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
15. I2C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
16. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
17. GPIO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
18. IPIC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
19. SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
20. Package and Pin Listings . . . . . . . . . . . . . . . . . . . . . 59  
21. Clocking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
22. Thermal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
23. System Design Information . . . . . . . . . . . . . . . . . . . 77  
24. Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 80  
25. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82  
© Freescale Semiconductor, Inc., 2011, 2014. All rights reserved.  
Overview  
1 Overview  
This figure shows the major functional units within the MPC8308. The e300 core in the MPC8308, with  
its 16 Kbytes of instruction and 16 Kbytes of data cache, implements the Power Architecture user  
instruction set architecture and provides hardware and software debugging support. In addition, the  
MPC8308 offers a PCI Express controller, two three-speed 10, 100, 1000 Mbps Ethernet controllers  
(eTSEC), a DDR2 SDRAM memory controller, a SerDes block, an enhanced local bus controller (eLBC),  
an integrated programmable interrupt controller (IPIC), a general purpose DMA controller, two I2C  
controllers, dual UART (DUART), GPIOs, USB, general purpose timers, and an SPI controller. The high  
level of integration in the MPC8308 helps simplify board design and offers significant bandwidth and  
performance.  
This figure shows a block diagram of the device.  
e300c3 Core with  
Power Management  
16-Kbyte  
D-Cache  
16-Kbyte  
I-Cache  
DUART  
I2C  
Timers  
GPIO, SPI  
Enhanced  
Local Bus  
Interrupt  
DDR2  
Controller  
FPU  
Controller  
DMA  
USB 2.0 HS  
Host/Device/OTG  
PCI  
Express  
eTSEC2  
Enhanced  
Secure  
Digital Host  
Controller  
eTSEC1  
RGMII,MII  
x1  
RGMII,MII  
ULPI  
Figure 1. MPC8308 Block Diagram  
2 Electrical Characteristics  
This section provides the AC and DC electrical specifications and thermal characteristics for the  
MPC8308. The device is currently targeted to these specifications. Some of these specifications are  
independent of the I/O cell, but are included for a more complete reference. These are not purely I/O buffer  
design specifications.  
2.1  
Overall DC Electrical Characteristics  
This section covers the ratings, conditions, and other characteristics.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
2
Electrical Characteristics  
2.1.1  
Absolute maximum ratings  
This table lists the absolute maximum ratings.  
1
Table 1. Absolute maximum ratings  
Characteristic  
Symbol  
Max Value  
Unit  
Notes  
Core supply voltage  
PLL supply voltage  
VDD  
AVDD1, AVDD2  
GVDD  
–0.3 to 1.26  
–0.3 to 1.26  
–0.3 to 1.9  
–0.3 to 3.6  
V
V
V
V
7
DDR2 DRAM I/O voltage  
Local bus, DUART, system control and power management,  
eSDHC, I2C, USB, Interrupt, Ethernet management, SPI,  
Miscellaneous and JTAG I/O voltage  
NVDD  
SerDes PHY  
XCOREVDD  
XPADVDD  
SDAVDD  
,
–0.3 to 1.26  
V
V
,
eTSEC I/O Voltage  
LVDD1, LVDD2  
–0.3 to 2.75 or  
–0.3 to 3.6  
6, 8  
Input voltage  
DDR2 DRAM signals  
DDR2 DRAM reference  
eTSEC  
MVIN  
MVREF  
LVIN  
–0.3 to (GVDD + 0.3)  
–0.3 to (GVDD + 0.3)  
–0.3 to (LVDD + 0.3)  
–0.3 to (NVDD + 0.3)  
V
V
V
V
2, 5  
2, 5  
4, 5,8  
3, 5,7  
Local bus, DUART, system control and power  
management, eSDHC, I2C, Interrupt,  
Ethernet management, SPI, Miscellaneous  
and JTAG I/O voltage  
OVIN  
Storage temperature range  
TSTG  
–55 to 150  
C  
Notes:  
1. Functional and tested operating conditions are given in Table 2. Absolute maximum ratings are stress ratings only, and  
functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause  
permanent damage to the device.  
2. Caution: MVIN must not exceed GVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
3. Caution: OVIN must not exceed NVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
4. Caution: LVIN must not exceed LVDD by more than 0.3 V. This limit may be exceeded for a maximum of 20 ms during  
power-on reset and power-down sequences.  
5. (M, L, O)VIN and MVREF may overshoot/undershoot to a voltage and for a maximum duration as shown in Figure 2  
6. The max value of supply voltage should be selected based on the RGMII mode. The lower range applies to RGMII mode.  
7. NVDD here refers to NVDDA, NVDDB,NVDDG, NVDDH, NVDDJ, NVDDP_K from the ball map.  
8. LVDD1 here refers to NVDDC and LVDD2 refers to NVDDF from the ball map  
2.1.2  
Power supply voltage specification  
This table provides the recommended operating conditions for the device. Note that the values in this table  
are the recommended and tested operating conditions. Proper device operation outside of these conditions  
is not guaranteed.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
3
 
Electrical Characteristics  
Table 2. Recommended operating conditions  
Characteristic  
Symbol  
Recommended Value1  
Unit  
SerDes internal digital power  
SerDes internal digital power  
SerDes I/O digital power  
XCOREVDD  
XCOREVSS  
XPADVDD  
SDAVDD  
SDAVSS  
XPADVSS  
VDD  
1.0 V 50 mV  
0.0  
V
V
V
V
V
V
V
V
V
V
V
1.0 V 50 mV  
1.0 V 50 mV  
0
SerDes analog power for PLL  
SerDes analog power for PLL  
SerDes I/O digital power  
0
Core supply voltage  
1.0 V 50 mV  
1.0 V 50 mV  
1.0 V 50 mV  
1.8 V 100 mV  
GVDD/2 (0.49 GVDD to  
Analog supply for e300 core APLL2  
Analog supply for system APLL2  
DDR2 DRAM I/O voltage  
AVDD1  
AVDD2  
GVDD  
Differential reference voltage for DDR controller  
MVREF  
0.51 GVDD  
)
Standard I/O voltage (Local bus, DUART, system control and power  
management, eSDHC, USB, I2C, Interrupt, Ethernet management,  
SPI, Miscellaneous and JTAG I/O voltage)3  
NVDD  
3.3 V 300 mV  
V
V
eTSEC IO supply4,5  
LVDD1, LVDD2  
2.5 V 125 mV  
3.3 V 300 mV  
Analog and digital ground  
VSS  
0.0  
V
Operating temperature range6  
TA/TJ  
Standard = 0 to 105  
C  
Extended = -40 to 105  
Notes:  
1
GVDD, NVDD, AVDD, and VDD must track each other and must vary in the same direction—either in the positive or negative  
direction.  
This voltage is the input to the filter discussed in Section 23.2, “PLL Power Supply Filtering,and not necessarily the voltage  
at the AVDD pin, which may be reduced from VDD by the filter.  
2
3
4
5
6
NVDD here refers to NVDDA, NVDDB,NVDDG, NVDDH, NVDDJ and NVDDP_K from the ball map.  
The max value of supply voltage should be selected based on the RGMII mode. The lower range applies to RGMII mode.  
LVDD1 here refers to NVDDC and LVDD2 refers to NVDDF from the ball map.  
Minimum temperature is specified with TA; Maximum temperature is specified with TJ.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
4
Freescale Semiconductor  
 
Electrical Characteristics  
This figure shows the undershoot and overshoot voltages at the interfaces of the device.  
G/L/NVDD + 20%  
G/L/NVDD + 5%  
G/L/NVDD  
VIH  
VSS  
VSS – 0.3 V  
VIL  
VSS – 0.7 V  
Not to Exceed 10%  
1
of tinterface  
Note:  
1. tinterface refers to the clock period associated with the bus clock interface.  
Figure 2. Overshoot/Undershoot Voltage for GVDD/NVDD/LVDD  
2.1.3  
Output driver characteristics  
This table provides information on the characteristics of the output driver strengths.  
Table 3. Output Drive Capability  
Driver Type  
Output Impedance ()  
Supply Voltage  
Local bus interface utilities signals  
DDR2 signals1  
42  
18  
42  
42  
NVDD = 3.3 V  
GVDD = 1.8 V  
NVDD = 3.3 V  
LVDD = 2.5/3.3 V  
DUART, system control, I2C, JTAG, eSDHC, GPIO,SPI, USB  
eTSEC signals  
1
Output Impedance can also be adjusted through configurable options in DDR Control Driver Register (DDRCDR).  
For more information, see the MPC8308 PowerQUICC II Pro Processor Reference Manual.  
2.1.4  
Power sequencing  
It is required to apply the core supply voltage (V ) before the I/O supply voltages (GV , LV , and  
DD  
DD  
DD  
NV ) and assert PORESET before the power supplies fully ramp up. The core voltage supply must rise  
DD  
to 90% of its nominal value before the I/O supplies reach 0.7 V; see Figure 3.  
If this recommendation is not observed and I/O voltages are supplied before the core voltage, there might  
be a period of time that all input and output pins are actively driven and cause contention and excessive  
current. To overcome side effects of this condition, the application environment may require tuning of  
external pull-up or pull-down resistors on particular signals to lesser values.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
5
 
Power characteristics  
The I/O power supply ramp-up slew rate should be slower than 4V/100 s, this requirement is for ESD  
circuit. Note that there is no specific power down sequence requirement for the device. I/O voltage  
supplies (GV , LV , and NV ) do not have any ordering requirements with respect to one another.  
DD  
DD  
DD  
I/O Voltage (GVDD, LVDD, and NVDD  
)
V
Core Voltage (VDD  
)
0.7 V  
90%  
t
0
PORESET  
>= 32 tSYS_CLK_IN  
Figure 3. Power-Up sequencing example  
3 Power characteristics  
The estimated typical power dissipation, not including I/O supply power for the device is shown in this  
table. Table 5 shows the estimated typical I/O power dissipation.  
1
Table 4. MPC8308 power dissipation  
Core Frequency (MHz) CSB Frequency (MHz) Typical2  
Maximum 3  
Unit  
266  
333  
400  
133  
133  
133  
530  
565  
600  
900  
950  
mW  
mW  
mW  
1000  
Note:  
1
2
3
The values do not include I/O supply power but do include core (VDD) and PLL (AVDD1,  
AVDD2, XCOREVDD, XPADVDD, and SDAVDD  
Typical power is based on best process, a voltage of VDD = 1.0 V and ambient temperature  
of TA = 25C and an artificial smoker test.  
Maximum power is estimated based on best process, a voltage of VDD = 1.05 V, a junction  
temperature of TJ = 105C  
)
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
6
Freescale Semiconductor  
 
Clock input timing  
This table describes a typical scenario where blocks with the stated percentage of utilization and  
impedances consume the amount of power described.  
1
Table 5. MPC8308 typical I/O power dissipation  
GVDD  
(1.8 V)  
NVDD  
(3.3 V)  
LVDD/  
(3.3 V)  
LVDD  
(2.5 V)  
Interface  
Parameter  
Unit Comments  
DDR2  
Rs = 22   
Rt = 75   
250 MHz  
32 bits+ECC  
266 MHz  
0.302  
0.309  
W
32 bits+ECC  
Local bus I/O load = 20 pF  
TSEC I/O load = 20 pF  
62.5 MHz  
66 MHZ  
0.038  
0.040  
W
MII, 25 MHz  
RGMII, 125 MHz  
50 MHz  
0.008  
0.078  
0.008  
0.012  
0.044  
W
W
W
W
W
2 controllers  
eSDHC IO Load = 40 pF  
USB IO Load = 20 pF  
Other I/O  
60 MHz  
0.017  
4 Clock input timing  
This section provides the clock input DC and AC electrical characteristics for the device.  
4.1  
DC electrical characteristics  
This table provides the system clock input (SYS_CLK_IN) DC electrical specifications for the device.  
Table 6. SYS_CLK_IN DC Electrical Characteristics  
Parameter  
Input high voltage  
Condition  
Symbol  
Min  
Max  
Unit  
VIH  
VIL  
IIN  
2.4  
–0.3  
NVDD + 0.3  
V
V
Input low voltage  
0.4  
10  
SYS_CLK_IN input current  
0 V VIN NVDD  
A  
This table provides the RTC clock input (RTC_PIT_CLOCK) DC electrical specifications for the device.  
Table 7. RTC_PIT_CLOCK DC Electrical Characteristics  
Parameter  
Condition  
Symbol  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
VIH  
VIL  
3.3 V – 400 mV  
0
V
V
0.4  
4.2  
AC electrical characteristics  
The primary clock source for the device is SYS_CLK_IN. This table provides the system clock input  
(SYS_CLK_IN) AC timing specifications for the device.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
7
RESET initialization  
Table 8. SYS_CLK_IN AC Timing Specifications  
Parameter/  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
SYS_CLK_IN frequency  
SYS_CLK_IN period  
SYS_CLK_IN rise and fall time  
SYS_CLK_IN duty cycle  
SYS_CLK_IN jitter  
fSYS_CLK_IN  
tSYS_CLK_IN  
tKH, tKL  
24  
15  
0.6  
40  
66.67  
41.67  
1.2  
MHz  
ns  
1, 6  
2
ns  
tKHK SYS_CLK_IN  
/t  
60  
%
3
150  
ps  
4, 5  
Notes:  
1. Caution: The system and core must not exceed their respective maximum or minimum operating frequencies.  
2. Rise and fall times for SYS_CLK_IN are measured at 0.4 and 2.7 V.  
3. Timing is guaranteed by design and characterization.  
4. This represents the total input jitter—short term and long term—and is guaranteed by design.  
5. The SYS_CLK_IN driver’s closed loop jitter bandwidth should be <500 kHz at –20 dB. The bandwidth must be set low to  
allow cascade-connected PLL-based devices to track SYS_CLK_IN drivers with the specified jitter.  
6. Spread spectrum is allowed up to 1% down-spread @ 33 kHz (max rate).  
Table 9. RTC_PIT_CLOCK AC Timing Specifications  
Parameter/  
Symbol  
Min  
Typ  
Max  
Unit  
Notes  
RTC_PIT_CLOCK frequency  
RTC_PIT_CLOCK rise and fall time  
RTC_PIT_CLOCK duty cycle  
fRTC_PIT_CLOCK  
tRTCH, tRTCL  
tRTCHK/tRTC_PIT_CLO  
1
32768  
3
Hz  
s  
%
1.5  
45  
55  
CK  
5 RESET initialization  
This section describes the DC and AC electrical specifications for the reset initialization timing and  
electrical requirements of the device.  
5.1  
RESET DC electrical characteristics  
This table provides the DC electrical characteristics for the RESET pins.  
Table 10. RESET Pins DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.0  
NVDD + 0.3  
V
V
–0.3  
0.8  
5
IIN  
0 V  VIN  NVDD  
IOH = –8.0 mA  
IOL = 8.0 mA  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
8
Freescale Semiconductor  
 
RESET initialization  
5.2  
RESET AC electrical characteristics  
This table provides the reset initialization AC timing specifications.  
Table 11. RESET Initialization Timing Specifications  
Parameter/Condition  
Min  
Max  
Unit  
Notes  
Required assertion time of HRESET (input) to activate reset flow  
32  
32  
tSYS_CLK_IN  
tSYS_CLK_IN  
1
Required assertion time of PORESET with stable power and clock applied to  
SYS_CLK_IN  
HRESET assertion (output)  
512  
4
tSYS_CLK_IN  
tSYS_CLK_IN  
1
Input setup time for POR configuration signals (CFG_RESET_SOURCE[0:3]) with  
respect to negation of PORESET  
Input hold time for POR configuration signals with respect to negation of HRESET  
0
4
ns  
ns  
2
Time for the device to turn off POR configuration signal drivers with respect to the  
assertion of HRESET  
Time for the device to turn on POR configuration signal drivers with respect to the  
negation of HRESET  
1
ns  
1, 2  
Notes:  
1. tSYS_CLK_IN is the clock period of the input clock applied to SYS_CLK_IN.  
2. POR configuration signals consists of CFG_RESET_SOURCE[0:3].  
This table provides the PLL lock times.  
Table 12. PLL Lock Times  
Parameter/Condition  
Min  
Max  
Unit  
Note  
System PLL lock time  
100  
100  
s  
s  
e300 core PLL lock time  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
9
DDR2 SDRAM  
6 DDR2 SDRAM  
This section describes the DC and AC electrical specifications for the DDR2 SDRAM interface. Note that  
DDR2 SDRAM is GV (typ) = 1.8 V.  
DD  
6.1  
DDR2 SDRAM DC electrical characteristics  
This table provides the recommended operating conditions for the DDR2 SDRAM component(s) when  
GV (typ) = 1.8 V.  
DD  
Table 13. DDR2 SDRAM DC Electrical Characteristics for GV (typ) = 1.8 V  
DD  
Parameter/Condition  
I/O supply voltage  
Symbol  
Min  
Max  
Unit  
Note  
GVDD  
MVREF  
VTT  
1.7  
0.49 GVDD  
MVREF – 0.04  
MVREF + 0.125  
–0.3  
1.9  
0.51 GVDD  
MVREF + 0.04  
GVDD + 0.3  
MVREF – 0.125  
9.9  
V
V
1
2
I/O reference voltage  
I/O termination voltage  
Input high voltage  
V
3
VIH  
V
4
Input low voltage  
VIL  
V
Output leakage current  
Output high current (VOUT = 1.420 V)  
Output low current (VOUT = 0.280 V)  
Notes:  
IOZ  
–9.9  
A  
mA  
mA  
IOH  
–13.4  
IOL  
13.4  
1. GVDD is expected to be within 50 mV of the DRAM GVDD at all times.  
2. MVREF is expected to be equal to 0.5 GVDD, and to track GVDD DC variations as measured at the receiver.  
Peak-to-peak noise on MVREF may not exceed 2% of the DC value.  
3. VTT is not applied directly to the device. It is the supply to which far end signal termination is made and is expected to be  
equal to MVREF. This rail should track variations in the DC level of MVREF  
4. Output leakage is measured with all outputs disabled, 0 V VOUT GVDD  
.
.
This table provides the DDR2 capacitance when GV (typ) = 1.8 V.  
DD  
Table 14. DDR2 SDRAM Capacitance for GV (typ)=1.8 V  
DD  
Parameter/Condition  
Symbol  
Min  
Max  
Unit  
Notes  
Input/output capacitance: DQ, DQS, DQS  
Delta input/output capacitance: DQ, DQS, DQS  
Note:  
CIO  
6
8
pF  
pF  
1
1
CDIO  
0.5  
1. This parameter is sampled. GVDD = 1.8 V 0.090 V, f = 1 MHz, TA = 25°C, VOUT = GVDD/2, VOUT (peak-to-peak) = 0.2 V.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
10  
Freescale Semiconductor  
DDR2 SDRAM  
This table provides the current draw characteristics for MV  
.
REF  
Table 15. Current Draw Characteristics for MV  
REF  
Parameter / Condition  
Symbol  
Min  
Max  
Unit  
Note  
Current draw for MVREF  
Note:  
IMVREF  
500  
A  
1
1. The voltage regulator for MVREF must be able to supply up to 500 A current.  
6.2  
DDR2 SDRAM AC electrical characteristics  
This section provides the AC electrical characteristics for the DDR2 SDRAM interface.  
6.2.1  
DDR2 SDRAM input AC timing specifications  
This table provides input AC timing specifications for the DDR2 SDRAM when GV (typ)=1.8 V.  
DD  
Table 16. DDR2 SDRAM Input AC Timing Specifications for 1.8 V Interface  
At recommended operating conditions with GVDD of 1.8 100 mV  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
AC input low voltage  
AC input high voltage  
VIL  
MVREF – 0.45  
V
V
VIH  
MVREF + 0.45  
This table provides input AC timing specifications for the DDR2 SDRAM interface.  
Table 17. DDR2 SDRAM Input AC Timing Specifications  
At recommended operating conditions. with GVDD of 1.8 100 mV  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
1, 2,3  
Controller skew for MDQS—MDQ/MECC  
tCISKEW  
–875  
875  
ps  
266 MHz  
Notes:  
1. tCISKEW represents the total amount of skew consumed by the controller between MDQS[n] and any corresponding bit that is  
captured with MDQS[n]. This should be subtracted from the total timing budget.  
2. The amount of skew that can be tolerated from MDQS to a corresponding MDQ or MECC signal is called tDISKEW. This can  
be determined by the following equation: tDISKEW = +/–(T/4 – abs(tCISKEW)) where T is the clock period and abs(tCISKEW) is  
the absolute value of tCISKEW  
.
3. Memory controller ODT value of 150 is recommended  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
11  
 
DDR2 SDRAM  
This figure illustrates the DDR2 input timing diagram showing the t  
timing parameter.  
DISKEW  
MCK[n]  
MCK[n]  
tMCK  
MDQS[n]  
MDQ[x]/  
MECC[x]  
D0  
D1  
tDISKEW  
tDISKEW  
Figure 4. Timing Diagram for t  
DISKEW  
6.2.2  
DDR2 SDRAM output AC timing specifications  
Table 18. DDR2 SDRAM Output AC Timing Specifications  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
MCK[n] cycle time, MCK[n]/MCK[n] crossing  
ADDR/CMD output setup with respect to MCK  
tMCK  
7.5  
10  
ns  
2
3
tDDKHAS  
266 MHz  
2.9  
ns  
ns  
ns  
ADDR/CMD output hold with respect to MCK  
266 MHz  
tDDKHAX  
tDDKHCS  
tDDKHCX  
tDDKHMH  
3
3
3
2.33  
MCS[n] output setup with respect to MCK  
266 MHz  
2.5  
MCS[n] output hold with respect to MCK  
MCK to MDQS Skew  
266 MHz  
3.15  
–0.6  
ns  
ns  
0.6  
4
5
MDQ//MDM/MECC output setup with respect to  
tDDKHDS,  
tDDKLDS  
MDQS  
266 MHz  
900  
ps  
ps  
MDQ//MDM/MECC output hold with respect to  
tDDKHDX,  
tDDKLDX  
5
MDQS  
266 MHz  
1100  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
12  
 
DDR2 SDRAM  
Table 18. DDR2 SDRAM Output AC Timing Specifications (continued)  
Parameter  
MDQS preamble start  
Symbol 1  
Min  
Max  
Unit  
Notes  
tDDKHMP  
0.75 x tMCK  
ns  
ns  
6
MDQS epilogue end  
tDDKHME  
0.4 x tMCK  
0.6 x tMCK  
6
Notes:  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. Output hold time can be read as DDR timing  
(DD) from the rising or falling edge of the reference clock (KH or KL) until the output went invalid (AX or DX). For example,  
tDDKHAS symbolizes DDR timing (DD) for the time tMCK memory clock reference (K) goes from the high (H) state until outputs  
(A) are setup (S) or output valid time. Also, tDDKLDX symbolizes DDR timing (DD) for the time tMCK memory clock reference  
(K) goes low (L) until data outputs (D) are invalid (X) or data output hold time.  
2. All MCK/MCK referenced measurements are made from the crossing of the two signals 0.1 V.  
3. ADDR/CMD includes all DDR SDRAM output signals except MCK/MCK, MCS, and MDQ/MECC/MDM/MDQS.  
4. Note that tDDKHMH follows the symbol conventions described in note 1. For example, tDDKHMH describes the DDR timing (DD)  
from the rising edge of the MCK[n] clock (KH) until the MDQS signal is valid (MH). tDDKHMH can be modified through control  
of the DQSS override bits in the TIMING_CFG_2 register. This is typically set to the same delay as the clock adjust in the  
CLK_CNTL register. The timing parameters listed in the table assume that these 2 parameters have been set to the same  
adjustment value. For a description and understanding of the timing modifications enabled by use of these bits, see the  
MPC8308 PowerQUICC II Pro Processor Reference Manual.  
5. Determined by maximum possible skew between a data strobe (MDQS) and any corresponding bit of data (MDQ), ECC  
(MECC), or data mask (MDM). The data strobe should be centered inside of the data eye at the pins of the microprocessor.  
6. All outputs are referenced to the rising edge of MCK[n] at the pins of the microprocessor. Note that tDDKHMP follows the  
symbol conventions described in note 1.  
This figure shows the DDR2 SDRAM output timing for the MCK to MDQS skew measurement  
(tDDKHMH).  
MCK[n]  
MCK[n]  
tMCK  
tDDKHMHmax) = 0.6 ns  
MDQS  
tDDKHMH(min) = –0.6 ns  
MDQS  
Figure 5. Timing Diagram for t  
DDKHMH  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
13  
DUART  
This figure shows the DDR2 SDRAM output timing diagram.  
MCK[n]  
MCK[n]  
tMCK  
tDDKHAS DDKHCS  
,t  
tDDKHAX DDKHCX  
,t  
ADDR/CMD  
MDQS[n]  
Write A0  
tDDKHMP  
NOOP  
tDDKHMH  
tDDKHME  
tDDKHDS  
tDDKLDS  
MDQ[x]/  
MECC[x]  
D0  
D1  
tDDKLDX  
tDDKHDX  
Figure 6. DDR2 SDRAM Output Timing Diagram  
This figure provides the AC test load for the DDR2 bus.  
GVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 7. DDR2 AC Test Load  
7 DUART  
This section describes the DC and AC electrical specifications for the DUART interface.  
7.1  
DUART DC electrical characteristics  
This table provides the DC electrical characteristics for the DUART interface.  
Table 19. DUART DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
V
Low-level input voltage NVDD  
High-level output voltage, IOH = –100 A  
0.8  
VOH  
NVDD – 0.2  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
14  
 
Ethernet: Three-Speed Ethernet, MII management  
Table 19. DUART DC Electrical Characteristics (continued)  
Parameter  
Symbol  
Min  
Max  
Unit  
Low-level output voltage, IOL = 100 A  
VOL  
IIN  
0.2  
5
V
Input current (0 V VIN NVDD  
)
A  
7.2  
DUART AC electrical specifications  
This table provides the AC timing parameters for the DUART interface.  
Table 20. DUART AC Timing Specifications  
Parameter  
Value  
Unit  
Notes  
Minimum baud rate  
Maximum baud rate  
Oversample rate  
Notes:  
256  
> 1,000,000  
16  
baud  
baud  
1
2
1. Actual attainable baud rate is limited by the latency of interrupt processing.  
2. The middle of a start bit is detected as the 8th sampled 0 after the 1-to-0 transition of the start bit.  
Subsequent bit values are sampled each 16th sample.  
8 Ethernet: Three-Speed Ethernet, MII management  
This section provides the AC and DC electrical characteristics for three-speed, 10/100/1000, and MII  
management. MPC8308 supports dual Ethernet controllers.  
8.1  
Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RGMII electrical characteristics  
The electrical characteristics specified here apply to all the media independent interface (MII) and reduced  
gigabit media independent interface (RGMII), signals except management data input/output (MDIO) and  
management data clock (MDC). The RGMII interface is defined for 2.5 V, while the MII interface can be  
operated at 3.3 V. The RGMII interface follows the Hewlett-Packard reduced pin-count interface for  
Gigabit Ethernet Physical Layer Device Specification Version 1.2a (9/22/2000). The electrical  
characteristics for MDIO and MDC are specified in Section 8.3, “Ethernet Management interface  
electrical characteristics.”  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
15  
 
Ethernet: Three-Speed Ethernet, MII management  
8.1.1  
eTSEC DC electrical characteristics  
All MII and RGMII drivers and receivers comply with the DC parametric attributes specified in Table 21  
and Table 22. The RGMII signals are based on a 2.5-V CMOS interface voltage as defined by JEDEC  
EIA/JESD8-5.  
Table 21. MII DC Electrical Characteristics  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 3.3 V  
Output high voltage  
LVDD  
VOH  
3.0  
3.6  
V
V
IOH = –4.0 mA  
LVDD = Min  
2.40  
LVDD + 0.3  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
VOL  
VIH  
VIL  
IIH  
IOL = 4.0 mA  
LVDD= Min  
VSS  
2.1  
0.50  
LVDD + 0.3  
0.90  
V
V
–0.3  
V
VIN 1 = LVDD  
VIN 1 = VSS  
40  
A  
A  
IIL  
–600  
1. The symbol VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
Table 22. RGMII DC Electrical Characteristics  
Parameters  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage 2.5 V  
Output high voltage  
LVDD  
VOH  
2.37  
2.00  
2.63  
V
V
IOH = –1.0 mA  
LVDD = Min  
LVDD + 0.3  
Output low voltage  
Input high voltage  
VOL  
VIH  
IOL = 1.0 mA  
LVDD= Min  
LVDD = Min  
VSS– 0.3  
0.40  
V
V
1.7  
LVDD + 0.3  
Input low voltage  
Input high current  
Input low current  
Note:  
VIL  
IIH  
IIL  
LVDD = Min  
–0.3  
0.70  
15  
V
VIN 1 = LVDD  
VIN 1 = VSS  
A  
A  
–15  
1. VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
8.2  
MII and RGMII AC timing specifications  
The AC timing specifications for MII and RGMII are presented in this section.  
8.2.1  
MII AC timing specifications  
This section describes the MII transmit and receive AC timing specifications.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
16  
Freescale Semiconductor  
 
 
Ethernet: Three-Speed Ethernet, MII management  
8.2.1.1  
MII Transmit AC timing specifications  
This table provides the MII transmit AC timing specifications.  
Table 23. MII Transmit AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB /NVDD of 3.3 V 0.3V.  
Parameter/Condition  
TX_CLK clock period 10 Mbps  
Symbol 1  
Min  
Typ  
Max  
Unit  
tMTX  
tMTX  
tMTXH/ MTX  
tMTKHDX  
tMTXR  
400  
40  
5
ns  
ns  
%
TX_CLK clock period 100 Mbps  
TX_CLK duty cycle  
t
35  
1
65  
15  
4.0  
4.0  
TX_CLK to MII data TXD[3:0], TX_ER, TX_EN delay  
TX_CLK data clock rise VIL(max) to VIH(min)  
TX_CLK data clock fall VIH(min) to VIL(max)  
Note:  
ns  
ns  
ns  
1.0  
1.0  
tMTXF  
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMTKHDX symbolizes MII transmit  
timing (MT) for the time tMTX clock reference (K) going high (H) until data outputs (D) are invalid (X). Note that, in general,  
the clock reference symbol representation is based on two to three letters representing the clock of a particular functional.  
For example, the subscript of tMTX represents the MII(M) transmit (TX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
This figure shows the MII transmit AC timing diagram.  
tMTXR  
tMTX  
TX_CLK  
tMTXF  
tMTXH  
TXD[3:0]  
TX_EN  
TX_ER  
tMTKHDX  
Figure 8. MII Transmit AC Timing Diagram  
8.2.1.2  
MII Receive AC timing specifications  
This table provides the MII receive AC timing specifications.  
Table 24. MII Receive AC Timing Specifications  
At recommended operating conditions with LVDD /NVDD of 3.3 V 0.3V.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
RX_CLK clock period 10 Mbps  
RX_CLK clock period 100 Mbps  
RX_CLK duty cycle  
tMRX  
tMRX  
tMRXH/tMRX  
tMRDVKH  
400  
40  
65  
ns  
ns  
%
35  
RXD[3:0], RX_DV, RX_ER setup time to RX_CLK  
10.0  
ns  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
17  
 
 
Ethernet: Three-Speed Ethernet, MII management  
Table 24. MII Receive AC Timing Specifications (continued)  
At recommended operating conditions with LVDD /NVDD of 3.3 V 0.3V.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
RXD[3:0], RX_DV, RX_ER hold time to RX_CLK  
RX_CLK clock rise VIL(max) to VIH(min)  
RX_CLK clock fall time VIH(min) to VIL(max)  
Note:  
tMRDXKH  
tMRXR  
10.0  
1.0  
ns  
ns  
ns  
4.0  
4.0  
tMRXF  
1.0  
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMRDVKH symbolizes MII  
receive timing (MR) with respect to the time data input signals (D) reach the valid state (V) relative to the tMRX clock reference  
(K) going to the high (H) state or setup time. Also, tMRDXKL symbolizes MII receive timing (GR) with respect to the time data  
input signals (D) went invalid (X) relative to the tMRX clock reference (K) going to the low (L) state or hold time. Note that, in  
general, the clock reference symbol representation is based on three letters representing the clock of a particular functional.  
For example, the subscript of tMRX represents the MII (M) receive (RX) clock. For rise and fall times, the latter convention is  
used with the appropriate letter: R (rise) or F (fall).  
This figure shows the MII receive AC timing diagram.  
tMRX  
tMRXR  
RX_CLK  
tMRXF  
Valid Data  
tMRXH  
RXD[3:0]  
RX_DV  
RX_ER  
tMRDVKH  
tMRDXKH  
Figure 9. MII Receive AC Timing Diagram RMII AC Timing Specifications  
This figure provides the AC test load.  
Output  
NVDD/  
or  
2
Z0 = 50   
RL = 50   
LVDD/2  
Figure 10. AC Test Load  
8.2.2  
RGMII AC timing specifications  
This table presents the RGMII AC timing specifications.  
Table 25. RGMII AC Timing Specifications  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Parameter/Condition  
Symbol 1  
Min  
Typ  
Max  
Unit  
Data to clock output skew (at transmitter)  
Data to clock input skew (at receiver) 2  
tSKRGT_TX  
tSKRGT_RX  
–0.6  
1.0  
0.6  
ns  
ns  
2.6  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
18  
 
Ethernet: Three-Speed Ethernet, MII management  
Table 25. RGMII AC Timing Specifications (continued)  
At recommended operating conditions with LVDD of 2.5 V 5%.  
Clock cycle duration 3  
tRGT  
tRGTH/tRGT  
tRGTH/tRGT  
tRGTR  
tRGTF  
7.2  
45  
40  
8.0  
50  
50  
8.8  
55  
ns  
%
Duty cycle for 1000Base-T 4, 5  
Duty cycle for 10BASE-T and 100BASE-TX 3, 5  
Rise time (20%–80%)  
60  
%
0.75  
0.75  
ns  
ns  
ns  
%
Fall time (20%–80%)  
6
GTX_CLK125 reference clock period  
GTX_CLK125 reference clock duty cycle  
Notes:  
tG12  
8.0  
tG125H G125  
/t  
47  
53  
1. In general, the clock reference symbol representation for this section is based on the symbols RGT to represent RGMII timing.  
For example, the subscript of tRGT represents the RGMII receive (RX) clock. Note also that the notation for rise (R) and fall  
(F) times follows the clock symbol that is being represented. For symbols representing skews, the subscript is skew (SK)  
followed by the clock that is being skewed (RGT).  
2. This implies that PC board design requires clocks to be routed such that an additional trace delay of greater than 1.5 ns is  
added to the associated clock signal.  
3. For 10 and 100 Mbps, tRGT scales to 400 ns 40 ns and 40 ns 4 ns, respectively.  
4. Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domains as long  
as the minimum duty cycle is not violated and stretching occurs for no more than three tRGT of the lowest speed transitioned  
between.  
5. Duty cycle reference is 0.5*LVDD  
6. This symbol is used to represent the external GTX_CLK125 and does not follow the original symbol naming convention.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
19  
Ethernet: Three-Speed Ethernet, MII management  
This figure shows the RGMII AC timing and multiplexing diagrams.  
W
5*7  
W
5*7+  
ꢉ$Wꢀ0$*&7;RXBW&S/X.Wꢋꢀ  
W
W
6.5*7B7;  
6.5*7B7;  
7;'6>ꢁꢂꢃ@>ꢇꢂꢈ@ꢀ  
77;;''>>@@ꢀ  
7;'>ꢇꢂꢈ@  
ꢉ$W70;$'&>RX@>WSXW@ꢀ  
7;'>ꢅ@  
7;(1  
ꢉ$Wꢀ0$&7;RBX&WS7X/Wꢋꢀ  
77;;('5>5@ꢀ  
3+<ꢀHTXLYDOHQWꢀWRꢀW  
3+<ꢀHTXLYDOHQWꢀWRꢀW  
6.5*7B5;  
6.5*7B5;  
7;B&/.  
ꢉ$Wꢀ3+<ꢊꢀLQSXWꢋ  
W
5*7  
W
5*7+  
ꢉ$Wꢀ3+<5ꢊꢀ;RXBW&S/X.Wꢋꢀ  
5;'>ꢁꢂꢃ@>ꢇꢂꢈ@  
5;'>ꢄꢂꢅ@ꢀ  
5;'>ꢁꢂꢃ@ꢀ  
5;'>ꢇꢂꢈ@  
5;'>ꢄꢂꢅ@>ꢇꢂꢈ@  
3+<ꢀHTXLYDOHQWꢀWRꢀW  
ꢉ$Wꢀ3+<ꢊꢀRXWSXWꢋ  
6.5*7B7;  
3+<ꢀHTXLYDOHQWꢀWRꢀW  
6.5*7B7;  
55;;('5>5@ꢀ  
5;'>ꢅ@  
5;'9  
5;B&7/  
ꢉ$Wꢀ3+<ꢊꢀRXWSXWꢋ  
W
W
6.5*7B5;  
6.5*7B5;  
5;B&/.  
ꢉ$Wꢀ0$&ꢊꢀLQSXWꢋ  
Figure 11. RGMII AC Timing and Multiplexing Diagrams  
8.3  
Ethernet Management interface electrical characteristics  
The electrical characteristics specified here apply to MII management interface signals MDIO  
(management data input/output) and MDC (management data clock). The electrical characteristics for MII  
and RGMII are specified in Section 8.1, “Enhanced Three-Speed Ethernet Controller (eTSEC)  
(10/100/1000 Mbps)—MII/RGMII electrical characteristics.”  
8.3.1  
MII Management DC electrical characteristics  
The MDC and MDIO are defined to operate at a supply voltage of 3.3 V. This table provides the DC  
electrical characteristics for MDIO and MDC.  
Table 26. MII Management DC Electrical Characteristics When Powered at 3.3 V  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Supply voltage (3.3 V)  
Output high voltage  
NVDD  
VOH  
3.0  
3.6  
V
V
IOH = –1.0 mA  
NVDD = Min  
2.10  
NVDD + 0.3  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
20  
 
Ethernet: Three-Speed Ethernet, MII management  
Table 26. MII Management DC Electrical Characteristics When Powered at 3.3 V (continued)  
Parameter  
Symbol  
Conditions  
Min  
Max  
Unit  
Output low voltage  
Input high voltage  
Input low voltage  
Input high current  
Input low current  
Note:  
VOL  
VIH  
VIL  
IIH  
IOL = 1.0 mA  
LVDD = Min  
VSS  
2.0  
0.50  
V
V
0.80  
40  
V
NVDD = Max  
NVDD = Max  
VIN 1 = 2.1 V  
VIN = 0.5 V  
A  
A  
IIL  
–600  
1. VIN, in this case, represents the LVIN symbol referenced in Table 1 and Table 2.  
8.3.2  
MII Management AC electrical specifications  
This table provides the MII management AC timing specifications.  
Table 27. MII Management AC Timing Specifications  
At recommended operating conditions with LVDDA/LVDDB is 3.3 V 0.3V  
Parameter/Condition  
MDC frequency  
Symbol 1  
Min  
Typ  
Max  
Unit  
Notes  
fMDC  
tMDC  
32  
10  
5
2.5  
400  
MHz  
ns  
2
MDC period  
3
MDC clock pulse width high  
MDC to MDIO delay  
MDIO to MDC setup time  
MDIO to MDC hold time  
MDC rise time  
tMDCH  
ns  
tMDKHDX  
tMDDVKH  
tMDDXKH  
tMDCR  
170  
ns  
ns  
0
ns  
10  
10  
ns  
MDC fall time  
tMDHF  
ns  
Notes:  
1. The symbols used for timing specifications Follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tMDKHDX symbolizes management  
data timing (MD) for the time tMDC from clock reference (K) high (H) until data outputs (D) are invalid (X) or data hold time.  
Also, tMDDVKH symbolizes management data timing (MD) with respect to the time data input signals (D) reach the valid state  
(V) relative to the tMDC clock reference (K) going to the high (H) state or setup time. For rise and fall times, the latter  
convention is used with the appropriate letter: R (rise) or F (fall).  
2. This parameter is dependent on the csb_clk speed. (The MIIMCFG[Mgmt Clock Select] field determines the clock frequency  
of the Mgmt Clock EC_MDC.)  
3. This parameter is dependent on the cbs_clk speed (that is, for a csb_clk of 133 MHz, the delay is 60 ns).  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
21  
 
Ethernet: Three-Speed Ethernet, MII management  
This figure shows the MII management AC timing diagram.  
tMDC  
tMDCR  
MDC  
tMDCF  
tMDCH  
MDIO  
(Input)  
tMDDVKH  
tMDDXKH  
MDIO  
(Output)  
tMDKHDX  
Figure 12. MII Management Interface Timing Diagram  
8.4  
IEEE Std 1588™ Timer Specifications  
This section describes the DC and AC electrical specifications for the 1588 timer.  
8.4.1  
IEEE 1588 Timer DC Specifications  
This table provides the IEEE 1588 timer DC specifications.  
Table 28. GPIO DC Electrical Characteristics  
Characteristic  
Output high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
V
V
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
0.5  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.0  
–0.3  
NVDD + 0.3  
V
0.8  
5
V
0 V VIN NVDD  
A  
8.4.2  
IEEE 1588 Timer AC specifications  
This table provides the IEEE 1588 timer AC specifications.  
Table 29. IEEE 1588 Timer AC Specifications  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Timer clock cycle time  
tTMRCK  
tTMRCKS  
tTMRCKH  
0
70  
MHz  
1
Input setup to timer clock  
Input hold from timer clock  
2, 3  
2, 3  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
22  
USB  
Table 29. IEEE 1588 Timer AC Specifications (continued)  
Parameter  
Output clock to output valid  
Symbol  
Min  
Max  
Unit  
Notes  
tGCLKNV  
tTMRAL  
0
6
ns  
2
Timer alarm to output valid  
Note:  
1. The timer can operate on rtc_clock or tmr_clock. These clocks get muxed and any one of them can be selected.  
2. Asynchronous signals.  
3. Inputs need to be stable at least one TMR clock.  
9 USB  
9.1  
USB Dual-Role controllers  
This section provides the AC and DC electrical specifications for the USB-ULPI interface.  
9.1.1  
USB DC electrical characteristics  
This table lists the DC electrical characteristics for the USB interface.  
Table 30. USB DC Electrical Characteristics  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
Input current  
VIH  
VIL  
2
–0.3  
LVDD + 0.3  
V
V
0.8  
5
IIN  
A  
V
High-level output voltage, IOH = –100 A  
Low-level output voltage, IOL = 100 A  
Note:  
VOH  
VOL  
LVDD – 0.2  
0.2  
V
1. The symbol VIN, in this case, represents the NVIN symbol referenced in Table 1 and Table 2.  
9.1.2  
USB AC electrical specifications  
This table lists the general timing parameters of the USB-ULPI interface.  
Table 31. USB General Timing Parameters  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
USB clock cycle time  
tUSCK  
tUSIVKH  
tUSIXKH  
15  
4
ns  
ns  
ns  
1, 2  
1, 4  
1, 4  
Input setup to USB clock—all inputs  
Input hold to USB clock—all inputs  
1
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
23  
USB  
Table 31. USB General Timing Parameters (continued)  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
USB clock to output valid—all outputs  
Output hold from USB clock—all outputs  
Notes:  
tUSKHOV  
tUSKHOX  
1
9
ns  
ns  
1
1
1. The symbols used for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state)(reference)(state) for  
inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tUSIXKH symbolizes usb timing  
(US) for the input (I) to go invalid (X) with respect to the time the usb clock reference (K) goes high (H). Also, tUSKHOX  
symbolizes usb timing (US) for the usb clock reference (K) to go high (H), with respect to the output (O) going invalid (X) or  
output hold time.  
2. All timings are in reference to USB clock.  
3. All signals are measured from NVDD/2 of the rising edge of USB clock to 0.4 NVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For purposes of active/float timing measurements, the Hi-Z or off-state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
The following two figures provide the AC test load and signals for the USB, respectively.  
Z0 = 50   
Output  
NVDD/2  
RL = 50   
Figure 13. USB AC Test Load  
USBDR_CLK  
tUSIXKH  
tUSIVKH  
Input Signals  
tUSKHOV  
tUSKHOX  
Output Signals  
Figure 14. USB Signals  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
24  
High-Speed Serial interfaces (HSSI)  
10 High-Speed Serial interfaces (HSSI)  
This section describes the common portion of SerDes DC electrical specifications, which is the DC  
requirement for SerDes reference clocks. The SerDes data lane’s transmitter and receiver reference circuits  
are also shown.  
10.1 Signal terms definition  
The SerDes utilizes differential signaling to transfer data across the serial link. This section defines terms  
used in the description and specification of differential signals.  
Figure 15 shows how the signals are defined. For illustration purpose, only one SerDes lane is used for  
description. The figure shows waveform for either a transmitter output (TXn and TXn) or a receiver input  
(RXn and RXn). Each signal swings between A Volts and B Volts where A > B.  
Using this waveform, the definitions are as follows. To simplify illustration, the following definitions  
assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling  
environment.  
Single-Ended Swing  
The transmitter output signals and the receiver input signals TXn, TXn, RXn, and RXn each have  
a peak-to-peak swing of A – B Volts. This is also referred as each signal wire’s single-ended swing.  
Differential Output Voltage, V (or Differential Output Swing)  
OD  
The differential output voltage (or swing) of the transmitter, V , is defined as the difference of  
OD  
the two complimentary output voltages: V  
negative.  
– V . The V value can be either positive or  
TXn  
TXn OD  
Differential Input Voltage, V (or Differential Input Swing)  
ID  
The differential input voltage (or swing) of the receiver, V , is defined as the difference of the two  
ID  
complimentary input voltages: V  
– V  
. The V value can be either positive or negative.  
RXn  
RXn ID  
Differential Peak Voltage, V  
The peak value of the differential transmitter output signal or the differential receiver input signal  
is defined as Differential Peak Voltage, V = |A – B| Volts.  
DIFFp  
DIFFp  
Differential Peak-to-Peak, V  
DIFFp-p  
Since the differential output signal of the transmitter and the differential input signal of the receiver  
each range from A – B to –(A – B) Volts, the peak-to-peak value of the differential transmitter  
output signal or the differential receiver input signal is defined as differential peak-to-peak voltage,  
V
= 2*V  
= 2 * |(A – B)| Volts, which is twice of differential swing in amplitude, or  
DIFFp-p  
DIFFp  
twice of the differential peak. For example, the output differential peak-peak voltage can also be  
calculated as V = 2*|V |.  
TX-DIFFp-p  
OD  
Differential Waveform  
The differential waveform is constructed by subtracting the inverting signal (for example, TXn)  
from the non-inverting signal (for example, TXn) within a differential pair. There is only one signal  
trace curve in a differential waveform. The voltage represented in the differential waveform is not  
referenced to ground. Refer to Figure 24 as an example for differential waveform.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
25  
High-Speed Serial interfaces (HSSI)  
Common Mode Voltage, V  
cm  
The common mode voltage is equal to one-half of the sum of the voltages between each conductor  
of a balanced interchange circuit and ground. In this example, for SerDes output,  
V
= (V  
+ V )/2 = (A + B) / 2, which is the arithmetic mean of the two complimentary  
cm_out  
TXn TXn  
output voltages within a differential pair. In a system, the common mode voltage may often differ  
from one component’s output to the other’s input. Sometimes, it may be even different between the  
receiver input and driver output circuits within the same component. It is also referred as the DC  
offset in some occasion.  
TXn or RXn  
A Volts  
Vcm = (A + B) / 2  
TXn or RXn  
B Volts  
Differential Swing, VID or VOD = A – B  
Differential Peak Voltage, VDIFFp = |A – B|  
Differential Peak-Peak Voltage, VDIFFpp = 2*VDIFFp (not shown)  
Figure 15. Differential Voltage Definitions for Transmitter or Receiver  
To illustrate these definitions using real values, consider the case of a current mode logic (CML)  
transmitter that has a common mode voltage of 2.25 V and each of its outputs, TD and TD, has a swing  
that goes between 2.5 V and 2.0 V. Using these values, the peak-to-peak voltage swing of each signal (TD  
or TD) is 500 mV p-p, which is referred as the single-ended swing for each signal. In this example, since  
the differential signaling environment is fully symmetrical, the transmitter output’s differential swing  
(V ) has the same amplitude as each signal’s single-ended swing. The differential output signal ranges  
OD  
between 500 mV and –500 mV, in other words, V is 500 mV in one phase and –500 mV in the other  
OD  
phase. The peak differential voltage (V  
is 1000 mV p-p.  
) is 500 mV. The peak-to-peak differential voltage (V  
)
DIFFp  
DIFFp-p  
10.2 SerDes reference clocks  
The SerDes reference clock inputs are applied to an internal PLL whose output creates the clock used by  
the corresponding SerDes lanes. The SerDes reference clocks input is SD_REF_CLK and SD_REF_CLK  
for PCI Express.  
The following sections describe the SerDes reference clock requirements and some application  
information.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
26  
Freescale Semiconductor  
 
High-Speed Serial interfaces (HSSI)  
10.2.1 SerDes reference clock receiver characteristics  
Figure 16 shows a receiver reference diagram of the SerDes reference clocks.  
The supply voltage requirements for XCOREVDD are specified in Table 1 and Table 2.  
SerDes reference clock receiver reference circuit structure  
— The SD_REF_CLK and SD_REF_CLK are internally AC-coupled differential inputs as shown  
in Figure 16. Each differential clock input (SD_REF_CLK or SD_REF_CLK) has a 50-  
termination to XCOREVSS followed by on-chip AC-coupling.  
— The external reference clock driver must be able to drive this termination.  
— The SerDes reference clock input can be either differential or single-ended. Refer to the  
Differential Mode and Single-ended Mode description below for further detailed requirements.  
The maximum average current requirement that also determines the common mode voltage range  
— When the SerDes reference clock differential inputs are DC coupled externally with the clock  
driver chip, the maximum average current allowed for each input pin is 8mA. In this case, the  
exact common mode input voltage is not critical as long as it is within the range allowed by the  
maximum average current of 8 mA (refer to the following bullet for more detail), since the  
input is AC-coupled on-chip.  
— This current limitation sets the maximum common mode input voltage to be less than 0.4 V  
(0.4 V/50 = 8 mA) while the minimum common mode input level is 0.1 V above XCOREVSS.  
For example, a clock with a 50/50 duty cycle can be produced by a clock driver with output  
driven by its current source from 0mA to 16mA (0–0.8 V), such that each phase of the  
differential input has a single-ended swing from 0 V to 800 mV with the common mode voltage  
at 400mV.  
— If the device driving the SD_REF_CLK and SD_REF_CLK inputs cannot drive 50 to  
XCOREVSS DC, or it exceeds the maximum input current limitations, then it must be  
AC-coupled off-chip.  
The input amplitude requirement  
— This requirement is described in detail in the following sections.  
50   
SD_REF_CLK  
Input  
Amp  
SD_REF_CLK  
50   
Figure 16. Receiver of SerDes Reference Clocks  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
27  
 
 
High-Speed Serial interfaces (HSSI)  
10.2.2 DC level requirement for SerDes reference clocks  
The DC level requirement for the MPC8308 SerDes reference clock inputs is different depending on the  
signaling mode used to connect the clock driver chip and SerDes reference clock inputs as described  
below.  
Differential Mode  
— The input amplitude of the differential clock must be between 400 mV and 1600 mV  
differential peak-peak (or between 200 mV and 800 mV differential peak). In other words,  
each signal wire of the differential pair must have a single-ended swing less than 800 mV and  
greater than 200 mV. This requirement is the same for both external DC-coupled or  
AC-coupled connection.  
— For external DC-coupled connection, as described in Section 10.2.1, “SerDes reference clock  
receiver characteristics,” the maximum average current requirements sets the requirement for  
average voltage (common mode voltage) to be between 100 mV and 400 mV. Figure 17 shows  
the SerDes reference clock input requirement for DC-coupled connection scheme.  
— For external AC-coupled connection, there is no common mode voltage requirement for the  
clock driver. Since the external AC-coupling capacitor blocks the DC level, the clock driver  
and the SerDes reference clock receiver operate in different command mode voltages. The  
SerDes reference clock receiver in this connection scheme has its common mode voltage set to  
XCOREVSS. Each signal wire of the differential inputs is allowed to swing below and above  
the common mode voltage (XCOREVSS). Figure 18 shows the SerDes reference clock input  
requirement for AC-coupled connection scheme.  
Single-ended Mode  
— The reference clock can also be single-ended. The SD_REF_CLK input amplitude  
(single-ended swing) must be between 400 mV and 800 mV peak-peak (from Vmin to Vmax)  
with SD_REF_CLK either left unconnected or tied to ground.  
— The SD_REF_CLK input average voltage must be between 200 and 400 mV. Figure 19 shows  
the SerDes reference clock input requirement for single-ended signaling mode.  
— To meet the input amplitude requirement, the reference clock inputs might need to be DC or  
AC-coupled externally. For the best noise performance, the reference of the clock could be DC  
or AC-coupled into the unused phase (SD_REF_CLK) through the same source impedance as  
the clock input (SD_REF_CLK) in use.  
200 mV < Input Amplitude or Differential Peak < 800mV  
SD_REF_CLK  
Vmax < 80 0mV  
100 mV < Vcm < 400 mV  
Vmin > 0 V  
SD_REF_CLK  
Figure 17. Differential Reference Clock Input DC Requirements (External DC-Coupled)  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
28  
 
High-Speed Serial interfaces (HSSI)  
200mV < Input Amplitude or Differential Peak < 800mV  
SD_REF_CLK  
Vmax < Vcm + 400 mV  
Vcm  
Vmin > Vcm – 400 mV  
SD_REF_CLK  
Figure 18. Differential Reference Clock Input DC Requirements (External AC-Coupled)  
400 mV < SD_REF_CLK Input Amplitude < 800 mV  
SD_REF_CLK  
0 V  
SD_REF_CLK  
Figure 19. Single-Ended Reference Clock Input DC Requirements  
10.2.3 Interfacing with other differential signaling levels  
With on-chip termination to XCOREVSS, the differential reference clocks inputs are high-speed current  
steering logic (HCSL) compatible and DC coupled.  
Many other low voltage differential type outputs like low-voltage differential signaling (LVDS) can be  
used but may need to be AC-coupled due to the limited common mode input range allowed (100–400 mV)  
for DC-coupled connection.  
LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at clock  
driver output first, then followed with series attenuation resistor to reduce the amplitude, in addition to  
AC-coupling.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
29  
High-Speed Serial interfaces (HSSI)  
NOTE  
Figure 20Figure 23 are for conceptual reference only. Due to the fact that  
clock driver chip's internal structure, output impedance, and termination  
requirements are different between various clock driver chip manufacturers,  
it is very much possible that the clock circuit reference designs provided by  
clock driver chip vendor are different from what is shown below. They  
might also vary from one vendor to the other. Therefore, Freescale  
Semiconductor can neither provide the optimal clock driver reference  
circuits, nor guarantee the correctness of the following clock driver  
connection reference circuits. The system designer is recommended to  
contact the selected clock driver chip vendor for the optimal reference  
circuits with the MPC8308 SerDes reference clock receiver requirement  
provided in this document.  
This figure shows the SerDes reference clock connection reference circuits for HCSL type clock driver. It  
assumes that the DC levels of the clock driver chip is compatible with MPC8308 SerDes reference clock  
input’s DC requirement.  
MPC8308  
HCSL CLK Driver Chip  
50   
SD_REF_CLK  
CLK_Out  
33   
33   
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
Clock Driver  
CLK_Out  
SD_REF_CLK  
50   
Clock driver vendor dependent  
source termination resistor  
Total 50 Assume clock driver’s  
output impedance is about 16   
Figure 20. DC-Coupled Differential Connection with HCSL Clock Driver (Reference Only)  
This figure shows the SerDes reference clock connection reference circuits for LVDS type clock driver.  
Since LVDS clock driver’s common mode voltage is higher than the MPC8308’s SerDes reference clock  
input’s allowed range (100–400 mV), AC-coupled connection scheme must be used. It assumes the LVDS  
output driver features 50-termination resistor. It also assumes that the LVDS transmitter establishes its  
own common mode level without relying on the receiver or other external component.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
30  
Freescale Semiconductor  
 
High-Speed Serial interfaces (HSSI)  
MPC8308  
LVDS CLK Driver Chip  
50   
SD_REF_CLK  
SD_REF_CLK  
10 nF  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
Clock Driver  
CLK_Out  
10 nF  
50   
Figure 21. AC-Coupled Differential Connection with LVDS Clock Driver (Reference Only)  
Figure 22 shows the SerDes reference clock connection reference circuits for LVPECL type clock driver.  
Since LVPECL driver’s DC levels (both common mode voltages and output swing) are incompatible with  
MPC8308 SerDes reference clock input’s DC requirement, AC-coupling has to be used.  
This figure assumes that the LVPECL clock driver’s output impedance is 50 R1 is used to DC-bias the  
LVPECL outputs prior to AC-coupling. Its value could be ranged from 140 to 240 depending on clock  
driver vendor’s requirement. R2 is used together with the SerDes reference clock receiver’s 50-  
termination resistor to attenuate the LVPECL output’s differential peak level such that it meets the  
MPC8308’s SerDes reference clock’s differential input amplitude requirement (between 200 mV and  
800 mV differential peak). For example, if the LVPECL output’s differential peak is 900 mV and the  
desired SerDes reference clock input amplitude is selected as 600 mV, the attenuation factor is 0.67, which  
requires R2 = 25 Please consult clock driver chip manufacturer to verify whether this connection  
scheme is compatible with a particular clock driver chip.  
LVPECL CLK  
Driver Chip  
MPC8308  
50   
SD_REF_CLK  
CLK_Out  
10nF  
R2  
SerDes Refer.  
CLK Receiver  
R1  
R1  
100 differential PWB trace  
10 nF  
Clock Driver  
R2  
SD_REF_CLK  
CLK_Out  
50   
Figure 22. AC-Coupled Differential Connection with LVPECL Clock Driver (Reference Only)  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
31  
 
High-Speed Serial interfaces (HSSI)  
This figure shows the SerDes reference clock connection reference circuits for a single-ended clock driver.  
It assumes the DC levels of the clock driver are compatible with the device’s SerDes reference clock  
input’s DC requirement.  
Single-Ended  
CLK Driver Chip  
MPC8308  
Total 50 Assume clock driver’s  
output impedance is about 16   
50   
SD_REF_CLK  
33   
Clock Driver  
CLK_Out  
SerDes Refer.  
CLK Receiver  
100 differential PWB trace  
SD_REF_CLK  
50   
50   
Figure 23. Single-Ended Connection (Reference Only)  
10.2.4 AC requirements for SerDes reference clocks  
The clock driver selected should provide a high quality reference clock with low phase noise and  
cycle-to-cycle jitter. Phase noise less than 100 kHz can be tracked by the PLL and data recovery loops and  
is less of a problem. Phase noise above 15 MHz is filtered by the PLL. The most problematic phase noise  
occurs in the 1–15 MHz range. The source impedance of the clock driver should be 50 to match the  
transmission line and reduce reflections which are a source of noise to the system.  
This table describes some AC parameters for PCI Express protocol.  
Table 32. SerDes Reference Clock AC Parameters  
At recommended operating conditions with XCOREVDD= 1.0V 5%  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Rising Edge Rate  
Falling Edge Rate  
Rise Edge Rate  
1.0  
1.0  
4.0  
4.0  
V/ns  
V/ns  
mV  
2, 3  
2, 3  
2
Fall Edge Rate  
Differential Input High Voltage  
Differential Input Low Voltage  
VIH  
VIL  
+200  
–200  
mV  
2
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
32  
High-Speed Serial interfaces (HSSI)  
Table 32. SerDes Reference Clock AC Parameters (continued)  
At recommended operating conditions with XCOREVDD= 1.0V 5%  
Parameter  
Symbol  
Min  
Max  
Unit  
Notes  
Rising edge rate (SD_REF_CLK) to falling edge rate  
(SD_REF_CLK) matching  
Rise-Fall  
Matching  
20  
%
1, 4  
Notes:  
1. Measurement taken from single ended waveform.  
2. Measurement taken from differential waveform.  
3. Measured from –200 mV to +200 mV on the differential waveform (derived from SD_REF_CLK minus SD_REF_CLK). The  
signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered  
on the differential zero crossing (Figure 24).  
4. Matching applies to rising edge rate for SD_REF_CLK and falling edge rate for SD_REF_CLK. It is measured using a 200  
mV window centered on the median cross point where SD_REF_CLK rising meets SD_REF_CLK falling. The median cross  
point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations. The Rise Edge Rate  
of SD_REF_CLK should be compared to the Fall Edge Rate of SD_REF_CLK, the maximum allowed difference should not  
exceed 20% of the slowest edge rate (See Figure 25).  
VIH  
=
+200  
0.0 V  
VIL = -200 mV  
SD_REF_CLK  
minus  
SD_REF_CLK  
Figure 24. Differential Measurement Points for Rise and Fall Time  
SD_REF_CLK  
SD_REF_CLK  
SD_REF_CLK  
SD_REF_CLK  
Figure 25. Single-Ended Measurement Points for Rise and Fall Time Matching  
The other detailed AC requirements of the SerDes reference clocks is defined by each interface protocol  
based on application usage. For detailed information, see the following sections:  
Section 11.2, “AC Requirements for PCI Express SerDes Clocks”  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
33  
 
 
PCI Express  
10.2.4.1 Spread Spectrum Clock  
SD_REF_CLK/SD_REF_CLK are not intended to be used with, and should not be clocked by, a spread  
spectrum clock source.  
10.3 SerDes Transmitter and Receiver Reference Circuits  
This figure shows the reference circuits for SerDes data lane’s transmitter and receiver.  
RXn  
TXn  
50   
50   
50   
50   
Receiver  
Transmitter  
TXn  
RXn  
Figure 26. SerDes Transmitter and Receiver Reference Circuits  
The DC and AC specification of SerDes data lanes are defined in Section 11, “PCI Express.”  
Note that external AC coupling capacitor is required for the PCI Express serial transmission protocol with  
the capacitor value defined in specification of PCI Express protocol section.  
11 PCI Express  
This section describes the DC and AC electrical specifications for the PCI Express bus.  
11.1 DC Requirements for PCI Express SD_REF_CLK and  
SD_REF_CLK  
For more information, see Section 10.2, “SerDes reference clocks.”  
11.2 AC Requirements for PCI Express SerDes Clocks  
This table lists the PCI Express SerDes clock AC requirements.  
Table 33. SD_REF_CLK and SD_REF_CLK AC Requirements  
Symbol  
Parameter Description  
Min  
Typ  
Max  
Units  
Notes  
tREF  
REFCLK cycle time (for 125 MHz and 100 MHz)  
8
10  
ns  
ps  
tREFCJ  
REFCLK cycle-to-cycle jitter. Difference in the period  
of any two adjacent REFCLK cycles.  
100  
tREFPJ  
Phase jitter. Deviation in edge location with respect to  
mean edge location.  
–50  
50  
ps  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
34  
 
PCI Express  
11.3 Clocking Dependencies  
The ports on the two ends of a link must transmit data at a rate that is within 600 parts per million (ppm)  
of each other at all times. This is specified to allow bit rate clock sources with a ±300 ppm tolerance.  
11.4 Physical Layer Specifications  
Following is a summary of the specifications for the physical layer of PCI Express on this device. For  
further details as well as the specifications of the transport and data link layer please use the PCI Express  
Base Specification, Rev. 1.0a.  
11.4.1 Differential Transmitter (TX) Output  
This table defines the specifications for the differential output at all transmitters (TXs). The parameters are  
specified at the component pins.  
Table 34. Differential Transmitter (TX) Output Specifications  
Parameter  
Unit interval  
Symbol  
Comments  
Min Typical Max Units Note  
UI  
Each UPETX is 400 ps 300 ppm. UPETX 399.88  
does not account for Spread Spectrum  
Clock dictated variations.  
400  
400.12 ps  
1
Differential peak-to-peak  
output voltage  
VTX-DIFFp-p  
VPEDPPTX = 2*|VTX-D+ - VTX-D-  
|
0.8  
1.2  
V
2
2
De-Emphasized differential  
output voltage (ratio)  
VTX-DE-RATIO  
Ratio of the VPEDPPTX of the second and –3.0  
following bits after a transition divided by  
the VPEDPPTX of the first bit after a  
transition.  
–3.5  
–4.0  
dB  
Minimum TX eye width  
TTX-EYE  
The maximum Transmitter jitter can be  
derived as TTX-MAX-JITTER = 1 -  
UPEEWTX= 0.3 UI.  
0.70  
UI  
UI  
2, 3  
2, 3  
Maximum time between the TTX-EYE-MEDIAN-to- Jitter is defined as the measurement  
0.15  
jitter median and maximum  
deviation from the median  
variation of the crossing points  
MAX-JITTER  
(VPEDPPTX = 0 V) in relation to a  
recovered TX UI. A recovered TX UI is  
calculated over 3500 consecutive unit  
intervals of sample data. Jitter is  
measured using all edges of the 250  
consecutive UI in the center of the 3500  
UI used for calculating the TX UI.  
D+/D- TX output rise/fall  
time  
TTX-RISE, TTX-FALL  
0.125  
UI  
2, 5  
2
RMS AC peak common  
mode output voltage  
VTX-CM-ACp  
VPEACPCMTX = RMS(|VTXD+ + VTXD-|/2 -  
20  
mV  
VTX-CM-DC  
)
VTX-CM-DC = DC(avg) of |VTX-D+  
VTX-D-|/2  
+
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
35  
PCI Express  
Table 34. Differential Transmitter (TX) Output Specifications (continued)  
Symbol Comments Min Typical Max Units Note  
VTX-CM-DC- ACTIVE- |VTX-CM-DC (during L0) - VTX-CM-Idle-DC  
Parameter  
Absolute delta of DC  
0
100  
mV  
2
common mode voltage  
during L0 and electrical idle  
(During Electrical Idle)|<=100 mV  
VTX-CM-DC = DC(avg) of |VTX-D+  
IDLE-DELTA  
+
VTX-D-|/2 [L0]  
VTX-CM-Idle-DC = DC(avg) of |VTX-D+  
VTX-D-|/2 [Electrical Idle]  
+
Absolute delta of DC  
common mode between D+  
and D–  
VTX-CM-DC-LINE- |VTX-CM-DC-D+ - VTX-CM-DC-D-| <= 25 mV  
TX-CM-DC-D+ = DC(avg) of |VTX-D+  
VTX-CM-DC-D- = DC(avg) of |VTX-D-  
0
25  
mV  
2
V
|
DELTA  
|
Electrical idle differential  
peak output voltage  
VTX-IDLE-DIFFp VPEEIDPTX = |VTX-IDLE-D+ -VTX-IDLE-D-  
<= 20 mV  
|
0
20  
mV  
mV  
2
6
Amount of voltage change  
allowed during receiver  
detection  
VTX-RCV-DETECT The total amount of voltage change that  
a transmitter can apply to sense whether  
600  
a low impedance Receiver is present.  
TX DC common mode  
voltage  
VTX-DC-CM  
The allowed DC Common Mode voltage  
under any conditions.  
50  
3.6  
90  
V
6
TX short circuit current limit  
ITX-SHORT  
The total current the Transmitter can  
provide when shorted to its ground  
mA  
UI  
Minimum time spent in  
electrical idle  
TTX-IDLE-MIN  
Minimum time a Transmitter must be in  
Electrical Idle Utilized by the Receiver to  
start looking for an Electrical Idle Exit  
after successfully receiving an Electrical  
Idle ordered set  
Maximum time to transition TTX-IDLE-SET-TO-ID After sending an Electrical Idle ordered  
20  
20  
UI  
UI  
to a valid electrical idle after  
sending an electrical idle  
ordered set  
set, the Transmitter must meet all  
Electrical Idle Specifications within this  
time. This is considered a debounce time  
for the Transmitter to meet Electrical Idle  
after transitioning from L0.  
LE  
Maximum time to transition TTX-IDLE-TO-DIFF-D Maximum time to meet all TX  
to valid TX specifications  
after leaving an electrical  
idle condition  
specifications when transitioning from  
Electrical Idle to sending differential  
data. This is considered a debounce  
time for the TX to meet all TX  
ATA  
specifications after leaving Electrical Idle  
Differential return loss  
RLTX-DIFF  
RLTX-CM  
Measured over 50 MHz to 1.25 GHz.  
Measured over 50 MHz to 1.25 GHz.  
12  
6
dB  
dB  
4
4
Common mode return loss  
DC differential TX  
impedance  
ZTX-DIFF-DC  
TX DC Differential mode Low  
Impedance  
80  
100  
120  
Transmitter DC impedance  
ZTX-DC  
Required TX D+ as well as D- DC  
Impedance during all states  
40  
Lane-to-Lane output skew  
LTX-SKEW  
Static skew between any two Transmitter  
Lanes within a single Link  
500 + 2 ps  
UI  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
36  
PCI Express  
Table 34. Differential Transmitter (TX) Output Specifications (continued)  
Parameter  
Symbol  
Comments  
Min Typical Max Units Note  
AC coupling capacitor  
CTX  
All Transmitters shall be AC coupled.  
The AC coupling is required either within  
the media or within the transmitting  
component itself. An external capacitor  
of 100nF is recommended.  
75  
200  
nF  
Crosslink random timeout  
Tcrosslink  
This random timeout helps resolve  
conflicts in crosslink configuration by  
eventually resulting in only one  
0
1
ms  
7
Downstream and one Upstream Port.  
Notes:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point into a timing and voltage compliance test load as shown in Figure 29 and measured over any  
250 consecutive TX UIs. (Also refer to the transmitter compliance eye diagram shown in Figure 27.)  
3. A TTX-EYE = 0.70 UI provides for a total sum of deterministic and random jitter budget of TTX-JITTER-MAX = 0.30 UI for the  
transmitter collected over any 250 consecutive TX UIs. The TTX-EYE-MEDIAN-to-MAX-JITTER median is less than half of the total TX  
jitter budget collected over any 250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The  
jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to  
the averaged time value.  
4. The transmitter input impedance shall result in a differential return loss greater than or equal to 12 dB and a common mode return  
loss greater than or equal to 6 dB over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to  
all valid input levels. The reference impedance for return loss measurements is 50 to ground for both the D+ and D– line (that  
is, as measured by a vector network analyzer with 50-probes, see Figure 29). Note that the series capacitors, CTX, is optional  
for the return loss measurement.  
5. Measured between 20%–80% at transmitter package pins into a test load as shown in Figure 29 for both VTX-D+ and VTX-D-  
6. See Section 4.3.1.8 of the PCI Express Base Specifications, Rev 1.0a.  
.
7. See Section 4.2.6.3 of the PCI Express Base Specifications, Rev 1.0a.  
11.4.2 Transmitter Compliance Eye Diagrams  
The TX eye diagram in Figure 27 is specified using the passive compliance/test measurement load  
(Figure 29) in place of any real PCI Express interconnect + RX component. There are two eye diagrams  
that must be met for the transmitter. Both diagrams must be aligned in time using the jitter median to locate  
the center of the eye diagram. The different eye diagrams differ in voltage depending on whether it is a  
transition bit or a de-emphasized bit. The exact reduced voltage level of the de-emphasized bit is always  
relative to the transition bit.  
The eye diagram must be valid for any 250 consecutive UIs.  
A recovered TX UI is calculated over 3500 consecutive unit intervals of sample data. The eye diagram is  
created using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the TX  
UI.  
NOTE  
It is recommended that the recovered TX UI be calculated using all edges in  
the 3500 consecutive UI interval with a fit algorithm using a minimization  
merit function (that is, least squares and median deviation fits).  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
37  
PCI Express  
VTX-DIFF = 0 mV  
VTX-DIFF = 0 mV  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
[Transition Bit]  
TX-DIFFp-p-MIN = 800 mV  
V
[De-emphasized Bit]  
566 mV (3 dB) >= VTX-DIFFp-p-MIN >= 505 mV (4 dB)  
0.7 UI = UI – 0.3 UI(JTX-TOTAL-MAX  
)
[Transition Bit]  
TX-DIFFp-p-MIN = 800 mV  
V
Figure 27. Minimum Transmitter Timing and Voltage Output Compliance Specifications  
11.4.3 Differential Receiver (RX) Input Specifications  
This table defines the specifications for the differential input at all receivers (RXs). The parameters are  
specified at the component pins.  
Table 35. Differential Receiver (RX) Input Specifications  
Parameter  
Unit interval  
Symbol  
Comments  
Min Typical Max Units Note  
UI  
Each UPERX is 400 ps 300 ppm.  
UPERX does not account for Spread  
Spectrum Clock dictated variations.  
399.88  
400  
400.12 ps  
1
Differential peak-to-peak  
output voltage  
VRX-DIFFp-p  
VPEDPPRX = 2*|VRX-D+ - VRX-D-  
|
0.175  
0.4  
1.200  
V
2
Minimum receiver eye width  
TRX-EYE  
The maximum interconnect media and  
Transmitter jitter that can be tolerated  
by the Receiver can be derived as  
TRX-MAX-JITTER = 1 - UPEEWRX= 0.6 UI.  
UI  
2, 3  
Maximum time between the TRX-EYE-MEDIAN-to- Jitter is defined as the measurement  
0.3  
UI  
2, 3,  
7
jitter median and maximum  
deviation from the median.  
variation of the crossing points  
MAX-JITTER  
(VPEDPPRX = 0 V) in relation to a  
recovered TX UI. A recovered TX UI is  
calculated over 3500 consecutive unit  
intervals of sample data. Jitter is  
measured using all edges of the 250  
consecutive UI in the center of the 3500  
UI used for calculating the TX UI.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
38  
PCI Express  
Table 35. Differential Receiver (RX) Input Specifications (continued)  
Parameter  
Symbol  
Comments  
Min Typical Max Units Note  
AC peak common mode  
input voltage  
VRX-CM-ACp  
VPEACPCMRX = |VRXD+ + VRXD-|/2 -  
VRX-CM-DC  
VRX-CM-DC = DC(avg) of |VRX-D+  
RX-D-|/2  
150  
mV  
2
+
V
Differential return loss  
RLRX-DIFF  
Measured over 50 MHz to 1.25 GHz  
with the D+ and D- lines biased at +300  
mV and -300 mV, respectively.  
15  
dB  
4
Common mode return loss  
RLRX-CM  
ZRX-DIFF-DC  
ZRX-DC  
Measured over 50 MHz to 1.25 GHz  
with the D+ and D- lines biased at 0 V.  
6
80  
100  
50  
120  
60  
dB  
4
5
DC differential input  
impedance  
RX DC differential mode impedance.  
DC Input Impedance  
Required RX D+ as well as D- DC  
Impedance (50 20% tolerance).  
40  
2, 5  
Powered down DC input  
impedance  
ZRX-HIGH-IMP-DC Required RX D+ as well as D- DC  
Impedance when the Receiver  
200 k  
6
terminations do not have power.  
Electrical idle detect  
threshold  
VRX-IDLE-DET-DIFFp-p VPEEIDT = 2*|VRX-D+ -VRX-D-  
|
65  
175  
10  
mV  
ms  
Measured at the package pins of the  
Receiver  
Unexpected Electrical Idle  
Enter Detect Threshold  
Integration Time  
TRX-IDLE-DET-DIFF- An unexpected Electrical Idle  
(Vrx-diffp-p < Vrx-idle-det-diffp-p) must  
be recognized no longer than  
ENTERTIME  
Trx-idle-det-diff-entertime to signal an  
unexpected idle condition.  
Total Skew  
LRX-SKEW  
Skew across all lanes on a Link. This  
includes variation in the length of SKP  
ordered set (for example, COM and one  
to five SKP Symbols) at the RX as well  
as any delay differences arising from  
the interconnect itself.  
20  
ns  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
39  
PCI Express  
Table 35. Differential Receiver (RX) Input Specifications (continued)  
Symbol Comments Min Typical Max Units Note  
Parameter  
Notes:  
1. No test load is necessarily associated with this value.  
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 29 should be used as  
the RX device when taking measurements (also refer to the receiver compliance eye diagram shown in Figure 28). If the clocks  
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used  
as a reference for the eye diagram.  
3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the transmitter and interconnect  
collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in which the  
median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 250  
consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in  
time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the clocks  
to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must be used  
as the reference for the eye diagram.  
4. The receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to  
300 mV and the D– line biased to –300 mV and a common mode return loss greater than or equal to 6 dB (no bias required)  
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The reference  
impedance for return loss measurements for is 50 to ground for both the D+ and D– line (that is, as measured by a vector  
network analyzer with 50-probes, see Figure 29). Note that the series capacitors, CTX, is optional for the return loss  
measurement.  
5. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM) there  
is a 5 ms transition time before receiver termination values must be met on all unconfigured lanes of a port.  
6. The RX DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure  
that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at  
300 mV above the RX ground.  
7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm  
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated  
data.  
11.5 Receiver Compliance Eye Diagrams  
The RX eye diagram in Figure 28 is specified using the passive compliance/test measurement load  
(Figure 29) in place of any real PCI Express RX component. In general, the minimum receiver eye diagram  
measured with the compliance/test measurement load (Figure 29) is larger than the minimum receiver eye  
diagram measured over a range of systems at the input receiver of any real PCI Express component. The  
degraded eye diagram at the input Receiver is due to traces internal to the package as well as silicon  
parasitic characteristics which cause the real PCI Express component to vary in impedance from the  
compliance/test measurement load. The input receiver eye diagram is implementation specific and is not  
specified. RX component designer should provide additional margin to adequately compensate for the  
degraded minimum Receiver eye diagram (shown in Figure 28) expected at the input receiver based on an  
adequate combination of system simulations and the return loss measured looking into the RX package  
and silicon. The RX eye diagram must be aligned in time using the jitter median to locate the center of the  
eye diagram.  
The eye diagram must be valid for any 250 consecutive UIs. A recovered TX UI is calculated over 3500  
consecutive unit intervals of sample data. The eye diagram is created using all edges of the 250 consecutive  
UI in the center of the 3500 UI used for calculating the TX UI.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
40  
Freescale Semiconductor  
Enhanced Local Bus  
NOTE  
The reference impedance for return loss measurements is 50 to ground for  
both the D+ and D- line (that is, as measured by a Vector Network Analyzer  
with 50 probes—see Figure 29). Note that the series capacitors,  
C
, are optional for the return loss measurement.  
PEACCTX  
V
= 0 mV  
V
= 0 mV  
RX-DIFF  
RX-DIFF  
(D+ D– Crossing Point)  
(D+ D– Crossing Point)  
V
> 175 mV  
RX-DIFFp-p-MIN  
0.4 UI = T  
RX-EYE-MIN  
Figure 28. Minimum Receiver Eye Timing and Voltage Compliance Specification  
11.5.1 Compliance Test and Measurement Load  
The AC timing and voltage parameters must be verified at the measurement point, as specified within  
0.2 inches of the package pins, into a test/measurement load shown in Figure 29.  
NOTE  
The allowance of the measurement point to be within 0.2 inches of the  
package pins is meant to acknowledge that package/board routing may  
benefit from D+ and D– not being exactly matched in length at the package  
pin boundary.  
Figure 29. Compliance Test/Measurement Load  
12 Enhanced Local Bus  
This section describes the DC and AC electrical specifications for the enhanced local bus interface.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
41  
 
Enhanced Local Bus  
12.1 Enhanced Local Bus DC Electrical Characteristics  
This table provides the DC electrical characteristics for the local bus interface.  
Table 36. Local Bus DC Electrical Characteristics at 3.3 V  
Parameter  
Symbol  
Min  
Max  
Unit  
High-level input voltage  
Low-level input voltage  
VIH  
VIL  
2.0  
–0.3  
NVDD + 0.3  
V
V
0.8  
5
Input current, (VIN1 = 0 V or VIN = LVDD  
)
IIN  
A  
V
High-level output voltage, (LVDD = min, IOH = –2 mA)  
Low-level output voltage, (LVDD = min, IOL = 2 mA)  
VOH  
VOL  
NVDD – 0.2  
0.2  
V
Note: The parameters stated in above table are valid for all revisions unless explicitly mentioned.  
12.2 Enhanced Local Bus AC Electrical Specifications  
This table describes the general timing parameters of the local bus interface.  
Table 37. Local Bus General Timing Parameters  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
Local bus cycle time  
tLBK  
15  
7
3
ns  
ns  
ns  
ns  
ns  
2
3, 4  
3, 4  
3
Input setup to local bus clock  
Input hold from local bus clock  
Local bus clock to output valid  
Local bus clock to output high impedance for LD  
Notes:  
tLBIVKH  
tLBIXKH  
tLBKHOV  
tLBKHOZ  
1
4
5
1. The symbols used for timing specifications follow the pattern of t(First two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(First two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tLBIXKH1 symbolizes local bus  
timing (LB) for the input (I) to go invalid (X) with respect to the time the tLBK clock reference (K) goes high (H), in this case  
for clock one(1).  
2. All timings are in reference to falling edge of LCLK0 (for all outputs and for LGTA and LUPWAIT inputs) or rising edge of  
LCLK0 (for all other inputs).  
3. All signals are measured from NVDD/2 of the rising/falling edge of LCLK0 to 0.4 NVDD of the signal in question for 3.3-V  
signaling levels.  
4. Input timings are measured at the pin.  
5. For purposes of active/float timing measurements, the Hi-Z or off state is defined to be when the total current delivered  
through the component pin is less than or equal to the leakage current specification.  
This figure provides the AC test load for the local bus.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 30. Local Bus AC Test Load  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
42  
Enhanced Local Bus  
Figure 31 through Figure 33 show the local bus signals. In what follows, T1, T2, T3, and T4 are internal  
clock reference phase signals corresponding to LCCR[CLKDIV].  
LCLK0  
t
LBIXKH  
t
LBIVKH  
Input Signals:  
LD[0:15]  
t
LBIXKH  
t
LBIVKH  
Input Signal:  
LGTA  
t
LBIXKH  
t
LBKHOV  
Output Signals:  
LBCTL//LOE/  
t
LBKHOZ  
t
LBKHOV  
Output Signals:  
LA[0:25]  
Figure 31. Local Bus Signals, Non-Special Signals Only  
LCLK0  
T1  
T3  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 32. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 2  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
43  
 
Enhanced Secure Digital Host Controller (eSDHC)  
LCLK  
T1  
T2  
T3  
T4  
tLBKHOZ  
tLBKHOV  
GPCM Mode Output Signals:  
LCS[0:3]/LWE  
tLBIXKH  
tLBIVKH  
UPM Mode Input Signal:  
LUPWAIT  
tLBIXKH  
tLBIVKH  
Input Signals:  
LD[0:15]  
tLBKHOZ  
tLBKHOV  
UPM Mode Output Signals:  
LCS[0:3]/LBS[0:1]/LGPL[0:5]  
Figure 33. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4  
13 Enhanced Secure Digital Host Controller (eSDHC)  
This section describes the DC and AC electrical specifications for the eSDHC (SD/MMC/SDIO) interface  
of the MPC8308.  
The eSDHC controller always uses the falling edge of the SD_CLK in order to drive the  
SD_DAT[0:3]/CMD as outputs and rising edge to sample the SD_DAT[0:3], CMD, CD and WP as inputs.  
This behavior is true for both full and high speed modes.  
13.1 eSDHC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the eSDHC (SD/MMC) interface of the device,  
compatible with SDHC specifications. The eSDHC NV range is between 3.0 V and 3.6 V.  
DD  
Table 38. eSDHC interface DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output high voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
V
V
0.5  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
44  
Freescale Semiconductor  
Enhanced Secure Digital Host Controller (eSDHC)  
Table 38. eSDHC interface DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output low voltage  
Input high voltage  
Input low voltage  
V
I
= 3.2 mA  
2.1  
0.4  
NVDD + 0.3  
0.8  
V
V
V
OL  
OL  
VIH  
VIL  
–0.3  
13.2 eSDHC AC Timing Specifications (Full Speed Mode)  
This section describes the AC electrical specifications for the eSDHC (SD/MMC) interface of the device.  
This table provides the eSDHC AC timing specifications for full speed mode as defined in Figure 35 and  
Figure 36.  
Table 39. eSDHC AC Timing Specifications for Full Speed Mode  
At recommended operating conditions NVDD = 3.3 V 300 mV.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
SD_CLK clock frequency—full speed mode  
SD_CLK clock cycle  
fSFSCK  
tSFSCK  
fSIDCK  
0
25  
MHz  
ns  
2
40  
0
SD_CLK clock frequency—identification mode  
SD_CLK clock low time  
400  
kHz  
ns  
tSFSCKL  
tSFSCKH  
tSFSCKR  
15  
15  
SD_CLK clock high time  
ns  
2
SD_CLK clock rise and fall times  
/
5
ns  
2
tSFSCKF  
tSFSIVKH  
tSFSIXKH  
tSFSKHOV  
tSFSKHOX  
tISU  
Input setup times: SD_CMD, SD_DATx to SD_CLK  
Input hold times: SD_CMD, SD_DATx to SD_CLK  
Output valid: SD_CLK to SD_CMD, SD_DATx valid  
Output hold: SD_CLK to SD_CMD, SD_DATx valid  
SD card input setup  
3
2
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
2
–3  
5
2
14  
3
SD card input hold  
tIH  
5
3
SD card output valid  
tODLY  
0
3
SD card output hold  
tOH  
3
Notes:  
1
The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSFSIXKH symbolizes eSDHC  
full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also  
tSFSKHOV symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O)  
going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five letters  
representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate letter:  
R (rise) or F (fall).  
2
3
4
Measured at capacitive load of 40 pF.  
For reference only, according to the SD card specifications.  
Average, for reference only.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
45  
 
Enhanced Secure Digital Host Controller (eSDHC)  
This figure provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSFSCKL  
tSFSCKH  
tSFSCK  
tSFSCKF  
tSFSCKR  
VM = Midpoint Voltage (NVDD/2)  
Figure 34. eSDHC Clock Input Timing Diagram  
13.2.1 Full Speed Output Path (Write)  
This figure provides the data and command output timing diagram.  
tSFSCK (Clock Cycle)  
SD CLK at the  
Driving  
MPC8308 Pin  
Edge  
tCLK_DELAY  
SD CLK at  
the Card Pin  
Sampling  
Edge  
Output Valid Time: tSFSKHOV  
Output Hold Time: tSFSKHOX  
Output from the  
tSFSCKL  
MPC8308 Pins  
Input at the  
MPC8308 Pins  
tDATA_DELAY  
tIH (5 ns)  
tISU (5 ns)  
Figure 35. Full Speed Output Path  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
46  
Enhanced Secure Digital Host Controller (eSDHC)  
13.2.2 Full Speed Input Path (Read)  
This figure provides the data and command input timing diagram.  
tSFSCK (Clock Cycle)  
SD CLK at the  
MPC8308 Pin  
Sampling  
Edge  
tCLK_DELAY  
SD CLK at  
the Card Pin  
Driving  
Edge  
tDATA_DELAY  
tODLY  
tOH  
Output from the  
SD Card Pins  
Input at the  
MPC8308 Pins  
tSFSIXKH  
tSFSIVKH  
(MPC8308 Input Hold)  
Figure 36. Full Speed Input Path  
13.3 eSDHC AC Timing Specifications  
This table provides the eSDHC AC timing specifications.  
Table 40. eSDHC AC Timing Specifications for High Speed Mode  
At recommended operating conditions NVDD = 3.3 V 300 mV.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
SD_CLK clock frequency—high speed mode  
SD_CLK clock cycle  
fSHSCK  
tSHSCK  
fSIDCK  
0
20  
0
50  
MHz  
ns  
3
2
SD_CLK clock frequency—identification mode  
SD_CLK clock low time  
400  
kHz  
ns  
tSHSCKL  
tSHSCKH  
tSHSCKR/  
7
SD_CLK clock high time  
7
ns  
2
SD_CLK clock rise and fall times  
3
ns  
2
tSHSCKF  
Input setup times: SD_CMD, SD_DATx  
Input hold times: SD_CMD, SD_DATx  
Output delay time: SD_CLK to SD_CMD, SD_DATx valid  
Output Hold time: SD_CLK to SD_CMD, SD_DATx invalid  
SD Card Input Setup  
tSHSIVKH  
tSHSIXKH  
tSHSKHOV  
tSHSKHOX  
tISU  
3
2
ns  
ns  
ns  
ns  
ns  
ns  
2
2
2
2
3
3
3
–3  
6
SD Card Input Hold  
tIH  
2
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
47  
 
Enhanced Secure Digital Host Controller (eSDHC)  
Table 40. eSDHC AC Timing Specifications for High Speed Mode (continued)  
At recommended operating conditions NVDD = 3.3 V 300 mV.  
Parameter  
Symbol 1  
Min  
Max  
Unit  
Notes  
SD Card Output Valid  
SD Card Output Hold  
tODLY  
tOH  
14  
ns  
ns  
3
3
2.5  
Notes:  
1
The symbols used for timing specifications herein follow the pattern of t(first three letters of functional block)(signal)(state) (reference)(state)  
for inputs and t(first three letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tSFSIXKH symbolizes eSDHC  
full mode speed device timing (SFS) input (I) to go invalid (X) with respect to the clock reference (K) going to high (H). Also  
tSFSKHOV symbolizes eSDHC full speed timing (SFS) for the clock reference (K) to go high (H), with respect to the output (O)  
going valid (V) or data output valid time. Note that, in general, the clock reference symbol representation is based on five  
letters representing the clock of a particular functional. For rise and fall times, the latter convention is used with the appropriate  
letter: R (rise) or F (fall).  
2
3
Measured at capacitive load of 40 pF.  
For reference only, according to the SD card specifications.  
This figure provides the eSDHC clock input timing diagram.  
eSDHC  
External Clock  
VM  
VM  
VM  
operational mode  
tSHSCK  
L
tSHSCKH  
tSHSCK  
tSHSCKF  
tSHSCKR  
VM = Midpoint Voltage (NVDD/2)  
Figure 37. eSDHC Clock Input Timing Diagram  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
48  
Enhanced Secure Digital Host Controller (eSDHC)  
13.3.1 High Speed Output Path (Write)  
This figure provides the data and command output timing diagram.  
tSHSCK (Clock Cycle)  
SD CLK at the  
Driving  
MPC8308 Pin  
Edge  
tCLK_DELAY  
SD CLK at  
the Card Pin  
Sampling  
Edge  
Output Valid Time: tSHSKHOV  
Output Hold Time: tSHSKHOX  
tSHSCKL  
Output from the  
MPC8308 Pins  
Input at the  
SD Card Pins  
tDATA_DELAY  
tIH (2 ns)  
tISU (6 ns)  
Figure 38. High Speed Output Path  
13.3.2 High Speed Input Path (Read)  
This figure provides the data and command input timing diagram.  
tSHSCK (Clock Cycle)  
1/2 Cycle  
SD CLK at the  
MPC8308 Pin  
Sampling  
Edge  
tCLK_DELAY  
Driving  
Edge  
SD CLK at  
the Card Pin  
tODLY  
tOH  
tDATA_DELAY  
Output from the  
SD Card Pins  
Input at the  
MPC8308 Pins  
(MPC8308 Input  
tSHSIXKH  
tSHSIVKH  
(MPC8308 Input  
Figure 39. High Speed Input Path  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
49  
JTAG  
14 JTAG  
This section describes the DC and AC electrical specifications for the IEEE Std 1149.1™ (JTAG)  
interface.  
14.1 JTAG DC Electrical Characteristics  
This table provides the DC electrical characteristics for the IEEE 1149.1 (JTAG) interface.  
Table 41. JTAG Interface DC Electrical Characteristics  
Characteristic  
Input high voltage  
Symbol  
Condition  
Min  
Max  
Unit  
VIH  
VIL  
2.1  
NVDD + 0.3  
V
V
Input low voltage  
Input current  
–0.3  
0.8  
5
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
V
OL  
OL  
14.2 JTAG AC Timing Specifications  
This section describes the AC electrical specifications for the IEEE 1149.1 (JTAG) interface.  
This table provides the JTAG AC timing specifications as defined in Figure 41 through Figure 44.  
1
Table 42. JTAG AC Timing Specifications (Independent of SYS_CLK_IN)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
JTAG external clock frequency of operation  
JTAG external clock cycle time  
JTAG external clock pulse width measured at 1.4 V  
JTAG external clock rise and fall times  
TRST assert time  
fJTG  
t JTG  
0
33.3  
2
MHz  
ns  
3
30  
15  
0
tJTKHKL  
tJTGR & tJTGF  
tTRST  
ns  
ns  
25  
ns  
Input setup times:  
ns  
Boundary-scan data  
tJTDVKH  
tJTIVKH  
4
4
4
4
5
TMS, TDI  
Input hold times:  
Valid times:  
ns  
ns  
Boundary-scan data  
TMS, TDI  
tJTDXKH  
tJTIXKH  
10  
10  
Boundary-scan data  
TDO  
tJTKLDV  
tJTKLOV  
2
2
11  
11  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
50  
JTAG  
1
Table 42. JTAG AC Timing Specifications (Independent of SYS_CLK_IN) (continued)  
At recommended operating conditions (see Table 2).  
Parameter  
Symbol2  
Min  
Max  
Unit  
Note  
Output hold times:  
Boundary-scan data  
TDO  
tJTKLDX  
tJTKLOX  
2
2
ns  
5
JTAG external clock to output high impedance:  
Boundary-scan data  
TDO  
tJTKLDZ  
tJTKLOZ  
2
2
19  
9
ns  
5, 6  
Notes:  
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question.  
The output timings are measured at the pins. All output timings assume a purely resistive 50-load (see Figure 40).  
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG device  
timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference (K)  
going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input signals  
(D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock reference  
symbol representation is based on three letters representing the clock of a particular functional. For rise and fall times, the  
latter convention is used with the appropriate letter: R (rise) or F (fall).  
3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.  
4. Non-JTAG signal input timing with respect to tTCLK  
.
5. Non-JTAG signal output timing with respect to tTCLK  
.
6. Guaranteed by design and characterization.  
This figure provides the AC test load for TDO and the boundary-scan outputs.  
Z0 = 50   
Output  
NVDD/2  
RL = 50   
Figure 40. AC Test Load for the JTAG Interface  
This figure provides the JTAG clock input timing diagram.  
JTAG  
External Clock  
VM  
tJTKHKL  
VM  
VM  
tJTGR  
tJTGF  
tJTG  
VM = Midpoint Voltage (NVDD/2)  
Figure 41. JTAG Clock Input Timing Diagram  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
51  
 
JTAG  
This figure provides the TRST timing diagram.  
TRST  
VM  
VM  
tTRST  
VM = Midpoint Voltage (NVDD/2)  
Figure 42. TRST Timing Diagram  
This figure provides the boundary-scan timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTDVKH  
tJTDXKH  
Boundary  
Data Inputs  
Input  
Data Valid  
tJTKLDV  
tJTKLDX  
Boundary  
Data Outputs  
Output Data Valid  
tJTKLDZ  
Output Data Valid  
Boundary  
Data Outputs  
VM = Midpoint Voltage (NVDD/2)  
Figure 43. Boundary-Scan Timing Diagram  
This figure provides the test access port timing diagram.  
JTAG  
VM  
VM  
External Clock  
tJTIVKH  
tJTIXKH  
Input  
TDI, TMS  
TDO  
Data Valid  
tJTKLOV  
tJTKLOX  
Output Data Valid  
tJTKLOZ  
Output Data Valid  
TDO  
VM = Midpoint Voltage (NVDD/2)  
Figure 44. Test Access Port Timing Diagram  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
52  
I2C  
15 I2C  
2
This section describes the DC and AC electrical characteristics for the I C interface.  
2
15.1 I C DC Electrical Characteristics  
2
This table provides the DC electrical characteristics for the I C interface.  
2
Table 43. I C DC Electrical Characteristics  
At recommended operating conditions with NVDD of 3.3 V 0.3 V.  
Parameter  
Symbol  
Min  
Max  
Unit Notes  
Input high voltage level  
Input low voltage level  
Low level output voltage  
High level output voltage  
VIH  
VIL  
0.7 NVDD NVDD + 0.3  
V
V
1
–0.3  
0
0.3 NVDD  
0.2 NVDD  
VOL  
VOH  
V
0.8 x NVDD NVDD + 0.3  
V
2
Output fall time from VIH(min) to VIL(max) with a bus capacitance from 10  
to 400 pF  
t
20 + 0.1 CB  
250  
ns  
I2KLKV  
Pulse width of spikes which must be suppressed by the input filter  
Capacitance for each I/O pin  
tI2KHKL  
CI  
0
50  
10  
5
ns  
pF  
A  
3
Input current, (0 V VIN NVDD  
)
IIN  
Notes:  
1. Output voltage (open drain or open collector) condition = 3 mA sink current.  
2. CB = capacitance of one bus line in pF.  
3. For information on the digital filter used, see the MPC8308 PowerQUICC II Pro Processor Reference Manual.  
2
15.2 I C AC Electrical Specifications  
2
This table provides the AC timing parameters for the I C interface.  
2
Table 44. I C AC Electrical Specifications  
All values refer to VIH (min) and VIL (max) levels (see Table 43).  
Parameter  
Symbol1  
Min  
Max Unit  
SCL clock frequency  
fI2C  
0
400 kHz  
Low period of the SCL clock  
High period of the SCL clock  
tI2CL  
1.3  
0.6  
0.6  
0.6  
100  
s  
s  
s  
s  
ns  
s  
tI2CH  
Setup time for a repeated START condition  
tI2SVKH  
tI2SXKL  
tI2DVKH  
tI2DXKL  
Hold time (repeated) START condition (after this period, the first clock pulse is generated)  
Data setup time  
Data hold time:  
I2C bus devices  
0 2  
0.9 3  
Fall time of both SDA and SCL signals5  
t
300  
ns  
I2CF  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
53  
 
I2C  
2
Table 44. I C AC Electrical Specifications (continued)  
All values refer to VIH (min) and VIL (max) levels (see Table 43).  
Parameter  
Symbol1  
Min  
Max Unit  
Setup time for STOP condition  
t
0.6  
s  
s  
V
I2PVKH  
Bus free time between a STOP and START condition  
Noise margin at the LOW level for each connected device (including hysteresis)  
Noise margin at the HIGH level for each connected device (including hysteresis)  
Notes:  
tI2KHDX  
VNL  
1.3  
0.1 NVDD  
0.2 NVDD  
VNH  
V
1. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) for  
inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tI2DVKH symbolizes I2C timing (I2)  
with respect to the time data input signals (D) reach the valid state (V) relative to the tI2C clock reference (K) going to the high  
(H) state or setup time. Also, tI2SXKL symbolizes I2C timing (I2) for the time that the data with respect to the start condition (S)  
went invalid (X) relative to the tI2C clock reference (K) going to the low (L) state or hold time. Also, tI2PVKH symbolizes I2C timing  
(I2) for the time that the data with respect to the stop condition (P) reaching the valid state (V) relative to the tI2C clock reference  
(K) going to the high (H) state or setup time. For rise and fall times, the latter convention is used with the appropriate letter: R  
(rise) or F (fall).  
2. The device provides a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the  
undefined region of the falling edge of SCL.  
3. The maximum tI2DXKL has only to be met if the device does not stretch the LOW period (tI2CL) of the SCL signal.  
4. CB = capacitance of one bus line in pF.  
5. The device does not follow the I2C-BUS Specifications, Version 2.1, regarding the tI2CF AC parameter.  
2
This figure provides the AC test load for the I C.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
2
Figure 45. I C AC Test Load  
2
This figure shows the AC timing diagram for the I C bus.  
SDA  
tI2CF  
tI2CL  
tI2DVKH  
tI2KHKL  
tI2CF  
tI2SXKL  
tI2CR  
SCL  
tI2SXKL  
tI2CH  
tI2SVKH  
tI2PVKH  
tI2DXKL  
S
Sr  
P
S
2
Figure 46. I C Bus AC Timing Diagram  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
54  
Timers  
16 Timers  
This section describes the DC and AC electrical specifications for the timers.  
16.1 Timers DC Electrical Characteristics  
This table provides the DC electrical characteristics for the MPC8308 timers pins, including TIN, TOUT,  
and TGATE.  
Table 45. Timers DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output high voltage  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
V
V
0.5  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
V
0.8  
5
V
0 V VIN NVDD  
A  
16.2 Timers AC Timing Specifications  
This table provides the timers input and output AC timing specifications.  
Table 46. Timers Input AC Timing Specifications  
Characteristic  
Symbol1  
Min  
Unit  
Timers inputs—minimum pulse width  
tTIWID  
20  
ns  
Notes:  
1. Timers inputs and outputs are asynchronous to any visible clock. Timers outputs should be synchronized before use by any  
external synchronous logic. Timers inputs are required to be valid for at least tTIWID ns to ensure proper operation  
This figure provides the AC test load for the Timers.  
Output  
NVDD/2  
Z0 = 50   
RL = 50   
Figure 47. Timers AC Test Load  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
55  
GPIO  
17 GPIO  
This section describes the DC and AC electrical specifications for the GPIO of MPC8308  
17.1 GPIO DC Electrical Characteristics  
This table provides the DC electrical characteristics for the GPIO.  
Table 47. GPIO DC Electrical Characteristic  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output high voltage  
Output low voltage  
Output low voltage  
Input high voltage  
Input low voltage  
Input current  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
V
V
0.5  
V
I
= 3.2 mA  
OL  
0.4  
V
OL  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
V
0.8  
5
V
0 V VIN NVDD  
A  
17.2 GPIO AC Timing Specifications  
This table provides the GPIO input and output AC timing specifications.  
Table 48. GPIO Input AC Timing Specifications  
Characteristic  
Symbol1  
Min  
20  
Unit  
ns  
GPIO inputs—minimum pulse width  
tPIWID  
Note:  
1. GPIO inputs and outputs are asynchronous to any visible clock. GPIO outputs should be synchronized  
before use by any external synchronous logic. GPIO inputs are required to be valid for at least tPIWID ns to  
ensure proper operation.  
This figure provides the AC test load for the GPIO.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 48. GPIO AC Test Load  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
56  
IPIC  
18 IPIC  
This section describes the DC and AC electrical specifications for the external interrupt pins.  
18.1 IPIC DC Electrical Characteristics  
This table provides the DC electrical characteristics for the external interrupt pins.  
Table 49. IPIC DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
2.1  
–0.3  
NVDD + 0.3  
V
V
0.8  
5
IIN  
A  
V
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
0.5  
0.4  
V
V
I
= 3.2 mA  
OL  
V
OL  
18.2 IPIC AC Timing Specifications  
This table provides the IPIC input and output AC timing specifications.  
Table 50. IPIC Input AC Timing Specifications  
Characteristic  
Symbol1  
Min  
Unit  
IPIC inputs—minimum pulse width  
tPIWID  
20  
ns  
Note:  
1. IPIC inputs and outputs are asynchronous to any visible clock. IPIC outputs should be synchronized  
before use by any external synchronous logic. IPIC inputs are required to be valid for at least tPIWID ns  
to ensure proper operation when working in edge triggered mode.  
19 SPI  
This section describes the DC and AC electrical specifications for the SPI of the device.  
19.1 SPI DC Electrical Characteristics  
This table provides the DC electrical characteristics for the MPC8308 SPI.  
Table 51. SPI DC Electrical Characteristics  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Input high voltage  
Input low voltage  
Input current  
VIH  
VIL  
IIN  
2.1  
–0.3  
NVDD + 0.3  
V
V
0.8  
5
0 V VIN NVDD  
A  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
57  
SPI  
Table 51. SPI DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Condition  
Min  
Max  
Unit  
Output high voltage  
Output low voltage  
Output low voltage  
VOH  
VOL  
IOH = –8.0 mA  
IOL = 8.0 mA  
2.4  
V
V
V
0.5  
0.4  
V
I
= 3.2 mA  
OL  
OL  
19.2 SPI AC Timing Specifications  
This table and provide the SPI input and output AC timing specifications.  
1
Table 52. SPI AC Timing Specifications  
Characteristic  
Symbol 2  
Min  
Max  
Unit  
SPI outputs valid—master mode (internal clock) delay  
SPI outputs hold—master mode (internal clock) delay  
SPI outputs valid—slave mode (external clock) delay  
SPI outputs hold—slave mode (external clock) delay  
SPI inputs—master mode (internal clock) input setup time  
SPI inputs—master mode (internal clock) input hold time  
SPI inputs—slave mode (external clock) input setup time  
SPI inputs—slave mode (external clock) input hold time  
Notes:  
tNIKHOV  
tNIKHOX  
tNEKHOV  
tNEKHOX  
tNIIVKH  
6
8.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
0.5  
2
6
0
4
2
tNIIXKH  
tNEIVKH  
tNEIXKH  
1. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal.  
Timings are measured at the pin.  
2. The symbols used for timing specifications follow the pattern of t(first two letters of functional block)(signal)(state)(reference)(state)  
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tNIKHOX symbolizes the  
internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).  
This figure provides the AC test load for the SPI.  
NVDD/2  
Output  
Z0 = 50   
RL = 50   
Figure 49. SPI AC Test Load  
Figure 50 through Figure 51 represent the AC timing from Table 52. Note that although the specifications  
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge  
is the active edge.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
58  
Freescale Semiconductor  
 
Package and Pin Listings  
This figure shows the SPI timing in slave mode (external clock).  
SPICLK (input)  
tNEIXKH  
tNEIVKH  
Input Signals:  
SPIMOSI  
(See Note)  
tNEKHOV  
Output Signals:  
SPIMISO  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 50. SPI AC Timing in Slave Mode (External Clock) Diagram  
This figure shows the SPI timing in master mode (internal clock).  
SPICLK (output)  
tNIIXKH  
tNIIVKH  
Input Signals:  
SPIMISO  
(See Note)  
tNIKHOV  
Output Signals:  
SPIMOSI  
(See Note)  
Note: The clock edge is selectable on SPI.  
Figure 51. SPI AC Timing in Master Mode (Internal Clock) Diagram  
20 Package and Pin Listings  
This section details package parameters, pin assignments, and dimensions. The MPC8308 is available in  
a moulded array process ball grid array (MAPBGA). For information on the MAPBGA, see Section 20.1,  
“Package Parameters for the MPC8308 MAPBGA,” and Section 20.2, “Mechanical Dimensions of the  
MPC8308 MAPBGA.”  
20.1 Package Parameters for the MPC8308 MAPBGA  
The package parameters are as provided in the following list. The package type is 19 mm 19 mm, 473  
MAPBGA.  
Package outline  
Interconnects  
19 mm 19 mm  
473  
Pitch  
0.80 mm  
Module height (typical)  
Solder Balls  
1.39 mm  
96.5 Sn/ 3.5Ag  
0.40 mm  
Ball diameter (typical)  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
59  
 
 
Package and Pin Listings  
20.2 Mechanical Dimensions of the MPC8308 MAPBGA  
This figure shows the mechanical dimensions and bottom surface nomenclature of the MAPBGA package.  
Figure 52. Mechanical Dimension and Bottom Surface Nomenclature of the MPC8308 MAPBG  
Notes:  
1. All dimensions are in millimeters.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
60  
Freescale Semiconductor  
Package and Pin Listings  
2. Dimensions and tolerances per ASME Y14.5M-1994.  
3. Maximum solder ball diameter measured parallel to datum A.  
4. Datum A, the seating plane, is determined by the spherical crowns of the solder balls.  
20.3 Pinout Listings  
This table provides the pin-out listing for the MPC8308, MAPBGA package.  
Table 53. MPC8308 Pinout Listing  
Pin  
Type  
Power  
Supply  
Signal  
Package Pin Number  
Note  
DDR Memory Controller Interface  
MEMC_MDQ[0]  
MEMC_MDQ[1]  
MEMC_MDQ[2]  
MEMC_MDQ[3]  
MEMC_MDQ[4]  
MEMC_MDQ[5]  
MEMC_MDQ[6]  
MEMC_MDQ[7]  
MEMC_MDQ[8]  
MEMC_MDQ[9]  
MEMC_MDQ[10]  
MEMC_MDQ[11]  
MEMC_MDQ[12]  
MEMC_MDQ[13]  
MEMC_MDQ[14]  
MEMC_MDQ[15]  
MEMC_MDQ[16]  
MEMC_MDQ[17]  
MEMC_MDQ[18]  
MEMC_MDQ[19]  
MEMC_MDQ[20]  
MEMC_MDQ[21]  
MEMC_MDQ[22]  
MEMC_MDQ[23]  
MEMC_MDQ[24]  
MEMC_MDQ[25]  
MEMC_MDQ[26]  
V6  
Y4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDA  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
AB3  
AA3  
AA2  
AA1  
W4  
Y2  
W3  
W1  
Y1  
W2  
U4  
U3  
V4  
U6  
T3  
T2  
R4  
R3  
P4  
N6  
P2  
P1  
N4  
N3  
N2  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
61  
 
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
MEMC_MDQ[27]  
MEMC_MDQ[28]  
MEMC_MDQ[29]  
MEMC_MDQ[30]  
MEMC_MDQ[31]  
MEMC_MDM[0]  
MEMC_MDM[1]  
MEMC_MDM[2]  
MEMC_MDM[3]  
MEMC_MDM[8]  
MEMC_MDQS[0]  
MEMC_MDQS[1]  
MEMC_MDQS[2]  
MEMC_MDQS[3]  
MEMC_MDQS[8]  
MEMC_MBA[0]  
MEMC_MBA[1]  
MEMC_MBA[2]  
MEMC_MA0  
M6  
M2  
M3  
L2  
I/O  
I/O  
I/O  
I/O  
I/O  
O
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDA  
GVDDA  
GVDDB  
GVDDB  
GVDDB  
GVDDA  
GVDDA  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
L3  
AB2  
V3  
P3  
M7  
K2  
AC3  
V1  
R1  
M1  
K1  
C3  
B2  
H4  
C2  
D2  
D3  
D4  
E4  
F4  
O
O
O
O
I/O  
I/O  
I/O  
I/O  
I/O  
O
O
O
O
MEMC_MA1  
O
MEMC_MA2  
O
MEMC_MA3  
O
MEMC_MA4  
O
MEMC_MA5  
O
MEMC_MA6  
E2  
E1  
F2  
O
MEMC_MA7  
O
MEMC_MA8  
O
MEMC_MA9  
F3  
O
MEMC_MA10  
MEMC_MA11  
MEMC_MA12  
MEMC_MA13  
MEMC_MWE  
C1  
F7  
O
O
G2  
G3  
D5  
B4  
O
O
O
MEMC_MRAS  
O
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
62  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
MEMC_MCAS  
MEMC_MCS[0]  
MEMC_MCS[1]  
MEMC_MCKE  
C5  
O
O
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
GVDDB  
3
B6  
C6  
O
H3  
O
MEMC_MCK [0]  
MEMC_MCK [1]  
MEMC_MCK [2]  
MEMC_MCK [0]  
MEMC_MCK [1]  
MEMC_MCK [2]  
MEMC_MODT[0]  
MEMC_MODT[1]  
MEMC_MECC[0]  
MEMC_MECC[1]  
MEMC_MECC[2]  
MEMC_MECC[3]  
MEMC_MECC[4]  
MEMC_MECC[5]  
MEMC_MECC[6]  
MEMC_MECC[7]  
MVREF  
A3  
O
U2  
O
G1  
O
A4  
O
U1  
O
H1  
O
A5  
O
B5  
O
L4  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
L6  
K4  
K3  
J2  
K6  
J3  
J6  
G6  
Local Bus Controller Interface  
LD0  
LD1  
LD2  
LD3  
LD4  
LD5  
LD6  
LD7  
LD8  
LD9  
LD10  
U18  
V18  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
8
8
8
8
8
8
8
8
8
8
8
U16  
Y20  
AA21  
AC22  
V17  
AB21  
Y19  
AA20  
Y17  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
63  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
LD11  
LD12  
LD13  
LD14  
LD15  
LA0  
AC21  
AB20  
V16  
I/O  
I/O  
I/O  
I/O  
I/O  
O
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
8
8
8
AA19  
AC17  
AC20  
Y16  
8
8
4
LA1  
O
LA2  
U15  
O
LA3  
V15  
O
LA4  
AA18  
AA17  
AC19  
AA16  
AB18  
AC18  
V14  
O
LA5  
O
LA6  
O
LA7  
O
LA8  
O
LA9  
O
LA10  
LA11  
LA12  
LA13  
LA14  
LA15  
LA16  
LA17  
LA18  
LA19  
LA20  
LA21  
LA22  
LA23  
LA24  
LA25  
LCS[0]  
LCS[1]  
LCS[2]  
O
AB17  
AA15  
AC16  
Y14  
O
O
O
O
AC15  
U13  
O
O
V13  
O
Y13  
O
AB15  
AA14  
AB14  
U12  
O
O
O
O
V12  
O
Y12  
O
AC14  
AA13  
AB13  
AA12  
O
O
O
4
O
4
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
64  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
LCS[3]  
LWE[0] /LFWE0/LBS0  
LWE[1]/LBS1  
Y11  
AB11  
AC11  
U11  
O
O
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
4
4
O
LBCTL  
O
LGPL0/LFCLE  
LGPL1/LFALE  
LGPL2/LOE/LFRE  
LGPL3/LFWP  
Y10  
O
AA10  
AB10  
AC10  
AB9  
O
O
O
4
LGPL4/LGTA/LUPWAIT/  
LFRB  
I/O  
LGPL5  
LCLK0  
Y9  
AC12  
DUART  
C17  
O
O
NVDDP_K  
NVDDP_K  
UART_SOUT1/MSRCID0/  
LSRCID0  
O
I/O  
O
NVDDB  
NVDDB  
NVDDB  
NVDDB  
UART_SIN1/MSRCID1/  
LSRCID1  
B18  
D17  
D18  
UART_SOUT2/MSRCID2/  
LSRCID2  
UART_SIN2/MSRCID3/  
LSRCID3  
I/O  
PEX PHY  
C14  
TXA  
TXA  
O
O
I
XPADVDD  
XPADVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
XCOREVDD  
C15  
RXA  
A13  
RXA  
B13  
I
SD_IMP_CAL_RX  
SD_REF_CLK  
SD_REF_CLK  
SD_PLL_TPD  
SD_IMP_CAL_TX  
SD_PLL_TPA_ANA  
SDAVDD_0  
SDAVSS_0  
A15  
I
C12  
I
D12  
I
F13  
O
I
A11  
XPADVDD  
F11  
O
I
G12  
F12  
I
I2C interface  
IIC_SDA1  
C9  
I/O  
NVDDA  
2
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
65  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
IIC_SCL1  
A9  
D10  
I/O  
I/O  
I/O  
NVDDA  
NVDDA  
NVDDA  
2
2
2
IIC_SDA2/CKSTOP_OUT  
IIC_SCL2/CKSTOP_IN  
C10  
Interrupts  
A17  
IRQ[0]/MCP_IN  
IRQ[1]/MCP_OUT  
I
NVDDB  
NVDDB  
NVDDB  
NVDDB  
F16  
I/O  
I/O  
I
IRQ[2] /CKSTOP_OUT  
IRQ[3] / CKSTOP_IN / INTA  
B17  
A18  
JTAG  
Y7  
TCK  
TDI  
I
I
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
NVDDP_K  
4
U9  
TDO  
TMS  
TRST  
AC5  
O
I
3
AA6  
4
V8  
I
4
TEST  
AC6  
TEST_MODE  
I
NVDDP_K  
5
System Control  
AA9  
HRESET  
PORESET  
SRESET  
I/O  
I
NVDDP_K  
NVDDP_K  
NVDDP_K  
1
AA8  
AB7  
I/O  
Clocks  
AC8  
SYS_CLK_IN  
I
I
NVDDP_K  
NVDDJ  
RTC_PIT_CLOCK  
AA23  
MISC  
AA7  
QUIESCE  
THERM0  
O
I
NVDDP_K  
NVDDP_K  
6
AC7  
ETSEC1  
B20  
TSEC1_COL  
TSEC1_CRS  
I
I
NVDDC  
NVDDC  
NVDDC  
NVDDC  
NVDDC  
NVDDC  
NVDDC  
3
B21  
TSEC1_GTX_CLK  
TSEC1_RX_CLK  
TSEC1_RX_DV  
TSEC1_RXD[3]  
TSEC1_RXD[2]  
F18  
O
I
A22  
D21  
I
C22  
I
C21  
I
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
66  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
TSEC1_RXD[1]  
TSEC1_RXD[0]  
TSEC1_RX_ER  
C20  
D20  
C23  
E23  
I
I
I
I
NVDDC  
NVDDC  
NVDDC  
NVDDC  
TSEC1_TX_CLK/  
TSEC1_GTX_CLK125  
TSEC1_TXD[3]/  
CFG_RESET_SOURCE[0]  
F22  
F21  
E21  
D22  
F20  
E22  
I/O  
I/O  
I/O  
I/O  
O
NVDDC  
NVDDC  
NVDDC  
NVDDC  
NVDDC  
NVDDC  
7
TSEC1_TXD[2]/  
CFG_RESET_SOURCE[1]  
TSEC1_TXD[1]/  
CFG_RESET_SOURCE[2]  
TSEC1_TXD[0]/  
CFG_RESET_SOURCE[3]  
TSEC1_TX_EN/  
LBC_PM_REF_10  
TSEC1_TX_ER/  
I/O  
LB_POR_CFG_BOOT_ECC  
Ethernet Mgmt  
TSEC1_MDC  
TSEC1_MDIO  
A20  
O
NVDDB  
NVDDB  
9
C19  
I/O  
eSDHC/GTM  
SD_CLK/GPIO[16]  
SD_CMD/GPIO[17]  
D7  
G9  
A7  
O
I/O  
I
NVDDA  
NVDDA  
NVDDA  
SD_CD/GTM1_TIN1/  
GPIO[18]  
SD_WP/GTM1_TGATE1/  
GPIO[19]  
D8  
C8  
B8  
A8  
B9  
I
NVDDA  
NVDDA  
NVDDA  
NVDDA  
NVDDA  
SD_DAT[0]/GTM1_TOUT1/  
GPIO[20]  
I/O  
I/O  
I/O  
I/O  
SD_DAT[1]/GTM1_TOUT2/  
GPIO[21]  
SD_DAT[2]/GTM1_TIN2/  
GPIO[22]  
SD_DAT[3]/GTM1_TGATE2/  
GPIO[23]  
SPI  
SPIMOSI/MSRCID4/  
LSRCID4  
AB5  
I/O  
I/O  
NVDDP_K  
NVDDP_K  
SPIMISO/MDVAL/LDVAL  
Y6  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
67  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
SPICLK  
SPISEL  
AA5  
AB4  
I/O  
I
NVDDP_K  
NVDDP_K  
GPIO/ETSEC2  
G21  
GPIO[0]/TSEC2_COL  
GPIO[1]/TSEC2_TX_ER  
GPIO[2]/TSEC2_GTX_CLK  
GPIO[3]/TSEC2_RX_CLK  
GPIO[4]/TSEC2_RX_DV  
GPIO[5]/TSEC2_RXD3  
GPIO[6]/TSEC2_RXD2  
GPIO[7]/TSEC2_RXD1  
GPIO[8]/TSEC2_RXD0  
GPIO[9]/TSEC2_RX_ER  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
K23  
H18  
G23  
J18  
J20  
H22  
H21  
H20  
J21  
GPIO[10]/TSEC2_TX_CLK/  
TSEC2_GTX_CLK125  
J23  
GPIO[11]/TSEC2_TXD3  
GPIO[12]/TSEC2_TXD2  
GPIO[13]/TSEC2_TXD1  
GPIO[14]/TSEC2_TXD0  
GPIO[15]/TSEC2_TX_EN  
K22  
I/O  
I/O  
I/O  
I/O  
I/O  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
NVDDF  
K20  
K18  
J17  
K21  
USB/IEEE1588/GTM  
USBDR_PWR_FAULT  
USBDR_CLK  
P20  
R23  
R21  
P18  
T22  
T21  
U23  
U22  
T20  
R18  
V23  
V22  
R17  
I
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
I
USBDR_DIR  
I
USBDR_NXT  
I
USBDR_TXDRXD0  
USBDR_TXDRXD1  
USBDR_TXDRXD2  
USBDR_TXDRXD3  
USBDR_TXDRXD4  
USBDR_TXDRXD5  
USBDR_TXDRXD6  
USBDR_TXDRXD7  
USBDR_PCTL0  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
O
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
68  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
USBDR_PCTL1  
USBDR_STP  
U20  
V21  
W23  
T18  
V20  
W21  
O
O
I
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
NVDDH  
TSEC_TMR_CLK/ GPIO[8]  
GTM1_TOUT3/ GPIO[9]  
GTM1_TOUT4/ GPIO[10]  
O
O
I
TSEC_TMR_TRIG1/  
GPIO[11]  
TSEC_TMR_TRIG2/  
GPIO[12]  
Y21  
I
NVDDH  
TSEC_TMR_GCLK  
TSEC_TMR_PP1  
L17  
L18  
L21  
L22  
L23  
M23  
O
O
O
O
O
O
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
TSEC_TMR_PP2  
TSEC_TMR_PP3/ GPIO[13]  
TSEC_TMR_ALARM1  
TSEC_TMR_ALARM2/  
GPIO[14]  
GPIO[7]  
TSEC2_CRS/ GPIO[0]  
GPIO[1]  
M22  
IO  
IO  
IO  
IO  
IO  
IO  
I
10  
10  
10  
M21  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDG  
NVDDH  
NVDDH  
M18  
GPIO[2]  
M20  
GPIO[3]  
N23  
GPIO[4]  
N21  
GTM1_TGATE3  
GTM1_TIN4  
GTM1_TGATE4/ GPIO[15]  
GTM1_TIN3  
GPIO[5]  
N20  
N18  
I
P23  
I
P22  
I
N17  
IO  
IO  
GPIO[6]  
P21  
Power and Ground Supplies  
AVDD1  
AVDD2  
R6  
V10  
I
I
NC, No Connection  
VDD  
B11, B16, D16  
I
Y23, H8, H9, H10, H14, H15, H16, J8, J16, K8, K16, L8, L16, M8,  
M16, N8, N16, P8, P16, R8, R16, T8, T9, T10, T11, T12, T13, T14,  
T15, T16  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
69  
Package and Pin Listings  
Table 53. MPC8308 Pinout Listing (continued)  
Package Pin Number  
Pin  
Type  
Power  
Supply  
Signal  
Note  
VSS  
A2, A21, B1, B19, B23, C4, C16, D6, D19, E3, F8, F15, F17, F23,  
G7, G8, G10, G15, G16, G17, G20, H2, H6, H7, H17, H23, J7, J9,  
J10, J11, J12, J13, J14, J15, K9, K10, K11, K12, K13, K14, K15,  
L1, L7, L9, L10, L11, L12, L13, L14, L15, L20, M4, M9, M10, M11,  
M12, M13, M14, M15, N9, N10, N11, N12, N13, N14, N15, P6, P7,  
P9, P10, P11, P12, P13, P14, P15, R2, R7, R9, R10, R11, R12,  
R13, R14, R15, R22, T6, T7, U8, U17, U21, V2, V7, V9, V11, W20,  
Y8, Y15, AA4, AB1, AB6, AB12, AB19, AC2, AC9, AC23  
I
NVDDA  
NVDDB  
NVDDC  
NVDDF  
NVDDG  
NVDDH  
NVDDJ  
B7, B10, C7, D9, F9  
A16, A19, C18  
I
I
I
I
I
I
I
I
A23, B22, D23, E20, G18  
G22, J22, K17  
M17, N22  
P17, R20, T17, T23, W22, Y22  
AB23, AA22  
NVDDP_K  
U10, U14, Y5, Y18, AA11, AB8, AB16, AB22, AC4,  
AC13  
GVDD  
XPADVDD  
A1, A6, B3, D1, F1, F6, G4, J1, J4, K7, N1, N7, T1, T4, U7, Y3, AC1  
D15, F10, F14  
I
I
I
I
I
XPADVSS  
A10, B15, D14, G13, G14, H12  
A14, B12, C13  
XCOREVDD  
XCOREVSS  
Notes:  
A12, B14, C11, D11, D13, G11, H11, H13  
1. This pin is an open drain signal. A weak pull-up resistor (1 k) should be placed on this pin to NVDD  
2. This pin is an open drain signal. A weak pull-up resistor (2–10 k) should be placed on this pin to NVDD  
3. This output is actively driven during reset rather than being three-stated during reset.  
4. This pin has weak internal pull-up that is always enabled.  
5. This pin must always be tied to VSS.  
6. Internal thermally sensitive resistor, resistor value varies linearly with temperature. Useful for determining the junction  
temperature.  
7. The LB_POR_CFG_BOOT_ECC is sampled only during the PORESET negation. This pin with an internal pull down resistor  
enables the ECC by default. To disable the ECC an external strong pull up resistor or a buffer released to high impedance is  
needed.  
8. This pin has weak internal pull-down that is always enabled  
9. A weak pull-up resistor (2–10 k) should be placed on this pin to NVDD  
10. Configure SICRH register to program the pin as GPIO. Refer to MPC8308 reference manual for more details.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
70  
Freescale Semiconductor  
Clocking  
21 Clocking  
This figure shows the internal distribution of clocks within the device.  
e300 Core  
MPC8308  
x M1  
e300  
PLL  
csb_clk  
MCK[0:2]  
MCK[0:2]  
DDR  
clk tree  
DDR  
Memory  
Device  
Clock  
x L2  
Divider  
/2  
ddr_clk  
lbc_clk  
System Clk  
PLL  
Gen  
ref fb  
/n  
24–66 MHz  
Local  
Bus  
Memory  
Device  
LBC  
Clock  
Divider  
SYS_CLK_IN  
USBDR_CLK  
SD_CLK  
USB  
eTSEC1  
TSEC1_RX_CLK  
eSHDC  
PCI Express  
Protocol  
Converter  
TSEC1_TX_CLK/  
TSEC1_GTX_CLK125  
PCVTR Mux  
RTC  
SD_REF_CLK  
SD_REF_CLK_B  
+
-
RTC_PIT_CLOCK  
(32 KHz)  
SerDes PHY  
PLL  
Sys_ref  
125/100 MHz  
1
2
Multiplication factor M = 1, 1.5, 2, 2.5, and 3. Value is decided by RCWLR[COREPLL].  
Multiplication factor L = 2, 3, 4, 5 and 6. Value is decided by RCWLR[SPMF].  
Figure 53. MPC8308 Clock Subsystem  
The following external clock sources are utilized on the MPC8308:  
System clock (SYS_CLK_IN)  
Ethernet Clock (TSEC1_RX_CLK/TSEC1_TX_CLK/TSEC1_GTX_CLK125 for eTSEC)  
SerDes PHY clock  
eSHDC clock (SD_CLK)  
For more information, see the SerDes chapter in the MPC8308 PowerQUICC II Pro Processor  
Reference Manual.  
All clock inputs can be supplied using an external canned oscillator, a clock generation chip, or some other  
source that provides a standard CMOS square wave input.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
71  
 
 
Clocking  
21.1 System Clock Domains  
The primary clock input (SYS_CLK_IN) frequency is multiplied up by the system phase-locked loop  
(PLL) and the clock unit to create three major clock domains:  
The coherent system bus clock (csb_clk)  
The internal clock for the DDR controller (ddr_clk)  
The internal clock for the local bus interface unit (lbc_clk)  
The csb_clk frequency is derived as follows:  
csb_clk = [SYS_CLK_IN] × SPMF  
The csb_clk serves as the clock input to the e300 core. A second PLL inside the core multiplies up the  
csb_clk frequency to create the internal clock for the core (core_clk). The system and core PLL multipliers  
are selected by the SPMF and COREPLL fields in the reset configuration word low (RCWL), which is  
loaded at power-on reset or by one of the hard-coded reset options. For more information, see the Reset  
Clock Configuration chapter in the MPC8308 PowerQUICC II Pro Processor Reference Manual.  
The DDR SDRAM memory controller will operate with a frequency equal to twice the frequency of  
csb_clk. Note that ddr_clk is not the external memory bus frequency; ddr_clk passes through the DDR  
clock divider (2) to create the differential DDR memory bus clock outputs (MCK and MCK). However,  
the data rate is the same frequency as ddr_clk.  
The local bus memory controller will operate with a frequency equal to the frequency of csb_clk. Note that  
lbc_clk is not the external local bus frequency; lbc_clk passes through the LBC clock divider to create the  
external local bus clock outputs (LSYNC_OUT and LCLK0:2). The LBC clock divider ratio is controlled  
by LCCR[CLKDIV]. For more information, see the Reset Clock Configuration chapter in the MPC8308  
PowerQUICC II Pro Processor Reference Manual.  
In addition, some of the internal units may be required to be shut off or operate at lower frequency than  
the csb_clk frequency. These units have a default clock ratio that can be configured by a memory mapped  
register after the device comes out of reset. Table 54 specifies which units have a configurable clock  
frequency. For more information, see Reset Clock Configuration chapter in the MPC8308 PowerQUICC  
II Pro Processor Reference Manual.  
Table 54. Configurable Clock Units  
Unit  
Default Frequency  
Options  
eTSEC1,eTSEC2  
I2C  
csb_clk/3  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
csb_clk  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk,csb_clk/2, csb_clk/3  
Off, csb_clk,csb_clk/2,csb_clk/3  
Off, csb_clk  
DMA complex  
PCIEXP  
eSDHC  
Off, csb_clk, csb_clk/2, csb_clk/3  
Off, csb_clk, csb_clk/2, csb_clk/3  
USB  
NOTE  
The clock ratios of these units must be set before they are accessed.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
72  
Freescale Semiconductor  
 
Clocking  
This table provides the operating frequencies for the device under recommended operating conditions  
(Table 2).  
Table 55. Operating Frequencies for MPC8308  
Characteristic1  
Maximum Operating Frequency  
Unit  
e300 core frequency (core_clk)  
Coherent system bus frequency (csb_clk)  
DDR2 memory bus frequency (MCK)2  
Local bus frequency (LCLK0)3  
Notes:  
400  
133  
133  
66  
MHz  
MHz  
MHz  
MHz  
1. The SYS_CLK_IN frequency, RCWL[SPMF], and RCWL[COREPLL] settings must be chosen such that the resulting csb_clk,  
MCK, LCLK0, and core_clk frequencies do not exceed their respective maximum or minimum operating frequencies.  
2. The DDR data rate is 2x the DDR memory bus frequency.  
3. The local bus frequency is 1/2, 1/4, or 1/8 of the lbc_clk frequency (depending on LCCR[CLKDIV]) which is in turn, 1x or 2x  
the csb_clk frequency (depending on RCWL[LBCM]).  
21.2 System PLL Configuration  
The system PLL is controlled by the RCWL[SPMF] parameter. This table shows the multiplication factor  
encodings for the system PLL.  
Table 56. System PLL Ratio  
RCWL[SPMF]  
csb_clk: SYS_CLK_IN  
0000  
0001  
Reserved  
Reserved  
2 : 1  
0010  
0011  
3 : 1  
0100  
4 : 1  
0101  
5 : 1  
0110–1111  
Reserved  
As described in Section 21, “Clocking,” the LBCM, DDRCM, and SPMF parameters in the reset  
configuration word low select the ratio between the primary clock input (SYS_CLK_IN) and the internal  
coherent system bus clock (csb_clk). This table shows the expected frequency values for the CSB  
frequency for select csb_clk to SYS_CLK_IN ratios.  
Table 57. CSB Frequency Options  
Input Clock Frequency (MHz)  
SPMF  
csb_clk :Input Clock Ratio  
25  
33.33  
66.67  
0010  
0100  
0101  
2:1  
4:1  
5:1  
133  
133  
125  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
73  
 
 
 
Thermal  
21.3 Core PLL Configuration  
RCWL[COREPLL] selects the ratio between the internal coherent system bus clock (csb_clk) and the e300  
core clock (core_clk). This table shows the encodings for RCWL[COREPLL]. COREPLL values that are  
not listed in this table should be considered as reserved.  
NOTE  
Core VCO frequency = core frequency VCO divider. The VCO divider,  
which is determined by RCWLR[COREPLL], must be set properly so that  
the core VCO frequency is in the range of 400–800 MHz.  
Table 58. e300 Core PLL Configuration  
RCWL[COREPLL]  
core_clk: csb_clk Ratio1  
VCO Divider (VCOD)2  
0–1  
2–5  
6
nn  
0000  
0
PLL bypassed  
PLL bypassed  
(PLL off, csb_clk clocks core directly)  
(PLL off, csb_clk clocks core directly)  
11  
00  
nnnn  
0001  
0001  
0001  
0001  
0001  
0001  
0010  
0010  
0010  
0010  
0010  
0010  
0011  
0011  
0011  
n
0
0
0
1
1
1
0
0
0
1
1
1
0
0
0
n/a  
1:1  
n/a  
2
4
8
2
4
8
2
4
8
2
4
8
2
4
8
01  
1:1  
10  
1:1  
00  
1.5:1  
1.5:1  
1.5:1  
2:1  
01  
10  
00  
01  
2:1  
10  
2:1  
00  
2.5:1  
2.5:1  
2.5:1  
3:1  
01  
10  
00  
01  
3:1  
10  
3:1  
Note:  
1
2
For any core_clk:csb_clk ratios, the core_clk must not exceed its maximum operating frequency of 400 MHz.  
Core VCO frequency = core frequency VCO divider. Note that VCO divider has to be set properly so that the  
core VCO frequency is in the range of 400–800 MHz.  
22 Thermal  
This section describes the thermal specifications of the device.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
74  
 
 
Thermal  
22.1 Thermal Characteristics  
This table provides the package thermal characteristics for the 473, 19 19 mm MAPBGA.  
Table 59. Package Thermal Characteristics for MAPBGA  
Characteristic  
Board Type  
Symbol  
Value  
Unit  
Note  
Junction to Ambient Natural Convection  
Junction to Ambient Natural Convection  
Junction to Ambient (@200 ft/min)  
Junction to Ambient (@200 ft/min)  
Junction to Board  
Single layer board (1s)  
Four layer board (2s2p)  
Single layer board (1s)  
Four layer board (2s2p)  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
42  
27  
35  
24  
17  
9
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
1, 2  
1, 2, 3  
1, 3  
1, 3  
4
Junction to Case  
5
Junction to Package Top  
Notes:  
Natural Convection  
2
6
1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per JEDEC JESD51-2 with the single layer board horizontal. Board meets JESD51-9 specification.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.  
22.2 Thermal Management Information  
For the following sections, P = (V I ) + P , where P is the power dissipation of the I/O drivers.  
D
DD  
DD  
I/O  
I/O  
22.2.1 Estimation of Junction Temperature with Junction-to-Ambient  
Thermal Resistance  
An estimation of the chip junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
P )  
D
J
A
JA  
where:  
T = junction temperature (C)  
J
T = ambient temperature for the package (C)  
A
R
= junction-to-ambient thermal resistance (C/W)  
JA  
P = power dissipation in the package (W)  
D
The junction-t-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. As a general statement, the value obtained on a single layer board is  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
75  
Thermal  
appropriate for a tightly packed printed-circuit board. The value obtained on the board with the internal  
planes is usually appropriate if the board has low power dissipation and the components are well separated.  
Test cases have demonstrated that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
22.2.2 Estimation of Junction Temperature with Junction-to-Board  
Thermal Resistance  
The thermal performance of a device cannot be adequately predicted from the junction-to-ambient thermal  
resistance. The thermal performance of any component is strongly dependent on the power dissipation of  
surrounding components. In addition, the ambient temperature varies widely within the application. For  
many natural convection and especially closed box applications, the board temperature at the perimeter  
(edge) of the package is approximately the same as the local air temperature near the device. Specifying  
the local ambient conditions explicitly as the board temperature provides a more precise description of the  
local ambient conditions that determine the temperature of the device.  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
P )  
D
J
B
JB  
where:  
T = junction temperature (C)  
J
T = board temperature at the package perimeter (C)  
B
R
= junction-to-board thermal resistance (C/W) per JESD51–8  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction  
temperature can be made. The application board should be similar to the thermal test condition: the  
component is soldered to a board with internal planes.  
22.2.3 Experimental Determination of Junction Temperature  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter () can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (P )  
J
T
JT  
D
where:  
T = junction temperature (C)  
J
T = thermocouple temperature on top of package (C)  
T
= thermal characterization parameter (C/W)  
JT  
P = power dissipation in the package (W)  
D
The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
76  
Freescale Semiconductor  
System Design Information  
23 System Design Information  
This section provides electrical and thermal design recommendations for successful application of the  
device  
23.1 System Clocking  
The device includes two PLLs.  
1. The platform PLL generates the platform clock from the externally supplied SYS_CLK_IN input.  
The frequency ratio between the platform and SYS_CLK_IN is selected using the platform PLL  
ratio configuration bits as described in Section 21.2, “System PLL Configuration.”  
2. The e300 core PLL generates the core clock as a slave to the platform clock. The frequency ratio  
between the e300 core clock and the platform clock is selected using the e300 PLL ratio  
configuration bits as described in Section 21.3, “Core PLL Configuration.”  
23.2 PLL Power Supply Filtering  
Each of the PLLs listed above is provided with power through independent power supply pins (AV  
for  
DD1  
core PLL and AV  
for the platform PLL). The AV level should always be equivalent to V , and  
DD2  
DD DD  
preferably these voltages are derived directly from V through a low pass filter scheme such as the  
DD  
following.  
There are a number of ways to reliably provide power to the PLLs, but the recommended solution is to  
provide independent filter circuits as illustrated in Figure 54, one to each of the two AV pins. By  
DD  
providing independent filters to each PLL the opportunity to cause noise injection from one PLL to the  
other is reduced.  
This circuit is intended to filter noise in the PLLs’ resonant frequency range from a 500 kHz to 10 MHz  
range. It should be built with surface mount capacitors with minimum effective series inductance (ESL).  
Consistent with the recommendations of Dr. Howard Johnson in High Speed Digital Design: A Handbook  
of Black Magic (Prentice Hall, 1993), multiple small capacitors of equal value are recommended over a  
single large value capacitor.  
Each circuit should be placed as close as possible to the specific AV pin being supplied to minimize  
DD  
noise coupled from nearby circuits. It should be possible to route directly from the capacitors to the AV  
pin, which is on the periphery of package, without the inductance of vias.  
DD  
This figure shows the PLL power supply filter circuits.  
10  
VDD  
AVDD1 and AVDD2  
2.2 µF  
2.2 µF  
Low ESL Surface Mount Capacitors  
Figure 54. PLL Power Supply Filter Circuit  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
77  
 
System Design Information  
23.3 Decoupling Recommendations  
Due to large address and data buses, and high operating frequencies, the device can generate transient  
power surges and high frequency noise in its power supply, especially while driving large capacitive loads.  
This noise must be prevented from reaching other components in the MPC8308 system, and the MPC8308  
itself requires a clean, tightly regulated source of power. Therefore, it is recommended that the system  
designer place at least one decoupling capacitor at each V , NV , GV and LV pin of the device.  
DD  
DD  
DD  
DD  
These decoupling capacitors should receive their power from separate V , NV , GV , LV , and  
DD  
DD  
DD  
DD  
V
power planes in the PCB, utilizing short traces to minimize inductance. Capacitors may be placed  
SS  
directly under the device using a standard escape pattern. Others may surround the part.  
These capacitors should have a value of 0.01 or 0.1 µF. Only ceramic SMT (surface mount technology)  
capacitors should be used to minimize lead inductance, preferably 0402 or 0603 sizes.  
In addition, it is recommended that there be several bulk storage capacitors distributed around the PCB,  
feeding the V , NV , GV , LV planes, to enable quick recharging of the smaller chip capacitors.  
DD  
DD  
DD  
DD  
These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the quick  
response time necessary. They should also be connected to the power and ground planes through two vias  
to minimize inductance. Suggested bulk capacitors—100 to 330 µF (AVX TPS tantalum or Sanyo  
OSCON). However, customers should work directly with their power regulator vendor for best values and  
types of bulk capacitors.  
23.4 Connection Recommendations  
To ensure reliable operation, it is highly recommended to connect unused inputs to an appropriate signal  
level. Unused active low inputs should be tied to NV , GV , LV as required. Unused active high  
DD  
DD  
DD  
inputs should be connected to VSS. All NC (no-connect) signals must remain unconnected.  
Power and ground connections must be made to all external V , NV , AV , AV , GV , LV  
DD  
DD  
DD  
DD1  
DD2  
DD  
and V pins of the device.  
SS  
23.5 Output Buffer DC Impedance  
The device drivers are characterized over process, voltage, and temperature. For all buses, the driver is a  
2
push-pull single-ended driver type (open drain for I C, MDIO and HRESET)  
To measure Z for the single-ended drivers, an external resistor is connected from the chip pad to NV  
0
DD  
or V . Then, the value of each resistor is varied until the pad voltage is NV /2 (Figure 55). The output  
SS  
DD  
impedance is the average of two components, the resistances of the pull-up and pull-down devices. When  
data is held high, SW1 is closed (SW2 is open), and R is trimmed until the voltage at the pad equals  
P
NV /2. R then becomes the resistance of the pull-up devices. R and R are designed to be close to each  
DD  
P
P
N
other in value. Then, Z = (R + R )/2.  
0
P
N
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
78  
 
System Design Information  
NVDD  
RN  
SW2  
SW1  
Pad  
Data  
RP  
VSS  
Figure 55. Driver Impedance Measurement  
The value of this resistance and the strength of the driver’s current source can be found by making two  
measurements. First, the output voltage is measured while driving logic 1 without an external differential  
termination resistor. The measured voltage is V = R  
while driving logic 1 with an external precision differential termination resistor of value R . The  
I  
. Second, the output voltage is measured  
1
source  
source  
term  
measured voltage is V = (1/(1/R + 1/R )) I  
. Solving for the output impedance gives R  
=
2
1
2
source  
source  
R
(V /V – 1). The drive current is then I  
= V /R  
.
term  
1
2
source  
1
source  
This table summarizes the signal impedance targets. The driver impedance are targeted at minimum V  
,
DD  
nominal NV , 105C.  
DD  
Table 60. Impedance Characteristics  
Local Bus, Ethernet, DUART, Control,  
Configuration, Power Management  
Impedance  
DDR DRAM Symbol  
Unit  
R
R
42 Target  
42 Target  
20 Target  
20 Target  
Z0  
Z0  
N
P
Note: Nominal supply voltages. See Table 2, Tj = 105C.  
23.6 Configuration Pin Muxing  
The device provides the user with power-on configuration options which can be set through the use of  
external pull-up or pull-down resistors of 4.7 Kon certain output pins (see customer visible  
configuration pins). These pins are generally used as output only pins in normal operation.  
While PORESET is asserted however, these pins are treated as inputs. The value presented on these pins  
while PORESET is asserted, is latched when PORESET deasserts, at which time the input receiver is  
disabled and the I/O circuit takes on its normal function. Careful board layout with stubless connections  
to these pull-up/pull-down resistors coupled with the large value of the pull-up/pull-down resistor should  
minimize the disruption of signal quality or speed for output pins thus configured.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
79  
Ordering Information  
23.7 Pull-Up Resistor Requirements  
The device requires high resistance pull-up resistors (10 kis recommended) on open drain type pins  
2
including I C, Ethernet management MDIO, HRESET and IPIC (integrated programmable interrupt  
controller).  
Correct operation of the JTAG interface requires configuration of a group of system control pins as  
demonstrated in Figure 56. Care must be taken to ensure that these pins are maintained at a valid deasserted  
state under normal operating conditions because most have asynchronous behavior and spurious assertion,  
which give unpredictable results.  
24 Ordering Information  
This section presents ordering information for the devices discussed in this document, and it shows an  
example of how the parts are marked. Ordering information for the devices fully covered by this document  
is provided in Section 24.1, “Part Numbers Fully Addressed by This Document.”  
24.1 Part Numbers Fully Addressed by This Document  
This table provides the Freescale part numbering nomenclature for the MPC8308 family. Note that the  
individual part numbers correspond to a maximum processor core frequency. For available frequencies,  
contact your local Freescale sales office. In addition to the maximum processor core frequency, the part  
numbering scheme also includes the maximum effective DDR memory speed. Each part number also  
contains a revision code which refers to the die mask revision number.  
Table 61. Part Numbering Nomenclature  
MPC nnnn  
VM  
AD  
D
A
C
Product  
Code  
Part  
Identifier  
Temperature  
Range1,4  
e300 Core  
Frequency3  
DDR  
Frequency  
Revision  
Level  
Package2  
MPC  
8308  
Blank = 0 to 105C VM = Pb-free 473 MAPBGA AD = 266 MHz D = 266 MHz Contact local  
AF = 333 MHz  
Freescale  
C = –40 to 105C ZQ = Pb 473 MAPBGA  
AG = 400 MHz  
sales office  
Notes:  
1. Contact local Freescale office on availability of parts with C temperature range.  
2. See Section 20, “Package and Pin Listings,for more information on available package types.  
3. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this  
specification support all core frequencies. Additionally, parts addressed by Part Number Specifications may support other  
maximum core frequencies  
4. Minimum temperature is specified with TA; Maximum temperature is specified with TJ  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
80  
Freescale Semiconductor  
 
 
Ordering Information  
24.2 Part marking  
Parts are marked as in the example shown in this figure.  
MPCnnnnCVMADDA  
core/platform MHZ  
ATWLYYWW  
CCCCC  
*MMMMM  
YWWLAZ  
PBGA  
Notes:  
ATWLYYWW is the traceability code.  
CCCCC is the country code.  
MMMMM is the mask number.  
YWWLAZ is the assembly traceability code.  
Figure 56. Freescale Part Marking for PBGA Devices  
This table lists the SVR settings.  
Table 62. SVR settings  
Package  
Device  
Revision  
SVR  
MPC8308  
MPC8308  
1.1  
1.0  
MAPBGA  
MAPBGA  
0x8101 _0111  
0x8101 _0110  
Note: PVR = 8085_0020 for the device.  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
81  
 
 
Revision history  
25 Revision history  
This table summarizes a revision history for this document.  
Table 63. Revision history  
Rev.  
Number  
Date  
Substantive Change(s)  
4
12/2014 • In Table 23 and Table 24, VIL(min) is replaced with VIL(max) and VIH(max) is replaced with VIL(min)  
• In Table 25, Symbol tSKRGT is updated  
• Updated Figure 11  
• In Table 53, removed TSEC2_TMR_RX_ESFD, TSEC2_TMR_TX_ESFD, TSEC1_TMR_RX_ESFD,  
TSEC1_TMR_TX_ESFD signals  
• In Table 53, added INTA signal  
• In Table 53, added note 9 and note 10  
• In Table 53, updated the note for eTSEC1_MDIO  
• In Table 53, updated note of pin M22, N17 and P21  
• In Table 57, removed 167 MHz Input Clock Frequency  
• Updated Figure 53  
• Updated Table 61  
• Updated Table 62  
3
2
10/2011 • In Section 2.1.4, “Power sequencing,changed description.  
• In Table 53, updated GPIOs pins as I/O.  
• In Table 54, removed PCI Express = csb_clk/2 and csb_clk/3 options.  
• In Table 61, added note 4.  
02/2011 • Added NVDDJ to Note-7 in Table 1.  
• In Table 2,  
Added Note-2  
Added NVDDJ to Note-3  
Added “Extended Temperature range from -40 to 105 C, in the last row of the table  
Changed “characteristic name Junction temperature” to “Operating temperature range”  
• In Table 4, Note-3, changed ambient temperature to junction temperature, TJ = 105C  
• In Table 18,  
tDDKHCS changed from 3.15ns to 2.5ns  
tDDKHMP and tDDKHME values updated  
• In Figure 6, corrected tDDKHMP & tDDKHME waveform  
• In Table 53,  
Y23 Package Pin Number changed from NC to VDD signal group  
TSEC2_CRS is muxed with GPIO[0], shown as TSEC2_CRS/ GPIO[0]  
• In Table 58, note-1, core_clk maximum operating frequency 333 MHz replaced with 400 MHz  
1
06/2010 • In Table 4, TA = 105 replaced with TJ = 105  
• In Table 8, fSYS_CLK_IN (Max) = 66 replaced with 66.67 and tSYS_CLK_IN (Min) = 15.15 replaced with 15  
• In Table 53, TSEC1_TMR_RX_ESFD replaced with TSEC2_TMR_RX_ESFD  
TSEC1_TMR_TX_ESFD replaced with TSEC2_TMR_TX_ESFD  
TSEC0_TMR_RX_ESFD replaced with TSEC1_TMR_RX_ESFD  
TSEC0_TMR_TX_ESFD replaced with TSEC1_TMR_TX_ESFD  
• In Table 56, rows from 1000 to 1111 removed  
• In Table 57, SPMF 5:1 Option 167 MHz added.  
0
05/2010 Initial release  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
82  
Freescale Semiconductor  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
83  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
84  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
85  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
86  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
87  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
88  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
89  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
90  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
91  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
92  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
93  
Revision history  
MPC8308 PowerQUICC II Pro Processor Hardware Specification, Rev. 4  
Freescale Semiconductor  
94  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale, the Freescale logo, CodeWarrior, ColdFire, PowerQUICC,  
StarCore, and Symphony are trademarks of Freescale Semiconductor, Inc.  
Reg. U.S. Pat. & Tm. Off. CoreNet, QorIQ, QUICC Engine, and VortiQa are  
trademarks of Freescale Semiconductor, Inc. All other product or service  
names are the property of their respective owners. The Power Architecture  
and Power.org word marks and the Power and Power.org logos and related  
marks are trademarks and service marks licensed by Power.org. IEEE 1588  
and 1149.1 are registered trademarks of the Institute of Electrical and  
Electronics Engineers, Inc. (IEEE). This product is not endorsed or  
approved by the IEEE.  
© 2011, 2014 Freescale Semiconductor, Inc.  
Document Number: MPC8308EC  
Rev. 4  
12/2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY