MPC880ZP133 [NXP]

32-BIT, 133MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357;
MPC880ZP133
型号: MPC880ZP133
厂家: NXP    NXP
描述:

32-BIT, 133MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357

外围集成电路
文件: 总87页 (文件大小:1277K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC885EC  
Rev. 7, 07/2010  
Freescale Semiconductor  
Technical Data  
MPC885/MPC880 PowerQUICC  
Hardware Specifications  
Contents  
This hardware specification contains detailed information on  
power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MPC885/MPC880. The  
MPC885 is the superset device of the MPC885/MPC880  
family. The CPU on the MPC885/MPC880 is a 32-bit core  
built on Power Architecture™ technology that incorporates  
memory management units (MMUs) and instruction and  
data caches. For functional characteristics of the  
1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
3. Maximum Tolerated Ratings . . . . . . . . . . . . . . . . . . . 9  
4. Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . 10  
5. Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
6. DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
7. Thermal Calculation and Measurement . . . . . . . . . . 12  
8. Power Supply and Power Sequencing . . . . . . . . . . . 15  
9. Layout Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
10. Bus Signal Timing . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
11. IEEE 1149.1 Electrical Specifications . . . . . . . . . . . 44  
12. CPM Electrical Characteristics . . . . . . . . . . . . . . . . . 46  
13. UTOPIA AC Electrical Specifications . . . . . . . . . . . 69  
14. USB Electrical Characteristics . . . . . . . . . . . . . . . . . 71  
15. FEC Electrical Characteristics . . . . . . . . . . . . . . . . . 71  
16. Mechanical Data and Ordering Information . . . . . . . 75  
17. Document Revision History . . . . . . . . . . . . . . . . . . . 85  
MPC885/MPC880, refer to the MPC885 PowerQUICC  
Family Reference Manual.  
To locate published errata or updates for this document, refer  
to the MPC875/MPC870 product summary page on our  
website listed on the back cover of this document or, contact  
your local Freescale sales office.  
© 2010 Freescale Semiconductor, Inc. All rights reserved.  
Overview  
1 Overview  
The MPC885/MPC880 is a versatile single-chip integrated microprocessor and peripheral combination  
that can be used in a variety of controller applications and communications and networking systems. The  
MPC885/MPC880 provides enhanced ATM functionality, an additional fast Ethernet controller, a USB,  
and an encryption block.  
Table 1 shows the functionality supported by MPC885/MPC880.  
Table 1. MPC885 Family  
Cache (Kbytes)  
I Cache D Cache  
Ethernet  
Security  
Engine  
Part  
SCC  
SMC  
USB  
ATM Support  
10BaseT  
10/100  
MPC885  
MPC880  
8
8
Up to 3  
2
3
2
2
2
1
1
Serial ATM and  
UTOPIA interface  
Yes  
No  
8
8
Up to 2  
2
Serial ATM and  
UTOPIA interface  
2 Features  
The MPC885/MPC880 is comprised of three modules that each use the 32-bit internal bus: a MPC8xx  
core, a system integration unit (SIU), and a communications processor module (CPM).  
The following list summarizes the key MPC885/MPC880 features:  
Embedded MPC8xx core up to 133 MHz  
Maximum frequency operation of the external bus is 80 MHz (in 1:1 mode)  
— The 133-MHz core frequency supports 2:1 mode only.  
— The 66-/80-MHz core frequencies support both the 1:1 and 2:1 modes.  
Single-issue, 32-bit core (compatible with the Power Architecture definition) with thirty-two  
32-bit general-purpose registers (GPRs)  
— The core performs branch prediction with conditional prefetch and without conditional  
execution.  
— 8-Kbyte data cache and 8-Kbyte instruction cache (see Table 1)  
– Instruction cache is two-way, set-associative with 256 sets in 2 blocks  
– Data cache is two-way, set-associative with 256 sets  
– Cache coherency for both instruction and data caches is maintained on 128-bit (4-word)  
cache blocks.  
– Caches are physically addressed, implement a least recently used (LRU) replacement  
algorithm, and are lockable on a cache block basis.  
— MMUs with 32-entry TLB, fully associative instruction and data TLBs  
— MMUs support multiple page sizes of 4, 16, and 512 Kbytes, and 8 Mbytes; 16 virtual address  
spaces and 16 protection groups  
— Advanced on-chip emulation debug mode  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
2
Freescale Semiconductor  
 
Features  
Provides enhanced ATM functionality found on the MPC862 and MPC866 families and includes  
the following:  
— Improved operation, administration and maintenance (OAM) support  
— OAM performance monitoring (PM) support  
— Multiple APC priority levels available to support a range of traffic pace requirements  
— Port-to-port switching capability without the need for RAM-based microcode  
— Simultaneous MII (100BaseT) and UTOPIA (half- or full -duplex) capability  
— Optional statistical cell counters per PHY  
— UTOPIA L2-compliant interface with added FIFO buffering to reduce the total cell  
transmission time and multi-PHY support. (The earlier UTOPIA L1 specification is also  
supported.)  
2
— Parameter RAM for both SPI and I C can be relocated without RAM-based microcode  
— Supports full-duplex UTOPIA master (ATM side) and slave (PHY side) operations using a split  
bus  
— AAL2/VBR functionality is ROM-resident  
Up to 32-bit data bus (dynamic bus sizing for 8, 16, and 32 bits)  
Thirty-two address lines  
Memory controller (eight banks)  
— Contains complete dynamic RAM (DRAM) controller  
— Each bank can be a chip select or RAS to support a DRAM bank  
— Up to 30 wait states programmable per memory bank  
— Glueless interface to DRAM, SIMMS, SRAM, EPROMs, Flash EPROMs, and other memory  
devices  
— DRAM controller programmable to support most size and speed memory interfaces  
— Four CAS lines, four WE lines, and one OE line  
— Boot chip-select available at reset (options for 8-, 16-, or 32-bit memory)  
Variable block sizes (32 Kbytes–256 Mbytes)  
— Selectable write protection  
— On-chip bus arbitration logic  
General-purpose timers  
— Four 16-bit timers or two 32-bit timers  
— Gate mode can enable/disable counting.  
— Interrupt can be masked on reference match and event capture  
Two fast Ethernet controllers (FEC)—Two 10/100 Mbps Ethernet/IEEE Std. 802.3™ CDMA/CS  
that interface through MII and/or RMII interfaces  
System integration unit (SIU)  
— Bus monitor  
— Software watchdog  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
3
Features  
— Periodic interrupt timer (PIT)  
— Clock synthesizer  
— Decrementer and time base  
— Reset controller  
— IEEE Std 1149.1™ test access port (JTAG)  
Security engine is optimized to handle all the algorithms associated with IPsec, SSL/TLS, SRTP,  
IEEE Std 802.11i™, and iSCSI processing. Available on the MPC885, the security engine contains  
a crypto-channel, a controller, and a set of crypto hardware accelerators (CHAs). The CHAs are:  
— Data encryption standard execution unit (DEU)  
– DES, 3DES  
– Two key (K1, K2, K1) or three key (K1, K2, K3)  
– ECB and CBC modes for both DES and 3DES  
— Advanced encryption standard unit (AESU)  
– Implements the Rijndael symmetric key cipher  
– ECB, CBC, and counter modes  
– 128-, 192-, and 256- bit key lengths  
— Message digest execution unit (MDEU)  
– SHA with 160- or 256-bit message digest  
– MD5 with 128-bit message digest  
– HMAC with either algorithm  
— Crypto-channel supporting multi-command descriptor chains  
— Integrated controller managing internal resources and bus mastering  
— Buffer size of 256 bytes for the DEU, AESU, and MDEU, with flow control for large data sizes  
Interrupts  
— Six external interrupt request (IRQ) lines  
— 12 port pins with interrupt capability  
— 23 internal interrupt sources  
— Programmable priority between SCCs  
— Programmable highest priority request  
Communications processor module (CPM)  
— RISC controller  
— Communication-specific commands (for example, GRACEFUL STOP TRANSMIT, ENTER HUNT  
MODE, and RESTART TRANSMIT)  
— Supports continuous mode transmission and reception on all serial channels  
— 8-Kbytes of dual-port RAM  
— Several serial DMA (SDMA) channels to support the CPM  
— Three parallel I/O registers with open-drain capability  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
4
Freescale Semiconductor  
Features  
On-chip 16 × 16 multiply accumulate controller (MAC)  
— One operation per clock (two-clock latency, one-clock blockage)  
— MAC operates concurrently with other instructions  
— FIR loop—Four clocks per four multiplies  
Four baud rate generators  
— Independent (can be connected to any SCC or SMC)  
— Allow changes during operation  
— Autobaud support option  
Up to three serial communication controllers (SCCs) supporting the following protocols:  
— Serial ATM capability on SCCs  
— Optional UTOPIA port on SCC4  
— Ethernet/IEEE Std 802.3™ optional on the SCC(s) supporting full 10-Mbps operation  
— HDLC/SDLC  
— HDLC bus (implements an HDLC-based local area network (LAN))  
— Asynchronous HDLC to support point-to-point protocol (PPP)  
— AppleTalk  
— Universal asynchronous receiver transmitter (UART)  
— Synchronous UART  
— Serial infrared (IrDA)  
— Binary synchronous communication (BISYNC)  
— Totally transparent (bit streams)  
— Totally transparent (frame based with optional cyclic redundancy check (CRC))  
Up to two serial management channels (SMCs) supporting the following protocols:  
— UART (low-speed operation)  
— Transparent  
— General circuit interface (GCI) controller  
— Provide management for BRI devices as GCI controller in time-division multiplexed (TDM)  
channels  
Universal serial bus (USB)—Supports operation as a USB function endpoint, a USB host  
controller, or both for testing purposes (loop-back diagnostics)  
— USB 2.0 full-/low-speed compatible  
— The USB function mode has the following features:  
– Four independent endpoints support control, bulk, interrupt, and isochronous data transfers.  
– CRC16 generation and checking  
– CRC5 checking  
– NRZI encoding/decoding with bit stuffing  
– 12- or 1.5-Mbps data rate  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
5
Features  
– Flexible data buffers with multiple buffers per frame  
– Automatic retransmission upon transmit error  
— The USB host controller has the following features:  
– Supports control, bulk, interrupt, and isochronous data transfers  
– CRC16 generation and checking  
– NRZI encoding/decoding with bit stuffing  
– Supports both 12- and 1.5-Mbps data rates (automatic generation of preamble token and  
data rate configuration). Note that low-speed operation requires an external hub.  
– Flexible data buffers with multiple buffers per frame  
– Supports local loop back mode for diagnostics (12 Mbps only)  
Serial peripheral interface (SPI)  
— Supports master and slave modes  
— Supports multiple-master operation on the same bus  
2
Inter-integrated circuit (I C) port  
— Supports master and slave modes  
— Supports a multiple-master environment  
Time-slot assigner (TSA)  
— Allows SCCs and SMCs to run in multiplexed and/or non-multiplexed operation  
— Supports T1, CEPT, PCM highway, ISDN basic rate, ISDN primary rate, user defined  
— 1- or 8-bit resolution  
— Allows independent transmit and receive routing, frame synchronization, and clocking  
— Allows dynamic changes  
— Can be internally connected to four serial channels (two SCCs and two SMCs)  
Parallel interface port (PIP)  
— Centronics interface support  
— Supports fast connection between compatible ports on MPC885/MPC880 and other MPC8xx  
devices  
PCMCIA interface  
— Master (socket) interface, release 2.1-compliant  
— Supports two independent PCMCIA sockets  
— 8 memory or I/O windows supported  
Debug interface  
— Eight comparators: four operate on instruction address, two operate on data address, and two  
operate on data  
— Supports conditions: = < >  
— Each watchpoint can generate a break point internally.  
Normal high and normal low power modes to conserve power  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
6
Freescale Semiconductor  
Features  
1.8-V core and 3.3-V I/O operation  
The MPC885/MPC880 comes in a 357-pin ball grid array (PBGA) package  
The MPC885 block diagram is shown in Figure 1.  
8-Kbyte  
Instruction Cache  
Instruction  
Bus  
System Interface Unit (SIU)  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Unified  
Bus  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
32-Entry DTLB  
Load/Store  
Bus  
PCMCIA-ATA Interface  
Slave/Master IF  
Security Engine  
Fast Ethernet  
Controller  
Controller  
Channel  
AESU DEU  
MDEU  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface  
Port  
Timers  
MIII/RMII  
SCC4/  
UTOPIA  
2
USB  
SCC2 SCC3  
SMC1 SMC2  
SPI  
I C  
Time-Slot Assigner  
Serial Interface  
Figure 1. MPC885 Block Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
7
 
Features  
The MPC880 block diagram is shown in Figure 2.  
Instruction  
Bus  
8-Kbyte  
Instruction Cache  
System Interface Unit (SIU)  
Memory Controller  
Instruction MMU  
32-Entry ITLB  
Unified  
Bus  
Embedded  
MPC8xx  
Processor  
Core  
Internal  
Bus Interface Bus Interface  
Unit Unit  
External  
8-Kbyte  
Data Cache  
System Functions  
Data MMU  
Load/Store  
Bus  
PCMCIA-ATA Interface  
32-Entry DTLB  
Slave/Master IF  
Fast Ethernet  
Controller  
DMAs  
FIFOs  
4
Interrupt  
8-Kbyte  
Parallel I/O  
Timers Controllers Dual-Port RAM  
10/100  
BaseT  
Media Access  
Control  
4 Baud Rate  
Generators  
32-Bit RISC Controller  
and Program  
Virtual IDMA  
and  
Serial DMAs  
ROM  
Parallel Interface  
Port  
Timers  
MIII/RMII  
SCC4/  
UTOPIA  
2
USB  
SCC3  
SMC1 SMC2  
SPI  
I C  
Time-Slot Assigner  
Serial Interface  
Figure 2. MPC880 Block Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
8
Freescale Semiconductor  
 
Maximum Tolerated Ratings  
3 Maximum Tolerated Ratings  
This section provides the maximum tolerated voltage and temperature ranges for the MPC885/MPC880.  
Table 2 displays the maximum tolerated ratings, and Table 3 displays the operating temperatures.  
Table 2. Maximum Tolerated Ratings  
Rating  
Symbol  
Value  
Unit  
1
Supply voltage  
V
–0.3 to 4.0  
–0.3 to 2.0  
–0.3 to 2.0  
<100  
V
V
DDH  
V
DDL  
VDDSYN  
Difference between V  
V
and V  
mV  
V
DDL  
DDSYN  
2
Input voltage  
V
GND – 0.3 to V  
in  
DDH  
Storage temperature range  
T
–55 to +150  
°C  
stg  
1
The power supply of the device must start its ramp from 0.0 V.  
2
Functional operating conditions are provided with the DC electrical specifications in Table 6. Absolute maximum ratings are  
stress ratings only; functional operation at the maxima is not guaranteed. Stress beyond those listed may affect device  
reliability or cause permanent damage to the device. See Section 8, “Power Supply and Power Sequencing.”  
Caution: All inputs that tolerate 5 V cannot be more than 2.5 V greater than V  
. This restriction applies to power up and  
DDH  
normal operation (that is, if the MPC885/MPC880 is unpowered, a voltage greater than 2.5 V must not be applied to its inputs).  
Figure 3 shows the undershoot and overshoot voltages at the interfaces of the MPC885/MPC880.  
V
/V  
+ 20%  
DDH DDL  
V
/V  
+ 5%  
/V  
DDH DDL  
V
V
DDH DDL  
IH  
GND  
GND – 0.3 V  
V
IL  
GND – 0.7 V  
Not to Exceed 10%  
1
of t  
interface  
Note:  
1. t  
refers to the clock period associated with the bus clock interface.  
interface  
Figure 3. Undershoot/Overshoot Voltage for V  
and V  
DDL  
DDH  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
9
 
 
Thermal Characteristics  
Table 3. Operating Temperatures  
Rating Symbol  
Value  
Unit  
1
Temperature (standard)  
T
0
°C  
°C  
°C  
°C  
A(min)  
T
95  
J(max)  
Temperature (extended)  
T
–40  
100  
A(min)  
T
J(max)  
1
Minimum temperatures are guaranteed as ambient temperature, T . Maximum  
A
temperatures are guaranteed as junction temperature, T .  
J
This device contains circuitry protecting against damage due to high-static voltage or electrical fields;  
however, it is advised that normal precautions be taken to avoid application of any voltages higher than  
maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for example, either GND or V ).  
DD  
4 Thermal Characteristics  
Table 4 shows the thermal characteristics for the MPC885/MPC880.  
Table 4. MPC885/MPC880 Thermal Resistance Data  
Rating  
Environment  
Single-layer board (1s)  
Symbol  
Value  
Unit  
1
2
Junction-to-ambient  
Natural convection  
Airflow (200 ft/min)  
R
37  
25  
30  
22  
17  
10  
2
°C/W  
θJA  
3
3
3
Four-layer board (2s2p)  
R
R
R
θJMA  
θJMA  
θJMA  
Single-layer board (1s)  
Four-layer board (2s2p)  
4
Junction-to-board  
R
θJB  
θJC  
5
Junction-to-case  
R
6
Junction-to-package top  
Natural convection  
Airflow (200 ft/min)  
Ψ
JT  
JT  
Ψ
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, airflow, power dissipation of other components on the board, and board thermal resistance.  
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed-circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method  
(MIL SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature. For exposed pad packages  
where the pad would be expected to be soldered, junction-to-case thermal resistance is a simulated value from the junction to  
the exposed pad without contact resistance.  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
2
3
4
5
6
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
10  
Freescale Semiconductor  
 
Power Dissipation  
5 Power Dissipation  
Table 5 provides information on power dissipation. The modes are 1:1, where CPU and bus speeds are  
equal, and 2:1, where CPU frequency is twice bus speed.  
Table 5. Power Dissipation (P )  
D
CPU  
Frequency  
1
2
Die Revision  
Bus Mode  
Typical  
Maximum  
Unit  
0
1:1  
66 MHz  
80 MHz  
133 MHz  
310  
350  
430  
390  
430  
495  
mW  
mW  
mW  
2:1  
1
2
Typical power dissipation at V  
Maximum power dissipation at V  
= V  
= 1.8 V, and V  
is at 3.3 V.  
DDH  
is at 3.5 V.  
DDH  
DDL  
DDSYN  
= V  
= 1.9 V, and V  
DDL  
DDSYN  
NOTE  
The values in Table 5 represent V  
-based power dissipation and do not  
DDL  
include I/O power dissipation over V  
. I/O power dissipation varies  
DDH  
widely by application due to buffer current, depending on external circuitry.  
The V power dissipation is negligible.  
DDSYN  
6 DC Characteristics  
Table 6 provides the DC electrical characteristics for the MPC885/MPC880.  
Table 6. DC Electrical Specifications  
Characteristic  
Symbol  
(core)  
Min  
Max  
Unit  
Operating voltage  
V
1.7  
3.135  
1.7  
1.9  
3.465  
1.9  
V
V
DDL  
V
(I/O)  
DDH  
1
V
V
DDSYN  
Difference  
between V  
and V  
100  
mV  
DDL  
DDSYN  
2
Input high voltage (all inputs except EXTAL and EXTCLK)  
V
2.0  
3.465  
0.8  
V
V
IH  
3
Input low voltage  
V
GND  
IL  
EXTAL, EXTCLK input high voltage  
V
0.7*(V  
)
V
DDH  
V
IHC  
DDH  
Input leakage current, Vin = 5.5 V (except TMS, TRST, DSCK and DSDI  
pins) for 5-V tolerant pins  
I
100  
µA  
in  
2
Input leakage current, V = V  
(except TMS, TRST, DSCK, and DSDI)  
I
10  
10  
µA  
µA  
in  
DDH  
In  
In  
Input leakage current, V = 0 V (except TMS, TRST, DSCK and DSDI  
I
in  
pins)  
4
Input capacitance  
C
20  
pF  
in  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
11  
 
 
Thermal Calculation and Measurement  
Table 6. DC Electrical Specifications (continued)  
Characteristic  
Symbol  
Min  
Max  
Unit  
Output high voltage, I  
Output low voltage  
= –2.0 mA, except XTAL and open-drain pins  
V
2.4  
V
V
OH  
OH  
V
0.5  
OL  
I
I
I
I
I
= 2.0 mA (CLKOUT)  
= 3.2 mA  
= 5.3 mA  
= 7.0 mA (TXD1/PA14, TXD2/PA12)  
= 8.9 mA (TS, TA, TEA, BI, BB, HRESET, SRESET)  
OL  
OL  
OL  
OL  
OL  
5
6
1
The difference between V  
and V  
cannot be more than 100 mV.  
DDSYN  
DDL  
2
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], PE(14:31), TDI, TDO, TCK, TRST, TMS, MII1_TXEN, MII_MDIO are 5-V  
tolerant. The minimum voltage is still 2.0 V.  
3
4
5
2
2
V (max) for the I C interface is 0.8 V rather than the 1.5 V as specified in the I C standard.  
IL  
Input capacitance is periodically sampled.  
A(0:31), TSIZ0/REG, TSIZ1, D(0:31), IRQ(2:4), IRQ6, RD/WR, BURST, IP_B(3:7), PA(0:11), PA13, PA15, PB(14:31),  
PC(4:15), PD(3:15), PE(14:31), MII1_CRS, MII_MDIO, MII1_TXEN, and MII1_COL.  
BDIP/GPL_B(5), BR, BG, FRZ/IRQ6, CS(0:7), WE(0:3), BS_A(0:3), GPL_A0/GPL_B0, OE/GPL_A1/GPL_B1,  
GPL_A(2:3)/GPL_B(2:3)/CS(2:3), UPWAITA/GPL_A4, UPWAITB/GPL_B4, GPL_A5, ALE_A, CE1_A, CE2_A, OP(0:3), and  
BADDR(28:30).  
6
7 Thermal Calculation and Measurement  
For the following discussions, P = (VDDL × I  
) + PI/O, where PI/O is the power dissipation of the I/O  
D
DDL  
drivers.  
NOTE  
The V  
power dissipation is negligible.  
DDSYN  
7.1  
Estimation with Junction-to-Ambient Thermal Resistance  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the following equation:  
T = T + (R × P )  
J
A
θJA  
D
where:  
T = ambient temperature (ºC)  
A
R
= package junction-to-ambient thermal resistance (ºC/W)  
θJA  
P = power dissipation in package  
D
The junction-to-ambient thermal resistance is an industry standard value that provides a quick and easy  
estimation of thermal performance. However, the answer is only an estimate; test cases have demonstrated  
that errors of a factor of two (in the quantity T – T ) are possible.  
J
A
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
12  
Freescale Semiconductor  
Thermal Calculation and Measurement  
7.2  
Estimation with Junction-to-Case Thermal Resistance  
Historically, thermal resistance has frequently been expressed as the sum of a junction-to-case thermal  
resistance and a case-to-ambient thermal resistance:  
R
= R  
+ R  
θJC θCA  
θJA  
where:  
R
R
R
= junction-to-ambient thermal resistance (ºC/W)  
= junction-to-case thermal resistance (ºC/W)  
= case-to-ambient thermal resistance (ºC/W)  
θJA  
θJC  
θCA  
R
is device-related and cannot be influenced by the user. The user adjusts the thermal environment to  
θJC  
affect the case-to-ambient thermal resistance, R  
. For instance, the user can change the airflow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the printed-circuit board, or change the  
thermal dissipation on the printed-circuit board surrounding the device. This thermal model is most useful  
for ceramic packages with heat sinks where some 90% of the heat flows through the case and the heat sink  
to the ambient environment. For most packages, a better model is required.  
7.3  
Estimation with Junction-to-Board Thermal Resistance  
A simple package thermal model that has demonstrated reasonable accuracy (about 20%) is a two-resistor  
model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case  
covers the situation where a heat sink is used or where a substantial amount of heat is dissipated from the  
top of the package. The junction-to-board thermal resistance describes the thermal performance when most  
of the heat is conducted to the printed-circuit board. It has been observed that the thermal performance of  
most plastic packages and especially PBGA packages is strongly dependent on the board temperature; see  
Figure 4.  
Figure 4. Effect of Board Temperature Rise on Thermal Behavior  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
13  
 
Thermal Calculation and Measurement  
If the board temperature is known, an estimate of the junction temperature in the environment can be made  
using the following equation:  
T = T + (R  
× P )  
D
J
B
θJB  
where:  
R
= junction-to-board thermal resistance (ºC/W)  
θJB  
T = board temperature (ºC)  
B
P = power dissipation in package  
D
If the board temperature is known and the heat loss from the package case to the air can be ignored,  
acceptable predictions of junction temperature can be made. For this method to work, the board and board  
mounting must be similar to the test board used to determine the junction-to-board thermal resistance,  
namely a 2s2p (board with a power and a ground plane) and vias attaching the thermal balls to the ground  
plane.  
7.4  
Estimation Using Simulation  
When the board temperature is not known, a thermal simulation of the application is needed. The simple  
two resistor model can be used with the thermal simulation of the application [2], or a more accurate and  
complex model of the package can be used in the thermal simulation.  
7.5  
Experimental Determination  
To determine the junction temperature of the device in the application after prototypes are available, the  
thermal characterization parameter (Ψ ) can be used to determine the junction temperature with a  
JT  
measurement of the temperature at the top center of the package case using the following equation:  
T = T + (Ψ × P )  
J
T
JT  
D
where:  
Ψ = thermal characterization parameter  
JT  
T = thermocouple temperature on top of package  
T
P = power dissipation in package  
D
The thermal characterization parameter is measured per the JESD51-2 specification published by JEDEC  
using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple  
should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is  
placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The  
thermocouple wire is placed flat against the package case to avoid measurement errors caused by the  
cooling effects of the thermocouple wire.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
14  
Freescale Semiconductor  
Power Supply and Power Sequencing  
7.6  
References  
Semiconductor Equipment and Materials International(415) 964-5111  
805 East Middlefield Rd  
Mountain View, CA 94043  
MIL-SPEC and EIA/JESD (JEDEC) specifications800-854-7179 or  
(Available from Global Engineering Documents)303-397-7956  
JEDEC Specifications  
http://www.jedec.org  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an  
Automotive Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. 2. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal  
Resistance and Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego,  
1999, pp. 212–220.  
8 Power Supply and Power Sequencing  
This section provides design considerations for the MPC885/MPC880 power supply. The  
MPC885/MPC880 has a core voltage (V  
) and PLL voltage (V  
), which both operate at a lower  
DDL  
DDSYN  
voltage than the I/O voltage V  
. The I/O section of the MPC885/MPC880 is supplied with 3.3 V across  
DDH  
V
and V (GND).  
DDH  
SS  
The signals PA[0:15], PB[14:31], PC[4:15], PD[3:15], TDI, TDO, TCK, TRST_B, TMS, MII_TXEN, and  
MII_MDIO are 5 V tolerant. All inputs cannot be more than 2.5 V greater than V . In addition, 5-V  
DDH  
tolerant pins cannot exceed 5.5 V and remaining input pins cannot exceed 3.465 V. This restriction applies  
to power up/down and normal operation.  
One consequence of multiple power supplies is that when power is initially applied the voltage rails ramp  
up at different rates. The rates depend on the nature of the power supply, the type of load on each power  
supply, and the manner in which different voltages are derived. The following restrictions apply:  
V
V
must not exceed V  
during power up and power down.  
DDL  
DDH  
must not exceed 1.9 V, and V  
must not exceed 3.465 V.  
DDL  
DDH  
These cautions are necessary for the long-term reliability of the part. If they are violated, the electrostatic  
discharge (ESD) protection diodes are forward-biased, and excessive current can flow through these  
diodes. If the system power supply design does not control the voltage sequencing, the circuit shown  
Figure 5 can be added to meet these requirements. The MUR420 Schottky diodes control the maximum  
potential difference between the external bus and core power supplies on power up, and the 1N5820 diodes  
regulate the maximum potential difference on power down.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
15  
Layout Practices  
V
V
DDL  
DDH  
MUR420  
1N5820  
Figure 5. Example Voltage Sequencing Circuit  
9 Layout Practices  
Each V pin on the MPC885/MPC880 should be provided with a low-impedance path to the board’s  
DD  
supply. Each GND pin should likewise be provided with a low-impedance path to ground. The power  
supply pins drive distinct groups of logic on chip. The V power supply should be bypassed to ground  
DD  
using at least four 0.1 µF by-pass capacitors located as close as possible to the four sides of the package.  
Each board designed should be characterized and additional appropriate decoupling capacitors should be  
used if required. The capacitor leads and associated printed-circuit traces connecting to chip V and  
DD  
GND should be kept to less than half an inch per capacitor lead. At a minimum, a four-layer board  
employing two inner layers as V and GND planes should be used.  
DD  
All output pins on the MPC885/MPC880 have fast rise and fall times. Printed-circuit (PC) trace  
interconnection length should be minimized in order to minimize undershoot and reflections caused by  
these fast output switching times. This recommendation particularly applies to the address and data buses.  
Maximum PC trace lengths of six inches are recommended. Capacitance calculations should consider all  
device loads as well as parasitic capacitances due to the PC traces. Attention to proper PCB layout and  
bypassing becomes especially critical in systems with higher capacitive loads because these loads create  
higher transient currents in the V and GND circuits. Pull up all unused inputs or signals that will be  
DD  
inputs during reset. Special care should be taken to minimize the noise levels on the PLL supply pins. For  
more information, please refer to the MPC885 PowerQUICC™ Family Reference Manual, Section 14.4.3,  
“Clock Synthesizer Power (V  
, V  
, V  
).”  
DDSYN  
SSSYN  
SSSYN1  
10 Bus Signal Timing  
The maximum bus speed supported by the MPC885/MPC880 is 80 MHz. Higher-speed parts must be  
operated in half-speed bus mode (for example, an MPC885/MPC880 used at 133 MHz must be configured  
for a 66 MHz bus). Table 7 shows the frequency ranges for standard part frequencies in 1:1 bus mode, and  
Table 8 shows the frequency ranges for standard part frequencies in 2:1 bus mode.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
16  
Freescale Semiconductor  
 
Bus Signal Timing  
80 MHz  
Table 7. Frequency Ranges for Standard Part Frequencies (1:1 Bus Mode)  
66 MHz  
Part Frequency  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
40  
66.67  
66.67  
40  
40  
80  
80  
Table 8. Frequency Ranges for Standard Part Frequencies (2:1 Bus Mode)  
66 MHz 80 MHz  
133 MHz  
Part Frequency  
Min  
Max  
Min  
Max  
Min  
Max  
Core frequency  
Bus frequency  
40  
20  
66.67  
33.33  
40  
20  
80  
40  
40  
20  
133  
66  
Table 9 provides the timings for the MPC885/MPC880 at 33-, 40-, 66-, and 80-MHz bus operation.  
The timing for the MPC885/MPC880 bus shown assumes a 50-pF load for maximum delays and a 0-pF  
load for minimum delays. CLKOUT assumes a 100-pF load for maximum delays and a 50-pF load for  
minimum delays.  
Table 9. Bus Operation Timings  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min Max Min Max Min Max Min Max  
B1  
Bus period (CLKOUT), see Table 7  
ns  
ns  
B1a  
EXTCLK to CLKOUT phase skew - If CLKOUT is  
an integer multiple of EXTCLK, then the rising  
edge of EXTCLK is aligned with the rising edge of  
CLKOUT. For a non-integer multiple of EXTCLK,  
this synchronization is lost, and the rising edges of  
EXTCLK and CLKOUT have a continuously  
varying phase skew.  
–2  
+2  
–2  
+2  
–2  
+2  
–2  
+2  
B1b  
B1c  
B1d  
CLKOUT frequency jitter peak-to-peak  
Frequency jitter on EXTCLK  
1
0.50  
4
1
0.50  
4
1
0.50  
4
1
0.50  
4
ns  
%
CLKOUT phase jitter peak-to-peak for  
ns  
OSCLK 15 MHz  
CLKOUT phase jitter peak-to-peak for  
OSCLK < 15 MHz  
5
5
6.1  
6.1  
5
5.0  
5.0  
5
ns  
ns  
ns  
ns  
B2  
B3  
B4  
CLKOUT pulse width low (MIN = 0.4 × B1,  
MAX = 0.6 × B1)  
12.1 18.2 10.0 15.0  
12.1 18.2 10.0 15.0  
9.1  
9.1  
4.00  
7.5  
7.5  
4.00  
CLKOUT pulse width high (MIN = 0.4 × B1,  
MAX = 0.6 × B1)  
CLKOUT rise time  
4.00  
4.00  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
17  
 
 
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B5  
B7  
CLKOUT fall time  
4.00  
4.00  
4.00  
4.00  
ns  
ns  
CLKOUT to A(0:31), BADDR(28:30), RD/WR,  
7.60  
6.30  
3.80  
3.13  
BURST, D(0:31) output hold (MIN = 0.25 × B1)  
B7a  
B7b  
CLKOUT to TSIZ(0:1), REG, RSV, BDIP, PTR  
output hold (MIN = 0.25 × B1)  
7.60  
7.60  
6.30  
6.30  
3.80  
3.80  
3.13  
3.13  
ns  
ns  
CLKOUT to BR, BG, FRZ, VFLS(0:1), VF(0:2)  
IWP(0:2), LWP(0:1), STS output hold  
(MIN = 0.25 × B1)  
B8  
CLKOUT to A(0:31), BADDR(28:30) RD/WR,  
BURST, D(0:31) valid (MAX = 0.25 × B1 + 6.3)  
13.80  
13.80  
13.80  
12.50  
12.50  
12.50  
10.00  
10.00  
10.00  
9.43  
9.43  
9.43  
ns  
ns  
ns  
B8a  
B8b  
CLKOUT to TSIZ(0:1), REG, RSV, AT(0:3) BDIP,  
PTR valid (MAX = 0.25 × B1 + 6.3)  
CLKOUT to BR, BG, VFLS(0:1), VF(0:2),  
4
IWP(0:2), FRZ, LWP(0:1), STS valid  
(MAX = 0.25 × B1 + 6.3)  
B9  
CLKOUT to A(0:31), BADDR(28:30), RD/WR,  
BURST, D(0:31), TSIZ(0:1), REG, RSV, AT(0:3),  
PTR High-Z (MAX = 0.25 × B1 + 6.3)  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
7.60 13.60 6.30 12.30 3.80 9.80 3.13 9.13  
ns  
B11  
CLKOUT to TS, BB assertion  
(MAX = 0.25 × B1 + 6.0)  
ns  
ns  
B11a  
CLKOUT to TA, BI assertion (when driven by the 2.50 9.30 2.50 9.30 2.50 9.30 2.50 9.30  
memory controller or PCMCIA interface)  
1
(MAX = 0.00 × B1 + 9.30 )  
B12  
CLKOUT to TS, BB negation  
(MAX = 0.25 × B1 + 4.8)  
7.60 12.30 6.30 11.00 3.80 8.50 3.13 7.92  
ns  
ns  
B12a  
CLKOUT to TA, BI negation (when driven by the  
memory controller or PCMCIA interface)  
(MAX = 0.00 × B1 + 9.00)  
2.50 9.00 2.50 9.00 2.50 9.00  
2.5  
9.00  
B13  
CLKOUT to TS, BB High-Z (MIN = 0.25 × B1)  
7.60 21.60 6.30 20.30 3.80 14.00 3.13 12.93 ns  
2.50 15.00 2.50 15.00 2.50 15.00 2.5 15.00 ns  
B13a  
CLKOUT to TA, BI High-Z (when driven by the  
memory controller or PCMCIA interface)  
(MIN = 0.00 × B1 + 2.5)  
B14  
CLKOUT to TEA assertion  
2.50 9.00 2.50 9.00 2.50 9.00 2.50 9.00  
ns  
(MAX = 0.00 × B1 + 9.00)  
B15  
B16  
CLKOUT to TEA High-Z (MIN = 0.00 × B1 + 2.50) 2.50 15.00 2.50 15.00 2.50 15.00 2.50 15.00 ns  
TA, BI valid to CLKOUT (setup time)  
6.00  
6.00  
6.00  
6
ns  
(MIN = 0.00 × B1 + 6.00)  
B16a  
TEA, KR, RETRY, CR valid to CLKOUT (setup  
4.50  
4.50  
4.50  
4.50  
ns  
time) (MIN = 0.00 × B1 + 4.5)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
18  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Unit  
Num  
Characteristic  
Min Max Min Max Min Max Min Max  
2
B16b  
B17  
BB, BG, BR, valid to CLKOUT (setup time)  
(4MIN = 0.00 × B1 + 0.00)  
4.00  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
4.00  
1.00  
2.00  
6.00  
1.00  
4.00  
2.00  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
4.00  
2.00  
2.00  
6.00  
2.00  
4.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
CLKOUT to TA, TEA, BI, BB, BG, BR valid (hold  
3
time) (MIN = 0.00 × B1 + 1.00 )  
B17a  
B18  
CLKOUT to KR, RETRY, CR valid (hold time)  
(MIN = 0.00 × B1 + 2.00)  
4
D(0:31) valid to CLKOUT rising edge (setup time)  
(MIN = 0.00 × B1 + 6.00)  
4
B19  
CLKOUT rising edge to D(0:31) valid (hold time)  
5
(MIN = 0.00 × B1 + 1.00 )  
B20  
D(0:31) valid to CLKOUT falling edge (setup  
6
time) (MIN = 0.00 × B1 + 4.00)  
6
B21  
CLKOUT falling edge to D(0:31) valid (hold time)  
(MIN = 0.00 × B1 + 2.00)  
B22  
CLKOUT rising edge to CS asserted GPCM  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
ACS = 00 (MAX = 0.25 × B1 + 6.3)  
B22a  
CLKOUT falling edge to CS asserted GPCM  
ACS = 10, TRLX = [0 or 1]  
8.00  
8.00  
8.00  
8.00  
(MAX = 0.00 × B1 + 8.00)  
B22b  
B22c  
B23  
CLKOUT falling edge to CS asserted GPCM  
ACS = 11, TRLX = [0 or 1], EBDF = 0  
(MAX = 0.25 × B1 + 6.3)  
7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.43  
ns  
CLKOUT falling edge to CS asserted GPCM  
ACS = 11, TRLX = [0 or 1], EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
10.90 18.00 10.90 16.00 5.20 12.30 4.69 10.93 ns  
CLKOUT rising edge to CS negated GPCM read 2.00 8.00 2.00 8.00 2.00 8.00 2.00 8.00  
access, GPCM write access ACS = 00 and CSNT  
= 0 (MAX = 0.00 × B1 + 8.00)  
ns  
ns  
ns  
B24  
A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 10, TRLX = 0  
(MIN = 0.25 × B1 – 2.00)  
5.60  
13.20  
4.30  
10.50  
1.80  
5.60  
1.13  
4.25  
B24a  
A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 11 TRLX = 0  
(MIN = 0.50 × B1 – 2.00)  
B25  
B26  
B27  
CLKOUT rising edge to OE, WE(0:3) asserted  
(MAX = 0.00 × B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
ns  
ns  
ns  
CLKOUT rising edge to OE negated  
(MAX = 0.00 × B1 + 9.00)  
A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 10, TRLX = 1  
2.00 9.00 2.00 9.00 2.00 9.00 2.00 9.00  
35.90  
29.30  
16.90  
13.60  
(MIN = 1.25 × B1 – 2.00)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
19  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B27a  
A(0:31) and BADDR(28:30) to CS asserted  
GPCM ACS = 11, TRLX = 1  
43.50  
35.50  
20.70  
16.75  
ns  
(MIN = 1.50 × B1 – 2.00)  
B28  
CLKOUT rising edge to WE(0:3) negated GPCM  
write access CSNT = 0 (MAX = 0.00 × B1 + 9.00)  
9.00  
9.00  
9.00  
9.00  
ns  
ns  
B28a  
CLKOUT falling edge to WE(0:3) negated GPCM 7.60 14.30 6.30 13.00 3.80 10.50 3.13 9.93  
write access TRLX = 0, CSNT = 1, EBDF = 0  
(MAX = 0.25 × B1 + 6.80)  
B28b  
B28c  
CLKOUT falling edge to CS negated GPCM write  
access TRLX = 0, CSNT = 1 ACS = 10 or  
ACS = 11, EBDF = 0 (MAX = 0.25 × B1 + 6.80)  
14.30  
13.00  
10.50  
9.93  
ns  
CLKOUT falling edge to WE(0:3) negated GPCM 10.90 18.00 10.90 18.00 5.20 12.30 4.69 11.29 ns  
write access TRLX = 0, CSNT = 1 write access  
TRLX = 0, CSNT = 1, EBDF = 1  
(MAX = 0.375 × B1 + 6.6)  
B28d  
B29  
CLKOUT falling edge to CS negated GPCM write  
access TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11, EBDF = 1 (MAX = 0.375 × B1 + 6.6)  
18.00  
18.00  
12.30  
11.30 ns  
WE(0:3) negated to D(0:31) High-Z GPCM write  
access, CSNT = 0, EBDF = 0  
(MIN = 0.25 × B1 – 2.00)  
5.60  
4.30  
1.80  
5.60  
1.80  
5.60  
20.70  
20.70  
0.00  
0.00  
1.13  
4.25  
1.13  
4.25  
16.75  
16.75  
0.00  
0.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
B29a  
B29b  
B29c  
B29d  
B29e  
B29f  
B29g  
WE(0:3) negated to D(0:31) High-Z GPCM write 13.20  
access, TRLX = 0, CSNT = 1, EBDF = 0  
(MIN = 0.50 × B1 – 2.00)  
10.50  
4.30  
CS negated to D(0:31) High-Z GPCM write  
access, ACS = 00, TRLX = 0 & CSNT = 0  
(MIN = 0.25 × B1 – 2.00)  
5.60  
CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 0, CSNT = 1, ACS = 10, or  
ACS = 11 EBDF = 0 (MIN = 0.50 × B1 – 2.00)  
13.20  
10.50  
35.50  
35.50  
3.00  
WE(0:3) negated to D(0:31) High-Z GPCM write 43.50  
access, TRLX = 1, CSNT = 1, EBDF = 0  
(MIN = 1.50 × B1 – 2.00)  
CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 1, CSNT = 1, ACS = 10, or  
ACS = 11 EBDF = 0 (MIN = 1.50 × B1 – 2.00)  
43.50  
5.00  
5.00  
WE(0:3) negated to D(0:31) High-Z GPCM write  
access, TRLX = 0, CSNT = 1, EBDF = 1  
7
(MIN = 0.375 × B1 – 6.30)  
CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 0, CSNT = 1 ACS = 10 or  
ACS = 11, EBDF = 1 (MIN = 0.375 × B1 – 6.30)  
3.00  
7
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
20  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Unit  
Num  
Characteristic  
Min Max Min Max Min Max Min Max  
B29h  
WE(0:3) negated to D(0:31) High-Z GPCM write 38.40  
access, TRLX = 1, CSNT = 1, EBDF = 1  
(MIN = 0.375 × B1 – 3.30)  
31.10  
31.10  
4.30  
17.50  
17.50  
1.80  
13.85  
13.85  
1.13  
ns  
ns  
ns  
ns  
B29i  
B30  
CS negated to D(0:31) High-Z GPCM write  
access, TRLX = 1, CSNT = 1, ACS = 10 or  
ACS = 11, EBDF = 1 (MIN = 0.375 × B1 – 3.30)  
38.40  
CS, WE(0:3) negated to A(0:31), BADDR(28:30) 5.60  
8
Invalid GPCM read/write access  
(MIN = 0.25 × B1 – 2.00)  
B30a  
WE(0:3) negated to A(0:31), BADDR(28:30)  
Invalid GPCM, write access, TRLX = 0, CSNT = 1,  
CS negated to A(0:31) invalid GPCM write access  
TRLX = 0, CSNT =1 ACS = 10, or ACS == 11,  
EBDF = 0 (MIN = 0.50 × B1 – 2.00)  
13.20  
43.50  
10.50  
5.60  
4.25  
B30b  
WE(0:3) negated to A(0:31) invalid GPCM  
BADDR(28:30) invalid GPCM write access,  
TRLX = 1, CSNT = 1. CS negated to A(0:31)  
invalid GPCM write access TRLX = 1, CSNT = 1,  
ACS = 10, or ACS == 11 EBDF = 0  
35.50  
20.70  
16.75  
ns  
ns  
(MIN = 1.50 × B1 – 2.00)  
B30c  
B30d  
WE(0:3) negated to A(0:31), BADDR(28:30)  
invalid GPCM write access, TRLX = 0, CSNT = 1.  
CS negated to A(0:31) invalid GPCM write  
access, TRLX = 0, CSNT = 1 ACS = 10,  
8.40  
6.40  
2.70  
1.70  
ACS == 11, EBDF = 1 (MIN = 0.375 × B1 – 3.00)  
WE(0:3) negated to A(0:31), BADDR(28:30)  
invalid GPCM write access TRLX = 1, CSNT =1,  
CS negated to A(0:31) invalid GPCM write access  
TRLX = 1, CSNT = 1, ACS = 10 or 11, EBDF = 1  
38.67  
31.38  
17.83  
14.19  
ns  
ns  
B31  
B31a  
B31b  
B31c  
B31d  
CLKOUT falling edge to CS valid, as requested by 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
control bit CST4 in the corresponding word in the  
UPM (MAX = 0.00 × B1 + 6.00)  
CLKOUT falling edge to CS valid, as requested by 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
control bit CST1 in the corresponding word in the  
UPM (MAX = 0.25 × B1 + 6.80)  
CLKOUT rising edge to CS valid, as requested by 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00  
control bit CST2 in the corresponding word in the  
UPM (MAX = 0.00 × B1 + 8.00)  
ns  
ns  
CLKOUT rising edge to CS valid, as requested by 7.60 13.80 6.30 12.50 3.80 10.00 3.13 9.40  
control bit CST3 in the corresponding word in the  
UPM (MAX = 0.25 × B1 + 6.30)  
CLKOUT falling edge to CS valid, as requested by 13.30 18.00 11.30 16.00 7.60 12.30 4.69 11.30 ns  
control bit CST1 in the corresponding word in the  
UPM EBDF = 1 (MAX = 0.375 × B1 + 6.6)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
21  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
Min Max Min Max Min Max Min Max  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
B32  
B32a  
B32b  
B32c  
B32d  
B33  
CLKOUT falling edge to BS valid, as requested by 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
control bit BST4 in the corresponding word in the  
UPM (MAX = 0.00 × B1 + 6.00)  
ns  
CLKOUT falling edge to BS valid, as requested by 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
control bit BST1 in the corresponding word in the  
UPM, EBDF = 0 (MAX = 0.25 × B1 + 6.80)  
CLKOUT rising edge to BS valid, as requested by 1.50 8.00 1.50 8.00 1.50 8.00 1.50 8.00  
control bit BST2 in the corresponding word in the  
UPM (MAX = 0.00 × B1 + 8.00)  
ns  
CLKOUT rising edge to BS valid, as requested by 7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
control bit BST3 in the corresponding word in the  
UPM (MAX = 0.25 × B1 + 6.80)  
CLKOUT falling edge to BS valid, as requested by 13.30 18.00 11.30 16.00 7.60 12.30 4.49 11.30 ns  
control bit BST1 in the corresponding word in the  
UPM, EBDF = 1 (MAX = 0.375 × B1 + 6.60)  
CLKOUT falling edge to GPL valid, as requested 1.50 6.00 1.50 6.00 1.50 6.00 1.50 6.00  
by control bit GxT4 in the corresponding word in  
ns  
the UPM (MAX = 0.00 × B1 + 6.00)  
B33a  
B34  
CLKOUT rising edge to GPL valid, as requested  
by control bit GxT3 in the corresponding word in  
the UPM (MAX = 0.25 × B1 + 6.80)  
7.60 14.30 6.30 13.00 3.80 10.50 3.13 10.00 ns  
A(0:31), BADDR(28:30), and D(0:31) to CS valid, 5.60  
as requested by control bit CST4 in the  
corresponding word in the UPM  
4.30  
1.80  
5.60  
1.13  
4.25  
ns  
ns  
(MIN = 0.25 × B1 – 2.00)  
B34a  
A(0:31), BADDR(28:30), and D(0:31) to CS valid, 13.20  
as requested by control bit CST1 in the  
corresponding word in the UPM  
10.50  
(MIN = 0.50 × B1 – 2.00)  
B34b  
B35  
A(0:31), BADDR(28:30), and D(0:31) to CS valid, 20.70  
as requested by CST2 in the corresponding word  
in UPM (MIN = 0.75 × B1 – 2.00)  
16.70  
4.30  
9.40  
1.80  
5.60  
9.40  
6.80  
1.13  
4.25  
7.40  
ns  
ns  
ns  
ns  
A(0:31), BADDR(28:30) to CS valid, as requested 5.60  
by control bit BST4 in the corresponding word in  
the UPM (MIN = 0.25 × B1 – 2.00)  
B35a  
B35b  
A(0:31), BADDR(28:30), and D(0:31) to BS valid, 13.20  
as requested by BST1 in the corresponding word  
in the UPM (MIN = 0.50 × B1 – 2.00)  
10.50  
16.70  
A(0:31), BADDR(28:30), and D(0:31) to BS valid, 20.70  
as requested by control bit BST2 in the  
corresponding word in the UPM  
(MIN = 0.75 × B1 – 2.00)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
22  
Freescale Semiconductor  
Bus Signal Timing  
Table 9. Bus Operation Timings (continued)  
33 MHz 40 MHz  
66 MHz  
80 MHz  
Unit  
Num  
Characteristic  
Min Max Min Max Min Max Min Max  
B36  
A(0:31), BADDR(28:30), and D(0:31) to GPL  
valid, as requested by control bit GxT4 in the  
corresponding word in the UPM  
5.60  
4.30  
1.80  
1.13  
ns  
(MIN = 0.25 × B1 – 2.00)  
9
B37  
B38  
B39  
B40  
B41  
B42  
B43  
UPWAIT valid to CLKOUT falling edge  
(MIN = 0.00 × B1 + 6.00)  
6.00  
1.00  
7.00  
7.00  
7.00  
2.00  
6.00  
1.00  
7.00  
7.00  
7.00  
2.00  
6.00  
1.00  
7.00  
7.00  
7.00  
2.00  
6.00  
1.00  
7.00  
7.00  
7.00  
2.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
9
CLKOUT falling edge to UPWAIT valid  
(MIN = 0.00 × B1 + 1.00)  
10  
AS valid to CLKOUT rising edge  
(MIN = 0.00 × B1 + 7.00)  
A(0:31), TSIZ(0:1), RD/WR, BURST, valid to  
CLKOUT rising edge (MIN = 0.00 × B1 + 7.00)  
TS valid to CLKOUT rising edge (setup time)  
(MIN = 0.00 × B1 + 7.00)  
CLKOUT rising edge to TS valid (hold time)  
(MIN = 0.00 × B1 + 2.00)  
AS negation to memory controller signals  
negation (MAX = TBD)  
TBD  
TBD  
TBD  
TBD  
1
2
For part speeds above 50 MHz, use 9.80 ns for B11a.  
The timing required for BR input is relevant when the MPC885/MPC880 is selected to work with the internal bus arbiter. The  
timing for BG input is relevant when the MPC885/MPC880 is selected to work with the external bus arbiter.  
For part speeds above 50 MHz, use 2 ns for B17.  
The D(0:31) input timings B18 and B19 refer to the rising edge of the CLKOUT in which the TA input signal is asserted.  
For part speeds above 50 MHz, use 2 ns for B19.  
The D(0:31) input timings B20 and B21 refer to the falling edge of the CLKOUT. This timing is valid only for read accesses  
controlled by chip-selects under control of the user-programmable machine (UPM) in the memory controller, for data beats  
where DLT3 = 1 in the RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
This formula applies to bus operation up to 50 MHz.  
The timing B30 refers to CS when ACS = 00 and to CS and WE(0:3) when CSNT = 0.  
The signal UPWAIT is considered asynchronous to the CLKOUT and synchronized internally. The timings specified in B37 and  
B38 are specified to enable the freeze of the UPM output signals as described in Figure 21.  
The AS signal is considered asynchronous to the CLKOUT. The timing B39 is specified in order to allow the behavior specified  
in Figure 24.  
3
4
5
6
7
8
9
10  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
23  
Bus Signal Timing  
Figure 6 provides the control timing diagram.  
CLKOUT  
A
B
Outputs  
A
B
Outputs  
D
C
Inputs  
D
C
Inputs  
A
B
C
D
Maximum output delay specification.  
Minimum output hold time.  
Minimum input setup time specification.  
Minimum input hold time specification.  
Figure 6. Control Timing  
Figure 7 provides the timing for the external clock.  
CLKOUT  
B1  
B1  
B3  
B2  
B4  
B5  
Figure 7. External Clock Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
24  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Figure 8 provides the timing for the synchronous output signals.  
CLKOUT  
B8  
B7  
B9  
Output  
Signals  
B8a  
B8b  
B7a  
B7b  
B9  
Output  
Signals  
Output  
Signals  
Figure 8. Synchronous Output Signals Timing  
Figure 9 provides the timing for the synchronous active pull-up and open-drain output signals.  
CLKOUT  
B13  
B11  
B12  
B12a  
B15  
TS, BB  
TA, BI  
TEA  
B13a  
B11a  
B14  
Figure 9. Synchronous Active Pull-Up Resistor and Open-Drain Outputs Signals Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
25  
 
 
Bus Signal Timing  
Figure 10 provides the timing for the synchronous input signals.  
CLKOUT  
B16  
B17  
TA, BI  
B16a  
B16b  
B17a  
B17  
TEA, KR,  
RETRY, CR  
BB, BG, BR  
Figure 10. Synchronous Input Signals Timing  
Figure 11 provides normal case timing for input data. It also applies to normal read accesses under the  
control of the user-programmable machine (UPM) in the memory controller.  
CLKOUT  
B16  
B17  
TA  
B18  
B19  
D[0:31]  
Figure 11. Input Data Timing in Normal Case  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
26  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Figure 12 provides the timing for the input data controlled by the UPM for data beats where DLT3 = 1 in  
the UPM RAM words. (This is only the case where data is latched on the falling edge of CLKOUT.)  
CLKOUT  
TA  
B20  
B21  
D[0:31]  
Figure 12. Input Data Timing when Controlled by UPM in the Memory Controller and DLT3 = 1  
Figure 13 through Figure 16 provide the timing for the external bus read controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22  
B23  
B25  
B26  
B19  
OE  
B28  
WE[0:3]  
D[0:31]  
B18  
Figure 13. External Bus Read Timing (GPCM Controlled—ACS = 00)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
27  
 
 
Bus Signal Timing  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B22a  
B24  
B23  
B25  
B26  
B19  
OE  
B18  
D[0:31]  
Figure 14. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 10)  
CLKOUT  
TS  
B11  
B8  
B12  
B22b  
B22c  
A[0:31]  
CSx  
B23  
B24a  
B25  
B26  
B19  
OE  
B18  
D[0:31]  
Figure 15. External Bus Read Timing (GPCM Controlled—TRLX = 0, ACS = 11)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
28  
Freescale Semiconductor  
Bus Signal Timing  
CLKOUT  
TS  
B11  
B12  
B8  
A[0:31]  
CSx  
B22a  
B23  
B27  
B26  
OE  
B27a  
B22b B22c  
B18  
B19  
D[0:31]  
Figure 16. External Bus Read Timing (GPCM Controlled—TRLX = 1, ACS = 10, ACS = 11)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
29  
Bus Signal Timing  
Figure 17 through Figure 19 provide the timing for the external bus write controlled by various GPCM  
factors.  
CLKOUT  
B11  
B8  
B12  
TS  
A[0:31]  
CSx  
B30  
B22  
B23  
B25  
B28  
WE[0:3]  
OE  
B29b  
B29  
B26  
B8  
B9  
D[0:31]  
Figure 17. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 0)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
30  
Freescale Semiconductor  
 
Bus Signal Timing  
CLKOUT  
TS  
B11  
B8  
B12  
B30a B30c  
A[0:31]  
CSx  
B28bB28d  
B25  
B22  
B23  
B29c B29g  
WE[0:3]  
OE  
B29a B29f  
B26  
B28a B28c  
B8  
B9  
D[0:31]  
Figure 18. External Bus Write Timing (GPCM Controlled—TRLX = 0, CSNT = 1)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
31  
Bus Signal Timing  
CLKOUT  
B11  
B12  
TS  
A[0:31]  
CSx  
B30b B30d  
B8  
B28b B28d  
B22  
B23  
B29e B29i  
B29d B29h  
B25  
WE[0:3]  
OE  
B26  
B29b  
B28a B28c  
B8  
B9  
D[0:31]  
Figure 19. External Bus Write Timing (GPCM Controlled—TRLX = 1, CSNT = 1)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
32  
Freescale Semiconductor  
Bus Signal Timing  
Figure 20 provides the timing for the external bus controlled by the UPM.  
CLKOUT  
B8  
A[0:31]  
B31a  
B31d  
B31c  
B31b  
B31  
CSx  
B34  
B34a  
B34b  
B32a B32d  
B32c  
B32b  
B32  
BS_A[0:3],  
BS_B[0:3]  
B35 B36  
B35b  
B35a  
B33a  
B33  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 20. External Bus Timing (UPM-Controlled Signals)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
33  
 
Bus Signal Timing  
Figure 21 provides the timing for the asynchronous asserted UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 21. Asynchronous UPWAIT Asserted Detection in UPM-Handled Cycles Timing  
Figure 22 provides the timing for the asynchronous negated UPWAIT signal controlled by the UPM.  
CLKOUT  
B37  
UPWAIT  
B38  
CSx  
BS_A[0:3],  
BS_B[0:3]  
GPL_A[0:5],  
GPL_B[0:5]  
Figure 22. Asynchronous UPWAIT Negated Detection in UPM-Handled Cycles Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
34  
Freescale Semiconductor  
 
 
Bus Signal Timing  
Figure 23 provides the timing for the synchronous external master access controlled by the GPCM.  
CLKOUT  
B41  
B40  
B42  
TS  
A[0:31],  
TSIZ[0:1],  
R/W, BURST  
B22  
CSx  
Figure 23. Synchronous External Master Access Timing (GPCM Handled—ACS = 00)  
Figure 24 provides the timing for the asynchronous external master memory access controlled by the  
GPCM.  
CLKOUT  
B39  
AS  
B40  
A[0:31],  
TSIZ[0:1],  
R/W  
B22  
CSx  
Figure 24. Asynchronous External Master Memory Access Timing (GPCM Controlled—ACS = 00)  
Figure 25 provides the timing for the asynchronous external master control signals negation.  
AS  
B43  
CSx, WE[0:3],  
OE, GPLx,  
BS[0:3]  
Figure 25. Asynchronous External Master—Control Signals Negation Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
35  
 
 
 
Bus Signal Timing  
Table 10 provides the interrupt timing for the MPC885/MPC880.  
Table 10. Interrupt Timing  
All Frequencies  
Min Max  
1
Num  
Characteristic  
Unit  
I39  
I40  
I41  
I42  
I43  
IRQx valid to CLKOUT rising edge (setup time)  
IRQx hold time after CLKOUT  
IRQx pulse width low  
6.00  
2.00  
ns  
ns  
ns  
ns  
3.00  
IRQx pulse width high  
3.00  
IRQx edge-to-edge time  
4 × TCLOCKOUT  
1
The I39 and I40 timings describe the testing conditions under which the IRQ lines are tested when being defined as level  
sensitive. The IRQ lines are synchronized internally and do not have to be asserted or negated with reference to the CLKOUT.  
The I41, I42, and I43 timings are specified to allow correct functioning of the IRQ lines detection circuitry and have no direct  
relation with the total system interrupt latency that the MPC885/MPC880 is able to support.  
Figure 26 provides the interrupt detection timing for the external level-sensitive lines.  
CLKOUT  
I39  
I40  
IRQx  
Figure 26. Interrupt Detection Timing for External Level Sensitive Lines  
Figure 27 provides the interrupt detection timing for the external edge-sensitive lines.  
CLKOUT  
I41  
I42  
IRQx  
I43  
I43  
Figure 27. Interrupt Detection Timing for External Edge Sensitive Lines  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
36  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 11 shows the PCMCIA timing for the MPC885/MPC880.  
Table 11. PCMCIA Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
P44 A(0:31), REG valid to PCMCIA strobe  
20.70  
28.30  
7.60  
8.60  
7.60  
7.60  
16.70  
9.40  
13.20  
3.80  
4.80  
3.80  
3.80  
7.40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
asserted (MIN = 0.75 × B1 – 2.00)  
1
P45 A(0:31), REG valid to ALE negation  
23.00  
6.30  
7.30  
6.30  
6.30  
10.50  
3.13  
4.13  
3.13  
3.13  
11.13  
(MIN = 1.00 × B1 – 2.00)  
P46 CLKOUT to REG valid  
15.60  
14.30  
11.80  
(MAX = 0.25 × B1 + 8.00)  
P47 CLKOUT to REG invalid  
(MIN = 0.25 – B1 + 1.00)  
P48 CLKOUT to CE1, CE2 asserted  
15.60  
15.60  
11.00  
11.00  
13.80  
15.60  
14.30  
14.30  
11.00  
11.00  
12.50  
14.30  
11.80  
11.80  
11.00  
11.00  
10.00  
11.80  
11.13  
11.13  
11.00  
11.00  
9.40  
11.13  
(MAX = 0.25 × B1 + 8.00)  
P49 CLKOUT to CE1, CE2 negated  
(MAX = 0.25 × B1 + 8.00)  
P50 CLKOUT to PCOE, IORD, PCWE, IOWR  
assert time (MAX = 0.00 × B1 + 11.00)  
P51 CLKOUT to PCOE, IORD, PCWE, IOWR  
2.00  
7.60  
2.00  
6.30  
2.00  
3.80  
2.00  
3.13  
negate time (MAX = 0.00 × B1 + 11.00)  
P52 CLKOUT to ALE assert time  
(MAX = 0.25 × B1 + 6.30)  
P53 CLKOUT to ALE negate time  
(MAX = 0.25 × B1 + 8.00)  
1
P54 PCWE, IOWR negated to D(0:31) invalid  
5.60  
8.00  
4.30  
8.00  
2.00  
1.80  
8.00  
2.00  
1.13  
8.00  
2.00  
(MIN = 0.25 × B1 – 2.00)  
P55 WAITA and WAITB valid to CLKOUT rising  
1
edge (MIN = 0.00 × B1 + 8.00)  
P56 CLKOUT rising edge to WAITA and WAITB 2.00  
1
invalid (MIN = 0.00 × B1 + 2.00)  
1
PSST = 1. Otherwise add PSST times cycle time.  
PSHT = 0. Otherwise add PSHT times cycle time.  
These synchronous timings define when the WAITx signals are detected in order to freeze (or relieve) the PCMCIA current  
cycle. The WAITx assertion will be effective only if it is detected 2 cycles before the PSL timer expiration. See Chapter 16,  
“PCMCIA Interface,” in the MPC885 PowerQUICC™ Family Reference Manual.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
37  
 
Bus Signal Timing  
Figure 28 provides the PCMCIA access cycle timing for the external bus read.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
REG  
CE1/CE2  
PCOE, IORD  
ALE  
P50  
P53  
P52  
B18  
B19  
D[0:31]  
Figure 28. PCMCIA Access Cycles Timing External Bus Read  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
38  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 29 provides the PCMCIA access cycle timing for the external bus write.  
CLKOUT  
TS  
P44  
A[0:31]  
P46  
P48  
P45  
P47  
P49  
P51  
P52  
B9  
REG  
CE1/CE2  
P50  
P53  
B8  
P54  
PCWE, IOWR  
P52  
ALE  
D[0:31]  
Figure 29. PCMCIA Access Cycles Timing External Bus Write  
Figure 30 provides the PCMCIA WAIT signals detection timing.  
CLKOUT  
P55  
P56  
WAITx  
Figure 30. PCMCIA WAIT Signals Detection Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
39  
 
 
Bus Signal Timing  
Table 12 shows the PCMCIA port timing for the MPC885/MPC880.  
Table 12. PCMCIA Port Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min Max Min Max Min Max Min Max  
P57 CLKOUT to OPx valid  
19.00  
19.00  
19.00  
19.00 ns  
(MAX = 0.00 × B1 + 19.00)  
1
P58 HRESET negated to OPx drive  
25.70  
5.00  
1.00  
21.70  
5.00  
1.00  
14.40  
5.00  
1.00  
12.40  
5.00  
1.00  
ns  
ns  
ns  
(MIN = 0.75 × B1 + 3.00)  
P59 IP_Xx valid to CLKOUT rising edge  
(MIN = 0.00 × B1 + 5.00)  
P60 CLKOUT rising edge to IP_Xx invalid  
(MIN = 0.00 × B1 + 1.00)  
1
OP2 and OP3 only.  
Figure 31 provides the PCMCIA output port timing for the MPC885/MPC880.  
CLKOUT  
P57  
Output  
Signals  
HRESET  
P58  
OP2, OP3  
Figure 31. PCMCIA Output Port Timing  
Figure 32 provides the PCMCIA input port timing for the MPC885/MPC880.  
CLKOUT  
P59  
P60  
Input  
Signals  
Figure 32. PCMCIA Input Port Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
40  
Freescale Semiconductor  
 
 
 
Bus Signal Timing  
Table 13 shows the debug port timing for the MPC885/MPC880.  
Table 13. Debug Port Timing  
All Frequencies  
Min  
Num  
Characteristic  
Unit  
Max  
D61  
D62  
D63  
D64  
D65  
D66  
D67  
DSCK cycle time  
3 × T  
ns  
ns  
ns  
ns  
ns  
CLOCKOUT  
DSCK clock pulse width  
DSCK rise and fall times  
1.25 × T  
CLOCKOUT  
0.00  
3.00  
DSDI input data setup time  
DSDI data hold time  
8.00  
5.00  
0.00  
0.00  
DSCK low to DSDO data valid  
DSCK low to DSDO invalid  
15.00  
2.00  
Figure 33 provides the input timing for the debug port clock.  
DSCK  
D61  
D62  
D61  
D62  
D63  
Figure 33. Debug Port Clock Input Timing  
D63  
Figure 34 provides the timing for the debug port.  
DSCK  
D64  
D65  
DSDI  
D66  
D67  
DSDO  
Figure 34. Debug Port Timings  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
41  
 
 
 
Bus Signal Timing  
Table 14 shows the reset timing for the MPC885/MPC880.  
Table 14. Reset Timing  
33 MHz  
40 MHz  
66 MHz  
80 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R69 CLKOUT to HRESET high impedance  
20.00  
20.00  
20.00  
20.00  
ns  
ns  
ns  
(MAX = 0.00 × B1 + 20.00)  
R70 CLKOUT to SRESET high impedance  
20.00  
20.00  
20.00  
20.00  
(MAX = 0.00 × B1 + 20.00)  
R71 RSTCONF pulse width  
515.20  
425.00  
257.60  
212.50  
(MIN = 17.00 × B1)  
R72  
ns  
R73 Configuration data to HRESET rising  
edge setup time  
504.50  
425.00  
277.30  
237.50  
(MIN = 15.00 × B1 + 50.00)  
R74 Configuration data to RSTCONF rising 350.00  
edge setup time  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
350.00  
0.00  
0.00  
ns  
ns  
ns  
ns  
(MIN = 0.00 × B1 + 350.00)  
R75 Configuration data hold time after  
RSTCONF negation  
0.00  
0.00  
(MIN = 0.00 × B1 + 0.00)  
R76 Configuration data hold time after  
HRESET negation  
(MIN = 0.00 × B1 + 0.00)  
R77 HRESET and RSTCONF asserted to  
data out drive  
25.00  
25.00  
25.00  
25.00  
(MAX = 0.00 × B1 + 25.00)  
R78 RSTCONF negated to data out high  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
25.00  
ns  
ns  
impedance (MAX = 0.00 × B1 + 25.00)  
R79 CLKOUT of last rising edge before chip  
three-states HRESET to data out high  
impedance (MAX = 0.00 × B1 + 25.00)  
R80 DSDI, DSCK setup (MIN = 3.00 × B1)  
90.90  
0.00  
75.00  
0.00  
45.50  
0.00  
37.50  
0.00  
ns  
ns  
R81 DSDI, DSCK hold time  
(MIN = 0.00 × B1 + 0.00)  
R82 SRESET negated to CLKOUT rising  
edge for DSDI and DSCK sample  
(MIN = 8.00 × B1)  
242.40  
200.00  
121.20  
100.00  
ns  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
42  
Freescale Semiconductor  
 
Bus Signal Timing  
Figure 35 shows the reset timing for the data bus configuration.  
HRESET  
R71  
R76  
RSTCONF  
D[0:31] (IN)  
R73  
R74  
R75  
Figure 35. Reset Timing—Configuration from Data Bus  
Figure 36 provides the reset timing for the data bus weak drive during configuration.  
CLKOUT  
R69  
HRESET  
R79  
RSTCONF  
R77  
R78  
D[0:31] (OUT)  
(Weak)  
Figure 36. Reset Timing—Data Bus Weak Drive During Configuration  
Figure 37 provides the reset timing for the debug port configuration.  
CLKOUT  
R70  
R81  
R82  
R80  
SRESET  
R80  
R81  
DSCK, DSDI  
Figure 37. Reset Timing—Debug Port Configuration  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
43  
 
 
 
IEEE 1149.1 Electrical Specifications  
11 IEEE 1149.1 Electrical Specifications  
Table 15 provides the JTAG timings for the MPC885/MPC880 shown in Figure 38 through Figure 41.  
Table 15. JTAG Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
J82  
J83  
J84  
J85  
J86  
J87  
J88  
J89  
J90  
J91  
J92  
J93  
J94  
J95  
J96  
TCK cycle time  
100.00  
40.00  
0.00  
5.00  
25.00  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at 1.5 V  
TCK rise and fall times  
10.00  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
27.00  
TCK low to TDO data invalid  
0.00  
TCK low to TDO high impedance  
TRST assert time  
20.00  
100.00  
40.00  
TRST setup time to TCK low  
TCK falling edge to output valid  
TCK falling edge to output valid out of high impedance  
TCK falling edge to output high impedance  
Boundary scan input valid to TCK rising edge  
TCK rising edge to boundary scan input invalid  
50.00  
50.00  
50.00  
50.00  
50.00  
TCK  
J82  
J82  
J83  
J83  
J84  
J84  
Figure 38. JTAG Test Clock Input Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
44  
Freescale Semiconductor  
 
 
IEEE 1149.1 Electrical Specifications  
TCK  
J85  
J86  
TMS, TDI  
J87  
J88  
J89  
TDO  
TCK  
Figure 39. JTAG Test Access Port Timing Diagram  
J91  
J90  
TRST  
TCK  
Figure 40. JTAG TRST Timing Diagram  
J92  
J93  
J94  
Output  
Signals  
Output  
Signals  
J95  
J96  
Output  
Signals  
Figure 41. Boundary Scan (JTAG) Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
45  
CPM Electrical Characteristics  
12 CPM Electrical Characteristics  
This section provides the AC and DC electrical specifications for the communications processor module  
(CPM) of the MPC885/MPC880.  
12.1 PIP/PIO AC Electrical Specifications  
Table 16 provides the PIP/PIO AC timings as shown in Figure 42 through Figure 46.  
Table 16. PIP/PIO Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
Data-in setup time to STBI low  
Data-In hold time to STBI high  
STBI pulse width  
0
4.5  
25  
ns  
clk  
clk  
ns  
clk  
clk  
clk  
clk  
ns  
ns  
ns  
0
1.5  
STBO pulse width  
1 clk – 5 ns  
Data-out setup time to STBO low  
2
5
Data-out hold time from STBO high  
STBI low to STBO low (Rx interlock)  
STBI low to STBO high (Tx interlock)  
Data-in setup time to clock high  
2
15  
7.5  
Data-in hold time from clock high  
Clock low to data-out valid (CPU writes data, control, or direction)  
DATA-IN  
21  
22  
23  
STBI  
27  
24  
STBO  
Figure 42. PIP Rx (Interlock Mode) Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
46  
Freescale Semiconductor  
 
 
CPM Electrical Characteristics  
DATA-OUT  
25  
26  
24  
STBO  
(Output)  
28  
23  
STBI  
(Input)  
Figure 43. PIP Tx (Interlock Mode) Timing Diagram  
DATA-IN  
21  
22  
23  
24  
STBI  
(Input)  
STBO  
(Output)  
Figure 44. PIP Rx (Pulse Mode) Timing Diagram  
DATA-OUT  
25  
26  
24  
23  
STBO  
(Output)  
STBI  
(Input)  
Figure 45. PIP TX (Pulse Mode) Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
47  
CPM Electrical Characteristics  
CLKO  
29  
30  
DATA-IN  
31  
DATA-OUT  
Figure 46. Parallel I/O Data-In/Data-Out Timing Diagram  
12.2 Port C Interrupt AC Electrical Specifications  
Table 17 provides the timings for port C interrupts.  
Table 17. Port C Interrupt Timing  
33.34 MHz  
Num  
Characteristic  
Unit  
Min  
Max  
35  
36  
Port C interrupt pulse width low (edge-triggered mode)  
Port C interrupt minimum time between active edges  
55  
55  
ns  
ns  
Figure 47 shows the port C interrupt detection timing.  
36  
Port C  
(Input)  
35  
Figure 47. Port C Interrupt Detection Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
48  
Freescale Semiconductor  
 
 
CPM Electrical Characteristics  
12.3 IDMA Controller AC Electrical Specifications  
Table 18 provides the IDMA controller timings as shown in Figure 48 tthrough Figure 51.  
Table 18. IDMA Controller Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
40  
41  
42  
43  
44  
45  
46  
DREQ setup time to clock high  
DREQ hold time from clock high  
7
TBD  
12  
12  
20  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
1
SDACK assertion delay from clock high  
SDACK negation delay from clock low  
SDACK negation delay from TA low  
SDACK negation delay from clock high  
TA assertion to rising edge of the clock setup time (applies to external TA)  
7
1
Applies to high-to-low mode (EDM = 1).  
CLKO  
(Output)  
41  
40  
DREQ  
(Input)  
Figure 48. IDMA External Requests Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
49  
 
 
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
43  
DATA  
46  
TA  
(Input)  
SDACK  
Figure 49. SDACK Timing Diagram—Peripheral Write, Externally-Generated TA  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
44  
DATA  
TA  
(Output)  
SDACK  
Figure 50. SDACK Timing Diagram—Peripheral Write, Internally-Generated TA  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
50  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
CLKO  
(Output)  
TS  
(Output)  
R/W  
(Output)  
42  
45  
DATA  
TA  
(Output)  
SDACK  
Figure 51. SDACK Timing Diagram—Peripheral Read, Internally-Generated TA  
12.4 Baud Rate Generator AC Electrical Specifications  
Table 19 provides the baud rate generator timings as shown in Figure 52.  
Table 19. Baud Rate Generator Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
50  
51  
52  
BRGO rise and fall time  
BRGO duty cycle  
BRGO cycle  
40  
40  
10  
60  
ns  
%
ns  
50  
50  
BRGOX  
51  
51  
52  
Figure 52. Baud Rate Generator Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
51  
 
 
CPM Electrical Characteristics  
12.5 Timer AC Electrical Specifications  
Table 20 provides the general-purpose timer timings as shown in Figure 53.  
Table 20. Timer Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
61  
62  
63  
64  
65  
TIN/TGATE rise and fall time  
TIN/TGATE low time  
10  
1
25  
ns  
clk  
clk  
clk  
ns  
TIN/TGATE high time  
TIN/TGATE cycle time  
CLKO low to TOUT valid  
2
3
3
CLKO  
60  
61  
63  
62  
TIN/TGATE  
(Input)  
61  
64  
65  
TOUT  
(Output)  
Figure 53. CPM General-Purpose Timers Timing Diagram  
12.6 Serial Interface AC Electrical Specifications  
Table 21 provides the serial interface timings as shown in Figure 54 through Figure 58.  
Table 21. SI Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1, 2  
70  
71  
L1RCLK, L1TCLK frequency (DSC = 0)  
P + 10  
P + 10  
SYNCCLK/2.5  
MHz  
ns  
2
L1RCLK, L1TCLK width low (DSC = 0)  
3
71a  
72  
L1RCLK, L1TCLK width high (DSC = 0)  
ns  
L1TXD, L1ST(1–4), L1RQ, L1CLKO rise/fall time  
L1RSYNC, L1TSYNC valid to L1CLK edge (SYNC setup time)  
L1CLK edge to L1RSYNC, L1TSYNC, invalid (SYNC hold time)  
L1RSYNC, L1TSYNC rise/fall time  
15.00  
ns  
73  
20.00  
35.00  
ns  
74  
ns  
75  
15.00  
ns  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
52  
Freescale Semiconductor  
 
 
 
CPM Electrical Characteristics  
Table 21. SI Timing (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
76  
77  
L1RXD valid to L1CLK edge (L1RXD setup time)  
L1CLK edge to L1RXD invalid (L1RXD hold time)  
17.00  
13.00  
10.00  
10.00  
10.00  
10.00  
10.00  
0.00  
ns  
ns  
4
78  
L1CLK edge to L1ST(1–4) valid  
45.00  
45.00  
45.00  
55.00  
55.00  
42.00  
ns  
78A  
79  
L1SYNC valid to L1ST(1–4) valid  
L1CLK edge to L1ST(1–4) invalid  
L1CLK edge to L1TXD valid  
ns  
ns  
80  
ns  
4
80A  
81  
L1TSYNC valid to L1TXD valid  
ns  
L1CLK edge to L1TXD high impedance  
L1RCLK, L1TCLK frequency (DSC =1)  
ns  
82  
16.00 or  
MHz  
SYNCCLK/2  
83  
83a  
84  
L1RCLK, L1TCLK width low (DSC =1)  
P + 10  
P + 10  
ns  
ns  
3
L1RCLK, L1TCLK width high (DSC = 1)  
L1CLK edge to L1CLKO valid (DSC = 1)  
30.00  
ns  
4
85  
L1RQ valid before falling edge of L1TSYNC  
1.00  
42.00  
42.00  
L1TCLK  
ns  
2
86  
L1GR setup time  
87  
L1GR hold time  
ns  
88  
L1CLK edge to L1SYNC valid (FSD = 00) CNT = 0000, BYT = 0,  
DSC = 0)  
0.00  
ns  
1
2
3
4
The ratio SyncCLK/L1RCLK must be greater than 2.5/1.  
These specs are valid for IDL mode only.  
Where P = 1/CLKOUT. Thus for a 25-MHz CLKO1 rate, P = 40 ns.  
These strobes and TxD on the first bit of the frame become valid after L1CLK edge or L1SYNC, whichever comes later.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
53  
CPM Electrical Characteristics  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
71  
70  
71a  
72  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
RFSD=1  
75  
74  
L1RSYNC  
(Input)  
73  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
Figure 54. SI Receive Timing Diagram with Normal Clocking (DSC = 0)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
54  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
RFSD=1  
75  
L1RSYNC  
(Input)  
73  
74  
77  
L1RXD  
(Input)  
BIT0  
76  
78  
79  
L1ST(4-1)  
(Output)  
84  
L1CLKO  
(Output)  
Figure 55. SI Receive Timing with Double-Speed Clocking (DSC = 1)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
55  
CPM Electrical Characteristics  
L1TCLK  
(FE = 0, CE = 0)  
(Input)  
71  
70  
72  
L1TCLK  
(FE = 1, CE = 1)  
(Input)  
73  
TFSD=0  
75  
74  
L1TSYNC  
(Input)  
80a  
BIT0  
80  
81  
L1TXD  
(Output)  
79  
78  
L1ST(4-1)  
(Output)  
Figure 56. SI Transmit Timing Diagram (DSC = 0)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
56  
Freescale Semiconductor  
CPM Electrical Characteristics  
L1RCLK  
(FE = 0, CE = 0)  
(Input)  
72  
83a  
82  
L1RCLK  
(FE = 1, CE = 1)  
(Input)  
TFSD=0  
75  
L1RSYNC  
(Input)  
73  
74  
81  
L1TXD  
(Output)  
BIT0  
80  
78a  
79  
L1ST(4-1)  
(Output)  
78  
84  
L1CLKO  
(Output)  
Figure 57. SI Transmit Timing with Double Speed Clocking (DSC = 1)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
57  
CPM Electrical Characteristics  
Figure 58. IDL Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
58  
Freescale Semiconductor  
CPM Electrical Characteristics  
12.7 SCC in NMSI Mode Electrical Specifications  
Table 22 provides the NMSI external clock timing.  
Table 22. NMSI External Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
101  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 width high  
1/SYNCCLK  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RCLK1 and TCLK1 width low  
1/SYNCCLK + 5  
RCLK1 and TCLK1 rise/fall time  
15.00  
50.00  
50.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
5.00  
5.00  
5.00  
5.00  
2
RXD1 hold time from RCLK1 rising edge  
CD1 setup time to RCLK1 rising edge  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2.25/1.  
Also applies to CD and CTS hold time when they are used as external sync signals.  
Table 23 provides the NMSI internal clock timing.  
Table 23. NMSI Internal Clock Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
100  
102  
103  
104  
105  
106  
107  
108  
RCLK1 and TCLK1 frequency  
0.00  
SYNCCLK/3  
MHz  
ns  
RCLK1 and TCLK1 rise/fall time  
30.00  
30.00  
TXD1 active delay (from TCLK1 falling edge)  
RTS1 active/inactive delay (from TCLK1 falling edge)  
CTS1 setup time to TCLK1 rising edge  
RXD1 setup time to RCLK1 rising edge  
0.00  
0.00  
40.00  
40.00  
0.00  
40.00  
ns  
ns  
ns  
ns  
2
RXD1 hold time from RCLK1 rising edge  
ns  
CD1 setup time to RCLK1 rising edge  
ns  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 3/1.  
Also applies to CD and CTS hold time when they are used as external sync signals  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
59  
 
 
CPM Electrical Characteristics  
Figure 59 through Figure 61 show the NMSI timings.  
RCLK1  
102  
102  
101  
106  
100  
RxD1  
(Input)  
107  
108  
CD1  
(Input)  
107  
CD1  
(SYNC Input)  
Figure 59. SCC NMSI Receive Timing Diagram  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
105  
RTS1  
(Output)  
104  
104  
CTS1  
(Input)  
107  
CTS1  
(SYNC Input)  
Figure 60. SCC NMSI Transmit Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
60  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
TCLK1  
102  
102  
101  
100  
TxD1  
(Output)  
103  
RTS1  
(Output)  
104  
107  
104  
105  
CTS1  
(Echo Input)  
Figure 61. HDLC Bus Timing Diagram  
12.8 Ethernet Electrical Specifications  
Table 24 provides the Ethernet timings as shown in Figure 62 through Figure 64.  
Table 24. Ethernet Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
120  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
CLSN width high  
RCLK1 rise/fall time  
RCLK1 width low  
RCLK1 clock period  
RXD1 setup time  
RXD1 hold time  
40  
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
40  
80  
20  
5
1
120  
RENA active delay (from RCLK1 rising edge of the last data bit)  
10  
100  
RENA width low  
TCLK1 rise/fall time  
TCLK1 width low  
15  
40  
99  
1
TCLK1 clock period  
101  
50  
50  
50  
TXD1 active delay (from TCLK1 rising edge)  
TXD1 inactive delay (from TCLK1 rising edge)  
TENA active delay (from TCLK1 rising edge)  
6.5  
10  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
61  
 
CPM Electrical Characteristics  
Table 24. Ethernet Timing (continued)  
Characteristic  
All Frequencies  
Num  
Unit  
Min  
Max  
134  
138  
139  
TENA inactive delay (from TCLK1 rising edge)  
10  
50  
20  
20  
ns  
ns  
ns  
2
CLKO1 low to SDACK asserted  
2
CLKO1 low to SDACK negated  
1
2
The ratios SyncCLK/RCLK1 and SyncCLK/TCLK1 must be greater than or equal to 2/1.  
SDACK is asserted whenever the SDMA writes the incoming frame DA into memory.  
CLSN(CTS1)  
(Input)  
120  
Figure 62. Ethernet Collision Timing Diagram  
RCLK1  
121  
121  
124  
123  
Last Bit  
RxD1  
(Input)  
125  
126  
127  
RENA(CD1)  
(Input)  
Figure 63. Ethernet Receive Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
62  
Freescale Semiconductor  
CPM Electrical Characteristics  
TCLK1  
128  
128  
129  
131  
121  
TxD1  
(Output)  
132  
133  
134  
TENA(RTS1)  
(Input)  
RENA(CD1)  
(Input)  
(Note 2)  
Notes:  
1. Transmit clock invert (TCI) bit in GSMR is set.  
2.  
If RENA is negated before TENA or RENA is not asserted at all during transmit, then the  
CSL bit is set in the buffer descriptor at the end of the frame transmission.  
Figure 64. Ethernet Transmit Timing Diagram  
12.9 SMC Transparent AC Electrical Specifications  
Table 25 provides the SMC transparent timings as shown in Figure 65.  
Table 25. SMC Transparent Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
1
150  
151  
151A  
152  
153  
154  
155  
SMCLK clock period  
SMCLK width low  
SMCLK width high  
SMCLK rise/fall time  
100  
50  
50  
15  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
SMTXD active delay (from SMCLK falling edge)  
SMRXD/SMSYNC setup time  
10  
20  
5
RXD1/SMSYNC hold time  
1
SyncCLK must be at least twice as fast as SMCLK.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
63  
 
CPM Electrical Characteristics  
SMCLK  
151A  
150  
152  
152  
151  
SMTXD  
(Output)  
Note 1  
154  
153  
155  
SMSYNC  
154  
155  
SMRXD  
(Input)  
Note:  
1. This delay is equal to an integer number of character-length clocks.  
Figure 65. SMC Transparent Timing Diagram  
12.10 SPI Master AC Electrical Specifications  
Table 26 provides the SPI master timings as shown in Figure 66 and Figure 67.  
Table 26. SPI Master Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
160  
161  
162  
163  
164  
165  
166  
167  
MASTER cycle time  
4
2
1024  
512  
t
t
cyc  
cyc  
MASTER clock (SCK) high or low time  
MASTER data setup time (inputs)  
Master data hold time (inputs)  
Master data valid (after SCK edge)  
Master data hold time (outputs)  
Rise time output  
15  
0
ns  
ns  
ns  
ns  
ns  
ns  
0
10  
15  
Fall time output  
15  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
64  
Freescale Semiconductor  
 
CPM Electrical Characteristics  
SPICLK  
(CI = 0)  
(Output)  
161  
163  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI = 1)  
(Output)  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
Figure 66. SPI Master (CP = 0) Timing Diagram  
SPICLK  
(CI = 0)  
(Output)  
161  
167  
166  
166  
167  
161  
160  
SPICLK  
(CI = 1)  
(Output)  
163  
162  
SPIMISO  
(Input)  
msb  
167  
Data  
165  
lsb  
msb  
164  
166  
SPIMOSI  
(Output)  
msb  
Data  
lsb  
msb  
Figure 67. SPI Master (CP = 1) Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
65  
CPM Electrical Characteristics  
12.11 SPI Slave AC Electrical Specifications  
Table 27 provides the SPI slave timings as shown in Figure 68 and Figure 69.  
Table 27. SPI Slave Timing  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
170  
171  
172  
173  
174  
175  
176  
177  
Slave cycle time  
2
15  
15  
1
50  
t
cyc  
Slave enable lead time  
Slave enable lag time  
ns  
ns  
Slave clock (SPICLK) high or low time  
Slave sequential transfer delay (does not require deselect)  
Slave data setup time (inputs)  
t
cyc  
cyc  
1
t
20  
20  
ns  
ns  
ns  
Slave data hold time (inputs)  
Slave access time  
SPISEL  
(Input)  
172  
171  
174  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
173  
170  
SPICLK  
(CI = 1)  
(Input)  
177  
181  
182  
180  
178  
Undef  
SPIMISO  
(Output)  
msb  
175  
Data  
lsb  
msb  
179  
176  
181 182  
lsb  
SPIMOSI  
(Input)  
msb  
Data  
msb  
Figure 68. SPI Slave (CP = 0) Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
66  
Freescale Semiconductor  
 
 
CPM Electrical Characteristics  
SPISEL  
(Input)  
172  
174  
171  
170  
SPICLK  
(CI = 0)  
(Input)  
173  
182  
181  
173  
181  
SPICLK  
(CI =1)  
(Input)  
177  
182  
180  
178  
SPIMISO  
(Output)  
msb  
msb  
msb  
Undef  
175  
Data  
lsb  
179  
176  
msb  
181 182  
Data  
SPIMOSI  
(Input)  
lsb  
Figure 69. SPI Slave (CP = 1) Timing Diagram  
12.12 I2C AC Electrical Specifications  
2
Table 28 provides the I C (SCL < 100 kHz) timings.  
2
Table 28. I C Timing (SCL < 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
SCL clock frequency (slave)  
SCL clock frequency (master)  
0
100  
100  
1
kHz  
kHz  
μs  
1
1.5  
4.7  
4.7  
4.0  
4.7  
4.0  
0
Bus free time between transmissions  
Low period of SCL  
μs  
High period of SCL  
μs  
Start condition setup time  
Start condition hold time  
Data hold time  
μs  
μs  
μs  
Data setup time  
250  
ns  
SDL/SCL rise time  
μs  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
67  
 
CPM Electrical Characteristics  
2
Table 28. I C Timing (SCL < 100 kHZ) (continued)  
All Frequencies  
Num  
Characteristic  
Unit  
Min  
Max  
210  
211  
SDL/SCL fall time  
Stop condition setup time  
300  
ns  
4.7  
μs  
1
SCL frequency is given by SCL = BRGCLK_frequency/((BRG register + 3) × pre_scaler × 2).  
The ratio SyncClk/(BRGCLK/pre_scaler) must be greater or equal to 4/1.  
2
Table 29 provides the I C (SCL > 100 kHz) timings.  
2
Table 29. I C Timing (SCL > 100 kHZ)  
All Frequencies  
Num  
Characteristic  
Expression  
Unit  
Min  
Max  
200  
200  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
SCL clock frequency (slave)  
fSCL  
fSCL  
0
BRGCLK/48  
Hz  
Hz  
s
1
SCL clock frequency (master)  
BRGCLK/16512  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
1/(2.2 × fSCL)  
0
BRGCLK/48  
Bus free time between transmissions  
Low period of SCL  
s
High period of SCL  
s
Start condition setup time  
Start condition hold time  
Data hold time  
s
s
s
Data setup time  
1/(40 × fSCL)  
s
SDL/SCL rise time  
1/(10 × fSCL)  
1/(33 × fSCL)  
s
SDL/SCL fall time  
s
Stop condition setup time  
1/2(2.2 × fSCL)  
s
1
SCL frequency is given by SCL = BrgClk_frequency/((BRG register + 3) × pre_scaler × 2).  
The ratio SyncClk/(Brg_Clk/pre_scaler) must be greater or equal to 4/1.  
2
Figure 70 shows the I C bus timing.  
SDA  
202  
203  
204  
208  
205  
207  
SCL  
206  
209  
210  
211  
2
Figure 70. I C Bus Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
68  
Freescale Semiconductor  
 
 
UTOPIA AC Electrical Specifications  
13 UTOPIA AC Electrical Specifications  
Table 30, Table 31, and Table 32, show the AC electrical specifications for the UTOPIA interface.  
Table 30. UTOPIA Master (Muxed Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (internal clock option)  
Output  
4
ns  
%
Duty cycle  
Frequency  
50  
2
50  
33  
16  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr active delay (PHREQ  
and PHSEL active delay in multi-PHY mode)  
Output  
U3  
U4  
UTPB, SOC, Rxclav, and Txclav setup time  
UTPB, SOC, Rxclav, and Txclav hold time  
Input  
Input  
4
1
ns  
ns  
Table 31. UTOPIA Master (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (Internal clock option)  
Output  
4
ns  
%
Duty cycle  
Frequency  
50  
2
50  
33  
16  
MHz  
ns  
U2  
UTPB, SOC, RxEnb, TxEnb, RxAddr, and TxAddr active delay (PHREQ  
and PHSEL active delay in multi-PHY mode)  
Output  
U3  
U4  
UTPB_Aux, SOC_Aux, Rxclav, and Txclav setup time  
UTPB_Aux, SOC_Aux, Rxclav, and Txclav hold time  
Input  
Input  
4
1
ns  
ns  
Table 32. UTOPIA Slave (Split Bus Mode) Electrical Specifications  
Num  
Signal Characteristic  
Direction  
Min  
Max  
Unit  
U1  
UtpClk rise/fall time (external clock option)  
Duty cycle  
Input  
4
ns  
%
40  
60  
33  
16  
Frequency  
MHz  
ns  
U2  
U3  
U4  
UTPB, SOC, Rxclav, and Txclav active delay  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr setup time  
UTPB_AUX, SOC_Aux, RxEnb, TxEnb, RxAddr, and TxAddr hold time  
Output  
Input  
2
4
1
ns  
Input  
ns  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
69  
 
 
 
UTOPIA AC Electrical Specifications  
Figure 71 shows signal timings during UTOPIA receive operations.  
U1  
U1  
UtpClk  
U2  
PHREQn  
U3  
U4  
RxClav  
High-Z at MPHY  
High-Z at MPHY  
U2  
RxEnb  
U3  
U4  
UTPB  
SOC  
Figure 71. UTOPIA Receive Timing  
Figure 72 shows signal timings during UTOPIA transmit operations.  
U1  
U1  
UtpClk  
U2  
PHSELn  
TxClav  
U4  
U3  
High-Z at MPHY  
High-Z at Multi-PHYPHY  
U2  
TxEnb  
U2  
UTPB  
SOC  
Figure 72. UTOPIA Transmit Timing  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
70  
Freescale Semiconductor  
 
 
USB Electrical Characteristics  
14 USB Electrical Characteristics  
This section provides the AC timings for the USB interface.  
14.1 USB Interface AC Timing Specifications  
The USB Port uses the transmit clock on SCC1. Table 33 lists the USB interface timings.  
Table 33. USB Interface AC Timing Specifications  
All Frequencies  
Name  
Characteristic  
Unit  
Min  
45  
Max  
1
US1  
USBCLK frequency of operation  
Low speed  
Full speed  
6
48  
MHz  
MHz  
US4  
USBCLK duty cycle (measured at 1.5 V)  
55  
%
1
USBCLK accuracy should be 500 ppm or better. USBCLK may be stopped to conserve power.  
15 FEC Electrical Characteristics  
This section provides the AC electrical specifications for the fast Ethernet controller (FEC). Note that the  
timing specifications for the MII signals are independent of system clock frequency (part speed  
designation). Also, MII signals use TTL signal levels compatible with devices operating at either 5.0 or  
3.3 V.  
15.1 MII and Reduced MII Receive Signal Timing  
The receiver functions correctly up to a MII_RX_CLK maximum frequency of 25 MHz + 1%. The  
reduced MII (RMII) receiver functions correctly up to a RMII_REFCLK maximum frequency of  
50 MHz + 1%. There is no minimum frequency requirement. In addition, the processor clock frequency  
must exceed the MII_RX_CLK frequency 1%.  
Table 34 provides information on the MII and RMII receive signal timing.  
Table 34. MII Receive Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M1  
M2  
M3  
M4  
MII_RXD[3:0], MII_RX_DV, MII_RX_ERR to MII_RX_CLK setup  
MII_RX_CLK to MII_RXD[3:0], MII_RX_DV, MII_RX_ER hold  
MII_RX_CLK pulse width high  
5
5
ns  
ns  
35%  
35%  
4
65%  
65%  
MII_RX_CLK period  
MII_RX_CLK period  
ns  
MII_RX_CLK pulse width low  
M1_RMII RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR to RMII_REFCLK  
setup  
M2_RMII RMII_REFCLK to RMII_RXD[1:0], RMII_CRS_DV, RMII_RX_ERR  
hold  
2
ns  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
71  
 
 
FEC Electrical Characteristics  
Figure 73 shows MII receive signal timing.  
M3  
MII_RX_CLK (Input)  
M4  
MII_RXD[3:0] (Inputs)  
MII_RX_DV  
MII_RX_ER  
M1  
M2  
Figure 73. MII Receive Signal Timing Diagram  
15.2 MII and Reduced MII Transmit Signal Timing  
The transmitter functions correctly up to a MII_TX_CLK maximum frequency of 25 MHz + 1%. The  
RMII transmitter functions correctly up to a RMII_REFCLK maximum frequency of 50 MHz + 1%.  
There is no minimum frequency requirement. In addition, the processor clock frequency must exceed the  
MII_TX_CLK frequency 1%.  
Table 35 provides information on the MII and RMII transmit signal timing.  
Table 35. MII Transmit Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M5  
M6  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER invalid  
MII_TX_CLK to MII_TXD[3:0], MII_TX_EN, MII_TX_ER valid  
5
4
25  
ns  
ns  
ns  
ns  
M20_RMII RMII_TXD[1:0], RMII_TX_EN to RMII_REFCLK setup  
M21_RMII RMII_TXD[1:0], RMII_TX_EN data hold from RMII_REFCLK rising  
edge  
2
M7  
MII_TX_CLK and RMII_REFCLK pulse width high  
35%  
35%  
65%  
65%  
MII_TX_CLK or  
RMII_REFCLK  
period  
M8  
MII_TX_CLK and RMII_REFCLK pulse width low  
MII_TX_CLK or  
RMII_REFCLK  
period  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
72  
Freescale Semiconductor  
 
 
FEC Electrical Characteristics  
Figure 74 shows the MII transmit signal timing diagram.  
M7  
MII_TX_CLK (Input)  
RMII_REFCLK  
M5  
M8  
MII_TXD[3:0] (Outputs)  
MII_TX_EN  
MII_TX_ER  
M6  
Figure 74. MII Transmit Signal Timing Diagram  
15.3 MII Async Inputs Signal Timing (MII_CRS, MII_COL)  
Table 36 provides information on the MII async inputs signal timing.  
Table 36. MII Async Inputs Signal Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M9  
MII_CRS, MII_COL minimum pulse width  
1.5  
MII_TX_CLK period  
Figure 75 shows the MII asynchronous inputs signal timing diagram.  
MII_CRS, MII_COL  
M9  
Figure 75. MII Async Inputs Timing Diagram  
15.4 MII Serial Management Channel Timing (MII_MDIO, MII_MDC)  
Table 37 provides information on the MII serial management channel signal timing. The FEC functions  
correctly with a maximum MDC frequency in excess of 2.5 MHz.  
Table 37. MII Serial Management Channel Timing  
Num  
Characteristic  
Min  
Max  
Unit  
M10  
MII_MDC falling edge to MII_MDIO output invalid (minimum propagation  
delay)  
0
ns  
M11  
M12  
M13  
MII_MDC falling edge to MII_MDIO output valid (max prop delay)  
MII_MDIO (input) to MII_MDC rising edge setup  
10  
0
25  
ns  
ns  
ns  
MII_MDIO (input) to MII_MDC rising edge hold  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
73  
 
 
 
 
FEC Electrical Characteristics  
Table 37. MII Serial Management Channel Timing (continued)  
Num  
Characteristic  
Min  
Max  
Unit  
M14  
M15  
MII_MDC pulse width high  
MII_MDC pulse width low  
40%  
40%  
60%  
60%  
MII_MDC period  
MII_MDC period  
Figure 76 shows the MII serial management channel timing diagram.  
M14  
MM15  
MII_MDC (Output)  
MII_MDIO (Output)  
M10  
M11  
MII_MDIO (Input)  
M12  
M13  
Figure 76. MII Serial Management Channel Timing Diagram  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
74  
Freescale Semiconductor  
 
Mechanical Data and Ordering Information  
16 Mechanical Data and Ordering Information  
Table 38 identifies the available packages and operating frequencies for the MPC885/MPC880 derivative  
devices.  
Table 38. Available MPC885/MPC880 Packages/Frequencies  
Package Type  
Plastic ball grid array  
ZP suffix — Leaded  
VR suffix — Lead-Free are available as needed  
Temperature (Tj)  
Frequency (MHz)  
Order Number  
0°C to 95°C  
66  
KMPC885ZP66  
KMPC880ZP66  
MPC885ZP66  
MPC880ZP66  
80  
133  
66  
KMPC885ZP80  
KMPC880ZP80  
MPC885ZP80  
MPC880ZP80  
KMPC885ZP133  
KMPC880ZP133  
MPC885ZP133  
MPC880ZP133  
Plastic ball grid array  
CZP suffix — Leaded  
CVR suffix — Lead-Free are available as needed  
-40°C to 100°C  
KMPC885CZP66  
KMPC880CZP66  
MPC885CZP66  
MPC880CZP66  
133  
KMPC885CZP133  
KMPC880CZP133  
MPC885CZP133  
MPC880CZP133  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
75  
 
Mechanical Data and Ordering Information  
16.1 Pin Assignments  
Figure 77 shows the top-view pinout of the PBGA package. For additional information, see the MPC885  
PowerQUICC™ Family Reference Manual.  
NOTE: This is the top view of the device.  
W
TRST  
TMS  
PA10  
PB25  
PB23  
PC11  
PA8  
PC8  
PA5  
PB17  
PC7  
PA13  
PB16  
PC4  
PC13  
PB15  
PA11  
PE21  
PE31  
PE17  
PE24  
PE30  
PE14  
PE15  
PD5  
PD6  
PE28  
PD12  
PD4  
PE27  
PA4  
PD7  
PA3  
V
U
T
PE22  
PB28  
PB22  
PA7 PB19  
PB31  
PE23  
PB27  
PB14  
PC12  
TCK  
TDO  
PB24  
TDI  
PC10  
PB21  
PA6 MII1_COL PC6  
PD15  
PE29  
PD14  
PE16  
PD13  
PA0  
PD9  
PD10  
PD11  
PA1  
PB29  
PC15  
PA9  
VDDL  
VDDH  
PC9 PB20  
PB18 MII1_CRS PC5  
VDDL  
PD3  
PE19 MII1_TXEN PA2  
PE25  
PE26  
R
P
N
M
L
VDDL  
VDDL  
VDDH  
VDDL  
GND  
PE20  
IRQ7  
PD8  
PC14  
PB26  
PA14  
N/C  
A4  
PE18  
VDDH  
VDDH  
GND  
GND  
MII_MDIO PB30  
PA12  
PA15  
A0  
IRQ1  
D12  
D23  
D0  
D8  
D4  
GND  
A2  
A3  
A1  
A5  
IRQ0  
D13  
D27  
VDDL  
VDDH  
VDDH  
D1  
D17  
D9  
VDDH  
GND  
GND  
VDDL  
VDDL  
A7  
A9  
A8  
A6  
D10  
D14  
D19  
D6  
D11  
D3  
D2  
K
J
VDDL  
GND  
A10  
A14  
A27  
A21  
A25  
A18  
A26  
BSA2  
WE3  
A11  
A16  
A19  
A29  
A30  
A28  
A31  
BSA1  
WE0  
A12  
A15  
A20  
A23  
A22  
TSIZ1  
A13  
D5  
D15  
D18  
D21  
D25  
D29  
D30  
IPA5  
A17  
D22  
D28  
D16  
D20  
D24  
D7  
H
G
F
VDDH  
VDDL  
GND  
A24  
GND  
GND  
VDDH  
VDDL  
VDDH  
VDDL  
TSIZ0  
BSA3  
WE1  
CLKOUT  
IPA2  
D26  
D31  
IPA3  
VDDH  
E
D
C
B
A
VDDL  
VDDL  
VSSSYN  
IPA6  
IPA4  
BSA0 GPL_AB2 CS6  
CS3  
CS1  
CS0  
WR  
BI  
TA  
BR  
BG  
BB  
IRQ6  
BURST  
IRQ2  
IPB1  
IPB3  
IPB4  
ALEB  
IPB2  
IPB7  
AS  
MODCK1 EXTAL RSTCONF IPA7  
WE2  
CS4  
CS7  
CE2_A  
CE1_A  
GPL_A5  
GPL_A4  
IRQ4  
ALEA  
OP1 BADDR28 TEXP  
WAIT_B VSSSYN1 IPA1  
GPL_A0  
TEA  
OP0 BADDR29 HRESET PORESETVDDLSYN IPA0  
OE  
GPL_AB3 CS5  
CS2  
GPL_B4  
BDIP  
TS  
IRQ3  
IPB5  
IPB0  
IPB6 BADDR30 MODCK2 EXTCLK XTAL SRESET WAIT_A  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
Figure 77. Pinout of the PBGA Package  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
76  
Freescale Semiconductor  
 
Mechanical Data and Ordering Information  
Table 39 contains a list of the MPC885 input and output signals and shows multiplexing and pin  
assignments.  
Table 39. Pin Assignments  
Name  
Pin Number  
Type  
A[0:31]  
M16, N18, N19, M19, M17, M18, L16, L19, L17, L18, K19, K18, K17, Bidirectional  
K16, J19, J17, J18, J16, E19, H18, H17, G19, F17, G17, H16, F19, Three-state  
D19, H19, E18, G18, F18, D18  
D[0:31]  
P2, M1, L1, K2, N1, K4, H3, F2, P1, L4, L3, L2, N3, N2, K3, K1, J2, Bidirectional  
M4, J1, J3, H2, H1, J4, M3, G2, G1, G3, M2, H4, F1, E1, F3  
Three-state  
TSIZ0, REG  
TSIZ1  
G16  
Bidirectional  
Three-state  
E17  
D13  
C10  
Bidirectional  
Three-state  
RD/WR  
BURST  
Bidirectional  
Three-state  
Bidirectional  
Three-state  
BDIP, GPL_B5  
TS  
A13  
A12  
Output  
Bidirectional  
Active pull-up  
TA  
C12  
Bidirectional  
Active pull-up  
TEA  
BI  
B12  
D12  
Open-drain  
Bidirectional  
Active pull-up  
IRQ2, RSV  
B10  
C7  
Bidirectional  
Three-state  
IRQ4, KR, RETRY,  
SPKROUT  
Bidirectional  
Three-state  
CR, IRQ3  
BR  
A11  
D11  
C11  
B11  
Input  
Bidirectional  
Bidirectional  
BG  
BB  
Bidirectional  
Active pull-up  
FRZ, IRQ6  
IRQ0  
D10  
Bidirectional  
Input  
N4  
IRQ1  
P3  
Input  
IRQ7  
P4  
Input  
CS[0:5]  
B14, C14, A15, D14, C16, A16  
Output  
Output  
Output  
CS6, CE1_B  
CS7, CE2_B  
D15  
B16  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
77  
 
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
WE0, BS_B0, IORD  
WE1, BS_B1, IOWR  
WE2, BS_B2, PCOE  
WE3, BS_B3, PCWE  
BS_A[0:3]  
B18  
E16  
C17  
B19  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
D17, C18, C19, F16  
GPL_A0, GPL_B0  
OE, GPL_A1, GPL_B1  
B17  
A18  
GPL_A[2:3], GPL_B[2:3],  
CS[2:3]  
D16, A17  
UPWAITA, GPL_A4  
UPWAITB, GPL_B4  
GPL_A5  
B13  
A14  
C13  
B3  
Bidirectional  
Bidirectional  
Output  
PORESET  
RSTCONF  
HRESET  
SRESET  
XTAL  
Input  
D4  
B4  
Input  
Open-drain  
Open-drain  
Analog output  
Analog input (3.3 V only)  
Output  
A3  
A4  
EXTAL  
D5  
G4  
A5  
CLKOUT  
EXTCLK  
Input (3.3 V only)  
Output  
TEXP  
C4  
B7  
ALE_A  
Output  
CE1_A  
B15  
C15  
A2  
Output  
CE2_A  
Output  
1
WAIT_A, SOC_Split  
Input  
WAIT_B  
C3  
B1  
Input  
1
IP_A0, UTPB_Split0  
Input  
1
IP_A1, UTPB_Split1  
C1  
F4  
Input  
IP_A2, IOIS16_A,  
Input  
1
UTPB_Split2  
1
IP_A3, UTPB_Split3  
E3  
D2  
D1  
E2  
D3  
Input  
Input  
Input  
Input  
Input  
1
IP_A4, UTPB_Split4  
1
IP_A5, UTPB_Split5  
1
IP_A6, UTPB_Split6  
1
IP_A7, UTPB_Split7  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
78  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
ALE_B, DSCK/AT1  
D8  
Bidirectional  
Three-state  
IP_B[0:1], IWP[0:1],  
VFLS[0:1]  
A9, D9  
C8  
Bidirectional  
IP_B2, IOIS16_B, AT2  
Bidirectional  
Three-state  
IP_B3, IWP2, VF2  
IP_B4, LWP0, VF0  
IP_B5, LWP1, VF1  
IP_B6, DSDI, AT0  
C9  
B9  
Bidirectional  
Bidirectional  
Bidirectional  
A10  
A8  
Bidirectional  
Three-state  
IP_B7, PTR, AT3  
B8  
Bidirectional  
Three-state  
1
OP0, UtpClk_Split  
B6  
Bidirectional  
Output  
OP1  
C6  
OP2, MODCK1, STS  
OP3, MODCK2, DSDO  
BADDR30, REG  
BADDR[28:29]  
AS  
D6  
Bidirectional  
Bidirectional  
Output  
A6  
A7  
C5, B5  
D7  
Output  
Input  
PA15, USBRXD  
PA14, USBOE  
N16  
P17  
Bidirectional  
Bidirectional  
(Optional: open-drain)  
PA13, RXD2  
PA12, TXD2  
W11  
P16  
Bidirectional  
Bidirectional  
(Optional: open-drain)  
PA11, RXD4, MII1-TXD0,  
RMII1-TXD0  
W9  
Bidirectional  
(Optional: open-drain)  
PA10, MII1-TXER, TIN4,  
CLK7  
W17  
T15  
W15  
V14  
Bidirectional  
(Optional: open-drain)  
PA9, L1TXDA, RXD3  
Bidirectional  
(Optional: open-drain)  
PA8, L1RXDA, TXD3  
Bidirectional  
(Optional: open-drain)  
PA7, CLK1, L1RCLKA,  
BRGO1, TIN1  
Bidirectional  
PA6, CLK2, TOUT1  
U13  
Bidirectional  
Bidirectional  
PA5, CLK3, L1TCLKA,  
BRGO2, TIN2  
W13  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
79  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
Bidirectional  
PA4, CTS4, MII1-TXD1,  
RMII1-TXD1  
U4  
W2  
T4  
PA3, MII1-RXER,  
RMII1-RXER, BRGO3  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PA2, MII1-RXDV,  
RMII1-CRS_DV, TXD4  
PA1, MII1-RXD0,  
RMII1-RXD0, BRGO4  
U1  
U3  
V3  
PA0, MII1-RXD1,  
RMII1-RXD1, TOUT4  
PB31, SPISEL,  
MII1-TXCLK,  
Bidirectional  
(Optional: open-drain)  
RMII1-REFCLK  
PB30, SPICLK  
P18  
T19  
V19  
U19  
R17  
V17  
U16  
W16  
Bidirectional  
(Optional: open-drain)  
PB29, SPIMOSI  
Bidirectional  
(Optional: open-drain)  
PB28, SPIMISO, BRGO4  
PB27, I2CSDA, BRGO1  
PB26, I2CSCL, BRGO2  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(Optional: open-drain)  
Bidirectional  
(Optional: open-drain)  
1
PB25, RXADDR3 ,  
TXADDR3, SMTXD1  
Bidirectional  
(Optional: open-drain)  
1
PB24, TXADDR3 ,  
RXADDR3, SMRXD1  
Bidirectional  
(Optional: open-drain)  
1
PB23, TXADDR2 ,  
Bidirectional  
RXADDR2, SDACK1,  
SMSYN1  
(Optional: open-drain)  
1
PB22, TXADDR4 ,  
V15  
U14  
T13  
Bidirectional  
(Optional: open-drain)  
RXADDR4, SDACK2,  
SMSYN2  
PB21, SMTXD2,  
Bidirectional  
(Optional: open-drain)  
1
TXADDR1 , BRG01,  
RXADDR1, PHSEL[1]  
PB20, SMRXD2,  
Bidirectional  
(Optional: open-drain)  
1
L1CLKOA, TXADDR0 ,  
RXADDR0, PHSEL[0]  
PB19, MII1-RXD3, RTS4  
V13  
T12  
Bidirectional  
(Optional: open-drain)  
1
PB18, RXADDR4 ,  
Bidirectional  
TXADDR4, RTS2, L1ST2  
(Optional: open-drain)  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
80  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
PB17, L1ST3, BRGO2,  
RXADDR1 , TXADDR1,  
PHREQ[1]  
W12  
V11  
Bidirectional  
(Optional: open-drain)  
1
PB16, L1RQa, L1ST4,  
Bidirectional  
(Optional: open-drain)  
1
RTS4, RXADDR0 ,  
TXADDR0, PHREQ[0]  
PB15, TXCLAV, BRG03,  
RXCLAV  
U10  
U18  
R19  
R18  
V10  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
1
PB14RXADDR2 ,  
TXADDR2  
PC15, DREQ0, RTS3,  
L1ST1, TXCLAV, RXCLAV  
PC14, DREQ1, RTS2,  
L1ST2  
PC13, MII1-TXD3,  
SDACK1  
PC12, MII1-TXD2, TOUT1 T18  
PC11, USBRXP V16  
PC10, USBRXN, TGATE1 U15  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PC9, CTS2  
T14  
W14  
V12  
PC8, CD2, TGATE2  
PC7, CTS4, L1TSYNCB,  
USBTXP  
PC6, CD4, L1RSYNCB,  
USBTXN  
U11  
T10  
W10  
Bidirectional  
Bidirectional  
PC5, CTS3, L1TSYNCA,  
SDACK2  
PC4, CD3, L1RSYNCA  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
Bidirectional  
PD15, L1TSYNCA, UTPB0 U8  
PD14, L1RSYNCA, UTPB1 U7  
PD13, L1TSYNCB, UTPB2 U6  
PD12, L1RSYNCB, UTPB3 U5  
PD11, RXD3, RXENB  
PD10, TXD3, TXENB  
PD9, TXD4, UTPCLK  
R2  
T2  
U2  
R3  
PD8, RXD4, MII-MDC,  
RMII-MDC  
PD7, RTS3, UTPB4  
PD6, RTS4, UTPB5  
W3  
W5  
Bidirectional  
Bidirectional  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
81  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
Bidirectional  
PD5, CLK8, L1TCLKB,  
UTPB6  
V6  
PD4, CLK4, UTPB7  
W4  
T9  
Bidirectional  
Bidirectional  
PD3, CLK7, TIN4, SOC  
PE31, CLK8, L1TCLKB,  
MII1-RXCLK  
U9  
Bidirectional  
(Optional: open-drain)  
PE30, L1RXDB,  
MII1-RXD2  
W7  
T8  
V5  
V4  
T1  
Bidirectional  
(Optional: open-drain)  
PE29, MII2-CRS  
Bidirectional  
(Optional: open-drain)  
PE28, TOUT3, MII2-COL  
Bidirectional  
(Optional: open-drain)  
PE27, RTS3, L1RQB,  
MII2-RXER, RMII2-RXER  
Bidirectional  
(Optional: open-drain)  
PE26, L1CLKOB,  
MII2-RXDV,  
Bidirectional  
(Optional: open-drain)  
RMII2-CRS_DV  
PE25, RXD4, MII2-RXD3, T3  
L1ST2  
Bidirectional  
(Optional: open-drain)  
PE24, SMRXD1, BRGO1, V8  
MII2-RXD2  
Bidirectional  
(Optional: open-drain)  
PE23, SMSYN2, TXD4,  
MII2-RXCLK, L1ST1  
V2  
Bidirectional  
(Optional: open-drain)  
PE22, TOUT2, MII2-RXD1, V1  
RMII2-RXD1, SDACK1  
Bidirectional  
(Optional: open-drain)  
PE21, SMRXD2, TOUT1,  
MII2-RXD0, RMII2-RXD0,  
RTS3  
V9  
Bidirectional  
(Optional: open-drain)  
PE20, L1RSYNCA,  
SMTXD2, CTS3,  
MII2-TXER  
R4  
Bidirectional  
(Optional: open-drain)  
PE19, L1TXDB,  
T6  
Bidirectional  
MII2-TXEN, RMII2-TXEN  
(Optional: open-drain)  
PE18, L1TSYNCA,  
SMTXD1, MII2-TXD3  
R1  
W8  
Bidirectional  
(Optional: open-drain)  
PE17, TIN3, CLK5,  
BRGO3, SMSYN1,  
MII2-TXD2  
Bidirectional  
(Optional: open-drain)  
PE16, L1RCLKB, CLK6,  
TXD3, MII2-TXCLK,  
RMII2-REFCLK  
T7  
Bidirectional  
(Optional: open-drain)  
PE15, TGATE1,  
W6  
Bidirectional  
MII2-TXD1, RMII2-TXD1  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
82  
Freescale Semiconductor  
Mechanical Data and Ordering Information  
Table 39. Pin Assignments (continued)  
Pin Number  
Name  
Type  
PE14, RXD3, MII2-TXD0,  
RMII2-TXD0  
V7  
Bidirectional  
TMS  
V18  
T16  
U17  
W18  
T17  
T11  
P19  
Input  
TDI, DSDI  
TCK, DSCK  
TRST  
Input  
Input  
Input  
TDO, DSDO  
MII1_CRS  
MII_MDIO  
Output  
Input  
Bidirectional  
Output  
Input  
MII1_TXEN, RMII1_TXEN T5  
MII1_COL U12  
V
V
V
C2  
E4  
B2  
PLL analog V and GND  
SSSYN1  
SSSYN  
DD  
Power  
Power  
DDLSYN  
GND  
G6, G7, G8, G9, G10, G11, G12, G13, H7, H8, H9, H10, H11, H12, Power  
H13, H14, J7, J8, J9, J10, J11, J12, J13, K7, K8, K9, K10, K11, K12,  
K13, L7, L8, L9, L10, L11, L12, L13, M7, M8, M9, M10, M11, M12,  
M13, N7, N8, N9, N10, N11, N12, N13, N14, P7, P13, R16  
V
V
E5, E6, E9, E11, E14, G15, H5, J5, J15, K15, L5, M15, N5, R6, R9, Power  
R10, R12, R15  
DDL  
DDH  
E7, E8, E10, E12, E13, E15, F5, F6, F7, F8, F9, F10, F11, F12, F13, Power  
F14, F15, G5, G14, H6, H15, J6, J14, K5, K6, K14, L6, L14, L15, M5,  
M6, M14, N6, N15, P5, P6, P8, P9, P10, P11, P12, P14, P15, R5,  
R7, R8, R11, R13, R14  
N/C  
N17  
No connect  
1
ESAR mode only.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
83  
Mechanical Data and Ordering Information  
16.2 Mechanical Dimensions of the PBGA Package  
Figure 78 shows the mechanical dimensions of the PBGA package.  
NOTES:  
1. ALL DIMENSIONS ARE IN MILLIMETERS.  
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M—1994.  
3. MAXIMUM SOLDER BALL DIAMETER MEASURED PARALLEL TO DATUM A.  
4. DATUM A, THE SEATING PLANE, IS DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.  
Figure 78. Mechanical Dimensions and Bottom Surface Nomenclature of the PBGA Package  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
84  
Freescale Semiconductor  
 
Document Revision History  
17 Document Revision History  
Table 40 lists significant changes between revisions of this hardware specification.  
Table 40. Document Revision History  
Revision  
Number  
Date  
Changes  
7
07/2010  
In Table 9, Bus Operation Timings,” changed the following:  
• Updated TRLX condition value for B22a/b/c to “TRLX = [0 or 1]”  
• Removed TRLX condition for B23  
• Updated condition and equation for B30 to “Invalid GPCM read/write access  
(MIN = 0.25 × B1 – 2.00)”  
• Updated note 8 to “The timing B30 refers to CS when ACS = 00 and to CS and WE(0:3) when  
CSNT = 0.”  
6
5
05/2010  
03/2009  
Added minimum load for CLKOUT in Section 10, “Bus Signal Timing.”  
Updated formatting of Table 12 , PCMCIA Port Timing,Table 13, Debug Port Timing,Table 14,  
Reset Timing,” and Table 15, JTAG Timing.”  
4
08/2007  
• On page 1, updated first paragraph and added a second paragraph.  
• After Table 2, inserted a new figure showing the undershoot/overshoot voltage (Figure 3) and  
renumbered the rest of the figures.  
• In Table 9, for reset timings B29f and B29g added footnote indicating that the formula only applies  
to bus operation up to 50 MHz.  
• In Figure 6, changed all reference voltage measurement points from 0.2 and 0.8 V to 50% level.  
• In Table 18, changed num 46 description to read, “TA assertion to rising edge ...”  
• In Figure 49, changed TA to reflect the rising edge of the clock.  
3.0  
2.0  
7/22/2004  
12/2003  
• Added sentence to Spec B1A about EXTCLK and CLKOUT being in Alignment for Integer Values  
• Added a footnote to Spec 41 specifying that EDM = 1  
• Added RMII1_EN under M1II_EN in Table 36 Pin Assignments  
• Added a tablefootnote to Table 6 DC Electrical Specifications about meeting the VIL Max of the  
I2C Standard  
• Put the new part numbers in the Ordering Information Section  
• Changed the maximum operating frequency to 133 MHz.  
• Put in the orderable part numbers that are orderable.  
• Put the timing in the 80 MHz column.  
• Rounded the timings to hundredths in the 80 MHz column.  
• Put the pin numbers in footnotes by the maximum currents in Table 6.  
• Changed 22 and 41 in the Timing.  
• Put in the Thermal numbers.  
1.0  
9/2003  
• Added the DSP information in the Features list  
• Fixed table formatting.  
• Nontechnical edits.  
• Released to the external web.  
0.9  
0.8  
8/2003  
8/2003  
Changed the USB description to full-/low-speed compatible.  
Added the Reference to USB 2.0 to the Features list and removed 1.1 from USB on the block  
diagrams.  
0.7  
0.6  
0.5  
7/2003  
6/2003  
5/2003  
Added the RxClav and TxClav signals to PC15.  
Changed the pin descriptions per the June 22 spec.  
Changed some more typos, put in the phsel and phreq pins. Corrected the USB timing.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
Freescale Semiconductor  
85  
 
Document Revision History  
Table 40. Document Revision History (continued)  
Changes  
Revision  
Date  
Number  
0.4  
0.3  
0.2  
5/2003  
05/2003  
05/2003  
Changed the pin descriptions for PD8 and PD9.  
Corrected the signals that had overlines on them.  
Made the changes to the RMII Timing, Made sure all the V  
, V  
, and GND show up on the  
DDH  
DDL  
pinout diagram. Changed the SPI Master Timing Specs. 162 and 164.  
0.1  
0
04/2003  
02/2003  
Added pinout and pinout assignments table. Added the USB timing to Section 14. Added the  
Reduced MII to Section 15. Removed the Data Parity. Made some changes to the Features list.  
Initial revision.  
MPC885/MPC880 PowerQUICC Hardware Specifications, Rev. 7  
86  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1-800-521-6274 or  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
+1-480-768-2130  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters which may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals” must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Semiconductor was negligent regarding the design or manufacture of the part.  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Freescale, the Freescale logo, and PowerQUICC, are trademarks of  
Freescale Semiconductor, Inc. Reg. U.S. Pat. & Tm. Off. All other product or  
service names are the property of their respective owners. The Power  
Architecture and Power.org word marks and the Power and Power.org logos  
and related marks are trademarks and service marks licensed by  
Power.org.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
1-800 441-2447 or  
© 2010 Freescale Semiconductor, Inc.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
Document Number: MPC885EC  
Rev. 7  
07/2010  

相关型号:

MPC880ZP66

Hardware Specifications
FREESCALE

MPC880ZP66

PowerQUICC, 32 Bit Power Architecture, 66MHz, Communications Processor, 0 to 95C
NXP

MPC880ZP80

Hardware Specifications
FREESCALE

MPC880ZP80

32-BIT, 80MHz, RISC PROCESSOR, PBGA357, PLASTIC, BGA-357
ROCHESTER

MPC880ZP80

PowerQUICC, 32 Bit Power Architecture, 80MHz, Communications Processor, 0 to 95C
NXP

MPC885

Hardware Specifications
FREESCALE

MPC885

MPC885/MPC880 PowerQUICC Hardware Specifications
NXP

MPC885CVR133

32-BIT, 133MHz, RISC PROCESSOR, PBGA357, LEAD FREE, PLASTIC, BGA-357
ROCHESTER

MPC885CZP133

Hardware Specifications
FREESCALE

MPC885CZP66

Hardware Specifications
FREESCALE

MPC885CZP66

PowerQUICC, 32 Bit Power Architecture, 66MHz, Communications Processor, -40 to 100C
NXP

MPC885EC

MPC885/MPC880 PowerQUICC Hardware Specifications
NXP