MPC9239EIR2 [NXP]

900MHz, OTHER CLOCK GENERATOR, PQCC28, LEAD FREE, PLASTIC, LCC-28;
MPC9239EIR2
型号: MPC9239EIR2
厂家: NXP    NXP
描述:

900MHz, OTHER CLOCK GENERATOR, PQCC28, LEAD FREE, PLASTIC, LCC-28

时钟 外围集成电路 晶体
文件: 总14页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MPC9239  
Rev. 3, 08/2005  
Freescale Semiconductor  
Technical Data  
900 MHz Low Voltage LVPECL  
Clock Synthesizer  
MPC9239  
The MPC9239 is a 3.3 V compatible, PLL based clock synthesizer targeted for  
high performance clock generation in mid-range to high-performance telecom,  
networking, and computing applications. With output frequencies from  
3.125 MHz to 900 MHz and the support of differential LVPECL output signals the  
device meets the needs of the most demanding clock applications.  
900 MHz LOW VOLTAGE  
CLOCK SYNTHESIZER  
Features  
3.125 MHz to 900 MHz synthesized clock output signal  
Differential LVPECL output  
LVCMOS compatible control inputs  
On-chip crystal oscillator for reference frequency generation  
Alternative LVCMOS compatible reference input  
3.3 V power supply  
FN SUFFIX  
28-LEAD PLCC PACKAGE  
CASE 776-02  
EI SUFFIX  
28-LEAD PLCC PACKAGE  
Pb-FREE PACKAGE  
CASE 776-02  
Fully integrated PLL  
Minimal frequency overshoot  
Serial 3-wire programming interface  
Parallel programming interface for power-up  
28 PLCC and 32 LQFP packaging  
28-lead and 32-lead Pb-free package available  
SiGe Technology  
FA SUFFIX  
32-LEAD LQFP PACKAGE  
CASE 873A-04  
Ambient temperature range 0°C to + 70°C  
Pin and function compatible to the MC12439  
AC SUFFIX  
32-LEAD LQFP PACKAGE  
Pb-FREE PACKAGE  
CASE 873A-04  
Functional Description  
The internal crystal oscillator uses the external quartz crystal as the basis of  
its frequency reference. The frequency of the internal crystal oscillator or external  
reference clock signal is multiplied by the PLL. The VCO within the PLL operates over a range of 800 to 1800 MHz. Its output is  
scaled by a divider that is configured by either the serial or parallel interfaces. The crystal oscillator frequency fXTAL, the PLL  
feedback-divider M and the PLL post-divider N determine the output frequency.  
The feedback path of the PLL is internal. The PLL adjusts the VCO output frequency to be M times the reference frequency  
by adjusting the VCO control voltage. Note that for some values of M (either too high or too low) the PLL will not achieve phase  
lock. The PLL will be stable if the VCO frequency is within the specified VCO frequency range (800 to 1800 MHz). The M-value  
must be programmed by the serial or parallel interface.  
The PLL post-divider N is configured through either the serial or the parallel interfaces, and can provide one of four division  
ratios (1, 2, 4, or 8). This divider extends performance of the part while providing a 50% duty cycle. The output driver is driven  
differentially from the output divider, and is capable of driving a pair of transmission lines terminated 50 to VCC – 2.0 V. The  
positive supply voltage for the internal PLL is separated from the power supply for the core logic and output drivers to minimize  
noise induced jitter.  
The configuration logic has two sections: serial and parallel. The parallel interface uses the values at the M[6:0] and N[1:0]  
inputs to configure the internal counters. It is recommended on system reset to hold the P_LOAD input LOW until power becomes  
valid. On the LOW-to-HIGH transition of P_LOAD, the parallel inputs are captured. The parallel interface has priority over the  
serial interface. Internal pullup resistors are provided on the M[6:0] and N[1:0] inputs prevent the LVCMOS compatible control  
inputs from floating. The serial interface centers on a twelve bit shift register. The shift register shifts once per rising edge of the  
S_CLOCK input. The serial input S_DATA must meet setup and hold timing as specified in the AC Characteristics section of this  
document. The configuration latches will capture the value of the shift register on the HIGH-to-LOW edge of the S_LOAD input.  
Refer to the programming section for more information. The TEST output reflects various internal node values, and is controlled  
by the T[2:0] bits in the serial data stream. In order to minimize the PLL jitter, it is recommended to avoid active signal on the  
TEST output. The PWR_DOWN pin, when asserted, will synchronously divide the fOUT by 16. The power down sequence is  
clocked by the PLL reference clock, thereby causing the frequency reduction to happen relatively slowly. Upon de-assertion of  
the PWR_DOWN pin, the fOUT input will step back up to its programmed frequency in four discrete increments.  
© Freescale Semiconductor, Inc., 2005. All rights reserved.  
XTAL_IN  
XTAL_OUT  
1
0
XTAL  
÷1  
÷2  
÷4  
÷8  
11  
00  
01  
10  
1
0
÷16  
Ref  
10 – 20 MHz  
VCO  
÷2  
÷2  
fOUT  
fOUT  
OE  
PLL  
800 – 1800 MHz  
fREF_EXT  
VCC  
FB  
÷0 TO ÷127  
7-BIT M-DIVIDER  
XTAL_SEL  
÷2  
TEST  
TEST  
2
3
9
VCC  
M-LATCH  
N-LATCH  
T-LATCH  
LE  
P_LOAD  
S_LOAD  
P/S  
0
1
0
1
BITS 3-4  
BITS 0-2  
BITS 11-5  
S_DATA  
S_CLOCK  
12-BIT SHIFT REGISTER  
VCC  
M[0:6]  
N[1:0]  
PWR_DOWN  
OE  
Figure 1. MPC9239 Logic Diagram  
25  
24  
23  
22  
21  
20 19  
24 23 22 21 20 19 18 17  
S_CLOCK  
N[1]  
2
6
2
7
18  
17  
16  
15  
14  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
NC  
GND  
TEST  
VCC  
S_DATA  
S_LOAD  
N[0]  
M[3]  
M[2]  
NC  
2
8
1
VCC  
M[1]  
XTAL_SEL  
M[6]  
VCC_PLL  
MPC9239  
MPC9239  
GND  
fOUT  
fOUT  
VCC  
M[0]  
PWR_DOWN  
fREF_EXT  
2
3
4
P_LOAD  
OE  
M[5]  
13  
12  
XTAL_IN  
M[4]  
XTAL_OUT  
1
2
3
4
5
6
7
8
5
6
7
8
9
10 11  
Figure 2. MPC9239 28-Lead PLCC Pinout  
Figure 3. MPC9239 32-Lead LQFP Pinout  
(Top View)  
(Top View)  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
2
Table 1. Pin Configurations  
Pin  
XTAL_IN, XTAL_OUT  
fREF_EXT  
I/O  
Default  
Type  
Function  
Analog  
Crystal oscillator interface.  
Input  
Output  
Output  
Input  
0
LVCMOS Alternative PLL reference input.  
LVPECL Differential clock output.  
fOUT, fOUT  
TEST  
LVCMOS Test and device diagnosis output.  
LVCMOS PLL reference select input.  
XTAL_SEL  
PWR_DOWN  
1
0
Input  
LVCMOS Configuration input for power down mode. Assertion (deassertion) of power down  
will decrease (increase) the output frequency by a ratio of 16 in 4 discrete steps.  
PWR_DOWN assertion (deassertion) is synchronous to the input reference clock.  
S_LOAD  
P_LOAD  
Input  
Input  
0
1
LVCMOS Serial configuration control input. This inputs controls the loading of the  
configuration latches with the contents of the shift register. The latches will be  
transparent when this signal is high, thus the data must be stable on the high-to-low  
transition.  
LVCMOS Parallel configuration control input. this input controls the loading of the  
configuration latches with the content of the parallel inputs (M and N). The latches  
will be transparent when this signal is low, thus the parallel data must be stable on  
the low-to-high transition of P_LOAD. P_LOAD is state sensitive.  
S_DATA  
S_CLOCK  
M[0:6]  
Input  
Input  
Input  
0
0
1
LVCMOS Serial configuration data input.  
LVCMOS Serial configuration clock input.  
LVCMOS Parallel configuration for PLL feedback divider (M).  
M is sampled on the low-to-high transition of P_LOAD.  
N[1:0]  
OE  
Input  
Input  
1
1
LVCMOS Parallel configuration for Post-PLL divider (N).  
N is sampled on the low-to-high transition of P_LOAD.  
LVCMOS Output enable (active high).  
The output enable is synchronous to the output clock to eliminate the possibility of  
runt pulses on the fOUT output. OE = L low stops fOUT in the logic low stat  
(fOUT = L, fOUT = H).  
GND  
VCC  
Supply  
Supply  
Ground  
VCC  
Negative power supply (GND).  
Positive power supply for I/O and core. All VCC pins must be connected to the  
positive power supply for correct operation.  
VCC_PLL  
NC  
Supply  
VCC  
PLL positive power supply (analog power supply).  
Do not connect.  
Table 2. Output Frequency Range and PLL Post-Divider N  
N
VCO Output Frequency  
fOUT Frequency Range  
PWR_DOWN  
Division  
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
2
4
200 – 450 MHz  
100 – 225 MHz  
8
50 – 112.5 MHz  
1
400 – 900 MHz  
32  
64  
128  
16  
12.5 – 28.125 MHz  
6.25 – 14.0625 MHz  
3.125 – 7.03125 MHz  
25 – 56.25 MHz  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
3
Table 3. Function Table  
Input  
XTAL_SEL  
OE  
0
1
fREF_EXT  
XTAL interface  
Outputs enabled  
Outputs disabled. fOUT is stopped in the logic low state  
(fOUT = L, fOUT = H)  
PWR_DOWN  
Output divider ÷ 1  
Output divider ÷ 16  
Table 4. General Specifications  
Symbol  
VTT  
Characteristics  
Min  
Typ  
Max  
Unit  
V
Condition  
Output Termination Voltage  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch-Up Immunity  
VCC – 2  
MM  
200  
2000  
200  
V
HBM  
LU  
V
mA  
pF  
CIN  
Input Capacitance  
4.0  
Inputs  
θJA  
LQFP 32 Thermal Resistance Junction to Ambient  
JESD 51-3, single layer test board  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
JESD 51-6, 2S2P multilayer test board  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W Natural convection  
°C/W 100 ft/min  
°C/W 200 ft/min  
°C/W 400 ft/min  
°C/W 800 ft/min  
θJC  
LQFP 32 Thermal Resistance Junction to Case  
23.0  
26.3  
°C/W MIL-SPEC 883E  
Method 1012.1  
Table 5. Absolute Maximum Ratings(1)  
Symbol  
VCC  
VIN  
Characteristics  
Min  
–0.3  
–0.3  
–0.3  
Max  
3.9  
Unit  
V
Condition  
Supply Voltage  
DC Input Voltage  
DC Output Voltage  
DC Input Current  
DC Output Current  
Storage Temperature  
VCC + 0.3  
VCC + 0.3  
±20  
V
VOUT  
IIN  
IOUT  
TS  
V
mA  
mA  
°C  
±50  
–65  
125  
1. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these  
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated  
conditions is not implied.  
MPC9239  
Advanced Clock Drivers Devices  
4
Freescale Semiconductor  
Table 6. DC Characteristics (VCC = 3.3 V ± 5%, TA = 0°C to +70°C)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS Control Inputs (fREF_EXT, PWR_DOWN, XTAL_SEL, P_LOAD, S_LOAD, S_DATA, S_CLOCK, M[0:8], N[0:1]. OE)  
VIH  
VIL  
IIN  
Input High Voltage  
Input Low Voltage  
2.0  
VCC + 0.3  
0.8  
V
V
LVCMOS  
LVCMOS  
Input Current(1)  
±200  
µA  
VIN = VCC or GND  
(2)  
Differential Clock Output fOUT  
VOH  
VOL  
Output High Voltage(3)  
Output Low Voltage(3)  
VCC–1.02  
VCC–1.95  
VCC–0.74  
VCC–1.60  
V
V
LVPECL  
LVPECL  
Test and Diagnosis Output TEST  
VOH  
VOL  
Output High Voltage(3)  
Output Low Voltage(3)  
2.0  
V
V
IOH = –0.8 mA  
IOL = 0.8 mA  
0.55  
Supply Current  
ICC_PLL Maximum PLL Supply Current  
ICC Maximum Supply Current  
20  
mA VCC_PLL Pins  
mA All VCC Pins  
62  
100  
1. Inputs have pull-down resistors affecting the input current.  
2. Outputs terminated 50 to VTT = VCC – 2 V.  
3. The MPC9239 TEST output levels are compatible to the MC12429 output levels. The MPC9239 is capable of driving 25 loads.  
Table 7. AC Characteristics (VCC = 3.3 V ± 5%, TA = 0°C to +70°C)(1)  
Symbol  
fXTAL  
fVCO  
Characteristics  
Crystal Interface Frequency Range  
VCO Frequency Range(2)  
Min  
10  
Typ  
Max  
20  
Unit  
MHz  
MHz  
Condition  
800  
1800  
fMAX  
Output Frequency  
N = 11 (÷ 1)  
N = 00 (÷ 2)  
N = 01 (÷ 4)  
N = 10 (÷ 8)  
400  
300  
100  
50  
900  
450  
225  
MHz PWR_DOWN = 0  
MHz  
MHz  
MHz  
112.5  
fS_CLOCK Serial Interface Programming Clock Frequency(3)  
0
50  
10  
MHz  
ns  
tP,MIN  
DC  
Minimum Pulse Width  
Output Duty Cycle  
Output Rise/Fall Time  
Setup Time  
(S_LOAD, P_LOAD)  
45  
50  
55  
%
tr, tf  
tS  
0.05  
0.3  
ns  
20% to 80%  
S_DATA to S_CLOCK  
S_CLOCK to S_LOAD  
M, N to P_LOAD  
20  
20  
20  
ns  
ns  
ns  
tS  
Hold Time  
S_DATA to S_CLOCK  
M, N to P_LOAD  
20  
20  
ns  
ns  
tJIT(CC)  
Cycle-to-Cycle Jitter  
N = 11 (÷ 1)  
N = 00 (÷ 2)  
N = 01 (÷ 4)  
N = 10 (÷ 8)  
60  
90  
120  
160  
ps  
ps  
ps  
ps  
tJIT(PER)  
Period Jitter  
N = 11 (÷ 1)  
N = 00 (÷ 2)  
N = 01 (÷ 4)  
N = 10 (÷ 8)  
40  
65  
90  
ps  
ps  
ps  
ps  
120  
tLOCK  
Maximum PLL Lock Time  
10  
ms  
1. AC characteristics apply for parallel output termination of 50 to VTT  
.
2. The input frequency fXTAL and the PLL feedback divider M must match the VCO frequency range: fVCO = fXTAL 2 M.  
3. The frequency of S_CLOCK is limited to 10 MHz in serial programming mode. S_CLOCK can be switched at higher frequencies when used  
as test clock in test mode 6. Refer to the application section for more details.  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
5
Table 8. MPC9239 Frequency Operating Range (in MHz)  
Output frequency for fXTAL = 16 MHz and for N =  
VCO frequency for a crystal interface frequency of  
M
M[6:0]  
10 MHz 12 MHz 14 MHz 16 MHz 18 MHz 20 MHz  
1
2
4
8
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
...  
0010100  
0010101  
0010110  
0010111  
0011000  
0011001  
0011010  
0011011  
0011100  
0011101  
0011110  
0011111  
0100000  
0100001  
0100010  
0100011  
0100100  
0100101  
0100110  
0100111  
0101000  
0101001  
0101010  
0101011  
0101100  
0101101  
0101110  
0101111  
0110000  
0110001  
0110010  
0110011  
0110100  
0110101  
0110110  
0110111  
0111000  
0111001  
0111010  
0111011  
0111100  
0111101  
0111110  
0111111  
1000000  
800  
840  
880  
828  
864  
920  
960  
800  
832  
900  
1000  
1040  
1080  
1120  
1160  
1200  
1240  
1280  
1320  
1360  
1400  
1440  
1480  
1520  
1560  
1600  
1640  
1680  
1720  
1760  
1800  
400  
416  
432  
448  
464  
480  
496  
512  
528  
544  
560  
576  
592  
608  
624  
640  
656  
672  
688  
704  
720  
736  
752  
768  
784  
800  
816  
832  
848  
864  
880  
896  
200  
208  
216  
224  
232  
240  
248  
256  
264  
272  
280  
288  
296  
304  
312  
320  
328  
336  
344  
352  
360  
368  
376  
384  
392  
400  
408  
416  
424  
432  
440  
448  
100  
104  
108  
112  
116  
120  
124  
128  
132  
136  
140  
144  
148  
152  
156  
160  
164  
168  
172  
176  
180  
184  
188  
192  
196  
200  
204  
208  
212  
216  
220  
224  
50  
52  
936  
864  
972  
54  
812  
840  
896  
1008  
1044  
1080  
1116  
1152  
1188  
1224  
1260  
1296  
1332  
1368  
1404  
1440  
1476  
1512  
1548  
1584  
1620  
1656  
1692  
1728  
1764  
1800  
56  
928  
58  
875  
960  
60  
868  
992  
62  
896  
1024  
1056  
1088  
1120  
1152  
1184  
1216  
1248  
1280  
1312  
1344  
1376  
1408  
1440  
1472  
1504  
1536  
1568  
1600  
1632  
1664  
1696  
1728  
1760  
1792  
64  
924  
66  
816  
840  
952  
68  
980  
70  
864  
1008  
1036  
1064  
1092  
1120  
1148  
1176  
1204  
1232  
1260  
1288  
1316  
1344  
1372  
1400  
1428  
1456  
1484  
1512  
1540  
1568  
1596  
1624  
1652  
1680  
1736  
1764  
1764  
1792  
...  
72  
888  
74  
912  
76  
936  
78  
800  
820  
960  
80  
984  
82  
840  
1008  
1032  
1056  
1080  
1104  
1128  
1152  
1176  
1200  
1224  
1248  
1272  
1296  
1320  
1344  
1368  
1392  
1416  
1440  
1488  
1512  
1512  
1536  
...  
84  
860  
86  
880  
88  
900  
90  
920  
92  
940  
94  
960  
96  
980  
98  
1000  
1020  
1040  
1060  
1080  
1100  
1120  
1140  
1160  
1180  
1200  
1220  
1260  
1260  
1280  
...  
100  
102  
104  
106  
108  
110  
112  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
6
Programming the MPC9239  
is LOW the input latches will be transparent and any changes  
on the M[6:0] and N[1:0] inputs will affect the fOUT output pair.  
To use the serial port the S_CLOCK signal samples the  
information on the S_DATA line and loads it into a 12 bit shift  
register. Note that the P_LOAD signal must be HIGH for the  
serial load operation to function. The Test register is loaded  
with the first three bits, the N register with the next two, and  
the M register with the final eight bits of the data stream on  
the S_DATA input. For each register the most significant bit is  
loaded first (T2, N1, and M6). A pulse on the S_LOAD pin  
after the shift register is fully loaded will transfer the divide  
values into the counters. The HIGH to LOW transition on the  
S_LOAD input will latch the new divide values into the  
counters. Figure 4 illustrates the timing diagram for both a  
parallel and a serial load of the MPC9239 synthesizer.  
M[6:0] and N[1:0] are normally specified once at power-up  
through the parallel interface, and then possibly again  
through the serial interface. This approach allows the  
application to come up at one frequency and then change or  
fine-tune the clock as the ability to control the serial interface  
becomes available.  
Programming the MPC9239 amounts to properly  
configuring the internal PLL dividers to produce the desired  
synthesized frequency at the output. The output frequency  
can be represented by this formula:  
fOUT = (fXTAL ÷ 2) (M 4) ÷ (N 2) or  
fOUT = fXTAL M ÷ N  
where fXTAL is the crystal frequency, M is the PLL  
feedback-divider and N is the PLL post-divider. The input  
frequency and the selection of the feedback divider M is  
limited by the VCO-frequency range. fXTAL and M must be  
configured to match the VCO frequency range of 800 to 1800  
MHz in order to achieve stable PLL operation:  
(1)  
(2)  
MMIN = fVCO,MIN ÷ (2 fXTAL) and  
MMAX = fVCO,MAX ÷ (2 fXTAL  
(3)  
(4)  
)
For instance, the use of a 16 MHz input frequency requires  
the configuration of the PLL feedback divider between M = 25  
and M = 56. Table 8 shows the usable VCO frequency and M  
divider range for other example input frequencies.  
Assuming that a 16 MHz input frequency is used, equation  
(2) reduces to:  
Using the Test and Diagnosis Output TEST  
fOUT = 16 M ÷ N  
Substituting N for the four available values for N (1, 2, 4, 8)  
yields:  
The TEST output provides visibility for one of the several  
internal nodes as determined by the T[2:0] bits in the serial  
configuration stream. It is not configurable through the  
parallel interface. Although it is possible to select the node  
that represents fOUT, the LVCMOS output is not able to toggle  
fast enough for higher output frequencies and should only be  
used for test and diagnosis.  
Table 9. Output Frequency Range for fXTAL = 10 MHz  
N
fOUT  
fOUT Range  
fOUT Step  
1
0
0
1
1
0
0
1
0
1
Value  
The T2, T1, and T0 control bits are preset to ‘000' when  
P_LOAD is LOW so that the PECL fOUT outputs are as jitter-  
free as possible. Any active signal on the TEST output pin will  
have detrimental affects on the jitter of the PECL output pair.  
In normal operations, jitter specifications are only guaranteed  
if the TEST output is static. The serial configuration port can  
be used to select one of the alternate functions for this pin.  
Most of the signals available on the TEST output pin are  
useful only for performance verification of the MPC9239  
itself. However, the PLL bypass mode may be of interest at  
the board level for functional debug. When T[2:0] is set to 110  
the MPC9239 is placed in PLL bypass mode. In this mode the  
S_CLOCK input is fed directly into the M and N dividers. The  
N divider drives the fOUT differential pair and the M counter  
drives the TEST output pin. In this mode the S_CLOCK input  
could be used for low speed board level functional test or  
debug. Bypassing the PLL and driving fOUT directly gives the  
user more control on the test clocks sent through the clock  
tree shows the functional setup of the PLL bypass mode.  
Because the S_CLOCK is a CMOS level the input frequency  
is limited to 200 MHz. This means the fastest the fOUT pin can  
be toggled via the S_CLOCK is 100 MHz as the divide ratio  
of the Post-PLL divider is 2 (if N = 1). Note that the M counter  
output on the TEST output will not be a 50% duty cycle.  
2
4
8
1
8M  
4M  
200–450 MHz  
100–225 MHz  
50–112.5 MHz  
400–900 MHz  
8 MHz  
4 MHz  
2 MHz  
16 MHz  
2M  
16M  
Example Calculation for an 16 MHz Input Frequency  
For example, if an output frequency of 384 MHz was  
desired, the following steps would be taken to identify the  
appropriate M and N values. 384 MHz falls within the  
frequency range set by an N value of 2, so N[1:0]=00. For N  
= 2, fOUT = 8M, and M = fOUT ÷ 8. Therefore, M = 384 ÷ 8 =  
48, so M[6:0] = 0110000. Following this procedure a user can  
generate any whole frequency between 50 MHz and  
900 MHz. The size of the programmable frequency steps will  
be equal to:  
fSTEP = fXTAL ÷ N  
Using the Parallel and Serial Interface  
The M and N counters can be loaded either through a  
parallel or serial interface. The parallel interface is controlled  
via the P_LOAD signal such that a LOW to HIGH transition  
will latch the information present on the M[6:0] and N[1:0]  
inputs into the M and N counters. When the P_LOAD signal  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
7
Table 10. Test and Debug Configuration for TEST  
Table 11. Debug Configuration for PLL Bypass(1)  
T[2:0]  
Output  
fOUT  
Configuration  
TEST Output  
T2  
0
T1  
0
T0  
0
S_CLOCK ÷ N  
12-bit shift register out(1)  
TEST  
M-Counter out(2)  
0
0
1
Logic 1  
1. T[2:0] = 110. AC specifications do not apply in PLL bypass  
mode.  
2. Clocked out at the rate of S_CLOCK ÷ (2 N)  
0
1
0
fXTAL ÷ 2  
0
1
1
M-Counter out  
1
0
0
fOUT  
1
0
1
Logic 0  
1
1
0
M-Counter out in PLL-bypass mode  
1
1
1
fOUT ÷ 4  
1. Clocked out at the rate of S_CLOCK.  
S_CLOCK  
S_DATA  
S_LOAD  
M0  
T2 T1 T0 N1 N0 M6 M5 M4 M3 M2 M1  
First  
Bit  
Last  
Bit  
M[6:0]  
M, N  
N[1:0]  
P_LOAD  
Figure 4. Serial Interface Timing Diagram  
Power Supply Filtering  
voltage drop criteria. The RC filter pictured will provide a  
broadband filter with approximately 100:1 attenuation for  
noise whose spectral content is above 20 kHz. As the noise  
frequency crosses the series resonant point of an individual  
capacitor its overall impedance begins to look inductive and  
thus increases with increasing frequency. The parallel  
capacitor combination shown ensures that a low impedance  
path to ground exists for frequencies well above the  
bandwidth of the PLL. Generally, the resistor/capacitor filter  
will be cheaper, easier to implement and provide an adequate  
level of supply filtering. A higher level of attenuation can be  
achieved by replacing the resistor with an appropriate valued  
inductor. A 1000 µH choke will show a significant impedance  
at 10 kHz frequencies and above. Because of the current  
draw and the voltage that must be maintained on the VCC_PLL  
pin, a low DC resistance inductor is required (less than 15 ).  
The MPC9239 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if  
this noise is seen on the power supply pins. Random noise  
on the VCC_PLL pin impacts the device characteristics. The  
MPC9239 provides separate power supplies for the digital  
circuitry (VCC) and the internal PLL (VCC_PLL) of the device.  
The purpose of this design technique is to try and isolate the  
high switching noise digital outputs from the relatively  
sensitive internal analog phase-locked loop. In a controlled  
environment such as an evaluation board, this level of  
isolation is sufficient. However, in a digital system  
environment where it is more difficult to minimize noise on the  
power supplies a second level of isolation may be required.  
The simplest form of isolation is a power supply filter on the  
VCC_PLL pin for the MPC9239. Figure 5 illustrates a typical  
power supply filter scheme. The MPC9239 is most  
susceptible to noise with spectral content in the 1 kHz to  
1 MHz range. Therefore, the filter should be designed to  
target this range. The key parameter that needs to be met in  
the final filter design is the DC voltage drop that will be seen  
between the VCC supply and the MPC9239 pin of the  
MPC9239. From the data sheet, the VCC_PLLcurrent (the  
current sourced through the VCC_PLL pin) is maximum  
20 mA, assuming that a minimum of 2.835 V must be  
maintained on the VCC_PLL pin. The resistor shown in  
Figure 5 must have a resistance of 10-15 to meet the  
RF = 10-15 Ω  
VCC_PLL  
MPC9239  
VCC  
C2  
CF = 22 µF  
VCC  
C1, C2 = 0.01...0.1 µF  
C1  
Figure 5. VCC_PLL Power Supply Filter  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
8
Layout Recommendations  
Using the On-Board Crystal Oscillator  
The MPC9239 provides sub-nanosecond output edge  
rates and thus a good power supply bypassing scheme is a  
must. Figure 6 shows a representative board layout for the  
MPC9239. There exists many different potential board  
layouts and the one pictured is but one. The important aspect  
of the layout in Figure 6 is the low impedance connections  
between VCC and GND for the bypass capacitors. Combining  
good quality general purpose chip capacitors with good PCB  
layout techniques will produce effective capacitor resonances  
at frequencies adequate to supply the instantaneous  
The MPC9239 features a fully integrated on-board crystal  
oscillator to minimize system implementation costs. The  
oscillator is a series resonant, multivibrator type design as  
opposed to the more common parallel resonant oscillator  
design. The series resonant design provides better stability  
and eliminates the need for large on chip capacitors. The  
oscillator is totally self contained so that the only external  
component required is the crystal. As the oscillator is  
somewhat sensitive to loading on its inputs the user is  
advised to mount the crystal as close to the MPC9239 as  
possible to avoid any board level parasitics. To facilitate co-  
location surface mount crystals are recommended, but not  
required. Because the series resonant design is affected by  
capacitive loading on the XTAL terminals loading variation  
introduced by crystals from different vendors could be a  
potential issue. For crystals with a higher shunt capacitance  
it may be required to place a resistance across the terminals  
to suppress the third harmonic. Although typically not  
required it is a good idea to layout the PCB with the provision  
of adding this external resistor. The resistor value will typically  
be between 500 and 1K.  
The oscillator circuit is a series resonant circuit and thus  
for optimum performance a series resonant crystal should be  
used. Unfortunately most crystals are characterized in a  
parallel resonant mode. Fortunately there is no physical  
difference between a series resonant and a parallel resonant  
crystal. The difference is purely in the way the devices are  
characterized. As a result a parallel resonant crystal can be  
used with the MPC9239 with only a minor error in the desired  
frequency. A parallel resonant mode crystal used in a series  
resonant circuit will exhibit a frequency of oscillation a few  
hundred ppm lower than specified, a few hundred ppm  
translates to kHz inaccuracies. In a general computer  
application this level of inaccuracy is immaterial. Table 12  
below specifies the performance requirements of the crystals  
to be used with the MPC9239.  
switching current for the MPC9239 outputs. It is imperative  
that low inductance chip capacitors are used; it is equally  
important that the board layout does not introduce back all of  
the inductance saved by using the leadless capacitors. Thin  
interconnect traces between the capacitor and the power  
plane should be avoided and multiple large vias should be  
used to tie the capacitors to the buried power planes. Fat  
interconnect and large vias will help to minimize layout  
induced inductance and thus maximize the series resonant  
point of the bypass capacitors. Note the dotted lines circling  
the crystal oscillator connection to the device. The oscillator  
is a series resonant circuit and the voltage amplitude across  
the crystal is relatively small. It is imperative that no actively  
switching signals cross under the crystal as crosstalk energy  
coupled to these lines could significantly impact the jitter of  
the device. Special attention should be paid to the layout of  
the crystal to ensure a stable, jitter free interface between the  
crystal and the on—board oscillator. Although the MPC9239  
has several design features to minimize the susceptibility to  
power supply noise (isolated power and grounds and fully  
differential PLL), there still may be applications in which  
overall performance is being degraded due to system power  
supply noise. The power supply filter and bypass schemes  
discussed in this section should be adequate to eliminate  
power supply noise related problems in most designs.  
C1  
C1  
Table 12. Recommended Crystal Specifications  
Parameter  
Value  
Fundamental AT Cut  
Series Resonance*  
±75 ppm at 25°C  
±150 pm 0 to 70°C  
0 to 70°C  
Crystal Cut  
Resonance  
Frequency Tolerance  
Frequency/Temperature Stability  
Operating Range  
1
CF  
C2  
Shunt Capacitance  
5-7 pF  
Equivalent Series Resistance (ESR)  
Correlation Drive Level  
Aging  
50 to 80 Ω  
100 µW  
5ppm/Yr (First 3 Years)  
XTAL  
= VCC  
* See accompanying text for series versus parallel resonant  
discussion.  
= GND  
= Via  
Figure 6. PCB Board Layout Recommendation  
for the PLCC28 Package  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
9
PACKAGE DIMENSIONS  
M
S
S
S
0.007 (0.180)  
T
L-M  
N
B
Y BRK  
D
-N-  
M
S
N
0.007 (0.180)  
T L-M  
U
Z
-M-  
-L-  
W
D
S
S
S
N
0.010 (0.250)  
T L-M  
X
G1  
V
28  
1
VIEW D-D  
M
S
S
N
A
0.007 (0.180)  
0.007 (0.180)  
T L-M  
M
S
S
N
0.007 (0.180)  
T
L-M  
H
Z
M
S
S
N
T
L-M  
R
C
K1  
E
0.004 (0.100)  
G
K
SEATING  
PLANE  
-T-  
J
M
S
S
N
0.007 (0.180)  
VIEW S  
T L-M  
F
VIEW S  
G1  
S
S
S
N
0.010 (0.250)  
T L-M  
NOTES:  
1. DATUMS -L-, -M-, AND -N- DETERMINED  
WHERE TOP OF LEAD SHOULDER EXISTS  
PLASTIC BODY AT MOLD PARTING LINE.  
2. DIMENSION G1, TRUE POSITION TO BE  
MEASURED AT DATUM -T-, SEATING PLANE.  
3. DIMENSIONS R AND U DO NOT INCLUDE  
MOLD FLASH. ALLOWABLE MOLD FLASH IS  
0.010 (0.250) PER SIDE.  
4. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
5. CONTROLLING DEMENSION: INCH.  
6. THE PACKAGE TOP MAY BE SMALLER THAN  
THE PACKAGE BOTTOM BY UP TO 0.012  
(0.300). DIMENSIONS R AND U ARE  
DETERMINED AT THE OUTERMOST  
EXTREMES OF THE PLASTIC BODY  
EXCLUSIVE OF MOLD FLASH, TIE BAR  
BURRS, GATE BURRS AND INTERLEAD  
FLASH, BUT INCLUDING ANY MISMATCH  
BETWEEN THE TOP AND BOTTOM OF THE  
PLASITC BODY.  
7. DIMENSION H DOES NOT INCLUDE DAMBAR  
PROTRUSION OR INTRUSION. THE DAMBAR  
PROTRUSION(S) SHALL NOT CAUSE THE H  
DIMENSION TO BE GREATER THAN 0.037  
(0.940). THE DAMBAR INTRUSION(S) SHALL  
NOT CAUSE THE H DIMENSION TO BE  
SMALLER THAN 0.025 (0.635).  
INCHES  
MILLIMETERS  
DIM  
A
B
C
E
F
G
H
J
K
R
U
V
W
X
Y
Z
G1  
K1  
MIN  
MAX MIN  
0.495 12.32  
0.495 12.32  
MAX  
12.57  
12.57  
4.57  
0.485  
0.485  
0.165  
0.090  
0.013  
0.180  
0.110  
0.019  
4.20  
2.29  
0.33  
2.79  
0.48  
0.050 BSC  
1.27 BSC  
0.026  
0.020  
0.025  
0.450  
0.450  
0.042  
0.042  
0.042  
---  
0.032  
---  
0.66  
0.51  
0.64  
0.81  
---  
---  
---  
0.456 11.43  
0.456 11.43  
11.58  
11.58  
1.21  
1.21  
1.42  
0.50  
10˚  
0.048  
0.048  
0.056  
0.020  
10˚  
1.07  
1.07  
1.07  
---  
2˚  
2˚  
0.410  
0.040  
0.430 10.42  
--- 1.02  
10.92  
---  
CASE 776-02  
ISSUE D  
28-LEAD PLCC PACKAGE  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
10  
PACKAGE DIMENSIONS  
PAGE 1 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MPC9239  
11  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
PACKAGE DIMENSIONS  
PAGE 2 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MPC9239  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
12  
PACKAGE DIMENSIONS  
PAGE 3 OF 3  
CASE 873A-04  
ISSUE C  
32-LEAD LQFP PACKAGE  
MPC9239  
13  
Advanced Clock Drivers Devices  
Freescale Semiconductor  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Semiconductor was negligent regarding the design or manufacture of the part.  
Denver, Colorado 80217  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
MPC9239  
Rev. 3  
08/2005  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY