MPC9600FAR2 [NXP]

9600 SERIES, PLL BASED CLOCK DRIVER, 21 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, PLASTIC, LQFP-48;
MPC9600FAR2
型号: MPC9600FAR2
厂家: NXP    NXP
描述:

9600 SERIES, PLL BASED CLOCK DRIVER, 21 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP48, PLASTIC, LQFP-48

驱动 输出元件
文件: 总12页 (文件大小:368K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
ꢀꢁꢂ ꢁ ꢃꢁ ꢄꢅ  
Order Number: MPC9600/D  
Rev. 2, 11/2001  
SEMICONDUCTOR TECHNICAL DATA  
ꢏꢐ ꢈ ꢋ ꢑꢒ ꢓ ꢏꢓ ꢈ  
The MPC9600 is a low voltage 2.5 V or 3.3 V compatible, 1:21 PLL  
based clock driver and fanout buffer. With output frequencies up to 200  
MHz and output skews of 150 ps, the device meets the needs of the most  
demanding clock tree applications.  
2
Features:  
Multiplication of input frequency by 2, 3, 4 and 6  
3.3 V OR 2.5 V  
LOW VOLTAGE CMOS  
PLL CLOCK DRIVER  
Distribution of output frequency to 21 outputs organized in three output  
banks: QA0-QA6, QB0-QB6, QC0-QC6, each fully selectable  
Fully integrated PLL  
Selectable output frequency range is 50 to 100 MHz and 100 to 200 MHz  
Selectable input frequency range is 16.67 to 33 MHz and 25 to 50 MHz  
LVCMOS outputs  
Outputs disable to high impedance (except QFB)  
LVCMOS or LVPECL reference clock options  
48 lead QFP packaging  
50 ps cycle-to-cycle jitter  
150 ps maximum output-to-output skew  
200 ps maximum static phase offset window  
FA SUFFIX  
48–LEAD LQFP PACKAGE  
CASE 932–03  
The MPC9600 is a fully LVCMOS 2.5 V or 3.3 V compatible PLL clock  
driver. The MPC9600 has the capability to generate clock signals of 50 to  
200 MHz from clock sources of 16.67 to 50 MHz. The internal PLL is  
optimized for this frequency range and does not require external loop filter  
components. QFB provides an output for the external feedback path to  
the feedback input FB_IN. The QFB divider ratio is configurable and de-  
termines the PLL frequency multiplication factor when QFB is directly  
connected to FB_IN. The MPC9600 is optimized for minimizing the prop-  
agation delay between the clock input and FB_IN.  
Three output banks of 7 outputs each bank can be individually configured to divide the VCO frequency by 2 or by 4. Combining  
the feedback and output divider ratios, the MPC9600 is capable to multiply the input frequency by 2, 3, 4 and 6.  
The reference clock is selectable either LVPECL or LVCMOS. The LVPECL reference clock feature allows the designer to use  
LVPECL fanout buffers for the inner branches of the clock distribution tree. All control inputs accept LVCMOS compatible levels.  
The outputs provide low impedance LVCMOS outputs capable of driving parallel terminated 50 transmission to VTT=VCC/2.  
For series terminated lines the MPC9600 can drive two lines per output giving the device an effective total fanout of 1:42. With  
guaranteed maximum output-to-output skew of 150 ps, the MPC9600 PLL clock driver meets the synchronization requirements  
of the most demanding systems.  
The VCCA analog power pin doubles as a PLL bypass select line for test purpose. When the VCCA is driven to GND the refer-  
ence clock will bypass the PLL.  
The device is packaged in a 48-lead LQFP package to provide optimum combination of board density and performance.  
Rev 2  
174  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
ꢎ ꢁꢁ  
7
(pulldown)  
(pulldn)  
0
1
0
1
ꢁ ꢁ ꢂ ꢃ  
ꢑ ꢈꢒ  
ꢑ ꢈꢜ  
ꢉ ꢕꢖ ꢗ ꢈ  
/2  
0
1
Ref  
FB  
ꢀꢁ ꢂ ꢃ  
ꢀꢁ ꢂ ꢃ  
D
Q
/4  
/8  
ꢑ ꢈꢛ  
ꢑ ꢈꢚ  
Vcc/2  
(pullup)  
200 - 400 MHz  
/12  
ꢋ ꢅꢆ ꢊꢇꢅꢂ  
ꢆ ꢉꢊꢌ ꢍ  
(pulldown)  
(pullup)  
2
ꢑ ꢈꢙ  
ꢑ ꢈꢘ  
ꢆ ꢇꢅꢂꢈ  
0
1
D
Q
7
7
(pullup)  
(pullup)  
ꢆ ꢇꢅꢂꢉ  
ꢆ ꢇꢅꢂ ꢁ  
0
1
D
Q
0
1
D
Q
(pullup)  
ꢆ ꢇꢅꢂ ꢊꢆ ꢉ  
ꢄꢅ  
(pulldown)  
8
Figure 1. MPC9600 Logic Diagram  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
175  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
PIN CONFIGURATION  
Pin  
PCLK, PCLK  
CCLK  
FB_IN  
QAn  
I/O  
Type  
PECL  
Description  
Input  
Input  
Input  
Output  
Output  
Output  
Output  
Input  
Input  
Input  
Input  
Input  
Input  
Differential reference clock frequency input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Power supply  
Power supply  
Ground  
Reference clock input  
PLL feedback clock input  
Bank A outputs  
QBn  
Bank B outputs  
QCn  
Bank C outputs  
2
QFB  
Differential feedback output  
REF_SEL  
FSELA  
FSELB  
FSELC  
FSEL_FB  
OE  
Reference clock input select  
Selection of bank A output frequency  
Selection of bank B output frequency  
Selection of bank C output frequency  
Selection of feedback frequency  
Output enable  
VCCA  
VCC  
Analog power supply and PLL bypass. An external VCC filter is recommended for VCCA  
Core power supply  
GND  
Ground  
ꢚꢡ  
ꢚꢢ  
ꢚꢣ  
ꢙꢒ  
ꢙꢜ  
ꢙꢛ  
ꢙꢚ  
ꢙꢙ  
ꢙꢘ  
ꢙꢔ  
ꢙꢡ  
ꢙꢢ  
ꢛ ꢙ  
ꢛ ꢚ  
ꢛ ꢛ  
ꢛ ꢜ  
ꢛ ꢒ  
ꢜ ꢣ  
ꢜ ꢢ  
ꢜ ꢡ  
ꢜ ꢔ  
ꢜ ꢘ  
ꢜ ꢙ  
ꢜ ꢚ  
ꢏ ꢍꢐ  
ꢑ ꢁꢒ  
ꢑ ꢁꢜ  
ꢑ ꢁꢛ  
ꢎ ꢁꢁ  
ꢑ ꢁꢚ  
ꢑ ꢁꢙ  
ꢏ ꢍꢐ  
ꢑ ꢁꢘ  
ꢑ ꢁꢔ  
ꢄ ꢅ  
ꢎ ꢁꢁ  
ꢑ ꢈꢔ  
ꢑ ꢈꢘ  
ꢑ ꢈꢙ  
ꢏ ꢍꢐ  
ꢑ ꢈꢚ  
ꢑ ꢈꢛ  
ꢎ ꢁꢁ  
MPC9600  
ꢑ ꢈꢜ  
ꢑ ꢈꢒ  
ꢆ ꢉꢊ ꢌꢍ  
ꢏ ꢍꢐ  
Figure 2. 48 Lead Package Pinout (Top View)  
176  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
FUNCTION TABLE (CONTROLS)  
Control Pin  
REF_SEL  
VCCA  
0
1
CCLK  
PCLK  
1
PLL Bypass  
PLL Power  
OE  
Outputs Enabled  
Outputs Disabled (except QFB)  
Output Bank A at VCO/4  
Output Bank B at VCO/4  
Output Bank C at VCO/4  
Feedback Output at VCO/12  
FSELA  
Output Bank A at VCO/2  
Output Bank B at VCO/2  
Output Bank C at VCO/2  
Feedback Output at VCO/8  
FSELB  
FSELC  
FSEL_FB  
2
1. V  
= GND, PLL off and bypassed for static test and diagnosis  
CCA  
Table 1: ABSOLUTE MAXIMUM RATINGS*  
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
V
V
Supply Voltage  
–0.3  
–0.3  
–0.3  
4.6  
CC  
IN  
DC Input Voltage  
V
V
+ 0.3  
V
CC  
CC  
DC Output Voltage  
DC Input Current  
+ 0.3  
20  
V
OUT  
I
I
mA  
mA  
°C  
IN  
OUT  
DC Output Current  
Storage Temperature Range  
50  
T
–40  
125  
Stor  
* Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or condi-  
tions beyond those indicated may adversely affect device reliability. Functional operation under absolute–maximum–rated conditions is not im-  
plied.  
Table 2: GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
B 2  
Max  
Unit  
V
Condition  
V
TT  
V
CC  
MM  
HBM  
CDM  
LU  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
ESD Protection (Charged Device Model)  
Latch–Up Immunity  
400  
4000  
1500  
200  
V
V
V
mA  
pF  
pF  
C
Power Dissipation Capacitance  
Input Capacitance  
10  
Per output  
Inputs  
PD  
C
4.0  
IN  
Table 3: DC CHARACTERISTICS (VCC = 3.3 V 5%, TA = –40° to +85°C)  
Symbol  
Characteristics  
Input High Voltage  
Min  
Typ  
Max  
+ 0.3  
CC  
Unit  
V
Condition  
V
V
V
V
V
V
2.0  
V
LVCMOS  
IH  
Input Low Voltage  
0.8  
V
LVCMOS  
LVPECL  
LVPECL  
IL  
Peak-to-peak Input Voltage (DC)  
Common Mode Range (DC)  
Output High Voltage  
PCLK, PCLK  
PCLK, PCLK  
250  
1.0  
2.4  
mV  
V
PP  
CMR  
OH  
OL  
a
V
CC  
-0.6  
b
V
I
=-24 mA  
OH  
Output Low Voltage  
0.55  
0.30  
V
V
I
OL  
I
OL  
= 24mA  
= 12mA  
Z
I
Output Impedance  
14 – 17  
2.0  
W
OUT  
Input Leakage Current  
150  
5.0  
1.0  
µA  
mA  
mA  
V
V
= V or GND  
CC  
IN  
IN  
I
Maximum PLL Supply Current  
Maximum Quiescent Supply Current  
Pin  
CCA  
CCA  
CCQ  
I
All V Pins  
CC  
a. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
range  
CMR  
CMR  
and the input swing lies within the V (DC) specification.  
PP  
b. The MPC9600 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated transmis-  
sion line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines.  
TT  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
177  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
Table 4: DC CHARACTERISTICS (VCC = 2.5 V 5%, TA = –40° to +85°C)  
Symbol  
Characteristics  
Input High Voltage  
Min  
Typ  
Max  
V + 0.3  
CC  
Unit  
V
Condition  
LVCMOS  
V
V
V
V
V
V
1.7  
IH  
Input Low Voltage  
0.7  
V
LVCMOS  
LVPECL  
LVPECL  
IL  
Peak-to-peak input voltage (DC)  
Common Mode Range (DC)  
Output High Voltage  
PCLK, PCLK  
PCLK, PCLK  
250  
1.0  
1.8  
mV  
V
PP  
a
V
CC  
-0.6  
CMR  
OH  
OL  
b
V
I =-15 mA  
OH  
2
Output Low Voltage  
0.6  
V
I = 15 mA  
OL  
Z
I
Output Impedance  
17 – 20  
3.0  
W
OUT  
Input Leakage Current  
150  
5.0  
1.0  
µA  
mA  
mA  
V
V
= V or GND  
CC  
IN  
IN  
I
Maximum PLL Supply Current  
Maximum Quiescent Supply Current  
Pin  
CCA  
CCA  
CCQ  
I
All V Pins  
CC  
a. V  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
range  
CMR  
CMR  
and the input swing lies within the V (DC) specification.  
PP  
b. The MPC9600 is capable of driving 50 transmission lines on the incident edge. Each output drives one 50 parallel terminated trans-  
mission line to a termination voltage of V . Alternatively, the device drives up to two 50 series terminated transmission lines per output.  
TT  
Table 5: AC CHARACTERISTICS (VCC = 3.3 V 5% or VCC = 2.5 V 5%, TA = –40° to +85°C)a  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
f
ref  
Input Frequency  
B8 feedback (FSEL_FB=0)  
B12 feedback (FSEL_FB=1)  
25  
16.67  
50  
33  
MHz  
MHz  
PLL locked  
PLL locked  
Static test mode (VCCA = GND)  
0
500  
400  
MHz  
MHz  
VCCA = GND  
f
f
VCO Frequency  
200  
VCO  
Maximum Output Frequency  
MAX  
B2 outputs (FSELx=0)  
B4 outputs (FSELx=1)  
100  
50  
200  
100  
MHz  
MHz  
PLL locked  
PLL locked  
f
Reference Input Duty Cycle  
Peak-to-peak Input Voltage  
Common Mode Range  
25  
75  
%
refDC  
V
PCLK, PCLK  
500  
1000  
mV  
LVPECL  
PP  
V
b
CMR  
PCLK, PCLK (VCC = 3.3 V 5%)  
PCLK, PCLK (VCC = 2.5 V 5%)  
1.2  
1.2  
V
CC  
V
CC  
-0.8  
-0.6  
V
V
LVPECL  
LVPECL  
t , t  
CCLK Input Rise/Fall Time  
Propagation Delay (static phase offset)  
1.0  
ns  
see Figure 12  
r
f
t
(
)
CCLK to FB_IN  
PECL_CLK to FB_IN  
–60  
+30  
+40  
+130  
+140  
+230  
ps  
ps  
PLL locked  
PLL locked  
t
Output-to-output Skew  
sk(o)  
all outputs, single frequency  
all outputs, multiple frequency  
70  
70  
150  
150  
ps  
ps  
Measured at  
coincident  
rising edge  
within QAx output bank  
within QBx outputs  
within QCx outputs  
30  
40  
30  
75  
125  
75  
ps  
ps  
ps  
DC  
t , t  
Output Duty Cycle  
Output Rise/Fall Time  
Output Disable Time  
Output Enable Time  
45  
50  
55  
1.0  
10  
10  
%
ns  
ns  
ns  
0.1  
see Figure 12  
r
f
t
t
PLZ, HZ  
PZL, ZH  
BW  
PLL Closed Loop Bandwidth  
B8 feedback (FSEL_FB=0)  
B12 feedback (FSEL_FB=1)  
–3 dB point of  
PLL transfer  
characteristic  
1.0 – 10  
0.6 – 4.0  
MHz  
MHz  
178  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
Table 5: AC CHARACTERISTICS (VCC = 3.3 V 5% or VCC = 2.5 V 5%, TA = –40° to +85°C)a  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
c
t
Cycle-to-cycle Jitter  
See application  
section for  
other  
JIT(CC)  
All outputs in B2 configuration  
All outputs in B4 configuration  
40  
40  
130  
180  
ps  
ps  
configurations  
c
t
Period Jitter  
See application  
section for  
other  
JIT(PER)  
All outputs in B2 configuration  
All outputs in B4 configuration  
25  
20  
70  
100  
ps  
ps  
configurations  
2
d
t
t
I/O Phase Jitter (1 s)  
V
CC  
V
CC  
= 3.3V  
= 2.5V  
17  
ps  
ps  
RMS value at  
JIT(  
)
c
15  
f =400MHz  
VCO  
Maximum PLL Lock Time  
5.0  
ms  
LOCK  
a. AC characteristics are applicable over the entire ambient temperature and supply voltage range and are production tested. AC characteris-  
tics apply for parallel output termination of 50 to V  
.
TT  
b. V  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
range  
CMR  
CMR  
and the input swing lies within the V (AC) specification. Violation of V  
or V impacts static phase offset t  
PP (  
PP  
CMR  
).  
c. Cycle–to–cycle and period jitter depends on output divider configuration.  
d. See applications section for max I/O phase jitter versus frequency.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
179  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
APPLICATIONS INFORMATION  
Programming the MPC9600  
tions, the table describes the outputs using the input clock fre-  
quency CLK as a reference.  
The MPC9600 clock driver outputs can be configured into  
several divider modes. Additionally the external feedback of  
the device allows for flexibility in establishing various input to  
output frequency relationships. The selectable feedback divid-  
er of the three output groups allows the user to configure the  
device for 1:2, 1:3, 1:4 and 1:6 input:output frequency ratios.  
The use of even dividers ensure that the output duty cycle is  
The feedback divider division settings establish the output  
relationship, in addition, it must be ensured that the VCO will  
be stable given the frequency of the outputs desired. The feed-  
back frequency should be used to situate the VCO into a fre-  
quency range in which the PLL will be stable. The design of the  
PLL supports output frequencies from 50 MHz to 200 MHz  
while the VCO frequency range is specified from 200 MHz to  
2
always 50%. Table 6 illustrates the various output configura- 400 MHz and should not be exceeded for stable operation.  
Table 6: Output Frequency Relationshipa for QFB connected to FB_IN  
Input  
Frequency  
Range CLK  
[MHz]  
Configuration Inputs  
Output Frequency Ratio and Range  
FSEL_FB  
FSELA  
FSELB  
FSELC  
Ratio, QAx [MHz]  
Ratio, QBx [MHz]  
Ratio, QCx [MHz]  
4SCLK (100–200)  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
4SCLK (100–200)  
4SCLK (100–200)  
4SCLK (100–200)  
4SCLK (100–200) 2SCLK (50.0–100)  
4SCLK (100–200) 2SCLK (50.0–100) 4SCLK (100–200)  
4SCLK (100–200) 2SCLK (50.0–100) 2SCLK (50.0–100)  
25.0–50.0  
2SCLK (50.0–100)  
4SCLK (100–200)  
4SCLK (100–200)  
2SCLK (50.0–100) 4SCLK (100–200) 2SCLK (50.0–100)  
2SCLK (50.0–100) 2SCLK (50.0–100) 4SCLK (100–200)  
2SCLK (50.0–100) 2SCLK (50.0–100) 2SCLK (50.0–100)  
6SCLK (100–200)  
6SCLK (100–200)  
6SCLK (100–200)  
6SCLK (100–200)  
6SCLK (100–200) 3SCLK (50.0–100)  
6SCLK (100–200) 3SCLK (50.0–100) 6SCLK (100–200)  
6SCLK (100–200) 3SCLK (50.0–100) 3SCLK (50.0–100)  
16.67–33.33  
3SCLK (50.0–100) 6SCLK (100–200)  
6SCLK (100–200)  
3SCLK (50.0–100) 6SCLK (100–200) 3SCLK (50.0–100)  
3SCLK (50.0–100) 3SCLK (50.0–100) 6SCLK (100–200)  
3SCLK (50.0–100) 3SCLK (50.0–100) 3SCLK (50.0–100)  
a. Output frequency relationship with respect to input reference frequency CLK. The VCO frequency range is always 200–400.  
Typical and Maximum Period Jitter Specification  
QA0 to QA6  
QB0 to QB6  
QC0 to QC6  
Device Configuration  
Typ  
Max  
Typ  
Max  
Typ  
Max  
a
All output banks in B2 or B4 divider configuration  
B2 (FSELA=0 and FESLB=0 and FSELC=0)  
B4 (FSELA=1 and FESLB=1 and FSELC=1)  
25  
20  
50  
70  
50  
50  
70  
100  
25  
20  
50  
70  
b
Mixed B2/B4 divider configurations  
for output banks in B2 divider configurations  
for output banks in B4 divider configurations  
80  
25  
130  
70  
100  
60  
150  
100  
80  
25  
130  
70  
a. In this configuration, all MPC9600 outputs generate the same clock frequency. See Figure 1 for an example configuration.  
b. Multiple frequency generation. Jitter data are specified for each output divider sepeerately. See Figure 2 for an example.  
Typical and Maximum Cycle–to–cycle Jitter Specification  
QA0 to QA6  
QB0 to QB6  
QC0 to QC6  
Device Configuration  
Typ  
Max  
Typ  
Max  
Typ  
Max  
a
All output banks in B2 or B4 divider configuration  
B2 (FSELA=0 and FESLB=0 and FSELC=0)  
B4 (FSELA=1 and FESLB=1 and FSELC=1)  
40  
40  
90  
110  
80  
120  
130  
180  
40  
40  
90  
110  
b
Mixed B2/B4 divider configurations  
for output banks in B2 divider configurations  
for output banks in B4 divider configurations  
150  
30  
250  
110  
200  
120  
280  
180  
150  
30  
250  
110  
a. In this configuration, all MPC9600 outputs generate the same clock frequency.  
b. Multiple frequency generation. Jitter data are specified for each output divider sepeerately.  
180  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
Figure 3. Configuration for 125 MHz clocks  
Figure 4. Configuration for 133.3/66.67 MHz clocks  
ꢥ ꢦꢝ ꢥ ꢧ ꢛ ꢒꢨ ꢢꢚ ꢚ ꢤꢩ ꢪ  
ꢥ ꢦꢝ ꢥ ꢧ ꢚ ꢚꢨ ꢚ ꢚ ꢤꢩ ꢪ  
ꢁ ꢁꢂꢃ  
ꢑ ꢈꢒ ꢓꢔ  
ꢑ ꢉꢒ ꢓꢔ  
ꢑ ꢁꢒ ꢓꢔ  
ꢜꢛꢘ ꢤꢩ ꢪ  
ꢜꢛꢘ ꢤꢩ ꢪ  
ꢜꢛꢘ ꢤꢩ ꢪ  
ꢁꢁꢂ ꢃ  
ꢑ ꢈ ꢒꢓ ꢔ  
ꢑ ꢉ ꢒꢓ ꢔ  
ꢑ ꢁꢒ ꢓꢔ  
ꢜ ꢚ ꢚ ꢨꢚ ꢤꢩ ꢪ  
ꢔ ꢔ ꢨꢔ ꢡ ꢤꢩ ꢪ  
ꢔ ꢔ ꢨꢔ ꢡ ꢤꢩ ꢪ  
ꢆꢉ ꢊꢌ ꢍ  
ꢆꢉ ꢊ ꢌꢍ  
ꢆꢇ ꢅꢂ ꢊꢆꢉ  
ꢆꢇ ꢅ ꢂꢊ ꢆꢉ  
ꢆꢇ ꢅꢂ ꢈ  
ꢆꢇ ꢅꢂ ꢉ  
ꢆꢇ ꢅꢂ ꢁ  
ꢆꢇ ꢅ ꢂꢈ  
ꢆꢇ ꢅ ꢂꢉ  
ꢆꢇ ꢅ ꢂꢁ  
ꢑ ꢆꢉ  
2
ꢤ ꢀꢁ ꢣꢔ ꢒꢒ  
ꢛꢒ ꢨꢢ ꢚꢚ ꢤ ꢩꢪ ꢫꢆ ꢝꢝꢞ ꢟꢕꢠ ꢗꢬ  
Frequency range  
Input  
Min  
Max  
Frequency range  
Input  
Min  
Max  
16.67 MHz  
100 MHz  
100 MHz  
100 MHz  
33.33 MHz  
200 MHz  
200 MHz  
200 MHz  
25 MHz  
100 MHz  
100 MHz  
100 MHz  
50 MHz  
200 MHz  
200 MHz  
200 MHz  
QA outputs  
QB outputs  
QC outputs  
QA outputs  
QB outputs  
QC outputs  
Power Supply Filtering  
The MPC9600 is a mixed analog/digital product. Its analog  
circuitry is naturally susceptible to random noise, especially if  
this noise is seen on the power supply pins. Random noise on  
the VCCA (PLL) power supply impacts the device characteris-  
tics, for instance I/O jitter. The MPC9600 provides separate  
power supplies for the output buffers (VCC) and the phase-  
locked loop (VCCA) of the device.The purpose of this design  
technique is to isolate the high switching noise digital outputs  
from the relatively sensitive internal analog phase-locked loop.  
In a digital system environment where it is more difficult to  
minimize noise on the power supplies a second level of isola-  
tion may be required. The simple but effective form of isolation  
is a power supply filter on the VCCA pin for the MPC9600. Fig-  
ure 5 illustrates a typical power supply filter scheme. The  
MPC9600 frequency and phase stability is most susceptible to  
noise with spectral content in the 100kHz to 20MHz range.  
Therefore the filter should be designed to target this range.  
The key parameter that needs to be met in the final filter design  
is the DC voltage drop across the series filter resistor RF. From  
the data sheet the ICCA current (the current sourced through  
the VCCA pin) is typically 3 mA (5 mA maximum), assuming  
that a minimum of 2.325 V (VCC=3.3 V or VCC=2.5 V) must be  
maintained on the VCCA pin. The resistor RF shown in Figure 5  
“VCCA Power Supply Filter” must have a resistance of 9-10 W  
(VCC=2.5 V) to meet the voltage drop criteria.  
µ
ꢀꢁꢂꢃꢄꢅꢅ  
Figure 5. VCCA Power Supply Filter  
As the noise frequency crosses the series resonant point of  
an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The  
parallel capacitor combination shown ensures that a low im-  
pedance path to ground exists for frequencies well above the  
bandwidth of the PLL. Although the MPC9600 has several de-  
The minimum values for RF and the filter capacitor CF are sign features to minimize the susceptibility to power supply  
defined by the required filter characteristics: the RC filter noise (isolated power and grounds and fully differential PLL)  
should provide an attenuation greater than 40 dB for noise there still may be applications in which overall performance is  
whose spectral content is above 100 kHz. In the example RC being degraded due to system power supply noise. The power  
filter shown in Figure 5 “VCCA Power Supply Filter”, the filter supply filter schemes discussed in this section should be ade-  
cut-off frequency is around 3-5 kHz and the noise attenuation quate to eliminate power supply noise related problems in  
at 100 kHz is better than 42 dB.  
most designs.  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
181  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
Using the MPC9600 in zero–delay applications  
Table 8: Confidence Facter CF  
Nested clock trees are typical applications for the  
MPC9600. For these applications the MPC9600 offers a differ-  
ential LVPECL clock input pair as a PLL reference. This allows  
for the use of differential LVPECL primary clock distribution  
devices such as the Motorola MC100ES6111 or  
MC100ES6226, taking advantage of its superior low-skew per-  
formance. Clock trees using LVPECL for clock distribution and  
the MPC9600 as LVCMOS PLL fanout buffer with zero inser-  
tion delay will show significantly lower clock skew than clock  
distributions developed from CMOS fanout buffers.  
CF  
1s  
Probability of clock edge within the distribution  
0.68268948  
0.95449988  
0.99730007  
0.99993663  
0.99999943  
0.99999999  
2s  
3s  
4s  
5s  
6s  
2
The feedback trace delay is determined by the board layout  
and can be used to fine-tune the effective delay through each  
device. In the following example calculation a I/O jitter confi-  
dence factor of 99.7% ( 3s) is assumed, resulting in a worst  
case timing uncertainty from input to any output of -261 ps to  
341 ps relative to CCLK (VCC=3.3V and fVCO = 200 MHz):  
The external feedback option of the MPC9600 PLL allows  
for its use as a zero delay buffer. The PLL aligns the feedback  
clock output edge with the clock input reference edge and  
virtually eliminates the propagation delay through the device.  
The remaining insertion delay (skew error) of the MPC9600  
in zero-delay applications is measured between the reference  
clock input and any output. This effective delay consists of the  
tSK(PP)  
=
[–60ps...140ps] + [–150ps...150ps] +  
[(17ps @ –3)...(17ps @ 3)] + tPD, LINE(FB)  
static phase offset (SPO or t(), I/O jitter (tJIT(, phase or  
long-term jitter), feedback path delay and the output-to-output  
)
)
tSK(PP)  
=
[–261ps...341ps] + tPD, LINE(FB)  
Above equation uses the maximum I/O jitter number shown  
in the AC characteristic table for VCC=3.3V (17 ps RMS). I/O  
jitter is frequency dependant with a maximum at the lowest  
VCO frequency (200 MHz for the MPC9600). Applications us-  
ing a higher VCO frequency exhibit less I/O jitter than the AC  
characteristic limit. The I/O jitter characteristics in Figure 7 can  
be used to derive a smaller I/O jitter number at the specific  
VCO frequency, resulting in tighter timing limits in zero-delay  
skew (tSK(O) relative to the feedback output.  
Calculation of part-to-part skew  
The MPC9600 zero delay buffer supports applications  
where critical clock signal timing can be maintained across  
several devices. If the reference clock inputs (CCLK or PCLK)  
of two or more MPC9600 are connected together, the maxi-  
mum overall timing uncertainty from the common CCLK input  
to any output is:  
mode and for part-to-part skew tSK(PP)  
.
tSK(PP) = t + tSK(O) + tPD, LINE(FB) + tJIT( CF  
)
(
)
This maximum timing uncertainty consist of 4 components:  
static phase offset, output skew, feedback board trace delay  
and I/O (phase) jitter:  
ꢳꢮ  
ꢐ ꢝ ꢸ ꢹ ꢠ ꢝ ꢜ  
ꢐ ꢝ ꢸ ꢹ ꢠ ꢝ ꢜ  
ꢰ ꢌ ꢱ ꢫ  
Figure 7. Max. I/O Jitter versus VCO frequency for  
VCC=2.5V and VCC=3.3V  
t  
ꢇ ꢃ ꢫ ꢄ ꢬ  
Driving Transmission Lines  
The MPC9600 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output drivers  
were designed to exhibit the lowest impedance possible. With  
an output impedance of less than 20 the drivers can drive  
either parallel or series terminated transmission lines. For  
more information on transmission lines the reader is referred to  
Motorola application note AN1091. In most high performance  
clock networks point-to-point distribution of signals is the meth-  
od of choice. In a point-to-point scheme either series termi-  
nated or parallel terminated transmission lines can be used.  
The parallel technique terminates the signal at the end of the  
line with a 50resistance to VCC÷2.  
ꢰ ꢌ ꢱ ꢫ  
ꢈꢖ ꢺ ꢑ  
ꢐ ꢝ ꢸ ꢹ ꢠ ꢝ ꢛ  
t  
ꢇ ꢃ ꢫ ꢄ ꢬ  
ꢇ ꢃ ꢫ ꢀ ꢀ ꢬ  
Figure 6. MPC9600 max. device-to-device skew  
Due to the statistical nature of I/O jitter a RMS value (1 s) is  
specified. I/O jitter numbers for other confidence factors (CF)  
can be derived from Table 8.  
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each output  
182  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
of the MPC9600 clock driver. For the series terminated case  
VL = 3.0 ( 25 ÷ (18+17+25)  
= 1.31 V  
At the load end the voltage will double due to the near unity  
reflection coefficient, to 2.6 V. It will then increment towards the  
quiescent 3.0 V in steps separated by one round trip delay (in  
this case 4.0 ns).  
however there is no DC current draw, thus the outputs can  
drive multiple series terminated lines. Figure 8 “Single versus  
Dual Transmission Lines” illustrates an output driving a single  
series terminated line versus two series terminated lines in  
parallel. When taken to its extreme the fanout of the MPC9600  
clock driver is effectively doubled due to its capability to drive  
multiple lines.  
ꢚ ꢨꢒ  
ꢄ ꢽ ꢮꢈ  
ꢮ ꢧ ꢚ ꢨ ꢢꢣ ꢘꢔ  
ꢤꢀꢁ ꢣꢔ ꢒ ꢒ  
ꢄ ꢻꢱ ꢀꢻ ꢱ  
ꢉꢻ ꢆ ꢆꢅꢋ  
ꢄ ꢽ ꢮꢉ  
ꢛ ꢨꢘ  
ꢛ ꢨꢒ  
ꢜ ꢨꢘ  
ꢜ ꢨꢒ  
ꢒ ꢨꢘ  
ꢮ ꢧ ꢚ ꢨ ꢣꢚ ꢢꢔ  
2
ꢧ ꢘꢒ Ω  
ꢋ ꢧ ꢚꢔ Ω  
Ω  
ꢌ ꢖ  
ꢌ ꢍ  
ꢄ ꢽ ꢮꢈ  
ꢤꢀ ꢁꢣ ꢔ ꢒ ꢒ  
ꢄꢻ ꢱꢀꢻ ꢱ  
ꢉꢻ ꢆꢆ ꢅꢋ  
ꢧ ꢘꢒ Ω  
ꢧ ꢘꢒ Ω  
ꢋ ꢧ ꢚꢔ Ω  
ꢄ ꢽ ꢮꢉ ꢒ  
ꢄ ꢽ ꢮꢉ ꢜ  
ꢋ ꢧ ꢚꢔ Ω  
Figure 9. Single versus Dual Waveforms  
Figure 8. Single versus Dual Transmission Lines  
The waveform plots in Figure 9 “Single versus Dual Line  
Termination Waveforms” show the simulation results of an out-  
put driving a single line versus two lines. In both cases the  
drive capability of the MPC9600 output buffer is more than suf-  
ficient to drive 50 transmission lines on the incident edge.  
Note from the delay measurements in the simulations a delta  
of only 43 ps exists between the two differently loaded outputs.  
This suggests that the dual line driving need not be used exclu-  
sively to maintain the tight output-to-output skew of the  
MPC9600. The output waveform in Figure 9 “Single versus  
Dual Line Termination Waveforms” shows a step in the wave-  
form, this step is caused by the impedance mismatch seen  
looking into the driver. The parallel combination of the 36se-  
ries resistor plus the output impedance does not match the  
parallel combination of the line impedances. The voltage wave  
launched down the two lines will equal:  
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines the situation  
in Figure 10 “Optimized Dual Line Termination” should be  
used. In this case the series terminating resistors are reduced  
such that when the parallel combination is added to the output  
buffer impedance the line impedance is perfectly matched.  
ꢤꢀ ꢁꢣ ꢔ ꢒꢒ  
ꢄ ꢻꢱꢀ ꢻꢱ  
ꢧ ꢘ Ω  
ꢧ ꢘ Ω  
ꢋ ꢧ ꢛ ꢛ Ω  
ꢋ ꢧ ꢛ ꢛ Ω  
VL = VS ( Z0 ÷ (RS+R0 +Z0))  
Z0 = 50 || 50 Ω  
RS = 36 || 36 Ω  
R0 = 14 Ω  
14 + 22 22 = 50 50 Ω  
25 = 25 Ω  
Figure 10. Optimized Dual Line Termination  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
183  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
The Following Figures Illustrate the Measurement Reference for the MPC9600 Clock Driver Circuit  
ꢤꢀ ꢁꢣ ꢔ ꢒꢒ ꢐꢻꢱ  
ꢀ ꢽꢿꢵꢝ  
ꢏ ꢝꢖꢝ ꢦꢕꢮ ꢭ ꢦ  
ꢼ ꢧ ꢘ ꢒ Ω  
ꢼ ꢧ ꢘꢒ W  
ꢋ ꢧ ꢘ ꢒ Ω  
ꢋ ꢧ ꢘ ꢒ Ω  
ꢱ ꢱ  
ꢱ ꢱ  
2
Figure 11. CCLK MPC9600 AC test reference  
ꢤꢀ ꢁꢣ ꢔ ꢒꢒ ꢐꢻ ꢱ  
ꢐꢹ ꢥꢥ ꢝꢦꢝ ꢖꢮ ꢹꢕꢿ  
ꢀ ꢽꢿꢵꢝ ꢏ ꢝꢖꢝ ꢦꢕ ꢮꢭꢦ  
ꢼ ꢧ ꢘꢒ W  
ꢧ ꢘ Ω  
ꢋ ꢧ ꢘ ꢒ Ω  
ꢋ ꢧ ꢘ ꢒ Ω  
ꢱ ꢱ  
ꢱ ꢱ  
Figure 12. PCLK MPC9600 AC test reference  
ꢀꢁ ꢂ ꢃ  
ꢀꢁ ꢂ ꢃ  
Bꢛ  
ꢁ ꢤ ꢋ  
ꢀ ꢀ  
ꢏ ꢍꢐ  
ꢁ ꢁ  
Bꢛ  
Bꢛ  
ꢆꢉ ꢊ ꢌꢍ  
ꢁ ꢁ  
ꢁ ꢁ  
ꢆ ꢉꢊꢌ ꢍ  
ꢏ ꢍꢐ  
Figure 13. Propagation delay t(, static phase  
)
Figure 14. Propagation delay t() test reference  
offset) test reference  
ꢁ ꢁ  
ꢁ ꢁ  
Bꢛ  
ꢁ ꢁ  
Bꢛ  
Bꢛ  
ꢱ ꣀꢝ ꢮꢹ ꢷꢝ ꢥꢦ ꢭ ꢷ ꢮꣀ ꢝ ꢀꢂ ꢂ ꢠꢭꢖ ꢮꢦ ꢭꢿꢿꢝ ꢞ ꢝꢞ ꣂꢝ ꢮ ꢭ ꢮ ꣀꢝ ꢖꢭ ꢖ ꢠꢭꢖ ꢮꢦ ꢭꢿꢿꢝ ꢞ  
ꢝ ꢞꣂ ꢝ ꢯ ꢞ ꢹꢸꢹꢞ ꢝꢞ ꢟ ꢺ ꢮꣀ ꢝ ꢮꢹ ꢷꢝ ꢟꢝ ꢮꢶ ꢝꢝꢖ ꢀ ꢂꢂ ꢠꢭꢖ ꢮꢦ ꢭꢿꢿꢝ ꢞ ꢝꢞ ꣂꢝꢵꢯ  
ꢝ ꢴꣁ ꢦꢝ ꢵꢵ ꢝꢞ ꢕ ꢵ ꢕ ꣁ ꢝꢦ ꢠꢝꢖ ꢮꢕ ꣂꢝ  
ꢱꣀ ꢝ ꣁ ꢹꢖꢓ ꢮ ꢭ ꢓꣁ ꢹꢖ ꢵꢗꢝ ꢶ ꢹꢵ ꢞ ꢝꢥ ꢹꢖ ꢝ ꢞ ꢕ ꢵ ꢮ ꣀꢝ ꢶꢭ ꢦꢵꢮ ꢠꢕ ꢵꢝ ꢞ ꢹꢥꢥ ꢝ ꢦꢝꢖ ꢠ ꢝ ꢹꢖ  
ꣁ ꢦꢭ ꣁꢕ ꣂꢕ ꢮ ꢹꢭ ꢖ ꢞ ꢝꢿꢕ ꢺ ꢟ ꢝꢮ ꢶꢝ ꢝ ꢖ ꢕ ꢖꢺ ꢵꢹꢷꢹꢿ ꢕꢦ ꢞ ꢝꢿꢕ ꢺ ꣁ ꢕꢮ ꣀ ꢶꢹꢮ ꣀ ꢹꢖ ꢕ  
ꢵꢹꢖ ꣂꢿꢝ ꢞ ꢝꢸꢹꢠꢝ  
Figure 15. Output Duty Cycle (DC)  
Figure 16. Output–to–output Skew tSK(O)  
184  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
MPC9600  
ꢆ ꢏ ꢆ  
ꢆ ꢂ ꢆ ꢏ ꣄  
ꢊ ꢋ ꢆ ꢌ ꢄ ꢍ ꢎ ꢇ  
ꢊ ꢋ ꢆ ꢌ ꢁ ꢁ ꢍ  
ꢎ ꢐ ꢈ  
ꢍ ꢲ ꢜ  
ꢱ ꣀꢝ ꢸꢕ ꢦ ꢹꢕꢮ ꢹꢭ ꢖ ꢹꢖ ꢠꢺꢠ ꢿꢝ ꢮ ꢹꢷ ꢝ ꢭꢥ ꢕ ꢵꢹꣂꢖ ꢕꢿ ꢟꢝ ꢮꢶ ꢝꢝ ꢖ ꢕꢞ ꣃꢕꢠꢝ ꢖꢮ ꢠꢺꢠꢿꢝ ꢵꢯ ꢭ ꢸꢝꢦ ꢕ  
ꢦ ꢕꢖ ꢞ ꢭꢷ ꢵꢕ ꢷꣁ ꢿꢝ ꢭ ꢥ ꢕ ꢞꣃꢕ ꢠꢝꢖꢮ ꢠꢺꢠꢿꢝ ꣁꢕ ꢹꢦꢵ  
ꢱꣀ ꢝ ꢞ ꢝꢸꢹꢕ ꢮ ꢹꢭ ꢖ ꢹꢖ ꢠꢺꢠꢿꢝ ꢮ ꢹꢷꢝ ꢭ ꢥ ꢕ ꢵꢹꣂ ꢖꢕ ꢿ ꢶꢹꢮ ꣀ ꢦꢝ ꢵꣁ ꢝꢠꢮ ꢮ ꢭ ꢮ ꣀ ꢝ ꢹꢞ ꢝꢕ ꢿ ꣁ ꢝꢦ ꢹꢭ ꢞ ꢭ ꢸꢝ ꢦ  
ꢕ ꢦꢕ ꢖꢞ ꢭ ꢷ ꢵꢕ ꢷꣁ ꢿꢝ ꢭ ꢥ ꢠꢺꢠꢿꢝ ꢵ  
Figure 17. Cycle–to–cycle Jitter  
Figure 18. Period Jitter  
2
ꢁ ꢁ ꢂ ꢃ  
ꢫ ꢀꢁ ꢂꢃꢬ  
ꢁ ꢁ  
ꢧ ꢚ ꢨꢚ ꢎ  
ꢁ ꢁ  
ꢧꢛ ꢨ ꢘ ꢎ  
ꢜ ꢨꢢ ꢎ  
ꢊ ꢋ ꢆ ꢌ  
ꢆ ꢏ ꢆ ꢒ ꢓꢔꢕ꣄  
ꢇ ꢈ  
ꢱ ꣀꢝ ꢞ ꢝꢸ ꢹꢕꢮ ꢹꢭ ꢖ ꢹꢖ ꢮ ꢥꢭ ꢦ ꢕ ꢠꢭꢖ ꢮꢦ ꢭꢿꢿꢝ ꢞ ꢝꢞ ꣂꢝ ꢶ ꢹꢮꣀ ꢦꢝ ꢵꣁꢝꢠꢮ ꢮ ꢭ ꢕ ꢮ ꢷ ꢝꢕꢖ ꢹꢖ ꢕ  
Figure 19. I/O Jitter  
Figure 20. Output Transition Time Test Reference  
MOTOROLA ADVANCED CLOCK DRIVERS DEVICE DATA  
185  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

MPC9608

1:10 LVCMOS Zero Delay Clock Buffer
MOTOROLA

MPC9608AC

PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, LQFP-32
MOTOROLA

MPC9608AC

9608 SERIES, PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
NXP

MPC9608ACR2

PLL Based Clock Driver, 9608 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
IDT

MPC9608ACR2

9608 SERIES, PLL BASED CLOCK DRIVER, 10 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, 7 X 7 MM, LEAD FREE, PLASTIC, LQFP-32
NXP

MPC9608FA

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
MOTOROLA

MPC9608FA

IC,1:10 OUTPUT,LV-CMOS,QFP,32PIN,PLASTIC
NXP

MPC9608FAR2

PLL Based Clock Driver, 9608 Series, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
IDT

MPC9608FAR2

PLL Based Clock Driver, 10 True Output(s), 0 Inverted Output(s), CMOS, PQFP32, 7 X 7 MM, LQFP-32
MOTOROLA

MPC9608FAR2

IC,1:10 OUTPUT,CMOS,QFP,32PIN,PLASTIC
NXP

MPC961C

LOW VOLTAGE ZERO DELAY
MOTOROLA

MPC961CAC

TQFP-32, Tray
IDT