MPC97H73FAR2 [NXP]

IC,1:12 OUTPUT,CMOS,QFP,52PIN,PLASTIC;
MPC97H73FAR2
型号: MPC97H73FAR2
厂家: NXP    NXP
描述:

IC,1:12 OUTPUT,CMOS,QFP,52PIN,PLASTIC

驱动 输出元件 逻辑集成电路
文件: 总20页 (文件大小:206K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ꢀꢁꢂ ꢁ ꢃꢁ ꢄꢅ  
SEMICONDUCTOR TECHNICAL DATA  
Order Number: MPC97H73/D  
Rev 0, 10/2003  
ꢓꢔꢕ ꢔꢖꢗꢘꢐ ꢖ  
The MPC97H73 is a 3.3V compatible, 1:12 PLL based clock generator  
targeted for high performance low-skew clock distribution in mid-range to  
high-performance networking, computing and telecom applications. With  
output frequencies up to 240 MHz and output skews less than 250 ps the  
device meets the needs of the most demanding clock applications.  
3.3V 1:12 LVCMOS  
PLL CLOCK GENERATOR  
Features  
1:12 PLL based low-voltage clock generator  
3.3V power supply  
Internal power–on reset  
Generates clock signals up to 240 MHz  
Maximum output skew of 250 ps  
Differential PECL reference clock input  
Two LVCMOS PLL reference clock inputs  
External PLL feedback supports zero-delay capability  
Various feedback and output dividers (see application section)  
Supports up to three individual generated output clock frequencies  
FA SUFFIX  
52 LEAD LQFP PACKAGE  
CASE 848D  
Synchronous output clock stop circuitry for each individual output for  
power down support  
Drives up to 24 clock lines  
Ambient temperature range 0°C to +70°C  
Pin and function compatible to the MPC973  
Functional Description  
The MPC97H73 utilizes PLL technology to frequency lock its outputs onto an input reference clock. Normal operation of the  
MPC97H73 requires the connection of the PLL feedback output QFB to feedback input FB_IN to close the PLL feedback path.  
The reference clock frequency and the divider for the feedback path determine the VCO frequency. Both must be selected to  
match the VCO frequency range. The MPC97H73 features an extensive level of frequency programmability between the 12  
outputs as well as the output to input relationships, for instance 1:1, 2:1, 3:1, 3:2, 4:1, 4:3, 5:1, 5:2, 5:3, 5:4, 5:6, 6:1, 8:1 and 8:3.  
The QSYNC output will indicate when the coincident rising edges of the above relationships will occur. The selectability of the  
feedback frequency is independent of the output frequencies. This allows for very flexible programming of the input reference  
versus output frequency relationship. The output frequencies can be either odd or even multiples of the input reference. In  
addition the output frequency can be less than the input frequency for applications where a frequency needs to be reduced by a  
non–binary factor. The MPC97H73 also supports the 180° phase shift of one of its output banks with respect to the other output  
banks. The QSYNC outputs reflects the phase relationship between the QA and QC outputs and can be used for the generation  
of system baseline timing signals.  
The REF_SEL pin selects the LVPECL or the LVCMOS compatible inputs as the reference clock signal. Two alternative  
LVCMOS compatible clock inputs are provided for clock redundancy support. The PLL_EN control selects the PLL bypass  
configuration for test and diagnosis. In this configuration, the selected input reference clock is routed directly to the output dividers  
bypassing the PLL. The PLL bypass is fully static and the minimum clock frequency specification and all other PLL characteristics  
do not apply.  
The outputs can be individually disabled (stopped in logic low state) by programming the serial CLOCK_STOP interface of the  
MPC97H73. The MPC97H73 has an internal power–on reset.  
The MPC97H73 is fully 3.3V compatible and requires no external loop filter components. All inputs (except PCLK) accept  
LVCMOS signals while the outputs provide LVCMOS compatible levels with the capability to drive terminated 50 W transmission  
lines. For series terminated transmission lines, each of the MPC97H73 outputs can drive one or two traces giving the devices an  
effective fanout of 1:24. The device is pin and function compatible to the MPC973 and is packaged in a 52-lead LQFP package.  
Motorola, Inc. 2003  
MPC97H73  
ꢈꢡꢡ ꢢꢣ ꢤꢥꢦ ꢧ ꢨꢩꢢ ꢩꢦ ꢪꢧ ꢩ ꢫꢬ ꢭꢨ ꢬ ꢭꢬꢡ ꢥꢨ ꢪꢮ ꢍꢛ ꢯΩ  
ꢉ ꢈꢇ  
ꢉ ꢈꢆ  
ꢉ ꢈꢍ  
ꢉ ꢈꢊ  
ꢅ ꢬꢣ ꢯ ꢈ  
ꢙꢌ ꢃ ꢔ  
ꢙꢌ ꢃ ꢔ  
ꢌꢃ ꢔ  
ꢁ ꢘꢑ ꢙ  
1
0
1
÷ꢚ ꢠ ÷ꢜ ꢠ ÷ꢞ ꢠ ÷ꢆ ꢍ  
÷ꢚ ꢠ ÷ꢜ ꢠ ÷ꢞ ꢠ ÷ꢆ ꢇ  
÷ꢍ ꢠ ÷ꢚ ꢠ ÷ꢜ ꢠ ÷ꢞ  
ꢖꢨ ꢮ  
0
1
÷2  
÷1  
ꢋ ꢌꢑ  
ꢌꢌ  
0
ꢌ ꢌ ꢃ ꢔꢇ  
0
PLL  
÷ꢚ ꢠ ÷ꢜ ꢠ ÷ꢞ ꢠ ÷ꢆ ꢇ  
÷ꢆ ꢍꢠ ÷ꢆ ꢜꢠ ÷ꢍ ꢇ  
1
ꢉ ꢅꢇ  
ꢍꢇ ꢇꢵꢚ ꢞꢇ ꢕ ꢶꢷ  
ꢅ ꢬꢣ ꢯ ꢅ  
ꢌ ꢌ ꢃ ꢔꢄ ꢁꢂ ꢃ  
ꢌꢌ  
ꢉ ꢅꢆ  
ꢉ ꢅꢍ  
ꢉ ꢅꢊ  
ꢁ ꢳꢣꢴ ꢙ ꢥꢡ ꢩꢨ  
ꢌꢃ ꢔ  
ꢁ ꢘꢑ ꢙ  
ꢖ ꢂꢀꢄ ꢁꢂꢃ  
ꢀ ꢅꢄꢓ ꢏ  
ꢋꢌ ꢑꢄ ꢁꢂꢃ  
ꢙꢃ ꢃꢄ ꢂꢏ  
ꢅ ꢬꢣ ꢯ ꢌ  
ꢉ ꢌ ꢇ  
ꢌꢌ  
ꢌꢃ ꢔ  
ꢁ ꢘꢑ ꢙ  
ꢉ ꢌ ꢆ  
ꢉ ꢌ ꢍ  
2
2
2
3
ꢀ ꢁꢂꢃꢄ ꢅꢰ ꢇꢱ ꢆꢲ  
ꢀꢁꢂꢃ ꢄ ꢌ ꢰꢇ ꢱꢆ ꢲ  
ꢀꢁ ꢂꢃ ꢄꢀ ꢅꢰꢇ ꢱꢍ ꢲ  
0
1
ꢌꢃ ꢔ  
ꢁ ꢘꢑ ꢙ  
ꢉ ꢌ ꢊ  
ꢉ ꢀꢅ  
ꢌꢌ  
ꢙ ꢑꢸꢂ ꢖ ꢵꢑꢏ ꢖ ꢂꢁꢂ ꢘ  
ꢌꢃ ꢑ ꢌꢔ ꢁ ꢘꢑ ꢙ  
ꢓꢏ ꢋꢄ ꢌ ꢃ ꢔ  
ꢌꢃ ꢔ  
ꢁ ꢘꢑ ꢙ  
12  
ꢁꢘ ꢑꢙꢄ ꢐ ꢈꢘꢈ  
ꢁꢘ ꢑꢙꢄ ꢌ ꢃ ꢔ  
Figure 1. MPC97H73 Logic Diagram  
ꢀꢁ ꢂꢃ ꢄꢅ ꢆ  
ꢀꢁ ꢂꢃ ꢄꢅ ꢇ  
ꢀꢁ ꢂꢃ ꢄꢈ ꢆ  
ꢀꢁ ꢂꢃ ꢄꢈ ꢇ  
ꢉ ꢈꢊ  
ꢚꢇ  
ꢚꢆ  
ꢚꢍ  
ꢚꢊ  
ꢚꢚ  
ꢚꢛ  
ꢚꢜ  
ꢚꢝ  
ꢚꢞ  
ꢚꢟ  
ꢛꢇ  
ꢛꢆ  
ꢛꢍ  
ꢍ ꢜ  
ꢍ ꢛ  
ꢍ ꢚ  
ꢍ ꢊ  
ꢍ ꢍ  
ꢍ ꢆ  
ꢍ ꢇ  
ꢆ ꢟ  
ꢆ ꢞ  
ꢆ ꢝ  
ꢆ ꢜ  
ꢆ ꢛ  
ꢆ ꢚ  
ꢉ ꢁ ꢒꢏ ꢌ  
ꢎ ꢏꢐ  
ꢀꢁ ꢂ ꢃꢄ ꢌꢇ  
ꢀꢁ ꢂ ꢃꢄ ꢌꢆ  
ꢉ ꢌꢍ  
MPC97H73  
Figure 2. MPC97H73 52–Lead Package Pinout (Top View)  
MOTOROLA  
2
TIMING SOLUTIONS  
MPC97H73  
Table 1. PIN CONFIGURATION  
Pin  
I/O  
Input  
Type  
Function  
CCLK0  
CCLK1  
LVCMOS  
LVCMOS  
PLL reference clock  
Input  
Alternative PLL reference clock  
PCLK, PCLK  
FB_IN  
Input  
Input  
Input  
Input  
Input  
Input  
LVPECL  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Differential LVPECL reference clock  
PLL feedback signal input, connect to an QFB  
LVCMOS clock reference select  
CCLK_SEL  
REF_SEL  
VCO_SEL  
PLL_EN  
LVCMOS/PECL reference clock select  
VCO operating frequency select  
PLL enable/PLL bypass mode select  
MR/OE  
Input  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
LVCMOS  
Ground  
Output enable/disable (high-impedance tristate) and device reset  
Frequency divider select for bank A outputs  
Frequency divider select for bank B outputs  
Frequency divider select for bank C outputs  
Frequency divider select for the QFB output  
Clock phase selection for outputs QC2 and QC3  
Clock input for clock stop circuitry  
FSEL_A[0:1]  
FSEL_B[0:1]  
FSEL_C[0:1]  
FSEL_FB[0:2]  
INV_CLK  
STOP_CLK  
STOP_DATA  
QA[0-3]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Configuration data input for clock stop circuitry  
Clock outputs (Bank A)  
Output  
Output  
Output  
Output  
Output  
Supply  
Supply  
QB[0-3]  
Clock outputs (Bank B)  
QC[0-3]  
Clock outputs (Bank C)  
QFB  
PLL feedback output. Connect to FB_IN.  
Synchronization pulse output  
QSYNC  
GND  
Negative power supply  
VCC_PLL  
VCC  
PLL positive power supply (analog power supply). It is recommended to use an external  
RC filter for the analog power supply pin V . Please see applications section for  
CC_PLL  
details.  
VCC  
Supply  
VCC  
Positive power supply for I/O and core. All VCC pins must be connected to the positive  
power supply for correct operation  
Table 2. FUNCTION TABLE (Configuration Controls)  
Control  
REF_SEL  
CCLK_SEL  
VCO_SEL  
Default  
0
Selects CCLKx as the PLL reference clock  
Selects CCLK0  
1
1
1
1
Selects the LVPECL inputs as the PLL reference clock  
Selects CCLK1  
Selects VCO÷2. The VCO frequency is scaled by a  
Selects VCO÷1. (high VCO frequency range)  
factor of 2 (low VCO frequency range).  
PLL_EN  
1
Test mode with the PLL bypassed. The reference clock  
is substituted for the internal VCO output. MPC97H73 is  
fully static and no minimum frequency limit applies. All  
PLL related AC characteristics are not applicable.  
Normal operation mode with PLL enabled.  
INV_CLK  
MR/OE  
1
1
QC2 and QC3 are in phase with QC0 and QC1  
QC2 and QC3 are inverted (180° phase shift) with  
respect to QC0 and QC1  
Outputs disabled (high-impedance state) and device is  
reset. During reset/output disable the PLL feedback loop  
is open and the internal VCO is tied to its lowest  
frequency. The MPC97H73 requires reset after any loss  
of PLL lock. Loss of PLL lock may occur when the  
external feedback path is interrupted. The length of the  
reset pulse should be greater than one reference clock  
cycle (CCLKx). The device is reset by the internal  
power–on reset (POR) circuitry during power–up.  
Outputs enabled (active)  
VCO_SEL, FSEL_A[0:1], FSEL_B[0:1], FSEL_C[0:1], FSEL_FB[0:2] control the operating PLL frequency range and input/output frequency  
ratios. See Table 3 to Table 6 and the applications section for supported frequency ranges and output to input frequency ratios.  
TIMING SOLUTIONS  
3
MOTOROLA  
MPC97H73  
Table 3. Output Divider Bank A (NA)  
Table 5. Output Divider Bank C (NC)  
VCO_SEL FSEL_A1  
FSEL_A0  
QA[0:3]  
VCO÷8  
VCO÷12  
VCO÷16  
VCO÷24  
VCO÷4  
VCO÷6  
VCO÷8  
VCO÷12  
VCO_SEL FSEL_C1  
FSEL_C0  
QC[0:3]  
VCO÷4  
VCO÷8  
VCO÷12  
VCO÷16  
VCO÷2  
VCO÷4  
VCO÷6  
VCO÷8  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 4. Output Divider Bank B (NB)  
VCO_SEL FSEL_B1  
FSEL_B0  
QB[0:3]  
VCO÷8  
VCO÷12  
VCO÷16  
VCO÷20  
VCO÷4  
VCO÷6  
VCO÷8  
VCO÷10  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Table 6. Output Divider PLL Feedback (M)  
VCO_SEL  
FSEL_FB2  
FSEL_FB1  
FSEL_FB0  
QFB  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
VCO÷8  
VCO÷12  
VCO÷16  
VCO÷20  
VCO÷16  
VCO÷24  
VCO÷32  
VCO÷40  
VCO÷4  
VCO÷6  
VCO÷8  
VCO÷10  
VCO÷8  
VCO÷12  
VCO÷16  
VCO÷20  
MOTOROLA  
4
TIMING SOLUTIONS  
MPC97H73  
Table 7. GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output Termination Voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
V
TT  
V
B 2  
CC  
MM  
HBM  
LU  
ESD Protection (Machine Model)  
ESD Protection (Human Body Model)  
Latch–Up Immunity  
200  
2000  
200  
V
V
mA  
pF  
pF  
C
PD  
Power Dissipation Capacitance  
Input Capacitance  
12  
Per output  
Inputs  
C
IN  
4.0  
Table 8. ABSOLUTE MAXIMUM RATINGSa  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
3.9  
Unit  
V
Condition  
V
CC  
Supply Voltage  
V
IN  
DC Input Voltage  
V
V
+0.3  
CC  
V
V
OUT  
DC Output Voltage  
DC Input Current  
+0.3  
CC  
V
I
IN  
20  
50  
mA  
mA  
°C  
I
DC Output Current  
Storage Temperature  
OUT  
T
S
-65  
125  
a. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not  
implied.  
Table 9. DC CHARACTERISTICS (VCC = 3.3V 5%, TA = 0°C to 70°C)  
Symbol  
Characteristics  
PLL Supply Voltage  
Min  
3.0  
2.0  
Typ  
Max  
Unit  
V
Condition  
LVCMOS  
V
V
CC  
CC_PLL  
V
IH  
Input High Voltage  
Input Low Voltage  
V
+ 0.3  
V
LVCMOS  
LVCMOS  
CC  
V
IL  
0.8  
V
V
Peak–to–peak Input Voltage PCLK, PCLK  
250  
mV  
LVPECL  
LVPECL  
PP  
a
V
CMR  
Common Mode Range  
Output High Voltage  
Output Low Voltage  
PCLK, PCLK  
1.0  
2.4  
V
CC  
– 0.6  
V
V
b
V
OH  
I =-24 mA  
OH  
V
OL  
0.55  
0.30  
V
V
I = 24 mA  
OL  
I = 12 mA  
OL  
Z
Output Impedance  
8 - 11  
8.0  
W
OUT  
c
I
Input Current  
200  
13.5  
35  
µA  
mA  
mA  
V
V
= V or GND  
CC  
IN  
IN  
I
Maximum PLL Supply Current  
Pin  
CC_PLL  
CC_PLL  
I
Maximum Quiescent Supply Current  
All V Pins  
CC  
CCQ  
a.  
V
CMR  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
range  
CMR  
and the input swing lies within the V (DC) specification.  
PP  
b. The MPC97H73 is capable of driving 50transmission lines on the incident edge. Each output drives one 50parallel terminated  
transmission line to a termination voltage of V . Alternatively, the device drives up to two 50series terminated transmission lines.  
TT  
c. Inputs have pull–down resistors affecting the input current.  
TIMING SOLUTIONS  
5
MOTOROLA  
MPC97H73  
Table 10. AC CHARACTERISTICS (VCC = 3.3V 5%, TA = 0°C to 70°C)a b  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
f
Input reference frequency  
÷4 feedback  
÷6 feedback  
÷8 feedback  
÷10 feedback  
÷12 feedback  
÷16 feedback  
÷20 feedback  
÷24 feedback  
÷32 feedback  
÷40 feedback  
50.0  
33.3  
25.0  
20.0  
16.6  
12.5  
10.0  
8.33  
6.25  
5.00  
120.0  
80.0  
60.0  
48.0  
40.0  
30.0  
24.0  
20.0  
15.0  
12.0  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
PLL locked  
REF  
Input reference frequency in PLL bypass mode  
250  
480  
MHz  
MHz  
PLL bypass  
PLL locked  
c
f
f
VCO frequency range  
200  
VCO  
Output Frequency  
÷2 output  
100.0  
50.0  
33.3  
25.0  
20.0  
16.6  
12.5  
10.0  
8.33  
240.0  
120.0  
80.0  
60.0  
48.0  
40.0  
30.0  
24.0  
20.0  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MAX  
÷4 output  
÷6 output  
÷8 output  
÷10 output  
÷12 output  
÷16 output  
÷20 output  
÷24 output  
f
Serial interface clock frequency  
Peak-to-peak input voltage  
Common Mode Range  
20  
MHz  
mV  
V
STOP_CLK  
V
V
PCLK, PCLK  
PCLK, PCLK  
400  
1.2  
2.0  
1000  
LVPECL  
LVPECL  
PP  
d
V
-0.9  
CC  
CMR  
d
t
Input Reference Pulse Width  
ns  
PW,MIN  
e
t , t  
CCLKx Input Rise/Fall Time  
1.0  
ns  
0.8 to 2.0V  
PLL locked  
R
F
f
t
( )  
Propagation Delay (static phase offset)  
6.25 MHz < f  
< 65.0 MHz  
< 125 MHz  
-3  
-4  
-166  
+3  
+4  
+166  
°
°
ps  
REF  
65.0 MHz < f  
=50 MHz and feedback=÷8  
REF  
f
REF  
g
t
Output-to-output Skew  
within QA outputs  
within QB outputs  
within QC outputs  
all outputs  
100  
100  
100  
250  
ps  
ps  
ps  
ps  
SK(O)  
h
DC  
t , t  
Output Duty Cycle  
(T÷2) - 200  
T÷2  
(T÷2) +200  
1.0  
ps  
ns  
ns  
ns  
ps  
ps  
Output Rise/Fall Time  
Output Disable Time  
Output Enable Time  
0.1  
0.55 to 2.4V  
R
F
t
t
t
t
t
8.0  
PLZ, HZ  
PZL, LZ  
JIT(CC)  
JIT(PER)  
8.0  
i
Cycle-to-cycle jitter  
150  
200  
j
Period Jitter  
150  
k
I/O Phase Jitter RMS (1 σ)  
÷4 feedback  
÷6 feedback  
÷8 feedback  
÷10 feedback  
÷12 feedback  
÷16 feedback  
÷20 feedback  
÷24 feedback  
÷32 feedback  
÷40 feedback  
11  
86  
13  
88  
16  
19  
21  
22  
27  
30  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
ps  
(VCO=400 MHz)  
JIT(  
)
MOTOROLA  
6
TIMING SOLUTIONS  
MPC97H73  
Table 10. AC CHARACTERISTICS (VCC = 3.3V 5%, TA = 0°C to 70°C)a b  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
l
BW  
PLL closed loop bandwidth  
÷4 feedback  
÷6 feedback  
÷8 feedback  
÷10 feedback  
÷12 feedback  
÷16 feedback  
÷20 feedback  
÷24 feedback  
÷32 feedback  
÷40 feedback  
1.20 - 3.50  
0.70 - 2.50  
0.50 - 1.80  
0.45 - 1.20  
0.30 - 1.00  
0.25 - 0.70  
0.20 - 0.55  
0.17 - 0.40  
0.12 - 0.30  
0.11 - 0.28  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
t
Maximum PLL Lock Time  
AC characteristics apply for parallel output termination of 50to V  
10  
ms  
LOCK  
a
b
c
.
TT  
The input reference frequency must match the VCO lock range divided by the feedback divider ratio: f  
= f  
÷ (M VCO_SEL).  
REF VCO  
V
CMR  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
range  
can  
CMR  
and the input swing lies within the V (AC) specification. Violation of V  
or V impacts static phase offset t  
.
)
.
PP  
CMR  
PP  
(
d
e
Calculation of reference duty cycle limits: DC  
= t  
f  
100% and DC  
= 100% - DC  
REF,MIN  
PW,MIN REF  
REF,MAX  
REF, MIN  
The MPC97H73 will operate with input rise/fall times up to 3.0 ns, but the A.C. characteristics, specifically t , t  
, DC and f  
PW,MIN MAX  
(
)
only be guaranteed if t , t are within the specified range.  
R
F
f
CCLKx or PCLK to FB_IN. Static phase offset depends on the reference frequency. t [s] = t [°] ÷ (f  
360°).  
( )  
(
)
REF  
g
h
i
j
k
l
Excluding QSYNC output. See application section for part-to-part skew calculation.  
Output duty cycle is DC = (0.5 200 ps f ) 100%. E.g. the DC range at f =100MHz is 48%<DC<52%. T = output period.  
Cycle jitter is valid for all outputs in the same divider configuration. See application section for more details.  
Period jitter is valid for all outputs in the same divider configuration. See application section for more details.  
I/O jitter is valid for a VCO frequency of 400 MHz. See application section for I/O jitter vs. VCO frequency.  
-3 dB point of PLL transfer characteristics.  
OUT  
OUT  
TIMING SOLUTIONS  
7
MOTOROLA  
MPC97H73  
APPLICATIONS INFORMATION  
MPC97H73 Configurations  
the specified frequency range. This divider is controlled by  
the VCO_SEL pin. VCO_SEL effectively extends the usable  
input frequency range while it has no effect on the output to  
reference frequency ratio.  
Configuring the MPC97H73 amounts to properly  
configuring the internal dividers to produce the desired output  
frequencies. The output frequency can be represented by  
this formula:  
The output frequency for each bank can be derived from  
the VCO frequency and output divider:  
ꢺ ꢮ  
÷ ꢏ  
ꢑꢹ ꢘ ꢖꢂ ꢀ  
fQA[0:3] = fVCO ÷ (VCO_SEL NA)  
fQB[0:3] = fVCO ÷ (VCO_SEL NB)  
fQC[0:3] = fVCO ÷ (VCO_SEL NC)  
÷ꢋ ꢌꢑ ꢄꢁ ꢂꢃ  
ꢑꢹ ꢘ  
÷ꢏ  
ꢖꢂ ꢀ  
÷ꢕ  
Table 11. MPC97H73 Divider  
Divider  
Function  
VCO_SEL  
Values  
where fREF is the reference frequency of the selected input  
clock source (CCLKO, CCLK1 or PCLK), M is the PLL  
feedback divider and N is a output divider. The PLL feedback  
divider is configured by the FSEL_FB[2:0] and the output  
dividers are individually configured for each output bank by  
the FSEL_A[1:0], FSEL_B[1:0] and FSEL_C[1:0] inputs.  
÷1  
÷2  
4, 6, 8, 10, 12, 16  
M
PLL feedback  
FSEL_FB[0:3]  
8, 12, 16, 20, 24, 32,  
40  
÷1  
÷2  
÷1  
÷2  
÷1  
÷2  
4, 6, 8, 12  
8, 12, 16, 24  
4, 6, 8, 10  
N
A
N
B
N
C
Bank A Output Di-  
vider FSEL_A[0:1]  
The reference frequency fREF and the selection of the  
feedback-divider M is limited by the specified VCO frequency  
range. fREF and M must be configured to match the VCO  
frequency range of 200 to 480 MHz in order to achieve stable  
PLL operation:  
Bank B Output Di-  
vider FSEL_B[0:1]  
8, 12, 16, 20  
2, 4, 6, 8  
Bank C Output Di-  
vider FSEL_C[0:1]  
4, 8, 12, 16  
fVCO,MIN (fREF VCO_SEL M) fVCO,MAX  
Table 11 shows the various PLL feedback and output  
dividers and Figure 3. and Figure 4. display example  
configurations for the MPC97H73:  
The PLL post-divider VCO_SEL is either a divide-by-one  
or a divide-by-two and can be used to situate the VCO into  
Figure 3. Example Configuration  
Figure 4. Example Configuration  
ꢌꢌ ꢃꢔ ꢇ  
ꢌ ꢌꢃꢔ ꢆ  
ꢌ ꢌꢃꢔ ꢄꢁ ꢂꢃ  
ꢌꢌꢃ ꢔ ꢇ  
ꢌꢌꢃ ꢔ ꢆ  
ꢌꢌꢃ ꢔ ꢄ ꢁꢂ ꢃ  
ꢉ ꢈꢰ ꢊꢱ ꢇꢲ  
ꢉ ꢅꢰ ꢊꢱ ꢇꢲ  
ꢉ ꢌꢰ ꢊꢱ ꢇꢲ  
ꢉ ꢀꢅ  
ꢉ ꢈ ꢰꢊ ꢱ ꢇ ꢲ  
ꢉ ꢅ ꢰꢊ ꢱ ꢇ ꢲ  
ꢉ ꢌꢰ ꢊ ꢱꢇ ꢲ  
ꢉ ꢀꢅ  
ꢊꢊꢻ ꢊ ꢕꢶ ꢷ  
ꢆꢇꢇ ꢕꢶ ꢷ  
ꢜ ꢍ ꢻꢛ ꢕꢶ ꢷ  
ꢜꢍ ꢻ ꢛ ꢕꢶ ꢷ  
ꢮ ꢧꢨ ꢮ ꢺ ꢍ ꢛ ꢕꢶ ꢷ  
ꢋ ꢌꢑ ꢄꢁ ꢂꢃ  
ꢀꢅ ꢄꢓ ꢏ  
ꢋ ꢌꢑ ꢄ ꢁꢂ ꢃ  
ꢀꢅ ꢄ ꢓꢏ  
ꢆ ꢆ  
ꢇ ꢇ  
ꢇ ꢇ  
ꢇ ꢇ  
ꢇ ꢇ  
ꢇ ꢇ  
ꢀꢁ ꢂꢃ ꢄꢈ ꢰꢆ ꢱꢇ ꢲ  
ꢀꢁ ꢂꢃ ꢄꢅ ꢰꢆ ꢱꢇ ꢲ  
ꢀꢁ ꢂꢃ ꢄꢌ ꢰꢆ ꢱꢇꢲ  
ꢀꢁ ꢂꢃ ꢄꢀꢅ ꢰ ꢍꢱꢇ ꢲ  
ꢀꢁ ꢂ ꢃꢄ ꢈ ꢰ ꢆꢱ ꢇ ꢲ  
ꢀꢁ ꢂ ꢃꢄ ꢅ ꢰ ꢆꢱ ꢇ ꢲ  
ꢀꢁ ꢂ ꢃꢄ ꢌꢰ ꢆ ꢱ ꢇꢲ  
ꢀꢁ ꢂ ꢃꢄ ꢀꢅ ꢰ ꢍꢱ ꢇ ꢲ  
ꢆꢍ ꢛ ꢕꢶ ꢷ  
ꢇ ꢆꢆ  
MPC97H73  
MPC97H73  
ꢊꢊ ꢻꢊ ꢕ ꢶꢷ ꢼ ꢀꢨ ꢨꢽꢾ ꢬꢴꢯꢿ  
MPC97H73 example configuration (feedback of  
QFB = 33.3 MHz, fVCO=400 MHz, VCO_SEL=÷1,  
M=12, NA=12, NB=4, NC=2).  
MPC97H73 example configuration (feedback of  
QFB = 25 MHz, fVCO=250 MHz, VCO_SEL=÷1,  
M=10, NA=4, NB=4, NC=2).  
Frequencyrange  
Input  
Min  
Max  
Frequencyrange  
Input  
Min  
Max  
16.6 MHz  
16.6 MHz  
50 MHz  
40 MHz  
40 MHz  
120 MHz  
240 MHz  
20 MHz  
50 MHz  
50 MHz  
100 MHz  
48 MHz  
120 MHz  
120 MHz  
240 MHz  
QA outputs  
QB outputs  
QC outputs  
QA outputs  
QB outputs  
QC outputs  
100 MHz  
MOTOROLA  
8
TIMING SOLUTIONS  
MPC97H73  
MPC97H73 Individual Output Disable (Clock Stop)  
Circuitry  
writing logic ‘0’ to the respective stop enable bit. Likewise, the  
user may programmably enable an output clock by writing  
logic ‘1’ to the respective enable bit. The clock stop logic  
enables or disables clock outputs during the time when the  
output would be in normally in logic low state, eliminating the  
possibility of short or ‘runt’ clock pulses.  
The individual clock stop (output enable) control of the  
MPC97H73 allows designers, under software control, to  
implement power management into the clock distribution  
design. A simple serial interface and a clock stop control logic  
provides a mechanism through which the MPC97H73 clock  
outputs can be individually stopped in the logic ‘0’ state: The  
clock stop mechanism allows serial loading of a 12–bit serial  
input register. This register contains one programmable clock  
stop bit for 12 of the 14 output clocks. The QC0 and QFB  
outputs cannot be stopped (disabled) with the serial port.  
The user can write to the serial input register through the  
STOP_DATA input by supplying a logic ‘0’ start bit followed  
serially by 12 NRZ disable/enable bits. The period of each  
STOP_DATA bit equals the period of the free–running  
STOP_CLK signal. The STOP_DATA serial transmission  
should be timed so the MPC97H73 can sample each  
STOP_DATA bit with the rising edge of the free–running  
STOP_CLK signal. (see Figure 5. )  
The user can program an output clock to stop (disable) by  
ꢁꢘ ꢑꢙꢄ ꢌ ꢃ ꢔ  
ꢁ ꢘꢈ ꢖꢘ ꢉ ꢈꢇ  
ꢉ ꢈꢆ  
ꢉ ꢈꢍ  
ꢉ ꢈ ꢊ  
ꢉ ꢅ ꢇ  
ꢉ ꢅ ꢆ  
ꢉ ꢌꢆ  
ꢉ ꢌꢍ  
ꢉ ꢌꢊ ꢉ ꢁ ꢒꢏ ꢌ  
Figure 5. Clock Stop Circuit Programming  
TIMING SOLUTIONS  
9
MOTOROLA  
MPC97H73  
SYNC Output Description  
coincident rising edges of the QA and QC outputs. The  
duration and the placement of the pulse is dependent QA and  
QC output frequencies: the QSYNC pulse width is equal to  
the period of the higher of the QA and QC output frequencies.  
Figure 6. shows various waveforms for the QSYNC output.  
The QSYNC output is defined for all possible combinations of  
the bank A and bank C outputs.  
The MPC97H73 has a system synchronization pulse  
output QSYNC. In configurations with the output frequency  
relationships are not integer multiples of each other QSYNC  
provides a signal for system synchronization purposes. The  
MPC97H73 monitors the relationship between the A bank  
and the B bank of outputs. The QSYNC output is asserted  
(logic low) one period in duration and one period prior to the  
ꢮꢋꢌ ꢑ  
ꢉ ꢈ  
ꢉ ꢌ  
ꢆ ꢁꢀ ꢂꢃꢄ ꢅ  
ꢉ ꢈ  
ꢉꢌ  
ꢉ ꢁꢒꢏ ꢌ  
ꢇ ꢁꢀ ꢂꢃꢄ ꢅ  
ꢇ ꢁꢆ ꢂꢃꢄ ꢅ  
ꢈ ꢁꢀ ꢂꢃꢄ ꢅ  
ꢈ ꢁꢇ ꢂꢃꢄ ꢅ  
ꢉ ꢁꢀ ꢂꢃꢄ ꢅ  
ꢉ ꢌ ꢼ÷ꢍ ꢿ  
ꢉ ꢈꢼ÷ꢜ ꢿ  
ꢉ ꢁꢒꢏ ꢌ  
ꢉ ꢈꢼ÷ꢚ ꢿ  
ꢉ ꢌꢼ÷ꢜ ꢿ  
ꢉ ꢁꢒꢏ ꢌ  
ꢉ ꢌ ꢼ÷ꢍ ꢿ  
ꢉ ꢈꢼ÷ꢞ ꢿ  
ꢉ ꢁꢒꢏ ꢌ  
ꢉ ꢈꢼ÷ꢜ ꢿ  
ꢉ ꢌꢼ÷ꢞ ꢿ  
ꢉ ꢁꢒꢏ ꢌ  
ꢉ ꢈ ꢼ÷ꢆ ꢍꢿ  
ꢉ ꢌ ꢼ÷ꢍ ꢿ  
ꢉ ꢁꢒꢏ ꢌ  
Figure 6. QSYNC Timing Diagram  
MOTOROLA  
10  
TIMING SOLUTIONS  
MPC97H73  
Power Supply Filtering  
Using the MPC97H73 in zero–delay applications  
The MPC97H73 is a mixed analog/digital product. Its  
analog circuitry is naturally susceptible to random noise,  
especially if this noise is seen on the power supply pins.  
Random noise on the VCC_PLL power supply impacts the  
device characteristics, for instance I/O jitter. The MPC97H73  
Nested clock trees are typical applications for the  
MPC97H73. Designs using the MPC97H73 as LVCMOS PLL  
fanout buffer with zero insertion delay will show significantly  
lower clock skew than clock distributions developed from  
CMOS fanout buffers. The external feedback option of the  
MPC97H73 clock driver allows for its use as a zero delay  
buffer. The PLL aligns the feedback clock output edge with  
the clock input reference edge resulting a near zero delay  
through the device (the propagation delay through the device  
is virtually eliminated). The maximum insertion delay of the  
device in zero-delay applications is measured between the  
reference clock input and any output. This effective delay  
consists of the static phase offset, I/O jitter (phase or  
long-term jitter), feedback path delay and the output-to-output  
skew error relative to the feedback output.  
provides separate power supplies for the output buffers (VCC  
)
and the phase-locked loop (VCC_PLL) of the device. The  
purpose of this design technique is to isolate the high  
switching noise digital outputs from the relatively sensitive  
internal analog phase-locked loop. In a digital system  
environment where it is more difficult to minimize noise on the  
power supplies a second level of isolation may be required.  
The simple but effective form of isolation is a power supply  
filter on the VCCA_PLL pin for the MPC97H73. Figure 7.  
illustrates a typical power supply filter scheme. The  
MPC97H73 frequency and phase stability is most  
susceptible to noise with spectral content in the 100kHz to  
20MHz range. Therefore the filter should be designed to  
target this range. The key parameter that needs to be met in  
the final filter design is the DC voltage drop across the series  
filter resistor RF. From the data sheet the ICC_PLL current (the  
current sourced through the VCC_PLL pin) is typically 8 mA  
(13.5 mA maximum), assuming that a minimum of 3.0V must  
be maintained on the VCC_PLL pin. The resistor RF shown in  
Figure 7. “VCC_PLL Power Supply Filter” must have a  
resistance of 5-10W to meet the voltage drop criteria.  
Calculation of part-to-part skew  
The MPC97H73 zero delay buffer supports applications  
where critical clock signal timing can be maintained across  
several devices. If the reference clock inputs of two or more  
MPC97H73 are connected together, the maximum overall  
timing uncertainty from the common CCLKx input to any  
output is:  
tSK(PP) = t + tSK(O) + tPD, LINE(FB) + tJIT( CF  
)
(
)
ꢖ ꢺ ꢛꢵ ꢆꢇΩ  
ꢌ ꢺ ꢍꢍ µꢀ  
This maximum timing uncertainty consist of 4  
components: static phase offset, output skew, feedback  
board trace delay and I/O (phase) jitter:  
ꢋ ꢌꢌꢄ ꢙꢃ ꢃ  
ꢆꢇ ꢣꢀ  
ꢂ ꢊꢋ ꢌꢍ ꢎꢍ ꢇ  
ꢊꢊ ꢻꢻ ꢻ ꢆꢇꢇ ꢣꢀ  
ꢌꢌꢃ ꢔ  
ꢌ ꢪ ꣅꣅ ꢪ ꢣ  
ꢙ ꢐ ꢠ ꢃꢓ ꢏ ꢂ ꢼꢀ ꢅ ꢿ  
ꣂ ꢦ  
Figure 7. VCC_PLL Power Supply Filter  
ꢉ ꢀꢅ  
ꢐ ꢨꢭꢢ ꢴꢨ ꢆ  
ꣀꢓ ꢘ ꢼ  
The minimum values for RF and the filter capacitor CF are  
defined by the required filter characteristics: the RC filter  
should provide an attenuation greater than 40 dB for noise  
whose spectral content is above 100 kHz. In the example RC  
filter shown in Figure 7. “VCC_PLL Power Supply Filter”, the  
filter cut-off frequency is around 4.5 kHz and the noise  
attenuation at 100 kHz is better than 42 dB.  
ꢐ ꢨꢭꢢ ꢴꢨ ꢆ  
t  
ꢁ ꢔ ꢼꢑꢿ  
ꣁ ꢦ  
ꢉ ꢀꢅ  
ꢐ ꢨꢭꢢ ꢴꢨꢍ  
As the noise frequency crosses the series resonant point  
of an individual capacitor its overall impedance begins to look  
inductive and thus increases with increasing frequency. The  
parallel capacitor combination shown ensures that a low  
impedance path to ground exists for frequencies well above  
the bandwidth of the PLL. Although the MPC97H73 has  
several design features to minimize the susceptibility to  
power supply noise (isolated power and grounds and fully  
differential PLL) there still may be applications in which  
overall performance is being degraded due to system power  
supply noise. The power supply filter schemes discussed in  
this section should be adequate to eliminate power supply  
noise related problems in most designs.  
ꢈ ꢣꢳ ꢉ  
t  
ꢁ ꢔ ꢼꢑꢿ  
ꢕꢬ ꣃꢻ ꢩꢯꢨ ꣄  
Figure 8. MPC97H73 max. device-to-device skew  
Due to the statistical nature of I/O jitter a RMS value (1 s) is  
specified. I/O jitter numbers for other confidence factors (CF)  
can be derived from Table 12.  
TIMING SOLUTIONS  
11  
MOTOROLA  
MPC97H73  
Table 12. Confidence Facter CF  
ꢕꢬ ꣃꢻ ꢓ ꢗ ꢑ ꢙ ꢫꢬ ꢩꢨ ꣀꢢꢦ ꢦ ꢨ ꢧ ꢭꢨ ꢧꢩꢥ ꢩ ꢀꢧ ꢨ꣆ ꢥ ꢨꢣ ꢴꢳ  
ꢙ ꢬꢧ ꢬ ꣅꢨ ꢦꢨ ꢧ ꢱ ꢙ ꢃꢃ ꢀꢨ ꢨꢽ ꢾ ꢬ ꢴꢯ ꢐꢢ ꢭꢢꢽ ꢨꢧ ꢀꢅ  
CF  
1s  
Probability of clock edge within the distribution  
0.68268948  
0.95449988  
0.99730007  
0.99993663  
0.99999943  
0.99999999  
ꢆ ꢍꢇ  
ꢆ ꢇꢇ  
ꢞ ꢇ  
2s  
3s  
4s  
5s  
6s  
ꢀꢅ ꢺ ÷ꢜ  
ꢀꢅ ꢺ ÷ꢍ ꢚ  
ꢜ ꢇ  
ꢚ ꢇ  
ꢀꢅ ꢺ ÷ꢆ ꢍ  
ꢍ ꢇ  
The feedback trace delay is determined by the board  
layout and can be used to fine-tune the effective delay  
through each device.  
ꢍ ꢛꢇ  
ꢊ ꢇꢇ  
ꢊ ꢛꢇ  
ꢚ ꢇꢇ  
Due to the frequency dependence of the static phase  
offset and I/O jitter, using Figure 9. to Figure 11. to predict a  
Figure 10. MPC9772 I/O Jitter  
maximum I/O jitter and the specified t(parameter relative to  
the input reference frequency results in a precise timing  
performance analysis.  
)
ꢕꢬ ꣃꢻ ꢓ ꢗ ꢑ ꢙ ꢫꢬ ꢩꢨ ꣀꢢꢦ ꢦ ꢨ ꢧ ꢭꢨ ꢧꢩꢥ ꢩ ꢀꢧ ꢨ꣆ ꢥ ꢨꢣ ꢴꢳ  
ꢙ ꢬꢧ ꢬ ꣅꢨ ꢦꢨ ꢧ ꢱ ꢙ ꢃꢃ ꢀꢨ ꢨꢽ ꢾ ꢬ ꢴꢯ ꢐꢢ ꢭꢢꢽ ꢨꢧ ꢀꢅ  
ꢆ ꢚꢇ  
ꢆ ꢍꢇ  
ꢆ ꢇꢇ  
ꢞ ꢇ  
In the following example calculation an I/O jitter confidence  
factor of 99.7% ( 3s) is assumed, resulting in a worst case  
timing uncertainty from the common input reference clock to  
any output of -455 ps to +455 ps relative to CCLK (PLL  
feedback = ÷8, reference frequency = 50 MHz, VCO  
frequency = 400 MHz, I/O jitter = 13 ps rms max., static  
ꢀꢅ ꢺ ÷ꢆ ꢇ  
ꢀꢅ ꢺ ÷ꢚ ꢇ  
÷
phase offset t(∅  
=
166 ps):  
)
tSK(PP)  
=
=
[–166ps...166ps] + [–250ps...250ps] +  
[(13ps @ –3)...(13ps @ 3)] + tPD, LINE(FB)  
Figure 11. MPC9772 I/O Jitter  
Driving Transmission Lines  
tSK(PP)  
[–455ps...455ps] + tPD, LINE(FB)  
The MPC97H73 clock driver was designed to drive high  
speed signals in a terminated transmission line environment.  
To provide the optimum flexibility to the user the output  
drivers were designed to exhibit the lowest impedance  
possible. With an output impedance of less than 20the  
drivers can drive either parallel or series terminated  
transmission lines. For more information on transmission  
lines the reader is referred to Motorola application note  
AN1091. In most high performance clock networks  
point-to-point distribution of signals is the method of choice.  
In a point-to-point scheme either series terminated or parallel  
terminated transmission lines can be used. The parallel  
technique terminates the signal at the end of the line with a  
50resistance to VCC÷2.  
ꢕꢬ ꣃꢻ ꢓꢗ ꢑ ꢙ ꢫꢬꢩꢨ ꣀꢢ ꢦꢦ ꢨꢧ ꢭꢨꢧ ꢩꢥ ꢩ ꢀꢧ ꢨ ꣆ꢥꢨ ꢣꢴꢳ  
ꢙꢬ ꢧ ꢬꣅ ꢨꢦ ꢨꢧ ꢱ ꢙ ꢃꢃ ꢀꢨ ꢨꢽꢾ ꢬꢴꢯ ꢐꢢ ꢭꢢ ꢽꢨ ꢧ ꢀꢅ  
ꢆ ꢚꢇ  
ꢆ ꢍꢇ  
ꢆ ꢇꢇ  
ꢞ ꢇ  
÷
ꢀ ꢅꢺ ÷ꢆꢜ  
ꢀꢅ ꢺ ÷ꢞ  
ꢀ ꢅꢺ ÷ꢚ  
ꢍ ꢛꢇ  
ꢍ ꢇꢇ  
This technique draws a fairly high level of DC current and  
thus only a single terminated line can be driven by each  
output of the MPC97H73 clock driver. For the series  
terminated case however there is no DC current draw, thus  
Figure 9. MPC9772 I/O Jitter  
MOTOROLA  
12  
TIMING SOLUTIONS  
MPC97H73  
the outputs can drive multiple series terminated lines.  
Figure 12. “Single versus Dual Transmission Lines”  
illustrates an output driving a single series terminated line  
versus two series terminated lines in parallel. When taken to  
its extreme the fanout of the MPC97H73 clock driver is  
effectively doubled due to its capability to drive multiple lines.  
towards the quiescent 3.0V in steps separated by one round  
trip delay (in this case 4.0ns).  
1. Final skew data pending specification.  
ꢊ ꢻꢇ  
ꢑ ꢥ ꢦꢈ  
ꢑ ꢥ ꢦꢅ  
ꢦ ꢺ ꢊ ꢻ ꢞꢟ ꢛꢜ  
ꢍ ꢻꢛ  
ꢍ ꢻꢇ  
ꢆ ꢻꢛ  
ꢆ ꢻꢇ  
ꢇ ꢻꢛ  
ꢦ ꢺ ꢊ ꢻꢟ ꢊ ꢞ ꢜ  
ꢕꢙꢌ ꢟꢝ ꢶ ꢝ ꢊ  
ꢑ ꢹꢘ ꢙꢹ ꢘ  
ꢅꢹ ꢀ ꢀꢂꢖ  
ꢓ ꢣ  
ꢺ ꢛꢇ Ω  
ꢖ ꢺ ꢊꢜ Ω  
ꢆ ꢚΩ  
ꢑ ꢥ ꢦꢈ  
ꢕꢙꢌ ꢟꢝ ꢶ ꢝ ꢊ  
ꢑ ꢹꢘ ꢙꢹ ꢘ  
ꢅꢹ ꢀ ꢀꢂꢖ  
ꢺ ꢛꢇ Ω  
ꢺ ꢛꢇ Ω  
ꢖ ꢺ ꢊꢜ Ω  
ꢑ ꢥ ꢦꢅ ꢇ  
ꢑ ꢥ ꢦꢅ ꢆ  
ꢆ ꢚΩ  
ꢓ ꢏ  
ꢖ ꢺ ꢊꢜ Ω  
ꢆ ꢇ  
ꢆ ꢍ  
ꢘꢓ ꢕꢂ ꢼꢣ ꢁ ꢿ  
Figure 13. Single versus Dual Waveforms  
Figure 12. Single versus Dual Transmission Lines  
Since this step is well above the threshold region it will not  
cause any false clock triggering, however designers may be  
uncomfortable with unwanted reflections on the line. To better  
match the impedances when driving multiple lines the  
situation in Figure 14. “Optimized Dual Line Termination”  
should be used. In this case the series terminating resistors  
are reduced such that when the parallel combination is added  
to the output buffer impedance the line impedance is perfectly  
matched.  
The waveform plots in Figure 13. “Single versus Dual  
Line Termination Waveforms” show the simulation results of  
an output driving a single line versus two lines. In both cases  
the drive capability of the MPC97H73 output buffer is more  
than sufficient to drive 50transmission lines on the incident  
edge. Note from the delay measurements in the simulations a  
delta of only 43ps exists between the two differently loaded  
outputs. This suggests that the dual line driving need not be  
used exclusively to maintain the tight output-to-output skew  
of the MPC97H73. The output waveform in Figure 13.  
“Single versus Dual Line Termination Waveforms” shows a  
step in the waveform, this step is caused by the impedance  
mismatch seen looking into the driver. The parallel  
combination of the 36series resistor plus the output  
impedance does not match the parallel combination of the  
line impedances. The voltage wave launched down the two  
lines will equal:  
ꢕꢙ ꢌꢟ ꢝ ꢶꢝ ꢊ  
ꢑ ꢹꢘꢙ ꢹꢘ  
ꢺ ꢛ Ω  
ꢺ ꢛ Ω  
ꢖ ꢺ ꢍ ꢍΩ  
ꢅ ꢹꢀꢀꢂ ꢖ  
ꢆꢚΩ  
ꢖ ꢺ ꢍ ꢍΩ  
VL = VS ( Z0 ÷ (RS+R0 +Z0))  
Z0 = 50|| 50Ω  
RS = 36|| 36Ω  
R0 = 14Ω  
14+ 22k 22= 50k 50Ω  
25= 25Ω  
Figure 14. Optimized Dual Line Termination  
VL = 3.0 ( 25 ÷ (18+17+25)  
= 1.31V  
At the load end the voltage will double, due to the near  
unity reflection coefficient, to 2.6V. It will then increment  
TIMING SOLUTIONS  
13  
MOTOROLA  
MPC97H73  
ꢕꢙ ꢌꢟ ꢝ ꢶꢝ ꢊ ꢐꢹ ꢘ  
ꢙ ꢥꢡ ꢩꢨ  
ꢎ ꢨꢣꢨ ꢧ ꢬꢦ ꢪꢧ  
꣉ ꢺ ꢛꢇ W  
ꢺ ꢛꢇΩ  
꣉ ꢺ ꢛ ꢇΩ  
ꢖ ꢺ ꢛ ꢇΩ  
ꢖ ꢺ ꢛ ꢇΩ  
ꢘ ꢘ  
ꢘ ꢘ  
Figure 15. CCLK MPC97H73 AC test reference  
ꢕꢙ ꢌꢟ ꢝ ꢶꢝ ꢊ ꢐꢹ ꢘ  
ꢺ ꢛꢇ Ω  
ꢐꢢ ꢮ ꢮ ꢨꢧ ꢨꢣ ꢦꢢ ꢬꢡ  
ꢙ ꢥꢡ ꢩꢨ ꢎ ꢨꢣꢨ ꢧ ꢬꢦ ꢪꢧ  
꣉ ꢺ ꢛꢇ W  
ꢺ ꢛ Ω  
ꢖ ꢺ ꢛ ꢇ Ω  
ꢖ ꢺ ꢛ ꢇ Ω  
ꢘ ꢘ  
ꢘ ꢘ  
Figure 16. PCLK MPC97H73 AC test reference  
MOTOROLA  
14  
TIMING SOLUTIONS  
MPC97H73  
ꢌ ꢌ  
Bꢍ  
ꢌ ꢌ  
ꢌ ꢌ  
ꢎꢏ ꢐ  
ꢌꢌꢃ ꢔ ꣃ  
ꢀꢅ ꢄ ꢓꢏ  
Bꢍ  
ꢌ ꢌ  
ꢌ ꢌ  
ꢎꢏ ꢐ  
Bꢍ  
ꢌ ꢌ  
ꢌ ꢌ  
ꢎꢏ ꢐ  
Bꢍ  
ꢌ ꢌ  
ꢁ ꢔ ꢼꢑꢿ  
ꢘ ꢫꢨ ꢤ ꢢꢣ ꢵꢦ ꢪ ꢵꢤ ꢢꢣ ꢩ ꢯꢨ꣄ ꢢ ꢩ ꢽꢨ ꢮꢢ ꢣꢨ ꢽ ꢬꢩ ꢦ ꢫꢨ ꣄ ꢪꢧ ꢩꢦ ꢴꢬꢩ ꢨ ꢽꢢ ꢮ ꢮꢨ ꢧ ꢨꢣꢴ ꢨ  
ꢢꢣ ꢤ ꢧ ꢪꢤ ꢬ ꣊ꢬ ꢦꢢ ꢪꢣ ꢽ ꢨꢡ ꢬꢳ ꢾꢨ ꢦ꣄ ꢨꢨ ꢣ ꢬꢣ ꢳ ꢩꢢ ꣅ ꢢꢡ ꢬꢧ ꢽꢨ ꢡꢬ ꢳ ꢤꢬ ꢦꢫ ꣄ꢢ ꢦ ꢫꢢ ꢣ ꢬ  
ꢩꢢ ꢣ꣊ ꢡꢨ ꢽ ꢨꢭꢢ ꢴꢨ  
Figure 17. Output–to–output Skew tSK(O)  
Figure 18. Propagation delay (t(, static phase  
)
offset) test reference  
Bꢍ  
ꢌꢌ  
ꢊꢋ ꢆ ꢌ  
ꢆ ꢎ ꢆ ꢏꢐ ꢑꢒ꣋  
ꢇ ꢈ  
ꢘ ꢫꢨ ꢦꢢ ꣅꢨ ꢮꢧ ꢪ ꣅ ꢦꢫ ꢨ ꢙ ꢃꢃ ꢴꢪꢣ ꢦꢧ ꢪ ꢡꢡ ꢨ ꢽ ꢨꢽ ꣊ꢨ ꢦ ꢪ ꢦ ꢫꢨ ꢣꢪ ꢣ ꢴꢪꢣ ꢦꢧ ꢪ ꢡ ꢡꢨ ꢽ  
ꢨ ꢽ꣊ ꢨ ꢠ ꢽ ꢢꢭꢢ ꢽꢨ ꢽ ꢾ ꢳ ꢦ ꢫꢨ ꢦ ꢢꣅ ꢨ ꢾꢨ ꢦ꣄ ꢨꢨ ꢣ ꢙ ꢃꢃ ꢴꢪꢣ ꢦꢧ ꢪ ꢡꢡ ꢨ ꢽ ꢨꢽ ꣊ꢨꢩꢠ  
ꢨ ꣃꢤ ꢧꢨ ꢩꢩꢨ ꢽ ꢬ ꢩ ꢬ ꢤꢨ ꢧ ꢴꢨꢣꢦ ꢬ꣊ ꢨ  
ꢘꢫ ꢨ ꢽ ꢨꢭꢢ ꢬꢦ ꢢ ꢪꢣ ꢢꢣ ꢦ ꢮ ꢪ ꢧ ꢬ ꢴꢪ ꢣꢦ ꢧ ꢪꢡ ꢡꢨ ꢽ ꢨ ꢽ꣊ ꢨ ꣄ꢢ ꢦꢫ ꢧꢨ ꢩꢤ ꢨ ꢴꢦ ꢦ ꢪ ꢬ ꢦ ꣅꢨ ꢬꢣ ꢢꢣ ꢬ  
ꢧꢬ ꢣ ꢽꢪ ꣅ ꢩꢬ ꣅꢤ ꢡꢨ ꢪ ꢮ ꢴꢳꢴꢡꢨ ꢩ  
Figure 19. Output Duty Cycle (DC)  
Figure 20. I/O Jitter  
ꢆ ꢎꢆ  
ꢆ ꢂ ꢆ ꢎ ꣋  
ꢊꢋ ꢆ ꢌꢄ ꢕ ꢖ ꢍ ꢓ ꢇ  
ꢏ ꣁ ꢆ  
ꢘ ꢫꢨ ꢭꢬ ꢧ ꢢꢬ ꢦꢢ ꢪꢣ ꢢꢣ ꢴꢳꢴ ꢡꢨ ꢦ ꢢꣅ ꢨ ꢪꢮ ꢬ ꢩꢢ ꣊ꢣꢬ ꢡ ꢾꢨ ꢦ꣄ ꢨꢨꢣ ꢬꢽ ꣇ꢬ ꢴꢨꢣꢦ ꢴꢳꢴꢡ ꢨꢩꢠ ꢪ ꢭꢨꢧ ꢬ  
ꢧ ꢬꢣ ꢽ ꢪꣅ ꢩꢬ ꣅꢤ ꢡ ꢨ ꢪ ꢮ ꢬ ꢽ ꣇ꢬ ꢴꢨꢣꢦ ꢴꢳꢴꢡ ꢨ ꢤꢬ ꢢꢧ ꢩ  
ꢘꢫ ꢨ ꢽ ꢨꢭꢢ ꢬꢦ ꢢ ꢪꢣ ꢢꢣ ꢴꢳꢴꢡꢨ ꢦ ꢢꣅ ꢨ ꢪ ꢮ ꢬ ꢩꢢ꣊ ꢣ ꢬꢡ ꣄ꢢ ꢦꢫ ꢧꢨ ꢩꢤ ꢨꢴ ꢦ ꢦ ꢪ ꢦ ꢫꢨ ꢢꢽ ꢨ ꢬꢡ ꢤ ꢨ ꢧꢢ ꢪꢽ ꢪ ꢭꢨ ꢧ  
ꢬ ꢧꢬ ꢣ ꢽꢪ ꣅ ꢩꢬ ꣅꢤ ꢡꢨ ꢪ ꢮ ꢴꢳꢴꢡꢨ ꢩ  
Figure 21. Cycle–to–cycle Jitter  
Figure 22. Period Jitter  
ꢋ ꢺ ꢊꢻ ꢊꢋ  
ꢌꢌ  
ꢍꢻ ꢚ  
Figure 23. Output Transition Time Test Reference  
TIMING SOLUTIONS  
15  
MOTOROLA  
MPC97H73  
OUTLINE DIMENSIONS  
FA SUFFIX  
52 LEAD LQFP PACKAGE  
CASE 848D-03  
ISSUE D  
4X  
4X 13 TIPS  
ꢇꢻ ꢍꢇ ꣈ꢼ ꢇ ꢻꢇ ꢇꢞꢿ ꢶ ꢃꢵ ꢕ ꢏ  
ꢇ ꢻ ꢍꢇ ꣈ ꢼꢇ ꢻ ꢇꢇ ꢞ ꢿ ꢘ ꢃ ꢵꢕ ꢏ  
52  
40  
–X–  
X=L, M, N  
1
39  
3X VIEW Y  
–L–  
AB  
AB  
G
–M–  
B1  
B
V
VIEW Y  
V1  
13  
27  
ꢆꢻ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓ ꢑꢏ ꢓ ꢏ ꢎ ꢈ ꢏꢐ ꢘ ꢑꢃ ꢂꢖ ꢈ ꢏ ꢌ ꢓꢏ ꢎ ꢙ ꢂꢖ ꢈ ꢏ ꢁꢓ  
ꢒ ꢆꢚꢻ ꢛꢕꢠ ꢆꢟꢞ ꢍꢻ  
14  
26  
ꢍꢻ ꢌ ꢑ ꢏ ꢘꢖ ꢑ ꢃꢃ ꢓꢏ ꢎ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓꢑ ꢏ ꢱ ꢕꢓ ꢃꢃꢓ ꢕꢂ ꢘꢂ ꢖ ꢻ  
ꢊꢻ ꢐ ꢈꢘ ꢹ ꢕ ꢙ ꢃꢈꢏ ꢂ ꢵ ꢶ ꢵ ꢓ ꢁ ꢃꢑ ꢌ ꢈꢘ ꢂꢐ ꢈ ꢘ ꢅ ꢑꢘ ꢘ ꢑ ꢕ ꢑ ꢀ  
ꢃꢂ ꢈꢐ ꢈ ꢏ ꢐ ꢓ ꢁ ꢌ ꢑ ꢓꢏ ꢌ ꢓ ꢐ ꢂ ꢏꢘ ꢸꢓ ꢘꢶ ꢘ ꢶ ꢂ ꢃꢂ ꢈꢐ  
ꢸꢶ ꢂ ꢖ ꢂ ꢘ ꢶ ꢂ ꢃꢂ ꢈꢐ ꢂ ꣌ꢓ ꢘꢁ ꢘ ꢶ ꢂ ꢙ ꢃꢈꢁ ꢘ ꢓꢌ ꢅ ꢑꢐ ꢒ ꢈ ꢘ  
ꢘ ꢶ ꢂ ꢅ ꢑꢘ ꢘ ꢑ ꢕ ꢑ ꢀ ꢘ ꢶ ꢂ ꢙꢈ ꢖꢘ ꢓ ꢏ ꢎ ꢃꢓ ꢏ ꢂꢻ  
ꢚꢻ ꢐ ꢈꢘ ꢹ ꢕꢁ ꢵ ꢃꢵ ꢠ ꢵ ꢕꢵ ꢈ ꢏ ꢐ ꢵ ꢏ ꢵ ꢘ ꢑ ꢅ ꢂ ꢐ ꢂ ꢘꢂ ꢖ ꢕꢓꢏ ꢂꢐ  
ꢈ ꢘ ꢐ ꢈꢘ ꢹ ꢕ ꢙ ꢃꢈꢏ ꢂ ꢵ ꢶ ꢵ ꢻ  
–N–  
A1  
S1  
ꢛꢻ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓ ꢑꢏ ꢁ ꢁ ꢈ ꢏ ꢐ ꢋ ꢘ ꢑ ꢅ ꢂ ꢐ ꢂꢘ ꢂ ꢖ ꢕꢓꢏ ꢂ ꢐ ꢈ ꢘ  
ꢁ ꢂꢈꢘ ꢓꢏ ꢎ ꢙ ꢃꢈꢏ ꢂ ꢵ ꢘ ꢵ ꢻ  
A
S
ꢜꢻ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓꢑ ꢏ ꢁ ꢈ ꢈ ꢏ ꢐ ꢅ ꢐ ꢑ ꢏ ꢑ ꢘ ꢓ ꢏ ꢌꢃ ꢹ ꢐ ꢂ ꢕꢑ ꢃꢐ  
ꢙ ꢖꢑ ꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢻ ꢈ ꢃꢃꢑ ꢸꢈ ꢅꢃꢂ ꢙ ꢖꢑ ꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢓ ꢁ  
ꢇꢻ ꢍꢛ ꢼ ꢇꢻꢇ ꢆꢇꢿ ꢙ ꢂꢖ ꢁ ꢓꢐ ꢂ ꢻ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓ ꢑꢏ ꢁ ꢈ ꢈ ꢏ ꢐ ꢅ  
ꢐ ꢑ ꢓ ꢏ ꢌꢃ ꢹ ꢐ ꢂ ꢕꢑ ꢃꢐ ꢕꢓ ꢁꢕ ꢈꢘ ꢌ ꢶ ꢈ ꢏꢐ ꢈ ꢖꢂ  
ꢐ ꢂ ꢘꢂ ꢖ ꢕꢓꢏ ꢂ ꢐ ꢈ ꢘ ꢐ ꢈꢘ ꢹ ꢕ ꢙ ꢃꢈꢏ ꢂ ꣍ ꢶ ꣍ꢻ  
ꢝꢻ ꢐ ꢓ ꢕꢂꢏ ꢁ ꢓ ꢑꢏ ꢐ ꢐ ꢑ ꢂꢁ ꢏ ꢑ ꢘ ꢓ ꢏ ꢌꢃ ꢹ ꢐ ꢂ ꢐ ꢈ ꢕꢅꢈ ꢖ  
ꢙ ꢖꢑ ꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢻ ꢐ ꢈ ꢕꢅꢈ ꢖ ꢙ ꢖꢑ ꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢁ ꢶꢈ ꢃꢃ  
ꢏ ꢑ ꢘ ꢌ ꢈꢹ ꢁ ꢂ ꢘ ꢶ ꢂ ꢃꢂ ꢈꢐ ꢸꢓ ꢐ ꢘꢶ ꢘ ꢑ ꢂ ꣌ꢌ ꢂ ꢂꢐ ꢇꢻ ꢚ ꢜ  
ꢼ ꢇꢻꢇ ꢆꢞꢿ ꢻ ꢕꢓ ꢏ ꢓꢕ ꢹ ꢕ ꢁ ꢙꢈ ꢌ ꢂ ꢅ ꢂꢘ ꢸꢂꢂ ꢏ  
ꢙ ꢖꢑ ꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢈ ꢏ ꢐ ꢈ ꢐꣀ ꢈꢌ ꢂ ꢏ ꢘ ꢃꢂ ꢈꢐ ꢑ ꢖ  
ꢙ ꢖ ꢑꢘ ꢖ ꢹ ꢁꢓ ꢑ ꢏ ꢇꢻ ꢇꢝ ꢼ ꢇꢻꢇ ꢇꢊꢿ ꢻ  
4X q2  
4X q3  
C
–H–  
–T–  
ꢂꢐ ꢖꢖ ꢐ ꢂꢔ ꢗꢔ ꢘ ꢕ  
ꢏ ꢐ ꢂ ꢂꢐ ꢒ ꢂꢑ ꢓ  
ꢆꢇꢻ ꢇꢇ ꣈ꢅ ꢁꢌ  
ꢐ ꢒ ꢋꢎ ꢔ ꢕ  
ꢂꢐ ꢒ ꢂꢑ ꢓ  
ꢕꢔ ꢑꢗꢐ ꢒ ꢛ  
ꢊꢖ ꢑꢒ ꢔ  
ꢑ ꢀ  
ꢇꢻ ꢊꢟꢚ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢆꢟꢝ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢊꢟꢚ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢆꢟꢝ ꣈ꢅ ꢁꢌ  
VIEW AA  
ꢛꢻ ꢇꢇ꣈ ꢅ ꢁꢌ  
ꢆꢇꢻ ꢇꢇ ꣈ꢅ ꢁꢌ  
ꢛꢻ ꢇꢇ꣈ ꢅ ꢁꢌ  
ꢙ ꢀ  
ꢵ ꢵ ꢵ  
ꢇꢻ ꢇꢛ  
ꢆꢻ ꢊꢇ  
ꢇꢻ ꢍꢇ  
ꢇꢻ ꢚꢛ  
ꢇꢻ ꢍꢍ  
ꢆꢻ ꢝꢇ  
ꢵ ꢵ ꢵ  
ꢇꢻ ꢇꢇꢍ  
ꢇꢻ ꢇꢛꢆ  
ꢇꢻ ꢇꢇꢞ  
ꢇꢻ ꢇꢆꢞ  
ꢇꢻ ꢇꢜꢝ  
ꢋ ꢀ  
ꢋ ꢆ  
ꢇꢻ ꢍꢇ  
ꢆꢻ ꢛꢇ  
ꢇꢻ ꢚꢇ  
ꢇꢻ ꢝꢛ  
ꢇꢻ ꢊꢛ  
ꢇꢻ ꢇꢇꢞ  
ꢇꢻ ꢇꢛꢟ  
ꢇꢻ ꢇꢆꢜ  
ꢇꢻ ꢇꢊꢇ  
W
2X R R1  
q1  
ꢇꢻ ꢇꢇꢟ ꢇꢻ ꢇꢆꢚ  
ꢇꢻ ꢇꢍꢜ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢍꢛ ꣈ꢼ ꢇ ꢻꢇ ꢆ ꢇꢿ  
C2  
q
ꢇꢻ ꢇꢝ  
ꢇꢻ ꢛꢇ꣈ ꢖ ꢂꢀ  
ꢇꢻ ꢇꢞ  
ꢆꢍꢻ ꢇꢇ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢇꢇꢊ  
ꢇꢻ ꢇꢍꢇ ꣈ꢖ ꢂ ꢀ  
ꢇꢻ ꢇꢇꢊ ꢇꢻ ꢇꢇꢞ  
ꢇꢻ ꢚꢝꢍ ꣈ꢅ ꢁꢌ  
ꢘ ꢀ  
ꢕ ꢀ  
ꢜꢻ ꢇꢇ꣈ ꢅ ꢁꢌ  
ꢇꢻ ꢇꢟꢇ ꢻꢆ ꢜ  
ꢆꢍꢻ ꢇꢇ ꣈ꢅ ꢁꢌ  
ꢜꢻ ꢇꢇ꣈ ꢅ ꢁꢌ  
ꢇꢻ ꢍꢇ꣈ ꢖ ꢂꢀ  
ꢆꢻ ꢇꢇ꣈ ꢖ ꢂꢀ  
ꢇꢻ ꢍꢊꢜ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢇꢇꢜ  
ꢇꢻ ꢚꢝꢍ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢍꢊꢜ ꣈ꢅ ꢁꢌ  
ꢇꢻ ꢇꢇꢞ ꣈ꢖ ꢂ ꢀ  
ꢇꢻ ꢇꢊꢟ ꣈ꢖ ꢂ ꢀ  
K
C1  
BASE METAL  
F
E
PLATING  
ꢟ ꢀ  
VIEW AA  
Z
θ
ꢆꢍ  
ꢆꢍ  
ꢵ ꢵ ꢵ  
ꢆꢍ  
ꢆꢍ  
ꢵ ꢵ ꢵ  
_
_
_
_
J
U
θꢀ  
θꢆ  
θꢇ  
_
_
ꢖ ꢂ ꢀ  
ꢖ ꢂꢀ  
ꢖ ꢂꢀ  
ꢖ ꢂꢀ  
_
_
_
_
D
ꢇ ꢻ ꢆꢊ ꣈ ꢼꢇ ꢻ ꢇꢇ ꢛ ꢿ  
ꢘ ꢃ ꢵꢕ  
SECTION AB–AB  
ROTATED 90_ CLOCKWISE  
MOTOROLA  
16  
TIMING SOLUTIONS  
MPC97H73  
NOTES  
TIMING SOLUTIONS  
17  
MOTOROLA  
MPC97H73  
NOTES  
MOTOROLA  
18  
TIMING SOLUTIONS  
MPC97H73  
NOTES  
TIMING SOLUTIONS  
19  
MOTOROLA  
MPC97H73  
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective  
owners.  
E Motorola Inc. 2003  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
852–26668334  
TECHNICAL INFORMATION CENTER:  
1–800–521–6274 or 480–768–2130  
HOME PAGE: http://motorola.com/semiconductors  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
3–20–1, Minami–Azabu, Minato–ku, Tokyo 106–8573 Japan  
81–3–3440–3569  
MPC97H73/D  

相关型号:

MPC97H74AER2

PLL Based Clock Driver, 97H Series, 14 True Output(s), 0 Inverted Output(s), CMOS, PQFP52, LEAD FREE, LQFP-52
IDT

MPC97R72FA

240MHz, OTHER CLOCK GENERATOR, PQFP52, LQFP-52
MOTOROLA

MPC97R73FA

PLL Based Clock Driver, 12 True Output(s), 0 Inverted Output(s), CMOS, PQFP52, LQFP-52
MOTOROLA

MPC97R74FA

PLL BASED CLOCK DRIVER, 14 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP52, LQFP-52
MOTOROLA

MPC980

DUAL 3.3V PLL CLOCK GENERATOR
MOTOROLA

MPC980FA

Processor Specific Clock Generator, 66MHz, PQFP52, PLASTIC, LQFP-52
IDT

MPC980FA

66MHz, PROC SPECIFIC CLOCK GENERATOR, PQFP52, PLASTIC, LQFP-52
MOTOROLA

MPC980FAR2

66MHz, PROC SPECIFIC CLOCK GENERATOR, PQFP52, PLASTIC, LQFP-52
MOTOROLA

MPC9817

Clock Generator for PowerQUICC and PowerPC Microprocessors and Microcontrollers
FREESCALE

MPC9817ENR2

Processor Specific Clock Generator, 66MHz, CMOS, PDSO20, LEAD FREE, SSOP-20
IDT

MPC9817ENR2

66MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO20, LEAD FREE, SSOP-20
NXP

MPC9817SD

66MHz, PROC SPECIFIC CLOCK GENERATOR, PDSO20, SSOP-20
NXP