MPC99J93FA [NXP]

PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, PLASTIC, LQFP-32;
MPC99J93FA
型号: MPC99J93FA
厂家: NXP    NXP
描述:

PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, PLASTIC, LQFP-32

驱动 输出元件 逻辑集成电路
文件: 总8页 (文件大小:213K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MOTOROLA  
Order Number: MPC99J93/D  
Rev 1, 08/2003  
SEMICONDUCTOR TECHNICAL DATA  
MPC99J93  
Product Preview  
Intelligent Dynamic Clock  
Switch (IDCS) PLL Clock  
Driver  
The MPC99J93 is a PLL clock driver designed specifically for redun-  
dant clock tree designs. The device receives two differential LVPECL  
clock signals from which it generates 5 new differential LVPECL clock  
outputs. Two of the output pairs regenerate the input signals frequency  
and phase while the other three pairs generate 2x, phase aligned clock  
outputs.  
FA SUFFIX  
32--LEAD LQFP PACKAGE  
CASE 873A  
Features:  
Fully Integrated PLL  
Intelligent Dynamic Clock Switch  
LVPECL Clock Outputs  
LVCMOS Control I/O  
3.3V Operation  
32--Lead LQFP Packaging  
Functional Description  
The MPC99J93 Intelligent Dynamic Clock Switch (IDCS) circuit continuously monitors both input CLK signals. Upon detection  
of a failure (CLK stuck HIGH or LOW for at least 1 period), the INP_BAD for that CLK will be latched (H). If that CLK is the primary  
clock, the IDCS will switch to the good secondary clock and phase/frequency alignment will occur with minimal output phase  
disturbance. The typical phase bump caused by a failed clock is eliminated. (See Application Information section).  
PLL_En  
Clk_Selected  
Inp1bad  
Inp0bad  
Man_Override  
Dynamic Switch  
Logic  
Qb0  
Qb0  
Alarm_Reset  
OR  
Qb1  
Qb1  
Sel_Clk  
CLK0  
CLK0  
CLK1  
CLK1  
Qb2  
Qb2  
÷2  
÷4  
PLL  
Qa0  
Qa0  
Ext_FB  
Ext_FB  
200 -- 360 MHz  
Qa1  
Qa1  
MR  
Figure 1. Block Diagram  
This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice.  
E Motorola Inc. 2003  
MOTOROLA TIMING SOLUTIONS  
1
MPC99J93  
24 23 22 21 20 19 18 17  
25  
26  
27  
28  
29  
30  
31  
32  
16  
15  
14  
13  
12  
11  
10  
9
Qa1  
Qa1  
VCC  
Inp0bad  
Inp1bad  
Clk_Selected  
GND  
Qa0  
Qa0  
MPC99J93  
VCC  
VCC_PLL  
Man_Override  
PLL_En  
Ext_FB  
Ext_FB  
GND  
1
2
3
4
5
6
7
8
Figure 2. 32--Lead Pinout (Top View)  
Table 1. Pin Descriptions  
Pin Name  
I/O  
Pin Definition  
CLK0, CLK0  
CLK1, CLK1  
LVPECL Input  
LVPECL Input  
Differential PLL clock reference (CLK0 pulldown, CLK0 pullup)  
Differential PLL clock reference (CLK1 pulldown, CLK1 pullup)  
Ext_FB, Ext_FB  
Qa0:1, Qa0:1  
Qb0:2, Qb0:2  
Inp0bad  
LVPECL Input  
LVPECL Output  
LVPECL Output  
Differential PLL feedback clock (Ext_FB pulldown, Ext_FB pullup)  
Differential 1x output pairs. Connect one QAx pair to Ext_FB.  
Differential 2x output pairs  
LVCMOS Output Indicates detection of a bad input reference clock 0 with respect to the feedback signal. The output  
is active HIGH and will remain HIGH until the alarm reset is asserted  
Inp1bad  
LVCMOS Output Indicates detection of a bad input reference clock 1 with respect to the feedback signal. The output  
is active HIGH and will remain HIGH until the alarm reset is asserted  
Clk_Selected  
Alarm_Reset  
LVCMOS Output ‘0’ if clock 0 is selected, ‘1’ if clock 1 is selected  
LVCMOS Input  
‘0’ will reset the input bad flags and align Clk_Selected with Sel_Clk. The input is “one--shotted”  
(50kpullup)  
Sel_Clk  
Manual_Override  
PLL_En  
MR  
LVCMOS Input  
LVCMOS Input  
LVCMOS Input  
LVCMOS Input  
Power Supply  
Power Supply  
Power Supply  
Power Supply  
‘0’ selects CLK0, ‘1’ selects CLK1 (50kpulldown)  
‘1’ disables internal clock switch circuitry (50kpulldown)  
‘0’ bypasses selected input reference around the phase--locked loop (50kpullup)  
‘0’ resets the internal dividers forcing Q outputs LOW. Asynchronous to the clock (50kpullup)  
VCCA  
PLL power supply  
Digital power supply  
PLL ground  
VCC  
GNDA  
GND  
Digital ground  
2
MPC99J93  
Table 2. ABSOLUTE MAXIMUM RATINGSa  
Symbol  
Characteristics  
Min  
-0.3  
-0.3  
-0.3  
Max  
Unit  
V
Condition  
V
Supply Voltage  
3.9  
CC  
V
DC Input Voltage  
V
V
+0.3  
V
IN  
CC  
CC  
V
DC Output Voltage  
DC Input Current  
+0.3  
V
OUT  
I
±20  
mA  
mA  
°C  
IN  
I
DC Output Current  
Storage temperature  
±50  
OUT  
T
S
-65  
125  
a. Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions  
or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not  
implied.  
Table 3. GENERAL SPECIFICATIONS  
Symbol  
Characteristics  
Output termination voltage  
Min  
Typ  
Max  
Unit  
V
Condition  
V
V
- 2  
CC  
TT  
MM  
HBM  
CDM  
LU  
ESD Protection (Machine model)  
ESD Protection (Human body model)  
ESD Protection (Charged device model  
Latch-up immunity  
175  
1500  
1000  
100  
V
V
V
mA  
pF  
C
IN  
Input Capacitance  
4.0  
Inputs  
θ
JA  
Thermal resistance junction to ambient  
JESD 51-3, single layer test board  
83.1  
73.3  
68.9  
63.8  
57.4  
86.0  
75.4  
70.9  
65.3  
59.6  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Natural convection  
100 ft/min  
200 ft/min  
400 ft/min  
800 ft/min  
JESD 51-6, 2S2P multilayer test board  
Thermal resistance junction to case  
59.0  
54.4  
52.5  
50.4  
47.8  
60.6  
55.7  
53.8  
51.5  
48.8  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Natural convection  
100 ft/min  
200 ft/min  
400 ft/min  
800 ft/min  
θ
JC  
23.0  
26.3  
°C/W  
MIL-SPEC 883E  
Method 1012.1  
a
T
J
Operating junction temperature  
(continuous operation)  
MTBF = 9.1 years  
110  
°C  
a. Operating junction temperature impacts device life time. Maximum continuous operating junction temperature should be selected according  
to the application life time requirements (See application note AN1545 for more information). The device AC and DC parameters are speci-  
fied up to 110°C junction temperature allowing the MPC99J93 to be used in applications requiring industrial temperature range. It is recom-  
mended that users of the MPC99J93 employ thermal modeling analysis to assist in applying the junction temperature specifications to their  
particular application.  
MOTOROLA TIMING SOLUTIONS  
3
MPC99J93  
Table 4. DC CHARACTERISTICS (VCC = 3.3V ± 5%, TA = --40° to +85°C)  
Symbol  
Characteristics  
Min  
Typ  
Max  
Unit  
Condition  
LVCMOS control inputs (MR, PLL_En, Sel_Clk, Man_Override, Alarm_Reset)  
V
V
Input High Voltage  
Input Low Voltage  
2.0  
V
+ 0.3  
CC  
V
V
IH  
IL  
0.8  
a
I
Input Current  
±100  
µA  
V
=V or GND  
IN  
IN  
CC  
LVCMOS control outputs (Clk_selected, Inp0bad, Inp1bad)  
V
V
Output High Voltage  
Output Low Voltage  
2.0  
0.1  
V
V
I
I
=-24 mA  
OH  
OL  
OH  
0.55  
1.3  
= 24 mA  
OL  
b
LVPECL clock inputs (CLK0, CLK1, Ext_FB)  
c
V
V
DC Differential Input Voltage  
V
V
Differential operation  
Differential operation  
PP  
d
Differential Cross Point Voltage  
V
-1.8  
V
-0.3  
CC  
CMR  
CC  
a
I
Input Current  
±100  
µA  
V =V or GND  
IN CC  
IN  
LVPECL clock outputs (QA[1:0], QB[2:0])  
V
V
Output High Voltage  
Output Low Voltage  
V
-1.20  
-1.90  
V
V
-0.95  
-1.75  
V
V
-0.70  
V
V
Termination 50to V  
Termination 50to V  
OH  
OL  
CC  
CC  
CC  
CC  
CC  
CC  
TT  
TT  
V
-1.45  
Supply Current  
I
I
Maximum Power Supply Current  
Maximum PLL Supply Current  
180  
15  
mA  
mA  
GND pins  
GND  
V
pin  
CC_PLL  
CC_PLL  
a. Inputs have internal pull-up/pull-down resistors affecting the input current.  
b. Clock inputs driven by differential LVPECL compatible signals.  
c.  
d. V  
V
is the minimum differential input voltage swing required to maintain AC characteristics.  
CMR  
PP  
(DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V  
(DC)  
CMR  
range and the input swing lies within the V (DC) specification.  
PP  
4
MPC99J93  
Table 5. AC Characteristics (VCC = 3.3V ± 5%, TA = --40°C to +85°C)a  
Symbol  
Characteristics  
Input Reference Frequency  
Min  
50  
Typ  
Max  
90  
Unit  
MHz  
MHz  
Condition  
f
f
f
÷4 feedback  
÷4 feedback  
PLL locked  
ref  
b
VCO Frequency Range  
Output Frequency  
200  
360  
VCO  
MAX  
QA[1:0]  
QB[2:0]  
50  
100  
90  
180  
MHz  
MHz  
PLL locked  
f
t
Reference Input Duty Cycle  
Propagation Delay  
25  
75  
%
refDC  
c
SPO, static phase offset  
-0.15  
0.9  
+0.17  
1.8  
ns  
ns  
PLL_EN=1  
PLL_EN=0  
(
)
CLK0, CLK1 to any Q  
d
V
V
Differential input voltage  
(peak-to-peak)  
0.25  
1.3  
V
V
PP  
e
Differential input crosspoint voltage  
V
-1.7  
V
-0.3  
CC  
CMR  
sk(O)  
CC  
t
Output-to-output Skew  
within QA[2:0] or QB[1:0]  
50  
80  
ps  
ps  
within device  
f
f
g
g
Rate of change of period  
QA[1:0]  
20  
10  
200  
100  
50  
25  
400  
200  
ps  
ps  
ps  
ps  
per/cycle  
QB[2:0]  
QA[1:0]  
QB[2:0]  
DC  
Output Duty Cycle  
45  
50  
25  
55  
%
ps  
ms  
ns  
t
t
Cycle-to-Cycle Jitter  
Maximum PLL Lock Time  
Output Rise/Fall Time  
RMS (1 σ)  
JIT(CC)  
LOCK  
10  
t , t  
r
0.05  
0.70  
20% to 80%  
f
a. AC characteristics apply for parallel output termination of 50to V  
.
CC - 2V  
b. The input reference frequency must match the VCO lock range divided by the feedback divider ratio (FB): f = f  
÷ FB.  
ref  
VCO  
c. CLK0, CLK1 to Ext_FB.  
d. V is the minimum differential input voltage swing required to maintain AC characteristics including SPO and device-to-device skew. Ap-  
PP  
plicable to CLK0, CLK1 and Ext_FB.  
e. V  
(AC) is the crosspoint of the differential input signal. Normal AC operation is obtained when the crosspoint is within the V  
(AC)  
CMR  
CMR  
range and the input swing lies within the V  
(AC) specification. Violation of V  
(AC) or V (AC) impacts the SPO, device and part-to-  
PP  
CMR PP  
part skew. Applicable to CLK0, CLK1 and Ext_FB.  
f. Specification holds for a clock switch between two input signals (CLK0, CLK1) no greater than 400 ps out of phase. Delta period change  
per cycle is averaged over the clock switch excursion.  
g. Specification holds for a clock switch between two input signals (CLK0, CLK1) at any phase difference (±180_). Delta period change per  
cycle is averaged over the clock switch excursion.  
MOTOROLA TIMING SOLUTIONS  
5
MPC99J93  
APPLICATIONS INFORMATION  
The MPC99J93 is a dual clock PLL with on--chip Intelligent latched (L) indicating CLK0 is the PLL reference signal. While  
Dynamic Clock Switch (IDCS) circuitry.  
neither INP_BAD is latched (H), the Clk_Selected can be freely  
changed with Sel_Clk. Whenever a CLK switch occurs,  
(manually or by IDCS), following the next negative edge of the  
newly selected PLL reference signal, the next positive edge pair  
of Ext_FB and the newly selected PLL reference signal will slew  
to alignment.  
To calculate the overall uncertainty between the input CLKs  
and the outputs from multiple MPC99J93’s, the following  
procedure should be used. Assuming that the input CLKs to all  
MPC9993’s are exactly in phase, the total uncertainty will be the  
sum of the static phase offset, max I/O jitter, and output to output  
skew.  
During a dynamic switch, the output phase between two  
devices may be increased for a short period of time. If the two  
input CLKs are 400ps out of phase, a dynamic switch of an  
MPC99J93 will result in an instantaneous phase change of  
400ps to the PLL reference signal without a corresponding  
change in the output phase (due to the limited response of the  
PLL). As a result, the I/O phase of a device, undergoing this  
switch, will initially be 400ps and diminish as the PLL slews to  
its new phase alignment. This transient timing issue should be  
considered when analyzing the overall skew budget of a  
system.  
Definitions  
primary clock: The input CLK selected by Sel_Clk.  
secondary clock: The input CLK NOT selected by Sel_Clk.  
PLL reference signal: The CLK selected as the PLL refer-  
ence signal by Sel_Clk or IDCS. (IDCS can override Sel_Clk).  
Status Functions  
Clk_Selected: Clk_Selected (L) indicates CLK0 is selected as  
the PLL reference signal. Clk_Selected (H) indicates CLK1 is  
selected as the PLL reference signal.  
INP_BAD: Latched (H) when it’s CLK is stuck (H) or (L) for at  
least one Ext_FB period (Pos to Pos or Neg to Neg). Cleared  
(L) on assertion of Alarm_Reset.  
Control Functions  
Sel_Clk: Sel_Clk (L) selects CLK0 as the primary clock.  
Sel_Clk (H) selects CLK1 as the primary clock.  
Alarm_Reset: Asserted by a negative edge. Generates a  
one--shot reset pulse that clears INPUT_BAD latches and  
Clk_Selected latch.  
PLL_En: While (L), the PLL reference signal is substituted for  
the VCO output.  
MR: While (L), internal dividers are held in reset which holds all  
Q outputs LOW.  
Hot insertion and withdrawal  
In PECL applications, a powered up driver will experience a  
low impedance path through an MPC99J93 input to its powered  
down VCC pins. In this case, a 100 ohm series resistance  
should be used in front of the input pins to limit the driver current.  
The resistor will have minimal impact on the rise and fall times  
of the input signals.  
Man Override (H)  
(IDCS is disabled, PLL functions normally). PLL reference  
signal (as indicated by Clk_Selected) will always be the CLK  
selected by Sel_Clk. The status function INP_BAD is active in  
Man Override (H) and (L).  
Acquiring Frequency Lock  
Man Override (L)  
1. While the MPC99J93 is receiving a valid CLK signal, assert  
Man_Override HIGH.  
(IDCS is enabled, PLL functions enhanced). The first CLK to  
fail will latch it’s INP_BAD (H) status flag and select the other  
input as the Clk_Selected for the PLL reference clock. Once  
2. The PLL will phase and frequency lock within the specified  
latched, the Clk_Selected and INP_BAD remain latched until lock time.  
assertion of Alarm_Reset which clears all latches (INP_BADs 3. Apply a HIGH to LOW transition to Alarm_Reset to reset  
are cleared and Clk_Selected = Sel_Clk). NOTE: If both CLKs Input Bad flags.  
are bad when Alarm_Reset is asserted, both INP_BADs will be 4. De--assert Man_Override LOW to enable Intelligent Dynam-  
latched (H) after one Ext_FB period and Clk_Selected will be ic Clock Switch mode.  
6
MPC99J93  
OUTLINE DIMENSIONS  
FA SUFFIX  
PLASTIC LQFP PACKAGE  
CASE 873A--03  
ISSUE B  
4X  
0.20  
H
A--B D  
6
D1  
3
A, B, D  
e/2  
D1/2  
32  
PIN 1 INDEX  
25  
1
F
F
A
B
E1/2  
E1  
6
E
4
DETAIL G  
E/2  
DETAIL G  
17  
8
NOTES:  
9
7
1. DIMENSIONS ARE IN MILLIMETERS.  
D
4
2. INTERPRET DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
D/2  
3. DATUMS A, B, AND D TO BE DETERMINED AT  
DATUM PLANE H.  
4X  
D
4. DIMENSIONS D AND E TO BE DETERMINED AT  
SEATING PLANE C.  
0.20  
C
A--B  
D
5. DIMENSION b DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR PROTRUSION  
SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED  
THE MAXIMUM b DIMENSION BY MORE THAN  
0.08--mm. DAMBAR CANNOT BE LOCATED ON THE  
LOWER RADIUS OR THE FOOT. MINIMUM SPACE  
BETWEEN PROTRUSION AND ADJACENT LEAD OR  
PROTRUSION: 0.07--mm.  
H
28X e  
32X  
0.1 C  
SEATING  
PLANE  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS  
0.25--mm PER SIDE. D1 AND E1 ARE MAXIMUM  
PLASTIC BODY SIZE DIMENSIONS INCLUDING  
MOLD MISMATCH.  
C
DETAIL AD  
BASE  
PLATING  
METAL  
7. EXACT SHAPE OF EACH CORNER IS OPTIONAL.  
8. THESE DIMENSIONS APPLY TO THE FLAT SECTION  
OF THE LEAD BETWEEN 0.1--mm AND 0.25--mm  
FROM THE LEAD TIP.  
b1  
c
c1  
MILLIMETERS  
DIM MIN  
MAX  
1.60  
0.15  
1.45  
0.45  
0.40  
0.20  
0.16  
A
A1  
A2  
b
1.40  
0.05  
1.35  
0.30  
0.30  
0.09  
0.09  
b
5
8
_
8X (θ1 )  
M
0.20  
C A--B  
D
R R2  
b1  
c
SECTION F--F  
R R1  
c1  
D
9.00 BSC  
D1  
e
7.00 BSC  
0.80 BSC  
9.00 BSC  
7.00 BSC  
A2  
A
0.25  
E
GAUGE PLANE  
E1  
L
0.50  
0.70  
L1  
1.00 REF  
(S)  
θ
0
7
_
_
A1  
_
θ
L
θ1  
R1  
R2  
S
12 REF  
_
0.08  
0 . 0 8  
0.20  
-- -- --  
(L1)  
0.20 REF  
DETAIL AD  
MOTOROLA TIMING SOLUTIONS  
7
MPC99J93  
Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters that may be provided in Motorola  
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including  
“Typicals”, must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the  
rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur.ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication, BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part.  
MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective  
owners. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
E Motorola Inc. 2003  
HOW TO REACH US:  
USA/EUROPE/LOCATIONS NOT LISTED:  
Motorola Literature Distribution  
P.O. Box 5405, Denver, Colorado 80217  
1--800--521--6274 or 480--768--2130  
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center,  
3--20--1, Minami--Azabu, Minato--ku, Tokyo 106--8573, Japan  
81--3--3440--3569  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong  
852--26668334  
HOME PAGE: http://motorola.com/semiconductors  
MPC99J93/D  

相关型号:

MPC99J93FAR2

PLL BASED CLOCK DRIVER, 5 TRUE OUTPUT(S), 0 INVERTED OUTPUT(S), PQFP32, PLASTIC, LQFP-32
NXP

MPC99J93FAR2

PLL Based Clock Driver, 5 True Output(s), 0 Inverted Output(s), PQFP32, PLASTIC, LQFP-32
MOTOROLA

MPCC-2-16-2-L-44-04.53-S

Board Connector, 20 Contact(s), 4 Row(s), Female, Crimp Terminal,
SAMTEC
SAMTEC

MPCC-2-16-2-L-44-26.65-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-40.01-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-70.00-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-44-98.40-S

Board Connector, 20 Contact(s), 4 Row(s), Female, Crimp Terminal,
SAMTEC

MPCC-2-16-2-L-44-99.99-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-46-95.00-D-NUS

Cable Assembly, 14AWG,
SAMTEC

MPCC-2-16-2-L-46-95.00-S

Board Connector, 20 Contact(s), 4 Row(s), Female, Crimp Terminal,
SAMTEC

MPCC-2-16-2-L-48-08.00-D-NUS

Cable Assembly, 14AWG,
SAMTEC