MPX100A [NXP]

Peizoresistive Sensor;
MPX100A
型号: MPX100A
厂家: NXP    NXP
描述:

Peizoresistive Sensor

传感器 换能器
文件: 总8页 (文件大小:329K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor, Inc.  
Order this document  
by MPX100/D  
EMICONDUCTOR TECHNICAL DATA  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
The MPX100 series device is a silicon piezoresistive pressure sensor providing a very  
accurate and linear voltage output — directly proportional to the applied pressure. This  
standard, low cost, uncompensated sensor permits manufacturers to design and add  
their own external temperature compensating and signal conditioning networks.  
Compensation techniques are simplified because of the predictability of Motorola’s single  
element strain gauge design.  
0 to 100 kPa (014.5 psi)  
60 mV FULL SCALE SPAN  
(TYPICAL)  
Features  
Low Cost  
Patented, Silicon Shear Stress Strain Gauge Design  
Easy to Use Chip Carrier Package Options  
Ratiometric to Supply Voltage  
60 mV Span (Typ)  
BASIC CHIP  
CARRIER ELEMENT  
CASE 344–15, STYLE 1  
Absolute, Differential and Gauge Options  
±0.25% Linearity (Max)  
Application Examples  
Pump/Motor Controllers  
Robotics  
Level Indicators  
Medical Diagnostics  
Pressure Switching  
Barometers  
DIFFERENTIAL  
PORT OPTION  
Altimeters  
CASE 344C–01, STYLE 1  
Figure 1 illustrates a schematic of the internal circuitry on the stand–alone pressure  
sensor chip.  
NOTE: Pin 1 is the notched pin.  
PIN 3 + V  
S
PIN NUMBER  
PIN 2  
+ V  
1
2
Gnd  
+V  
3
4
V
S
out  
Xducer  
–V  
out  
out  
PIN 4  
– V  
out  
PIN 1  
Figure 1. Uncompensated Pressure Sensor Schematic  
VOLTAGE OUTPUT versus APPLIED DIFFERENTIAL PRESSURE  
The differential voltage output of the X–ducer is directly proportional to the differential  
pressure applied.  
The absolute sensor has a built–in reference vacuum. The output voltage will decrease  
as vacuum, relative to ambient, is drawn on the pressure (P1) side.  
The output voltage of the differential or gauge sensor increases with increasing  
pressure applied to the pressure (P1) side relative to the vacuum (P2) side. Similarly,  
output voltage increases as increasing vacuum is applied to the vacuum (P2) side  
relative to the pressure (P1) side.  
X–ducer is a trademark of Motorola, Inc.  
REV 6  
For More Information On This Product,  
Motorola, Inc. 1998  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
MAXIMUM RATINGS  
Rating  
Symbol  
Value  
Unit  
(8)  
Overpressure (P1 > P2)  
P
max  
200  
kPa  
(8)  
Burst Pressure (P1 > P2)  
P
1000  
kPa  
°C  
burst  
Storage Temperature  
Operating Temperature  
T
40 to +125  
40 to +125  
stg  
T
A
°C  
OPERATING CHARACTERISTICS (V = 3.0 Vdc, T = 25°C unless otherwise noted, P1 > P2)  
S
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Pressure Range  
P
OP  
0
100  
kPa  
(2)  
Supply Voltage  
Supply Current  
Full Scale Span  
V
3.0  
6.0  
60  
6.0  
Vdc  
mAdc  
mV  
S
I
o
(3)  
V
FSS  
45  
90  
(4)  
Offset  
V
off  
0
20  
35  
mV  
Sensitivity  
V/P  
0.6  
mV/kPa  
(5)  
Linearity  
0.25  
0.25  
%V  
%V  
%V  
FSS  
FSS  
FSS  
(5)  
Pressure Hysteresis (0 to 100 kPa)  
±0.1  
±0.5  
(5)  
Temperature Hysteresis (40°C to +125°C)  
(6)  
Temperature Coefficient of Full Scale Span  
TCV  
0.22  
0.16  
%V  
/°C  
FSS  
FSS  
(5)  
Temperature Coefficient of Offset  
TCV  
±15  
µV/°C  
off  
(5)  
Temperature Coefficient of Resistance  
TC  
0.21  
400  
750  
0.27  
550  
1875  
%Z /°C  
R
in  
Input Impedance  
Z
in  
Output Impedance  
Z
out  
(6)  
Response Time (10% to 90%)  
t
R
1.0  
20  
ms  
ms  
Warm–Up  
(9)  
Offset Stability  
±0.5  
%V  
FSS  
MECHANICAL CHARACTERISTICS  
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
Weight (Basic Element Case 344–15)  
2.0  
Grams  
kPa  
(7)  
Common Mode Line Pressure  
690  
NOTES:  
1. 1.0 kPa (kiloPascal) equals 0.145 psi.  
2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional  
error due to device self–heating.  
3. Full Scale Span (V  
) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the  
FSS  
minimum rated pressure.  
4. Offset (V ) is defined as the output voltage at the minimum rated pressure.  
off  
5. Accuracy (error budget) consists of the following:  
Linearity:  
Output deviation from a straight line relationship with pressure, using end point method, over the specified  
pressure range.  
Temperature Hysteresis: Output deviation at any temperature within the operating temperature range, after the temperature is  
cycled to and from the minimum or maximum operating temperature points, with zero differential pressure  
applied.  
Pressure Hysteresis:  
Output deviation at any pressure within the specified range, when this pressure is cycled to and from the  
minimum or maximum rated pressure, at 25°C.  
TcSpan:  
TcOffset:  
Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.  
Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative  
to 25°C.  
TCR:  
Z deviation with minimum rated pressure applied, over the temperature range of 40°C to +125°C,  
in  
relative to 25°C.  
6. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to  
a specified step change in pressure.  
7. Common mode pressures beyond specified may result in leakage at the case–to–lead interface.  
8. Exposure beyond these limits may cause permanent damage or degradation to the device.  
9. Offset stability is the product’s output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.  
2
Motorola Sensor Device Data  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
LINEARITY  
proportional to the pressure applied to the device. This de-  
vice uses a unique transverse voltage diffused semiconduc-  
tor strain gauge which is sensitive to stresses produced in a  
thin silicon diaphragm by the applied pressure.  
Linearity refers to how well a transducer’s output follows  
the equation: Vout = Voff + sensitivity x P over the operating  
pressure range (see Figure 2). There are two basic methods  
for calculating nonlinearity: (1) end point straight line fit or (2)  
a least squares best line fit. While a least squares fit gives  
the “best case” linearity error (lower numerical value), the  
calculations required are burdensome.  
Conversely, an end point fit will give the “worse case” error  
(often more desirable in error budget calculations) and the  
calculations are more straightforward for the user. Motorola’s  
specified pressure sensor linearities are based on the end  
point straight line method measured at the midrange  
pressure.  
Because this strain gauge is an integral part of the silicon  
diaphragm, there are no temperature effects due to differ-  
ences in the thermal expansion of the strain gauge and the  
diaphragm, as are often encountered in bonded strain gauge  
pressure sensors. However, the properties of the strain  
gauge itself are temperature dependent, requiring that the  
device be temperature compensated if it is to be used over  
an extensive temperature range.  
Temperature compensation and offset calibration can be  
achieved rather simply with additional resistive components  
or by designing your system using the MPX2100 series  
sensors.  
TEMPERATURE COMPENSATION  
Figure 3 shows the typical output characteristics of the  
MPX100 series over temperature.  
Several approaches to external temperature compensa-  
tion over both 40 to +125°C and 0 to +80°C ranges are  
presented in Motorola Applications Note AN840.  
The X–ducer piezoresistive pressure sensor element is a  
semiconductor device which gives an electrical output signal  
70  
LINEARITY  
60  
70  
40°C  
V = 3.0 Vdc  
S
60  
50  
40  
30  
20  
10  
0
+25°C  
SPAN  
RANGE  
(TYP)  
P1 > P2  
50  
ACTUAL  
+125°C  
40  
SPAN  
(V  
FSS  
)
30  
20  
THEORETICAL  
OFFSET  
(TYP)  
10  
0
OFFSET  
(V  
)
OFF  
0
2.0 4.0  
6.0 8.0 10  
12 14  
16  
PSI  
kPa  
10 20 30 40 50 60 70 80 90 100  
0
MAX  
P
OP  
PRESSURE (kPA)  
PRESSURE DIFFERENTIAL  
Figure 2. Linearity Specification Comparison  
Figure 3. Output versus Pressure Differential  
SILICONE GEL DIFFERENTIAL/GAUGE  
SILICONE GEL  
DIE COAT  
ABSOLUTE  
STAINLESS STEEL  
METAL COVER  
STAINLESS STEEL  
METAL COVER  
DIE COAT  
DIE  
DIE  
P1  
P1  
EPOXY  
CASE  
EPOXY  
CASE  
WIRE BOND  
LEAD FRAME  
WIRE BOND  
DIE  
BOND  
LEAD FRAME  
DIE  
BOND  
DIFFERENTIAL/GAUGE ELEMENT  
P2  
ABSOLUTE ELEMENT  
P2  
Figure 4. Cross–Sectional Diagrams (Not to Scale)  
Figure 4 illustrates the absolute sensing configuration  
(right) and the differential or gauge configuration in the basic  
chip carrier (Case 344–15). A silicone gel helps protect the  
die surface and wire bond from the environment, while allow-  
ing the pressure signal to be transmitted to the silicon dia-  
phragm.  
The MPX100 series pressure sensor operating character-  
istics and internal reliability and qualification tests are based  
on use of dry air as the pressure media. Media other than dry  
air may have adverse effects on sensor performance and  
long term reliability. Contact the factory for information re-  
garding media compatibility in your application.  
Motorola Sensor Device Data  
3
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE  
Motorola designates the two sides of the pressure sensor  
pressure applied, P1 > P2. The absolute sensor is designed  
as the Pressure (P1) side and the Vacuum (P2) side. The  
Pressure (P1) side is the side containing silicone gel which  
isolates the die from the environment. The differential or  
gauge sensor is designed to operate with positive differential  
for vacuum applied to P1 side.  
The Pressure (P1) side may be identified by using the  
table below:  
Part Number  
MPX100A, MPX100D  
Case Type  
Pressure (P1) Side Identifier  
Stainless Steel Cap  
344–15C  
344C–01  
344B–01  
344E–01  
344F–01  
MPX100DP  
Side with Part Marking  
MPX100AP, MPX100GP  
MPX100AS  
Side with Port Attached  
Side with Port Attached  
Side with Port Attached  
MPX100ASX  
ORDERING INFORMATION  
MPX100 series pressure sensors are available in absolute, differential and gauge configurations. Devices are available in the  
basic element package or with pressure port fittings which provide printed circuit board mounting ease and barbed hose pres-  
sure connections.  
Device Type  
Options  
Case Type  
Case 344–15  
MPX Series  
MPX100A  
Device Marking  
MPX100A  
Basic Element  
Absolute, Differential  
MPX100D  
MPX100D  
Ported Elements  
Differential  
Case 344C–01  
Case 344B–01  
MPX100DP  
MPX100DP  
Absolute, Gauge  
MPX100AP  
MPX100GP  
MPX100AP  
MPX100GP  
Absolute, Gauge Stove Pipe  
Absolute, Gauge Axial  
Case 344E–01  
Case 344F–01  
MPX100AS  
MPX100GS  
MPX100A  
MPX100D  
MPX100ASX  
MPX100GSX  
MPX100A  
MPX100D  
4
Motorola Sensor Device Data  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
PACKAGE DIMENSIONS  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME  
Y14.5M, 1994.  
C
R
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION A– IS INCLUSIVE OF THE MOLD  
STOP RING. MOLD STOP RING NOT TO EXCEED  
16.00 (0.630).  
M
Z
1
4
2
3
INCHES  
DIM MIN MAX  
0.630  
MILLIMETERS  
B
–A–  
MIN  
MAX  
16.00  
13.56  
5.59  
A
B
C
D
F
0.595  
0.514  
0.200  
0.016  
0.048  
15.11  
N
0.534 13.06  
L
1
2
3
4
0.220  
0.020  
0.064  
5.08  
0.41  
1.22  
PIN 1  
0.51  
1.63  
–T–  
SEATING  
PLANE  
G
J
0.100 BSC  
2.54 BSC  
F
0.014  
0.695  
0.016  
0.725 17.65  
0.36  
0.40  
G
J
L
M
N
R
Y
Z
18.42  
30 NOM  
F
Y
30 NOM  
D 4 PL  
0.475  
0.430  
0.048  
0.106  
0.495 12.07  
0.450 10.92  
0.052  
0.118  
12.57  
11.43  
1.32  
DAMBAR TRIM ZONE:  
THIS IS INCLUDED  
WITHIN DIM. “F” 8 PL  
M
M
0.136 (0.005)  
T A  
1.22  
2.68  
3.00  
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344–15  
ISSUE Z  
NOTES:  
–A–  
U
SEATING  
PLANE  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5, 1982.  
2. CONTROLLING DIMENSION: INCH.  
–T–  
L
R
INCHES  
DIM MIN MAX  
MILLIMETERS  
H
MIN  
1.175 29.08  
0.715 17.40  
MAX  
29.85  
18.16  
8.26  
0.51  
1.63  
A
B
C
D
F
1.145  
0.685  
0.305  
0.016  
0.048  
N
B
PORT #1  
0.325  
0.020  
0.064  
7.75  
0.41  
1.22  
–Q–  
POSITIVE  
PRESSURE  
(P1)  
G
H
J
0.100 BSC  
2.54 BSC  
0.182  
0.014  
0.695  
0.290  
0.420  
0.153  
0.153  
0.230  
0.220  
0.194  
0.016  
4.62  
0.36  
0.725 17.65  
0.300 7.37  
0.440 10.67  
4.93  
0.41  
18.42  
7.62  
11.18  
4.04  
4.04  
6.35  
6.10  
K
L
N
P
1
2
3 4  
PIN 1  
K
0.159  
0.159  
0.250  
0.240  
3.89  
3.89  
5.84  
5.59  
–P–  
Q
R
S
S
M
S
0.25 (0.010)  
T Q  
J
F
U
0.910 BSC  
23.11 BSC  
G
C
D 4 PL  
M
S
S
0.13 (0.005)  
T S  
Q
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344B–01  
ISSUE B  
Motorola Sensor Device Data  
5
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
PACKAGE DIMENSIONS — CONTINUED  
NOTES:  
–A–  
U
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
V
PORT #1  
W
L
R
H
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN MAX  
PORT #2  
PORT #1  
POSITIVE PRESSURE  
(P1)  
PORT #2  
VACUUM  
(P2)  
A
B
C
D
F
G
H
J
1.145 1.175 29.08 29.85  
0.685 0.715 17.40 18.16  
0.405 0.435 10.29  
0.016 0.020  
0.048 0.064  
0.100 BSC  
0.182 0.194  
0.014 0.016  
N
11.05  
0.51  
1.63  
–Q–  
0.41  
1.22  
2.54 BSC  
SEATING  
PLANE  
SEATING  
PLANE  
B
4.62  
0.36  
4.93  
0.41  
1
2 3 4  
K
L
0.695 0.725 17.65 18.42  
0.290 0.300  
PIN 1  
K
7.37  
7.62  
11.18  
4.04  
4.04  
2.11  
–P–  
N
P
Q
R
S
U
V
W
0.420 0.440 10.67  
M
S
0.25 (0.010)  
T Q  
0.153 0.159  
0.153 0.159  
0.063 0.083  
0.220 0.240  
0.910 BSC  
3.89  
3.89  
1.60  
5.59  
–T–  
–T–  
S
F
J
6.10  
G
C
23.11 BSC  
D 4 PL  
0.248 0.278  
0.310 0.330  
6.30  
7.87  
7.06  
8.38  
M
S
S
0.13 (0.005)  
T S  
Q
STYLE 1:  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
CASE 344C–01  
ISSUE B  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
PORT #1  
C
A
POSITIVE  
PRESSURE  
(P1)  
BACK SIDE  
VACUUM  
(P2)  
INCHES  
DIM MIN MAX  
0.720 17.53  
0.255 6.22  
0.820 19.81  
MILLIMETERS  
MIN  
MAX  
18.28  
6.48  
A
B
C
D
F
0.690  
0.245  
0.780  
0.016  
0.048  
–B–  
V
20.82  
0.51  
1.63  
3
2
1
0.020  
0.064  
0.41  
1.22  
4
PIN 1  
G
J
K
N
R
S
0.100 BSC  
2.54 BSC  
0.014  
0.345  
0.300  
0.178  
0.220  
0.182  
0.016  
0.375  
0.310  
0.186  
0.240  
0.194  
0.36  
8.76  
7.62  
4.52  
5.59  
4.62  
0.41  
9.53  
7.87  
4.72  
6.10  
4.93  
K
S
V
J
N
G
STYLE 1:  
F
R
–T–  
PIN 1. GROUND  
2. + OUTPUT  
3. + SUPPLY  
4. – OUTPUT  
D 4 PL  
SEATING  
PLANE  
M
M
0.13 (0.005)  
T B  
CASE 344E–01  
ISSUE B  
6
Motorola Sensor Device Data  
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
PACKAGE DIMENSIONS — CONTINUED  
NOTES:  
–T–  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
C
A
U
–Q–  
E
INCHES  
DIM MIN MAX  
MILLIMETERS  
MIN  
MAX  
28.45  
19.30  
16.51  
0.51  
A
B
C
D
E
F
1.080  
0.740  
0.630  
0.016  
0.160  
0.048  
1.120 27.43  
0.760 18.80  
0.650 16.00  
0.020  
0.180  
0.064  
0.41  
4.06  
1.22  
N
S
B
R
4.57  
V
1.63  
G
J
K
N
P
Q
R
S
U
V
0.100 BSC  
2.54 BSC  
0.014  
0.220  
0.070  
0.150  
0.150  
0.440  
0.695  
0.840  
0.182  
0.016  
0.240  
0.080  
0.160  
0.160  
0.460  
0.725 17.65  
0.860 21.34  
0.194  
0.36  
5.59  
1.78  
3.81  
3.81  
11.18  
0.41  
6.10  
2.03  
4.06  
4.06  
11.68  
18.42  
21.84  
4.92  
PORT #1  
POSITIVE  
PRESSURE  
(P1)  
PIN 1  
–P–  
M
M
0.25 (0.010)  
T Q  
4
3
2
1
K
4.62  
F
J
G
STYLE 1:  
D 4 PL  
PIN 1. GROUND  
2. V (+) OUT  
3. V SUPPLY  
4. V (–) OUT  
M
S
S
0.13 (0.005)  
T P  
Q
CASE 344F–01  
ISSUE B  
Motorola Sensor Device Data  
7
For More Information On This Product,  
Go to: www.freescale.com  
Freescale Semiconductor, Inc.  
ARCHIVED BY FREESCALE SEMICONDUCTOR, INC. 2005  
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and  
specificallydisclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola  
datasheetsand/orspecificationscananddovaryindifferentapplicationsandactualperformancemayvaryovertime. Alloperatingparameters,includingTypicals”  
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of  
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other  
applicationsintended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury  
ordeathmayoccur. ShouldBuyerpurchaseoruseMotorolaproductsforanysuchunintendedorunauthorizedapplication,BuyershallindemnifyandholdMotorola  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees  
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that  
Motorola was negligent regarding the design or manufacture of the part. Motorola and  
Opportunity/Affirmative Action Employer.  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal  
Mfax is a trademark of Motorola, Inc.  
How to reach us:  
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution;  
JAPAN: Motorola Japan Ltd.; SPD, Strategic Planning Office, 141,  
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan. 81–3–5487–8488  
Customer Focus Center: 1–800–521–6274  
Mfax : RMFAX0@email.sps.mot.com – TOUCHTONE 1–602–244–6609  
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre,  
Motorola Fax Back System  
– US & Canada ONLY 1–800–774–1848 2, Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.  
– http://sps.motorola.com/mfax/  
852–26668334  
HOME PAGE: http://motorola.com/sps/  
MPX100/D  
For More Information On This Product,  
Go to: www.freescale.com  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY