MRF8P20165WHSR3 [NXP]

RF Power Field Effect Transistors;
MRF8P20165WHSR3
型号: MRF8P20165WHSR3
厂家: NXP    NXP
描述:

RF Power Field Effect Transistors

文件: 总16页 (文件大小:802K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRF8P20165WH  
Rev. 0, 4/2011  
Freescale Semiconductor  
Technical Data  
RF Power Field Effect Transistors  
N--Channel Enhancement--Mode Lateral MOSFETs  
MRF8P20165WHR3  
MRF8P20165WHSR3  
Designed for base station applications with wide instantaneous bandwidth  
requirements covering frequencies from 1880 to 2025 MHz.  
Typical Doherty Single--Carrier W--CDMA Performance: VDD = 28 Volts,  
IDQA = 550 mA, VGSB = 1.3 Vdc, Pout = 37 Watts Avg., IQ Magnitude  
Clipping, Channel Bandwidth = 3.84 MHz, Input Signal PAR = 9.9 dB  
@ 0.01% Probability on CCDF.  
1930--1995 MHz, 37 W AVG., 28 V  
SINGLE W--CDMA  
G
(dB)  
η
(%)  
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
LATERAL N--CHANNEL  
RF POWER MOSFETs  
Frequency  
1930 MHz  
1960 MHz  
1995 MHz  
16.1  
16.3  
16.3  
47.0  
47.7  
46.0  
7.1  
7.1  
7.0  
--27.7  
--29.7  
--33.3  
Capable of Handling 10:1 VSWR, @ 32 Vdc, 1960 MHz, 173 Watts CW  
Output Power (2 dB Input Overdrive from Rated Pout  
Typical Pout @ 3 dB Compression Point 190 Watts (1)  
)
Features  
CASE 465M--01, STYLE 1  
N I -- 7 8 0 -- 4  
Designed for Wide Instantaneous Bandwidth Applications. VBWres 100 MHz.  
Designed for Wideband Applications that Require 65 MHz Signal Bandwidth  
Production Tested in a Symmetrical Doherty Configuration  
100% PAR Tested for Guaranteed Output Power Capability  
Characterized with Large--Signal Load--Pull Parameters and Common  
Source S--Parameters  
MRF8P20165WHR3  
Internally Matched for Ease of Use  
Integrated ESD Protection  
Greater Negative Gate--Source Voltage Range for Improved Class C  
Operation  
Designed for Digital Predistortion Error Correction Systems  
RoHS Compliant  
NI--780--4 in Tape and Reel. R3 Suffix = 250 Units, 56 mm Tape Width,  
13 inch Reel. For R5 Tape and Reel option, see p. 15.  
CASE 465H--02, STYLE 1  
NI--780S--4  
MRF8P20165WHSR3  
NI--780S--4 in Tape and Reel. R3 Suffix = 250 Units, 32 mm Tape Width,  
13 inch Reel. For R5 Tape and Reel option, see p. 15.  
RF /V  
RF /V  
outA DSA  
3
4
1
2
inA GSA  
Table 1. Maximum Ratings  
Rating  
Drain--Source Voltage  
Symbol  
Value  
--0.5, +65  
--6.0, +10  
32, +0  
Unit  
Vdc  
Vdc  
Vdc  
°C  
RF /V  
inB GSB  
RF /V  
outB DSB  
V
DSS  
Gate--Source Voltage  
V
V
GS  
DD  
Operating Voltage  
(Top View)  
Storage Temperature Range  
Case Operating Temperature  
Operating Junction Temperature  
T
stg  
--65 to +150  
125  
T
C
°C  
Figure 1. Pin Connections  
(2)  
T
J
225  
°C  
Table 2. Thermal Characteristics  
(3)  
Characteristic  
Symbol  
Value  
Unit  
°C/W  
Thermal Resistance, Junction to Case  
R
θ
JC  
Case Temperature 80°C, 37 W CW, 28 Vdc, I  
Case Temperature 114°C, 160 W CW, 28 Vdc, I  
= 550 mA, V  
= 1.3 Vdc, 1960 MHz  
GSB  
0.79  
0.53  
DQA  
= 550 mA, V  
= 1.3 Vdc, 1960 MHz  
DQA  
GSB  
1. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
2. Continuous use at maximum temperature will affect MTTF.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
© Freescale Semiconductor, Inc., 2011. All rights reserved.  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
1C (Minimum)  
B (Minimum)  
III (Minimum)  
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Off Characteristics  
Zero Gate Voltage Drain Leakage Current  
I
I
10  
5
μAdc  
μAdc  
μAdc  
DSS  
DSS  
GSS  
(V = 65 Vdc, V = 0 Vdc)  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
(V = 28 Vdc, V = 0 Vdc)  
DS  
GS  
Gate--Source Leakage Current  
I
1
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
(2)  
On Characteristics  
(1)  
Gate Threshold Voltage  
(V = 10 Vdc, I = 232 μAdc)  
V
V
1.2  
2.0  
1.8  
2.7  
3.5  
0.3  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 28 Vdc, I = 550 mAdc, Measured in Functional Test)  
2.7  
DD  
DA  
(1)  
Drain--Source On--Voltage  
V
0.05  
0.2  
(V = 10 Vdc, I = 1.5 Adc)  
GS  
D
(2,3,4)  
Functional Tests  
(In Freescale Doherty Production Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 550 mA, V  
= 1.3 Vdc,  
GSB  
DD  
DQA  
P
= 37 W Avg., f1 = 1980 MHz, f2 = 2010 MHz, 2--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.8 dB @ 0.01%  
out  
Probability on CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.  
Power Gain  
G
14.2  
40.6  
5.2  
14.8  
44.3  
5.8  
17.2  
dB  
%
ps  
D
Drain Efficiency  
η
Output Peak--to--Average Ratio @ 0.01% Probability on CCDF  
PAR  
dB  
Adjacent Channel Power Ratio  
ACPR  
--31.0  
--28.7  
dBc  
(4)  
Typical Broadband Performance (In Freescale Doherty Characterization Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 550 mA,  
DQA  
DD  
V
= 1.3 Vdc, P = 37 W Avg., Single--Carrier W--CDMA, IQ Magnitude Clipping, Input Signal PAR = 9.9 dB @ 0.01% Probability on  
GSB  
out  
CCDF. ACPR measured in 3.84 MHz Channel Bandwidth @ ±5 MHz Offset.  
G
η
Output PAR  
(dB)  
ACPR  
(dBc)  
ps  
D
Frequency  
(dB)  
16.1  
16.3  
16.3  
(%)  
47.0  
47.7  
46.0  
1930 MHz  
7.1  
7.1  
7.0  
--27.7  
--29.7  
--33.3  
1960 MHz  
1995 MHz  
1. Side A and Side B are tied together for this measurement.  
2. V  
and V  
must be tied together and powered by a single DC power supply.  
DDA  
DDB  
3. Part internally matched both on input and output.  
4. Measurement made with device in a Symmetrical Doherty configuration.  
(continued)  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
2
Table 4. Electrical Characteristics (T = 25°C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Typical Performances  
(In Freescale Doherty Characterization Test Fixture, 50 ohm system) V = 28 Vdc, I  
= 550 mA,  
DQA  
DD  
V
= 1.3 Vdc, 1930--1995 MHz Bandwidth  
GSB  
P
P
@ 1 dB Compression Point, CW  
P1dB  
P3dB  
104  
190  
W
W
out  
out  
(2)  
@ 3 dB Compression Point  
IMD Symmetry @ 74 W PEP, P where IMD Third Order  
IMD  
MHz  
out  
sym  
20  
Intermodulation 30 dBc  
(Delta IMD Third Order Intermodulation between Upper and Lower  
Sidebands > 2 dB)  
VBW Resonance Point  
(IMD Third Order Intermodulation Inflection Point)  
VBW  
100  
0.2  
MHz  
res  
Gain Flatness in 65 MHz Bandwidth @ P = 37 W Avg.  
G
dB  
out  
F
Gain Variation over Temperature  
G  
0.017  
dB/°C  
(--30°C to +85°C)  
Output Power Variation over Temperature  
P1dB  
0.01  
dB/°C  
(--30°C to +85°C)  
1. Measurement made with device in a Symmetrical Doherty configuration.  
2. P3dB = P  
+ 7.0 dB where P  
is the average output power measured using an unclipped W--CDMA single--carrier input signal where  
avg  
avg  
output PAR is compressed to 7.0 dB @ 0.01% probability on CCDF.  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
3
V
GGA  
C22  
C8  
C10  
Z1  
V
DDA  
C24  
C6  
C28  
R2  
C1  
C18  
C14  
C3  
R1  
C30  
C
C12  
C13  
C15  
C16  
P
C4  
C2  
C19  
C23  
C29  
R3  
C9  
C7  
C25  
C26  
C27  
V
DDB  
C11  
MRF8P20165W  
Rev. 1  
V
GGB  
Note 1: Component numbers C5, C17, C20 and C21 are not used.  
Note 2: V and V must be tied together and powered by a single DC power supply.  
DDA  
DDB  
Figure 2. MRF8P20165WHR3(WHSR3) Production Test Circuit Component Layout  
Table 5. MRF8P20165WHR3(WHSR3) Production Test Circuit Component Designations and Values  
Part  
C1, C2, C6, C7, C12, C13  
C3, C4  
Description  
15 pF Chip Capacitors  
Part Number  
ATC600F150JT250XT  
ATC600F1R8BT250XT  
GRM55DR61H106KA88L  
T491X226K035AT  
Manufacturer  
ATC  
1.8 pF Chip Capacitors  
ATC  
C8, C9, C24, C25  
C10, C11  
C14  
10 μF, 50 V Chip Capacitors  
22 μF, 35 V Tantalum Capacitors  
0.3 pF Chip Capacitor  
Murata  
Kemet  
ATC  
ATC600F0R3BT250XT  
ATC600F1R0BT250XT  
ATC600F2R0BT250XT  
ATC600F180JT250XT  
ATC600F0R1BT250XT  
227CKS050M  
C15, C16  
C18, C19  
C22, C23  
C26, C27  
C28, C29  
C30  
1.0 pF Chip Capacitors  
ATC  
2.0 pF Chip Capacitors  
ATC  
18 pF Chip Capacitors  
ATC  
0.1 pF Chip Capacitors  
ATC  
220 μF, 50 V Electrolytic Capacitors  
0.8 pF Chip Capacitor  
Illinois Capacitor  
ATC  
ATC600F0R8BT250XT  
CW12010T0050GBK  
CRCW12062R37FNEA  
GSC351--HYB1900  
RO4350B  
R1  
50 , 4 W Chip Resistor  
ATC  
R2, R3  
2.37 , 1/4 W Chip Resistors  
1750 MHz Band 90°, 3 dB Hybrid Coupler  
Vishay  
Soshin  
Rogers  
Z1  
PCB  
0.020, ε = 3.5  
r
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
4
V
GGA  
C25  
V
C7  
DDA  
C21  
C19  
R1  
C10  
C23  
C5  
C27  
C29  
C9  
C3  
Z1  
C12  
C1  
C2  
C17  
C18  
C
C11  
C30  
C13  
C15  
R3  
C14  
P
C4  
C28  
C6  
C24  
C16  
C20  
C22  
R2  
V
DDB  
C8  
C26  
V
GGB  
MRF8P20165W  
Rev. 0  
Note: V  
and V  
must be tied together and powered by a single DC power supply.  
DDB  
DDA  
Figure 3. MRF8P20165WHR3(WHSR3) Characterization Test Circuit Component Layout  
Table 6. MRF8P20165WHR3(WHSR3) Characterization Test Circuit Component Designations and Values  
Part  
Description  
1.6 pF Chip Capacitor  
Part Number  
ATC600S1R6BT250XT  
ATC600S1R8BT250XT  
ATC600S100JT250XT  
Manufacturer  
ATC  
C1  
C2  
1.8 pF Chip Capacitor  
10 pF Chip Capacitors  
ATC  
ATC  
C3, C4, C5, C6, C21, C22  
C29, C30  
C7, C8, C23, C24  
10 μF, 50 V Chip Capacitors  
2.7 pF Chip Capacitors  
GRM55DR61H106KA88L  
ATC600S2R7BT250XT  
ATC600S1R0BT250XT  
ATC600S0R6BT250XT  
ATC600S1R5BT250XT  
MCGPR35V337M10X16--RH  
ATC600S0R5BT250XT  
CRCW12062R37FNEA  
CRCW120651R0FKEA  
GSC351--HYB1900  
Murata  
ATC  
C9, C11, C13, C15  
C10, C12, C14, C16, C17  
1 pF Chip Capacitors  
ATC  
C18, C28  
C19, C20  
C25, C26  
C27  
0.6 pF Chip Capacitors  
ATC  
1.5 pF Chip Capacitors  
ATC  
330 μF, 35 V Electrolytic Capacitors  
0.5 pF Chip Capacitor  
Multicomp  
ATC  
R1, R2  
R3  
2.37 , 1/4 W Chip Resistors  
51 , 1/4 W Chip Resistor  
1900 MHz Band 90°, 3 dB Hybrid Coupler  
Vishay  
Vishay  
Soshin  
Rogers  
Z1  
PCB  
0.030, ε = 3.48  
RO4350  
r
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
5
Single--ended  
λ
4
Quadrature combined  
λ
4
λ
4
Doherty  
λ
λ
2
Push--pull  
2
Figure 4. Possible Circuit Topologies  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
6
TYPICAL CHARACTERISTICS  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
52  
V
= 28 Vdc, P = 37 W (Avg.), I  
= 550 mA, V  
= 1.3 Vdc  
GSB  
DD  
out  
DQA  
50  
2--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
48  
η
D
46  
44  
G
ps  
30 MHz Carrier Spacing, Input Signal  
PAR = 9.8 dB @ 0.01% Probability on CCDF  
-- 2 7  
-- 2 9  
-- 3 1  
-- 3 3  
-- 3 5  
-- 3 7  
-- 2 1  
-- 2 2  
-- 2 . 5  
--2.75  
-- 3  
-- 2 3  
-- 2 4  
-- 2 5  
-- 2 6  
PARC  
ACPR  
--3.25  
-- 3 . 5  
--3.75  
IM3  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
Figure 5. 2--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 37 Watts Avg.  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
52  
V
= 28 Vdc, P = 37 W (Avg.), I  
= 550 mA, V  
= 1.3 Vdc  
GSB  
DD  
out  
DQA  
50  
Single--Carrier W--CDMA, 3.84 MHz Channel Bandwidth  
48  
η
D
46  
G
ps  
44  
-- 2 6  
-- 2 8  
-- 3 0  
-- 3 2  
-- 3 4  
-- 3 6  
-- 2 . 5  
--2.75  
-- 3  
PARC  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
--3.25  
-- 3 . 5  
--3.75  
ACPR  
1880 1900 1920 1940 1960 1980 2000 2020 2040  
f, FREQUENCY (MHz)  
Figure 6. Single--Carrier Output Peak--to--Average Ratio Compression  
(PARC) Broadband Performance @ Pout = 37 Watts Avg.  
-- 10  
V
= 28 Vdc, P = 74 W (PEP), I  
= 550 mA, V  
= 1.3 Vdc  
GSB  
DD  
out  
DQA  
Two--Tone Measurements, (f1 + f2)/2 = Center  
Frequency of 1960 MHz  
-- 20  
-- 30  
-- 40  
-- 50  
-- 6 0  
IM3--L  
IM3--U  
IM5--L  
IM5--U  
IM7--L  
IM7--U  
1
10  
TWO--TONE SPACING (MHz)  
100  
200  
Figure 7. Intermodulation Distortion Products  
versus Two--Tone Spacing  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
7
TYPICAL CHARACTERISTICS  
-- 1 0  
-- 1 5  
-- 2 0  
-- 2 5  
-- 3 0  
-- 3 5  
-- 4 0  
17.5  
17  
1
0
60  
50  
V
= 28 Vdc, I  
= 550 mA, V  
= 1.3 Vdc  
GSB  
DD  
DQA  
f = 1960 MHz, Single--Carrier W--CDMA  
3.84 MHz Channel Bandwidth  
η
D
16.5  
16  
-- 1  
-- 2  
40  
30  
20  
10  
0
G
ps  
ACPR  
-- 1 d B = 1 7 W  
-- 2 d B = 2 8 W  
15.5  
15  
-- 3  
-- 4  
PARC  
-- 3 d B = 3 9 W  
Input Signal PAR = 9.9 dB @ 0.01% Probability on CCDF  
14.5  
-- 5  
10  
20  
30  
40  
50  
60  
P
, OUTPUT POWER (WATTS)  
out  
Figure 8. Output Peak--to--Average Ratio  
Compression (PARC) versus Output Power  
18  
60  
0
V
= 28 Vdc, I  
= 550 mA, V  
= 1.3 Vdc  
GSB  
DD  
DQA  
Single--Carrier W--CDMA, 3.84 MHz Channel  
Bandwidth  
17  
16  
15  
14  
13  
12  
-- 1 0  
-- 2 0  
-- 3 0  
-- 4 0  
-- 5 0  
-- 6 0  
50  
40  
30  
20  
10  
0
1930 MHz  
1960 MHz  
1995 MHz  
η
D
G
ps  
ACPR  
1930 MHz  
1960 MHz  
1995 MHz  
1930 MHz  
1960 MHz  
1995 MHz  
Input Signal PAR = 9.9 dB  
@ 0.01% Probability on CCDF  
10  
1
100  
200  
P
, OUTPUT POWER (WATTS) AVG.  
out  
Figure 9. Single--Carrier W--CDMA Power Gain, Drain  
Efficiency and ACPR versus Output Power  
18  
18  
-- 1 0  
-- 2 0  
-- 3 0  
-- 4 0  
-- 5 0  
-- 6 0  
-- 7 0  
V
= 28 Vdc, I  
= 550 mA, V  
= 1.3 Vdc, f1 = 1945 MHz  
GSB  
DD  
DQA  
f2 = 1975 MHz, 2--Carrier W--CDMA, 3.84 MHz Channel  
Bandwidth  
17  
16  
15  
14  
13  
12  
15  
12  
9
G
ps  
IM5--L  
IM5--U  
V
P
= 28 Vdc  
= 0 dBm  
DD  
IM3--U  
IM7--L  
in  
6
IM3--L  
I
V
= 550 mA  
= 1.3 Vdc  
DQA  
GSB  
3
0
Input Signal PAR = 9.8 dB @  
0.01% Probability on CCDF  
IM7--U  
1
10  
, OUTPUT POWER (WATTS) AVG.  
100  
200  
1800 1835 1870 1905 1940 1975  
2010 2045 2080  
P
f, FREQUENCY (MHz)  
out  
Figure 10. 2--Carrier W--CDMA Power Gain, IM3, IM5, IM7  
versus Output Power  
Figure 11. Broadband Frequency Response  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
8
W--CDMA TEST SIGNAL  
-- 2 0  
100  
10  
3.84 MHz  
-- 3 0  
-- 4 0  
-- 5 0  
-- 6 0  
-- 7 0  
-- 8 0  
-- 9 0  
--100  
Channel BW  
1
Input Signal  
0.1  
0.01  
W--CDMA. ACPR Measured in 3.84 MHz  
Channel Bandwidth @ ±5 MHz Offset.  
Input Signal PAR = 9.8 dB @ 0.01%  
Probability on CCDF  
--ACPR in  
+ACPR in  
3.84 MHz BW 3.84 MHz BW  
-- I M 3 i n  
3.84 MHz BW  
+IM3 in  
3.84 MHz BW  
0.001  
-- 11 0  
--120  
0.0001  
--75 -- 6 0 -- 4 5 -- 3 0 -- 1 5  
0
15  
30  
45  
60 75  
0
2
4
6
8
10  
12  
f, FREQUENCY (MHz)  
PEAK--TO--AVERAGE (dB)  
Figure 13. 2-Carrier W-CDMA Spectrum  
Figure 12. CCDF W--CDMA IQ Magnitude  
Clipping, 2--Carrier Test Signal  
100  
10  
10  
0
-- 1 0  
-- 2 0  
-- 3 0  
-- 4 0  
3.84 MHz  
Channel BW  
1
Input Signal  
0.1  
0.01  
-- 5 0  
-- 6 0  
W--CDMA. ACPR Measured in 3.84 MHz  
Channel Bandwidth @ ±5 MHz Offset.  
Input Signal PAR = 9.9 dB @ 0.01%  
Probability on CCDF  
+ACPR in 3.84 MHz  
Integrated BW  
--ACPR in 3.84 MHz  
Integrated BW  
0.001  
-- 7 0  
-- 8 0  
0.0001  
0
2
4
6
8
10  
12  
-- 9 0  
PEAK--TO--AVERAGE (dB)  
--100  
Figure 14. CCDF W--CDMA IQ Magnitude  
Clipping, Single--Carrier Test Signal  
-- 9 -- 7 . 2 -- 5 . 4 -- 3 . 6 -- 1 . 8  
0
1.8 3.6  
5.4 7.2  
9
f, FREQUENCY (MHz)  
Figure 15. Single--Carrier W--CDMA Spectrum  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
9
V
= 28 Vdc, I  
= 550 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
DD  
DQA  
Max Output Power  
P1dB  
P3dB  
(W)  
(1)  
f
Z
Z
load  
()  
source  
()  
(MHz)  
(dBm)  
50.4  
(W)  
110  
110  
110  
η
(%)  
(dBm)  
51.2  
η (%)  
D
D
1930  
1960  
1990  
16.0 -- j8.99  
17.2 -- j2.43  
18.6 + j3.55  
1.58 -- j5.68  
1.55 -- j6.08  
1.93 -- j5.82  
55.3  
54.4  
54.4  
132  
135  
132  
55.8  
53.5  
55.4  
50.4  
51.3  
50.4  
51.2  
(1) Load impedance for optimum P1dB power.  
Z
Z
= Impedance as measured from gate contact to ground.  
= Impedance as measured from drain contact to ground.  
source  
load  
Input  
Load Pull  
Tuner  
Output  
Load Pull  
Tuner  
Device  
Under  
Test  
Z
Z
source  
load  
Figure 16. Carrier Side Load Pull Performance — Maximum P1dB Tuning  
V
= 28 Vdc, I  
= 550 mA, Pulsed CW, 10 μsec(on), 10% Duty Cycle  
Max Drain Efficiency  
P1dB  
DD  
DQA  
P3dB  
(W)  
91  
(1)  
f
Z
Z
load  
source  
()  
(MHz)  
()  
(dBm)  
48.5  
(W)  
71  
η
(%)  
(dBm)  
49.6  
η
(%)  
D
D
1930  
1960  
1990  
16.0-- j8.99  
17.2 -- j2.43  
18.6 + j3.55  
3.45 -- j3.43  
3.68 -- j3.88  
2.95-- j3.99  
65.8  
65.6  
65.1  
66.5  
48.7  
74  
49.6  
91  
66.1  
65.3  
48.2  
66  
49.6  
91  
(1) Load impedance for optimum P1dB efficiency.  
Z
Z
= Impedance as measured from gate contact to ground.  
= Impedance as measured from drain contact to ground.  
source  
load  
Input  
Load Pull  
Tuner  
Output  
Load Pull  
Tuner  
Device  
Under  
Test  
Z
Z
source  
load  
Figure 17. Carrier Side Load Pull Performance — Maximum Efficiency Tuning  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
10  
PACKAGE DIMENSIONS  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
11  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
12  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
13  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
14  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following documents, Software and Tools to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
.s2p File  
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the  
Software & Tools tab on the part’s Product Summary page to download the respective tool.  
R5 TAPE AND REEL OPTION  
R5 Suffix = 50 Units, 56 mm Tape Width, 13 inch Reel.  
The R5 tape and reel option for MRF8P20165WH and MRF8P20165WHS parts will be available for 2 years after release of  
MRF8P20165WH and MRF8P20165WHS. Freescale Semiconductor, Inc. reserves the right to limit the quantities that will be  
delivered in the R5 tape and reel option. At the end of the 2 year period customers who have purchased these devices in the R5  
tape and reel option will be offered MRF8P20165WH and MRF8P20165WHS in the R3 tape and reel option.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
Apr. 2011  
Initial Release of Data Sheet  
MRF8P20165WHR3 MRF8P20165WHSR3  
RF Device Data  
Freescale Semiconductor  
15  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
1--800--521--6274 or +1--480--768--2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of  
any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do  
vary in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor  
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1--8--1, Shimo--Meguro, Meguro--ku,  
Tokyo 153--0064  
Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
Beijing 100022  
China  
+86 10 5879 8000  
support.asia@freescale.com  
Semiconductor was negligent regarding the design or manufacture of the part.  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1--800--441--2447 or +1--303--675--2140  
Fax: +1--303--675--2150  
Freescalet and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
Freescale Semiconductor, Inc. 2011. All rights reserved.  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MRF8P20165WH  
Rev. 0, 4/2011  

相关型号:

MRF8P23080HR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P23160WHSR3

S BAND, Si, N-CHANNEL, RF POWER, MOSFET, ROHS COMPLIANT, NI-780S-4, CASE 465H-02, 4 PIN
NXP

MRF8P26080H

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P26080HR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P26080HSR3

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P29300HR6

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P29300HSR6

RF Power Field Effect Transistors N--Channel Enhancement--Mode Lateral MOSFETs
FREESCALE

MRF8P8300H

N-Channel Enhancement-Mode Lateral MOSFET
NXP

MRF8P8300HR6

RF Power Field Effect Transistors
FREESCALE

MRF8P8300HR6

N-Channel Enhancement-Mode Lateral MOSFET
NXP

MRF8P8300HSR6

RF Power Field Effect Transistors
FREESCALE

MRF8P8300HSR6

N-Channel Enhancement-Mode Lateral MOSFET
NXP