MRFE6VP5300GNR1 [NXP]

RF Power LDMOS Transistors;
MRFE6VP5300GNR1
型号: MRFE6VP5300GNR1
厂家: NXP    NXP
描述:

RF Power LDMOS Transistors

文件: 总25页 (文件大小:1083K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MRFE6VP5300N  
Rev. 1, 6/2014  
Freescale Semiconductor  
Technical Data  
RF Power LDMOS Transistors  
High Ruggedness N--Channel  
Enhancement--Mode Lateral MOSFETs  
MRFE6VP5300NR1  
MRFE6VP5300GNR1  
These high ruggedness devices are designed for use in high VSWR  
industrial (including laser and plasma exciters), broadcast (analog and digital),  
aerospace and radio/land mobile applications. They are unmatched input and  
output designs allowing wide frequency range utilization, between 1.8 and  
600 MHz.  
1.8–600 MHz, 300 W CW, 50 V  
WIDEBAND  
RF POWER LDMOS TRANSISTORS  
Typical Performance: VDD = 50 Vdc  
P
(W)  
Frequency  
(MHz)  
G
D
out  
ps  
Signal Type  
(dB)  
23.8  
25.0  
27.0  
(%)  
80.1  
70.0  
71.0  
TO--270WB--4  
PLASTIC  
MRFE6VP5300NR1  
(1,3)  
87.5--108  
CW  
CW  
361  
300  
(2)  
230  
230  
(2)  
Pulse (100 sec, 20%  
300 Peak  
Duty Cycle)  
Load Mismatch/Ruggedness  
Frequency  
TO--270WBG--4  
PLASTIC  
MRFE6VP5300GNR1  
P
(W)  
Test  
Voltage  
in  
Signal Type  
VSWR  
(MHz)  
Result  
(1)  
98  
CW  
> 65:1  
at all Phase  
Angles  
3
50  
No Device  
Degradation  
(3 dB  
Overdrive)  
(2)  
230  
Pulse  
(100 sec, 20%  
Duty Cycle)  
1.16 Peak  
(3 dB  
Overdrive)  
Drain A  
Drain B  
3
4
2
1
Gate A  
Gate B  
1. Measured in 87.5–108 MHz broadband reference circuit.  
2. Measured in 230 MHz narrowband test circuit.  
3. The values shown are the minimum measured performance numbers across the  
indicated frequency range.  
Features  
Wide Operating Frequency Range  
Extreme Ruggedness  
Unmatched Input and Output Allowing Wide Frequency Range Utilization  
Integrated Stability Enhancements  
Low Thermal Resistance  
(Top View)  
Note: Exposed backside of the package is  
the source terminal for the transistors.  
Figure 1. Pin Connections  
Integrated ESD Protection Circuitry  
In Tape and Reel. R1 Suffix = 500 Units, 44 mm Tape Width, 13--inch Reel.  
Freescale Semiconductor, Inc., 2014. All rights reserved.  
Table 1. Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
C  
Drain--Source Voltage  
V
–0.5, +133  
–6.0, +10  
DSS  
Gate--Source Voltage  
V
GS  
Storage Temperature Range  
Case Operating Temperature Range  
Operating Junction Temperature Range  
T
stg  
–65 to +150  
–40 to +150  
–40 to +225  
T
C
C  
(1,2)  
T
J
C  
Total Device Dissipation @ T = 25C  
P
909  
W
C
D
Derate above 25C  
4.55  
W/C  
Table 2. Thermal Characteristics  
(2,3)  
Characteristic  
Symbol  
Value  
Unit  
Thermal Resistance, Junction to Case  
R
0.22  
C/W  
JC  
CW: Case Temperature 81C, 305 W CW, 50 Vdc, I  
= 100 mA, 230 MHz  
DQ(A+B)  
Thermal Impedance, Junction to Case  
Z
0.034  
C/W  
JC  
Pulse: Case Temperature 59C, 300 W Peak, 100 sec Pulse Width,  
20% Duty Cycle, 50 Vdc, I = 100 mA, 230 MHz  
DQ(A+B)  
Table 3. ESD Protection Characteristics  
Test Methodology  
Class  
Human Body Model (per JESD22--A114)  
Machine Model (per EIA/JESD22--A115)  
Charge Device Model (per JESD22--C101)  
2, passes 2500 V  
A, passes 150 V  
IV, passes 2000 V  
Table 4. Moisture Sensitivity Level  
Test Methodology  
Rating  
Package Peak Temperature  
Unit  
Per JESD22--A113, IPC/JEDEC J--STD--020  
3
260  
C  
Table 5. Electrical Characteristics (T = 25C unless otherwise noted)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(4)  
Off Characteristics  
Gate--Source Leakage Current  
I
133  
140  
1
5
Adc  
Vdc  
GSS  
(V = 5 Vdc, V = 0 Vdc)  
GS  
DS  
Drain--Source Breakdown Voltage  
(V = 0 Vdc, I = 50 mA)  
V
(BR)DSS  
GS  
D
Zero Gate Voltage Drain Leakage Current  
(V = 50 Vdc, V = 0 Vdc)  
I
Adc  
Adc  
DSS  
DSS  
DS  
GS  
Zero Gate Voltage Drain Leakage Current  
I
10  
(V = 100 Vdc, V = 0 Vdc)  
DS  
GS  
On Characteristics  
Gate Threshold Voltage  
(V = 10 Vdc, I = 960 Adc)  
V
V
1.8  
2.2  
2.3  
2.7  
2.8  
3.2  
Vdc  
Vdc  
Vdc  
GS(th)  
GS(Q)  
DS(on)  
DS  
D
Gate Quiescent Voltage  
(V = 50 Vdc, I = 100 mAdc, Measured in Functional Test)  
DD  
D
Drain--Source On--Voltage  
(V = 10 Vdc, I = 2 Adc)  
V
0.26  
GS  
D
1. Continuous use at maximum temperature will affect MTTF.  
2. MTTF calculator available at http://www.freescale.com/rf. Select Software & Tools/Development Tools/Calculators to access  
MTTF calculators by product.  
3. Refer to AN1955, Thermal Measurement Methodology of RF Power Amplifiers. Go to http://www.freescale.com/rf.  
Select Documentation/Application Notes -- AN1955.  
4. Each side of device measured separately.  
(continued)  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
2
Table 5. Electrical Characteristics (T = 25C unless otherwise noted) (continued)  
A
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
(1)  
Dynamic Characteristics  
Reverse Transfer Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
1.4  
63  
pF  
pF  
pF  
rss  
GS  
Output Capacitance  
(V = 50 Vdc 30 mV(rms)ac @ 1 MHz, V = 0 Vdc)  
DS  
C
oss  
GS  
Input Capacitance  
C
168  
iss  
(V = 50 Vdc, V = 0 Vdc 30 mV(rms)ac @ 1 MHz)  
DS  
GS  
(2)  
Functional Tests  
(In Freescale Test Fixture, 50 ohm system) V = 50 Vdc, I  
= 100 mA, P = 300 W Peak (60 W Avg.),  
DQ(A+B) out  
DD  
f = 230 MHz, 100 sec Pulse Width, 20% Duty Cycle  
Power Gain  
G
26.0  
69.0  
27.0  
71.0  
–20  
28.5  
dB  
%
ps  
D
Drain Efficiency  
Input Return Loss  
IRL  
–9  
dB  
Table 6. Load Mismatch/Ruggedness (In Freescale Test Fixture, 50 ohm system) I  
= 100 mA  
DQ(A+B)  
Frequency  
(MHz)  
P
in  
(W)  
Signal Type  
VSWR  
Test Voltage, V  
Result  
No Device Degradation  
DD  
230  
Pulse  
> 65:1 at all  
1.16 Peak  
50  
(100 sec, 20% Duty Cycle)  
Phase Angles  
(3 dB Overdrive)  
1. Each side of device measured separately.  
2. Measurements made with device in straight lead configuration before any lead forming operation is applied. Lead forming is used for gull wing  
(GN) parts.  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
3
TYPICAL CHARACTERISTICS  
1.06  
500  
100  
Measured with 30 mV(rms)ac @ 1 MHz  
1.05  
1.04  
1.03  
V
= 50 Vdc  
DD  
500 mA  
V
= 0 Vdc  
C
iss  
GS  
I
= 100 mA  
DQ(A+B)  
1500 mA  
1.02  
1.01  
1
C
oss  
2500 mA  
0.99  
0.98  
0.97  
10  
1
0.96  
0.95  
0.94  
C
rss  
-- 5 0  
--25  
0
25  
50  
75  
100  
0
10  
V
20  
30  
40  
50  
T , CASE TEMPERATURE (C)  
, DRAIN--SOURCE VOLTAGE (VOLTS)  
C
DS  
Note: Each side of device measured separately.  
I
(mA)  
Slope (mV/C)  
DQ  
100  
–2.651  
–2.158  
–1.977  
–1.787  
Figure 2. Capacitance versus Drain--Source Voltage  
500  
1500  
2500  
Figure 3. Normalized VGS versus Quiescent  
Current and Case Temperature  
8
10  
V
= 50 Vdc  
DD  
I
D
= 6.38 Amps  
7
10  
10  
6
8.04 Amps  
9.61 Amps  
5
10  
10  
4
90  
110  
130  
150  
170  
190  
210  
230  
250  
T , JUNCTION TEMPERATURE (C)  
J
Note: MTTF value represents the total cumulative operating time  
under indicated test conditions.  
MTTF calculator available at http:/www.freescale.com/rf. Select  
Software & Tools/Development Tools/Calculators to access MTTF  
calculators by product.  
Figure 4. MTTF versus Junction Temperature -- CW  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
4
230 MHz NARROWBAND PRODUCTION TEST FIXTURE  
C3 C5  
C29  
C27  
MRFE6VP5300N  
Rev. 2  
C23  
C21  
B1  
C7  
C1  
D49840  
C19  
C25  
L1  
C11  
COAX3  
COAX1  
L4  
C17  
C18  
C9  
C14  
C16  
C13  
L3  
C15  
C10  
L5  
COAX4  
C28  
COAX2  
C12  
L2  
C26  
C20  
C2  
B2  
C22  
C24  
C8  
C30  
C4 C6  
Figure 5. MRFE6VP5300NR1 Narrowband Test Circuit Component Layout — 230 MHz  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
5
230 MHz NARROWBAND PRODUCTION TEST FIXTURE  
Table 7. MRFE6VP5300NR1 Narrowband Test Circuit Component Designations and Values — 230 MHz  
Part  
Description  
Part Number  
Manufacturer  
B1, B2  
C1, C2  
C3, C4  
C5, C6  
C7, C8  
Small Ferrite Beads, Surface Mount  
2743019447  
Fair-Rite  
22 F, 35 V Tantulum Capacitors  
0.1 F Chip Capacitors  
220 nF Chip Capacitors  
2.2 F Chip Capacitors  
1000 pF Chip Capacitors  
75 pF Chip Capacitor  
T491X226K035AT  
CDR33BX104AKWS  
C1812C224K5RACTU  
C1825C225J5RACTU  
ATC100B102JT50XT  
ATC100B750JT500XT  
ATC100B681JT200XT  
ATC100B820JT500XT  
ATC100B8R2CT500XT  
ATC100B110JT500XT  
ATC100B241JT200XT  
C1812F104K1RACTU  
CDR33BX104AKWS  
2225X7R225KJT3AB  
MCGPR63V477M13X26-RH  
UT-141C-25  
Kemet  
AVX  
Kemet  
Kemet  
ATC  
C9, C10, C11, C12  
C13  
ATC  
C14, C15  
C16  
680 pF Chip Capacitors  
82 pF Chip Capacitor  
ATC  
ATC  
C17  
8.2 pF Chip Capacitor  
ATC  
C18  
11 pF Chip Capacitor  
ATC  
C19, C20  
C21, C22  
C23, C24  
C25, C26  
C27, C28, C29, C30  
Coax1, 2, 3, 4  
L1, L2  
240 pF Chip Capacitors  
0.10 F Chip Capacitors  
0.1 F Chip Capacitors  
2.2 F Chip Capacitors  
470 F, 63 V Electrolytic Capacitors  
25 Semi Rigid Coax, 2.4  
12 nH Inductors, 3 Turns  
22 nH Inductor  
ATC  
Kemet  
AVX  
ATC  
Multicomp  
Micro-Coax  
Coilcraft  
Coilcraft  
Coilcraft  
MTL  
GA3094-ALC  
L3  
1812SMS-22NJLC  
GA3095-ALC  
L4, L5  
17.5 nH Inductors, 4 Turns  
PCB  
Arlon AD255A 0.030, = 2.55  
D49840  
r
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
6
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
7
TYPICAL CHARACTERISTICS — 230 MHz  
350  
300  
250  
V
= 50 Vdc, f = 230 MHz  
DD  
Pulse Width = 100 sec, 20% Duty Cycle  
P
= 0.64 W  
in  
200  
150  
100  
P
= 0.32 W  
in  
50  
0
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
, GATE--SOURCE VOLTAGE (VOLTS)  
GS  
Figure 7. Output Power versus Gate--Source  
Voltage at a Constant Input Power  
60  
58  
56  
54  
52  
50  
48  
46  
90  
80  
70  
60  
50  
40  
30  
20  
10  
31  
V
= 50 Vdc, I  
= 100 mA, f = 230 MHz  
V
= 50 Vdc, I  
= 100 mA, f = 230 MHz  
DD  
DQ(A+B)  
DD  
DQ(A+B)  
Pulse Width = 100 sec, 20% Duty Cycle  
Pulse Width = 100 sec, 20% Duty Cycle  
30  
29  
D
I
= 900 mA  
DQ(A+B)  
28  
27  
26  
25  
24  
23  
600 mA  
300 mA  
100 mA  
44  
42  
40  
900 mA  
100  
G
ps  
600 mA  
300 mA  
100 mA  
16  
18  
20  
22  
24  
26  
28  
30  
32  
10  
500  
P , INPUT POWER (dBm)  
in  
P
, OUTPUT POWER (WATTS) PEAK  
out  
f
Figure 9. Power Gain and Drain Efficiency  
versus Output Power and Quiescent Current  
P1dB  
(W)  
P3dB  
(W)  
(MHz)  
230  
313  
370  
Figure 8. Output Power versus Input Power  
29  
28  
27  
26  
30  
29  
90  
80  
V
= 50 Vdc, I  
= 100 mA, f = 230 MHz  
-- 4 0 _C  
DD  
DQ(A+B)  
Pulse Width = 100 sec, 20% Duty Cycle  
28  
27  
26  
25  
24  
25_C 70  
T
= --40_C  
C
60  
50  
40  
30  
25  
24  
50 V  
45 V  
D
85_C  
25_C  
85_C  
23  
22  
21  
20  
19  
40 V  
35 V  
I
G
ps  
V
= 30 V  
100  
DD  
= 100 mA, f = 230 MHz  
20  
10  
DQ(A+B)  
23  
22  
Pulse Width = 100 sec, 20% Duty Cycle  
0
50  
150 200 250 300 350  
400  
10  
100  
, OUTPUT POWER (WATTS) PEAK  
500  
P
, OUTPUT POWER (WATTS) PEAK  
P
out  
out  
Figure 11. Power Gain versus Output Power  
and Drain--Source Voltage  
Figure 10. Power Gain and Drain Efficiency  
versus CW Output Power  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
8
230 MHz NARROWBAND PRODUCTION TEST FIXTURE  
V
= 50 Vdc, I = 100 mA, P = 300 W Peak  
DQ(A+B) out  
DD  
f
Z
Z
load  
source  
MHz  
230  
1.50 – j10.70  
8.30 + j6.90  
Z
Z
= Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
= Test circuit impedance as measured from  
drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
50   
50   
--  
+
load  
Z
Z
source  
Figure 12. Narrowband Series Equivalent Source and Load Impedance — 230 MHz  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
9
87.5–108 MHz BROADBAND REFERENCE CIRCUIT  
Table 9. 87.5–108 MHz Broadband Performance (In Freescale Reference Circuit, 50 ohm system)  
V
= 50 Vdc, I  
= 100 mA, P = 1.5 W, CW  
DQ(A+B) in  
DD  
Frequency  
G
D
P
out  
ps  
(MHz)  
87.5  
98  
(dB)  
24.4  
24.3  
23.8  
(%)  
80.1  
81.8  
80.5  
(W)  
415  
404  
361  
108  
Table 10. Load Mismatch/Ruggedness (In Freescale Reference Circuit, 50 ohm system) I  
= 100 mA  
DQ(A+B)  
Frequency  
(MHz)  
P
in  
(W)  
Signal Type  
VSWR  
Test Voltage, V  
Result  
DD  
98  
CW  
> 65:1  
3
50  
No Device  
at all Phase Angles  
(3 dB Overdrive)  
Degradation  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
10  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT  
COAX1  
R6*  
R5*  
R8  
R4*  
C1*  
U1*  
C16  
R11*  
R10*  
C13  
C12  
C14 C15  
C3*  
+
R3*  
D59349  
R7*  
C2*  
R1*  
R2*  
C11  
U2*  
R9  
C6  
C4  
C8  
C9  
Q1  
T1  
C5  
L1  
C17  
C7  
COAX3  
MRFE6VP5300N  
Rev. 1  
COAX2  
Note: Component number C10 is not used.  
* Bias Regulator and Temperature Compensation. Refer to AN1643, RF LDMOS Power Modules for GSM Base Station  
Application: Optimum Biasing Circuit. Go to http://www.freescale.com/rf. Select Documentation/Application Notes – AN1643.  
Figure 13. MRFE6VP5300NR1 Broadband Reference Circuit Component Layout — 87.5–108 MHz  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
11  
RF Device Data  
Freescale Semiconductor, Inc.  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT  
Table 11. MRFE6VP5300NR1 Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz  
Part  
Description  
Part Number  
Manufacturer  
C1, C2  
C3  
1 F Chip Capacitors  
GRM31CR72A105KA01L  
Murata  
10 nF Chip Capacitor  
150 pF Chip Capacitor  
20 pF Chip Capacitor  
1000 pF Chip Capacitors  
560 pF Chip Capacitor  
10 nF Chip Capacitor  
47 nF Chip Capacitor  
470 nF Chip Capacitor  
10 F Chip Capacitors  
470 F, 63 V Electrolytic Capacitor  
20 pF Chip Capacitor  
35 Flex Cable, 4.72  
50 Flex Cable, 6.3  
ATC200B103KT50XT  
ATC100B151JT300XT  
ATC100B200JT500XT  
ATC200B102KT50XT  
ATC100B561KT50XT  
GCJ216R72A103KA01D  
GCJ21BR72A473KA01L  
GRM31MR72A474KA01L  
C5750X7S2A106M230KB  
MCGPR63V477M13X26  
ATC100B200JT500XT  
HSF-141  
ATC  
C4  
ATC  
C5  
ATC  
C6, C8, C9  
C7  
ATC  
ATC  
C11  
Murata  
Murata  
Murata  
TDK  
C12  
C13  
C14, C15  
C16  
Multicomp  
ATC  
C17  
Coax1, 2  
Coax3  
L1  
Hongsen Cable  
Huber Suhner  
SM141  
5 Turns, #16 AWG ID = 0.315/8 mm Inductor,  
Copper Wire  
Hand Wound  
Q1  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
R10  
R11  
T1  
RF Power LDMOS Transistor  
2.2 k, 1/8 W Chip Resistor  
390 , 1/8 W Chip Resistor  
10 , 1/8 W Chip Resistor  
MRFE6VP5300NR1  
CRCW08052K20FKEA  
CRCW0805390RFKEA  
CRCW080510R0FKEA  
CRCW08051K00FKEA  
CRCW08052K70FKEA  
CRCW0805200RFKEA  
3224W-1-502E  
Freescale  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Vishay  
Bourns  
Vishay  
Vishay  
Vishay  
Vishay  
Fair-Rite  
1.0 k, 1/8 W Chip Resistor  
2.7 k, 1/8 W Chip Resistor  
200 , 1/8 W Chip Resistor  
5.0 kMulti-turn Cermet Trimmer Potentiometer  
10 , 1/4 W Chip Resistor  
CRCW120610R0FKEA  
CRCW1206240RFKEA  
CRCW12104K70FKEA  
CRCW12105K10FKEA  
2861000202  
240 , 1/4 W Chip Resistor  
4.7 k, 1/2 W Chip Resistor  
5.1 k, 1/2 W Chip Resistor  
61 Material Binocular Core Ferrite (9:1) with  
24 AWG 1 Turn Primary, 24 AWG 3 Turns  
Secondary, Hand Wound  
U1  
Voltage Regulator 5 V, Micro8  
NPN Bipolar Transistor  
LP2951ACDMR2G  
BC847ALT1G  
D59349  
ON Semiconductor  
ON Semiconductor  
MTL  
U2  
PCB  
Rogers RO4350B, 0.030, = 3.66  
r
Note: Component number C10 is not used.  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
12  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
13  
TYPICAL CHARACTERISTICS — 87.5–108 MHz  
BROADBAND REFERENCE CIRCUIT  
26  
90  
80  
70  
V
= 50 Vdc, P = 1.5 W, I  
= 100 mA  
DD  
in  
DQ(A+B)  
25.5  
25  
D
24.5  
24  
60  
50  
23.5  
23  
450  
400  
G
ps  
22.5  
22  
350  
300  
P
out  
86 88 90 92 94 96 98 100 102 104 106 108 110  
f, FREQUENCY (MHz)  
Figure 15. Power Gain, Drain Efficiency and CW Output  
Power versus Frequency at a Constant Input Power  
450  
350  
300  
V
P
= 50 Vdc  
V
P
= 50 Vdc  
DD  
in  
DD  
in  
400  
350  
300  
250  
= 0.5 W  
= 1.0 W  
250  
200  
f = 98 MHz  
f = 98 MHz  
108 MHz  
108 MHz  
200  
150  
100  
50  
150  
100  
50  
87.5 MHz  
87.5 MHz  
0
0
0
0.5  
1
1.5  
V , GATE--SOURCE VOLTAGE (VOLTS)  
GS  
2
2.5  
3
3.5  
0
0.5  
1
1.5  
2
2.5  
3
3.5  
V
, GATE--SOURCE VOLTAGE (VOLTS)  
GS  
Figure 16. CW Output Power versus Gate--Source  
Voltage at a Constant Input Power  
Figure 17. CW Output Power versus Gate--Source  
Voltage at a Constant Input Power  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
14  
TYPICAL CHARACTERISTICS — 87.5–108 MHz  
BROADBAND REFERENCE CIRCUIT  
60  
V
= 50 Vdc  
DD  
58  
56  
54  
52  
50  
48  
46  
44  
l
= 100 mA  
DQ(A+B)  
f = 98 MHz  
108 MHz  
87.5 MHz  
20  
22  
24  
26  
28  
30  
32  
34  
P , INPUT POWER (dBm)  
in  
f
P1dB  
(W)  
P3dB  
(W)  
(MHz)  
87.5  
98  
346  
293  
240  
429  
379  
355  
108  
Figure 18. CW Output Power versus Input Power  
30  
90  
D
V
= 50 Vdc  
DD  
28  
26  
24  
22  
20  
18  
16  
80  
70  
60  
50  
40  
30  
20  
l
= 100 mA  
DQ(A+B)  
f = 98 MHz  
108 MHz  
87.5 MHz  
G
ps  
108 MHz  
98 MHz  
87.5 MHz  
30  
50  
100  
200  
300  
500  
P
, OUTPUT POWER (WATTS)  
out  
Figure 19. Power Gain and Drain Efficiency  
versus CW Output Power  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
15  
87.5–108 MHz BROADBAND REFERENCE CIRCUIT  
Z = 25   
o
Z
source  
f = 87.5 MHz  
f = 108 MHz  
f = 87.5 MHz  
f = 108 MHz  
Z
load  
V
= 50 Vdc, I = 100 mA, P = 300 W CW  
DQ(A+B) out  
DD  
f
Z
Z
load  
source  
MHz  
87.5  
92  
10.3 + j14.4  
11.5 + j15.8  
12.6 + j17.0  
13.9 + j18.2  
15.5 + j19.6  
17.2 + j20.9  
13.7 + j8.15  
14.2 + j8.09  
14.7 + j8.04  
15.2 + j7.99  
15.7 + j7.94  
16.2 + j7.89  
96  
100  
104  
108  
Z
Z
=
=
Test circuit impedance as measured from  
gate to gate, balanced configuration.  
source  
Test circuit impedance as measured  
from drain to drain, balanced configuration.  
load  
Device  
Under  
Test  
Output  
Matching  
Network  
Input  
Matching  
Network  
+
--  
50   
50   
--  
+
Z
Z
source  
load  
Figure 20. Broadband Series Equivalent Source and Load Impedance — 87.5–108 MHz  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
16  
HARMONIC MEASUREMENTS — 87.5–108 MHz  
BROADBAND REFERENCE CIRCUIT  
Sweep 10 of 10  
10.0  
F1  
H2  
100 MHz  
200 MHz --45.2 dB  
Fundamental (F1)  
H3 300 MHz --17.7 dB  
0.0  
--10.0  
--20.0  
--30.0  
--40.0  
--50.0  
--60.0  
--70.0  
H4  
400 MHz --52.9 dB  
500 MHz --29.0 dB  
H5  
H3  
H5  
11.984 sps  
11.851 fps  
H3  
H4  
H5  
H2  
(200 MHz)  
(300 MHz) (400 MHz) (500 MHz)  
H2  
H4  
–45.2 dB  
–17.7 dB –52.9 dB –29.0 dB  
Span: 600 MHz  
Center: 300 MHz  
Figure 21. 100 MHz Harmonics @ 300 W CW  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
17  
PACKAGE DIMENSIONS  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
18  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
19  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
20  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
21  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
22  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
23  
PRODUCT DOCUMENTATION, SOFTWARE AND TOOLS  
Refer to the following documents, software and tools to aid your design process.  
Application Notes  
AN1955: Thermal Measurement Methodology of RF Power Amplifiers  
AN1643: RF LDMOS Power Modules for GSM Base Station Application: Optimum Biasing Circuit  
Engineering Bulletins  
EB212: Using Data Sheet Impedances for RF LDMOS Devices  
Software  
Electromigration MTTF Calculator  
RF High Power Model  
Development Tools  
Printed Circuit Boards  
For Software and Tools, do a Part Number search at http://www.freescale.com, and select the “Part Number” link. Go to the  
Software & Tools tab on the part’s Product Summary page to download the respective tool.  
REVISION HISTORY  
The following table summarizes revisions to this document.  
Revision  
Date  
Description  
0
1
Mar. 2014  
June 2014  
Initial Release of Data Sheet  
Typical Performance table, 87.5–108 MHz: updated output power, gain and eff. values to reflect  
performance of circuit, p. 1  
Functional Tests table, narrowband circuit: corrected output power from (30 W Avg.) to (60 W Avg.), p. 3  
Table 9, 87.5–108 MHz Reference Circuit Broadband Performance table: updated all values to reflect  
performance of circuit, p. 10  
Fig. 13, Broadband Reference Circuit Component Layout — 87.5–108 MHz: updated layout to increase  
ease of use, p. 11  
Table 11, Broadband Reference Circuit Component Designations and Values — 87.5–108 MHz: updated  
R2 and R11 resistors, p. 12  
Fig. 14, Broadband Reference Circuit Schematic — 87.5–108 MHz: updated schematic to reflect  
temperature compensation, p. 13  
MRFE6VP5300NR1 MRFE6VP5300GNR1  
RF Device Data  
Freescale Semiconductor, Inc.  
24  
Information in this document is provided solely to enable system and software  
implementers to use Freescale products. There are no express or implied copyright  
licenses granted hereunder to design or fabricate any integrated circuits based on the  
information in this document.  
How to Reach Us:  
Home Page:  
freescale.com  
Web Support:  
freescale.com/support  
Freescale reserves the right to make changes without further notice to any products  
herein. Freescale makes no warranty, representation, or guarantee regarding the  
suitability of its products for any particular purpose, nor does Freescale assume any  
liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or incidental  
damages. “Typical” parameters that may be provided in Freescale data sheets and/or  
specifications can and do vary in different applications, and actual performance may  
vary over time. All operating parameters, including “typicals,” must be validated for  
each customer application by customer’s technical experts. Freescale does not convey  
any license under its patent rights nor the rights of others. Freescale sells products  
pursuant to standard terms and conditions of sale, which can be found at the following  
address: freescale.com/SalesTermsandConditions.  
Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc.,  
Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their  
respective owners.  
E 2014 Freescale Semiconductor, Inc.  
Document Number: MRFE6VP5300N  
Rev. 1, 6/2014  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY