MRT2-8012CAE5A [NXP]

i.MX RT1024 Crossover Processors Data Sheet for Consumer Products;
MRT2-8012CAE5A
型号: MRT2-8012CAE5A
厂家: NXP    NXP
描述:

i.MX RT1024 Crossover Processors Data Sheet for Consumer Products

文件: 总90页 (文件大小:1815K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMXRT1024CEC  
Rev. 0, 11/2020  
NXP Semiconductors  
Data Sheet: Technical Data  
MIMXRT1024DAG5A  
i.MX RT1024 Crossover  
Processors Data Sheet  
for Consumer Products  
Package Information  
Plastic Package  
144-Pin LQFP, 20 x 20 mm, 0.5 mm pitch  
Ordering Information  
See Table 2 on page 6  
1 i.MX RT1024 introduction  
The i.MX RT1024 is a processor of i.MX RT family  
featuring NXP’s advanced implementation of the Arm  
1. i.MX RT1024 introduction . . . . . . . . . . . . . . . . . . . . . . . . 1  
1.1. Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
1.2. Ordering information . . . . . . . . . . . . . . . . . . . . . . . 6  
1.3. Package marking information . . . . . . . . . . . . . . . . 8  
2. Architectural overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
2.1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
3. Modules list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
3.1. Special signal considerations . . . . . . . . . . . . . . . 16  
3.2. Recommended connections for unused analog  
®
®
Cortex -M7 core, which operates at speeds up to 500  
MHz to provide high CPU performance and real-time  
response.  
The i.MX RT1024 processor has 4 MB on-chip flash.  
256 KB on-chip RAM can be flexibly configured as  
TCM or general-purpose on-chip RAM. The i.MX  
RT1024 integrates advanced power management module  
with DCDC and LDO that reduces complexity of  
external power supply and simplifies power sequencing.  
The i.MX RT1024 also provides various memory  
interfaces, including SDRAM, RAW NAND FLASH,  
NOR FLASH, SD/eMMC, Quad SPI, and a wide range  
of connectivity interfaces including UART, SPI, I2C,  
USB, and CAN; for connecting peripherals including  
WLAN, Bluetooth™, and GPS. The i.MX RT1024 also  
has rich audio features, including SPDIF and I2S audio  
interface. Various analog IP integration, including ADC,  
analog comparator, temperature sensor, etc.  
interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
4. Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . 18  
4.1. Chip-level conditions . . . . . . . . . . . . . . . . . . . . . . 18  
4.2. System power and clocks . . . . . . . . . . . . . . . . . . 23  
4.3. I/O parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
4.4. System modules . . . . . . . . . . . . . . . . . . . . . . . . . 35  
4.5. External memory interface . . . . . . . . . . . . . . . . . 40  
4.6. Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
4.7. Analog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
4.8. Communication interfaces . . . . . . . . . . . . . . . . . . 60  
4.9. Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
5. Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74  
6. Boot mode configuration . . . . . . . . . . . . . . . . . . . . . . . . 75  
6.1. Boot mode configuration pins . . . . . . . . . . . . . . . 75  
6.2. Boot device interface allocation . . . . . . . . . . . . . . 75  
7. Package information and contact assignments . . . . . . . 80  
7.1. 20 x 20 mm package information . . . . . . . . . . . . 80  
8. Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
NXP reserves the right to change the production detail specifications as may be required  
to permit improvements in the design of its products.  
i.MX RT1024 introduction  
The i.MX RT1024 is specifically useful for applications such as:  
Industrial  
Motor Control  
Home Appliance  
IoT  
1.1  
Features  
The i.MX RT1024 processors are based on Arm Cortex-M7 Core Platform, which has the following  
features:  
Supports single Arm Cortex-M7 with:  
— 16 KB L1 Instruction Cache  
— 16 KB L1 Data Cache  
— Full featured Floating Point Unit (FPU) with support of the VFPv5 architecture  
— Support the Armv7-M Thumb instruction set  
Integrated MPU, up to 16 individual protection regions  
Up to 256 KB I-TCM and D-TCM in total  
Frequency of 500 MHz  
Cortex M7 CoreSight™ components integration for debug  
Frequency of the core, as per Table 11, "Operating ranges," on page 19.  
The SoC-level memory system consists of the following additional components:  
— Boot ROM (96 KB)  
— On-chip Flash (4 MB)  
— On-chip RAM (256 KB)  
– Configurable RAM size up to 256 KB shared with CM7 TCM  
External memory interfaces:  
— 8/16-bit SDRAM, up to SDRAM-133  
— 8/16-bit SLC NAND FLASH, with ECC handled in software  
— SD/eMMC  
— SPI NOR FLASH  
— Parallel NOR FLASH with XIP support  
— Single/Dual channel Quad SPI FLASH with XIP support  
Timers and PWMs:  
— Two General Programmable Timers  
– 4-channel generic 32-bit resolution timer  
– Each support standard capture and compare operation  
— Four Periodical Interrupt Timers  
– Generic 32-bit resolution timer  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
2
NXP Semiconductors  
i.MX RT1024 introduction  
– Periodical interrupt generation  
— Two Quad Timers  
– 4-channel generic 16-bit resolution timer each  
– Each support standard capture and compare operation  
– Quadrature decoder integrated  
— Two FlexPWMs  
– Up to 8 individual PWM channels per each  
– 16-bit resolution PWM suitable for Motor Control applications  
— Two Quadrature Encoders/Decoders  
Each i.MX RT1024 processor enables the following interfaces to external devices (some of them are  
muxed and not available simultaneously):  
Audio:  
— S/PDIF input and output  
— Three synchronous audio interface (SAI) modules supporting I2S, AC97, TDM, and  
codec/DSP interfaces  
— MQS interface for medium quality audio via GPIO pads  
Connectivity:  
— One USB 2.0 OTG controller with integrated PHY interface  
— Two Ultra Secure Digital Host Controller (uSDHC) interfaces  
– MMC 4.5 compliance support up to 100 MB/sec  
– SD/SDIO 3.0 compliance with 200 MHz SDR signaling to support up to 100 MB/sec  
– Support for SDXC (extended capacity)  
— One 10M/100M Ethernet controller with IEEE1588 supported  
— Eight universal asynchronous receiver/transmitter (UARTs) modules  
— Four I2C modules  
— Four SPI modules  
— Two FlexCAN modules  
GPIO and Pin Multiplexing:  
— General-purpose input/output (GPIO) modules with interrupt capability  
— Input/output multiplexing controller (IOMUXC) to provide centralized pad control  
— 90 GPIOs for 144-pin LQFP package  
— One FlexIO  
The i.MX RT1024 processors integrate Analog module:  
— Two Analog-Digital-Converters (ADC), one of which supports differential inputs, up to 19  
channels  
— Four Analog Comparators (ACMP)  
The i.MX RT1024 processors integrate advanced power management unit and controllers:  
Full PMIC integration, including on-chip DCDC and LDOs  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
3
i.MX RT1024 introduction  
Temperature sensor with programmable trip points  
GPC hardware power management controller  
The i.MX RT1024 processors support the following system debug:  
Arm CortexM7 CoreSight debug and trace architecture  
Trace Port Interface Unit (TPIU) to support off-chip real-time trace  
Support for 5-pin (JTAG) and SWD debug interfaces selected by eFuse  
Security functions are enabled and accelerated by the following hardware:  
High Assurance Boot (HAB)  
Data Co-Processor (DCP):  
— AES-128, ECB, and CBC mode  
— SHA-1 and SHA-256  
— CRC-32  
Bus Encryption Engine (BEE)  
— AES-128, ECB, and CTR mode  
— On-the-fly QSPI Flash decryption  
True random number generation (TRNG)  
Secure Non-Volatile Storage (SNVS)  
— Secure real-time clock (RTC)  
— Zero Master Key (ZMK)  
Secure JTAG Controller (SJC)  
NOTE  
The actual feature set depends on the part numbers as described in Table 2.  
Functions such as display and camera interfaces, connectivity interfaces,  
and security features are not offered on all derivatives.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
4
NXP Semiconductors  
i.MX RT1024 introduction  
Table 1 lists the comparison between RT1020 and RT1024.  
Table 1. The comparison between RT1020 and RT1024  
RT1020  
RT1024  
Package  
144 LQFP  
144 LQFP  
Frequency  
500 MHz, Consumer grade  
396 MHz, Industrial grade  
500 MHz, Consumer grade  
396 MHz, Industrial grade  
RAM  
Flash  
256 KB  
256 KB  
NA  
2
4 MB  
CAN  
2
1
Ethernet  
1588 EVENT  
eMMC4.5/SD3.0  
USB OTG  
SAI  
1
4
2
2
2
1
1
3
3
SPDIF  
Timer  
1
1
2
2
PWM  
2
2
KPP  
8 x 8  
8
5 x 5  
8
UART  
I2C  
4
4
SPI  
4
4
ADC  
2
2
ACMP  
GPIO  
4
4
96  
90  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
5
i.MX RT1024 introduction  
1.2  
Ordering information  
Table 2 provides examples of orderable part numbers covered by this data sheet.  
Table 2. Ordering information  
Junction  
Temperature Tj (C)  
Part Number  
Feature  
Package  
MIMXRT1024DAG5A  
• 500 MHz, consumer grade for general 20 x 20 mm, 0.5 mm pitch,  
0 to +95  
purpose  
144-pin LQFP  
• 256K RAM  
• 4 MB flash  
• CAN x2  
• Ethernet  
• eMMC 4.5/SD 3.0 x2  
• USB OTG x1  
• SAI x3  
• SPDIF x1  
• Timer x2  
• PWM x2  
• UART x8  
• I2C x4  
• SPI x4  
• ADC x2  
• ACMP x4  
• 90 GPIOs  
Figure 1 describes the part number nomenclature so that characteristics of a specific part number can be  
identified (for example, cores, frequency, temperature grade, fuse options, and silicon revision). The  
primary characteristic which describes which data sheet applies to a specific part is the temperature grade  
(junction) field.  
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field  
and matching it to the proper data sheet. If there are any questions, visit the web page nxp.com/IMXRT or  
contact an NXP representative for details.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
6
NXP Semiconductors  
i.MX RT1024 introduction  
M
IMX X X  
@
##  
%
+
VV  
$
A
Qualification Level  
M
Silicon Rev  
A
A
B
Prototype Samples  
Mass Production  
Special  
P
M
S
A0  
A1  
Core Frequency  
400 MHz  
$
4
5
6
Part # series  
XX  
i.MX RT  
RT  
500 MHz  
@
1
Family  
600 MHz  
First Generation RT family  
Reserved  
2-8  
Package Type  
VV  
196MAPBGA, 12 x 12 mm, 0.8 mm pitch  
196MAPBGA, 10 x 10 mm, 0.65 mm pitch  
144LQFP, 20 x 20 mm, 0.5 mm pitch  
100LQFP, 14 x 14 mm, 0.5 mm pitch  
80LQFP, 12 x 12 mm, 0.5 mm pitch  
VJ  
VL  
AG  
AF  
AE  
Sub-Family  
RT101x  
##  
01  
02  
05  
06  
RT102x  
Tie  
%
1
RT105x  
Standard Feature  
Full Feature  
RT106x  
2
Temperature (Tj)  
+
4MB Flash SIP  
Enhanced Feature  
4
Consumer: 0 to + 95 °C  
Industrial: -40 to +105 °C  
D
C
5
Far Field AFE (e.g. for Alexa Voice Service)  
Facial Recognition  
A
F
L
Local Voice Control  
Figure 1. Part number nomenclature—i.MX RT1024  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
7
i.MX RT1024 introduction  
1.3  
Package marking information  
Figure 2 describes the package marking format about the i.MX RT1024 Crossover Processors.  
Figure 2. Package marking format  
The i.MX RT1024 package has the following top-side marking:  
First line: aaaaaaaaaaaaaaa  
Second line: mmmmm  
Third line: xxxyywwx  
Table 3 lists the identifier decoder.  
Table 3. Identifier decoder  
Description  
Identifier  
a
m
y
Part number code, refer to Section 1.2, Ordering information  
Mask set  
Year  
w
x
Work week  
NXP internal use  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
8
Architectural overview  
2 Architectural overview  
The following subsections provide an architectural overview of the i.MX RT1024 processor system.  
2.1  
Block diagram  
1
Figure 3 shows the functional modules in the i.MX RT1024 processor system .  
System Control  
Main CPU Platform  
Connectivity  
DCDC and LDO  
2 x CAN  
5 x 5 Keypad  
S/PDIF Tx/Rx  
4 x SPI  
Core  
Arm® Cortex®-M7  
eDMA  
IOMUX  
10/100 ENET  
with IEEE® 1588  
16 KB I-cache  
FPU  
16 KB D-cache  
NVIC  
2 x eMMC 4.5/SD 3.0  
8 x UART  
MPU  
PLL, OSC  
GPIO  
USB 2.0 OTG  
w/ PHY  
Up to 256 KB TCM  
2 x Quadrature ENC  
Secure JTAG  
Temp Monitor  
4 x I2C  
External Memory  
3 x I2S  
Dual-Channel QSPI FLASH  
with Bus Encryption Engine  
Timers  
Analog  
Internal Memory  
2 x GP Timer  
2 x FlexPWM  
2 x QuadTimer  
4 x Watchdog  
256 KB SRAM/TCM  
External Memory Controller  
8/16-bit SDRAM  
Parallel NOR Flash  
NAND Flash  
4 MB Flash  
96 KB ROM  
2 x ADC  
HAB  
4 x Analog Comparator  
Secure RTC  
Security  
Ciphers and RNG  
eFuse  
.
Figure 3. i.MX RT1024 system block diagram  
1. Some modules shown in this block diagram are not offered on all derivatives. See Table 2 for details.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
9
Modules list  
3 Modules list  
The i.MX RT1024 processors contain a variety of digital and analog modules. Table 4 describes these  
modules in alphabetical order.  
Table 4. i.MX RT1024 modules list  
Block mnemonic  
Block name  
Subsystem  
Analog  
Brief description  
ACMP1  
ACMP2  
ACMP3  
ACMP4  
Analog Comparator  
The comparator (CMP) provides a circuit for comparing  
two analog input voltages. The comparator circuit is  
designed to operate across the full range of the supply  
voltage (rail-to-rail operation).  
ADC1  
ADC2  
Analog to Digital  
Converter  
Analog  
The ADC is a 12-bit general purpose analog to digital  
converter.  
AOI  
Arm  
And-Or-Inverter  
Cross Trigger  
The AOI provides a universal boolean function  
generator using a four team sum of products expression  
with each product term containing true or complement  
values of the four selected inputs (A, B, C, D).  
Arm Platform  
Arm  
The Arm Core Platform includes 1x Cortex-M7 core. It  
also includes associated sub-blocks, such as Nested  
Vectored Interrupt Controller (NVIC), Floating-Point  
Unit (FPU), Memory Protection Unit (MPU), and  
CoreSight debug modules.  
BEE  
Bus Encryption Engine  
Security  
On-The-Fly FlexSPI Flash Decryption  
CCM  
GPC  
SRC  
Clock Control Module,  
General Power  
Controller, System Reset  
Controller  
Clocks, Resets, and These modules are responsible for clock and reset  
Power Control  
distribution in the system, and also for the system  
power management.  
CSU  
DAP  
Central Security Unit  
Debug Access Port  
Security  
The Central Security Unit (CSU) is responsible for  
setting comprehensive security policy within the i.MX  
RT1024 platform.  
System Control  
Peripherals  
The DAP provides real-time access for the debugger  
without halting the core to:  
• System memory and peripheral registers  
• All debug configuration registers  
The DAP also provides debugger access to JTAG scan  
chains. The DAP module is internal to the Cortex-M7  
Core Platform.  
DCDC  
DCDC Converter  
Analog  
The DCDC module is used for generating power supply  
for core logic. Main features are:  
• Adjustable high efficiency regulator  
• Supports 3.3 V input voltage  
• Supports nominal run and low power standby modes  
• Supports at 0.9 ~ 1.3 V output in run mode  
• Supports at 0.9 ~ 1.0 V output in standby mode  
• Over current and over voltage detection  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
10  
Modules list  
Table 4. i.MX RT1024 modules list (continued)  
Block mnemonic  
Block name  
Subsystem  
Brief description  
There is an enhanced DMA (eDMA) engine and two  
eDMA  
enhanced Direct Memory System Control  
Access  
Peripherals  
DMA_MUX.  
• The eDMA is a 32 channel DMA engine, which is  
capable of performing complex data transfers with  
minimal intervention from a host processor.  
• The DMA_MUX is capable of multiplexing up to 128  
DMA request sources to the 32 DMA channels of  
eDMA.  
ENC  
Quadrature  
Encoder/Decoder  
Timer Peripherals  
The enhanced quadrature encoder/decoder module  
provides interfacing capability to position/speed  
sensors. There are five input signals: PHASEA,  
PHASEB, INDEX, TRIGGER, and HOME. This module  
is used to decode shaft position, revolution count, and  
speed.  
ENET  
Ethernet Controller  
Connectivity  
Peripherals  
The Ethernet Media Access Controller (MAC) is  
designed to support 10/100 Mbit/s Ethernet/IEEE 802.3  
networks. An external transceiver interface and  
transceiver function are required to complete the  
interface to the media. The module has dedicated  
hardware to support the IEEE 1588 standard. See the  
ENET chapter of the reference manual for details.  
EWM  
External Watchdog  
Monitor  
Timer Peripherals  
The EWM modules is designed to monitor external  
circuits, as well as the software flow. This provides a  
back-up mechanism to the internal WDOG that can  
reset the system. The EWM differs from the internal  
WDOG in that it does not reset the system. The EWM,  
if allowed to time-out, provides an independent trigger  
pin that when asserted resets or places an external  
circuit into a safe mode.  
FLEXCAN1  
FLEXCAN2  
Flexible Controller Area  
Network  
Connectivity  
Peripherals  
The CAN protocol was primarily, but not only, designed  
to be used as a vehicle serial data bus, meeting the  
specific requirements of this field: real-time processing,  
reliable operation in the Electromagnetic interference  
(EMI) environment of a vehicle, cost-effectiveness and  
required bandwidth. The FlexCAN module is a full  
implementation of the CAN protocol specification,  
Version 2.0 B, which supports both standard and  
extended message frames.  
FlexIO1  
Flexible Input/output  
Connectivity and  
Communications  
The FlexIO is capable of supporting a wide range of  
protocols including, but not limited to: UART, I2C, SPI,  
I2S, camera interface, display interface, PWM  
waveform generation, etc. The module can remain  
functional when the chip is in a low power mode  
provided the clock it is using remain active.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
11  
Modules list  
Table 4. i.MX RT1024 modules list (continued)  
Block mnemonic  
Block name  
Subsystem  
Brief description  
FlexPWM1  
FlexPWM2  
Pulse Width Modulation Timer Peripherals  
The pulse-width modulator (PWM) contains four PWM  
sub-modules, each of which is set up to control a single  
half-bridge power stage. Fault channel support is  
provided. The PWM module can generate various  
switching patterns, including highly sophisticated  
waveforms.  
FlexRAM  
RAM  
Memories  
The i.MX RT1024 has 256 KB of on-chip RAM which  
could be flexible allocated to I-TCM, D-TCM, and  
on-chip RAM (OCRAM) in a 32 KB granularity. The  
FlexRAM is the manager of the 256 KB on-chip RAM  
array. Major functions of this blocks are: interfacing to  
I-TCM and D-TCM of Arm core and OCRAM controller;  
dynamic RAM arrays allocation for I-TCM, D-TCM, and  
OCRAM.  
FlexSPI  
Quad Serial Peripheral  
Interface  
Connectivity and  
Communications  
FlexSPI acts as an interface to one or two external  
serial flash devices, each with up to four bidirectional  
data lines.  
GPIO1  
GPIO2  
GPIO3  
GPIO5  
General Purpose I/O  
Modules  
System Control  
Peripherals  
Used for general purpose input/output to external ICs.  
Each GPIO module supports up to 32 bits of I/O.  
GPT1  
GPT2  
General Purpose Timer  
Timer Peripherals  
Each GPT is a 32-bit “free-running” or “set and forget”  
mode timer with programmable prescaler and compare  
and capture register. A timer counter value can be  
captured using an external event and can be configured  
to trigger a capture event on either the leading or trailing  
edges of an input pulse. When the timer is configured to  
operate in “set and forget” mode, it is capable of  
providing precise interrupts at regular intervals with  
minimal processor intervention. The counter has output  
compare logic to provide the status and interrupt at  
comparison. This timer can be configured to run either  
on an external clock or on an internal clock.  
KPP  
Keypad Port  
Human Machine  
Interfaces  
The KPP is a 16-bit peripheral that can be used as a  
keypad matrix interface or as general purpose  
input/output (I/O). It supports 5 x 5 external key pad  
matrix. Main features are:  
• Multiple-key detection  
• Long key-press detection  
• Standby key-press detection  
• Supports a 2-point and 3-point contact key matrix  
LPI2C1  
LPI2C2  
LPI2C3  
LPI2C4  
Low Power  
Inter-integrated Circuit  
Connectivity and  
Communications  
The LPI2C is a low power Inter-Integrated Circuit (I2C)  
module that supports an efficient interface to an I2C bus  
as a master.  
The I2C provides a method of communication between  
a number of external devices. More detailed  
information, see Section 4.8.2, LPI2C module timing  
parameters.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
12  
Modules list  
Table 4. i.MX RT1024 modules list (continued)  
Block mnemonic  
Block name  
Subsystem  
Brief description  
The LPSPI is a low power Serial Peripheral Interface  
(SPI) module that support an efficient interface to an  
SPI bus as a master and/or a slave.  
• It can continue operating while the chip is in stop  
modes, if an appropriate clock is available  
• Designed for low CPU overhead, with DMA off  
loading of FIFO register access  
LPSPI1  
LPSPI2  
LPSPI3  
LPSPI4  
Low Power Serial  
Peripheral Interface  
Connectivity and  
Communications  
LPUART1  
LPUART2  
LPUART3  
LPUART4  
LPUART5  
LPUART6  
LPUART7  
LPUART8  
UART Interface  
Connectivity  
Peripherals  
Each of the UART modules support the following serial  
data transmit/receive protocols and configurations:  
• 7- or 8-bit data words, 1 or 2 stop bits, programmable  
parity (even, odd or none)  
• Programmable baud rates up to 5 Mbps.  
MQS  
Medium Quality Sound  
QuadTimer  
Multimedia  
Peripherals  
MQS is used to generate 2-channel medium quality  
PWM-like audio via two standard digital GPIO pins.  
QuadTimer1  
QuadTimer2  
Timer Peripherals  
The quad-timer provides four time channels with a  
variety of controls affecting both individual and  
multi-channel features.Specific features include  
up/down count, cascading of counters, programmable  
module, count once/repeated, counter preload,  
compare registers with preload, shared use of input  
signals, prescaler controls, independent  
capture/compare, fault input control, programmable  
input filters, and multi-channel synchronization.  
ROMCP  
ROM Controller with  
Patch  
Memories and  
The ROMCP acts as an interface between the Arm  
Memory Controllers advanced high-performance bus and the ROM. The  
on-chip ROM is only used by the Cortex-M7 core during  
boot up. Size of the ROM is 96 KB.  
RTC OSC  
RTWDOG  
Real Time Clock  
Oscillator  
Clock Sources and The RTC OSC provides the clock source for the  
Control  
Real-Time Clock module. The RTC OSC module, in  
conjunction with an external crystal, generates a 32.678  
kHz reference clock for the RTC.  
Watch Dog  
Timer Peripherals  
The RTWDG module is a high reliability independent  
timer that is available for system to use. It provides a  
safety feature to ensure software is executing as  
planned and the CPU is not stuck in an infinite loop or  
executing unintended code. If the WDOG module is not  
serviced (refreshed) within a certain period, it resets the  
MCU. Windowed refresh mode is supported as well.  
SAI1  
SAI2  
SAI3  
Synchronous Audio  
Interface  
Multimedia  
Peripherals  
The SAI module provides a synchronous audio  
interface (SAI) that supports full duplex serial interfaces  
with frame synchronization, such as I2S, AC97, TDM,  
and codec/DSP interfaces.  
SA-TRNG  
StandaloneTrueRandom Security  
Number Generator  
The SA-TRNG is hardware accelerator that generates  
a 512-bit entropy as needed by an entropy consuming  
module or by other post processing functions.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
13  
Modules list  
Table 4. i.MX RT1024 modules list (continued)  
Block name Subsystem Brief description  
The SEMC is a multi-standard memory controller  
Block mnemonic  
SEMC  
Smart External Memory Memory and  
Controller  
Memory Controller optimized for both high-performance and low pin-count.  
It can support multiple external memories in the same  
application with shared address and data pins. The  
interface supported includes SDRAM, NOR Flash,  
SRAM, and NAND Flash, as well as 8080 display  
interface.  
SJC  
System JTAG Controller System Control  
Peripherals  
The SJC provides JTAG interface, which complies with  
JTAG TAP standards, to internal logic. The i.MX  
RT1024 processors use JTAG port for production,  
testing, and system debugging. In addition, the SJC  
provides BSR (Boundary Scan Register) standard  
support, which complies with IEEE1149.1 and  
IEEE1149.6 standards.  
The JTAG port is accessible during platform initial  
laboratory bring-up, for manufacturing tests and  
troubleshooting, as well as for software debugging by  
authorized entities. The i.MX RT1024 SJC incorporates  
three security modes for protecting against  
unauthorized accesses. Modes are selected through  
eFUSE configuration.  
SNVS  
Secure Non-Volatile  
Storage  
Security  
Secure Non-Volatile Storage, including Secure Real  
Time Clock, Security State Machine, and Master Key  
Control.  
SPDIF  
Sony Philips Digital  
Interconnect Format  
Multimedia  
Peripherals  
A standard audio file transfer format, developed jointly  
by the Sony and Phillips corporations. Has Transmitter  
and Receiver functionality.  
Temp Monitor  
USBO2  
Temperature Monitor  
Analog  
The temperature sensor implements a temperature  
sensor/conversion function based on a  
temperature-dependent voltage to time conversion.  
Universal Serial Bus 2.0 Connectivity  
Peripherals  
USBO2 (USB OTG1) contains:  
• One high-speed OTG 2.0 module with integrated HS  
USB PHY  
• Support eight Transmit (TX) and eight Receive (Rx)  
endpoints, including endpoint 0  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
14  
Modules list  
Table 4. i.MX RT1024 modules list (continued)  
Block name Subsystem Brief description  
Connectivity i.MX RT1024 specific SoC characteristics:  
Block mnemonic  
uSDHC1  
uSDHC2  
SD/MMC and SDXC  
Enhanced Multi-Media  
Card / Secure Digital Host  
Controller  
Peripherals  
All four MMC/SD/SDIO controller IPs are identical and  
are based on the uSDHC IP. They are:  
• Fully compliant with MMC command/response sets  
and Physical Layer as defined in the Multimedia  
Card System Specification, v4.5/4.2/4.3/4.4/4.41/  
including high-capacity (size > 2 GB) cards HC  
MMC.  
• Fully compliant with SD command/response sets  
and Physical Layer as defined in the SD Memory  
Card Specifications, v3.0 including high-capacity  
SDXC cards up to 2 TB.  
• Fully compliant with SDIO command/response sets  
and interrupt/read-wait mode as defined in the SDIO  
Card Specification, Part E1, v3.0  
Two ports support:  
• 1-bit or 4-bit transfer mode specifications for SD and  
SDIO cards up to UHS-I SDR104 mode (104 MB/s  
max)  
• 1-bit, 4-bit, or 8-bit transfer mode specifications for  
MMC cards up to 52 MHz in both SDR and DDR  
modes (104 MB/s max)  
• 4-bit transfer mode specifications for eMMC chips up  
to 100 MHz in HS200 mode (100 MB/s max)  
WDOG1  
WDOG2  
Watch Dog  
Cross BAR  
Timer Peripherals  
Cross Trigger  
The Watch Dog Timer supports two comparison points  
during each counting period. Each of the comparison  
points is configurable to evoke an interrupt to the Arm  
core, and a second point evokes an external event on  
the WDOG line.  
XBAR  
Each crossbar switch is an array of muxes with shared  
inputs. Each mux output provides one output of the  
crossbar. The number of inputs and the number of  
muxes/outputs are user configurable and registers are  
provided to select which of the shared inputs are routed  
to each output.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
15  
Modules list  
3.1  
Special signal considerations  
Table 5 lists special signal considerations for the i.MX RT1024 processors. The signal names are listed in  
alphabetical order.  
The package contact assignments can be found in Section 7, Package information and contact  
assignments.” Signal descriptions are provided in the i.MX RT1024 Reference Manual  
(IMXRT1024RM).  
Table 5. Special signal considerations  
Signal name  
Remarks  
DCDC_PSWITCH  
PAD is in DCDC_IN domain and connected the ground to bypass DCDC.  
To enable DCDC function, assert to DCDC_IN with at least 1ms delay for DCDC_IN rising edge.  
RTC_XTALI/RTC_XTALO If the user wishes to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz  
crystal, (100 kESR, 10 pF load) should be connected between RTC_XTALI and RTC_XTALO.  
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal  
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to  
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but  
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO  
to either power or ground (>100 M). This will debias the amplifier and cause a reduction of  
startup margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.  
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin must  
remain unconnected or driven with a complimentary signal. The logic level of this forcing clock  
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical  
conditions.  
In case when high accuracy real time clock are not required system may use internal low  
frequency ring oscillator. It is recommended to connect RTC_XTALI to GND and keep  
RTC_XTALO unconnected.  
XTALI/XTALO  
A 24.0 MHz crystal should be connected between XTALI and XTALO. External load capacitance  
value depends on the typical load capacitance of crystal used and PCB design.  
The crystal must be rated for a maximum drive level of 250 W. An ESR (equivalent series  
resistance) of typical 80 is recommended. NXP SDK software requires 24 MHz on  
XTALI/XTALO.  
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this  
case, XTALO must be directly driven by the external oscillator and XTALI mounted with 18 pF  
capacitor. The logic level of this forcing clock cannot exceed NVCC_PLL level.  
If this clock is used as a reference for USB, then there are strict frequency tolerance and jitter  
requirements. See OSC24M chapter and relevant interface specifications chapters for details.  
GPANAIO  
This signal is reserved for NXP manufacturing use only. This output must remain unconnected.  
JTAG_nnnn  
The JTAG interface is summarized in Table 6. Use of external resistors is unnecessary. However,  
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is  
followed. For example, do not use an external pull down on an input that has on-chip pull-up.  
JTAG_TDO is configured with a keeper circuit such that the non-connected condition is eliminated  
if an external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and  
should be avoided.  
JTAG_MOD is referenced as SJC_MOD in the i.MX RT1024 reference manual. Both names refer  
to the same signal. JTAG_MOD must be externally connected to GND for normal operation.  
Termination to GND through an external pull-down resistor (such as 1 k) is allowed. JTAG_MOD  
set to hi configures the JTAG interface to mode compliant with IEEE1149.1 standard. JTAG_MOD  
set to low configures the JTAG interface for common SW debug adding all the system TAPs to the  
chain.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
16  
NXP Semiconductors  
Modules list  
Table 5. Special signal considerations (continued)  
Remarks  
Signal name  
NC  
These signals are No Connect (NC) and should be disconnected by the user.  
This cold reset negative logic input resets all modules and logic in the IC.  
May be used in addition to internally generated power on reset signal (logical AND, both internal  
and external signals are considered active low).  
POR_B  
ONOFF  
ONOFF can be configured in debounce, off to on time, and max time-out configurations. The  
debounce and off to on time configurations supports 0, 50, 100 and 500 ms. Debounce is used to  
generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than  
the debounce time, the power off interrupt is generated. Off to on time supports the time it takes  
to request power on after a configured button press time has been reached. While in the OFF  
state, if ONOFF button is pressed longer than the off to on time, the state will transition from OFF  
to ON. Max time-out configuration supports 5, 10, 15 seconds and disable. Max time-out  
configuration supports the time it takes to request power down after ONOFF button has been  
pressed for the defined time.  
TEST_MODE  
WAKEUP  
TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.  
A GPIO powered by SNVS domain power supply which can be configured as wakeup source in  
SNVS mode.  
Table 6. JTAG controller interface summary  
JTAG  
I/O type  
On-chip termination  
100 kpull-down  
JTAG_TCK  
JTAG_TMS  
JTAG_TDI  
Input  
Input  
47 kpull-up  
47 kpull-up  
Keeper  
Input  
JTAG_TDO  
JTAG_TRSTB  
JTAG_MOD  
3-state output  
Input  
47 kpull-up  
100 kpull-down  
Input  
3.2  
Recommended connections for unused analog interfaces  
Table 7 shows the recommended connections for unused analog interfaces.  
Table 7. Recommended connections for unused analog interfaces  
Recommendations  
if unused  
Module  
Pad name  
USB  
ADC  
USB_OTG1_CHD_B, USB_OTG1_DN, USB_OTG1_DP, USB_OTG1_VBUS  
VDDA_ADC_3P3  
Not connected  
VDDA_ADC_3P3  
must be powered  
even if the ADC is  
not used.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
17  
Electrical characteristics  
4 Electrical characteristics  
This section provides the device and module-level electrical characteristics for the i.MX RT1024  
processors.  
4.1  
Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See Table 8 for a quick reference  
to the individual tables and sections.  
Table 8. i.MX RT1024 chip-Level conditions  
For these characteristics  
Topic appears  
Absolute maximum ratings  
Thermal resistance  
on page 18  
on page 19  
on page 19  
on page 21  
on page 22  
on page 22  
on page 23  
Operating ranges  
External clock sources  
Maximum supply currents  
Low power mode supply currents  
USB PHY current consumption  
4.1.1  
Absolute maximum ratings  
CAUTION  
Stress beyond those listed under Table 9 may cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or any other conditions beyond those indicated  
under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated  
conditions for extended periods may affect device reliability.  
Table 9 shows the absolute maximum operating ratings.  
Table 9. Absolute maximum ratings  
Parameter Description  
Core supplies input voltage  
Symbol  
VDD_SOC_IN  
Min  
Max  
Unit  
-0.3  
-0.3  
-0.3  
-0.3  
1.6  
3.7  
3.6  
3.6  
V
V
V
V
VDD_HIGH_IN supply voltage  
Power for DCDC  
VDD_HIGH_IN  
DCDC_IN  
Supply input voltage to Secure Non-Volatile Storage VDD_SNVS_IN  
and Real Time Clock  
USB VBUS supply  
USB_OTG1_VBUS  
VDDA_ADC  
3
5.5  
3.6  
V
V
Supply for 12-bit ADC  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
18  
Electrical characteristics  
Table 9. Absolute maximum ratings (continued)  
IO supply for GPIO in SDIO1 bank (3.3 V mode)  
IO supply for GPIO in SDIO1 bank (1.8 V mode)  
IO supply for GPIO bank (3.3 V mode)  
ESD Damage Immunity:  
NVCC_SD0  
3
3.6  
V
V
V
1.65  
3
1.95  
3.6  
NVCC_GPIO  
Vesd  
Human Body Model (HBM)  
Charge Device Model (CDM)  
1000  
500  
V
Input/Output Voltage range  
Storage Temperature range  
Vin/Vout  
-0.5  
-40  
OVDD + 0.31  
150  
V
TSTORAGE  
o C  
1
OVDD is the I/O supply voltage.  
4.1.2  
Thermal resistance  
Following sections provide the thermal resistance data.  
4.1.2.1 20 x 20 mm package thermal resistance  
Table 10 displays the 20 x 20 mm LQFP package thermal characteristics.  
Table 10. 20 x 20 mm package thermal characteristics  
Rating  
Board type1  
JESD51-7, 2s2p  
Symbol  
RJA  
Single die Stacked die  
Unit  
Junction to Ambient  
43  
41  
oC/W  
Thermal resistance2  
Junction-to-Top of package  
JESD51-7, 2s2p  
JT  
2.0  
0.8  
oC/W  
Thermal characterization parameter2  
1
Determined in accordance to JEDEC JESD51-2A natural convection environment. Thermal resistance data in this report is  
solely for a thermal performance comparison of one package to another in a standardized specified environment. It is not  
meant to predict the performance of a package in an application-specific environment.  
2
Thermal test board meets JEDEC specification for this package (JESD51-7).  
4.1.3  
Operating ranges  
Table 11 provides the operating ranges of the i.MX RT1024 processors. For details on the chip's power  
structure, see the “Power Management Unit (PMU)” chapter of the i.MX RT1024 Reference Manual  
(IMXRT1024RM).  
Table 11. Operating ranges  
Parameter  
Description  
Operating  
Conditions  
Symbol  
Min  
Typ Max1 Unit  
Comment  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
19  
Electrical characteristics  
Table 11. Operating ranges (continued)  
Run Mode  
VDD_SOC_IN  
Overdrive  
1.25  
1.15  
1.3  
1.3  
V
V
VDD_SOC_IN  
M7 core at 396  
MHz  
M7 core at 132  
MHz  
1.15  
0.925  
1.15  
1.3  
1.3  
1.3  
M7 core at 24  
MHz  
IDLE Mode  
VDD_SOC_IN  
M7 core  
V
operation at 396  
MHz or below  
SUSPEND (DSM) VDD_SOC_IN  
Mode  
0.925  
1.3  
V
V
Refer to Table 14 Low power mode  
current and power consumption  
SNVS Mode  
VDD_SOC_IN  
0
1.3  
3.6  
3.6  
Power for DCDC DCDC_IN  
3.0  
3.0  
3.3  
VDD_HIGH  
VDD_HIGH_IN2  
V
V
Must match the range of voltages  
that the rechargeable backup  
battery supports.  
internal regulator  
Backup battery  
supply range  
VDD_SNVS_IN3  
2.40  
3.6  
Can be combined with  
VDDHIGH_IN, if the system does  
not require keeping real time and  
other data on OFF state.  
USB supply  
voltages  
USB_OTG1_VBUS —  
4.40  
3.0  
5.5  
V
GPIO supplies  
A/D converter  
NVCC_GPIO  
NVCC_SD0  
3.3  
3.6  
3.6  
V
V
All digital I/O supplies  
(NVCC_xxxx) must be powered  
(unless otherwise specified in this  
data sheet) under normal  
conditions whether the associated  
I/O pins are in use or not.  
1.65 1.8,  
3.3  
VDDA_ADC_3P3  
3.0  
3.3  
3.6  
V
VDDA_ADC_3P3 must be  
powered even if the ADC is not  
used.  
VDDA_ADC_3P3 cannot be  
powered when the other SoC  
supplies (except VDD_SNVS_IN)  
are off.  
Temperature Operating Ranges  
Junction  
temperature  
Tj  
Standard  
Commercial  
0
95  
oC  
See the application note, i.MX  
RT1024 Product Lifetime Usage  
Estimates for information on  
product lifetime (power-on years)  
for this processor.  
1
Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set  
point = (Vmin + the supply tolerance). This result in an optimized power/speed ratio.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
20  
NXP Semiconductors  
Electrical characteristics  
2
3
Applying the maximum voltage results in shorten lifetime. 3.6 V usage limited to < 1% of the use profile. Reset of profile limited  
to below 3.49 V.  
In setting VDD_SNVS_IN voltage with regards to Charging Currents and RTC, refer to the i.MX RT1024 Hardware  
Development Guide (IMXRT1024HDG).  
4.1.4  
External clock sources  
Each i.MX RT1024 processor has two external input system clocks: a low frequency (RTC_XTALI) and  
a high frequency (XTALI).  
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,  
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be  
connected to either external oscillator or a crystal using internal oscillator amplifier. Additionally, there is  
an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.  
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other  
peripherals. The system clock input can be connected to either external oscillator or a crystal using internal  
oscillator amplifier.  
Table 12 shows the interface frequency requirements.  
Table 12. External input clock frequency  
Parameter Description  
Symbol  
Min  
Typ  
Max  
Unit  
RTC_XTALI Oscillator1,2  
XTALI Oscillator2,4  
fckil  
fxtal  
32.7683/32.0  
24  
kHz  
MHz  
1
External oscillator or a crystal with internal oscillator amplifier.  
2
The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware  
Development Guide for i.MX RT1024 Crossover Processors (IMXRT1024HDG).  
3
4
Recommended nominal frequency 32.768 kHz.  
External oscillator or a fundamental frequency crystal with internal oscillator amplifier.  
The typical values shown in Table 12 are required for use with NXP SDK to ensure precise time keeping  
and USB operation. For RTC_XTALI operation, two clock sources are available.  
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:  
— Approximately 25 µA more Idd than crystal oscillator  
— Approximately ±50% tolerance  
— No external component required  
— Starts up quicker than 32 kHz crystal oscillator  
External crystal oscillator with on-chip support circuit:  
— At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit  
switches over to the crystal oscillator automatically.  
— Higher accuracy than ring oscillator  
— If no external crystal is present, then the ring oscillator is utilized  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
21  
Electrical characteristics  
The decision of choosing a clock source should be taken based on real-time clock use and precision  
time-out.  
4.1.5  
Maximum supply currents  
The data shown in Table 13 represent a use case designed specifically to show the maximum current  
consumption possible. All cores are running at the defined maximum frequency and are limited to L1  
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited  
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to  
specifically show the worst case power consumption.  
See the i.MX RT1024 Power Consumption Measurement Application Note for more details on typical  
power consumption under various use case definitions.  
Table 13. Maximum supply currents  
Power Rail  
Conditions  
Max Current  
Unit  
DCDC_IN  
Max power for chip at 95 oC with core 90  
mark run on FlexRAM  
mA  
VDD_HIGH_IN  
VDD_SNVS_IN  
Include internal loading in analog  
50  
mA  
A  
250  
25  
USB_OTG1_VBUS  
VDDA_ADC_3P3  
25 mA for each active USB interface  
mA  
mA  
3.3 V power supply for 12-bit ADC, 600 40  
A typical, 750 A max, for each ADC.  
100 Ohm max loading for touch panel,  
cause 33 mA current.  
NVCC_GPIO  
NVCC_SD0  
Imax = N x C x V x (0.5 x F)  
Where:  
N—Number of IO pins supplied by the power line  
C—Equivalent external capacitive load  
V—IO voltage  
(0.5 x F)—Data change rate. Up to 0.5 of the clock rate (F)  
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.  
4.1.6  
Low power mode supply currents  
Table 14 shows the current core consumption (not including I/O) of i.MX RT1024 processors in selected  
low power modes.  
Table 14. Low power mode current and power consumption  
Mode  
Test Conditions  
Supply  
Typical1  
Units  
mA  
SYSTEM IDLE  
• LDO_ARM and LDO_SOC set to the Bypass  
mode  
• LDO_2P5 set to 2.5 V, LDO_1P1 set to 1.1 V  
• CPU in WFI, CPU clock gated  
• 24 MHz XTAL is ON  
• System PLL is active, other PLLs are power down  
• Peripheral clock gated, but remain powered  
DCDC_IN (3.3 V)  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
4
5.2  
0.036  
30.479  
mW  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
22  
Electrical characteristics  
Table 14. Low power mode current and power consumption (continued)  
LOW POWER IDLE  
• LDO_SOC is in the Bypass mode, LDO_ARM is DCDC_IN (3.3 V)  
in the PG mode  
• LDO_2P5 and LDO_1P1 are set to Weak mode  
2
mA  
VDD_HIGH_IN (3.3 V)  
0.4  
• CPU in Power Gate mode  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC used as  
clock source  
VDD_SNVS_IN (3.3 V)  
0.05  
8.085  
Total  
mW  
mA  
• Peripheral are powered off  
SUSPEND  
(DSM)  
• LDO_SOC is in the Bypass mode, LDO_ARM is DCDC_IN (3.3 V)  
in the PG mode  
• LDO_2P5 and LDO_1P1 are shut off  
• CPU in Power Gate mode  
• All PLLs are power down  
• 24 MHz XTAL is off, 24 MHz RCOSC is off  
• All clocks are shut off, except 32 kHz RTC  
• Peripheral are powered off  
0.3  
0.09  
0.03  
1.386  
VDD_HIGH_IN (3.3 V)  
VDD_SNVS_IN (3.3 V)  
Total  
mW  
mA  
SNVS (RTC)  
• All SOC digital logic, analog module are shut off DCDC_IN (0 V)  
0
• 32 kHz RTC is alive  
VDD_HIGH_IN (0 V)  
0
VDD_SNVS_IN (3.3 V)  
Total  
0.020  
0.066  
mW  
1
The typical values shown here are for information only and are not guaranteed. These values are average values measured  
on a typical process wafer at 25oC.  
4.1.7  
USB PHY current consumption  
Power down mode  
4.1.7.1  
In power down mode, everything is powered down, including the USB VBUS valid detectors in typical  
condition. Table 15 shows the USB interface current consumption in power down mode.  
Table 15. USB PHY current consumption in power down mode  
VDD_USB_CAP (3.0 V)  
5.1 A  
VDD_HIGH_CAP (2.5 V)  
1.7 A  
NVCC_PLL (1.1 V)  
< 0.5 A  
Current  
NOTE  
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were  
identified to be the voltage divider circuits in the USB-specific level  
shifters.  
4.2  
System power and clocks  
This section provide the information about the system power and clocks.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
23  
Electrical characteristics  
4.2.1  
Power supplies requirements and restrictions  
The system design must comply with power-up sequence, power-down sequence, and steady state  
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation  
from these sequences may result in the following situations:  
Excessive current during power-up phase  
Prevention of the device from booting  
Irreversible damage to the processor (worst-case scenario)  
4.2.1.1  
Power-up sequence  
The below restrictions must be followed:  
VDD_SNVS_IN supply must be turned on before any other power supply or be connected  
(shorted) with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other  
supply is switched on.  
When internal DCDC is enabled, external delay circuit is required to delay the  
“DCDC_PSWITCH” signal 1 ms after DCDC_IN is stable.  
POR_B should be held low during the entire power up sequence.  
NOTE  
The POR_B input (if used) must be immediately asserted at power-up and  
remain asserted until after the last power rail reaches its working voltage. In  
the absence of an external reset feeding the POR_B input, the internal POR  
module takes control. See the i.MX RT1024 Reference Manual  
(IMXRT1024RM) for further details and to ensure that all necessary  
requirements are being met.  
NOTE  
Need to ensure that there is no back voltage (leakage) from any supply on  
the board towards the 3.3 V supply (for example, from the external  
components that use both the 1.8 V and 3.3 V supplies).  
NOTE  
USB_OTG1_VBUS and VDDA_ADC_3P3 are not part of the power  
supply sequence and may be powered at any time.  
4.2.1.2  
Power-down sequence  
The following restrictions must be followed:  
VDD_SNVS_IN supply must be turned off after any other power supply or be connected (shorted)  
with VDD_HIGH_IN supply.  
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is removed after any other supply  
is switched off.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
24  
NXP Semiconductors  
Electrical characteristics  
4.2.1.3  
Power supplies usage  
All I/O pins should not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.  
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O  
power supply of each pin, see “Power Rail” columns in pin list tables of Section 7, Package information  
and contact assignments.”  
4.2.2  
Integrated LDO voltage regulator parameters  
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins  
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use  
only and should not be used to power any external circuitry. See the i.MX RT1024 Reference Manual  
(IMXRT1024RM) for details on the power tree scheme.  
NOTE  
The *_CAP signals should not be powered externally. These signals are  
intended for internal LDO operation only.  
4.2.2.1  
Digital regulators (LDO_SNVS)  
There are one digital LDO regulator (“Digital”, because of the logic loads that they drive, not because of  
their construction). The advantages of the regulator is to reduce the input supply variation because of its  
input supply ripple rejection and its on-die trimming. This translates into more stable voltage for the  
on-chip logics.  
The regulator has two basic modes:  
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.  
The analog part of the regulator is powered down here limiting the power consumption.  
Analog regulation mode. The regulation FET is controlled such that the output voltage of the  
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV  
steps.  
For additional information, see the i.MX RT1024 Reference Manual (IMXRT1024RM).  
4.2.2.2  
Regulators for analog modules  
LDO_1P1  
4.2.2.2.1  
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0  
V to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, and PLLs. A  
programmable brown-out detector is included in the regulator that can be used by the system to determine  
when the load capability of the regulator is being exceeded to take the necessary steps. Current-limiting  
can be enabled to allow for in-rush current requirements during start-up, if needed. Active-pull-down can  
also be enabled for systems requiring this feature.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
25  
Electrical characteristics  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1024 Crossover Processors (IMXRT1024HDG).  
For additional information, see the i.MX RT1024 Reference Manual (IMXRT1024RM).  
4.2.2.2.2  
LDO_2P5  
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see  
Table 11 for minimum and maximum input requirements). Typical Programming Operating Range is  
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the USB PHY, E-fuse  
module, and PLLs. A programmable brown-out detector is included in the regulator that can be used by  
the system to determine when the load capability of the regulator is being exceeded, to take the necessary  
steps. Current-limiting can be enabled to allow for in-rush current requirements during start-up, if needed.  
Active-pull-down can also be enabled for systems requiring this feature. An alternate self-biased  
low-precision weak-regulator is included that can be enabled for applications needing to keep the output  
voltage alive during low-power modes where the main regulator driver and its associated global bandgap  
reference module are disabled. The output of the weak-regulator is not programmable and is a function of  
the input supply as well as the load current. Typically, with a 3 V input supply the weak-regulator output  
is 2.525 V and its output impedance is approximately 40 .  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1024 Crossover Processors (IMXRT1024HDG).  
For additional information, see the i.MX RT1024 Reference Manual (IMXRT1024RM).  
4.2.2.2.3  
LDO_USB  
The LDO_USB module implements a programmable linear-regulator function from the USB VUSB  
voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output voltage. A programmable brown-out detector  
is included in the regulator that can be used by the system to determine when the load capability of the  
regulator is being exceeded, to take the necessary steps. This regulator has a built in power-mux that allows  
the user to select to run the regulator from either USB VBUS supply, when both are present. If only one  
of the USB VBUS voltages is present, then, the regulator automatically selects this supply. Current limit  
is also included to help the system meet in-rush current targets.  
For information on external capacitor requirements for this regulator, see the Hardware Development  
Guide for i.MX RT1024 Crossover Processors (IMXRT1024HDG).  
For additional information, see the i.MX RT1024 Reference Manual (IMXRT1024RM).  
4.2.2.2.4  
DCDC  
DCDC can be configured to operate on power-save mode when the load current is less than 50 mA. During  
the power-save mode, the converter operates with reduced switching frequency in PFM mode and with a  
minimum quiescent current to maintain high efficiency.  
DCDC can detect the peak current in the P-channel switch. When the peak current exceeds the threshold,  
DCDC will give an alert signal, and the threshold can be configured. By this way, DCDC can roughly  
detect the current loading.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
26  
NXP Semiconductors  
Electrical characteristics  
DCDC also includes the following protection functions:  
Over current protection. In run mode, DCDC shuts down when detecting abnormal large current in  
the P-type power switch. In power save mode, DCDC stop charging inductor when detecting large  
current in the P-type power switch. The threshold is also different in run mode and in power save  
mode: the former is 1 A–2A, and the latter is 200 mA–250 mA.  
Over voltage protection. DCDC shuts down when detecting the output voltage is too high.  
Low voltage detection. DCDC shuts down when detecting the input voltage is too low.  
For additional information, see the i.MX RT1024 Reference Manual (IMXRT1024RM).  
4.2.3  
PLL’s electrical characteristics  
This section provides PLL electrical characteristics.  
4.2.3.1  
Audio/Video PLL’s electrical parameters  
Table 16. Audio/video PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
650 MHz ~1.3 GHz  
24 MHz  
< 11250 reference cycles  
4.2.3.2  
System PLL  
Table 17. System PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
528 MHz PLL output  
24 MHz  
< 11250 reference cycles  
4.2.3.3  
Ethernet PLL  
Table 18. Ethernet PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
1 GHz  
24 MHz  
< 11250 reference cycles  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
27  
Electrical characteristics  
4.2.3.4  
USB PLL  
Table 19. USB PLL’s electrical parameters  
Parameter  
Value  
Clock output range  
Reference clock  
Lock time  
480 MHz PLL output  
24 MHz  
< 383 reference cycles  
4.2.4  
On-chip oscillators  
OSC24M  
4.2.4.1  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement an oscillator. The oscillator is powered from NVCC_PLL.  
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight  
forward biased-inverter implementation is used.  
4.2.4.2  
OSC32K  
This block implements an amplifier that when combined with a suitable quartz crystal and external load  
capacitors implement a low power oscillator. It also implements a power mux such that it can be powered  
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes  
power from VDD_HIGH_IN when that supply is available and transitions to the backup battery when  
VDD_HIGH_IN is lost.  
In addition, if the clock monitor determines that the OSC32K is not present, then the source of the 32 K  
will automatically switch to a crude internal ring oscillator. The frequency range of this block is  
approximately 10–45 kHz. It highly depends on the process, voltage, and temperature.  
The OSC32k runs from VDD_SNVS_CAP supply, which comes from the  
VDD_HIGH_IN/VDD_SNVS_IN. The target battery is a ~3 V coin cell. Proper choice of coin cell type  
is necessary for chosen VDD_HIGH_IN range. Appropriate series resistor (Rs) must be used when  
connecting the coin cell. Rs depends on the charge current limit that depends on the chosen coin cell. For  
example, for Panasonic ML621:  
Average Discharge Voltage is 2.5 V  
Maximum Charge Current is 0.6 mA  
For a charge voltage of 3.2 V, Rs = (3.2-2.5)/0.6 m = 1.17 k.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
28  
NXP Semiconductors  
Electrical characteristics  
Table 20. OSC32K main characteristics  
Max Comments  
Min  
Typ  
Fosc  
32.768 KHz  
This frequency is nominal and determined mainly by the crystal selected.  
32.0 K would work as well.  
Current consumption  
4 A  
The 4 A is the consumption of the oscillator alone (OSC32k). Total supply  
consumption will depend on what the digital portion of the RTC consumes.  
The ring oscillator consumes 1 A when ring oscillator is inactive, 20 A  
when the ring oscillator is running. Another 1.5 A is drawn from vdd_rtc in  
the power_detect block. So, the total current is 6.5 A on vdd_rtc when the  
ring oscillator is not running.  
Bias resistor  
14 M  
This integrated bias resistor sets the amplifier into a high gain state. Any  
leakage through the ESD network, external board leakage, or even a  
scope probe that is significant relative to this value will debias the amp. The  
debiasing will result in low gain, and will impact the circuit's ability to start  
up and maintain oscillations.  
Crystal Properties  
Cload  
10 pF  
Usually crystals can be purchased tuned for different Cloads. This Cload  
value is typically 1/2 of the capacitances realized on the PCB on either side  
of the quartz. A higher Cload will decrease oscillation margin, but  
increases current oscillating through the crystal.  
ESR  
50 k  
100 kEquivalent series resistance of the crystal. Choosing a crystal with a higher  
value will decrease the oscillating margin.  
4.3  
I/O parameters  
This section provide parameters on I/O interfaces.  
4.3.1  
I/O DC parameters  
This section includes the DC parameters of the following I/O types:  
XTALI and RTC_XTALI (Clock Inputs) DC Parameters  
General Purpose I/O (GPIO)  
NOTE  
The term ‘NVCC_XXXXin this section refers to the associated supply rail  
of an input or output.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
29  
Electrical characteristics  
Figure 4. Circuit for parameters Voh and Vol for I/O cells  
4.3.1.1  
XTALI and RTC_XTALI (clock inputs) DC parameters  
Table 21 shows the DC parameters for the clock inputs.  
1
Table 21. XTALI and RTC_XTALI DC parameters  
Symbol Test Conditions Min  
Parameter  
Max  
Unit  
XTALI high-level DC input voltage  
XTALI low-level DC input voltage  
Vih  
Vil  
0.8 x NVCC_PLL  
NVCC_PLL  
V
V
V
V
0
0.2  
1.1  
0.2  
RTC_XTALI high-level DC input voltage  
RTC_XTALI low-level DC input voltage  
Vih  
Vil  
0.8  
0
1
The DC parameters are for external clock input only.  
4.3.1.2  
Single voltage general purpose I/O (GPIO) DC parameters  
Table 22 shows DC parameters for GPIO pads. The parameters in Table 22 are guaranteed per the  
operating ranges in Table 11, unless otherwise noted.  
Table 22. Single voltage GPIO DC parameters  
Parameter  
Symbol  
VOH  
Test Conditions  
Min  
Max  
Units  
High-level output voltage1  
Ioh= -0.1mA (ipp_dse=001,010) NVCC_XXXX -  
V
Ioh= -1mA  
(ipp_dse=011,100,101,110,111)  
0.2  
Low-level output voltage1  
VOL  
Iol= 0.1mA (ipp_dse=001,010)  
Iol= 1mA  
0.2  
V
(ipp_dse=011,100,101,110,111)  
High-Level input voltage1,2  
Low-Level input voltage1,2  
VIH  
VIL  
0.7 x  
NVCC_XXXX  
NVCC_XXXX  
V
0
0.3 x  
V
NVCC_XXXX  
Input Hysteresis  
(NVCC_XXXX= 1.8V)  
VHYS_LowV NVCC_XXXX=1.8V  
DD  
250  
mV  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
30  
Electrical characteristics  
Table 22. Single voltage GPIO DC parameters (continued)  
Symbol Test Conditions Min  
Parameter  
Input Hysteresis  
Max  
Units  
VHYS_High NVCC_XXXX=3.3V  
VDD  
250  
mV  
(NVCC_XXXX=3.3V)  
Schmitt trigger VT+2,3  
VTH+  
0.5 x  
NVCC_XXXX  
mV  
mV  
Schmitt trigger VT-2,3  
VTH-  
0.5 x  
NVCC_XXXX  
Pull-up resistor (22_kPU)  
Pull-up resistor (22_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (47_kPU)  
Pull-up resistor (100_kPU)  
Pull-up resistor (100_kPU)  
RPU_22K  
RPU_22K  
RPU_47K  
RPU_47K  
Vin=0V  
-1  
212  
1
A  
A  
A  
A  
A  
A  
A  
A  
A  
k  
Vin=NVCC_XXXX  
Vin=0V  
100  
1
Vin=NVCC_XXXX  
RPU_100K Vin=0V  
48  
1
RPU_100K Vin=NVCC_XXXX  
Pull-down resistor (100_kPD) RPD_100K Vin=NVCC_XXXX  
Pull-down resistor (100_kPD) RPD_100K Vin=0V  
48  
1
Input current (no PU/PD)  
Keeper Circuit Resistance  
IIN  
VI = 0, VI = NVCC_XXXX  
1
R_Keeper  
VI =0.3 x NVCC_XXXX, VI = 0.7 105  
x NVCC_XXXX  
175  
1
Overshoot and undershoot conditions (transitions above NVCC_XXXX and below GND) on switching pads must be held  
below 0.6 V, and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/  
undershoot must be controlled through printed circuit board layout, transmission line impedance matching, signal line  
termination, or other methods. Non-compliance to this specification may affect device reliability or cause permanent damage  
to the device.  
2
3
To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC  
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.  
Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.  
4.3.2  
I/O AC parameters  
This section includes the AC parameters of the following I/O types:  
General Purpose I/O (GPIO)  
Figure 5 shows load circuit for output, and Figure 6 show the output transition time waveform.  
From Output  
Under Test  
Test Point  
CL  
CL includes package, probe and fixture capacitance  
Figure 5. Load circuit for output  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
31  
Electrical characteristics  
OVDD  
0 V  
80%  
20%  
80%  
20%  
Output (at pad)  
tf  
tr  
Figure 6. Output transition time waveform  
4.3.2.1  
General purpose I/O AC parameters  
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 23 and Table 24,  
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the  
IOMUXC control registers.  
Table 23. General purpose I/O AC parameters 1.8 V mode  
Parameter  
Symbol  
Test Condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall  
(Max Drive, ipp_dse=111)  
tr, tf  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.72/2.79  
1.51/1.54  
Output Pad Transition Times, rise/fall  
(High Drive, ipp_dse=101)  
tr, tf  
tr, tf  
tr, tf  
trm  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.20/3.36  
1.96/2.07  
ns  
ns  
Output Pad Transition Times, rise/fall  
(Medium Drive, ipp_dse=100)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.64/3.88  
2.27/2.53  
Output Pad Transition Times, rise/fall  
(Low Drive. ipp_dse=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
4.32/4.50  
3.16/3.17  
Input Transition Times1  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
Table 24. General purpose I/O AC parameters 3.3 V mode  
Parameter  
Symbol  
Test condition  
Min  
Typ  
Max  
Unit  
Output Pad Transition Times, rise/fall tr, tf  
(Max Drive, ipp_dse=101)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
1.70/1.79  
1.06/1.15  
Output Pad Transition Times, rise/fall tr, tf  
(High Drive, ipp_dse=011)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
2.35/2.43  
1.74/1.77  
ns  
Output Pad Transition Times, rise/fall tr, tf  
(Medium Drive, ipp_dse=010)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
3.13/3.29  
2.46/2.60  
Output Pad Transition Times, rise/fall tr, tf  
(Low Drive. ipp_dse=001)  
15 pF Cload, slow slew rate  
15 pF Cload, fast slew rate  
5.14/5.57  
4.77/5.15  
ns  
ns  
Input Transition Times1  
trm  
25  
1
Hysteresis mode is recommended for inputs with transition times greater than 25 ns.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
32  
Electrical characteristics  
4.3.3  
Output buffer impedance parameters  
This section defines the I/O impedance parameters of the i.MX RT1024 processors for the following I/O  
types:  
Single Voltage General Purpose I/O (GPIO)  
NOTE  
GPIO I/O output driver impedance is measured with “long” transmission  
line of impedance Ztl attached to I/O pad and incident wave launched into  
transmission line. Rpu/Rpd and Ztl form a voltage divider that defines  
specific voltage of incident wave relative to NVCC_XXXX. Output driver  
impedance is calculated from this voltage divider (see Figure 7).  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
33  
Electrical characteristics  
OVDD  
PMOS (Rpu)  
Ztl , L = 20 inches  
ipp_do  
pad  
predriver  
Cload = 1p  
NMOS (Rpd)  
OVSS  
U,(V)  
(do)  
Vin  
VDD  
t,(ns)  
0
OVDD  
Vref  
U,(V)  
Vout (pad)  
Vref2  
Vref1  
t,(ns)  
0
Vovdd - Vref1  
Vref1  
Vref2  
Vovdd - Vref2  
Rpu =  
Ztl  
Rpd =  
Ztl  
Figure 7. Impedance matching load for measurement  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
34  
Electrical characteristics  
4.3.3.1  
Single voltage GPIO output buffer impedance  
Table 25 shows the GPIO output buffer impedance (NVCC_XXXX 1.8 V).  
Table 25. GPIO output buffer average impedance (NVCC_XXXX 1.8 V)  
Symbol Drive strength (DSE) Typ value  
Parameter  
Unit  
001  
010  
011  
100  
101  
110  
111  
260  
130  
88  
65  
52  
Output Driver  
Impedance  
Rdrv  
43  
37  
Table 26 shows the GPIO output buffer impedance (NVCC_XXXX 3.3 V).  
Table 26. GPIO Output buffer average impedance (NVCC_XXXX 3.3 V)  
Parameter  
Symbol Drive strength (DSE) Typ value  
Unit  
001  
010  
011  
100  
101  
110  
111  
157  
78  
53  
39  
32  
26  
23  
Output Driver  
Impedance  
Rdrv  
4.4  
System modules  
This section contains the timing and electrical parameters for the modules in the i.MX RT1024 processor.  
4.4.1  
Reset timings parameters  
Figure 8 shows the reset timing and Table 27 lists the timing parameters.  
POR_B  
(Input)  
CC1  
Figure 8. Reset timing diagram  
Table 27. Reset timing parameters  
ID  
CC1  
Parameter  
Min Max  
Unit  
Duration of POR_B to be qualified as valid.  
1
RTC_XTALI cycle  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
35  
Electrical characteristics  
4.4.2  
WDOG reset timing parameters  
Figure 9 shows the WDOG reset timing and Table 28 lists the timing parameters.  
WDOGn_B  
(Output)  
CC3  
Figure 9. WDOGn_B timing diagram  
Table 28. WDOGn_B timing parameters  
ID  
CC3  
Parameter  
Duration of WDOGn_B Assertion  
Min  
Max  
Unit  
1
RTC_XTALI cycle  
NOTE  
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or  
approximately 30 s.  
NOTE  
WDOGn_B output signals (for each one of the Watchdog modules) do not  
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX  
manual for detailed information.  
4.4.3  
SCAN JTAG Controller (SJC) timing parameters  
Figure 10 depicts the SJC test clock input timing. Figure 11 depicts the SJC boundary scan timing.  
Figure 12 depicts the SJC test access port. Signal parameters are listed in Table 29.  
SJ1  
SJ2  
SJ2  
JTAG_TCK  
(Input)  
VM  
VM  
VIH  
VIL  
SJ3  
SJ3  
Figure 10. Test clock input timing diagram  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
36  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ5  
VIL  
SJ4  
Input Data Valid  
Data  
Inputs  
SJ6  
Data  
Outputs  
Output Data Valid  
SJ7  
SJ6  
Data  
Outputs  
Data  
Outputs  
Output Data Valid  
Figure 11. Boundary scan (JTAG) timing diagram  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
37  
Electrical characteristics  
JTAG_TCK  
(Input)  
VIH  
SJ9  
VIL  
SJ8  
Input Data Valid  
JTAG_TDI  
JTAG_TMS  
(Input)  
SJ10  
SJ11  
SJ10  
JTAG_TDO  
(Output)  
Output Data Valid  
JTAG_TDO  
(Output)  
JTAG_TDO  
(Output)  
Output Data Valid  
Figure 12. Test access port timing diagram  
JTAG_TCK  
(Input)  
SJ13  
JTAG_TRST_B  
(Input)  
SJ12  
Figure 13. JTAG_TRST_B timing diagram  
Table 29. JTAG timing  
All frequencies  
Min Max  
ID  
Parameter1,2  
Unit  
1
SJ0  
JTAG_TCK frequency of operation 1/(3•TDC  
)
0.001  
45  
22.5  
22  
3
MHz  
SJ1  
SJ2  
SJ3  
SJ4  
SJ5  
SJ6  
SJ7  
SJ8  
JTAG_TCK cycle time in crystal mode  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
2
JTAG_TCK clock pulse width measured at VM  
JTAG_TCK rise and fall times  
Boundary scan input data set-up time  
Boundary scan input data hold time  
JTAG_TCK low to output data valid  
JTAG_TCK low to output high impedance  
JTAG_TMS, JTAG_TDI data set-up time  
5
40  
40  
24  
5
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
38  
Electrical characteristics  
Table 29. JTAG timing (continued)  
Parameter1,2  
All frequencies  
Min Max  
ID  
Unit  
SJ9  
JTAG_TMS, JTAG_TDI data hold time  
JTAG_TCK low to JTAG_TDO data valid  
JTAG_TCK low to JTAG_TDO high impedance  
JTAG_TRST_B assert time  
25  
44  
44  
ns  
SJ10  
SJ11  
SJ12  
SJ13  
ns  
ns  
ns  
ns  
100  
40  
JTAG_TRST_B set-up time to JTAG_TCK low  
= target frequency of SJC  
1
T
DC  
2
VM = mid-point voltage  
4.4.4  
Debug trace timing specifications  
Table 30. Debug trace operating behaviors  
Symbol  
Description  
Min  
Max  
Unit  
T1  
T2  
T3  
T4  
T5  
T6  
T7  
T8  
ARM_TRACE_CLK frequency of operation  
ARM_TRACE_CLK period  
Low pulse width  
1/T1  
6
70  
1
MHz  
MHz  
ns  
High pulse width  
6
ns  
Clock and data rise time  
Clock and data fall time  
Data setup  
2
ns  
1
ns  
ns  
Data hold  
0.7  
ns  
!2-?42!#%?#,+  
4ꢀ  
T6  
T4  
4ꢂ  
4ꢁ  
Figure 14. ARM_TRACE_CLK specifications  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
39  
Electrical characteristics  
ARM_TRACE_CLK  
ARM_TRACE0-3  
T7  
T8  
T7  
T8  
Figure 15. Trace data specifications  
4.5  
External memory interface  
The following sections provide information about external memory interfaces.  
4.5.1  
SEMC specifications  
The following sections provide information on SEMC interface.  
Measurements are with a load of 15 pf and an input slew rate of 1 V/ns.  
4.5.1.1  
SEMC output timing  
There are ASYNC and SYNC mode for SEMC output timing.  
4.5.1.1.1  
SEMC output timing in ASYNC mode  
Table 31 shows SEMC output timing in ASYNC mode.  
Table 31. SEMC output timing in ASYNC mode  
Symbol  
Parameter  
Min.  
Max.  
Unit  
MHz  
Comment  
Frequency of operation  
Internal clock period  
Address output valid time  
Address output hold time  
ADV# low time  
6
166  
2
TCK  
ns  
ns  
ns  
TAVO  
TAHO  
TADVL  
TDVO  
TDHO  
TWEL  
These timing parameters  
apply to Address and ADV#  
for NOR/PSRAM in ASYNC  
mode.  
(TCK - 2) 1  
(TCK - 1) 2  
Data output valid time  
Data output hold time  
WE# low time  
2
ns  
ns  
ns  
These timing parameters  
apply to Data/CLE/ALE and  
WE# for NAND, apply to  
Data/DM/CRE for  
NOR/PSRAM, apply to  
Data/DCX and WRX for DBI  
interface.  
(TCK - 2) 3  
(TCK - 1) 4  
1
Address output hold time is configurable by SEMC_*CR0.AH. AH field setting value is 0x0 in above table. When AH is set  
with value N, TAHO min time should be ((N + 1) x TCK). See the i.MX RT1024 Reference Manual (IMXRT1024RM) for more  
detail about SEMC_*CR0.AH register field.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
40  
NXP Semiconductors  
Electrical characteristics  
2
3
4
ADV# low time is configurable by SEMC_*CR0.AS. AS field setting value is 0x0 in above table. When AS is set with value N,  
T
ADL min time should be ((N + 1) x TCK - 1). See the i.MX RT1024 Reference Manual (IMXRT1024RM) for more detail about  
SEMC_*CR0.AS register field.  
Data output hold time is configurable by SEMC_*CR0.WEH. WEH field setting value is 0x0 in above table. When WEH is set  
with value N, TDHO min time should be ((N + 1) x TCK). See the i.MX RT1024 Reference Manual (IMXRT1024RM) for more  
detail about SEMC_*CR0.WEH register field.  
WE# low time is configurable by SEMC_*CR0.WEL. WEL field setting value is 0x0 in above table. When WEL is set with value  
N, TWEL min time should be ((N + 1) x TCK - 1). See the i.MX RT1024 Reference Manual (IMXRT1024RM) for more detail  
about SEMC_*CR0.WEL register field.  
Figure 16 shows the output timing in ASYNC mode.  
4#+  
)NTERNAL CLOCK  
!$$2  
!
$
4!(/  
4$(/  
4!6/  
4$6/  
!$6ꢃ  
$!4!  
7%ꢃ  
Figure 16. SEMC output timing in ASYNC mode  
4.5.1.1.2  
SEMC output timing in SYNC mode  
Table 32 shows SEMC output timing in SYNC mode.  
Table 32. SEMC output timing in SYNC mode  
Min. Max. Unit  
MHz  
Symbol  
Parameter  
Comment  
Frequency of operation  
Internal clock period  
Data output valid time  
Data output hold time  
6
166  
TCK  
TDVO  
TDHO  
ns  
ns  
ns  
1
These timing parameters apply to  
Address/Data/DM/CKE/control  
signals with SEMC_CLK for  
SDRAM.  
-1  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
41  
Electrical characteristics  
Figure 17 shows the output timing in SYNC mode.  
3%-#?#,+  
4$6/  
4
$(/  
$!4!  
$
Figure 17. SEMC output timing in SYNC mode  
4.5.1.2  
SEMC input timing  
There are ASYNC and SYNC mode for SEMC input timing.  
4.5.1.2.1  
SEMC input timing in ASYNC mode  
Table 33 shows SEMC output timing in ASYNC mode.  
Table 33. SEMC output timing in ASYNC mode  
Parameter Min. Max. Unit  
Symbol  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
8.67  
0
ns  
ns  
ForNAND/NOR/PSRAM/DBI,  
thesetimingparametersapply  
to RE# and Read Data.  
Figure 18 shows the input timing in ASYNC mode.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
42  
Electrical characteristics  
.!.$ NONꢆ%$/ MODE AND ./2ꢇ032!-ꢇꢈꢄꢈꢄ TIMING  
/%ꢃ  
$!4!  
$ꢄ  
$ꢅ  
4)3  
4)(  
.!.$ %$/ MODE TIMING  
/%ꢃ  
$!4!  
$ꢄ  
$ꢅ  
4
)3  
4)(  
Figure 18. SEMC input timing in ASYNC mode  
4.5.1.2.2  
SEMC input timing in SYNC mode  
Table 34 and Table 35 show SEMC input timing in SYNC mode.  
Table 34. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x0)  
Parameter Min. Max. Unit  
Symbol  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
8.67  
0
ns  
ns  
Table 35. SEMC input timing in SYNC mode (SEMC_MCR.DQSMD = 0x1)  
Parameter Min. Max. Unit  
Symbol  
Comment  
TIS  
TIH  
Data input setup  
Data input hold  
0.6  
1
ns  
ns  
Figure 19 shows the input timing in SYNC mode.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
43  
Electrical characteristics  
3%-#?#,+  
$!4!  
$ꢄ  
4)3  
3%-#?$13  
4)(  
Figure 19. SEMC input timing in SYNC mode  
4.5.2  
FlexSPI parameters1  
Measurements are with a load 15 pf and input slew rate of 1 V/ns.  
4.5.2.1 FlexSPI input/read timing  
There are four sources for the internal sample clock for FlexSPI read data:  
Dummy read strobe generated by FlexSPI controller and looped back internally  
(FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Dummy read strobe generated by FlexSPI controller and looped back through the  
DQS pad (FlexSPIn_MCR0[RXCLKSRC] = 0x1)  
Read strobe provided by memory device and input from DQS pad  
(FlexSPIn_MCR0[RXCLKSRC] = 0x3)  
The following sections describe input signal timing for each of these four internal sample clock sources.  
4.5.2.1.1  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 36. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
60  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
Table 37. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
133  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
1. The FlexSPI is used for internal flash by default for RT1024.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
44  
Electrical characteristics  
SCK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 20. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X0, 0X1  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge, and FlexSPI controller sampling read data on the falling edge.  
4.5.2.1.2  
SDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in SDR mode:  
A1Memory generates both read data and read strobe on SCK rising edge (or falling  
edge)  
A2Memory generates read data on SCK falling edge and generates read strobe on  
SCK rising edgeSCK rising edge  
Table 38. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A1)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
166  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
DQS  
Figure 21. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (Case A1)  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
45  
Electrical characteristics  
NOTE  
Timing shown is based on the memory generating read data and read strobe  
on the SCK rising edge. The FlexSPI controller samples read data on the  
DQS falling edge.  
Table 39. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case A2)  
Value  
Symbol  
Parameter  
Unit  
Min  
Max  
Frequency of operation  
-2  
166  
2
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
TSCKD  
TSCKD  
TSCKD  
SIO[0:7]  
TSCKDQS  
TSCKDQS  
TSCKDQS  
DQS  
Internal Sample Clock  
Figure 22. FlexSPI input timing in SDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0X3 (Case A2)  
NOTE  
Timing shown is based on the memory generating read data on the SCK  
falling edge and read strobe on the SCK rising edge. The FlexSPI controller  
samples read data on a half cycle delayed DQS falling edge.  
4.5.2.1.3  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
Table 40. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
8.67  
0
30  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
ns  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
46  
Electrical characteristics  
Table 41. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x1  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
2
66  
MHz  
ns  
TIS  
TIH  
Setup time for incoming data  
Hold time for incoming data  
1
ns  
SCLK  
TIS  
TIH  
TIS  
TIH  
SIO[0:7]  
Internal Sample Clock  
Figure 23. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x0, 0x1  
4.5.2.1.4  
DDR mode with FlexSPIn_MCR0[RXCLKSRC] = 0x3  
There are two cases when the memory provides both read data and the read strobe in DDR mode:  
B1Memory generates both read data and read strobe on SCK edge  
B2Memory generates read data on SCK edge and generates read strobe on SCK2  
edge  
Table 42. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B1)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
166  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
Time from SCK to DQS  
TSCKDQS  
ns  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
47  
Electrical characteristics  
SCK  
TSCKD  
SIO[0:7]  
TSCKDQS  
DQS  
Figure 24. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B1)  
Table 43. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B2)  
Symbol  
Parameter  
Frequency of operation  
Min  
Max  
Unit  
-1  
166  
1
MHz  
ns  
TSCKD  
Time from SCK to data valid  
TSCKD - TSCKDQS  
Time delta between TSCKD and TSCKDQS  
ns  
SCK  
SIO[0:7]  
SCK2  
TSCKD  
TSCK2DQS  
DQS  
Figure 25. FlexSPI input timing in DDR mode where FlexSPIn_MCR0[RXCLKSRC] = 0x3 (Case B2)  
4.5.2.2  
FlexSPI output/write timing  
The following sections describe output signal timing for the FlexSPI controller including control signals  
and data outputs.  
4.5.2.2.1  
SDR mode  
Table 44. FlexSPI output timing in SDR mode  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation  
SCK clock period  
6.0  
1661  
MHz  
ns  
Tck  
TDVO  
TDHO  
Output data valid time  
Output data hold time  
1
ns  
-1  
ns  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
48  
Electrical characteristics  
Table 44. FlexSPI output timing in SDR mode (continued)  
Symbol  
Parameter  
Min  
Max  
Unit  
TCSS  
TCSH  
Chip select output setup time  
Chip select output hold time  
3 x TCK -1  
ns  
ns  
3 x TCK + 2  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1024 Reference Manual (IMXRT1024RM) for more details.  
SCK  
TCSH  
T
CSS  
T
CK  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 26. FlexSPI output timing in SDR mode  
4.5.2.2.2  
DDR mode  
Table 45. FlexSPI output timing in DDR mode  
Symbol  
Parameter  
Min  
Max  
Unit  
Frequency of operation1  
166  
MHz  
ns  
Tck  
SCK clock period (FlexSPIn_MCR0[RXCLKSRC] = 0x0)  
Output data valid time  
6.0  
TDVO  
TDHO  
TCSS  
TCSH  
2.2  
ns  
Output data hold time  
0.8  
ns  
Chip select output setup time  
Chip select output hold time  
3 x TCK / 2 - 0.7  
3 x TCK / 2 + 0.8  
ns  
ns  
1
The actual maximum frequency supported is limited by the FlexSPIn_MCR0[RXCLKSRC] configuration used. Please refer to the FlexSPI SDR input timing  
specifications.  
NOTE  
TCSS and TCSH are configured by the FlexSPIn_FLSHAxCR1  
register, the default values are shown above. Please refer to the i.MX  
RT1024 Reference Manual (IMXRT1024RM) for more details.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
49  
Electrical characteristics  
SCK  
T
CSS  
T
CK  
TCSH  
CS  
TDVO  
TDVO  
SIO[0:7]  
TDHO  
TDHO  
Figure 27. FlexSPI output timing in DDR mode  
4.6  
Audio  
This section provide information about SAI/I2S and SPDIF.  
4.6.1  
SAI/I2S switching specifications  
This section provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.  
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]  
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock  
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal  
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.  
Table 46. Master mode SAI timing  
Num  
Characteristic  
SAI_MCLK cycle time  
Min  
2 x tsys  
Max  
Unit  
S1  
S2  
S3  
S4  
S5  
S6  
S7  
S8  
S9  
S10  
ns  
SAI_MCLK pulse width high/low  
SAI_BCLK cycle time  
40%  
4 x tsys  
40%  
60%  
MCLK period  
ns  
SAI_BCLK pulse width high/low  
SAI_BCLK to SAI_FS output valid  
SAI_BCLK to SAI_FS output invalid  
SAI_BCLK to SAI_TXD valid  
60%  
15  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
0
15  
SAI_BCLK to SAI_TXD invalid  
0
SAI_RXD/SAI_FS input setup before SAI_BCLK  
SAI_RXD/SAI_FS input hold after SAI_BCLK  
15  
0
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
50  
Electrical characteristics  
Figure 28. SAI timing—master modes  
Table 47. Slave mode SAI timing  
Num  
Characteristic  
SAI_BCLK cycle time (input)  
Min  
4 x tsys  
Max  
Unit  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
ns  
SAI_BCLK pulse width high/low (input)  
SAI_FS input setup before SAI_BCLK  
SAI_FA input hold after SAI_BCLK  
40%  
10  
2
60%  
BCLK period  
ns  
ns  
ns  
ns  
ns  
ns  
SAI_BCLK to SAI_TXD/SAI_FS output valid  
SAI_BCLK to SAI_TXD/SAI_FS output invalid  
SAI_RXD setup before SAI_BCLK  
0
20  
10  
2
SAI_RXD hold after SAI_BCLK  
Figure 29. SAI timing—slave modes  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
51  
Electrical characteristics  
4.6.2  
SPDIF timing parameters  
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When  
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.  
Table 48 and Figure 30 and Figure 31 show SPDIF timing parameters for the Sony/Philips Digital  
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for  
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.  
Table 48. SPDIF timing parameters  
Timing parameter range  
Characteristics  
Symbol  
Unit  
Min  
Max  
SPDIF_IN Skew: asynchronous inputs, no specs apply  
0.7  
ns  
ns  
SPDIF_OUT output (Load = 50pf)  
• Skew  
• Transition rising  
• Transition falling  
1.5  
24.2  
31.3  
SPDIF_OUT1 output (Load = 30pf)  
• Skew  
• Transition rising  
ns  
1.5  
13.6  
18.0  
• Transition falling  
Modulating Rx clock (SPDIF_SR_CLK) period  
SPDIF_SR_CLK high period  
srckp  
40.0  
16.0  
16.0  
40.0  
16.0  
16.0  
ns  
ns  
ns  
ns  
ns  
ns  
srckph  
srckpl  
stclkp  
stclkph  
stclkpl  
SPDIF_SR_CLK low period  
Modulating Tx clock (SPDIF_ST_CLK) period  
SPDIF_ST_CLK high period  
SPDIF_ST_CLK low period  
srckp  
srckpl  
srckph  
VM  
SPDIF_SR_CLK  
VM  
(Output)  
Figure 30. SPDIF_SR_CLK timing diagram  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
52  
Electrical characteristics  
stclkp  
stclkpl  
VM  
stclkph  
VM  
SPDIF_ST_CLK  
(Input)  
Figure 31. SPDIF_ST_CLK timing diagram  
4.7  
Analog  
The following sections provide information about analog interfaces.  
4.7.1  
DCDC  
Table 49 introduces the DCDC electrical specification.  
Table 49. DCDC electrical specifications  
Buck mode only, one output  
3.3 V  
Mode  
Notes  
Input voltage  
Output voltage  
Max loading  
± 10%  
1.1 V  
Configurable 0.8 ~ 1.575 with 25 mV one step  
500 mA  
Loading in low power modes  
Efficiency  
200 A ~ 30 mA  
90% max  
@150 mA  
Low power mode  
Run mode  
Open loop mode  
Ripple is about 15 mV  
Configurable by register  
• Always continuous mode  
• Support discontinuous mode  
Inductor  
4.7 H  
33 F  
1.6 V  
Capacitor  
Over voltage protection  
Detect VDDSOC, when the voltage is higher  
than 1.6 V, shutdown DCDC.  
Over Current protection  
Low battery detection  
1 A  
Detect the peak current  
• Run mode: when the current is larger than  
1 A, shutdown DCDC.  
• Stop mode: when the current is larger than  
250 mA, stop charging the inductor.  
2.6 V  
Detect the battery, when battery is lower than  
2.6 V, shutdown DCDC.  
4.7.2  
A/D converter  
This section introduces information about A/D converter.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
53  
Electrical characteristics  
4.7.2.1  
12-bit ADC electrical characteristics  
The section provide information about 12-bit ADC electrical characteristics.  
4.7.2.1.1  
12-bit ADC operating conditions  
Table 50. 12-bit ADC operating conditions  
Typ1  
Characteristic  
Conditions  
Absolute  
Symb  
Min  
Max  
Unit  
Comment  
Supply voltage  
VDDA  
3.0  
-
3.6  
V
Delta to VDD  
(VDD-VDDA)2  
VDDA  
-100  
0
100  
mV  
Ground voltage  
Delta to VSS  
VSSAD  
-100  
0
100  
mV  
(VSS-VSSAD)  
Ref Voltage High  
Ref Voltage Low  
Input Voltage  
VDDA  
VSS  
1.13  
VSS  
VSS  
VDDA  
VSS  
VDDA  
VSS  
VDDA  
2
V
V
VADIN  
CADIN  
RADIN  
V
Input Capacitance  
Input Resistance  
8/10/12 bit modes  
ADLPC=0, ADHSC=1  
ADLPC=0, ADHSC=0  
ADLPC=1, ADHSC=0  
1.5  
5
pF  
7
kohms  
kohms  
kohms  
kohms  
12.5  
25  
15  
30  
Analog Source  
Resistance  
12 bit mode fADCK  
40MHz ADLSMP=0,  
=
RAS  
1
Tsamp=150  
ns  
ADSTS=10, ADHSC=1  
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum  
Sample Time vs RAS  
ADC Conversion Clock ADLPC=0, ADHSC=1  
fADCK  
4
4
4
40  
30  
20  
MHz  
MHz  
MHz  
Frequency  
12 bit mode  
ADLPC=0, ADHSC=0  
12 bit mode  
ADLPC=1, ADHSC=0  
12 bit mode  
1
2
Typical values assume VDDAD = 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
DC potential differences  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
54  
NXP Semiconductors  
Electrical characteristics  
Figure 32. 12-bit ADC input impedance equivalency diagram  
12-bit ADC characteristics  
Table 51. 12-bit ADC characteristics (V  
= V  
, V  
= V  
)
SSAD  
REFH  
DDA  
REFL  
Characteristic  
Conditions1  
Symb  
IDDA  
Min  
Typ2  
Max  
Unit  
Comment  
Supply Current  
ADLPC=1,  
ADHSC=0  
250  
350  
400  
0.01  
µA  
ADLSMP= 0,ADSTS  
= 10, ADCO = 1  
ADLPC=0,  
ADHSC=0  
ADLPC=0,  
ADHSC=1  
Supply Current  
Stop, Reset, Module IDDA  
Off  
0.8  
µA  
ADC Asynchronous  
Clock Source  
ADHSC=0  
ADHSC=1  
fADACK  
10  
20  
MHz  
tADACK = 1/fADACK  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
55  
Electrical characteristics  
Table 51. 12-bit ADC characteristics (V  
= V  
, V  
= V  
) (continued)  
Unit Comment  
REFH  
DDA  
REFL  
SSAD  
Characteristic  
Conditions1  
Symb  
Min  
Typ2  
Max  
Sample Cycles  
ADLSMP=0,  
Csamp  
2
cycles  
ADSTS=00  
ADLSMP=0,  
ADSTS=01  
4
ADLSMP=0,  
ADSTS=10  
6
ADLSMP=0,  
ADSTS=11  
8
ADLSMP=1,  
ADSTS=00  
12  
16  
20  
24  
28  
30  
32  
34  
38  
42  
46  
50  
ADLSMP=1,  
ADSTS=01  
ADLSMP=1,  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Conversion Cycles  
ADLSMP=0  
ADSTS=00  
Cconv  
cycles  
ADLSMP=0  
ADSTS=01  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
56  
Electrical characteristics  
) (continued)  
Table 51. 12-bit ADC characteristics (V  
= V  
, V  
= V  
REFL SSAD  
REFH  
DDA  
Characteristic  
Conditions1  
Symb  
Tconv  
Min  
Typ2  
0.7  
Max  
Unit  
Comment  
Conversion Time  
ADLSMP=0  
µs  
Fadc = 40 MHz  
ADSTS=00  
ADLSMP=0  
ADSTS=01  
0.75  
0.8  
ADLSMP=0  
ADSTS=10  
ADLSMP=0  
ADSTS=11  
0.85  
0.95  
1.05  
1.15  
1.25  
ADLSMP=1  
ADSTS=00  
ADLSMP=1  
ADSTS=01  
ADLSMP=1  
ADSTS=10  
ADLSMP=1,  
ADSTS=11  
Total Unadjusted  
Error  
12 bit mode  
10 bit mode  
8 bit mode  
TUE  
3.4  
1.5  
1.2  
LSB  
1 LSB =  
AVGE = 1, AVGS = 11  
(VREFH  
VREFL)/2  
N
-
Differential  
Non-Linearity  
12 bit mode  
10bit mode  
8 bit mode  
DNL  
INL  
0.76  
0.36  
0.14  
2.78  
0.61  
0.14  
-1.14  
-0.25  
-0.19  
-1.06  
-0.03  
-0.02  
10.7  
LSB  
LSB  
LSB  
LSB  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
Integral Non-Linearity 12 bit mode  
10bit mode  
8 bit mode  
Zero-Scale Error  
Full-Scale Error  
12 bit mode  
10bit mode  
8 bit mode  
12 bit mode  
10bit mode  
8 bit mode  
EZS  
EFS  
Effective Number of 12 bit mode  
Bits  
ENOB  
SINAD  
10.1  
Bits  
dB  
AVGE = 1, AVGS = 11  
AVGE = 1, AVGS = 11  
Signal to Noise plus See ENOB  
Distortion  
SINAD = 6.02 x ENOB + 1.76  
1
All accuracy numbers assume the ADC is calibrated with VREFH=VDDAD  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
57  
Electrical characteristics  
2
Typical values assume VDDAD = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for reference  
only and are not tested in production.  
NOTE  
The ADC electrical spec is met with the calibration enabled configuration.  
Figure 33. Minimum Sample Time Vs Ras (Cas = 2pF)  
Figure 34. Minimum Sample Time Vs Ras (Cas = 5 pF)  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
58  
NXP Semiconductors  
Electrical characteristics  
Figure 35. Minimum Sample Time Vs Ras (Cas = 10 pF)  
4.7.3  
ACMP  
Table 52 lists the ACMP electrical specifications.  
Table 52. Comparator and 6-bit DAC electrical specifications  
Description Min. Typ. Max.  
Supply voltage  
Symbol  
Unit  
VDD  
3.0  
3.6  
V
IDDHS  
Supply current, High-speed mode  
(EN = 1, PMODE = 1)  
347  
A  
IDDLS  
Supply current, Low-speed mode  
(EN = 1, PMODE = 0)  
42  
A  
VAIN  
VAIO  
VH  
Analog input voltage  
Analog input offset voltage  
Analog comparator hysteresis1  
• CR0[HYSTCTR] = 00  
• CR0[HYSTCTR] = 01  
• CR0[HYSTCTR] = 10  
• CR0[HYSTCTR] = 11  
Output high  
VSS  
VDD  
21  
V
mV  
mV  
1
2
21  
42  
64  
25  
54  
108  
184  
VCMPOH  
VCMPOI  
tDHS  
VDD - 0.5  
V
Output low  
0.5  
40  
V
Propagation delay, high-speed  
mode (EN = 1, PMODE = 1)2  
ns  
tDLS  
Propagation delay, low-speed  
mode (EN = 1, PMODE = 0)2  
50  
1.5  
5
90  
ns  
s  
A  
tDInit  
Analog comparator initialization  
delay3  
IDAC6b  
6-bit DAC current adder (enabled) —  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
59  
Electrical characteristics  
Table 52. Comparator and 6-bit DAC electrical specifications (continued)  
Symbol  
RDAC6b  
Description  
Min.  
Typ.  
Max.  
Unit  
6-bit DAC reference inputs  
VDD  
V
INLDAC6b  
6-bit DAC integral non-linearity  
-0.3  
0.3  
0.15  
LSB4  
LSB4  
DNLDAC6b  
6-bit DAC differential non-linearity -0.15  
1
2
3
Typical hysteresis is measured with input voltage range limited to 0.7 to VDD - 0.7 V in high speed mode.  
Signal swing is 100 mV.  
Comparator initialization delay is defined as the time between software writes to the enable comparator module and the  
comparator output setting to a stable level.  
4
1 LSB = Vreference / 64  
4.8  
Communication interfaces  
The following sections provide the information about communication interfaces.  
4.8.1  
LPSPI timing parameters  
The Low Power Serial Peripheral Interface (LPSPI) provides a synchronous serial bus with master and  
slave operations. Many of the transfer attributes are programmable. The following tables provide timing  
characteristics for classic LPSPI timing modes.  
All timing is shown with respect to 20% V and 80% V thresholds, unless noted, as well as input  
DD  
DD  
signal transitions of 3 ns and a 30 pF maximum load on all LPSPI pins.  
Table 53. LPSPI Master mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
3
4
5
6
7
8
9
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
fperiph / 2  
Hz  
ns  
2
SCK period  
2 x tperiph  
8
Enable lead time  
1
tperiph  
tperiph  
ns  
Enable lag time  
1
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Data valid (after SCK edge)  
Data hold time (outputs)  
tSCK / 2 - 3  
10  
2
ns  
tHI  
ns  
tV  
0
ns  
tHO  
ns  
1
2
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
tperiph = 1 / fperiph  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
60  
NXP Semiconductors  
Electrical characteristics  
1
PCS  
(OUTPUT)  
3
2
4
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
SCK  
(CPOL=1)  
(OUTPUT)  
6
7
SIN  
(INPUT)  
2
LSB IN  
BIT 6 . . . 1  
MSB IN  
8
9
SOUT  
(OUTPUT)  
2
BIT 6 . . . 1  
MSB OUT  
LSB OUT  
1. If configured as an output.  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 36. LPSPI Master mode timing (CPHA = 0)  
1
PCS  
(OUTPUT)  
2
4
3
SCK  
(CPOL=0)  
(OUTPUT)  
5
5
7
SCK  
(CPOL=1)  
(OUTPUT)  
6
SIN  
(INPUT)  
MSB IN2  
BIT 6 . . . 1  
LSB IN  
9
8
MASTER MSB OUT2  
SOUT  
(OUTPUT)  
PORT DATA  
BIT 6 . . . 1  
PORT DATA  
MASTER LSB OUT  
1.If configured as output  
2. LSBF = 0. For LSBF = 1, bit order is LSB, bit 1, ..., bit 6, MSB.  
Figure 37. LPSPI Master mode timing (CPHA = 1)  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
61  
Electrical characteristics  
s
Table 54. LPSPI Slave mode timing  
Number  
Symbol  
Description  
Frequency of operation  
Min.  
Max.  
Units  
Note  
1
1
2
fSCK  
tSCK  
tLead  
tLag  
tWSCK  
tSU  
0
fperiph / 2  
Hz  
ns  
2
SCK period  
2 x tperiph  
3
Enable lead time  
1
tperiph  
tperiph  
ns  
4
Enable lag time  
1
5
Clock (SCK) high or low time  
Data setup time (inputs)  
Data hold time (inputs)  
Slave access time  
tSCK / 2 - 5  
6
2.7  
3.8  
0
ns  
7
tHI  
ns  
3
8
ta  
tperiph  
tperiph  
14.5  
ns  
4
9
tdis  
Slave MISO disable time  
Data valid (after SCK edge)  
Data hold time (outputs)  
ns  
10  
11  
tV  
ns  
tHO  
ns  
1
Absolute maximum frequency of operation (fop) is 30 MHz. The clock driver in the LPSPI module for fperiph must be  
guaranteed this limit is not exceeded.  
2
3
4
tperiph = 1 / fperiph  
Time to data active from high-impedance state  
Hold time to high-impedance state  
PCS  
(INPUT)  
2
4
SCK  
(CPOL=0)  
(INPUT)  
5
5
3
SCK  
(CPOL=1)  
(INPUT)  
9
8
10  
11  
11  
see  
note  
SEE  
NOTE  
SIN  
(OUTPUT)  
BIT 6 . . . 1  
SLAVE MSB  
7
SLAVE LSB OUT  
6
SOUT  
(INPUT)  
LSB IN  
MSB IN  
BIT 6 . . . 1  
NOTE: Not defined  
Figure 38. LPSPI Slave mode timing (CPHA = 0)  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
62  
Electrical characteristics  
PCS  
(INPUT)  
4
2
3
SCK  
(CPOL=0)  
(INPUT)  
5
5
SCK  
(CPOL=1)  
(INPUT)  
11  
9
10  
SLAVE MSB OUT  
see  
note  
SIN  
(OUTPUT)  
BIT 6 . . . 1  
BIT 6 . . . 1  
SLAVE LSB OUT  
LSB IN  
8
6
7
SOUT  
MSB IN  
(INPUT)  
NOTE: Not defined  
Figure 39. LPSPI Slave mode timing (CPHA = 1)  
4.8.2  
LPI2C module timing parameters  
This section describes the timing parameters of the LPI2C module.  
Table 55. LPI2C module timing parameters  
Symbol  
Description  
Standard mode (Sm)  
Min  
Max  
100  
Unit  
Notes  
1, 2  
fSCL  
SCL clock frequency  
0
0
0
0
0
kHz  
Fast mode (Fm)  
400  
Fast mode Plus (Fm+)  
Ultra Fast mode (UFm)  
High speed mode (Hs-mode)  
1000  
5000  
3400  
1
Hs-mode is only supported in slave mode.  
See General switching specifications.  
2
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
63  
Electrical characteristics  
4.8.3  
Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC) AC  
timing  
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single  
Data Rate) timing, eMMC4.4/4.41/4.5 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.  
4.8.3.1  
SD/eMMC4.3 (single data rate) AC timing  
Figure 40 depicts the timing of SD/eMMC4.3, and Table 56 lists the SD/eMMC4.3 timing characteristics.  
SD4  
SD2  
SD1  
SD5  
SDx_CLK  
SD3  
SD6  
Output from uSDHC to card  
SDx_DATA[7:0]  
SD7  
SD8  
Input from card to uSDHC  
SDx_DATA[7:0]  
Figure 40. SD/eMMC4.3 timing  
Table 56. SD/eMMC4.3 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
1
SD1  
Clock Frequency (Low Speed)  
fPP  
0
400  
kHz  
2
Clock Frequency (SD/SDIO Full Speed/High Speed)  
Clock Frequency (MMC Full Speed/High Speed)  
Clock Frequency (Identification Mode)  
Clock Low Time  
fPP  
fPP  
0
25/50  
20/52  
400  
MHz  
MHz  
kHz  
ns  
3
0
fOD  
tWL  
100  
7
SD2  
SD3  
SD4  
SD5  
Clock High Time  
tWH  
tTLH  
tTHL  
7
ns  
Clock Rise Time  
3
ns  
Clock Fall Time  
3
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD -6.6  
SD6  
3.6  
ns  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
64  
Electrical characteristics  
Table 56. SD/eMMC4.3 interface timing specification (continued)  
Parameter Symbols Min  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
ID  
Max  
Unit  
SD7  
SD8  
uSDHC Input Setup Time  
uSDHC Input Hold Time4  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
1
2
In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.  
In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,  
clock frequency can be any value between 050 MHz.  
3
4
In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock  
frequency can be any value between 052 MHz.  
To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.  
4.8.3.2  
eMMC4.4/4.41 (dual data rate) AC timing  
Figure 41 depicts the timing of eMMC4.4/4.41. Table 57 lists the eMMC4.4/4.41 timing characteristics.  
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).  
SD1  
SDx_CLK  
SD2  
SD2  
Output from eSDHCv3 to card  
SDx_DATA[7:0]  
......  
......  
SD3  
SD4  
Input from card to eSDHCv3  
SDx_DATA[7:0]  
Figure 41. eMMC4.4/4.41 timing  
Table 57. eMMC4.4/4.41 interface timing specification  
ID  
Parameter  
Symbols  
Card Input Clock  
Min  
Max  
Unit  
SD1  
Clock Frequency (eMMC4.4/4.41 DDR)  
Clock Frequency (SD3.0 DDR)  
fPP  
fPP  
0
0
52  
50  
MHz  
SD1  
MHz  
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)  
uSDHC Output Delay tOD 2.5 7.1  
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)  
SD2  
ns  
SD3  
SD4  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
1.7  
1.5  
ns  
ns  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
65  
Electrical characteristics  
4.8.3.3  
SDR50/SDR104 AC timing  
Figure 42 depicts the timing of SDR50/SDR104, and Table 58 lists the SDR50/SDR104 timing  
characteristics.  
SD1  
SD2  
SD3  
SD7  
SCK  
4-bit output from uSDHC to card  
4-bit input from card to uSDHC  
SD4/SD5  
SD6  
SD8  
Figure 42. SDR50/SDR104 timing  
Table 58. SDR50/SDR104 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
SD2  
SD3  
Clock Frequency Period  
Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
uSDHC Output Delay tOD –3  
SD4  
SD5  
1
ns  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)  
uSDHC Output Delay  
tOD  
–1.6  
1
ns  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)  
uSDHC Input Setup Time  
uSDHC Input Hold Time  
tISU  
tIH  
2.5  
1.5  
ns  
ns  
SD6  
SD7  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK ns  
SD8  
1Data window in SDR104 mode is variable.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
66  
Electrical characteristics  
4.8.3.4  
HS200 mode timing  
Figure 43 depicts the timing of HS200 mode, and Table 59 lists the HS200 timing characteristics.  
SD1  
SD2  
SD3  
SCK  
SD4/SD5  
8-bit output from uSDHC to eMMC  
8-bit input from eMMC to uSDHC  
SD8  
Figure 43. HS200 mode timing  
Table 59. HS200 interface timing specification  
ID  
Parameter  
Symbols  
Min  
Max  
Unit  
Card Input Clock  
SD1  
Clock Frequency Period  
Clock Low Time  
tCLK  
tCL  
5.0  
ns  
ns  
ns  
SD2  
SD3  
0.46 x tCLK  
0.46 x tCLK  
0.54 x tCLK  
0.54 x tCLK  
Clock High Time  
tCH  
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)  
uSDHC Output Delay tOD –1.6 0.74  
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1  
Card Output Data Window tODW 0.5 x tCLK  
ns  
ns  
SD5  
SD8  
1HS200 is for 8 bits while SDR104 is for 4 bits.  
4.8.3.5  
Bus operation condition for 3.3 V and 1.8 V signaling  
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50  
mode is 1.8 V. The DC parameters for the NVCC_SD1 supply are identical to those shown in Table 22,  
"Single voltage GPIO DC parameters," on page 30.  
4.8.4  
Ethernet controller (ENET) AC electrical specifications  
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive  
at timing specs/constraints for the physical interface.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
67  
Electrical characteristics  
4.8.4.1  
ENET MII mode timing  
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal  
timings.  
4.8.4.1.1  
MII receive signal timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER, and ENET_RX_CLK)  
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There  
is no minimum frequency requirement. Additionally, the processor clock frequency must exceed twice the  
ENET_RX_CLK frequency.  
Figure 44 shows MII receive signal timings. Table 60 describes the timing parameters (M1–M4) shown in  
the figure.  
M3  
ENET_RX_CLK (input)  
M4  
ENET_RX_DATA3,2,1,0  
(inputs)  
ENET_RX_EN  
ENET_RX_ER  
M1  
M2  
Figure 44. MII receive signal timing diagram  
Table 60. MII receive signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M1  
M2  
ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to  
ENET_RX_CLK setup  
5
5
ns  
ns  
ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,  
ENET_RX_ER hold  
M3  
M4  
ENET_RX_CLK pulse width high  
ENET_RX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_RX_CLK period  
ENET_RX_CLK period  
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.  
4.8.4.1.2  
MII transmit signal timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER, and ENET_TX_CLK)  
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.  
There is no minimum frequency requirement. Additionally, the processor clock frequency must exceed  
twice the ENET_TX_CLK frequency.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
68  
NXP Semiconductors  
Electrical characteristics  
Figure 45 shows MII transmit signal timings. Table 61 describes the timing parameters (M5–M8) shown  
in the figure.  
M7  
ENET_TX_CLK (input)  
M5  
M8  
ENET_TX_DATA3,2,1,0  
(outputs)  
ENET_TX_EN  
ENET_TX_ER  
M6  
Figure 45. MII transmit signal timing diagram  
Table 61. MII transmit signal timing  
ID  
Characteristic1  
Min.  
Max.  
Unit  
M5  
M6  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER invalid  
5
ns  
ns  
ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,  
ENET_TX_ER valid  
20  
M7  
M8  
ENET_TX_CLK pulse width high  
ENET_TX_CLK pulse width low  
35%  
35%  
65%  
65%  
ENET_TX_CLK period  
ENET_TX_CLK period  
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.  
4.8.4.1.3  
MII asynchronous inputs signal timing (ENET_CRS and ENET_COL)  
Figure 46 shows MII asynchronous input timings. Table 62 describes the timing parameter (M9) shown in  
the figure.  
ENET_CRS, ENET_COL  
M9  
Figure 46. MII async inputs timing diagram  
Table 62. MII asynchronous inputs signal timing  
ID  
M91  
Characteristic  
Min.  
1.5  
Max.  
Unit  
ENET_CRS to ENET_COL minimum pulse width  
ENET_TX_CLK period  
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
69  
Electrical characteristics  
4.8.4.1.4  
MII serial management channel timing (ENET_MDIO and ENET_MDC)  
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3  
MII specification. However the ENET can function correctly with a maximum MDC frequency of  
15 MHz.  
Figure 47 shows MII asynchronous input timings. Table 63 describes the timing parameters (M10–M15)  
shown in the figure.  
M14  
M15  
ENET_MDC (output)  
M10  
ENET_MDIO (output)  
M11  
ENET_MDIO (input)  
M12  
M13  
Figure 47. MII serial management channel timing diagram  
Table 63. MII serial management channel timing  
ID  
M10  
Characteristic  
Min.  
Max.  
Unit  
ENET_MDC falling edge to ENET_MDIO output invalid (min.  
propagation delay)  
0
5
ns  
ns  
M11  
ENET_MDC falling edge to ENET_MDIO output valid (max.  
propagation delay)  
M12  
M13  
M14  
M15  
ENET_MDIO (input) to ENET_MDC rising edge setup  
ENET_MDIO (input) to ENET_MDC rising edge hold  
ENET_MDC pulse width high  
18  
0
ns  
ns  
40%  
40%  
60%  
60%  
ENET_MDC period  
ENET_MDC period  
ENET_MDC pulse width low  
4.8.4.2  
RMII mode timing  
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference  
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include  
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
70  
NXP Semiconductors  
Electrical characteristics  
Figure 48 shows RMII mode timings. Table 64 describes the timing parameters (M16–M21) shown in the  
figure.  
M16  
M17  
ENET_CLK (input)  
M18  
ENET_TX_DATA (output)  
ENET_TX_EN  
M19  
ENET_RX_EN (input)  
ENET_RX_DATA[1:0]  
ENET_RX_ER  
M20  
M21  
Figure 48. RMII mode signal timing diagram  
Table 64. RMII signal timing  
ID  
M16  
Characteristic  
Min.  
Max.  
65%  
Unit  
ENET_CLK pulse width high  
ENET_CLK pulse width low  
35%  
35%  
4
ENET_CLK period  
M17  
M18  
M19  
M20  
65%  
ENET_CLK period  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid  
ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid  
ns  
ns  
ns  
13  
ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER  
to ENET_CLK setup  
2
M21  
ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER  
hold  
2
ns  
4.8.5  
Flexible Controller Area Network (FLEXCAN) AC electrical  
specifications  
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.  
4.8.6  
LPUART electrical specifications  
Please refer to Section 4.3.2.1, General purpose I/O AC parameters.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
71  
Electrical characteristics  
4.8.7  
USB PHY parameters  
This section describes the USB-OTG PHY parameters.  
The USB PHY meets the electrical compliance requirements defined in the Universal Serial Bus Revision  
2.0 OTG with the following amendments.  
USB ENGINEERING CHANGE NOTICE  
— Title: 5V Short Circuit Withstand Requirement Change  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
USB ENGINEERING CHANGE NOTICE  
— Title: Pull-up/Pull-down resistors  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: Suspend Current Limit Changes  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
USB ENGINEERING CHANGE NOTICE  
— Title: USB 2.0 Phase Locked SOFs  
— Applies to: Universal Serial Bus Specification, Revision 2.0  
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
— Revision 2.0 plus errata and ecn June 4, 2010  
Battery Charging Specification (available from USB-IF)  
— Revision 1.2, December 7, 2010  
— Portable device only  
4.9  
Timers  
This section provide information on timers.  
4.9.1  
Pulse Width Modulator (PWM) characteristics  
This section describes the electrical information of the PWM.  
Table 65. PWM timing parameters  
Parameter  
Symbo  
Min  
Typ  
Max  
Unit  
PWM Clock Frequency  
Power-up Time  
80  
120  
MHz  
tpu  
25  
s  
4.9.2  
Quad timer timing  
Table 66 listed the timing parameters.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
72  
Electrical characteristics  
Table 66. Quad Timer Timing  
Min1  
Characteristic  
Timer input period  
Symbo  
Max  
Unit  
See Figure  
TIN  
TINHL  
TOUT  
2T + 6  
ns  
ns  
ns  
ns  
Timer input high/low period  
Timer output period  
1T + 3  
33  
Timer output high/low period  
TOUTHL  
16.7  
1
T = clock cycle. For 60 MHz operation, T = 16.7 ns.  
4IMER )NPUTS  
4
4
).(,  
).(,  
4
).  
4IMER /UTPUTS  
4
4
/54(,  
/54(,  
4
/54  
Figure 49. Quad timer timing  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
73  
Flash  
5 Flash  
This section introduces the on-chip flash electrical parameters.  
Table 67 shows the operating ranges of on-chip flash power supply by NVCC_GPIO.  
Table 67. Operating ranges  
Spec.  
Parameter  
Symbol  
Conditions  
Unit  
Min  
Max  
Supply voltage  
NVCC_GPIO  
FR = 133 MHz, fR = 50 MHz  
3.0  
3.6  
V
For details about the flash AC parameters, refer to the following link.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
74  
Boot mode configuration  
6 Boot mode configuration  
This section provides information on boot mode configuration pins allocation and boot devices interfaces  
allocation.  
6.1  
Boot mode configuration pins  
Table 68 provides boot options, functionality, fuse values, and associated pins. Several input pins are also  
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.  
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an  
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX RT1024  
Fuse Map document and the System Boot chapter in i.MX RT1024 Reference Manual (IMXRT1024RM).  
Table 68. Fuses and associated pins used for boot  
Pad  
Default setting on reset  
eFuse name  
Details  
GPIO_EMC_16  
GPIO_EMC_17  
GPIO_EMC_18  
GPIO_EMC_19  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_23  
GPIO_EMC_24  
GPIO_EMC_25  
GPIO_EMC_26  
GPIO_EMC_27  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
100 K pull-down  
src.BOOT_MODE0  
src.BOOT_MODE1  
src.BT_CFG[0]  
src.BT_CFG[1]  
src.BT_CFG[2]  
src.BT_CFG[3]  
src.BT_CFG[4]  
src.BT_CFG[5]  
src.BT_CFG[6]  
src.BT_CFG[7]  
src.BT_CFG[8]  
src.BT_CFG[9]  
Boot Options, Pin value overrides fuse  
settings for BT_FUSE_SEL = ‘0’.  
Signal Configuration as Fuse Override  
Input at Power Up.  
These are special I/O lines that control  
the boot up configuration during  
product development. In production,  
the boot configuration can be  
controlled by fuses.  
6.2  
Boot device interface allocation  
The following tables list the interfaces that can be used by the boot process in accordance with the specific  
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC allocation,  
which are configured during boot when appropriate.  
Table 69. Boot trough NAND  
PAD Name  
GPIO_EMC_00  
IO Function  
semc.DATA[0]  
ALT  
Comments  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
semc.DATA[1]  
semc.DATA[2]  
semc.DATA[3]  
semc.DATA[4]  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
75  
Boot mode configuration  
Table 69. Boot trough NAND  
semc.DATA[5]  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_38  
GPIO_EMC_39  
GPIO_EMC_25  
GPIO_EMC_26  
GPIO_EMC_27  
GPIO_EMC_14  
GPIO_EMC_40  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.DATA[6]  
semc.DATA[7]  
semc.DATA[8]  
semc.DATA[9]  
semc.DATA[10]  
semc.DATA[11]  
semc.DATA[12]  
semc.DATA[13]  
semc.DATA[14]  
semc.DATA[15]  
semc.ADDR[9]  
semc.ADDR[11]  
semc.ADDR[12]  
semc.BA1  
semc.CSX[0]  
Table 70. Boot trough NOR  
IO Function  
semc.DATA[0]  
PAD Name  
ALT  
Comments  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.DATA[1]  
semc.DATA[2]  
semc.DATA[3]  
semc.DATA[4]  
semc.DATA[5]  
semc.DATA[6]  
semc.DATA[7]  
semc.DATA[8]  
semc.DATA[9]  
semc.DATA[10]  
semc.DATA[11]  
semc.DATA[12]  
semc.DATA[13]  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
76  
Boot mode configuration  
Table 70. Boot trough NOR  
semc.DATA[14]  
GPIO_EMC_38  
GPIO_EMC_39  
GPIO_EMC_16  
GPIO_EMC_17  
GPIO_EMC_18  
GPIO_EMC_19  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_23  
GPIO_EMC_26  
GPIO_EMC_27  
GPIO_EMC_13  
GPIO_EMC_14  
GPIO_EMC_40  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
semc.DATA[15]  
semc.ADDR[0]  
semc.ADDR[1]  
semc.ADDR[2]  
semc.ADDR[3]  
semc.ADDR[4]  
semc.ADDR[5]  
semc.ADDR[6]  
semc.ADDR[7]  
semc.ADDR[11]  
semc.ADDR[12]  
semc.BA0  
semc.BA1  
semc.CSX[0]  
Table 71. Boot through FlexSPI  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B1_05  
GPIO_AD_B1_13  
flexspi.A_DQS  
gpio1.IO[29]  
ALT 1  
ALT 5  
Table 72. Boot through SD1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B0_06  
GPIO_AD_B0_04  
GPIO_AD_B1_07  
GPIO_AD_B1_06  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_04  
GPIO_SD_B0_05  
GPIO_SD_B0_00  
GPIO_SD_B0_01  
usdhc1.CD_B  
usdhc1.WP  
ALT 0  
ALT 2  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
usdhc1.VSELECT  
usdhc1.RESET_B  
usdhc1.CMD  
usdhc1.CLK  
usdhc1.DATA0  
usdhc1.DATA1  
usdhc1.DATA2  
usdhc1.DATA3  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
77  
Boot mode configuration  
PAD Name  
Table 73. Boot through SD2  
IO Function  
Mux Mode  
Comments  
GPIO_SD_B1_06  
GPIO_AD_B1_13  
GPIO_SD_B1_07  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
usdhc2.CD_B  
usdhc2.WP  
ALT 0  
ALT 3  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
ALT 0  
usdhc2.RESET_B  
usdhc2.CMD  
usdhc2.CLK  
usdhc2.DATA0  
usdhc2.DATA1  
usdhc2.DATA2  
usdhc2.DATA3  
usdhc2.DATA4  
usdhc2.DATA5  
usdhc2.DATA6  
usdhc2.DATA7  
Table 74. Boot through SPI-1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B0_10  
GPIO_AD_B0_11  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
lpspi1.SCK  
lpspi1.PCS0  
lpspi1.SDO  
lpspi1.SDI  
ALT 1  
ALT 1  
ALT 1  
ALT 1  
Table 75. Boot through SPI-2  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_06  
lpspi2.SCK  
lpspi2.SDO  
lpspi2.SDI  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
lpspi2.PCS0  
Table 76. Boot through SPI-3  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B1_12  
GPIO_AD_B1_13  
lpspi3.SCK  
ALT 2  
ALT 2  
lpspi3.PCS0  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
78  
Boot mode configuration  
Comments  
Table 76. Boot through SPI-3 (continued)  
IO Function Mux Mode  
PAD Name  
GPIO_AD_B1_14  
GPIO_AD_B1_15  
lpspi3.SDO  
lpspi3.SDI  
ALT 2  
ALT 2  
Table 77. Boot through SPI-4  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
lpspi4.SCK  
lpspi4.PCS0  
lpspi4.SDO  
lpspi4.SDI  
ALT 4  
ALT 4  
ALT 4  
ALT 4  
Table 78. Boot through SEMC  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_EMC_28  
GPIO_EMC_41  
semc.DQS  
semc.RDY  
ALT 0  
ALT 0  
Table 79. Boot through UART1  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B0_06  
GPIO_AD_B0_07  
GPIO_AD_B0_08  
GPIO_AD_B0_09  
lpuart1.TX  
ALT 2  
lpuart1.RX  
ALT 2  
ALT 2  
ALT 2  
lpuart1.CTS_B  
lpuart1.RTS_B  
Table 80. Boot through UART2  
IO Function  
PAD Name  
Mux Mode  
Comments  
GPIO_AD_B1_06  
GPIO_AD_B1_07  
GPIO_AD_B1_08  
GPIO_AD_B1_09  
lpuart2.CTS_B  
lpuart2.RTS_B  
lpuart2.TX  
ALT 2  
ALT 2  
ALT 2  
ALT 2  
lpuart2.RX  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
79  
Package information and contact assignments  
7 Package information and contact assignments  
This section includes the contact assignment information and mechanical package drawing.  
7.1  
20 x 20 mm package information  
20 x 20 mm, 0.5 mm pitch, ball matrix  
7.1.1  
Figure 50 shows the top, bottom, and side views of the 20 x 20 mm LQFP package.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
80  
NXP Semiconductors  
Package information and contact assignments  
/9   
ꢀ69 ꢇꢈ9 2'.19  
ꢉꢃ9 ꢊ9 ꢄꢅ 9 !9  
ꢀ69 /9 ꢁꢂꢃ9 &9ꢅ 9 !9  
.',9 ꢆ9 ',!"79  
ꢆꢀꢀ9  
ꢆꢁꢋ9  
ꢀꢁꢂ  
ꢌꢍꢍꢍꢍꢍꢍꢎ ꢏꢐꢐꢐꢐꢐꢐꢑ  
ꢃꢁ  
ꢓꢓꢓꢓꢓ  
ꢒꢃ98  
/9 ꢁꢂꢆ9ꢊ9  
ꢆꢀꢀ69  
.*ꢊ,"9  
ꢀꢁꢂꢃꢄ ꢅꢁꢃꢆꢄ  
Figure 50. 20 x 20 mm LQFP, case x package top and side views  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
81  
Package information and contact assignments  
7.1.2  
20 x 20 mm supplies contact assignments and functional contact  
assignments  
Table 81 shows the device connection list for ground, sense, and reference contact signals.  
Table 81. 20 x 20 mm supplies contact Assignment  
Supply Rail Name  
Pin(s) Position(s)  
Remark  
DCDC_IN  
34  
38  
35  
36  
DCDC_IN_Q  
DCDC_GND  
DCDC_LP  
DCDC_PSWITCH 37  
GPANAIO  
71  
NGND_KEL0  
NVCC_GPIO  
NVCC_PLL  
64  
11, 20, 29, 112, 144  
72  
44  
73  
65  
69  
NVCC_SD0  
VDDA_ADC_3P3  
VDD_HIGH_CAP  
VDD_HIGH_IN  
VDD_SNVS_CAP 56  
VDD_SNVS_IN  
VDD_SOC_IN  
VDD_USB_CAP  
VSS  
55  
5, 31, 39, 86, 102, 114, 134  
61  
6, 40, 60, 70, 85, 103, 113, 135  
Table 82 shows an alpha-sorted list of functional contact assignments for the 20 x 20 mm package.  
Table 82. 20 x 20 mm functional contact assignments  
Default Setting  
20 x 20  
Pin  
Power  
Group  
Pin  
Type  
Pin Name  
Default  
Mode  
Default  
Function  
Input/  
Output  
Value  
GPIO_AD_B0_00  
GPIO_AD_B0_01  
GPIO_AD_B0_02  
111  
110  
109  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT0  
ALT0  
ALT0  
jtag_mux.TMS  
Input  
Input  
Input  
47 K PU  
Digital  
GPIO  
jtag_mux.TCK  
jtag_mux.MOD  
100 K PD  
100 K PD  
Digital  
GPIO  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
82  
Package information and contact assignments  
Table 82. 20 x 20 mm functional contact assignments (continued)  
GPIO_AD_B0_03  
GPIO_AD_B0_04  
GPIO_AD_B0_05  
GPIO_AD_B0_06  
GPIO_AD_B0_07  
GPIO_AD_B0_08  
GPIO_AD_B0_09  
GPIO_AD_B0_10  
GPIO_AD_B0_11  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
GPIO_AD_B0_14  
GPIO_AD_B0_15  
GPIO_AD_B1_06  
GPIO_AD_B1_07  
GPIO_AD_B1_08  
GPIO_AD_B1_09  
GPIO_AD_B1_10  
GPIO_AD_B1_11  
GPIO_AD_B1_12  
GPIO_AD_B1_13  
108  
107  
106  
105  
101  
100  
99  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT0  
ALT0  
ALT0  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
jtag_mux.TDI  
jtag_mux.TDO  
jtag_mux.TRSTB  
GPIO1.IO[6]  
GPIO1.IO[7]  
GPIO1.IO[8]  
GPIO1.IO[9]  
GPIO1.IO[10]  
GPIO1.IO[11]  
GPIO1.IO[12]  
GPIO1.IO[13]  
GPIO1.IO[14]  
GPIO1.IO[15]  
GPIO1.IO[22]  
GPIO1.IO[23]  
GPIO1.IO[24]  
GPIO1.IO[25]  
GPIO1.IO[26]  
GPIO1.IO[27]  
GPIO1.IO[28]  
GPIO1.IO[29]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
47 K PU  
Keeper  
47 K PU  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
98  
Digital  
GPIO  
97  
Digital  
GPIO  
96  
Digital  
GPIO  
95  
Digital  
GPIO  
94  
Digital  
GPIO  
93  
Digital  
GPIO  
84  
Digital  
GPIO  
83  
Digital  
GPIO  
82  
Digital  
GPIO  
81  
Digital  
GPIO  
80  
Digital  
GPIO  
79  
Digital  
GPIO  
78  
Digital  
GPIO  
76  
Digital  
GPIO  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
83  
Package information and contact assignments  
Table 82. 20 x 20 mm functional contact assignments (continued)  
GPIO_AD_B1_14  
GPIO_AD_B1_15  
GPIO_EMC_00  
GPIO_EMC_01  
GPIO_EMC_02  
GPIO_EMC_03  
GPIO_EMC_04  
GPIO_EMC_05  
GPIO_EMC_06  
GPIO_EMC_07  
GPIO_EMC_08  
GPIO_EMC_09  
GPIO_EMC_10  
GPIO_EMC_11  
GPIO_EMC_12  
GPIO_EMC_13  
GPIO_EMC_14  
GPIO_EMC_15  
GPIO_EMC_16  
GPIO_EMC_17  
GPIO_EMC_18  
75  
74  
18  
17  
16  
15  
14  
13  
12  
10  
9
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT6  
ALT6  
ALT5  
GPIO1.IO[30]  
GPIO1.IO[31]  
GPIO2.IO[0]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
100K PD  
100K PD  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
GPIO2.IO[1]  
Digital  
GPIO  
GPIO2.IO[2]  
Digital  
GPIO  
GPIO2.IO[3]  
Digital  
GPIO  
GPIO2.IO[4]  
Digital  
GPIO  
GPIO2.IO[5]  
Digital  
GPIO  
GPIO2.IO[6]  
Digital  
GPIO  
GPIO2.IO[7]  
Digital  
GPIO  
GPIO2.IO[8]  
8
Digital  
GPIO  
GPIO2.IO[9]  
7
Digital  
GPIO  
GPIO2.IO[10]  
GPIO2.IO[11]  
GPIO2.IO[12]  
GPIO2.IO[13]  
GPIO2.IO[14]  
GPIO2.IO[15]  
SRC_BOOT_MODE0  
SRC_BOOT_MODE1  
GPIO2.IO[18]  
4
Digital  
GPIO  
3
Digital  
GPIO  
2
Digital  
GPIO  
1
Digital  
GPIO  
143  
142  
141  
140  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
84  
Package information and contact assignments  
Table 82. 20 x 20 mm functional contact assignments (continued)  
GPIO_EMC_19  
GPIO_EMC_20  
GPIO_EMC_21  
GPIO_EMC_22  
GPIO_EMC_23  
GPIO_EMC_24  
GPIO_EMC_25  
GPIO_EMC_26  
GPIO_EMC_27  
GPIO_EMC_28  
GPIO_EMC_29  
GPIO_EMC_30  
GPIO_EMC_31  
GPIO_EMC_32  
GPIO_EMC_33  
GPIO_EMC_34  
GPIO_EMC_35  
GPIO_EMC_36  
GPIO_EMC_37  
GPIO_EMC_38  
GPIO_EMC_39  
139  
138  
137  
136  
133  
132  
131  
130  
129  
128  
127  
126  
125  
124  
123  
122  
121  
120  
119  
118  
117  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO2.IO[19]  
GPIO2.IO[20]  
GPIO2.IO[21]  
GPIO2.IO[22]  
GPIO2.IO[23]  
GPIO2.IO[24]  
GPIO2.IO[25]  
GPIO2.IO[26]  
GPIO2.IO[27]  
GPIO2.IO[28]  
GPIO2.IO[29]  
GPIO2.IO[30]  
GPIO2.IO[31]  
GPIO3.IO[0]  
GPIO3.IO[1]  
GPIO3.IO[2]  
GPIO3.IO[3]  
GPIO3.IO[4]  
GPIO3.IO[5]  
GPIO3.IO[6]  
GPIO3.IO[7]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
100k PD  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
85  
Package information and contact assignments  
Table 82. 20 x 20 mm functional contact assignments (continued)  
GPIO_EMC_40  
116  
115  
48  
47  
46  
45  
43  
42  
41  
33  
32  
30  
28  
27  
26  
25  
24  
23  
22  
21  
19  
NVCC_GPIO  
NVCC_GPIO  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_SD0  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
NVCC_GPIO  
Digital  
GPIO  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
ALT5  
GPIO3.IO[8]  
GPIO3.IO[9]  
GPIO3.IO[13]  
GPIO3.IO[14]  
GPIO3.IO[15]  
GPIO3.IO[16]  
GPIO3.IO[17]  
GPIO3.IO[18]  
GPIO3.IO[19]  
GPIO3.IO[20]  
GPIO3.IO[21]  
GPIO3.IO[22]  
GPIO3.IO[23]  
GPIO3.IO[24]  
GPIO3.IO[25]  
GPIO3.IO[26]  
GPIO3.IO[27]  
GPIO3.IO[28]  
GPIO3.IO[29]  
GPIO3.IO[30]  
GPIO3.IO[31]  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
Keeper  
GPIO_EMC_41  
Digital  
GPIO  
GPIO_SD_B0_00  
GPIO_SD_B0_01  
GPIO_SD_B0_02  
GPIO_SD_B0_03  
GPIO_SD_B0_04  
GPIO_SD_B0_05  
GPIO_SD_B0_06  
GPIO_SD_B1_00  
GPIO_SD_B1_01  
GPIO_SD_B1_02  
GPIO_SD_B1_03  
GPIO_SD_B1_04  
GPIO_SD_B1_05  
GPIO_SD_B1_06  
GPIO_SD_B1_07  
GPIO_SD_B1_08  
GPIO_SD_B1_09  
GPIO_SD_B1_10  
GPIO_SD_B1_11  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
Digital  
GPIO  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
86  
Package information and contact assignments  
Table 82. 20 x 20 mm functional contact assignments (continued)  
ONOFF  
49  
53  
54  
VDD_SNVS_IN  
VDD_SNVS_IN  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
ALT0  
ALT0  
src.RESET_B  
Input  
100 K PU  
PMIC_ON_REQ  
PMIC_STBY_REQ  
Digital  
GPIO  
snvs_lp.PMIC_ON_REQ  
ccm.PMIC_VSTBY_REQ  
Output 100 K PU  
Digital  
GPIO  
Output 100 K PU  
(PKE  
disabled)  
POR_B  
50  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
src.POR_B  
Input  
100 K PU  
RTC_XTALI  
RTC_XTALO  
TEST_MODE  
57  
58  
51  
VDD_SNVS_IN  
Digital  
GPIO  
ALT0  
tcu.TEST_MODE  
Input  
100 K PD  
USB_OTG1_CHD_B  
USB_OTG1_DN  
USB_OTG1_DP  
USB_OTG1_VBUS  
XTALI  
66  
62  
63  
59  
67  
68  
52  
XTALO  
WAKEUP  
VDD_SNVS_IN  
Digital  
GPIO  
ALT5  
GPIO5.IO[0]  
Input  
100 K PU  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
87  
Package information and contact assignments  
7.1.3  
20 x 20 mm package pin assignments  
Figure 51 shows the pin assignments of the 20 x 20 mm package.  
GPIO_EMC_14  
GPIO_EMC_13  
GPIO_EMC_12  
GPIO_EMC_11  
VDD_SOC_IN  
VSS  
1
108  
107  
106  
105  
104  
103  
102  
101  
100  
99  
GPIO_AD_B0_03  
GPIO_AD_B0_04  
GPIO_AD_B0_05  
GPIO_AD_B0_06  
NC  
2
3
4
5
6
VSS  
GPIO_EMC_10  
GPIO_EMC_09  
GPIO_EMC_08  
GPIO_EMC_07  
NVCC_GPIO  
7
VDD_SOC_IN  
GPIO_AD_B0_07  
GPIO_AD_B0_08  
GPIO_AD_B0_09  
GPIO_AD_B0_10  
GPIO_AD_B0_11  
GPIO_AD_B0_12  
GPIO_AD_B0_13  
GPIO_AD_B0_14  
GPIO_AD_B0_15  
NC  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
98  
GPIO_EMC_06  
GPIO_EMC_05  
GPIO_EMC_04  
GPIO_EMC_03  
GPIO_EMC_02  
GPIO_EMC_01  
GPIO_EMC_00  
GPIO_SD_B1_11  
NVCC_GPIO  
97  
96  
95  
94  
93  
92  
NC  
91  
NC  
90  
NC  
89  
GPIO_SD_B1_10  
GPIO_SD_B1_09  
GPIO_SD_B1_08  
GPIO_SD_B1_07  
GPIO_SD_B1_06  
GPIO_SD_B1_05  
GPIO_SD_B1_04  
GPIO_SD_B1_03  
NVCC_GPIO  
NC  
88  
NC  
87  
VDD_SOC_IN  
VSS  
86  
85  
GPIO_AD_B1_06  
GPIO_AD_B1_07  
GPIO_AD_B1_08  
GPIO_AD_B1_09  
GPIO_AD_B1_10  
GPIO_AD_B1_11  
GPIO_AD_B1_12  
NC  
84  
83  
82  
81  
80  
GPIO_SD_B1_02  
VDD_SOC_IN  
GPIO_SD_B1_01  
GPIO_SD_B1_00  
DCDC_IN  
79  
78  
77  
GPIO_AD_B1_13  
GPIO_AD_B1_14  
GPIO_AD_B1_15  
VDDA_ADC_3P3  
76  
75  
DCDC_GND  
74  
DCDC_LP  
73  
1
Figure 51. The pin assignments of the 20 x 20 mm package  
1. For the differences about NC pins between RT1020 and RT1024, please see the i.MX RT1024 Migration Guide for details.  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
88  
NXP Semiconductors  
Revision history  
8 Revision history  
Table 83 provides a revision history for this data sheet.  
Table 83. i.MX RT1024 data sheet document revision history  
Rev.  
Number  
Date  
Substantive Change(s)  
Rev. 0  
11/2020 • Initial version  
i.MX RT1024 Crossover Processors Data Sheet for Consumer Products, Rev. 0, 11/2020  
NXP Semiconductors  
89  
Information in this document is provided solely to enable system and software implementers to  
use NXP products. There are no express or implied copyright licenses granted hereunder to  
design or fabricate any integrated circuits based on the information in this document. NXP  
reserves the right to make changes without further notice to any products herein.  
How to Reach Us:  
Home Page:  
nxp.com  
Web Support:  
nxp.com/support  
NXP makes no warranty, representation, or guarantee regarding the suitability of its products  
for any particular purpose, nor does NXP assume any liability arising out of the application or  
use of any product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be provided in  
NXP data sheets and/or specifications can and do vary in different applications, and actual  
performance may vary over time. All operating parameters, including “typicals” must be  
validated for each customer application by customer‚ customer’s technical experts. NXP does  
not convey any license under its patent rights nor the rights of others. NXP sells products  
pursuant to standard terms and conditions of sale, which can be found at the following address:  
nxp.com/SalesTermsandConditions.  
While NXP has implemented advanced security features, all products may be subject to  
unidentified vulnerabilities. Customers are responsible for the design and operation of their  
applications and products to reduce the effect of these vulnerabilities on customer’s applications  
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers  
should implement appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,  
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE  
CLASSIC, MIFAREDESFire, MIFAREPLUS, MIFAREFLEX, MANTIS, MIFAREULTRALIGHT,  
MIFARE4MOBILE,MIGLO,NTAG,ROADLINK,SMARTLX,SMARTMX,STARPLUG,TOPFET,  
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C-5, CodeTEST, CodeWarrior,  
ColdFire, ColdFire+, C-Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,  
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,  
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,  
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,  
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the  
property of their respective owners. These are contained within the 6 series RMs Arm, AMBA,  
Arm Powered, Cortex, Jazelle, Thumb, and TrustZone are registered trademarks of Arm Limited  
(or its subsidiaries) in the EU and/or elsewhere. CoreLink, CoreSight, and NEON are  
trademarks of Arm Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.  
Oracle and Java are registered trademarks of Oracle and/or its affiliates. The Power  
Architecture and Power.org word marks and the Power and Power.org logos and related marks  
are trademarks and service marks licensed by Power.org.  
© 2020 NXP B.V.  
Document Number: IMXRT1024CEC  
Rev. 0  
11/2020  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY