MSC7116VF800 [NXP]

IC,DSP,16-BIT,CMOS,BGA,400PIN,PLASTIC;
MSC7116VF800
型号: MSC7116VF800
厂家: NXP    NXP
描述:

IC,DSP,16-BIT,CMOS,BGA,400PIN,PLASTIC

文件: 总100页 (文件大小:1804K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
MSC7116  
Rev. 8, 12/2005  
Freescale Semiconductor  
Technical Data  
MSC7116  
Low-Cost DSP with DDR Controller and 10/100 Mbps Ethernet MAC  
128  
The MSC7116 device targets  
high-bandwidth highly  
computational DSP  
M2 SRAM  
(192 KB)  
DMA  
ASM2  
128  
AMDMA  
64  
JTAG Port  
64  
128  
(32 ch)  
JTAG  
64  
Boot ROM  
(8 KB)  
to IPBus  
applications and is optimized  
for Enterprise class packet  
telephony applications,  
providing a competitive price  
per channel for voice over  
packet systems.  
ASEMI  
64  
External Bus  
32  
External  
Memory  
Interface  
DSP  
Extended  
Core  
from  
IPBus  
SC1400  
Core  
Trace  
Buffer  
(8 KB)  
Host  
HDI16  
Port  
Interface  
(HDI16)  
ASTH  
64  
32  
TDM  
Fetch  
Unit  
2 TDMs  
ASAPB  
32  
RS-232  
GPIO  
Instruction  
Cache  
UART  
GPIO  
AMIC  
APB  
(16 KB)  
What’s New?  
Rev. 8 includes the following  
changes:  
128  
64  
AMEC  
Extended  
Core  
Watchdog  
Interface  
All chapters were updated to  
reflect the addition of mask set  
1M88B. This change includes  
signal descriptions, timing  
specifications, pin-outs, and  
power computations. Review  
all chapters for changes.  
Interrupts  
PLL/Clock  
Interrupt  
Control  
ASAPB  
32  
M1  
SRAM  
(192 KB)  
PLL/Clock  
ASM1  
ASSB  
32  
128  
64  
System Control  
to/from OCE  
64 64  
64  
AMENT  
32  
P XAXB  
Events  
Event Port  
to EMI  
to DMA  
Timers  
I2C  
to Crossbar  
Ethernet  
MAC  
I2C  
Note: The arrows show the  
direction of the transfer.  
IPBus  
MII/RMII  
Figure 1. MSC7116 Block Diagram  
The MSC7116 device is a highly integrated DSP processor that contains the StarCore™ SC1400 core, 384 KB of SRAM  
memory, 16 KB 16-way instruction cache, 8 KB boot ROM, two 128-channel time-division multiplexing (TDM) interfaces  
with hardware support for µ/A-law decoding/encoding, a UART, a 32-channel DMA controller, a 16-bit host interface  
(HDI16) to support an external host processor, a 10/100Base-T MII/RMII, a programmable interrupt controller (PIC), an I2C  
interface, two 16-bit quad cascadable timers, GPIO signals, and an on-chip emulator (OCE) and an event port for enhanced  
debug and system integration capability. The SC1400 core has four ALUs and performs at 1000 DSP million multiply-  
accumulates per second (MMACS) with an internal 266 MHz clock at 1.2 V.  
© Freescale Semiconductor, Inc., 2004, 2005. All rights reserved.  
Table of Contents  
Features...............................................................................................................................................................iii  
Product Documentation ....................................................................................................................................viii  
Chapter 1  
Signals/Connections  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
Power ................................................................................................................................................................1-4  
Ground ..............................................................................................................................................................1-4  
Clock and Reset ................................................................................................................................................1-4  
Memory Controller ...........................................................................................................................................1-5  
Multiplexed I/O Signal Ports A–D ...................................................................................................................1-6  
OCE Event and JTAG Test Access Port..........................................................................................................1-19  
Reserved Signals.............................................................................................................................................1-19  
Chapter 2  
Specifications  
2.1  
2.2  
2.3  
2.4  
2.5  
Maximum Ratings.............................................................................................................................................2-1  
Recommended Operating Conditions...............................................................................................................2-2  
Thermal Characteristics....................................................................................................................................2-3  
DC Electrical Characteristics............................................................................................................................2-4  
AC Timings.......................................................................................................................................................2-5  
Chapter 3  
Chapter 4  
Packaging  
3.1  
3.2  
MAP-BGA Package..........................................................................................................................................3-1  
MAP-BGA Package Mechanical Drawing.....................................................................................................3-29  
Design Considerations  
4.1  
4.2  
4.4  
4.5  
4.6  
Thermal Design Considerations........................................................................................................................4-1  
Power Supply Design Considerations...............................................................................................................4-2  
Reset and Boot..................................................................................................................................................4-6  
DDR Memory System Guidelines....................................................................................................................4-8  
Connectivity Guidelines .................................................................................................................................4-11  
Data Sheet Conventions  
OVERBAR  
Indicates a signal that is active when pulled low (For example, the RESET pin is active when  
low.)  
“asserted”  
Means that a high true (active high) signal is high or that a low true (active low) signal is low  
Means that a high true (active high) signal is low or that a low true (active low) signal is high  
“deasserted”  
Examples:  
Signal/Symbol  
Logic State  
Signal State  
Asserted  
Voltage  
PIN  
V /V  
True  
IL OL  
PIN  
PIN  
PIN  
V
V
/V  
False  
True  
False  
Deasserted  
Asserted  
IH OH  
/V  
IH OH  
V /V  
Deasserted  
IL OL  
Note: Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
MSC7116 Technical Data, Rev. 8  
ii  
Freescale Semiconductor  
Features  
Table 1 lists the features of the MSC7116 device.  
Table 1. MSC7116 Features  
Feature  
Description  
Up to 1000 MMACS using an internal 266 MHz clock at 1.2 V. A multiply-accumulate operation includes a  
multiply-add instruction with the associated data move and pointer update.  
4 data ALUs.  
16 data registers, 40 bits each.  
27 address registers, 32 bits each.  
Hardware support for fractional and integer data types.  
Very rich 16-bit wide orthogonal instruction set.  
Up to six instructions executed in a single clock cycle.  
Variable-length execution set (VLES) that can be optimized for code density and performance.  
IEEE® Std. 1149.1™ JTAG port.  
StarCore  
SC1400 Core  
On-chip emulator (OCE10) module with real-time debugging capabilities.  
The high-performance extended core delivers up to 1000 MMACS using 4 ALUs running up to 266 MHz,  
including:  
SC1400 core processor.  
192 KB multi-port SRAM (M1) accessed by the SC1400 core with no wait states.  
16 KB, 16-way instruction cache (ICache).  
Programmable instruction fetch unit.  
Write buffer (4-entry).  
Extended Core  
Internal Memory  
Extended core interface module.  
The large internal memory space totals 408 KB:  
192 KB of M1 memory.  
16 KB ICache.  
192 KB internal shared memory (M2), accessible from the SC1400 instruction fetch unit, extended core  
interface, and DMA controller via the crossbar switch.  
8 KB boot ROM accessible from the SC1400 core.  
DDR memory controller.  
Glueless interface to 133 MHz DDR-RAM.  
14-bit external address bus, supporting up to 1 GB of external memory.  
16- or 32-bit external data bus.  
External Memory  
Interface  
Memory controller supports:  
Byte enables for 32-bit external data bus.  
Data pipeline to reduce data set-up time for synchronous devices.  
Programmable modules include:  
Crossbar switch.  
DMA controller.  
DDR controller.  
IPBus  
Clock synthesis module.  
2
I C module.  
System control unit.  
Timers.  
AHB-Lite crossbar switch, allowing parallel data transfers between four master ports and six slave ports,  
where each port connects to an AHB-Lite bus.  
Crossbar Switch  
DMA Controller  
Multi-channel DMA controller:  
32 time-multiplexed channels.  
Priority-based time-multiplexing between channels using 32 internal priority levels  
Priorities can be fixed or round-robin.  
A flexible channel configuration:  
All channels support all features.  
All channels connect to the slave ports on the crossbar.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
iii  
Table 1. MSC7116 Features (Continued)  
Feature  
Description  
External interfaces and control modules managed on the advanced peripheral bus (APB), including:  
16-bit host interface (HDI16)  
10/100Base-T MII/RMII Ethernet interface.  
Two time-division multiplexing (TDM) modules, each supporting up to 128 channels.  
RS-232 interface/universal asynchronous receiver/transmitter (UART).  
External Interfaces  
2
I C interface.  
Two 16-bit quad cascadable timers  
General-purpose input/output (GPIO) signals.  
Interrupt controller to handle external interrupt functions (input and output).  
Enhanced 16-bit wide interface provides a glueless connection to industry-standard microcontrollers,  
Host Interface (HDI16) microprocessors, and DSPs. The HDI16 can also operate in 8-bit data bus mode and is fully compatible with  
the DSP56300 HDI08 bus from the external host side.  
Ethernet interface:  
Designed to comply with IEEE Std. 802.3™, 802.3u™, 802.3x™, and 802.3ac™.  
Internal receive and transmit FIFOs and a FIFO controller.  
Direct access to internal memories via its own DMA controller.  
Support for 10/100 Mbps media independent interfaces (MIIs) and 10/100 Mbps reduced media  
independent interface (RMII).  
Ethernet Interface  
Full and half duplex operation.  
Programmable maximum frame length.  
Virtual local area network (VLAN) tag and priority support.  
Retransmission of transmit FIFO following collision.  
CRC generation and verification for inbound and outbound packets.  
Address recognition including promiscuous, broadcast, individual address. hash/exact match, and multicast  
hash match.  
Two independent TDM modules, each with the following features:  
Totally independent receive and transmit, each having one data line, one clock line, and one frame sync  
line.  
Frame sync line and clock line can be shared between receive and transmit within a single TDM or across  
all TDMs.  
Glueless interface to E1/T1 frames and MVIP, SCAS, and H.110 buses.  
Hardware A-law/µ-law conversion  
Up to 50 Mbps per TDM (50 MHz bit clock).  
Maximum rate is 1/4 the core frequency.  
Up to 128 channels.  
Each channel can be programmed to be active or inactive.  
8- or 16-bit word widths.  
The TDM sync signals (TDMxTFS/TDMxRFS) can be configured as either input or output.  
The TDM clock signals (TDMxTCK/TDMxRCK) can be configured as either input or output.  
Frame sync and data signals can be programmed to be sampled either on the rising edge or on the falling  
edge of the clock.  
TDM Modules  
Frame sync can be programmed as active low or active high.  
Selectable delay (0–3 bits) between the Frame Sync signal and the beginning of the frame.  
MSB or LSB first support.  
MSC7116 Technical Data, Rev. 8  
iv  
Freescale Semiconductor  
Table 1. MSC7116 Features (Continued)  
Feature  
Description  
Two signals for transmit data and receive data.  
No clock, asynchronous mode.  
Full-duplex operation.  
Standard mark/space non-return-to-zero (NRZ) format.  
13-bit baud rate selection.  
Programmable 8-bit or 9-bit data format.  
Separately enabled transmitter and receiver.  
Programmable transmitter output polarity.  
Two receiver wake-up methods:  
Idle line wake-up.  
Address mark wake-up.  
Separate receiver and transmitter interrupt requests.  
Eight flags, the first five can generate interrupt request:  
Transmitter empty.  
UART  
Transmission complete.  
Receiver full.  
Idle receiver input.  
Receiver overrun.  
Noise error.  
Framing error.  
Parity error.  
Receiver framing error detection.  
Hardware parity checking.  
1/16 bit-time noise detection.  
Maximum bit rate 5.0 Mbps.  
Single-wire and loop operations.  
2-wire serial interface through GPIO.  
Filtered inputs for noise suppression.  
Compatibility with I C bus standard up to 100 kbps for standard mode and up to 400 kbps for Fast mode.  
Bidirectional Data Transfer Protocol.  
Multiple-master operation that also allows any number of devices implementing the I C-master software  
2
I2C Port  
2
module to access the memory simultaneously at boot or any time.  
2
Compatible with the I C-serial EEPROM access protocol, allowing memory access of up to one MB.  
Two 16-bit quad cascadable timers, each with the following features:  
Cyclic or one-shot.  
Input clock polarity control.  
Interrupt request when counting reaches a programmed threshold.  
Pulse or level interrupts.  
Dynamically updated programmed threshold.  
Read counter any time.  
Timers  
Maximum rate is 1/4 the core frequency.  
Bidirectional signal lines that either serve the peripherals or act as programmable I/O ports. Each port can be  
programmed separately to serve up to two dedicated peripherals.  
General-Purpose I/O  
(GPIO) Port  
Consolidates maskable interrupt and non-maskable interrupt sources.  
Programmable  
Interrupt Controller  
(PIC)  
Collects important signal devices.  
Programmable combinations to provide triggering to internal device units including interrupts, breakpoints,  
or wake-up from low-power stop mode.  
Event Port  
Lines can be configured to operate independently, be sequenced, or be enabled from an external source.  
Can be used independently or with the OCE10 debug module.  
Reset controller.  
Clock controller module.  
Hardware bus monitors for the MSC7116 buses.  
Software watchdog timer function.  
fieldBIST™ hardware health diagnostics that can be invoked at power-up or off-line via software.  
Event port.  
System Control  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
v
Table 1. MSC7116 Features (Continued)  
Feature  
Description  
Generates up to 266 MHz clock for the SC1400 core and up to 133 MHz for the crossbar switch, DMA  
channels, M2 memory, and other peripherals.  
Internal PLL  
Programmable low-power Stop and Wait modes.  
Generation of all device clocks.  
Halt and restart capability for on-chip peripherals.  
Clock Synthesis  
Module  
Separate power supply for internal logic and I/O.  
Low-power standby modes.  
Optimized power management circuitry (instruction-dependent, peripheral-dependent, and mode-  
dependent).  
Reduced Power  
Dissipation  
Detects and provides visibility into unlikely field failures for systems with high availability. The Freescale  
unique fieldBIST ensures that the device:  
Has structural integrity.  
Operates at the rated speed.  
Is free from reliability defects.  
fieldBIST Hardware  
Diagnostics  
Diagnostics can report partial or complete device inoperability. fieldBIST resolution can pinpoint the following  
uniquely:  
6 memory blocks, including ROM  
3 logic levels (top, extended core, and peripherals)  
1 PLL  
Simple JTAG interface allows easy integration to system firmware.  
400 ball MAP-BGA:  
17 × 17 mm.  
0.8 mm pitch.  
Pb-free or Pb-bearing packaging technology.  
Packaging  
Real-time operating systems (RTOS) that fully supports MSC7116 device architecture (multi-core, memory  
hierarchy, ICache, timers, DMA, interrupts, peripherals):  
High-performance and deterministic, delivering predictive response time.  
Optimized to provide low interrupt latency with high data throughput.  
Preemptive and priority-based multitasking.  
Fully interrupt/event driven.  
Small memory footprint.  
Comprehensive set of APIs.  
Fully supports MSC7116 DMA, interrupts, and timer schemes.  
Distributed system support, enables transparent inter-task communications:  
Messaging mechanism between tasks using mailboxes and semaphores.  
Networking support; data transfer between tasks running inside and outside the device using networking  
protocols.  
Includes integrated device drivers for such peripherals as TDM, UART, and external buses.  
Additional features:  
Incorporates task debugging utilities integrated with compilers and vendors.  
Board support package (BSP) for MSC7100 ADS.  
Software Support  
®
®
Metrowerks CodeWarrior Integrated Development Environment (IDE):  
C/C++ compiler with in-line assembly. Enables the developer to generate highly optimized DSP code. It  
translates code written in C/C++ into parallel fetch sets and maintains high code density.  
SC1400 Core Simulator. Allows the user to run test code to emulate operation on the SC1400 core  
processor.  
Librarian. Enables the user to create libraries for modularity.  
C libraries. A collection of C/C++ functions for the developer’s use.  
Linker. Highly efficient linker to produce executables from object code.  
Debugger. Seamlessly integrated real-time, non-intrusive multi-mode debugger that enables debugging of  
highly optimized DSP algorithms. The developer can choose to debug in source code, assembly code, or  
mixed mode.  
Profiler. An analysis tool using a patented Binary Code Instrumentation (BCI) technique that enables the  
developer to identify program design inefficiencies.  
Boot options:  
HDI16.  
I C.  
2
MSC7116 Technical Data, Rev. 8  
vi  
Freescale Semiconductor  
Table 1. MSC7116 Features (Continued)  
Feature  
Description  
Host debug through single JTAG connector supports both processors.  
Two kinds of ADS configurations: one with the MSC7116 as the host CPU and one without a host CPU.  
Big Flash memory for stand-alone applications.  
Support for the following communications ports:  
10/100Base-T.  
T1/E1 TDM interface.  
H.110.  
Voice codec.  
MetroWerks  
Application  
Development System  
(ADS) Board  
RS-232.  
High-density (MICTOR) logic analyzer connectors to monitor MSC7116 signals  
6U CompactPCI form factor.  
MSC7116 device.  
Single 32-bit DDR memory.  
2
256 KB I C EEPROM to boot the MSC7116 device.  
OCE10 emulator/JTAG connector for debugging.  
On-board 5 V power supply.  
External power supply and cables.  
Kit documentation.  
Power indicators for 2.5 V, 3.3 V, and 5 V.  
Hard-reset push-button to reset the MSC7116 device.  
Support for the following communications ports:  
HDI16 host port interface header.  
MetroWerks  
Evaluation Module  
(EVM) Kits  
10/100Base-T (RJ-45).  
T1/E1 TDM interface header.  
16-bit audio codec (3.5 mm jacks).  
RS-232 (UART port).  
Output header for timers, interrupts, and GPIOs.  
Software support:  
MSC711xEVM includes full-featured CodeWarrior Development Studio for MSC711x.  
MSC711xEVMT includes evaluation copy of CodeWarrior Development Studio for MSC711x.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
vii  
Product Documentation  
The documents listed in Table 2 are required for a complete description of the MSC7116 device and are necessary  
to design properly with the part. Documentation is available from a local Freescale distributor, a Freescale  
semiconductor sales office, or a Freescale Semiconductor Literature Distribution Center. For documentation  
updates, visit the Freescale DSP website. See the contact information on the back cover of this document.  
Table 2. MSC7116 Documentation  
Name  
Description  
Order Number  
MSC7116  
Technical Data  
MSC7116 features list and physical, electrical, timing, and package  
specifications  
MSC7116  
MSC711x  
Detailed functional description of memory and peripheral configuration,  
MSC711xRM  
Reference Manual operation, and register programming  
SC1000 Family  
Processor Core  
Reference Manual  
Detailed description of the SC1000 family processor cores, including the  
SC1400, and instruction set  
10180  
See the StarCore LLC website at  
www.starcore-dsp.com  
OCE10 On-Chip  
Emulator  
Reference Manual  
Detailed description of the SC1000 family on-chip emulator.  
10055  
See the StarCore LLC website at  
www.starcore-dsp.com  
Application Notes Documents describing specific applications or optimized device operation  
including code examples  
See the MSC7116 product website  
MSC7116 Technical Data, Rev. 8  
viii  
Freescale Semiconductor  
Signals/Connections  
1
The MSC7116 external signals are organized into functional groups. Table 1-1 lists the functional groups and the  
number of signal connections in each group, and it references the table that gives a detailed listing of multiplexed  
signals within each group.  
Most MSC7116 external peripherals are configured through ports A–D. The port configuration registers allow  
signal lines to be configured as software-controlled or hardware-controlled. If a signal is configured as software-  
controlled, it can be further defined as an input or an output. For port A, some signals configured as inputs may be  
configured as general-purpose signals or as maskable interrupt lines. If a signal is configured as hardware-  
controlled, it has a special function supporting one of the peripheral interfaces (for example, the HDI16). Some  
signals can also have an alternate hardware function (such as the CLKO signal). Figure 1-1 shows MSC7116  
external signals organized by hardware-controlled function. Figure 1-2 shows the configuration combinations for  
signals enabled through ports A–D.  
Table 1-1. MSC7116 Functional Signal Groupings  
Number of  
Functional Group  
Signal  
Detailed Description  
Connections  
Power  
125  
96  
3
Table 1-2 on page 1-4.  
Ground  
Table 1-3 on page 1-4.  
Table 1-4 on page 1-4.  
Table 1-5 on page 1-5  
Clock and Reset  
Memory Controller  
64  
Signals Configured through ports A–D:  
• TDM[0–1]  
• Ethernet  
12  
18  
27  
2
2
5
Table 1-6 on page 1-7  
Table 1-7 on page 1-9  
Table 1-8 on page 1-13  
Table 1-9 on page 1-16  
Table 1-10 on page 1-16  
Table 1-11 on page 1-17  
Table 1-12 on page 1-18  
Table 1-13 on page 1-19  
• Host Interface (HDI16)  
2
• I C Interface  
• UART Interface  
• Event port  
• Boot mode (BM[3–2]) for mask set 1M88B only  
• Non-maskable interrupt (NMI)  
2
1
Note:  
Signals are grouped by the principal function, but individual signal  
lines have alternate functions. For example, there are a total  
possible 42 GPIOs for mask set 1L44X or 46 GPIOs for mask set  
1M88B, but none of them have this as the principal function. See  
Section 1.5 for details.  
Debugging (JTAG Test Access Port and OCE module)  
7
1
Table 1-14 on page 1-19  
Table 1-15 on page 1-19  
Reserved  
No connect (NC)  
37  
Do not connect any line, component,  
trace, or via to these pins.  
Note: Although the package for this device uses ball connections, the connections are sometimes conventionally  
referred to as pins.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-1  
Signals/Connections  
Hardware-Controlled  
MSC7116  
Primary  
RMII  
Alternate  
MII  
V
V
42  
49  
32  
1
1
1
1
1
TXD0  
TXD1  
TXD2  
TXD3  
RXD0  
TXD0  
DDC  
TXD1  
DDM  
DDIO  
V
reserved  
reserved  
RXD0  
reserved  
reserved  
Power  
V
1
1
DDPLL  
V
REF  
1
1
1
RXD1  
RXD2  
RXD3  
RXD1  
GND 95  
reserved  
reserved  
reserved  
reserved  
Gnds  
V
1
SSPLL  
Ethernet  
Interface  
1
1
1
1
1
1
1
1
1
1
TXCLK  
TX_EN  
TX_ER  
RXCLK  
RX_DV  
RX_ER  
COL  
CRS  
MDC  
MDIO  
REFCLK  
TX_EN  
reserved  
reserved  
CRS_DV  
RX_ER  
reserved  
reserved  
MDC  
CLKIN →  
PORESET →  
HRESET →  
1
1
1
Clock/  
Reset  
reserved  
reserved  
Reset  
A[13–0] 14  
BA[1–0] ←  
D[31–0] 32  
2
H8BIT  
MDIO  
DQM[3–0] ←  
DQS[3–0] ↔  
CK ←  
4
4
1
1
1
1
1
1
2
4
8
8
2
1
HA[3–0]  
HD[15–8]  
HD[7–0]  
HCS[1–2]  
HDDS  
Memory  
Controller  
(SSTL2)  
CK ←  
CKE ←  
RAS ←  
CAS ←  
Host  
Single Strobe  
HRW  
HDS/HDS  
Dual Strobe  
HRD/HRD  
HRW/HRW  
Dual HREQ  
Interface  
(HDI16)  
WE ←  
1
1
CS[0–1] ←  
Hardware-  
Controlled  
Single HREQ  
1
1
HREQ/HREQ HTRQ/HTRQ  
HDSP  
T0RCK ↔  
T0RFS ↔  
T0RD ↔  
T0TCK ↔  
T0TFS ↔  
T0TD ↔  
1
1
1
1
1
1
HACK/HACK  
HRRQ/HRRQ  
1
1
SCL  
SDA  
I2C  
TDM0  
1
1
URXD  
UTXD  
UART  
T1RCK ↔  
T1RFS ↔  
T1RD ↔  
T1TCK ↔  
T1TFS ↔  
T1TD ↔  
1
1
1
1
1
1
1
1
1
1
1
1
EVENT0  
EVENT1  
EVENT2  
EVENT3  
EVENT4  
EE0/DBREQ  
CLK0  
TDM1  
BM0  
BM1  
SWTE  
Event  
Port  
TEST0 →  
1
Reserved  
NMI  
1
NMI  
1
1
1
1
1
1
TCK  
TDI  
TDO  
TMS  
TRST  
TPSEL  
TAP and  
OCE  
Module  
Note:  
For software-controlled functionality, see Figure 1-2. This figure does not include the 37 NC pins.  
Figure 1-1. MSC7116 External Signals (Hardware-Controlled Functions)  
MSC7116 Technical Data, Rev. 8  
1-2  
Freescale Semiconductor  
Software Controlled (GPxCTL[x] = 0)  
Hardware Controlled (GPxCTL[x] = 1)  
Primary Function  
Reset  
Configuration  
(sampled at  
deassertion of  
PORESET only)  
Alternate Function  
CHPCFG[PAS] = 1  
CHPCFG[PDS] = 1  
Port  
Signal  
GPI (Default)  
GPxDDR[x] = 0  
GPA_INTEN[x] = 0  
Interrupt  
GPxDDR[x] = 0  
GPA_INTEN[x] = 1  
CHPCFG[PAS] and CHPCFG[PDS] = 0  
GPO  
GPxDDR[x] = 1  
Ethernet (MII or RMII)  
PA29  
PA28  
PA27  
PA26  
PA25  
PA24  
PA23  
PA22  
PA21  
PA20  
PA19  
PA18  
PA17  
PA16  
PA15  
PA14  
PA13  
PA12  
PA11  
PA10  
PA9  
GPIA29  
GPIA28  
GPIA27  
GPIA26  
GPIA25  
GPIA24  
GPIA23  
GPIA22  
GPIA21  
GPIA20  
GPIA19  
reserved  
GPIA17  
GPIA16  
GPIA15  
GPIA14  
GPIA13  
GPIA12  
GPIA11  
GPIA10  
GPIA9  
IRQ18  
IRQ17  
IRQ16  
IRQ26  
IRQ25  
IRQ24  
IRQ23  
IRQ22  
IRQ21  
IRQ20  
IRQ19  
NMI  
IRQ13  
IRQ12  
IRQ14  
IRQ15  
IRQ2  
IRQ3  
IRQ4  
IRQ5  
reserved  
IRQ6  
IRQ7  
reserved  
IRQ0  
IRQ1  
IRQ8  
GPOA29  
GPOA28  
GPOA27  
GPOA26  
GPOA25  
GPOA24  
GPOA23  
GPOA22  
GPOA21  
GPOA20  
GPOA19  
reserved  
GPOA17  
GPOA16  
GPOA15  
GPOA14  
GPOA13  
GPOA12  
GPOA11  
GPOA10  
GPOA9  
RXD3 or reserved  
TX_ER or reserved  
TXD3 or reserved  
RX_ER  
RX_DV or CRS_DV  
TX_EN  
reserved  
reserved  
reserved  
TXCLK or REFCLK  
RXD0  
RXD1  
TXD0  
TXD1  
Event  
Clock  
CLKO  
EVNT1  
2
EVNT4  
I C  
SCL  
SDA  
SWTE  
UART  
URXD  
UTXD  
TDM0  
T0RCK  
T0RFS  
T0RD  
T0TCK  
T0TFS  
T0TD  
PA8  
PA7  
PA6  
PA5  
PA4  
PA3  
GPIA8  
GPIA7  
GPIA6  
GPIA5  
GPIA4  
GPIA3  
GPOA8  
GPOA7  
GPOA6  
GPOA5  
GPOA4  
GPOA3  
TDM1  
T1RCK  
T1RFS  
T1RD  
PA2  
PA1  
PA0  
GPIA2  
GPIA1  
GPIA0  
IRQ9  
IRQ10  
IRQ11  
GPOA2  
GPOA1  
GPOA0  
T1TCK  
T1TFS  
T1TD  
HDI16  
PB14  
PB13  
PB12  
PB11  
PB10  
PB9  
PB8  
PB7  
PB6  
PB5  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
HDDS  
HDS or HWR  
HRW or HRD  
HCS2  
1
1
GPIB11  
GPOB11  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
GPIC15  
GPIC14  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
reserved  
GPOC15  
GPOC14  
reserved  
HCS1  
HACK or HRRQ  
HREQ or HTRQ  
HD7  
HDSP  
HD6  
HD5  
HD4  
HD3  
HD2  
HD1  
HD0  
PB4  
PB3  
PB2  
PB1  
PB0  
PC15  
PC14  
PC13  
EVNT3  
EVNT2  
EVNT0  
BM1  
BM0  
EE0/  
PC12  
PC11  
PC10  
PC9  
PC8  
PC7  
PC6  
PC5  
PC4  
PC3  
PC2  
PC1  
PC0  
PD8  
PD7  
PD6  
PD5  
PD4  
PD3  
PD2  
PD1  
PD0  
reserved  
GPIC11  
reserved  
GPOC11  
DBREQ  
1
1
HA3  
HA2  
HA1  
reserved  
reserved  
reserved  
GPIC7  
GPIC6  
GPIC5  
GPIC4  
GPIC3  
GPIC2  
GPIC1  
GPIC0  
reserved  
reserved  
reserved  
GPOC7  
GPOC6  
GPOC5  
GPOC4  
GPOC3  
GPOC2  
GPOC1  
GPOC0  
HA0  
HD15  
HD14  
HD13  
HD12  
HD11  
HD10  
HD9  
HD8  
1
1
2
GPID8  
GPID7  
GPOD8  
GPOD7  
BM3  
1
1
2
BM2  
GPID6  
GPID5  
GPID4  
reserved  
reserved  
reserved  
reserved  
GPOD6  
GPOD5  
GPOD4  
reserved  
reserved  
reserved  
reserved  
RXD2 or reserved  
RXCLK or reserved  
TXD2 or reserved  
MDIO  
MDC  
CRS or reserved  
COL or reserved  
reserved  
reserved  
reserved  
H8BIT  
Notes: 1. Mask set 1M88B. For mask set 1L44X, these signals are reserved.  
2. Mask set 1M88B only. For mask set 1L44X, these signals are not implemented.  
Figure 1-2. Port A–D Signal Configuration Diagram  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-3  
Signals/Connections  
1.1 Power  
Table 1-2. Power Inputs  
Signal Name  
Description  
V
Internal Logic Power  
DDC  
A dedicated well-regulated power source for the device core. Provide an extremely low impedance path to the V  
power rail.  
DDC  
V
V
V
SSTL IO Driver Power  
DDM  
A dedicated power source for the DDR DRAM interface buffers. Provide adequate external decoupling capacitors.  
Input/Output Power  
DDIO  
DDPLL  
The power source for the I/O buffers. Provide adequate external decoupling capacitors.  
System PLL Power  
A dedicated well-regulated power for the system Phase Lock Loop (PLL). Provide an extremely low impedance path to  
the V  
power rail.  
DDPLL  
V
SSTL Reference Power  
REF  
A reference power level for the SSTL2 memory interface.  
1.2 Ground  
Table 1-3. Ground Connections  
Signal Name  
Description  
GND  
System Ground  
An isolated common ground for the internal processing logic, I/O buffers, and the DDR DRAM interface buffers. Provide  
adequate external decoupling capacitors.  
V
System PLL Ground  
SSPLL  
An isolated ground for the system PLL. Provide an extremely low-impedance path to this ground.  
1.3 Clock and Reset  
Table 1-4. Clock and Reset Pin Definitions  
Signal Name  
Type  
Description  
CLKIN  
Input  
Input  
Input/  
Input Clock  
Provides the primary clock source for the device.  
PORESET  
HRESET  
Power-On Reset  
When asserted, this line causes the MSC7116 device to enter the power-on reset state.  
Hard Reset  
Output  
When asserted, this open-drain line causes the MSC7116 to enter the hard reset state.  
Note:  
Connect an external pull-up to this pin.  
MSC7116 Technical Data, Rev. 8  
1-4  
Freescale Semiconductor  
Memory Controller  
1.4 Memory Controller  
Refer to the memory controller chapter in the MC711x Reference Manual for details on configuring these signals.  
To support DDR DRAM external memory, the memory controller uses SSTL2+ signal levels.  
Table 1-5. Memory Controller Signals  
Signal Name  
Type  
Description  
A[13–0]  
Output  
Address Bus  
The memory interface address bus used to connect to external memory devices.  
BA[1–0]  
D[31–0]  
Output  
Bank Address  
Selects the DDR SDRAM bank.  
Input/  
Data Bus  
Output  
The MSC7116 device drives the bus during write cycles and the external memory drives the bus  
during read cycles.  
DQM[3–0]  
DQS[3–0]  
CK  
Output  
Input/Output  
Output  
Output  
Output  
Output  
Output  
Output  
Output  
DDR SDRAM DQM  
Selects the specific byte lanes for DDR SDRAM devices.  
DDR SDRAM DQS  
Strobe for byte-lane data capture.  
System Clock Out  
The system bus clock.  
CK  
System Clock Out Inverted  
The inverted system bus clock.  
CKE  
Clock Enable  
When asserted, this signal enables the system bus clock for the DDR SDRAM.  
RAS  
Row Address Strobe  
Connects to DDR SDRAM RAS input.  
CAS  
Column Address Strobe  
Connects to DDR SDRAM CAS input.  
WE  
Write Enable  
Connects to DDR SDRAM WE input.  
CS[0–1]  
Chip Select 0–1  
Enables specific memory devices or peripherals connected to the bus.  
Note: The address and data bit ordering for the MSC7116 device differs from the MSC810x ordering. For the  
MSC7116 device, bit 0 is the least significant bit.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-5  
Signals/Connections  
1.5 Multiplexed I/O Signal Ports A–D  
Most MSC7116 I/O signals are multiplexed through ports A–D as shown in Figure 1-2. The function of the signals  
in this category depends on when the signals are used and how they are configured:  
• Some configuration signals lines are sampled when the PORESET signal is deasserted. Pulling these signals up or  
down at reset configures specific aspects of device operation after reset.  
• After reset, individual signals are defined by the settings of the Port Configuration Registers, with the following  
constraints:  
Although the four port control registers are 32 bits wide, not all possible signal lines are implemented. The  
four ports support the following number of signal lines:  
Port A supports 29 GPI signals.  
°
°
°
°
Port B does not support GPI signals for mask set 1L44x but supports 1 GPI signal for mask set 1M88B.  
Port C supports 10 GPI signals for mask set 1L44X and 11 GPI signals for mask set 1M88B.  
Port D supports 3 GPI signals for mask set 1L44X and 5 GPI signals for mask set 1M88B.  
The default configuration after reset for all port signals is software-controlled, general-purpose input  
(GPI), but this functionality is not implemented for all signals lines. Signal lines that cannot be defined as  
GPI are reserved. The four ports support the following number GPI signals:  
Port A supports 29 GPO signals.  
°
°
°
°
Port B does not support GPO signals for mask set 1L44X but supports 1 GPO signal for mask set 1M88B.  
Port C supports 10 GPO signals for mask set 1L44X and 11 GPO signals for mask set 1M88B.  
Port D supports 3 GPO signals for mask set 1L44X and 5 GPO signals for mask set 1M88B.  
Port A supports 27 maskable interrupts (IRQ[0–26]) and 1 non-maskable interrupt (NMI) inputs. The NMI input  
line can only be used for this purpose and cannot be configured as any other signal. If the lines are  
configured as interrupt inputs through the Port A Interrupt Enable Register, they are not available for the  
other functions.  
Leaving the port configuration for a signal line as software-controlled and changing the data direction to  
output changes the signal to a general-purpose output (GPO). Selecting this configuration for a port A  
signal disables the associated interrupt function if enabled by the Port A Interrupt Enable Register. The  
four ports support the following number of GPO signals:  
Port A supports 24 GPO signals.  
Port B does not support GPO signals.  
Port C supports 10 GPO signals.  
Port D supports 3 GPO signals.  
°
°
°
°
Changing the port configuration for a signal to hardware-controlled changes the signal functionality to the  
hardware-controlled function. For port A signals, this configuration also disables any associated interrupt  
function. The hardware-controlled function defines the individual signal for one of the supported  
2
interfaces, including TDM0, TDM1, Ethernet, the host interface (HDI16), I C interface, UART (RS-232)  
interface, or the event port. For proper operation, all the required signals in a specified interface must be  
enabled through the port registers and configured correctly through the individual interface configuration  
registers.  
Ports A and D also have an alternate function for some signals. The ports must be configured as hardware-  
controlled and the PAS and PDS bits in the CHPCFG register must be set to select the alternate  
functionality. The alternate signals support a clock output signal. Selecting the alternate function disables  
the specific signals used by the primary hardware-controlled function.  
Note: Refer to the MC711x Reference Manual for details on configuring these signals.  
MSC7116 Technical Data, Rev. 8  
1-6  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
The following subsections describe the individual interfaces supported by the hardware-controlled options and  
indicate the other signals that are multiplexed with the supported signals.  
1.5.1 TDM[0–1] Interface  
Table 1-6. TDM[0–1] Interface Signals  
Pin  
Type  
Input  
Description  
GPIA11  
General-Purpose Input A11 (default)  
When configured through port A bit 11, performs as a general-purpose input.  
IRQ4  
Input  
Interrupt Request 4  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA11  
Output  
General-Purpose Output A11  
When configured through port A bit 11, performs as a general-purpose output.  
T0RCK  
GPIA10  
Input/Output  
Input  
TDM0 Receive Clock  
The receive clock for TDM0. See the MC711x Reference Manual for operation details.  
General-Purpose Input A10 (default)  
When configured through port A bit 10, performs as a general-purpose input.  
IRQ5  
Input  
Interrupt Request 5  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA10  
Output  
General-Purpose Output A10  
When configured through port A bit 10, performs as a general-purpose output.  
T0RFS  
GPIA9  
Input/Output  
Input  
TDM0 Receive Frame Sync  
The receive frame sync for TDM0. See the MC711x Reference Manual for operation details.  
General-Purpose Input A9 (default)  
When configured through port A bit 9, performs as a general-purpose input.  
GPOA9  
Output  
General-Purpose Output A9  
When configured through port A bit 9, performs as a general-purpose output.  
T0RD  
Input/Output  
Input  
TDM0 Receive Data  
The receive data for TDM0. See the MC711x Reference Manual for operation details.  
GPIA8  
General-Purpose Input A8 (default)  
When configured through port A bit 8, performs as a general-purpose input.  
IRQ6  
Input  
Interrupt Request 6  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA8  
Output  
General-Purpose Output A8  
When configured through port A bit 8, performs as a general-purpose output.  
T0TCK  
GPIA7  
Input/Output  
Input  
TDM0 Transmit Clock  
The transmit clock for TDM0. See the MC711x Reference Manual for operation details.  
General-Purpose Input A7 (default)  
When configured through port A bit 7, performs as a general-purpose input.  
IRQ7  
Input  
Interrupt Request 7  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA7  
T0TFS  
Output  
General-Purpose Output A7  
When configured through port A bit 7, performs as a general-purpose output.  
Input/Output  
TDM0 Transmit Frame Sync  
The transmit frame sync for TDM0. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-7  
Signals/Connections  
Table 1-6. TDM[0–1] Interface Signals (Continued)  
Pin  
Type  
Description  
GPIA6  
Input  
General-Purpose Input A9 (default)  
When configured through port A bit 6, performs as a general-purpose input.  
GPOA6  
Output  
General-Purpose Output A6  
When configured through port A bit 6, performs as a general-purpose output.  
T0TD  
Input/Output  
Input  
TDM0 Transmit Data  
The transmit data for TDM0. See the MC711x Reference Manual for operation details.  
GPIA5  
General-Purpose Input A5 (default)  
When configured through port A bit 5, performs as a general-purpose input.  
IRQ0  
Input  
Interrupt Request 0  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA5  
Output  
General-Purpose Output A5  
When configured through port A bit 5, performs as a general-purpose output.  
T1RCK  
GPIA4  
Input/Output  
Input  
TDM1 Receive Clock  
The receive clock for TDM1. See the MC711x Reference Manual for operation details.  
General-Purpose Input A4 (default)  
When configured through port A bit 4, performs as a general-purpose input.  
IRQ1  
Input  
Interrupt Request 1  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA4  
Output  
General-Purpose Output A4  
When configured through port A bit 4, performs as a general-purpose output.  
T1RFS  
GPIA3  
Input/Output  
Input  
TDM1 Receive Frame Sync  
The receive frame sync for TDM1. See the MC711x Reference Manual for operation details.  
General-Purpose Input A3 (default)  
When configured through port A bit 3, performs as a general-purpose input.  
IRQ8  
Input  
Interrupt Request 8  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA3  
Output  
General-Purpose Output A3  
When configured through port A bit 3, performs as a general-purpose output.  
T1RD  
Input/Output  
Input  
TDM1 Receive Data  
The receive data for TDM1. See the MC711x Reference Manual for operation details.  
GPIA2  
General-Purpose Input A2 (default)  
When configured through port A bit 2, performs as a general-purpose input.  
IRQ9  
Input  
Interrupt Request 9  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA2  
T1TCK  
Output  
General-Purpose Output A2  
When configured through port A bit 2, performs as a general-purpose output.  
Input/Output  
TDM1 Transmit Clock  
The transmit clock for TDM1. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
1-8  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
Table 1-6. TDM[0–1] Interface Signals (Continued)  
Pin  
Type  
Input  
Description  
GPIA1  
General-Purpose Input A1 (default)  
When configured through port A bit 1, performs as a general-purpose input.  
IRQ10  
Input  
Interrupt Request 10  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA1  
Output  
General-Purpose Output A1  
When configured through port A bit 1, performs as a general-purpose output.  
T1TFS  
GPIA0  
Input/Output  
Input  
TDM1 Transmit Frame Sync  
The transmit frame sync for TDM1. See the MC711x Reference Manual for operation details.  
General-Purpose Input A9 (default)  
When configured through port A bit 6, performs as a general-purpose input.  
IRQ11  
GPOA0  
T1TD  
Input  
Interrupt Request 11  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
Output  
General-Purpose Output A0  
When configured through port A bit 0, performs as a general-purpose output.  
Input/Output  
TDM1 Transmit Data  
The transmit data for TDM1. See the MC711x Reference Manual for operation details.  
1.5.2 Ethernet Interface  
Table 1-7. Ethernet Interface Signals  
Pin  
Data Flow  
Description  
GPIA20  
Input  
General-Purpose Input A20 (default)  
When configured through port A bit 20, performs as a general-purpose input.  
IRQ20  
Input  
Interrupt Request 20  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA20  
Output  
General-Purpose Output A20  
When configured through port A bit 20, performs as a general-purpose output.  
TXD0  
Output  
Input  
Transmit Data 0  
MII and RMII transmit data bit 0. See the MC711x Reference Manual for operation details.  
GPIA19  
General-Purpose Input A19 (default)  
When configured through port A bit 19, performs as a general-purpose input.  
IRQ19  
GPOA19  
TXD1  
Input  
Interrupt Request 19  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
Output  
Output  
General-Purpose Output A19  
When configured through port A bit 19, performs as a general-purpose output.  
Transmit Data 1  
MII and RMII transmit data bit 1. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-9  
Signals/Connections  
Table 1-7. Ethernet Interface Signals  
Pin  
Data Flow  
Description  
GPID4  
Input  
General-Purpose Input D4 (default)  
When configured through port D bit 4, performs as a general-purpose input.  
GPOD4  
TXD2  
Output  
Output  
General-Purpose Output D4  
When configured through port D bit 4, performs as a general-purpose output.  
Transmit Data 2  
MII transmit data bit 2. For RMII mode, this signal is reserved. See the MC711x Reference Manual  
for operation details.  
Reserved  
GPIA27  
Input/Output  
Input  
Reserved D4 (alternate hardware function)  
When configured through port D bit 4, a reserved signal.  
General-Purpose Input A27 (default)  
When configured through port A bit 27, performs as a general-purpose input.  
IRQ19  
GPOA27  
TXD3  
Input  
Interrupt Request 16  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
Output  
Output  
General-Purpose Output A27  
When configured through port A bit 27, performs as a general-purpose output.  
Transmit Data 3  
MII transmit data bit 3. For RMII mode, this signal is reserved. See the MC711x Reference Manual  
for operation details.  
Reserved  
GPIA22  
Input/Output  
Input  
Reserved A27 (alternate hardware function  
When configured through port A bit 27, a reserved signal.  
General-Purpose Input A22 (default)  
When configured through port A bit 22, performs as a general-purpose input.  
IRQ22  
Input  
Interrupt Request 22  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA22  
Output  
General-Purpose Output A22  
When configured through port A bit 22, performs as a general-purpose output.  
RXD0  
Input  
Input  
Receive Data 0  
MII and RMII receive data bit 0. See the MC711x Reference Manual for operation details.  
GPIA21  
General-Purpose Input A21 (default)  
When configured through port A bit 21, performs as a general-purpose input.  
IRQ21  
Input  
Interrupt Request 21  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA21  
RXD1  
Output  
Input  
General-Purpose Output A21  
When configured through port A bit 21, performs as a general-purpose output.  
Receive Data 1  
MII and RMII receive data bit 1. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
1-10  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
Table 1-7. Ethernet Interface Signals  
Pin  
Data Flow  
Description  
GPID6  
Input  
General-Purpose Input D6 (default)  
When configured through port D bit 6, performs as a general-purpose input.  
GPOD6  
RXD2  
Output  
Input  
General-Purpose Output D6  
When configured through port D bit 6, performs as a general-purpose output.  
Receive Data 2  
MII receive data bit 2. For RMII mode, this signal is reserved. See the MC711x Reference Manual  
for operation details.  
Reserved  
GPIA29  
Input/Output  
Input  
Reserved D6 (alternate hardware function)  
When configured through port D bits, this signal is reserved.  
General-Purpose Input A29 (default)  
When configured through port A bit 29, performs as a general-purpose input.  
IRQ18  
Input  
Interrupt Request 18  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA29  
RXD3  
Output  
Input  
General-Purpose Output A29  
When configured through port A bit 29, performs as a general-purpose output.  
Receive Data 3  
MII receive data bit 3. For RMII mode, this signal is reserved. See the MC711x Reference Manual  
for operation details.  
Reserved  
GPIA23  
Input/Output  
Input  
Reserved A29 (alternate hardware function)  
When configured through port A bit 29, a reserved signal.  
General-Purpose Input A23 (default)  
When configured through port A bit 23, performs as a general-purpose input.  
IRQ23  
Input  
Interrupt Request 23  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA23  
TXCLK  
Output  
Input  
General-Purpose Output A23  
When configured through port A bit 23, performs as a general-purpose output.  
Transmit Clock  
MII transmit clock. See the MC711x Reference Manual for operation details.  
REFCLK  
GPIA24  
Input  
Input  
Reference Clock  
RMII reference clock. See the MC711x Reference Manual for operation details.  
General-Purpose Input A24 (default)  
When configured through port A bit 24, performs as a general-purpose input.  
IRQ24  
Input  
Interrupt Request 24  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA24  
TX_EN  
Output  
Output  
General-Purpose Output A24  
When configured through port A bit 24, performs as a general-purpose output.  
Transmit Data Valid  
MII and RMII transmit data valid. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-11  
Signals/Connections  
Table 1-7. Ethernet Interface Signals  
Pin  
Data Flow  
Description  
GPIA28  
Input  
General-Purpose Input A28 (default)  
When configured through port A bit 28, performs as a general-purpose input.  
IRQ17  
Input  
Interrupt Request 17  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA28  
TX_ER  
Output  
Output  
General-Purpose Output A28  
When configured through port A bit 28, performs as a general-purpose output.  
Transmit Error  
MII transmit error. For RMII mode, this signal is reserved. See the MC711x Reference Manual for  
operation details.  
Reserved  
GPID5  
Input/Output  
Input  
Reserved A28 (alternate hardware function)  
When configured through port A bit 28, a reserved signal.  
General-Purpose Input D5 (default)  
When configured through port D bit 5, performs as a general-purpose input.  
GPOD5  
RXCLK  
Output  
Input  
General-Purpose Output D5  
When configured through port D bit 5, performs as a general-purpose output.  
Receive Clock  
MII receive clock. For RMII mode, this signal is reserved. See the MC711x Reference Manual for  
operation details.  
Reserved  
GPIA25  
Input/Output  
Input  
Reserved D5 (alternate hardware function)  
When configured through port D bit 5, a reserved signal.  
General-Purpose Input A25 (default)  
When configured through port A bit 25, performs as a general-purpose input.  
IRQ25  
Input  
Interrupt Request 25  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA25  
RX_DV  
Output  
Input  
General-Purpose Output A25  
When configured through port A bit 25, performs as a general-purpose output.  
Receive Data Valid  
MII receive data valid. See the MC711x Reference Manual for operation details.  
CRS_DV  
GPIA26  
Input  
Input  
Carrier Sense/Receive Data Valid  
RMII carrier sense/receive data valid. See the MC711x Reference Manual for operation details.  
General-Purpose Input A26 (default)  
When configured through port A bit 26, performs as a general-purpose input.  
IRQ26  
Input  
Interrupt Request 26  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA26  
Output  
General-Purpose Output A26  
When configured through port A bit 26, performs as a general-purpose output.  
RX_ER  
Input  
Input  
Receive Error  
MII and RMII receive error. See the MC711x Reference Manual for operation details.  
Reserved  
Reserved D0 (default)  
When configured through port D bit 0, a reserved signal.  
COL  
Input  
Collision  
MII collision. In RMII mode, this signal is reserved. See the MC711x Reference Manual for  
operation details.  
MSC7116 Technical Data, Rev. 8  
1-12  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
Table 1-7. Ethernet Interface Signals  
Pin  
Data Flow  
Description  
Reserved  
Input  
Reserved D1 (default)  
When configured through port D bit 1, a reserved signal.  
CRS  
Input  
Carrier Sense  
MII carrier sense. In RMII mode, this signal is reserved. See the MC711x Reference Manual for  
operation details.  
Reserved  
MDC  
Input  
Reserved D2 (default)  
When configured through port D bit 2, a reserved signal.  
Output  
Management Clock  
MII and RMII management clock. See the MC711x Reference Manual for operation details.  
Host 8/16 Bit Mode  
H8BIT  
Input  
This pin is sampled at the deassertion of PORESET. If the line is pulled up at reset, the HDI16  
operates in 8-bit mode when enabled. If the line is pulled down at reset, the HDI16 operates in 16-  
bit mode.  
Reserved  
MDIO  
Input  
Reserved D3 (default)  
When configured through port D bit 3, a reserved signal.  
Input/Output  
Management Data  
MII and RMII management data. See the MC711x Reference Manual for operation details.  
1.5.3 Host Interface Port  
Table 1-8. Host Interface Signals  
Pin  
Data Flow  
Description  
Reserved or  
GPIC11  
Input  
Reserved C11 or General-Purpose Input C11 (default)  
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a general-purpose  
input (mask set 1M88B).  
Reserved or  
GPOC11  
Output  
Reserved C11 or General-Purpose Output C11  
When configured through port C bit 11, a reserved signal (mask set 1L44X) or a general-purpose  
output (mask set 1M88B).  
HA3  
Input  
Input  
Host Address 3  
Host address line 3. Tie this signal to ground.  
Reserved  
Reserved C10–C8 (default)  
When configured through port C bits 10–8, reserved signals.  
HA[2–0]  
Input  
Input  
Host Address 2–0  
Host address bus. See the MC711x Reference Manual for operation details.  
GPIC[7–0]  
General-Purpose Inputs C7–C0 (default)  
When configured through port C bits 7–0, perform as a general-purpose inputs.  
GPOC[7–0]  
HD[15–8]  
Output  
General-Purpose Outputs C7–C0  
When configured through port C bits 7–0, perform as a general-purpose outputs.  
Input/Output  
Host Data Bus (Upper Half)  
The host data bus is used to access the internal host registers. See the MC711x Reference Manual  
for operation details.  
Reserved  
HD[7–0]  
Input  
Reserved B7–B0 (default)  
When configured through port B bits 7–0, reserved signals.  
Input/Output  
Host Data Bus (Lower Half)  
The host data bus is used to access the internal host registers. See the MC711x Reference Manual  
for operation details.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-13  
Signals/Connections  
Table 1-8. Host Interface Signals (Continued)  
Pin  
Data Flow  
Description  
Reserved  
Input  
Reserved B10 (default)  
When configured through port B bit 10, reserved signal.  
HCS1/HCS1  
Input  
Host Chip Select 1  
When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity of this pin  
is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2 with appropriate  
polarity.  
Reserved or  
GPIB11  
Input  
Reserved B11 or General-Purpose Input B11 (default)  
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a general-purpose  
input (mask set 1M88B).  
Reserved or  
GPOB11  
Output  
Input  
Reserved B11 or General-Purpose Output B11  
When configured through port B bit 11, a reserved signal (mask set 1L44X) or a general-purpose  
output (mask set 1M88B).  
HCS2/HCS2  
Host Chip Select 2  
When the HDI16 interface is enabled, this is one of the two chip-select pins. The polarity of this pin  
is programmable. The HDI16 chip select is a logical OR of HCS1 and HCS2 with appropriate  
polarity.  
Reserved  
HRW  
Input  
Input  
Reserved B12 (default)  
When configured through port B bit 12, reserved signal.  
Host Read Write  
When HDI16 is configured to work in single strobe mode, this is the Read/Write input (HRW).  
Host Read Data Strobe  
HRD/HRD  
Reserved  
Input  
Input  
When HDI16 is programmed to interface a double data strobe host bus, this pin is the Read Data  
Strobe input (HRD). The polarity of the data strobe is programmable.  
Reserved B13 (default)  
When configured through port B bit 13, reserved signal.  
HDS/HDS  
Input  
Input  
Host Data Strobe  
When the HDI16 is programmed to interface a single data strobe host bus, this pin is the Data  
Strobe input (HDS). The polarity of the data strobe is programmable.  
HWR/HWR  
Host Write Data Strobe  
When the HDI16 is programmed to interface a double data strobe host bus, this pin is the Write  
Data Strobe input (HWR). The polarity of the data strobe is programmable.  
Reserved  
HDDS  
Input  
Input  
Reserved B14 (default)  
When configured through port B bit 14, reserved signal.  
Host Dual Data Strobe  
When the HDI16 is enabled, this pin indicates whether to use Single or Dual Data Strobe mode.  
MSC7116 Technical Data, Rev. 8  
1-14  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
Table 1-8. Host Interface Signals (Continued)  
Pin  
Data Flow  
Description  
Reserved  
Input  
Reserved B8 (default)  
When configured through port B bit 8, reserved signal.  
HREQ/HREQ  
HTRQ/HTRQ  
HDSP  
Output  
Output  
Input  
Host Request  
When the HDI16 is programmed to interface a single host request host bus, this pin is the Host  
Request output (HREQ). The polarity of the host request is programmable. The host request may  
be programmed as a driven or open-drain output.  
When configured for open drain, an external pull-up must be used on this pin.  
Host Transmit Request  
When the HDI16 is programmed to interface a double host request host bus, this pin is the Transmit  
Host Request output (HTRQ). The polarity of the host request is programmable. The host request  
may be programmed as a driven or open-drain output.  
When configured for open drain, an external pull-up must be used on this pin.  
Host Data Strobe Polarity  
This pin is sampled at the deassertion of PORESET. This pin defines the polarity of host port read-  
write strobes.  
Reserved  
Input  
Input  
Reserved B9 (default)  
When configured through port B bit 9, reserved signal.  
HACK/HACK  
Host Acknowledge  
When the HDI16 is programmed to interface a single host request host bus, this pin is the Host  
Acknowledge input (HACK). The polarity of the host acknowledge is programmable.  
HRRQ/HRRQ  
Output  
Host Receive Request  
When the HDI16 is programmed to interface a double host request host bus, this pin is the Receive  
Host Request output (HRRQ). The polarity of the host request is programmable. The host request  
may be programmed as a driven or open-drain output.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-15  
Signals/Connections  
1.5.4 I2C Port  
Table 1-9. I2C Signals  
Description  
Pin  
Data Flow  
GPIA15  
Input  
General-Purpose Input A15 (default)  
When configured through port A bit 15, performs as a general-purpose input.  
IRQ14  
GPOA15  
SCL  
Input  
Interrupt Request 14  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
Output  
Input/Output  
General-Purpose Output A15  
When configured through port A bit 15, performs as a general-purpose output.  
2
I C Clock  
2
2
The I C clock signal. For I C, use an external pull-up on this pin. See the MC711x Reference  
Manual for operation details.  
GPIA14  
IRQ15  
GPOA14  
SDA  
Input  
General-Purpose Input A14 (default)  
When configured through port A bit 14, performs as a general-purpose input.  
Input  
Interrupt Request 15  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
Output  
Input/Output  
General-Purpose Output A14  
When configured through port A bit 14, performs as a general-purpose output.  
2
I C Data  
2
2
I C data signal. When used for I C, use an external pull-up on this pin. See the MC711x Reference  
Manual for operation details.  
1.5.5 UART Port  
Table 1-10. UART Signals  
Pin  
Data Flow  
Description  
GPIA13  
Input  
General-Purpose Input A13 (default)  
When configured through port A bit 13, performs as a general-purpose input.  
IRQ2  
Input  
Interrupt Request 2  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA13  
Output  
General-Purpose Output A13  
When configured through port A bit 13, performs as a general-purpose output.  
URXD  
Input  
Input  
UART Receive Data  
UART receive data line.  
GPIA12  
General-Purpose Input A12 (default)  
When configured through port A bit 12, performs as a general-purpose input.  
IRQ3  
Input  
Interrupt Request 3  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA12  
UTXD  
Output  
Output  
General-Purpose Output A12  
When configured through port A bit 12, performs as a general-purpose output.  
UART Transmit Data  
UART transmit data line.  
MSC7116 Technical Data, Rev. 8  
1-16  
Freescale Semiconductor  
Multiplexed I/O Signal Ports A–D  
1.5.6 Event Port  
Table 1-11. Event Port Signals  
Description  
Pin  
Data Flow  
Reserved  
Input  
Reserved PC13 (default)  
When configured through port C bit 13, reserved signal.  
EVNT0  
GPIA17  
Input/  
Output  
Event 0  
Provides input and output events to the system control unit event multiplexers.  
Input  
General-Purpose Input A17 (default)  
When configured through port A bit 17, performs as a general-purpose input.  
IRQ13  
Input  
Interrupt Request 13  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA17  
EVNT1  
Output  
General-Purpose Output A17  
When configured through port A bit 17, performs as a general-purpose output.  
Input/  
Event 1  
Output  
Provides input and output events to the system control unit event multiplexers.  
CLKO  
Output  
Input  
CLKO  
Output clock signal when the function is enabled.  
GPIC14  
General-Purpose Input C14 (default)  
When configured through port C bit 14, performs as a general-purpose input.  
GPOC14  
EVNT2  
BM0  
Output  
General-Purpose Output C14  
When configured through port C bit 14, performs as a general-purpose output.  
Input/  
Output  
Event 2  
Provides input and output events to the system control unit event multiplexers.  
Input  
Boot Mode 0  
This pin is sampled at the deassertion of PORESET. With BM1, the value of this signal  
defines the boot mode of the MSC7116. See the MC711x Reference Manual for operation details.  
GPIC15  
GPOC15  
EVNT3  
BM1  
Input  
General-Purpose Input C15 (default)  
When configured through port C bit 15, performs as a general-purpose input.  
Output  
General-Purpose Output C15  
When configured through port C bit 15, performs as a general-purpose output.  
Input/  
Output  
Event 3  
Provides input and output events to the system control unit event multiplexers.  
Input  
Boot Mode 1  
This pin is sampled at the deassertion of PORESET. With BM0, the value of this signal  
defines the boot mode of the MSC7116. See the MC711x Reference Manual for operation details.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-17  
Signals/Connections  
Table 1-11. Event Port Signals  
Description  
Pin  
Data Flow  
GPIA16  
Input  
General-Purpose Input A16 (default)  
When configured through port A bit 16, performs as a general-purpose input.  
IRQ12  
Input  
Interrupt Request 12  
One of the 27 maskable interrupts that can be configured for the MSC7116 device.  
GPOA16  
EVNT4  
Output  
General-Purpose Output A16  
When configured through port A bit 16, performs as a general-purpose output.  
Input/  
Event 4  
Output  
Provides input and output events for the system control unit event multiplexers. Can be used to  
indicate that the SC1400 core is in Debug mode.  
SWTE  
Input  
Input  
Software Watchdog Timer Disable  
This pin is sampled at the deassertion of PORESET. If the signal is sampled high, the watchdog  
timer is enabled. If it is sampled low, the watchdog timer is disabled.  
Reserved  
Reserved PC12 (default)  
When configured through port C bit 12, reserved signal.  
EE0/DBREQ  
Input/  
OCE Event Bit 0/Debug Request  
Output  
Debug port EE0 functionality is detected by EDCA0 when EE0DEF=00, which generates an OCE  
event or enables EDCA0 when EE0DEF=10 in the SC1400 EE_CTRL register. When the port is  
programmed for Debug mode (EE0DEF=11 in the SC1400 EE_CTRL register, asserting this signal  
causes the core to enter Debug mode.  
1.5.7 Boot Mode 3–2 (implemented in mask set 1M88B only)  
Table 1-12. BM[3–2] Signals  
Pin  
Data Flow  
Description  
Reserved or  
GPID8  
Input  
Reserved D8 or General-Purpose Input D8 (default)  
When configured through port D bit 8, a reserved signal (mask set 1L44X) or a general-purpose  
input (mask set 1M88B).  
Reserved or  
GPOD8  
Output  
Input  
Reserved D8 or General-Purpose Output D8  
When configured through port D bit 8, a reserved signal (mask set 1L44X) or a general-purpose  
output (mask set 1M88B).  
BM3  
Boot Mode 3  
For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along with  
BM[0–2] the value of this signal defines the boot mode for the device. For designs developed using  
the 1L44X mask set, this signal can be left unconnected.  
Reserved or  
GPID7  
Input  
Reserved D7 or General-Purpose Input D7 (default)  
When configured through port D bit 7, a reserved signal (mask set 1L44X) or a general-purpose  
input (mask set 1M88B).  
Reserved or  
GPOD7  
Output  
Input  
Reserved B11 or General-Purpose Output B11  
When configured through port D bit 7, a reserved signal (mask set 1L44X) or a general-purpose  
output (mask set 1M88B).  
BM2  
Boot Mode 2  
For the 1M88B mask set only, this pin is sampled at the deassertion of PORESET. Along with  
BM[0–1] and BM3, the value of this signal defines the boot mode for the device. For designs  
developed using the 1L44X mask set, this signal can be left unconnected.  
MSC7116 Technical Data, Rev. 8  
1-18  
Freescale Semiconductor  
OCE Event and JTAG Test Access Port  
1.5.8 NMI  
Table 1-13. NMI Signal  
Signal Description  
Signal Name  
Type  
Reserved  
Input  
Reserved A18 (default)  
When configured through port A bit 18, reserved signal.  
NMI  
Input  
Non-Maskable Interrupt  
External device may assert this line to generate a non-maskable interrupt to the MSC7116 device.  
1.6 OCE Event and JTAG Test Access Port  
The MSC7116 supports the standard set of test access port (TAP) signals defined by IEEE® Std 1149.1™ Test  
Access Port and Boundary-Scan Architecture specification and described in Table 1-14. The TPSEL pin should be  
tied to GND to access the TAP.  
Table 1-14. OCE Event and JTAG TAP Signals  
Pin  
Data Flow  
Description  
TCK  
TDI  
Input  
Test Clock (JTAG)  
Clock input for the MSC7116 JTAG controller to synchronize the test logic.  
Input  
Test Data In (JTAG)  
A test data input (with an internal pull-up resistor) that is sampled on the rising edge of TCK.  
TDO  
Output  
Test Data Out (JTAG)  
A data output that can be three-stated and actively driven in the shift-IR and shift-DR controller  
states. TDO changes on the falling edge of TCK.  
TMS  
Input  
Test Mode Select (JTAG)  
A test mode select input (with an internal pull-up resistor) that is sampled on the rising edge of TCK  
to sequence the TAP controllers state machine.  
TRST  
Input  
Input  
Test Reset (JTAG)  
The reset input to the MSC7116 JTAG controller (with an internal pull-up resistor).  
TPSEL  
Tap Select  
When deasserted, the Boundary Scan TAP controller is selected, allowing for boundary scan. When  
asserted, the Debug TAP controller is selected, allowing access to the OCE port.  
1.7 Reserved Signals  
Table 1-15. Reserved Signals  
Signal Description  
Signal Name  
Type  
TEST0  
Input  
Test  
For manufacturing testing. You must connect this pin to GND.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
1-19  
Signals/Connections  
MSC7116 Technical Data, Rev. 8  
1-20  
Freescale Semiconductor  
Specifications  
2
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC  
timing specifications. For additional information, see the MSC711x Reference Manual.  
Note: The MSC7116 electrical specifications are preliminary and many are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after thorough characterization and device qualifications have been  
completed.  
2.1 Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage  
due to high static voltage or electrical fields; however,  
normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for  
example, either GND or V ).  
DD  
In calculating timing requirements, adding a maximum value of one specification to a minimum value of another  
specification does not yield a reasonable sum. A maximum specification is calculated using a worst case variation  
of process parameter values in one direction. The minimum specification is calculated using the worst case for the  
same parameters in the opposite direction. Therefore, a “maximum” value for a specification never occurs in the  
same device with a “minimum” value for another specification; adding a maximum to a minimum represents a  
condition that can never exist.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-1  
Specifications  
Table 2-1 describes the maximum electrical ratings for the MSC7116.  
Table 2-1. Absolute Maximum Ratings  
Rating  
Symbol  
Value  
Unit  
Core supply voltage  
Memory supply voltage  
PLL supply voltage  
I/O supply voltage  
Input voltage  
V
V
1.5  
V
V
DDC  
DDM  
4.0  
1.5  
V
V
DDPLL  
V
–0.2 to 4.0  
(GND – 0.2) to 4.0  
4.0  
V
DDIO  
V
V
IN  
Reference voltage  
V
V
REF  
Maximum operating temperature  
T
105  
°C  
°C  
°C  
J
Minimum operating temperature  
T
–40  
A
Storage temperature range  
T
–55 to +150  
STG  
Notes: 1. Functional operating conditions are given in Table 2-2.  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the listed limits may affect device reliability or cause permanent damage.  
3. Section 4.1, Thermal Design Considerations includes a formula for computing the chip junction temperature (T ).  
J
2.2 Recommended Operating Conditions  
Table 2-2 lists recommended operating conditions. Proper device operation outside of these conditions is not  
guaranteed.  
Table 2-2. Recommended Operating Conditions  
Rating  
Symbol  
Value  
Unit  
Core supply voltage  
Memory supply voltage  
PLL supply voltage  
V
V
1.14 to 1.26  
2.38 to 2.63  
1.14 to 1.26  
3.14 to 3.47  
1.19 to 1.31  
V
V
V
V
V
DDC  
DDM  
V
DDPLL  
I/O supply voltage  
V
DDIO  
Reference voltage  
V
REF  
Operating temperature range  
T
maximum: 105  
minimum: –40  
°C  
°C  
J
T
A
MSC7116 Technical Data, Rev. 8  
2-2  
Freescale Semiconductor  
Thermal Characteristics  
2.3 Thermal Characteristics  
Table 2-3 describes thermal characteristics of the MSC7116 for the MAP-BGA package.  
Table 2-3. Thermal Characteristics for MAP-BGA Package  
MAP-BGA 17 × 17 mm5  
Characteristic  
Symbol  
Unit  
Natural  
200 ft/min  
Convection  
(1 m/s) airflow  
1, 2  
Junction-to-ambient  
R
R
R
R
39  
23  
12  
7
31  
20  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJA  
θJB  
θJC  
1, 3  
Junction-to-ambient, four-layer board  
4
Junction-to-board  
5
Junction-to-case  
6
Junction-to-package-top  
Ψ
2
JT  
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
Section 4.1, Thermal Design Considerations explains these characteristics in detail.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-3  
Specifications  
2.4 DC Electrical Characteristics  
This section describes the DC electrical characteristics for the MSC7116.  
Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example,  
both VDDIO and VDDC vary by +2 percent or both vary by –2 percent).  
Table 2-4. DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Core and PLL voltage  
V
1.14  
1.2  
1.26  
V
DDC  
V
DDPLL  
1
DRAM interface I/O voltage  
I/O voltage  
V
2.375  
3.135  
2.5  
3.3  
2.625  
3.465  
V
V
DDM  
V
DDIO  
2
DRAM interface I/O reference voltage  
V
0.49 × V  
1.25  
0.51 × V  
DDM  
V
REF  
DDM  
3
DRAM interface I/O termination voltage  
Input high CLKIN voltage  
VTT  
V
– 0.04  
V
V + 0.04  
REF  
V
REF  
REF  
REF  
V
2.4  
3.0  
3.465  
V + 0.3  
DDM  
V
IHCLK  
DRAM interface input high I/O voltage  
DRAM interface input low I/O voltage  
V
V
+ 0.28  
V
V
IHM  
DDM  
V
–0.3  
GND  
V
– 0.18  
REF  
V
ILM  
Input leakage current, V = V  
I
–1.0  
0.09  
1
µA  
µA  
µA  
IN  
DDIO  
IN  
V
input leakage current  
I
5
1
REF  
VREF  
Tri-state (high impedance off state) leakage current,  
= V  
I
–1.0  
0.09  
OZ  
V
IN  
DDIO  
Signal low input current, V = 0.4 V  
I
–1.0  
–1.0  
2.0  
0.09  
0.09  
3.0  
0
1
1
µA  
µA  
V
IL  
L
Signal high input current, V = 2.0 V  
I
IH  
H
Output high voltage, I = –2 mA, except open drain pins  
V
OH  
OH  
Output low voltage, I = 5 mA  
V
0.4  
V
OL  
OL  
5
Typical core power  
P
C
at 200 MHz  
at 266 MHz (mask set 1M88B only)  
222  
293  
mW  
mW  
Notes: 1. The value of V  
at the MSC7116 device must remain within 50 mV of V  
at the DRAM device at all times.  
DDM  
DDM  
2.  
V
must be equal to 50% of V  
and track V  
variations as measured at the receiver. Peak-to-peak noise must not  
REF  
DDM  
DDM  
exceed 2% of the DC value.  
is not applied directly to the MSC7116 device. It is the level measured at the far end signal termination. It should be equal  
3.  
V
TT  
to V  
. This rail should track variations in the DC level of V  
.
REF  
REF  
4. Output leakage for the memory interface is measured with all outputs disabled, 0 V V  
V  
.
OUT  
DDM  
5. The core power values were measured.using a standard EFR pattern at typical conditions (25°C, 200 MHz or 266 MHz, 1.2 V  
core).  
Table 2-5 lists the DDR DRAM capacitance.  
Table 2-5. DDR DRAM Capacitance  
Parameter/Condition  
Symbol  
Max  
Unit  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note: These values were measured under the following conditions:  
• V = 2.5 V 0.125 V  
C
30  
30  
pF  
pF  
IO  
C
DIO  
DDM  
• f = 1 MHz  
• T = 25° C  
A
• V  
• V  
= V  
/2  
OUT  
OUT  
DDM  
(peak to peak) = 0.2 V  
MSC7116 Technical Data, Rev. 8  
2-4  
Freescale Semiconductor  
AC Timings  
2.5 AC Timings  
This section presents timing diagrams and specifications for individual signals and parallel I/O outputs and inputs.  
All AC timings are based on a 30 pF load, except where noted otherwise, and a 50 transmission line. For any  
additional pF, use the following equations to compute the delay:  
Standard interface: 2.45 + (0.054 × C ) ns  
load  
DDR interface: 1.6 + (0.002 × C ) ns  
load  
2.5.1 Clock and Timing Signals  
The following tables describe clock signal characteristics. Table 2-6 shows the maximum frequency values for  
internal (core, reference, and peripherals) and external (CLKO) clocks. You must ensure that maximum frequency  
values are not exceeded (see for the allowable ranges when using the PLL).  
Table 2-6. Maximum Frequencies  
Maximum in MHz  
Characteristic  
Mask Set 1L44X  
Mask Set 1M88B  
Core clock frequency (CLOCK)  
200  
50  
266  
67  
External output clock frequency (CLKO)  
Memory clock frequency (CK, CK)  
TDM clock frequency (TxRCK, TxTCK)  
100  
50  
133  
67  
Table 2-7. Clock Frequencies in MHz  
Max  
Characteristic  
Symbol  
Min  
Mask Set 1L44X  
Mask Set 1M88B  
CLKIN frequency  
F
F
10  
100  
200  
100  
50  
100  
266  
133  
50  
CLKIN  
CLOCK frequency  
CORE  
CK, CK frequency  
F
CK  
TDMxRCK, TDMxTCK frequency  
CLKO frequency  
F
TDMCK  
F
F
50  
67  
CKO  
AHB/IPBus/APB clock frequency  
100  
133  
BCK  
Note:  
The rise and fall time of external clocks should be 5 ns maximum  
Table 2-8. System Clock Parameters  
Characteristic  
Min  
Max  
Unit  
CLKIN frequency  
10  
100  
5
MHz  
ns  
CLKIN slope  
CLKIN frequency jitter (peak-to-peak)  
CLKO frequency jitter (peak-to-peak)  
1000  
150  
ps  
ps  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-5  
Specifications  
2.5.2 Configuring Clock Frequencies  
This section describes important requirements for configuring clock frequencies in the MSC7116 device when  
using the PLL block. To configure the device clocking, you must program four fields in the Clock Control Register  
(CLKCTL):  
PLLDVF field. Specifies the PLL division factor. The output of the divider block is the input to the  
multiplier block.  
PLLMLTF field. Specifies the PLL multiplication factor. The output from the multiplier block is the VCO.  
RNG field. Selects the available PLL frequency range.  
CKSEL field. Selects the source for the core clock.  
There are restrictions on the frequency range permitted at the beginning of the multiplication portion of the PLL  
that affect the allowable values for the PLLDVF and PLLMLTF fields. The following sections define these  
restrictions and provide guidelines to configure the device clocking when using the PLL. Refer to the Clock and  
Power Management chapter in the MSC711x Reference Manual for details on the clock programming model.  
2.5.2.1  
PLL Multiplier Restrictions  
There are two restrictions for correct usage of the PLL block:  
The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range  
10.5–19.5 MHz.  
The output frequency of the PLL multiplier must be in the range 300-600 MHz.  
When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you  
must meet these constraints.  
2.5.2.2  
Division Factors and Corresponding CLKIN Frequency Range  
The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in Table 2-9.  
Table 2-9. CLKIN Frequency Ranges by Divide Factor Value  
PLLDVF  
Field Value  
Divide  
Factor  
CLKIN Frequency Range  
Comments  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
1
2
3
4
5
6
7
8
9
10.5 to 19.5 MHz  
21 to 39 MHz  
Pre-Division by 1  
Pre-Division by 2  
Pre-Division by 3  
Pre-Division by 4  
Pre-Division by 5  
Pre-Division by 6  
Pre-Division by 7  
Pre-Division by 8  
Pre-Division by 9  
31.5 to 58.5 MHz  
42 to 78 MHz  
52.5 to 97.5 MHz  
63 to 100 MHz  
73.5 to 100 MHz  
84 to 100 MHz  
94.5 to 100 MHz  
Note:  
The maximum CLKIN frequency is 100 MHz. Therefore, the PLLDVF value must be in the range from 1–9.  
MSC7116 Technical Data, Rev. 8  
2-6  
Freescale Semiconductor  
AC Timings  
2.5.2.3  
Multiplication Factor Range  
The multiplier block output frequency ranges depend on the input clock frequency as shown in Table 2-10.  
Table 2-10. PLLMLTF Ranges  
Multiplier Block (Loop) Output Range  
Minimum PLLMLTF Value Maximum PLLMLTF Value  
300 [Pre-Divided Clock × (PLLMLTF + 1)] 600 MHz  
300/Pre-Divided Clock  
600/Pre-Divided Clock  
Note:  
This table results from the allowed range for F  
frequency of the Pre-Divided Clock.  
. The minimum and maximum multiplication factors are dependent on the  
Loop  
2.5.2.4  
Allowed Core Clock Frequency Range  
The frequency delivered to the core, extended core, and peripheral depends on the value of the CLKCTRL[RNG]  
bit as shown in Table 2-11.  
Table 2-11. Fvco Frequency Ranges  
CLKCTRL[RNG] Value  
Allowed Range of Fvco  
1
0
300 F  
150 F  
600 MHz  
300 MHz  
vco  
vco  
Note:  
This table results from the allowed range for F , which is F  
modified by CLKCTRL[RNG].  
Loop  
vco  
This bit along with the CKSEL determines the frequency range of the core clock.  
Table 2-12. Resulting Ranges Permitted for the Core Clock  
Resulting  
Division  
Factor  
Allowed Range  
of Core Clock  
CLKCTRL[CKSEL]  
CLKCTRL[RNG]  
Comments  
11  
11  
01  
01  
1
0
1
0
1
2
2
4
Reserved  
Reserved  
150 Core_Clk 200 MHz  
150 Core_Clk 200 MHz  
75 Core_Clk 150 MHz  
Limited by range of PLL  
Limited by range of PLL  
Limited by range of PLL  
Note:  
This table results from the allowed range for F  
, which depends on clock selected via CLKCTRL[CKSEL].  
OUT  
2.5.2.5  
Core Clock Frequency Range When Using DDR Memory  
The core clock can also be limited by the frequency range of the DDR devices in the system. Table 2-13  
summarizes this restriction.  
Table 2-13. Core Clock Ranges When Using DDR  
Allowed Frequency  
Range for DDR CK  
Corresponding Range  
for the Core Clock  
DDR Type  
Comments  
DDR 200 (PC-1600)  
DDR 266 (PC-2100)  
DDR 333 (PC-2600)  
83–100 MHz  
83–133 MHz  
83–150 MHz  
166 core clock 200 MHz  
166 core clock 266 MHz  
166 core clock 300 MHz  
Core limited to 2 × maximum DDR frequency  
Core limited to 2 × maximum DDR frequency  
Core limited to 2 × maximum DDR frequency  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-7  
Specifications  
2.5.3 Reset Timing  
The MSC7116 device has several inputs to the reset logic. All MSC7116 reset sources are fed into the reset  
controller, which takes different actions depending on the source of the reset. The reset status register indicates the  
most recent sources to cause a reset. Table 2-14 describes the reset sources.  
Table 2-14. Reset Sources  
Name  
Direction  
Description  
Power-on reset  
(PORESET)  
Input  
Initiates the power-on reset flow that resets the MSC7116 and configures various attributes of the  
MSC7116. On PORESET, the entire MSC7116 device is reset. SPLL and DLL states are reset,  
HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The  
system is configured only when PORESET is asserted.  
External Hard  
reset (HRESET)  
Input/ Output  
Initiates the hard reset flow that configures various attributes of the MSC7116. While HRESET is  
asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400  
extended core is reset.  
Software  
watchdog reset  
Internal  
Internal  
Internal  
When the MSC7116 watchdog count reaches zero, a software watchdog reset is signalled. The  
enabled software watchdog event then generates an internal hard reset sequence.  
Bus monitor  
reset  
When the MSC7116 bus monitor count reaches zero, a bus monitor hard reset is asserted. The  
enabled bus monitor event then generates an internal hard reset sequence.  
JTAG EXTEST,  
CLAMP, or  
When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic  
asserts an internal reset signal that generates an internal soft reset sequence.  
HIGHZ command  
Table 2-15 summarizes the reset actions that occur as a result of the different reset sources.  
Table 2-15. Reset Actions for Each Reset Source  
Power-On Reset  
(PORESET)  
Hard Reset  
(HRESET)  
Soft Reset  
(SRESET)  
Reset Action/Reset Source  
External or  
Internal (Software  
Watchdog or Bus  
Monitor)  
JTAG Command:  
EXTEST, CLAMP,  
or HIGHZ  
External only  
Configuration pins sampled (refer to Section 2.5.3.1 for  
details).  
Yes  
No  
No  
PLL and clock synthesis states Reset  
HRESET Driven  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Software watchdog and bus time-out monitor registers  
Yes  
Yes  
Clock synthesis modules (STOPCTRL, HLTREQ, and  
HLTACK) reset  
Extended core reset  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Peripheral modules reset  
MSC7116 Technical Data, Rev. 8  
2-8  
Freescale Semiconductor  
AC Timings  
2.5.3.1 Power-On Reset (PORESET) Pin  
Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN  
cycles after external power to the MSC7116 reaches at least 2/3 VDD  
.
2.5.3.2 Reset Configuration  
The MSC7116 has two mechanisms for writing the reset configuration:  
From a host through the host interface (HDI16)  
2
From memory through the I C interface  
Five signal levels (see Chapter 1 for signal description details) are sampled on PORESET deassertion to define the  
boot and operating conditions:  
BM[0–1]  
SWTE  
H8BIT  
HDSP  
2.5.3.3 Reset Timing Tables  
Table 2-16 and Figure 2-1 describe the reset timing for a reset configuration write.  
Table 2-16. Timing for a Reset Configuration Write  
No.  
Characteristics  
Expression  
Unit  
1
2
Required external PORESET duration minimum  
Delay from PORESET deassertion to HRESET deassertion  
Timings are not tested, but are guaranteed by design.  
16/F  
clocks  
clocks  
CLKIN  
521/F  
CLKIN  
Note:  
1
PORESET  
Input  
Configuration Pins  
are sampled  
PORESET  
Internal  
HRESET  
Output(I/O)  
2
Figure 2-1. Timing Diagram for a Reset Configuration Write  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-9  
Specifications  
2.5.4 DDR DRAM Controller Timing  
This section provides the AC electrical characteristics for the DDR DRAM interface.  
2.5.4.1 DDR DRAM Input AC Timing Specifications  
Table 2-17 provides the input AC timing specifications for the DDR DRAM interface.  
Table 2-17. DDR DRAM Input AC Timing  
Max  
No.  
Parameter  
Symbol  
Min  
Unit  
Mask Set  
1L44X  
Mask Set  
1M88B  
AC input low voltage  
V
V
– 0.31  
V – 0.31  
REF  
V
V
IL  
REF  
AC input high voltage  
V
V
+ 0.31  
V
+ 0.3  
V
+ 0.3  
IH  
REF  
DDM  
DDM  
201  
Maximum Dn input setup skew relative to DQSn  
input  
1026  
900  
ps  
202  
Maximum Dn input hold skew relative to DQSn  
input  
386  
900  
ps  
Notes: 1. Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {0...7}] if 0 n 7).  
2. See Table 2-18 for t value.  
CK  
3. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is  
done internally.  
DQSn  
202  
202  
D1  
D0  
Dn  
201  
201  
Note: DQS centering is done internally.  
Figure 2-2. DDR DRAM Input Timing Diagram  
MSC7116 Technical Data, Rev. 8  
2-10  
Freescale Semiconductor  
AC Timings  
2.5.4.2 DDR DRAM Output AC Timing Specifications  
Table 2-18 and Table 2-19 list the output AC timing specifications and measurement conditions for the DDR  
DRAM interface.  
Table 2-18. DDR DRAM Output AC Timing  
Min  
No.  
200  
204  
Parameter  
Symbol  
Max  
Unit  
Mask Set  
1L44X  
Mask Set  
1M88B  
1
CK cycle time, (CK/CK crossing)  
t
CK  
100 MHz (DDR200)  
133 MHz (DDR266)  
10  
1.0  
7.52  
ns  
ns  
Not applicable  
An/RAS/CAS/WE/CKE output setup with respect to  
CK  
t
0.5 × t – 2250  
0.5 × t – 1000  
ps  
DDKHAS  
CK  
CK  
205  
206  
207  
208  
209  
An/RAS/CAS/WE/CKE output hold with respect to CK  
CSn output setup with respect to CK  
t
t
0.5 × t – 1250  
0.5 × t – 1000  
ps  
ps  
ps  
ps  
ps  
DDKHAX  
CK  
CK  
0.5 × t – 2250  
0.5 × t – 1000  
DDKHCS  
DDKHCX  
DDKHMH  
CK  
CK  
CSn output hold with respect to CK  
t
0.5 × t – 1250  
0.5 × t – 1000  
CK  
CK  
2
CK to DQSn  
t
–600  
–600  
600  
3
Dn/DQMn output setup with respect to DQSn  
t
0.25 × t  
0.25 × t – 750  
DDKHDS,  
MCK  
CK  
t
1050  
DDKLDS  
3
210  
Dn/DQMn output hold with respect to DQSn  
t
0.25 × t – 1050 0.25 × t – 750  
ps  
DDKHDX,  
CK  
CK  
t
DDKLDX  
DDKHMP  
DDKHME  
4
211  
212  
DQSn preamble start  
t
t
–0.25 × t  
–0.25 × t  
ps  
ps  
CK  
CK  
5
DQSn epilogue end  
–600  
–600  
600  
Notes: 1. All CK/CK referenced measurements are made from the crossing of the two signals 0.1 V.  
2. can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe  
t
DDKHMH  
arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered  
when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle  
increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing  
occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal  
assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 410 ps before  
the CK/CK crossing and no later than 677 ps after the crossing time; the device uses 1087 ps of the skew budget (the interval  
from –410 to +677 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the MSC711x Reference  
Manual for details.  
3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe  
should be centered inside of the data eye.  
4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to  
programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this  
reason, we reference from DQSn.  
5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition  
there is no real “maximum” time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the  
chip to guarantee fast enough write to read turn-around times. This is already guaranteed by the memory controller operation.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-11  
Specifications  
Figure 2-3 shows the DDR DRAM output timing diagram.  
CK  
CK  
200  
204  
205  
206  
An  
RAS  
207  
CAS  
WE  
CKE  
DQMn  
Write A0  
NOOP  
211  
208  
DQSn  
Dn  
212  
209  
209  
D0  
D1  
210  
210  
Figure 2-3. DDR DRAM Output Timing Diagram  
Figure 2-4 provides the AC test load for the DDR DRAM bus.  
Output  
VOUT  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 2-4. DDR DRAM AC Test Load  
Table 2-19. DDR DRAM Measurement Conditions  
Symbol  
DDR DRAM  
Unit  
1
V
V
V
0.31 V  
V
V
TH  
REF  
2
0.5 × V  
OUT  
DDM  
Notes: 1. Data input threshold measurement point.  
2. Data output measurement point.  
MSC7116 Technical Data, Rev. 8  
2-12  
Freescale Semiconductor  
AC Timings  
2.5.5 TDM Timing  
Table 2-20. TDM Timing  
Expression  
No.  
Characteristic  
Min  
Max  
Units  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
TDMxRCK/TDMxTCK  
TC  
20.0  
8.0  
8.0  
3.0  
3.5  
2.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDMxRCK/TDMxTCK High Pulse Width  
TDMxRCK/TDMxTCK Low Pulse Width  
TDM all input Setup time  
0.4 × TC  
0.4 × TC  
TDMxRD Hold time  
TDMxRFS input Hold time  
TDMxTCK High to TDMxTD output active  
TDMxTCK High to TDMxTD output valid  
TDMxTD hold time  
14.0  
2.0  
TDMxTCK High to TDMxTD output high impedance  
TDMXTFS output valid  
10.0  
13.5  
TDMxTFS output hold time  
2.5  
Notes: 1. Output values are based on 30 pF capacitive load.  
2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge  
they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x  
Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.  
300  
302  
301  
304  
TDMxRCK  
TDMxRD  
303  
305  
303  
TDMxRFS  
310  
311  
TDMxRFS (output)  
Figure 2-5. TDM Receive Signals  
300  
302  
301  
TDMxTCK  
309  
308  
307  
306  
TDMxTD  
TDMxRCK  
310  
311  
TDMxTFS (output)  
TDMxTFS (input)  
305  
303  
Figure 2-6. TDM Transmit Signals  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-13  
Specifications  
2.5.6 Ethernet Timing  
2.5.6.1 Receive Signal Timing  
Table 2-21. Receive Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
800  
Receive clock period:  
• MII: RXCLK (max frequency = 25 MHz)  
• RMII: REFCLK (max frequency = 50 MHz)  
40  
20  
ns  
ns  
801  
802  
Receive clock pulse width high—as a percent of clock period  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
Receive clock pulse width low—as a percent of clock period:  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
803  
804  
RXDn, RX_DV, CRS_DV, RX_ER to receive clock rising edge setup time  
Receive clock rising edge to RXDn, RX_DV, CRS_DV, RX_ER hold time  
4
2
ns  
ns  
800  
802  
801  
Receive  
clock  
803  
804  
RXDn  
RX_DV  
CRS_DV  
RX_ER  
Valid  
Figure 2-7. Ethernet Receive Signal Timing  
MSC7116 Technical Data, Rev. 8  
2-14  
Freescale Semiconductor  
AC Timings  
2.5.6.2 Transmit Signal Timing  
Table 2-22. Transmit Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
800  
Transmit clock period:  
• MII: TXCLK  
40  
20  
ns  
ns  
• RMII: REFCLK  
801  
802  
Transmit clock pulse width high—as a percent of clock period  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
Transmit clock pulse width low—as a percent of clock period:  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
805  
806  
Transmit clock to TXDn, TX_EN, TX_ER invalid  
Transmit clock to TXDn, TX_EN, TX_ER valid  
4
ns  
ns  
14  
800  
802  
801  
Transmit  
clock  
806  
805  
TXDn  
TX_EN  
TX_ER  
Valid  
Figure 2-8. Ethernet Receive Signal Timing  
2.5.6.3 Asynchronous Input Signal Timing  
Table 2-23. Asynchronous Input Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
807  
• MII: CRS and COL minimum pulse width (1.5 × TXCLK period)  
• RMII: CRS_DV minimum pulse width (1.5 x REFCLK period)  
60  
30  
ns  
ns  
CRS  
COL  
CRS_DV  
807  
Figure 2-9. Asynchronous Input Signal Timing  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-15  
Specifications  
2.5.6.4 Management Interface Timing  
Table 2-24. Ethernet Controller Management Interface Timing  
Characteristics  
No.  
Min  
Max  
Unit  
808  
809  
810  
811  
812  
813  
814  
MDC period  
400  
160  
160  
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MDC pulse width high  
MDC pulse width low  
MDS falling edge to MDIO output invalid (minimum propagation delay)  
MDS falling edge to MDIO output valid (maximum propagation delay)  
MDIO input to MDC rising edge setup time  
10  
MDC rising edge to MDIO input hold time  
10  
808  
809  
810  
MDC (output)  
MDIO (output)  
811  
812  
813  
814  
MDIO (input)  
Figure 2-10. Serial Management Channel Timing  
MSC7116 Technical Data, Rev. 8  
2-16  
Freescale Semiconductor  
AC Timings  
2.5.7 HDI16 Signals  
Table 2-25. Host Interface (HDI16) Timing1, 2  
Mask Set 1L44X  
Experssion Value  
Mask Set 1M88B  
Unit  
No.  
Characteristics3  
Expression  
Value  
40 Host Interface Clock period  
T
Note 1  
T
Note 1  
ns  
HCLK  
CORE  
CORE  
4
44a Read data strobe minimum assertion width  
HACK read minimum assertion width  
3.0 × T  
1.5 × T  
2.5 × T  
Note 11 2.0 × T  
+ 9.0 Note 11 ns  
HCLK  
HCLK  
HCLK  
4
4
44b Read data strobe minimum deassertion width  
HACK read minimum deassertion width  
Note 11  
Note 11  
1.5 × T  
CORE  
Note 11 ns  
44c Read data strobe minimum deassertion width after “Last Data  
2.5 × T  
Note 11 ns  
Note 11 ns  
Note 11 ns  
CORE  
CORE  
CORE  
5,6  
Register” reads , or between two consecutive CVR, ICR, or ISR  
7
reads  
5,6  
HACK minimum deassertion width after “Last Data Register” reads  
8
45 Write data strobe minimum assertion width  
1.5 × T  
Note 11  
1.5 × T  
HCLK  
HCLK  
HACK write minimum assertion width  
8
46 Write data strobe minimum deassertion width  
HACK write minimum deassertion width after ICR, CVR and Data  
5
Register writes  
2.5 × T  
Note 11  
3.0  
2.5 × T  
47 Host data input minimum setup time before write data strobe  
8
deassertion  
2.5  
2.5  
ns  
ns  
Host data input minimum setup time before HACK write deassertion  
48 Host data input minimum hold time after write data strobe  
8
deassertion  
4.0  
1.0  
Host data input minimum hold time after HACK write deassertion  
49 Read data strobe minimum assertion to output data active from high  
4
impedance  
HACK read minimum assertion to output data active from high  
impedance  
1.0  
ns  
4
50 Read data strobe maximum assertion to output data valid  
HACK read maximum assertion to output data valid  
(2.0 × T  
) + 8.0 Note 11 (2.0 × T  
) + 8.0 Note 11 ns  
CORE  
HCLK  
51 Read data strobe maximum deassertion to output data high  
4
impedance  
8.0  
9.0  
ns  
HACK read maximum deassertion to output data high impedance  
4
52 Output data minimum hold time after read data strobe deassertion  
Output data minimum hold time after HACK read deassertion  
1.0  
1.0  
0.5  
0.0  
ns  
ns  
ns  
4
53 HCS[1–2] minimum assertion to read data strobe assertion  
0.0  
8
54 HCS[1–2] minimum assertion to write data strobe assertion  
0.0  
55 HCS[1–2] maximum assertion to output data valid  
(2.0 × T  
(3.0 × T  
) + 8.0 Note 11 (2.0 × T  
) + 6.0 Note 11 ns  
CORE  
HCLK  
9
56 HCS[1–2] minimum hold time after data strobe deassertion  
0.0  
0.5  
5.0  
5.0  
ns  
ns  
ns  
9
57 HA[0–3], HRW minimum setup time before data strobe assertion  
5.0  
9
58 HA[0–3], HRW minimum hold time after data strobe deassertion  
5.0  
61 Maximum delay from read data strobe deassertion to host request  
) + 8.0 Note 11 (3.0 × T  
) + 6.0 Note 11 ns  
HCLK  
CORE  
4, 5, 10  
deassertion for “Last Data Register” read  
62 Maximum delay from write data strobe deassertion to host request  
5,8,10  
deassertion for “Last Data Register” write  
(3.0 × T  
(2.0 × T  
(5.0 × T  
) + 8.0 Note 11 (3.0 × T  
) + 1.0 Note 11 (2.0 × T  
) + 8.0 Note 11 (5.0 × T  
) + 6.0 Note 11 ns  
) + 1.0 Note 11 ns  
) + 6.0 Note 11 ns  
HCLK  
HCLK  
HCLK  
CORE  
CORE  
CORE  
63 Minimum delay from DMA HACK (OAD=0) or Read/Write data  
strobe(OAD=1) deassertion to HREQ assertion.  
64 Maximum delay from DMA HACK (OAD=0) or Read/Write data  
strobe(OAD=1) assertion to HREQ deassertion  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-17  
Specifications  
No.  
Table 2-25. Host Interface (HDI16) Timing1, 2 (Continued)  
Mask Set 1L44X  
Characteristics3  
Mask Set 1M88B  
Expression Value  
Unit  
Experssion  
Value  
Notes: 1.  
2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.  
3. = 3.3 V 0.15 V; T = –40°C to +105 °C, C = 30 pF for maximum delay timings and C = 0 pF for minimum delay timings.  
T
= 2/ (Core Clock). At 200 MHz, T  
= 10 ns. T  
= core clock period. At 266 MHz, T  
= 3.75 ns.  
HCLK  
HCLK  
CORE  
CORE  
V
DD  
J
L
L
4. The read data strobe is HRD/HRD in the dual data strobe mode and HDS/HDS in the single data strobe mode.  
5. For 64-bit transfers, The “last data register” is the register at address 0x7, which is the last location to be read or written in data  
transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/TX3 in the big endian mode (HBE = 1).  
6. This timing is applicable only if a read from the “last data register” is followed by a read from the RXL, RXM, or RXH registers  
without first polling RXDF or HREQ bits, or waiting for the assertion of the HREQ/HREQ signal.  
7. This timing is applicable only if two consecutive reads from one of these registers are executed.  
8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.  
9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe  
(HDS/HDS) in the single data strobe mode.  
10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host  
request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full  
(treat as level Host Request).  
11. Compute the value using the expression.  
12. For mask set 1M88B, the read and write data strobe minimum deassertion width for non-”last data register” accesses in single  
and dual data strobe modes is based on timings 57 and 58.  
Figure 2-11 and Figure 2-12 show HDI16 read signal timing. Figure 2-13 and Figure 2-14 show HDI16 write  
signal timing.  
HA[0–3]  
57  
58  
56  
53  
HCS[1–2]  
57  
58  
HRW  
HDS  
44a  
51  
55  
50  
44c  
52  
49  
HD[0–15]  
61  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-11. Read Timing Diagram, Single Data Strobe  
MSC7116 Technical Data, Rev. 8  
2-18  
Freescale Semiconductor  
AC Timings  
HA[0–3]  
57  
58  
56  
53  
HCS[1–2]  
HRD  
44a  
51  
55  
44a  
50  
52  
49  
HD[0–15]  
61  
HREQ (single host request)  
HRRQ (double host request)  
Figure 2-12. Read Timing Diagram, Double Data Strobe  
HA[0–3]  
57  
58  
56  
54  
HCS[1–2]  
HRW  
57  
58  
45  
HDS  
46  
47  
48  
HD[0–15]  
62  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-13. Write Timing Diagram, Single Data Strobe  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-19  
Specifications  
HA[0–3]  
57  
58  
56  
54  
HCS[1–2]  
HWR  
45  
46  
48  
47  
HD[0–15]  
62  
HREQ (single host request)  
HTRQ (double host request)  
Figure 2-14. Write Timing Diagram, Double Data Strobe  
HREQ  
(Output)  
63  
64  
44a  
44b  
RX[0–3]  
Read  
HACK  
50  
51  
49  
52  
Data  
Valid  
HD[0–15]  
(Output)  
Figure 2-15. Host DMA Read Timing Diagram, HPCR[OAD] = 0  
MSC7116 Technical Data, Rev. 8  
2-20  
Freescale Semiconductor  
AC Timings  
HREQ  
(Output)  
63  
64  
46  
45  
TX[0–3]  
Write  
HACK  
47  
48  
Data  
Valid  
HD[0–15]  
(Output)  
Figure 2-16. Host DMA Write Timing Diagram, HPCR[OAD] = 0  
2.5.8 I2C Timing  
Table 2-26. I2C Timing  
Fast  
No.  
Characteristic  
Unit  
Min  
Max  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
Note:  
SCL clock frequency  
0
400  
kHz  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
ns  
µs  
µs  
Hold time START condition  
SCL low period  
(Clock period/2) – 0.3  
(Clock period/2) – 0.3  
(Clock period/2) – 0.1  
SCL high period  
Repeated START set-up time (not shown in figure)  
Data hold time  
2 × 1/F  
BCK  
0
Data set-up time  
250  
SDA and SCL rise time  
SDA and SCL fall time  
700  
300  
Set-up time for STOP  
(Clock period/2) – 0.7  
(Clock period/2) – 0.3  
Bus free time between STOP and START  
SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance  
on SDA and SCL is 400 pF.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-21  
Specifications  
453  
6
458  
3
457  
Start Condition  
Stop Condition  
Start Condition  
1
4
5
SCL  
2
7
8
9
A
C
K
452  
451  
SDA  
Data Byte  
457  
460  
458  
459  
Start Condition  
SCL  
SDA  
Data Byte  
Figure 2-17. I2C Timing Diagram  
2.5.9 UART Timing  
Table 2-27. UART Timing  
Mask Set  
1L44X  
Mask Set  
1M88B  
Unit  
No.  
Characteristics  
Expression  
Min  
Max  
Min  
Max  
Internal bus clock (APBCLK)  
F
/2  
10.0  
160.0  
100  
5
7.52  
120.3  
133  
5
MHz  
ns  
CORE  
Internal bus clock period (1/APBCLK)  
URXD and UTXD inputs high/low duration  
URXD and UTXD inputs rise/fall time  
UTXD output rise/fall time  
T
APBCLK  
400  
401  
402  
16 × T  
ns  
APBCLK  
ns  
5
5
ns  
401  
401  
UTXD, URXD  
inputs  
400  
400  
Figure 2-18. UART Input Timing  
402  
402  
UTXD output  
Figure 2-19. UART Output Timing  
MSC7116 Technical Data, Rev. 8  
2-22  
Freescale Semiconductor  
AC Timings  
2.5.10 EE Timing  
Table 2-28. EE0 Timing  
Number  
Characteristics  
Type  
Min  
65  
66  
EE0 input to the core  
Asynchronous  
4 core clock periods  
1 core clock period  
EE0 output from the core  
Synchronous to core clock  
Notes: 1. The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.  
2. Configure the direction of the EE pin in the EE_CTRL register (see the SC1400 Core Reference Manual for details.  
3. Refer to Table 1-12 for details on EE pin functionality.  
Figure 2-21 shows the signal behavior of the EE pin.  
65  
EE0 in  
66  
EE0 out  
Figure 2-20. EE Pin Timing  
2.5.11 Event Timing  
Table 2-29. EVNT Signal Timing  
Number  
Characteristics  
Type  
Min  
67  
68  
EVNT as input  
EVNT as output  
Asynchronous  
1.5 × APBCLK periods  
1 APBCLK period  
Synchronous to core clock  
Notes: 1. Refer to Table 2-27 for a definition of the APBCLK period.  
2. Direction of the EVNT signal is configured through the GPIO and Event port registers.  
3. Refer to Table 1-10 on page 1-12 for details on EVNT pin functionality.  
Figure 2-21 shows the signal behavior of the EVNT pin.  
67  
EVNT in  
68  
EVNT out  
Figure 2-21. EVNT Pin Timing  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-23  
Specifications  
2.5.12 GPIO Timing  
Table 2-30. GPIO Signal Timing1,2,3  
Number  
Characteristics  
Type  
Min  
4.5  
5
601  
602  
603  
604  
GPI  
Asynchronous  
1.5 × APBCLK periods  
1 APBCLK period  
GPO  
Synchronous to core clock  
Port A edge-sensitive interrupt  
Port A level-sensitive interrupt  
Asynchronous  
Asynchronous  
1.5 × APBCLK periods  
6
3 × APBCLK periods  
Notes: 1. Refer to Table 2-27 for a definition of the APBCLK period.  
2. Direction of the GPIO signal is configured through the GPIO port registers.  
3. Refer to Table 1-12 on page 1-14 for details on GPIO pin functionality.  
4. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data  
into a register when the GPA_DR is read. The specification is not tested due to the asynchronous nature of the input and  
dependence on the state of the DSP core. It is guaranteed by design.  
5. The input and output signals cannot toggle faster than 50 MHz.  
6. Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is  
acknowledged.  
Figure 2-22 shows the signal behavior of the GPI/GPO pin.  
601  
GPI  
602  
GPO  
Figure 2-22. GPI/GPO Pin Timing  
MSC7116 Technical Data, Rev. 8  
2-24  
Freescale Semiconductor  
AC Timings  
2.5.13 JTAG Signals  
Table 2-31. JTAG Timing  
All frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
Note:  
TCK frequency of operation (1/(T × 3); maximum 22 MHz)  
0.0  
25.0  
11.0  
0.0  
40.0  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
C
TCK cycle time  
TCK clock pulse width measured at V  
TCK rise and fall times  
1.6 V  
M =  
3.0  
Boundary scan input data set-up time  
Boundary scan input data hold time  
TCK low to output data valid  
TCK low to output high impedance  
TMS, TDI data set-up time  
5.0  
14.0  
0.0  
20.0  
20.0  
0.0  
5.0  
TMS, TDI data hold time  
25.0  
0.0  
TCK low to TDO data valid  
24.0  
10.0  
TCK low to TDO high impedance  
TRST assert time  
0.0  
100.0  
All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.  
701  
702  
V
M
V
M
V
TCK  
(Input)  
IH  
V
IL  
703  
703  
Figure 2-23. Test Clock Input Timing Diagram  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
2-25  
Specifications  
V
TCK  
(Input)  
IH  
V
IL  
704  
705  
Data  
Inputs  
Input Data Valid  
706  
707  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Figure 2-24. Boundary Scan (JTAG) Timing Diagram  
V
IH  
TCK  
(Input)  
V
IL  
709  
708  
Input Data Valid  
TDI  
TMS  
(Input)  
710  
TDO  
(Output)  
Output Data Valid  
711  
TDO  
(Output)  
Figure 2-25. Test Access Port Timing Diagram  
TRST  
(Input)  
712  
Figure 2-26. TRST Timing Diagram  
MSC7116 Technical Data, Rev. 8  
2-26  
Freescale Semiconductor  
Packaging  
3
This section on the MSC7116 package includes diagrams of the package ball layout and tables showing how the  
signals discussed in Chapter 1 are allocated. The MSC7116 is available in a 400-pin molded array process-ball  
grid array (MAP-BGA) package with either lead-free or lead-bearing solder spheres.  
Note: See Lead-Free BGA Solder Joint Assembly Evaluation (EB635) for manufacturing and assembly guidelines.  
3.1 MAP-BGA Package  
Figure 3-1 and Figure 3-2 show top and bottom views of the MAP-BGA package, including ball location. Signal  
names shown in the figures represent the only signal assigned to the location or, for multiplexed signals, the  
primary hardware-controlled option. Signals used only during power-on reset (SWTE, HDSP, and BM[0–1]) are not  
shown in these figures.  
Table 3-1 lists the MSC7116 signals alphabetically by signal name. Connections with multiple names are listed  
individually by each name. Signals with programmable polarity are shown both as asserted low (default) and high  
(that is, NAME/NAME). Table 3-2 lists the signals numerically by pin number. Each pin number is listed once with the  
various signals that are multiplexed to it categorized by the configuration or state that defines the signal. Four host  
interface signals have alternate functions (single or double host request and single or double data strobe) that are  
configured by the host interface registers.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-1  
Packaging  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
GND  
GND  
NC  
DQM1 DQS2  
CK  
CK  
HD15  
HD12  
HD10  
HD14  
CAS  
HD7  
HD6  
HD4  
HD1  
HD0  
GND  
NC  
NC  
NC  
NC  
NC  
V
CS0  
D25  
D27  
D31  
D29  
GND  
D11  
D9  
DQM2 DQS3 DQS0  
CKE  
WE  
HD11  
HD13  
HD8  
HD9  
HD5  
HD3  
HD2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
HA2  
NC  
NC  
NC  
NC  
NC  
NC  
HA1  
DDM  
D24  
D30  
D28  
D26  
D15  
D13  
D12  
CS1  
DQM3 DQM0 DQS1  
RAS  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GND  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GND  
DDM  
DDC  
DDC  
DDC  
DDC  
DDM  
DDIO  
DDIO  
DDIO  
DDC  
V
V
V
V
V
V
DDM  
V
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DDM  
DDC  
DDC  
DDC  
DDM  
DDC  
V
G
H
J
GND  
D14  
D10  
D0  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDM  
V
V
V
GND  
HA3  
HA0  
HACK HREQ  
DDM  
DDM  
DDM  
V
V
K
L
GND  
GND  
D8  
GND  
GND  
GND  
HDDS  
HDS  
DDC  
DDIO  
DDIO  
V
V
V
D1  
D3  
HCS2 HCS1  
HRW  
DDC  
DDIO  
V
V
V
V
V
M
N
P
R
T
D2  
D5  
GND  
GND  
SDA  
CLKIN  
PORESET  
TDO  
UTXD URXD  
DDM  
DDM  
DDC  
V
V
V
V
V
D4  
D6  
GND  
GND  
GND  
SCL  
TPSEL  
EE0  
REF  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
DDC  
SSPLL  
V
V
V
V
V
V
D7  
D17  
D19  
D20  
D21  
NC  
D16  
D18  
D22  
D23  
A13  
A12  
A9  
DDM  
DDM  
DDIO  
DDPLL  
V
V
V
V
V
V
GND  
TEST0  
DDM  
DDM  
DDM  
DDM  
DDIO  
DDIO  
V
V
V
V
V
V
V
V
V
V
V
V
V
MDIO  
COL  
TMS HRESET  
DDM  
DDM  
DDC  
DDM  
DDM  
DDC  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDC  
V
V
V
V
V
V
V
V
V
V
V
V
DDC  
U
V
W
Y
GND  
TCK  
TRST  
TDI  
DDM  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
V
A11  
A8  
A10  
A7  
A5  
A6  
A4  
A2  
A3  
BA0  
NC  
NC  
EVNT0 EVNT4 T0TCK T1RFS T1TD TX_ER RXD2 RXD0 TX_EN CRS  
DDM  
V
GND  
EVNT1 EVNT2 T0RFS T0TFS T1RD T1TFS TXD2 RXD3 TXD1 TXCLK RX_ER MDC  
DDM  
V
GND  
A1  
A0  
BA1  
NMI  
EVNT3 T0RCK T0RD TOTD T1RCK T1TCK TXD3 RXCLK TXD0 RXD1  
GND RX_DV  
DDM  
Figure 3-1. MSC7116 Molded Array Process-Ball Grid Array (MAP-BGA), Top View  
MSC7116 Technical Data, Rev. 8  
3-2  
Freescale Semiconductor  
MAP-BGA Package  
Bottom View  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
NC  
NC  
NC  
NC  
NC  
GND  
HD0  
HD1  
HD4  
HD6  
HD7  
HD10  
HD12  
HD15  
CK  
CK  
DQS2 DQM1  
GND  
GND  
V
NC  
NC  
NC  
NC  
NC  
NC  
HA1  
NC  
NC  
NC  
NC  
NC  
NC  
HA2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
HA3  
HA0  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
HD2  
NC  
HD5  
HD3  
HD8  
HD9  
HD11  
HD13  
HD14  
CAS  
WE  
CKE  
DQS0 DQS3 DQM2  
CS0  
D25  
D27  
D31  
D29  
GND  
D11  
D9  
NC  
DDM  
RAS  
DQS1 DQM0 DQM3  
CS1  
D30  
D28  
D26  
D15  
D13  
D12  
D24  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GND  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
GND  
DD  
DDIO  
DDIO  
DDIO  
DDM  
DD  
DD  
DD  
DD  
DDM  
DDM  
V
V
V
V
V
V
V
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
DD  
DDM  
DDM  
DD  
DD  
DD  
DDM  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
G
H
J
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
D14  
D10  
D0  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
V
DDM  
V
V
V
HREQ HACK  
GND  
DDM  
DDM  
DDM  
V
V
K
L
HDS  
HDDS  
GND  
GND  
GND  
D8  
GND  
GND  
DDIO  
DD  
V
V
V
HRW  
HCS1 HCS2  
D3  
D1  
DDIO  
DDIO  
DD  
V
V
V
M
N
P
R
T
URXD UTXD  
SDA  
CLKIN  
PORESET  
TDO  
GND  
GND  
D5  
D2  
DD  
DDM  
DDM  
V
V
V
V
V
V
SCL  
TPSEL  
EE0  
GND  
GND  
GND  
D6  
D4  
SSPLL  
DD  
DDIO  
DDIO  
DDIO  
DDIO  
DDM  
DDM  
REF  
V
V
V
V
V
V
V
V
D16  
D18  
D22  
D23  
A13  
A12  
A9  
D17  
D19  
D20  
D21  
NC  
D7  
DDPLL  
DDIO  
DDM  
DDM  
V
V
V
V
V
TEST0  
GND  
DDIO  
DDIO  
DDM  
DDM  
DDM  
DDM  
V
V
V
V
V
V
V
V
V
V
V
V
HRESET TMS  
MDIO  
COL  
DD  
DDIO  
DDIO  
DDIO  
DDM  
DDM  
DD  
DDM  
DDM  
DD  
DDM  
DDM  
V
V
V
V
V
V
V
V
V
V
V
V
V
U
V
W
Y
TRST  
TDI  
TCK  
GND  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DD  
DDM  
V
CRS TX_EN RXD0 RXD2 TX_ER T1TD T1RFS T0TCK EVNT4 EVNT0  
NC  
BA0  
NC  
A2  
A3  
A5  
A6  
A4  
A10  
A7  
A11  
A8  
DDM  
V
MDC RX_ER TXCLK TXD1 RXD3 TXD2 T1TFS T1RD T0TFS T0RFS EVNT2 EVNT1  
GND  
DDM  
V
RX_DV GND  
RXD1 TXD0 RXCLK TXD3 T1TCK T1RCK TOTD T0RD T0RCK EVNT3  
NMI  
BA1  
A0  
A1  
GND  
DDM  
Figure 3-2. MSC7116 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-3  
Packaging  
Table 3-1. MSC7116 Signals By Name  
Signal Name  
Ball Designator  
A0  
Y5  
Y4  
A1  
A2  
V7  
A3  
W7  
Y6  
A4  
A5  
V6  
A6  
W6  
W5  
W4  
Y3  
A7  
A8  
A9  
A10  
V5  
A11  
V4  
A12  
W3  
V3  
A13  
BA0  
V8  
BA1  
Y7  
BM0  
W10  
Y9  
BM1  
BM2 (mask set 1M88B only)  
B15  
A16  
C9  
A5  
BM3 (mask set 1M88B only)  
CAS  
CK  
CK  
A6  
CKE  
CLKIN  
CLKO  
COL  
CRS  
CRS_DV  
CS0  
CS1  
D0  
B7  
N18  
W9  
U18  
V19  
Y20  
B3  
C4  
K1  
D1  
L1  
D2  
M1  
L3  
D3  
D4  
N1  
M3  
N2  
P1  
D5  
D6  
D7  
MSC7116 Technical Data, Rev. 8  
3-4  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
D8  
D9  
K3  
J3  
D10  
J1  
D11  
H3  
H2  
G2  
H1  
F2  
D12  
D13  
D14  
D15  
D16  
P3  
P2  
R3  
R2  
T2  
D17  
D18  
D19  
D20  
D21  
U2  
T3  
D22  
D23  
U3  
C1  
C3  
E2  
D3  
D2  
F3  
D24  
D25  
D26  
D27  
D28  
D29  
D30  
C2  
E3  
R19  
C6  
A3  
B4  
C5  
B6  
C7  
A4  
B5  
R19  
V10  
W9  
W10  
Y9  
V11  
D31  
DBREQ  
DQM0  
DQM1  
DQM2  
DQM3  
DQS0  
DQS1  
DQS2  
DQS3  
EE0  
EVNT0  
EVNT1  
EVNT2  
EVNT3  
EVNT4  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-5  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
A1  
A2  
A15  
D4  
E1  
F7  
F8  
F9  
F12  
F13  
F14  
G1  
G3  
G6  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
H6  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
J7  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
MSC7116 Technical Data, Rev. 8  
3-6  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J15  
K2  
K6  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
L2  
L6  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
M6  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
N7  
N8  
N9  
N10  
N11  
N12  
N13  
N14  
P7  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-7  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
GND  
GND  
P8  
P9  
GND  
P10  
P11  
P12  
P13  
P14  
R1  
GND  
GND  
GND  
GND  
GND  
GND  
R7  
GND  
R9  
GND  
R11  
R12  
R14  
U1  
GND  
GND  
GND  
GND  
W1  
GND  
Y2  
GND  
Y19  
V14  
W14  
Y14  
W13  
V13  
Y13  
Y12  
W12  
V12  
Y11  
W11  
Y10  
M19  
M20  
M18  
N19  
V11  
W9  
GPIA0  
GPIA1  
GPIA2  
GPIA3  
GPIA4  
GPIA5  
GPIA6  
GPIA7  
GPIA8  
GPIA9  
GPIA10  
GPIA11  
GPIA12  
GPIA13  
GPIA14  
GPIA15  
GPIA16  
GPIA17  
GPIA19  
GPIA20  
GPIA21  
GPIA22  
W17  
Y17  
Y18  
V17  
MSC7116 Technical Data, Rev. 8  
3-8  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
GPIA23  
W18  
V18  
Y20  
W19  
W16  
V15  
Y15  
L18  
B11  
C11  
A9  
GPIA24  
GPIA25  
GPIA26  
GPIA27  
GPIA28  
GPIA29  
GPIB11 (mask set 1M88B only)  
GPIC0  
GPIC1  
GPIC2  
GPIC3  
B10  
A8  
GPIC4  
GPIC5  
C10  
B9  
GPIC6  
GPIC7  
A7  
GPIC11 (mask set 1M88B only)  
J18  
W10  
Y9  
GPIC14  
GPIC15  
GPID4  
W15  
Y16  
V16  
B15  
A16  
V14  
W14  
Y14  
W13  
V13  
Y13  
Y12  
W12  
V12  
Y11  
W11  
Y10  
M19  
M20  
M18  
GPID5  
GPID6  
GPID7 (mask set 1M88B only)  
GPID8 (mask set 1M88B only)  
GPOA0  
GPOA1  
GPOA2  
GPOA3  
GPOA4  
GPOA5  
GPOA6  
GPOA7  
GPOA8  
GPOA9  
GPOA10  
GPOA11  
GPOA12  
GPOA13  
GPOA14  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-9  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
GPOA15  
N19  
W17  
Y17  
Y18  
V17  
W18  
V18  
Y20  
W19  
W16  
V15  
Y15  
L18  
B11  
C11  
A9  
GPOA19  
GPOA20  
GPOA21  
GPOA22  
GPOA23  
GPOA24  
GPOA25  
GPOA26  
GPOA27  
GPOA28  
GPOA29  
GPOB11 (mask set 1M88B only)  
GPOC0  
GPOC1  
GPOC2  
GPOC3  
B10  
A8  
GPOC4  
GPOC5  
C10  
B9  
GPOC6  
GPOC7  
A7  
GPOC11 (mask set 1M88B only)  
J18  
W10  
Y9  
GPOC14  
GPOC15  
GPOD4  
W15  
Y16  
V16  
B15  
A16  
W20  
K18  
H20  
H19  
J18  
J19  
L19  
L18  
A14  
A13  
GPOD5  
GPOD6  
GPOD7 (mask set 1M88B only)  
GPOD8 (mask set 1M88B only)  
H8BIT  
HA0  
HA1  
HA2  
HA3  
HACK/HACK  
HCS1/HCS1  
HCS2/HCS2  
HD0  
HD1  
MSC7116 Technical Data, Rev. 8  
3-10  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
HD10  
HD11  
A9  
B10  
A8  
HD12  
HD13  
C10  
B9  
HD14  
HD15  
A7  
HD2  
B13  
C12  
A12  
B12  
A11  
A10  
B11  
C11  
K19  
K20  
J20  
L20  
J20  
T20  
J19  
L20  
J20  
K20  
Y13  
V13  
W14  
V14  
V11  
W9  
HD3  
HD4  
HD5  
HD6  
HD7  
HD8  
HD9  
HDDS  
HDS/HDS  
HDSP  
HRD/HRD  
HREQ/HREQ  
HRESET  
HRRQ/HRRQ  
HRW  
HTRQ/HTRQ  
HWR/HWR  
IRQ0  
IRQ1  
IRQ10  
IRQ11  
IRQ12  
IRQ13  
IRQ14  
IRQ15  
IRQ16  
IRQ17  
IRQ18  
IRQ19  
IRQ2  
N19  
M18  
Y15  
V15  
W16  
W17  
M20  
Y17  
Y18  
IRQ20  
IRQ21  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-11  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
IRQ22  
IRQ23  
IRQ24  
IRQ25  
IRQ26  
IRQ3  
IRQ4  
IRQ5  
IRQ6  
IRQ7  
IRQ8  
IRQ9  
MDC  
MDIO  
NC  
V17  
W18  
V18  
Y20  
W19  
M19  
Y10  
W11  
V12  
W12  
W13  
Y14  
W20  
T18  
A16  
A17  
A18  
A19  
A20  
B2  
NC  
NC  
NC  
NC  
NC  
NC  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D18  
D19  
D20  
E18  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
MSC7116 Technical Data, Rev. 8  
3-12  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
NC  
NC  
E19  
E20  
F18  
F19  
F20  
G18  
G19  
G20  
H18  
V2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V9  
NC  
W8  
NMI  
Y8  
PORESET  
RAS  
P18  
C8  
REFCLK  
RX_DV  
RX_ER  
RXCLK  
RXD0  
RXD1  
RXD2  
RXD3  
SCL  
W18  
Y20  
W19  
Y16  
V17  
Y18  
V16  
W16  
N19  
M18  
V11  
Y10  
Y11  
W11  
V12  
Y12  
W12  
Y13  
W13  
V13  
Y14  
V14  
W14  
U19  
SDA  
SWTE  
T0RCK  
T0RD  
T0RFS  
T0TCK  
T0TD  
T0TFS  
T1RCK  
T1RD  
T1RFS  
T1TCK  
T1TD  
T1TFS  
TCK  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-13  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
TDI  
V20  
R18  
R20  
T19  
P19  
U20  
V18  
V15  
W18  
Y17  
W17  
W15  
Y15  
M20  
M19  
D17  
E6  
TDO  
TEST0  
TMS  
TPSEL  
TRST  
TX_EN  
TX_ER  
TXCLK  
TXD0  
TXD1  
TXD2  
TXD3  
URXD  
UTXD  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
E7  
E8  
E9  
E16  
E17  
F4  
F5  
F6  
F16  
F17  
G17  
H17  
J17  
K4  
K17  
L4  
L17  
M16  
M17  
N16  
N17  
P17  
MSC7116 Technical Data, Rev. 8  
3-14  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
R17  
T6  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
T9  
T16  
T17  
U5  
U6  
U7  
U8  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
D11  
D12  
D13  
D14  
D15  
D16  
E11  
E12  
E13  
E14  
E15  
F15  
G15  
G16  
H15  
H16  
J16  
K15  
K16  
L14  
L15  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-15  
Packaging  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
V
V
V
V
V
V
V
V
V
V
V
L16  
N15  
P15  
P16  
R13  
R15  
R16  
T12  
T13  
T14  
T15  
B1  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
D1  
D5  
D6  
D7  
D8  
D9  
D10  
E4  
E5  
E10  
F1  
F10  
F11  
G4  
G5  
H4  
H5  
J2  
J4  
J5  
J6  
K5  
L5  
M2  
M4  
M5  
N4  
MSC7116 Technical Data, Rev. 8  
3-16  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-1. MSC7116 Signals By Name (Continued)  
Signal Name  
Ball Designator  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
N5  
N6  
P4  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
P5  
P6  
R4  
R5  
R6  
R8  
R10  
T1  
T4  
T5  
T7  
T8  
T10  
T11  
U4  
V1  
W2  
Y1  
V
P20  
N3  
N20  
B8  
DDPLL  
V
REF  
V
SSPLL  
WE  
Notes: 1. This table lists every signal name. Because many signals are multiplexed, an  
individual ball designator number may be listed several times.  
2. Signals listed as NC must not be connected or used as signal junction locations in  
board designs.  
3. Many peripheral signals must be enabled before they can be used. Some signals  
are reserved after reset if they are not enabled. “Reserved” signals are not included  
in this list. Refer to Table 3-2 to determine which signals must be enabled after  
reset.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-17  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
A1  
GND  
A2  
GND  
DQM1  
DQS2  
CK  
A3  
A4  
A5  
A6  
CK  
A7  
GPIC7  
GPIC4  
GPIC2  
GPOC7  
GPOC4  
GPOC2  
HD15  
HD12  
HD10  
HD7  
A8  
A9  
A10  
reserved  
A11  
reserved  
reserved  
reserved  
reserved  
HD6  
A12  
HD4  
A13  
HD1  
A14  
HD0  
A15  
GND  
NC  
A16 (1L44X)  
A16 (1M88B)  
BM3  
GPID8  
GPOD7  
reserved  
A17  
NC  
NC  
NC  
NC  
A18  
A19  
A20  
B1  
V
DDM  
B2  
NC  
CS0  
B3  
B4  
DQM2  
DQS3  
DQS0  
CKE  
B5  
B6  
B7  
B8  
WE  
B9  
GPIC6  
GPIC3  
GPIC0  
GPOC6  
GPOC3  
GPOC0  
HD14  
HD11  
HD8  
B10  
B11  
B12  
reserved  
reserved  
HD5  
B13  
HD2  
B14  
NC  
NC  
B15 (1L44X)  
B15 (1M88B)  
B16  
BM2  
GPID7  
GPOD7  
reserved  
NC  
MSC7116 Technical Data, Rev. 8  
3-18  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
B17  
B18  
B19  
B20  
C1  
NC  
NC  
NC  
NC  
D24  
D30  
D25  
CS1  
C2  
C3  
C4  
C5  
DQM3  
DQM0  
DQS1  
RAS  
C6  
C7  
C8  
C9  
CAS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
GPIC5  
GPIC1  
GPOC5  
GPOC1  
HD13  
HD9  
HD3  
reserved  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
DDM  
D2  
D28  
D27  
D3  
D4  
GND  
D5  
V
V
V
V
V
V
DDM  
DDM  
DDM  
DDM  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
V
V
V
V
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-19  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
D15  
D16  
D17  
D18  
D19  
D20  
E1  
V
V
DDIO  
DDIO  
V
DDC  
NC  
NC  
NC  
GND  
D26  
D31  
E2  
E3  
E4  
V
V
DDM  
DDM  
E5  
E6  
V
V
V
V
DDC  
DDC  
DDC  
DDC  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
F1  
V
V
V
V
V
V
V
V
DDC  
DDC  
NC  
NC  
NC  
V
DDM  
F2  
D15  
F3  
D29  
F4  
V
DDC  
DDC  
DDC  
F5  
V
V
F6  
F7  
GND  
GND  
GND  
F8  
F9  
F10  
F11  
F12  
V
V
DDM  
DDM  
GND  
MSC7116 Technical Data, Rev. 8  
3-20  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
G1  
GND  
GND  
V
DDIO  
V
V
DDC  
DDC  
NC  
NC  
NC  
GND  
D13  
GND  
G2  
G3  
G4  
V
V
DDM  
DDM  
G5  
G6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
H1  
V
DDIO  
DDIO  
V
V
DDC  
NC  
NC  
NC  
D14  
D12  
D11  
H2  
H3  
H4  
V
DDM  
DDM  
H5  
V
H6  
GND  
GND  
GND  
GND  
GND  
H7  
H8  
H9  
H10  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-21  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
J1  
GND  
GND  
GND  
GND  
V
V
DDIO  
DDIO  
V
DDC  
NC  
reserved  
HA2  
HA1  
reserved  
D10  
J2  
V
DDM  
J3  
D9  
J4  
V
DDM  
DDM  
DDM  
J5  
V
V
J6  
J7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
J18 (1L44X)  
J18 (1M88B)  
J19  
J20  
K1  
V
DDIO  
V
DDC  
reserved  
reserved  
HA3  
HA3  
GPIC11  
GPOC11  
HACK/HACK or HRRQ/HRRQ  
HREQ/HREQ or HTRQ/HTRQ  
HDSP  
reserved  
D0  
GND  
D8  
K2  
K3  
K4  
V
DDC  
DDM  
K5  
V
K6  
GND  
GND  
K7  
MSC7116 Technical Data, Rev. 8  
3-22  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
K8  
K9  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
L1  
V
V
DDIO  
DDIO  
V
DDC  
reserved  
HA0  
reserved  
reserved  
HDDS  
HDS/HDS or HWR/HWR  
D1  
GND  
D3  
L2  
L3  
L4  
V
DDC  
DDM  
L5  
V
L6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
L14  
L15  
L16  
L17  
L18 (1L44X)  
L18 (1M88B)  
L19  
L20  
M1  
V
DDIO  
DDIO  
DDIO  
V
V
V
DDC  
reserved  
HCS2/HCS2  
HCS2/HCS2  
GPIB11  
GPOB11  
reserved  
reserved  
HCS1/HCS1  
HRW or HRD/HRD  
D2  
M2  
V
DDM  
M3  
D5  
M4  
V
DDM  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-23  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
M5  
M6  
V
DDM  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
N1  
V
V
DDC  
DDC  
GPIA14  
IRQ15  
IRQ3  
IRQ2  
GPOA14  
GPOA12  
GPOA13  
SDA  
UTXD  
URXD  
GPIA12  
GPIA13  
D4  
D6  
N2  
N3  
V
REF  
DDM  
DDM  
DDM  
N4  
V
V
V
N5  
N6  
N7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
N8  
N9  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
P1  
V
DDIO  
V
DDC  
V
DDC  
CLKIN  
GPIA15  
IRQ14  
GPOA15  
SCL  
V
SSPLL  
D7  
P2  
D17  
MSC7116 Technical Data, Rev. 8  
3-24  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
P3  
P4  
D16  
V
V
V
DDM  
P5  
DDM  
DDM  
P6  
P7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
R1  
V
DDIO  
DDIO  
V
V
DDC  
PORESET  
TPSEL  
V
DDPLL  
GND  
D19  
D18  
R2  
R3  
R4  
V
V
V
DDM  
DDM  
DDM  
R5  
R6  
R7  
GND  
R8  
V
DDM  
R9  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
V
DDM  
GND  
GND  
V
DDIO  
GND  
V
DDIO  
DDIO  
V
V
DDC  
TDO  
reserved  
EE0/DBREQ  
TEST0  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-25  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
T1  
T2  
V
DDM  
D20  
D22  
T3  
T4  
V
DDM  
DDM  
T5  
V
T6  
V
DDC  
DDM  
DDM  
T7  
V
V
T8  
T9  
V
DDC  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
U1  
V
V
V
V
V
V
V
DDC  
DDC  
V
reserved  
MDIO  
TMS  
HRESET  
GND  
U2  
D21  
U3  
D23  
U4  
V
DDM  
U5  
V
V
V
V
V
V
V
V
V
V
V
V
V
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
U6  
U7  
U8  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
reserved  
COL  
MSC7116 Technical Data, Rev. 8  
3-26  
Freescale Semiconductor  
MAP-BGA Package  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
Primary  
Alternate  
U19  
U20  
V1  
TCK  
TRST  
V
DDM  
V2  
NC  
A13  
A11  
A10  
A5  
V3  
V4  
V5  
V6  
V7  
A2  
V8  
BA0  
NC  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
V18  
V19  
V20  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
reserved  
EVNT0  
EVNT4  
T0TCK  
T1RFS  
T1TD  
SWTE  
GPIA16  
GPID6  
IRQ12  
IRQ6  
GPOA16  
GPOA8  
GPOA4  
GPOA0  
GPOA28  
GPOD6  
GPOA22  
GPOA24  
GPIA8  
GPIA4  
GPIA0  
GPIA28  
IRQ1  
IRQ11  
IRQ17  
TX_ER  
RXD2  
reserved  
reserved  
RXD0  
GPIA22  
GPIA24  
IRQ22  
IRQ24  
TX_EN  
CRS  
reserved  
TDI  
GND  
V
DDM  
A12  
A8  
A7  
A6  
A3  
NC  
GPIA17  
IRQ13  
GPOA17  
GPOC14  
GPOA10  
GPOA7  
GPOA3  
GPOA1  
GPOD4  
GPOA27  
EVNT1  
CLKO  
EVNT2  
BM0  
GPIC14  
GPIA10  
GPIA7  
GPIA3  
GPIA1  
IRQ5  
IRQ7  
IRQ8  
IRQ10  
T0RFS  
T0TFS  
T1RD  
T1TFS  
GPID4  
TXD2  
RXD3  
reserved  
reserved  
GPIA27  
IRQ18  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-27  
Packaging  
Number  
Table 3-2. MSC7116 Signals by Ball Designator (Continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
W17  
W18  
W19  
W20  
Y1  
GPIA19  
IRQ19  
IRQ23  
GPOA19  
GPOA23  
GPOA26  
TXD1  
GPIA23  
GPIA26  
TXCLK or REFCLK  
RX_ER  
IRQ26  
H8BIT  
reserved  
MDC  
V
DDM  
Y2  
GND  
A9  
Y3  
Y4  
A1  
Y5  
A0  
Y6  
A4  
Y7  
BA1  
Y8  
reserved  
GPIA11  
NMI  
reserved  
Y9  
BM1  
GPIC15  
GPOC15  
GPOA11  
GPOA9  
GPOA6  
GPOA5  
GPOA2  
GPOA29  
GPOD5  
GPOA20  
GPOA21  
EVNT3  
T0RCK  
T0RD  
Y10  
Y11  
Y12  
Y13  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
IRQ4  
GPIA9  
GPIA6  
T0TD  
GPIA5  
GPIA2  
GPIA29  
IRQ0  
IRQ9  
T1RCK  
T1TCK  
IRQ16  
TXD3  
reserved  
reserved  
GPID5  
RXCLK  
GPIA20  
GPIA21  
IRQ20  
IRQ21  
TXD0  
RXD1  
GND  
GPIA25  
IRQ25  
GPOA25  
RX_DV or CRS_DV  
MSC7116 Technical Data, Rev. 8  
3-28  
Freescale Semiconductor  
MAP-BGA Package Mechanical Drawing  
3.2 MAP-BGA Package Mechanical Drawing  
Notes:  
1. All dimensions in millimeters.  
2. Dimensioning and tolerancing  
per ASME Y14.5M–1994.  
3. Maximum solder ball diameter  
measured parallel to Datum A.  
4. Datum A, the seating plane, is  
determined by the spherical  
crowns of the solder balls.  
5. Parallelism measurement shall  
exclude any effect of mark on  
top surface of package.  
CASE 1568-01  
Figure 3-3. MSC7116 Mechanical Information, 400-pin MAP-BGA Package  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
3-29  
Packaging  
MSC7116 Technical Data, Rev. 8  
3-30  
Freescale Semiconductor  
Design Considerations  
4
This section described various areas to consider when incorporating the MSC7116 device into a system design.  
4.1 Thermal Design Considerations  
An estimation of the chip-junction temperature, T , in °C can be obtained from the following:  
J
TJ = TA + (R JA × PD)  
Equation 1  
θ
where  
T = ambient temperature near the package (°C)  
A
R
= junction-to-ambient thermal resistance (°C/W)  
JA  
θ
P = P  
+ P = power dissipation in the package (W)  
I/O  
D
INT  
P
P
= I × V = internal power dissipation (W)  
DD DD  
INT  
I/O  
= power dissipated from device on output pins (W)  
The power dissipation values for the MSC7116 are listed in Table 2-3. The ambient temperature for the device is  
the air temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal  
resistances are JEDEC standard values that provide a quick and easy estimation of thermal performance. There are  
two values in common usage: the value determined on a single layer board and the value obtained on a board with  
two planes. The value that more closely approximates a specific application depends on the power dissipated by  
other components on the printed circuit board (PCB). The value obtained using a single layer board is appropriate  
for tightly packed PCB configurations. The value obtained using a board with internal planes is more appropriate  
2
for boards with low power dissipation (less than 0.02 W/cm with natural convection) and well separated  
components. Based on an estimation of junction temperature using this technique, determine whether a more  
detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the device  
thermal junction temperature below its maximum. If T appears to be too high, either lower the ambient  
J
temperature or the power dissipation of the chip.  
You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple  
(40 gauge is recommended) or an infrared temperature sensor on a spot on the device case. Use the following  
equation to determine T :  
J
TJ = TT + (Ψ × PD)  
Equation 2  
JT  
where  
T = thermocouple (or infrared) temperature on top of the package (°C)  
T
Ψ = thermal characterization parameter (° C/W)  
JT  
P = power dissipation in the package (W)  
D
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-1  
Design Considerations  
4.2 Power Supply Design Considerations  
This section outlines the MSC7116 power considerations: power supply, power sequencing, power planes,  
decoupling, power supply filtering, and power consumption. It also presents a recommended power supply design  
and options for low-power consumption. For information on AC/DC electrical specifications and thermal  
characteristics, refer to Chapter 2.  
Power Supply. The MSC7116 requires four input voltages, as shown in Table 4-1.  
Table 4-1. MSC7116 Voltages  
Voltage  
Symbol  
Value  
Core  
V
1.2 V  
2.5 V  
1.25 V  
3.3 V  
DDC  
DDM  
Memory  
Reference  
I/O  
V
V
REF  
V
DDIO  
You should supply the MSC7116 core voltage via a variable switching supply or regulator to allow for  
compatibility with possible core voltage changes on future silicon revisions. The core voltage is supplied with  
1.2 V (+5% and –10%) across V  
and GND and the I/O section is supplied with 3.3 V ( 10%) across V  
DDC  
DDIO  
and GND. The memory and reference voltages supply the DDR memory controller block. The memory voltage is  
supplied with 2.5 V across V and GND. The reference voltage is supplied across V and GND and must be  
DDM  
REF  
between 0.49 × V  
and 0.51 × V  
. Refer to the JEDEC standard JESD8 (Stub Series Terminated Logic for  
2.5 Volts (STTL_2)) for memory voltage supply requirements.  
DDM  
DDM  
Power sequencing. One consequence of multiple power supplies is that the voltage rails ramp up at different  
rates when power is initially applied. The rates depend on the power supply, the type of load on each power  
supply, and the way different voltages are derived. It is extremely important to observe the power up and power  
down sequences at the board level to avoid latch-up, forward biasing of ESD devices, and excessive currents,  
which all lead to severe device damage. The correct power-up sequence is as follows:  
Turn on the highest supply first (3.3 V).  
Turn on the 2.5 V supply.  
Turn on the lowest supply last (1.2 V).  
The correct power-down sequence is as follows:  
Turn off the lowest supply first (1.2 V).  
Turn off the 2.5 V supply.  
Turn off the highest supply last (3.3 V).  
At any instant during power-up and power-down, the 2.5 V supply must maintain a differential of +0.7 V or more  
below the 3.3 V supply. Also, at any instant, the 1.2 V supply must maintain a differential of +0.7 V or more  
below the 2.5 V supply, as shown in Figure 4-1. The power-down sequence is not as critical as the power-up  
sequence.  
MSC7116 Technical Data, Rev. 8  
4-2  
Freescale Semiconductor  
Power Supply Design Considerations  
VDDIO = 3.3 V  
Ramp-up  
Ramp-down  
VDDM = 2.5 V  
0.7 V or More  
0.7 V or More  
VDDC = 1.2 V  
Differential should always be  
0.7 V or more.  
Time  
Figure 4-1. Voltage Sequencing  
Power planes. Each power supply pin (VDDC, VDDM, and VDDIO) should have a low-impedance path to the board  
power supply. Each GND pin should be provided with a low-impedance path to ground. The power supply pins  
drive distinct groups of logic on the device. The MSC7116 VDDC power supply pins should be bypassed to ground  
using decoupling capacitors. The capacitor leads and associated printed circuit traces connecting to device power  
pins and GND should be kept to less than half an inch per capacitor lead. A minimum four-layer board that  
employs two inner layers as power and GND planes is recommended. See Section 4.5 for DDR Controller power  
guidelines.  
Decoupling. Both the I/O voltage and core voltage should be decoupled for switching noise. For I/O decoupling,  
use standard capacitor values of 0.01 µF for every two to three voltage pins. For core voltage decoupling, use  
two levels of decoupling. The first level should consist of a 0.01 µF high frequency capacitor with low effective  
series resistance (ESR) and effective series inductance (ESL) for every two to three voltage pins. The second  
decoupling level should consist of two bulk/tantalum decoupling capacitors, one 10 µF and one 47 µF, (with low  
ESR and ESL) mounted as closely as possible to the MSC7116 voltage pins. Additionally, the maximum drop  
between the power supply and the DSP device should be 15 mV at 1 A.  
PLL power supply filtering. The MSC7116 VDDPLL power signal provides power to the clock generation PLL. To  
ensure stability of the internal clock, the power supplied to this pin should be filtered with capacitors that have  
low and high frequency filtering characteristics. VDDPLL can be connected to V  
through a 20 resistor.  
DDC  
V
can be tied directly to the GND plane. A circuit similar to the one shown in Figure 4-2 is recommended.  
SSPLL  
The PLL loop filter should be placed as closely as possible to the VDDPLL pin (which are located on the outside  
edge of the silicon package) to minimize noise coupled from nearby circuits.The 0.01 µF capacitor should be  
closest to VDDPLL, followed by the 0.1 µF capacitor, the 10 µF capacitor, and finally the 20-resistor to VDDC  
These traces should be kept short. VCCSYN and VCCSYN1 should be bypassed to ground by 0.1 µF and 47 µF  
capacitors located as closely as possible to the device package.  
.
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-3  
Design Considerations  
20 Ω  
VDDC  
V
DDPLL  
0.1 µF 0.01 µF  
10 µF  
10 Ω  
V
V
CCSYN  
VDDC  
CCSYN1  
47 µF  
0.1 µF  
Figure 4-2. PLL Power Supply Filter Circuits  
Power consumption. You can reduce power consumption in your design by controlling the power consumption  
of the following regions of the device:  
Extended core. Use the SC1400 Stop and Wait modes by issuing a stop or wait instruction.  
Clock synthesis module. Disable the PLL, timer, watchdog, or DDR clocks or disable the CLKO pin.  
AHB subsystem. Freeze or shut down the AHB subsystem using the GPSCTL[XBR_HRQ] bit.  
Peripheral subsystem. Halt the individual on-device peripherals such as the DDR memory controller,  
2
Ethernet MAC, HDI16, TDM, UART, I C, and timer modules.  
For details, see the “Clocks and Power Management” chapter of the MSC711x Reference Manual.  
Power supply design. One of the most common ways to derive power is to use either a simple fixed or adjustable  
linear regulator. For the system I/O voltage supply, a simple fixed 3.3 V supply can be used. However, a separate  
adjustable linear regulator supply for the core voltage VDDC should be implemented. For the memory power  
supply, regulators are available that take care of all DDR power requirements. Table 4-2 lists the recommended  
current rating for each supply per device supported.  
Table 4-2. Recommended Power Supply Ratings  
Supply  
Symbol  
Nominal Voltage  
Current Rating  
Core  
V
V
1.2 V  
2.5 V  
1.25 V  
3.3 V  
1.5 A per device  
0.5 A per device  
10 µA per device  
1.0 A per device  
DDC  
DDM  
Memory  
Reference  
I/O  
V
REF  
V
DDIO  
4.3 Estimated Power Usage Calculations  
The following equations permit estimated power usage to be calculated for individual design conditions. Overall  
power is derived by totaling the power used by each of the major subsystems:  
PTOTAL = PCORE + PPERIPHERALS + PDDRIO + PIO + PLEAKAGE  
This equation combines dynamic and static power. Dynamic power is determined using the generic equation:  
C × V2 × F × 10–3 mW  
Equation 4  
Equation 3  
where,  
C = load capacitance in pF  
V = peak-to-peak voltage swing in V  
F = frequency in MHz  
MSC7116 Technical Data, Rev. 8  
4-4  
Freescale Semiconductor  
Estimated Power Usage Calculations  
4.3.1 Core Power  
Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core  
load capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 200 MHz or 266 MHz. This  
yields:  
PCORE = 750 pF × (1.2 V)2 × 200 MHz × 10–3 = 216 mW  
PCORE = 750 pF × (1.2 V)2 × 266 MHz × 10–3 = 287 mW  
Equation 5  
Equation 6  
This equation allows for adjustments to voltage and frequency if necessary.  
4.3.2 Peripheral Power  
Peripherals include the DDR memory controller, DMA controller, HDI16, TDM, UART, timers, GPIOs, and the  
2
I C module. Basic power consumption by each module is assumed to be the same and is computed by using the  
following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching  
frequency of 100 MH or 133 MHz. This yields:  
PPERIPHERAL = 20 pF × (1.2 V)2 × 100 MHz × 10–3 = 2.88 mW per peripheral  
PPERIPHERAL = 20 pF × (1.2 V)2 × 133 MHz × 10–3 = 3.83 mW per peripheral  
Equation 7  
Equation 8  
Multiply this value by the number of peripherals used in the application to compute the total peripheral power  
consumption.  
4.3.3 External Memory Power  
Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal  
line usage, termination and load levels, and switching rates. Because the DDR memory includes terminations  
external to the MSC7116 device, the 2.5 V power source provides the power for the termination, which is a static  
value of 16 mA per signal driven high. The dynamic power is computed, however, using a differential voltage  
swing of 0.200 V, yielding a peak-to-peak swing of 0.4 V. The equations for computing the DDR power are:  
PDDRIO = PSTATIC + PDYNAMIC  
Equation 9  
Equation 10  
Equation 11  
Equation 12  
PSTATIC = (unused pins × % driven high) × 16 mA × 2.5 V  
P
P
DYNAMIC = (pin activity value) × 20 pF × (0.4 V)2 × 200 MHz × 10–3 mW  
DYNAMIC = (pin activity value) × 20 pF × (0.4 V)2 × 266 MHz × 10–3 mW  
pin activity value = (active data lines × % activity × % data switching) + (active address lines × % activity) Equation 13  
As an example, assume the following:  
unused pins = 16 (DDR uses 16-pin mode)  
% driven high = 50%  
active data lines = 16  
% activity = 60%  
% data switching = 50%  
active address lines = 3  
In this example, the DDR memory power consumption is:  
PDDRIO = ((16 × 0.5) × 16 × 2.5) + (((16 × 0.6 × 0.5) + (3 × 0.6)) × 20 × (0.4)2 × 200 × 10–3) = 324.2 mW Equation 14  
PDDRIO = ((16 × 0.5) × 16 × 2.5) + (((16 × 0.6 × 0.5) + (3 × 0.6)) × 20 × (0.4)2 × 266 × 10–3) = 326.3 mW Equation 15  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-5  
Design Considerations  
4.3.4 External I/O Power  
The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power  
consumption per signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a  
switching frequency of 25 MHz or 33 MHz, which yields:  
PIO = 20 pF × (3.3 V)2 × 25 MHz × 10–3 = 5.44 mW per I/O line  
PIO = 20 pF × (3.3 V)2 × 33 MHz × 10–3 = 7.19 mW per I/O line  
Equation 16  
Equation 17  
Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O  
power.  
Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be  
as low as 7 pF.  
4.3.5 Leakage Power  
The leakage power is for all power supplies combined at a specific temperature. The value is temperature  
dependent. The observed leakage value at room temperature is 64 mW.  
4.3.6 Example Total Power Consumption  
Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power  
consumption value is estimated as the following:  
PTOTAL (200 MHz core) = 216 + (4 × 2.88) + 324,2 + (10 × 5.44) + 64 = 670.12 mW  
PTOTAL (266 MHz core) = 287 + (4 × 3.83) + 326.3 + (10 × 7.19) + 64 = 764.52 mW  
Equation 18  
Equation 19  
4.4 Reset and Boot  
This section describes the recommendations for configuring the MSC7116 at reset and boot.  
4.4.1 Reset Circuit  
HRESET is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain  
device. For an open-drain output such as HRESET, take care when driving many buffers that implement input bus-  
hold circuitry. The bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic  
level to low. Either a smaller value of pull-up or less current loading from the bus-hold drivers overcomes this issue.  
To avoid exceeding the MSC7116 output current, the pull-up value should not be too small (a 1 Kpull-up resistor  
is used in the MSC711xADS reference design).  
4.4.2 Reset Configuration Pins  
Table 4-3 shows the MSC7116 reset configuration signals. These signals are sampled at the deassertion (rising  
edge) of PORESET. For details, refer to the Reset chapter of the MSC711x Reference Manual.  
Table 4-3. Reset Configuration Signals  
Signal  
Description  
Settings  
BM[1–0]  
Determines boot mode.  
0
Boot from HDI16 port.  
01  
1x  
Boot from I2C.  
Reserved.  
MSC7116 Technical Data, Rev. 8  
4-6  
Freescale Semiconductor  
Reset and Boot  
Table 4-3. Reset Configuration Signals (Continued)  
Signal  
Description  
Settings  
SWTE  
Determines watchdog functionality.  
0
1
0
1
0
1
Watchdog timer disabled.  
Watchdog timer enabled.  
Host Data strobes active low.  
Host Data strobes active high.  
HDSP  
H8BIT  
Configures HDI16 strobe polarity.  
Configures HDI16 operation mode.  
HDI16 port configured for 16-bit operation.  
HDI16 port configured for 8-bit operation.  
4.4.3 Boot  
After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Thus, the device  
operates slowly during the boot process. After the boot program is loaded, it can enable the PLL and start the  
device operating at a higher speed. The MSC7116 can boot from an external host through the HDI16 or download  
2
a user program through the I C port. The boot operating mode is set by configuring the BM[0–1] signals sampled at  
the rising edge of PORESET, as shown in Table 4-4.  
Table 4-4. Boot Mode Settings  
BM0  
BM1  
Boot Source  
0
0
1
0
1
x
External host via HDI16.  
2
I C.  
Reserved.  
4.4.3.1 HDI16 Boot  
If the MSC7116 device boots from an external host through the HDI16, the port is configured as follows:  
• Operate in Non-DMA mode.  
• Operate in polled mode on the device side.  
• Operate in polled mode on the external host side.  
• External host must write four 16-bit values at a time with the first word as the most significant and the fourth  
word as the least significant.  
When booting from a power-on reset, the HDI16 is additionally configurable as follows:  
• 8- or 16-bit mode as specified by the H8BIT pin.  
• Data strobe as specified by the HDSP and HDDS pins.  
These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the  
configuration of these pins is unaffected.  
Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most  
significant bit as for other DSP products.  
2
4.4.3.2 I C Boot  
2
When the MSC7116 device is configured to boot from the I C port, the boot program configures the GPIO pins  
2
2
2
shared with the I C pins as I C pins. The I C interface is configured as follows:  
2
• I C in master mode.  
• EPROM in slave mode.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-7  
Design Considerations  
For details on the boot procedure, see the “Boot Program” chapter of the MSC711x Reference Manual.  
4.5 DDR Memory System Guidelines  
MSC7116 devices contain a memory controller that provides a glueless interface to external double data rate  
(DDR) SDRAM memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two  
termination techniques, as shown in Figure 4-3. Technique B is the most popular termination technique.  
VTT  
Generator  
VTT  
Controller  
RS  
RS  
DDR  
Bank  
DDR  
Bank  
RT  
SSTL_2  
SSTL_2  
Address  
Command  
Chip Selects  
Technique A  
RT  
Data  
Strobes  
Mask  
SSTL_2  
VREF  
VTT  
Generator  
Controller  
RS  
DDR  
Bank  
DDR  
Bank  
RT  
SSTL_2  
SSTL_2  
Address  
Command  
Technique B  
Chip Selects  
RS  
RT  
Data  
Strobes  
Mask  
SSTL_2  
Figure 4-3. SSTL Termination Techniques  
MSC7116 Technical Data, Rev. 8  
4-8  
Freescale Semiconductor  
DDR Memory System Guidelines  
Figure 4-4 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:  
• RS = 22 Ω  
• RT = 24 Ω  
VTT  
Driver  
VDDQ  
RT  
Receiver  
RS  
VREF  
VSS  
Figure 4-4. SSTL Power Value  
4.5.1 VREF and VTT Design Constraints  
V
and V  
are isolated power supplies at the same voltage, with V as a high current power source. This  
TT  
REF TT  
section outlines the voltage supply design needs and goals:  
• Minimize the noise on both rails.  
• V must track variation in the V  
DC offsets. Although they are isolated supplies, one possible solution is to  
REF  
TT  
use a single IC to generate both signals.  
• Both references should have minimal drift over temperature and source supply.  
• It is important to minimize the noise from coupling onto V as follows:  
REF  
Isolate V  
and shield it with a ground trace.  
REF  
Use 15–20 mm track.  
Use 20–30 mm clearance between other traces for isolating.  
Use the outer layer route when possible.  
Use distributed decoupling to localize transient currents and return path and decouple with an inductance  
less than 3 nH.  
• Max source/sink transient currents of up to 1.8 A for a 32-bit data bus.  
• Use a wide island trace on the outer layer:  
Place the island at the end of the bus.  
Decouple both ends of the bus.  
Use distributed decoupling across the island.  
Place SSTL termination resistors inside the V island and ensure a good, solid connection.  
TT  
• Place the V regulator as closely as possible to the termination island.  
TT  
Reduce inductance and return path.  
Tie current sense pin at the midpoint of the island.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-9  
Design Considerations  
4.5.2 Decoupling  
The DDR decoupling considerations are as follows:  
• DDR memory requires significantly more burst current than previous SDRAMs.  
• In the worst case, up to 64 drivers may be switching states.  
• Pay special attention and decouple discrete ICs per manufacturer guidelines.  
• Leverage V island topology to minimize the number of capacitors required to supply the burst current needs of  
TT  
the termination rail.  
• See the Micron DesignLine publication entitled Decoupling Capacitor Calculation for a DDR Memory Channel  
(http://download.micron.com/pdf/pubs/designline/3Q00dl1-4.pdf).  
4.5.3 General Routing  
The general routing considerations for the DDR are as follows:  
• All DDR signals must be routed next to a solid reference:  
For data, next to solid ground planes.  
For address/command, power planes if necessary.  
• All DDR signals must be impedance controlled. This is system dependent, but typical values are 50–60 ohm.  
• Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing  
between all DDR signals to non-DDR signals.  
• Keep the number of vias to a minimum to eliminate additional stubs and capacitance.  
• Signal group routing priorities are as follows:  
DDR clocks.  
Route MVTT/MVREF.  
Data group.  
Command/address.  
• Minimize data bit jitter by trace matching.  
4.5.4 Routing Clock Distribution  
The DDR clock distribution considerations are as follows:  
• DDR controller supports six clock pairs:  
2 DIMM modules.  
Up to 36 discrete chips.  
• For route traces as for any other differential signals:  
Maintain proper difference pair spacing.  
Match pair traces within 25 mm.  
• Match all clock traces to within 100 mm.  
• Keep all clocks equally loaded in the system.  
• Route clocks on inner critical layers.  
MSC7116 Technical Data, Rev. 8  
4-10  
Freescale Semiconductor  
Connectivity Guidelines  
4.5.5 Data Routing  
The DDR data routing considerations are as follows:  
• Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.  
• Take care to match trace lengths, which is extremely important.  
• To make trace matching easier, let adjacent groups be routed on alternate critical layers.  
• Pin swap bits within a byte group to facilitate routing (discrete case).  
• Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal  
within 25 mm of its respective strobe.  
• Minimize lengths across the entire DDR channel:  
Between all groups maintain a delta of no more than 500 mm.  
Allows greater flexibility in the design for readjustments as needed.  
• DDR data group separation:  
If stack-up allows, keep DDR data groups away from the address and control nets.  
Route address and control on separate critical layers.  
If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.  
4.6 Connectivity Guidelines  
This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the  
MSC7116 device. Following are guidelines for signal groups and configuration settings:  
Clock and reset signals.  
SWTE is used to configure the MSC7116 device and is sampled on the deassertion of PORESET, so it  
should be tied to VDDC or GND either directly or through pull-up or pull-down resistors until PORESET is  
deasserted. After PORESET, this signal can be left floating.  
BM[0–1] configure the MSC7116 device and are sampled until PORESET is deasserted, so they should be  
tied to VDDIO or GND either directly or through pull-up or pull-down resistors.  
HRESET should be pulled up.  
Interrupt signals. When used, IRQ pins must be pulled up.  
HDI16 signals.  
When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor.  
However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need  
to be pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be  
used with the HRESET signal as the enable.  
When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down,  
depending on the required boot mode settings.  
Ethernet MAC/TDM2 signals. The MDIO signal requires an external pull-up resistor.  
2
2
I C signals. The SCL and SDA signals, when programmed for I C, requires an external pull-up resistor.  
General-purpose I/O (GPIO) signals. An unused GPIO pin can be disconnected. After boot, program it as an  
output pin.  
MSC7116 Technical Data, Rev. 8  
Freescale Semiconductor  
4-11  
Design Considerations  
Other signals.  
The TEST0 pin must be connected to ground.  
The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for  
boundary scan.  
Pins labelled NO CONNECT (NC) must not be connected.  
When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects  
(floating) if the used lines are terminated.  
Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the  
EVNT pins, and DBREQ to HRRQ.  
MSC7116 Technical Data, Rev. 8  
4-12  
Freescale Semiconductor  
Ordering Information  
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Solder Spheres  
Order Number  
MSC7116  
(mask  
1L44X  
1.2 V core  
2.5 V mem.  
3.3 V I/O  
Molded Array Process-Ball Grid  
Array (MAP-BGA)  
400  
400  
200  
Lead-free  
Lead-bearing  
Lead-free  
MSC7116VM800  
MSC7116VF800  
MSC7116VM1000  
MSC7116VF1000  
MSC7116  
(mask  
1M88B)  
1.2 V core  
2.5 V mem  
3.3 V I/O  
Molded Array Process-Ball Grid  
Array (MAP-BGA)  
266  
Lead-bearing  
Information in this document is provided solely to enable system and software implementers to  
use Freescale Semiconductor products. There are no express or implied copyright licenses  
granted hereunder to design or fabricate any integrated circuits or integrated circuits based on  
the information in this document.  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
Freescale Semiconductor reserves the right to make changes without further notice to any  
products herein. Freescale Semiconductor makes no warranty, representation or guarantee  
regarding the suitability of its products for any particular purpose, nor does Freescale  
Semiconductor assume any liability arising out of the application or use of any product or  
circuit, and specifically disclaims any and all liability, including without limitation consequential  
or incidental damages. “Typical” parameters which may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different applications and  
actual performance may vary over time. All operating parameters, including “Typicals” must be  
validated for each customer application by customer’s technical experts. Freescale  
Semiconductor does not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized for use as  
components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the  
Freescale Semiconductor product could create a situation where personal injury or death may  
occur. Should Buyer purchase or use Freescale Semiconductor products for any such  
unintended or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such unintended or  
unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
USA/Europe or Locations not listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GMBH  
Technical Information Center  
Schatzbogen 7  
81829 München, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Freescale™, the Freescale logo, CodeWarrior, and fieldBIST are trademarks of Freescale  
Semiconductor, Inc. StarCore is a trademark of StarCore LLC. The StarCore SC1400 core is  
based on StarCore technology under license from StarCore LLC. All other product or service  
names are the property of their respective owners.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T. Hong Kong  
+800 2666 8080  
© Freescale Semiconductor, Inc. 2004, 2005.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Order No.: MSC7116  
Rev. 8  
12/2005  

相关型号:

MSC7116VM1000

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7116_08

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7118

Low-Cost 16-bit DSP with DDR Controller
FREESCALE

MSC7118VF1200

Low-Cost 16-bit DSP with DDR Controller
FREESCALE

MSC7118VM1200

Low-Cost 16-bit DSP with DDR Controller
FREESCALE

MSC7119

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7119VF1200

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7119VM1200

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7119_08

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
FREESCALE

MSC7128

5 x 7-Dot Character x 16-Digit Display Controller/Driver
OKI

MSC7128-01GS-BK

Dot Matrix LCD Driver, 16 X 36 Dots, CMOS, PQFP64, 14 X 20 MM, 1 MM PITCH, PLASTIC, QFP-64
OKI

MSC7128-XX

5 x 7-Dot Character x 16-Digit Display Controller/Driver
OKI