MSC7119_08 [FREESCALE]

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC; 低成本的16位DSP与DDR控制器和10/100 Mbps以太网MAC
MSC7119_08
型号: MSC7119_08
厂家: Freescale    Freescale
描述:

Low-Cost 16-bit DSP with DDR Controller and 10/100 Mbps Ethernet MAC
低成本的16位DSP与DDR控制器和10/100 Mbps以太网MAC

双倍数据速率 控制器 以太网 局域网(LAN)标准
文件: 总60页 (文件大小:1142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Freescale Semiconductor  
Data Sheet  
Document Number: MSC7119  
Rev. 8, 4/2008  
MSC7119  
Low-Cost 16-bit DSP with  
DDR Controller and 10/100  
Mbps Ethernet MAC  
MAP-BGA–400  
17 mm × 17 mm  
StarCore® SC1400 DSP extended core with one SC1400 DSP  
core, 256 Kbyte of internal SRAM M1 memory, 16 way 16 Kbyte  
instruction cache (ICache), four-entry write buffer, programmable  
interrupt controller (PIC), and low-power Wait and Stop  
processing modes.  
192 Kbyte M2 memory for critical data and temporary data  
buffering.  
8 Kbyte boot ROM.  
Multi-channel DMA controller with 32 time-multiplexed  
unidirectional channels, priority-based time-multiplexing  
between channels using 32 internal priority levels, fixed- or  
round-robin-priority operation, major-minor loop structure, and  
DONE or DRACK protocol from requesting units.  
Two independent TDM modules with independent receive and  
transmit, programmable sharing of frame sync and clock,  
programmable word size (8 or 16-bit), hardware-base  
A-law/μ-law conversion, up to 50 Mbps data rate per TDM, up to  
128 channels, with glueless interface to E1/T1 frames and MVIP,  
SCAS, and H.110 buses.  
Ethernet controller with support for 10/100 Mbps MII/RMII  
designed to comply with IEEE Std. 802.3™, 802.3u™, 802.3x™,  
and 802.3ac™; with internal receive and transmit FIFOs and a  
FIFO controller; direct access to internal memories via its own  
DMA controller; full and half duplex operation; programmable  
maximum frame length; virtual local area network (VLAN) tag  
and priority support; retransmission of transmit FIFO following  
collision; CRC generation and verification for inbound and  
outbound packets; and address recognition including  
promiscuous, broadcast, individual address. hash/exact match,  
and multicast hash match.  
AHB-Lite crossbar switch that allows parallel data transfers  
between four master ports and six slave ports, where each port  
connects to an AHB-Lite bus; fixed or round robin priority  
programmable at each slave port; programmable bus parking at  
each slave port; low power mode.  
Internal PLL generates up to 300 MHz clock for the SC1400 core  
and up to 150 MHz for the crossbar switch, DMA channels, M2  
memory, and other peripherals.  
Clock synthesis module provides predivision of PLL input clock;  
independent clocking of the internal timers and DDR module;  
programmable operation in the SC1400 low power Stop mode;  
independent shutdown of different regions of the device.  
Enhanced 16-bit wide host interface (HDI16) provides a glueless  
connection to industry-standard microcomputers,  
microprocessors, and DSPs and can also operate with an 8-bit host  
data bus, making if fully compatible with the DSP56300 HI08  
from the external host side.  
DDR memory controller that supports byte enables for up to a  
32-bit data bus; glueless interface to 150 MHz 14-bit page mode  
DDR-RAM; 14-bit external address bus supporting up to 1 Gbyte;  
and 16-bit or 32-bit external data bus.  
UART with full-duplex operation up to 5.0 Mbps.  
Up to 41 general-purpose input/output (GPIO) ports.  
I2C interface that allows booting from EEPROM devices up to 1  
Mbyte.  
Two quad timer modules, each with sixteen configurable 16-bit  
timers.  
fieldBIST™ unit detects and provides visibility into unlikely field  
failures for systems with high availability to ensure structural  
integrity, that the device operates at the rated speed, is free from  
reliability defects, and reports diagnostics for partial or complete  
device inoperability.  
Standard JTAG interface allows easy integration to system  
firmware and internal on-chip emulation (OCE10) module.  
Optional booting external host via 8-bit or 16-bit access through  
the HDI16, I2C, or SPI using in the boot ROM to access serial SPI  
Flash/EEPROM devices; different clocking options during boot  
with the PLL on or off using a variety of input frequency ranges.  
Programmable memory interface with independent read buffers,  
programmable predictive read feature for each buffer, and a write  
buffer.  
System control unit performs software watchdog timer function;  
includes programmable bus time-out monitors on AHB-Lite slave  
buses; includes bus error detection and programmable time-out  
monitors on AHB-Lite master buses; and has address  
out-of-range detection on each crossbar switch buses.  
Event port collects and counts important signal events including  
DMA and interrupt requests and trigger events such as interrupts,  
breakpoints, DMA transfers, or wake-up events; units operate  
independently, in sequence, or triggered externally; can be used  
standalone or with the OCE10.  
© Freescale Semiconductor, Inc., 2004, 2008. All rights reserved.  
Table of Contents  
1
2
Pin Assignments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Figure 8. TDM Receive Signals. . . . . . . . . . . . . . . . . . . . . . . . . 28  
Figure 9. TDM Transmit Signals . . . . . . . . . . . . . . . . . . . . . . . . 29  
Figure 10. Ethernet Receive Signal Timing . . . . . . . . . . . . . . . . . 29  
Figure 11. Ethernet Receive Signal Timing . . . . . . . . . . . . . . . . . 30  
Figure 12. Asynchronous Input Signal Timing. . . . . . . . . . . . . . . 30  
Figure 13. Serial Management Channel Timing . . . . . . . . . . . . . 31  
Figure 14. Read Timing Diagram, Single Data Strobe . . . . . . . . 33  
Figure 15. Read Timing Diagram, Double Data Strobe. . . . . . . . 33  
Figure 16. Write Timing Diagram, Single Data Strobe. . . . . . . . . 34  
Figure 17. Write Timing Diagram, Double Data Strobe . . . . . . . . 34  
Figure 18. Host DMA Read Timing Diagram, HPCR[OAD] = 0. . 35  
Figure 19. Host DMA Write Timing Diagram, HPCR[OAD] = 0 . . 35  
Figure 20. I2C Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Figure 21. UART Input Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 22. UART Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 23. EE Pin Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37  
Figure 24. EVNT Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 25. GPI/GPO Pin Timing . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Figure 26. Test Clock Input Timing Diagram . . . . . . . . . . . . . . . . 39  
Figure 27. Boundary Scan (JTAG) Timing Diagram . . . . . . . . . . 40  
Figure 28. Test Access Port Timing Diagram . . . . . . . . . . . . . . . 40  
Figure 29. TRST Timing Diagram . . . . . . . . . . . . . . . . . . . . . . . . 40  
Figure 30. Voltage Sequencing Case 1. . . . . . . . . . . . . . . . . . . . 43  
Figure 31. Voltage Sequencing Case 2. . . . . . . . . . . . . . . . . . . . 44  
Figure 32. Voltage Sequencing Case 3. . . . . . . . . . . . . . . . . . . . 45  
Figure 33. Voltage Sequencing Case 4. . . . . . . . . . . . . . . . . . . . 46  
Figure 34. Voltage Sequencing Case 5. . . . . . . . . . . . . . . . . . . . 47  
Figure 35. PLL Power Supply Filter Circuits . . . . . . . . . . . . . . . . 48  
Figure 36. SSTL Termination Techniques . . . . . . . . . . . . . . . . . . 54  
Figure 37. SSTL Power Value . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
1.1 MAP-BGA Ball Layout Diagrams . . . . . . . . . . . . . . . . . .4  
1.2 Signal List By Ball Location. . . . . . . . . . . . . . . . . . . . . . .6  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
2.2 Recommended Operating Conditions. . . . . . . . . . . . . .18  
2.3 Thermal Characteristics . . . . . . . . . . . . . . . . . . . . . . . .19  
2.4 DC Electrical Characteristics . . . . . . . . . . . . . . . . . . . .19  
2.5 AC Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Hardware Design Considerations. . . . . . . . . . . . . . . . . . . . . .41  
3.1 Thermal Design Considerations . . . . . . . . . . . . . . . . . .41  
3.2 Power Supply Design Considerations. . . . . . . . . . . . . .42  
3.3 Estimated Power Usage Calculations. . . . . . . . . . . . . .49  
3.4 Reset and Boot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
3.5 DDR Memory System Guidelines . . . . . . . . . . . . . . . . .54  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Package Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Product Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
3
4
5
6
7
List of Figures  
Figure 1. MSC7119 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 3  
Figure 2. MSC7119 Molded Array Process-Ball Grid Array  
(MAP-BGA), Top View . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Figure 3. MSC7119 Molded Array Process-Ball Grid Array  
(MAP-BGA), Bottom View . . . . . . . . . . . . . . . . . . . . . . 5  
Figure 4. Timing Diagram for a Reset Configuration Write . . . . 25  
Figure 5. DDR DRAM Input Timing Diagram . . . . . . . . . . . . . . 26  
Figure 6. DDR DRAM Output Timing Diagram . . . . . . . . . . . . . 27  
Figure 7. DDR DRAM AC Test Load. . . . . . . . . . . . . . . . . . . . . 28  
MSC7119 Data Sheet, Rev. 8  
2
Freescale Semiconductor  
DMA  
(32 Channel)  
AMDMA  
M2  
SRAM  
(192 KB)  
JTAG Port  
128  
64  
JTAG  
ASM2  
128  
64  
to IPBus  
64  
Boot ROM  
(8 KB)  
DSP  
Extended  
Core  
128  
SC1400  
Core  
ASEMI  
External Bus  
32  
External  
Memory  
Interface  
Trace  
Buffer  
(8 KB)  
from  
IPBus  
64  
Interrupts  
Interrupt Control  
Fetch  
Unit  
Host  
HDI16  
Port  
Interface  
(HDI16)  
Instruction  
Cache  
(16 KB)  
ASTH  
AMIC  
TDM  
32  
64  
128  
64  
2 TDMs  
AMEC  
PLL/Clock  
Extended  
Core  
Interface  
ASAPB  
PLL/Clock  
2
I C  
32  
2
APB  
I C  
RS-232  
GPIO  
UART  
M1  
SRAM  
ASM1  
GPIO  
(256 KB)  
128  
64  
64  
ASIB  
64  
System Ctrl  
64  
P XA XB  
Events  
32  
32  
AMENT  
Watchdog  
Event Port  
BTMs  
to EMI  
to/from OCE10  
Timers  
Ethernet  
MAC  
to DMA  
Note: The arrows show the  
direction of the transfer.  
MII/RMII  
IPBus  
Figure 1. MSC7119 Block Diagram  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
3
Pin Assignments  
1
Pin Assignments  
This section includes diagrams of the MSC7119 package ball grid array layouts and pinout allocation tables.  
1.1  
MAP-BGA Ball Layout Diagrams  
Top and bottom views of the MAP-BGA package are shown in Figure 2 and Figure 3 with their ball location index numbers.  
Top View  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
A
B
C
D
E
F
GND  
GND  
DQM1 DQS2  
CK  
CK  
HD15  
HD12  
HD10  
HD7  
HD6  
HD4  
HD1  
HD0  
GND  
BM3  
NC  
NC  
NC  
NC  
VDDM  
NC  
D30  
D28  
D26  
D15  
D13  
D12  
VDDM  
CS0  
D25  
D27  
D31  
D29  
GND  
D11  
D9  
DQM2 DQS3 DQS0  
CKE  
WE  
HD14  
CAS  
HD11  
HD13  
VDDM  
VDDM  
VDDM  
HD8  
HD9  
HD5  
HD3  
HD2  
NC  
NC  
NC  
BM2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
HA2  
NC  
NC  
NC  
NC  
NC  
NC  
HA1  
D24  
CS1  
DQM3 DQM0 DQS1  
RAS  
VDDM  
VDDC  
NC  
VDDM  
VDDM  
VDDM  
VDDC  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDC  
A10  
VDDM  
VDDC  
VDDC  
VDDM  
VDDM  
VDDIO VDDIO VDDIO VDDIO VDDIO VDDIO  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
GND  
VDDM  
VDDC  
VDDM  
VDDM  
VDDM  
VDDC  
VDDC  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDC  
VDDC  
VDDIO VDDIO VDDIO VDDIO VDDIO  
VDDC  
GND  
VDDM  
VDDM  
VDDIO  
VDDC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDM  
VDDC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDC  
VDDC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDIO  
GND  
GND  
GND  
GND  
GND  
VDDIO VDDIO  
G
H
J
GND  
D14  
D10  
D0  
GND  
GND  
VDDM  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDM  
VDDC  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDC  
VDDIO VDDIO  
VDDIO  
GND  
HA3  
HA0  
HACK HREQ  
VDDIO VDDIO  
K
L
GND  
GND  
VDDM  
D8  
GND  
GND  
GND  
VDDM  
VDDM  
VDDM  
VDDC  
VDDC  
HDDS  
HDS  
VDDIO VDDIO VDDIO  
D1  
D3  
HCS2 HCS1  
HRW  
VDDC  
M
N
P
R
T
D2  
D5  
GND  
GND  
GND  
GND  
GND  
SDA  
UTXD URXD  
VREF  
VDDIO  
VDDC  
VSSPLL  
VDDPLL  
TEST0  
D4  
D6  
D17  
D19  
D20  
D21  
NC  
CLKIN  
SCL  
VDDIO VDDIO  
D7  
D16  
D18  
D22  
D23  
A13  
A12  
A9  
PORESET TPSEL  
VDDIO VDDIO  
GND  
VDDM  
TDO  
MDIO  
COL  
EE0  
VDDIO VDDIO VDDIO VDDIO  
VDDC  
TMS HRESET  
VDDC  
VDDC  
VDDC  
VDDC  
VDDC  
U
V
W
Y
GND  
TCK  
TRST  
TDI  
VDDM  
A11  
A8  
A5  
A6  
A4  
A2  
A3  
BA0  
NC  
NC  
EVNT0 EVNT4 T0TCK T1RFS T1TD TX_ER RXD2 RXD0 TX_EN CRS  
VDDM  
GND  
A7  
EVNT1 EVNT2 T0RFS T0TFS T1RD T1TFS TXD2 RXD3 TXD1 TXCLK RX_ER MDC  
VDDM  
GND  
A1  
A0  
BA1  
NMI  
EVNT3 T0RCK T0RD TOTD T1RCK T1TCK TXD3 RXCLK TXD0 RXD1  
GND RX_DV  
Figure 2. MSC7119 Molded Array Process-Ball Grid Array (MAP-BGA), Top View  
MSC7119 Data Sheet, Rev. 8  
4
Freescale Semiconductor  
Pin Assignments  
Bottom View  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
8
7
6
5
4
3
2
1
A
B
C
D
E
F
NC  
NC  
NC  
NC  
BM3  
GND  
HD0  
HD1  
HD4  
HD6  
HD7  
HD10  
HD12  
HD15  
CK  
CK  
DQS2 DQM1  
GND  
GND  
VDDM  
NC  
NC  
NC  
NC  
NC  
NC  
HA1  
NC  
NC  
NC  
NC  
NC  
NC  
HA2  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
HA3  
HA0  
NC  
NC  
NC  
NC  
BM2  
NC  
NC  
NC  
HD2  
NC  
HD5  
HD3  
HD8  
HD9  
HD11  
HD13  
VDDM  
VDDM  
VDDM  
HD14  
CAS  
VDDM  
VDD  
WE  
RAS  
VDDM  
VDD  
CKE  
DQS0 DQS3 DQM2  
CS0  
D25  
D27  
D31  
D29  
GND  
D11  
D9  
NC  
D30  
D28  
D26  
D15  
D13  
D12  
VDDM  
DQS1 DQM0 DQM3  
CS1  
GND  
VDDM  
VDD  
D24  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDDIO VDDIO VDDIO VDDIO VDDIO VDDIO  
VDDM  
VDDM  
VDDM  
VDDM  
VDD  
VDDM  
VDD  
VDDIO VDDIO VDDIO VDDIO VDDIO  
VDD  
VDD  
GND  
VDD  
VDDIO  
VDDM  
VDD  
VDDM  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDIO  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDM  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDD  
VDDIO VDDIO  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDD  
VDDM  
VDDM  
VDDM  
VDD  
G
H
J
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDD  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
VDDM  
VDDM  
VDD  
GND  
GND  
VDDM  
GND  
D14  
D10  
D0  
VDDIO VDDIO  
VDDIO  
HREQ HACK  
GND  
VDDIO VDDIO  
K
L
HDS  
HDDS  
GND  
GND  
GND  
VDDM  
VDDM  
VDDM  
VDD  
D8  
GND  
GND  
VDDM  
VDDIO VDDIO VDDIO  
VDD  
HRW  
HCS1 HCS2  
D3  
D1  
VDD  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
VDDM  
M
N
P
R
T
URXD UTXD  
SDA  
CLKIN  
PORESET  
TDO  
GND  
GND  
GND  
GND  
GND  
D5  
D2  
VSSPLL  
VDDPLL  
TEST0  
VDD  
VDDIO  
VREF  
SCL  
TPSEL  
EE0  
D6  
D17  
D19  
D20  
D21  
NC  
D4  
VDDIO VDDIO  
D16  
D18  
D22  
D23  
A13  
A12  
A9  
D7  
VDDIO VDDIO  
GND  
VDDM  
VDD  
VDDIO VDDIO VDDIO VDDIO  
HRESET TMS  
MDIO  
COL  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
VDD  
U
V
W
Y
TRST  
TDI  
TCK  
GND  
VDDM  
CRS TX_EN RXD0 RXD2 TX_ER T1TD T1RFS T0TCK EVNT4 EVNT0  
NC  
BA0  
NC  
A2  
A3  
A5  
A6  
A4  
A10  
A11  
A8  
VDDM  
MDC RX_ER TXCLK TXD1 RXD3 TXD2 T1TFS T1RD T0TFS T0RFS EVNT2 EVNT1  
A7  
GND  
VDDM  
RX_DV GND  
RXD1 TXD0 RXCLK TXD3 T1TCK T1RCK TOTD T0RD T0RCK EVNT3  
NMI  
BA1  
A0  
A1  
GND  
Figure 3. MSC7119 Molded Array Process-Ball Grid Array (MAP-BGA), Bottom View  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
5
Pin Assignments  
1.2  
Signal List By Ball Location  
Table 1 lists the signals sorted by ball number and configuration.  
Table 1. MSC7119 Signals by Ball Designator  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
A1  
A2  
GND  
GND  
DQM1  
DQS2  
CK  
A3  
A4  
A5  
A6  
CK  
A7  
GPIC7  
GPIC4  
GPIC2  
GPOC7  
GPOC4  
GPOC2  
HD15  
HD12  
HD10  
HD7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
B1  
reserved  
reserved  
reserved  
reserved  
reserved  
HD6  
HD4  
HD1  
HD0  
GND  
BM3  
GPID8  
GPOD8  
reserved  
NC  
NC  
NC  
NC  
V
DDM  
B2  
NC  
CS0  
B3  
B4  
DQM2  
DQS3  
DQS0  
CKE  
B5  
B6  
B7  
B8  
WE  
B9  
GPIC6  
GPIC3  
GPIC0  
GPOC6  
GPOC3  
GPOC0  
HD14  
HD11  
HD8  
B10  
B11  
B12  
B13  
reserved  
reserved  
HD5  
HD2  
MSC7119 Data Sheet, Rev. 8  
6
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
B14  
B15  
B16  
B17  
B18  
B19  
B20  
C1  
NC  
BM2  
GPID7  
GPOD7  
reserved  
NC  
NC  
NC  
NC  
NC  
D24  
D30  
D25  
CS1  
C2  
C3  
C4  
C5  
DQM3  
DQM0  
DQS1  
RAS  
C6  
C7  
C8  
C9  
CAS  
C10  
C11  
C12  
C13  
C14  
C15  
C16  
C17  
C18  
C19  
C20  
D1  
GPIC5  
GPIC1  
GPOC5  
GPOC1  
HD13  
HD9  
HD3  
reserved  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
NC  
V
DDM  
D2  
D28  
D27  
D3  
D4  
GND  
D5  
V
V
V
V
V
DDM  
DDM  
DDM  
DDM  
DDM  
D6  
D7  
D8  
D9  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
7
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
D10  
D11  
D12  
D13  
D14  
D15  
D16  
D17  
D18  
D19  
D20  
E1  
V
DDM  
V
V
V
V
V
V
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
V
DDC  
NC  
NC  
NC  
GND  
D26  
D31  
E2  
E3  
E4  
V
V
DDM  
DDM  
E5  
E6  
V
V
V
V
DDC  
DDC  
DDC  
DDC  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
DDIO  
E7  
E8  
E9  
E10  
E11  
E12  
E13  
E14  
E15  
E16  
E17  
E18  
E19  
E20  
F1  
V
V
V
V
V
V
V
V
DDC  
DDC  
NC  
NC  
NC  
V
DDM  
F2  
D15  
F3  
D29  
F4  
V
DDC  
DDC  
F5  
V
MSC7119 Data Sheet, Rev. 8  
8
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
F6  
F7  
V
DDC  
GND  
GND  
GND  
F8  
F9  
F10  
F11  
F12  
F13  
F14  
F15  
F16  
F17  
F18  
F19  
F20  
G1  
V
V
DDM  
DDM  
GND  
GND  
GND  
V
DDIO  
V
DDC  
V
DDC  
NC  
NC  
NC  
GND  
D13  
GND  
G2  
G3  
G4  
V
V
DDM  
DDM  
G5  
G6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
G7  
G8  
G9  
G10  
G11  
G12  
G13  
G14  
G15  
G16  
G17  
G18  
G19  
G20  
H1  
V
DDIO  
DDIO  
V
V
DDC  
NC  
NC  
NC  
D14  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
9
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
H2  
H3  
D12  
D11  
H4  
V
DDM  
DDM  
H5  
V
H6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
H7  
H8  
H9  
H10  
H11  
H12  
H13  
H14  
H15  
H16  
H17  
H18  
H19  
H20  
J1  
V
DDIO  
DDIO  
V
V
DDC  
NC  
reserved  
reserved  
HA2  
HA1  
D10  
J2  
V
DDM  
J3  
D9  
J4  
V
DDM  
DDM  
DDM  
J5  
V
V
J6  
J7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
J8  
J9  
J10  
J11  
J12  
J13  
J14  
J15  
J16  
J17  
V
DDIO  
V
DDC  
MSC7119 Data Sheet, Rev. 8  
10  
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
J18  
J19  
J20  
K1  
GPIC11  
GPOC11  
HA3  
reserved  
HACK/HACK or HRRQ/HRRQ  
HREQ/HREQ or HTRQ/HTRQ  
HDSP  
reserved  
D0  
K2  
GND  
D8  
K3  
K4  
V
DDC  
DDM  
K5  
V
K6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
K7  
K8  
K9  
K10  
K11  
K12  
K13  
K14  
K15  
K16  
K17  
K18  
K19  
K20  
L1  
V
DDIO  
DDIO  
V
V
DDC  
reserved  
reserved  
reserved  
HA0  
HDDS  
HDS/HDS or HWR/HWR  
D1  
GND  
D3  
L2  
L3  
L4  
V
DDC  
DDM  
L5  
V
L6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
L7  
L8  
L9  
L10  
L11  
L12  
L13  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
11  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
L14  
L15  
L16  
L17  
L18  
L19  
L20  
M1  
V
V
V
DDIO  
DDIO  
DDIO  
V
DDC  
GPIB11  
GPOB11  
HCS2/HCS2  
HCS1/HCS1  
reserved  
reserved  
HRW or HRD/HRD  
D2  
M2  
V
DDM  
M3  
D5  
M4  
V
DDM  
DDM  
M5  
V
M6  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
M7  
M8  
M9  
M10  
M11  
M12  
M13  
M14  
M15  
M16  
M17  
M18  
M19  
M20  
N1  
V
V
DDC  
DDC  
GPIA14  
IRQ15  
IRQ3  
IRQ2  
GPOA14  
GPOA12  
GPOA13  
SDA  
UTXD  
URXD  
GPIA12  
GPIA13  
D4  
D6  
N2  
N3  
V
REF  
DDM  
DDM  
DDM  
N4  
V
V
V
N5  
N6  
N7  
GND  
GND  
GND  
N8  
N9  
MSC7119 Data Sheet, Rev. 8  
12  
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
N10  
N11  
N12  
N13  
N14  
N15  
N16  
N17  
N18  
N19  
N20  
P1  
GND  
GND  
GND  
GND  
GND  
V
DDIO  
V
DDC  
DDC  
V
CLKIN  
GPIA15  
IRQ14  
GPOA15  
SCL  
V
SSPLL  
D7  
P2  
D17  
D16  
P3  
P4  
V
DDM  
DDM  
DDM  
P5  
V
P6  
V
P7  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
P8  
P9  
P10  
P11  
P12  
P13  
P14  
P15  
P16  
P17  
P18  
P19  
P20  
R1  
V
DDIO  
DDIO  
V
V
DDC  
PORESET  
TPSEL  
V
DDPLL  
GND  
D19  
D18  
R2  
R3  
R4  
V
V
DDM  
DDM  
R5  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
13  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
R6  
R7  
V
DDM  
GND  
R8  
V
DDM  
R9  
GND  
R10  
R11  
R12  
R13  
R14  
R15  
R16  
R17  
R18  
R19  
R20  
T1  
V
DDM  
GND  
GND  
V
DDIO  
GND  
V
DDIO  
DDIO  
V
V
DDC  
TDO  
reserved  
EE0/DBREQ  
TEST0  
V
DDM  
T2  
D20  
D22  
T3  
T4  
V
DDM  
DDM  
T5  
V
T6  
V
DDC  
DDM  
DDM  
T7  
V
V
T8  
T9  
V
DDC  
DDM  
DDM  
DDIO  
DDIO  
DDIO  
DDIO  
T10  
T11  
T12  
T13  
T14  
T15  
T16  
T17  
T18  
T19  
T20  
U1  
V
V
V
V
V
V
V
DDC  
DDC  
V
reserved  
MDIO  
TMS  
HRESET  
GND  
MSC7119 Data Sheet, Rev. 8  
14  
Freescale Semiconductor  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
Primary  
Alternate  
U2  
U3  
D21  
D23  
U4  
V
DDM  
U5  
V
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
DDC  
U6  
V
V
V
V
V
V
V
V
V
V
V
V
U7  
U8  
U9  
U10  
U11  
U12  
U13  
U14  
U15  
U16  
U17  
U18  
U19  
U20  
V1  
reserved  
COL  
TCK  
TRST  
V
DDM  
V2  
NC  
A13  
A11  
A10  
A5  
V3  
V4  
V5  
V6  
V7  
A2  
V8  
BA0  
NC  
V9  
V10  
V11  
V12  
V13  
V14  
V15  
V16  
V17  
reserved  
EVNT0  
EVNT4  
T0TCK  
T1RFS  
T1TD  
SWTE  
GPIA16  
IRQ12  
IRQ6  
GPOA16  
GPOA8  
GPOA4  
GPOA0  
GPOA28  
GPOD6  
GPOA22  
GPIA8  
GPIA4  
GPIA0  
GPIA28  
IRQ1  
IRQ11  
IRQ17  
TX_ER  
RXD2  
reserved  
reserved  
GPID6  
GPIA22  
IRQ22  
RXD0  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
15  
Pin Assignments  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Hardware Controlled  
Primary Alternate  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
V18  
V19  
V20  
W1  
GPIA24  
IRQ24  
GPOA24  
TX_EN  
CRS  
reserved  
TDI  
GND  
W2  
V
DDM  
W3  
A12  
A8  
W4  
W5  
A7  
W6  
A6  
W7  
A3  
W8  
NC  
W9  
GPIA17  
IRQ13  
GPOA17  
GPOC14  
GPOA10  
GPOA7  
EVNT1  
CLKO  
W10  
W11  
W12  
W13  
W14  
W15  
W16  
W17  
W18  
W19  
W20  
Y1  
BM0  
GPIC14  
EVNT2  
T0RFS  
T0TFS  
T1RD  
GPIA10  
GPIA7  
GPIA3  
GPIA1  
IRQ5  
IRQ7  
IRQ8  
IRQ10  
GPOA3  
GPOA1  
T1TFS  
GPID4  
GPOD4  
GPOA27  
GPOA19  
GPOA23  
GPOA26  
TXD2  
RXD3  
reserved  
reserved  
GPIA27  
GPIA19  
GPIA23  
GPIA26  
IRQ18  
IRQ19  
TXD1  
IRQ23  
TXCLK or REFCLK  
RX_ER  
IRQ26  
H8BIT  
reserved  
MDC  
V
DDM  
Y2  
GND  
Y3  
A9  
A1  
Y4  
Y5  
A0  
Y6  
A4  
Y7  
BA1  
Y8  
reserved  
GPIA11  
NMI  
reserved  
Y9  
BM1  
GPIC15  
GPOC15  
GPOA11  
GPOA9  
GPOA6  
GPOA5  
EVNT3  
T0RCK  
T0RD  
Y10  
Y11  
Y12  
Y13  
IRQ4  
GPIA9  
GPIA6  
T0TD  
GPIA5  
IRQ0  
T1RCK  
MSC7119 Data Sheet, Rev. 8  
16  
Freescale Semiconductor  
Electrical Characteristics  
Hardware Controlled  
Table 1. MSC7119 Signals by Ball Designator (continued)  
Signal Names  
Software Controlled  
Number  
End of Reset  
GPI Enabled  
(Default)  
Interrupt  
Enabled  
GPO Enabled  
Primary  
Alternate  
Y14  
Y15  
Y16  
Y17  
Y18  
Y19  
Y20  
GPIA2  
IRQ9  
GPOA2  
GPOA29  
GPOD5  
GPOA20  
GPOA21  
T1TCK  
GPIA29  
IRQ16  
TXD3  
reserved  
reserved  
GPID5  
RXCLK  
GPIA20  
GPIA21  
IRQ20  
IRQ21  
TXD0  
RXD1  
GND  
GPIA25  
IRQ25  
GPOA25  
RX_DV or CRS_DV  
2
Electrical Characteristics  
This document contains detailed information on power considerations, DC/AC electrical characteristics, and AC timing  
specifications. For additional information, see the MSC711x Reference Manual.  
2.1  
Maximum Ratings  
CAUTION  
This device contains circuitry protecting against damage  
due to high static voltage or electrical fields; however,  
normal precautions should be taken to avoid exceeding  
maximum voltage ratings. Reliability is enhanced if unused  
inputs are tied to an appropriate logic voltage level (for  
example, either GND or V ).  
DD  
In calculating timing requirements, adding a maximum value of one specification to a minimum value of another specification  
does not yield a reasonable sum. A maximum specification is calculated using a worst case variation of process parameter values  
in one direction. The minimum specification is calculated using the worst case for the same parameters in the opposite direction.  
Therefore, a “maximum” value for a specification never occurs in the same device with a “minimum” value for another  
specification; adding a maximum to a minimum represents a condition that can never exist.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
17  
Electrical Characteristics  
Table 2 describes the maximum electrical ratings for the MSC7119.  
Table 2. Absolute Maximum Ratings  
Symbol  
Rating  
Value  
Unit  
Core supply voltage  
Memory supply voltage  
PLL supply voltage  
I/O supply voltage  
Input voltage  
V
V
1.5  
V
V
DDC  
DDM  
4.0  
1.5  
V
V
DDPLL  
V
–0.2 to 4.0  
(GND – 0.2) to 4.0  
4.0  
V
DDIO  
V
V
IN  
Reference voltage  
V
V
REF  
Maximum operating temperature  
T
105  
°C  
°C  
°C  
J
Minimum operating temperature  
T
–40  
A
Storage temperature range  
T
–55 to +150  
STG  
Notes: 1. Functional operating conditions are given in Table 3.  
2. Absolute maximum ratings are stress ratings only, and functional operation at the maximum is not guaranteed. Stress beyond  
the listed limits may affect device reliability or cause permanent damage.  
3. Section 3.1, Thermal Design Considerations includes a formula for computing the chip junction temperature (T ).  
J
2.2  
Recommended Operating Conditions  
Table 3 lists recommended operating conditions. Proper device operation outside of these conditions is not guaranteed.  
Table 3. Recommended Operating Conditions  
Rating  
Symbol  
Value  
Unit  
Core supply voltage  
Memory supply voltage  
PLL supply voltage  
V
V
1.14 to 1.26  
2.38 to 2.63  
1.14 to 1.26  
3.14 to 3.47  
1.19 to 1.31  
V
V
V
V
V
DDC  
DDM  
V
DDPLL  
I/O supply voltage  
V
DDIO  
Reference voltage  
V
REF  
Operating temperature range  
T
maximum: 105  
minimum: –40  
°C  
°C  
J
T
A
MSC7119 Data Sheet, Rev. 8  
18  
Freescale Semiconductor  
Electrical Characteristics  
2.3  
Thermal Characteristics  
Table 4 describes thermal characteristics of the MSC7119 for the MAP-BGA package.  
Table 4. Thermal Characteristics for MAP-BGA Package  
MAP-BGA 17 × 17 mm5  
Characteristic  
Symbol  
Unit  
Natural  
200 ft/min  
Convection  
(1 m/s) airflow  
1, 2  
Junction-to-ambient  
R
R
R
R
39  
23  
12  
7
31  
20  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
θJA  
θJA  
θJB  
θJC  
1, 3  
Junction-to-ambient, four-layer board  
4
Junction-to-board  
5
Junction-to-case  
6
Junction-to-package-top  
Ψ
2
JT  
Notes: 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)  
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal  
resistance.  
2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.  
3. Per JEDEC JESD51-6 with the board horizontal.  
4. Thermal resistance between the die and the printed circuit board per JEDEC JESD 51-8. Board temperature is measured on  
the top surface of the board near the package.  
5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method  
1012.1).  
6. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
Section 3.1, Thermal Design Considerations explains these characteristics in detail.  
2.4  
DC Electrical Characteristics  
This section describes the DC electrical characteristics for the MSC7119.  
Note: The leakage current is measured for nominal voltage values must vary in the same direction (for example, both VDDIO  
and VDDC vary by +2 percent or both vary by –2 percent).  
Table 5. DC Electrical Characteristics  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Core and PLL voltage  
V
1.14  
1.2  
1.26  
V
DDC  
V
DDPLL  
1
DRAM interface I/O voltage  
I/O voltage  
V
2.375  
3.135  
2.5  
3.3  
2.625  
3.465  
V
V
DDM  
V
DDIO  
2
DRAM interface I/O reference voltage  
V
0.49 × V  
1.25  
0.51 × V  
DDM  
V
REF  
DDM  
3
DRAM interface I/O termination voltage  
Input high CLKIN voltage  
VTT  
V
– 0.04  
V
V + 0.04  
REF  
V
REF  
REF  
REF  
V
2.4  
3.0  
3.465  
V + 0.3  
DDM  
V
IHCLK  
DRAM interface input high I/O voltage  
DRAM interface input low I/O voltage  
V
V
+ 0.28  
V
V
IHM  
DDM  
V
–0.3  
GND  
V
– 0.18  
REF  
V
ILM  
Input leakage current, V = V  
I
–1.0  
0.09  
1
µA  
µA  
IN  
DDIO  
IN  
V
input leakage current  
I
5
REF  
VREF  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
19  
Electrical Characteristics  
Table 5. DC Electrical Characteristics (continued)  
Characteristic  
Symbol  
Min  
Typical  
Max  
Unit  
Tri-state (high impedance off state) leakage current,  
= V  
I
–1.0  
0.09  
1
µA  
OZ  
V
IN  
DDIO  
Signal low input current, V = 0.4 V  
I
–1.0  
–1.0  
2.0  
0.09  
0.09  
3.0  
1
1
µA  
µA  
V
IL  
L
Signal high input current, V = 2.0 V  
I
IH  
H
Output high voltage, I = –2 mA, except open drain pins  
V
0.4  
OH  
OH  
Output low voltage, I = 5 mA  
V
0
V
OL  
OL  
5
Typical power at 300 MHz  
P
324.0  
mW  
Notes: 1. The value of V  
at the MSC7119 device must remain within 50 mV of V  
at the DRAM device at all times.  
DDM  
DDM  
2.  
V
must be equal to 50% of V  
and track V  
variations as measured at the receiver. Peak-to-peak noise must not  
REF  
DDM  
DDM  
exceed ±2% of the DC value.  
is not applied directly to the MSC7119 device. It is the level measured at the far end signal termination. It should be equal  
3.  
V
TT  
to V  
. This rail should track variations in the DC level of V  
.
REF  
REF  
4. Output leakage for the memory interface is measured with all outputs disabled, 0 V V  
V  
.
DDM  
OUT  
5. The core power values were measured.using a standard EFR pattern at typical conditions (25°C, 300 MHz, 1.2 V core).  
Table 6 lists the DDR DRAM capacitance.  
Table 6. DDR DRAM Capacitance  
Parameter/Condition  
Symbol  
Max  
Unit  
Input/output capacitance: DQ, DQS  
Delta input/output capacitance: DQ, DQS  
Note: These values were measured under the following conditions:  
C
30  
30  
pF  
pF  
IO  
C
DIO  
• V = 2.5 V ± 0.125 V  
DDM  
• f = 1 MHz  
• T = 25°C  
A
• V  
• V  
= V  
/2  
OUT  
OUT  
DDM  
(peak to peak) = 0.2 V  
MSC7119 Data Sheet, Rev. 8  
20  
Freescale Semiconductor  
Electrical Characteristics  
2.5  
AC Timings  
This section presents timing diagrams and specifications for individual signals and parallel I/O outputs and inputs. All AC  
timings are based on a 30 pF load, except where noted otherwise, and a 50 Ω transmission line. For any additional pF, use the  
following equations to compute the delay:  
— Standard interface: 2.45 + (0.054 × Cload) ns  
— DDR interface: 1.6 + (0.002 × Cload) ns  
2.5.1  
Clock and Timing Signals  
The following tables describe clock signal characteristics. Table 6 shows the maximum frequency values for internal (core,  
reference, and peripherals) and external (CLKO) clocks. You must ensure that maximum frequency values are not exceeded (see  
Section 2.5.2 for the allowable ranges when using the PLL).  
Table 6. Maximum Frequencies  
Characteristic  
Maximum in MHz  
Core clock frequency (CLOCK)  
300  
75  
External output clock frequency (CLKO)  
Memory clock frequency (CK, CK)  
150  
50  
TDM clock frequency (TxRCK, TxTCK)  
Table 7. Clock Frequencies in MHz  
Characteristic Symbol  
Min  
Max  
CLKIN frequency  
F
F
10  
100  
300  
150  
50  
CLKIN  
CORE  
CLOCK frequency  
CK, CK frequency  
F
CK  
TDMxRCK, TDMxTCK frequency  
CLKO frequency  
F
TDMCK  
F
75  
CKO  
BCK  
AHB/IPBus/APB clock frequency  
F
150  
Note:  
The rise and fall time of external clocks should be 5 ns maximum  
Table 8. System Clock Parameters  
Min  
Characteristic  
Max  
Unit  
CLKIN frequency  
CLKIN slope  
10  
100  
5
MHz  
ns  
CLKIN frequency jitter (peak-to-peak)  
CLKO frequency jitter (peak-to-peak)  
1000  
150  
ps  
ps  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
21  
Electrical Characteristics  
2.5.2  
Configuring Clock Frequencies  
This section describes important requirements for configuring clock frequencies in the MSC7119 device when using the PLL  
block. To configure the device clocking, you must program four fields in the Clock Control Register (CLKCTL):  
PLLDVF field. Specifies the PLL division factor (PLLDVF + 1) to divide the input clock frequency FCLKIN. The output  
of the divider block is the input to the multiplier block.  
PLLMLTF field. Specifies the PLL multiplication factor (PLLMLTF + 1). The output from the multiplier block is the  
loop frequency FLOOP  
.
RNG field. Selects the available PLL frequency range for FVCO, either FLOOP when the RNG bit is set (1) or FLOOP/2  
when the RNG bit is cleared (0).  
CKSEL field. Selects FCLKIN, FVCO, or FVCO/2 as the source for the core clock.  
There are restrictions on the frequency range permitted at the beginning of the multiplication portion of the PLL that affect the  
allowable values for the PLLDVF and PLLMLTF fields. The following sections define these restrictions and provide guidelines  
to configure the device clocking when using the PLL. Refer to the Clock and Power Management chapter in the MSC711x  
Reference Manual for details on the clock programming model.  
2.5.2.1  
PLL Multiplier Restrictions  
There are two restrictions for correct usage of the PLL block:  
The input frequency to the PLL multiplier block (that is, the output of the divider) must be in the range 10–25 MHz.  
The output frequency of the PLL multiplier must be in the range 266–532 MHz.  
When programming the PLL for a desired output frequency using the PLLDVF, PLLMLTF, and RNG fields, you must meet  
these constraints.  
2.5.2.2  
Input Division Factors and Corresponding CLKIN Frequency Range  
The value of the PLLDVF field determines the allowable CLKIN frequency range, as shown in Table 9.  
Table 9. CLKIN Frequency Ranges by Divide Factor Value  
PLLDVF  
Field Value  
Input Divide  
Factor  
CLKIN Frequency Range  
Comments  
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
1
2
10 to 25 MHz  
20 to 50 MHz  
30 to 75 MHz  
40 to 100 MHz  
50 to 100 MHz  
60 to 100 MHz  
70 to 100 MHz  
80 to 100 MHz  
90 to 100 MHz  
100 MHz  
Input Division by 1  
Input Division by 2  
Input Division by 3  
Input Division by 4  
Input Division by 5  
Input Division by 6  
Input Division by 7  
Input Division by 8  
Input Division by 9  
Input Division by 10  
3
4
5
6
7
8
9
10  
Note:  
The maximum CLKIN frequency is 100 MHz. Therefore, the PLLDVF value must be in the range from 1–10.  
MSC7119 Data Sheet, Rev. 8  
22  
Freescale Semiconductor  
Electrical Characteristics  
2.5.2.3  
Multiplication Factor Range  
The multiplier block output frequency ranges depend on the divided input clock frequency as shown in Table 10.  
Table 10. PLLMLTF Ranges  
Multiplier Block (Loop) Output Range  
Minimum PLLMLTF Value Maximum PLLMLTF Value  
266 [Divided Input Clock × (PLLMLTF + 1)] 532 MHz  
266/Divided Input Clock  
532/Divided Input Clock  
Note:  
This table results from the allowed range for F . The minimum and maximum multiplication factors are dependent on the  
Loop  
frequency of the Divided Input Clock.  
2.5.2.4  
Allowed Core Clock Frequency Range  
The frequency delivered to the core, extended core, and peripherals depends on the value of the CLKCTRL[RNG] bit as shown  
in Table 11.  
Table 11. Fvco Frequency Ranges  
CLKCTRL[RNG] Value  
Allowed Range of Fvco  
1
0
266 F  
133 F  
532 MHz  
266 MHz  
vco  
vco  
Note:  
This table results from the allowed range for F , which is F  
modified by CLKCTRL[RNG].  
Loop  
vco  
This bit along with the CKSEL determines the frequency range of the core clock.  
Table 12. Resulting Ranges Permitted for the Core Clock  
Resulting  
Division  
Factor  
Allowed Range  
of Core Clock  
CLKCTRL[CKSEL]  
CLKCTRL[RNG]  
Comments  
11  
1
1
266 core clock 300 MHz  
Limited by maximum core  
frequency  
11  
01  
01  
0
1
0
2
2
4
133 core clock 266 MHz  
133 core clock 266 MHz  
66.5 core clock 133 MHz  
Limited by range of PLL  
Limited by range of PLL  
Limited by range of PLL  
Note:  
This table results from the allowed range for F  
, which depends on clock selected via CLKCTRL[CKSEL].  
OUT  
2.5.2.5  
Core Clock Frequency Range When Using DDR Memory  
The core clock can also be limited by the frequency range of the DDR devices in the system. Table 13 summarizes this  
restriction.  
Table 13. Core Clock Ranges When Using DDR  
Allowed Frequency  
Range for DDR CK  
Corresponding Range  
for the Core Clock  
DDR Type  
Comments  
DDR 200 (PC-1600)  
DDR 266 (PC-2100)  
DDR 333 (PC-2600)  
83–100 MHz  
83–133 MHz  
83–150 MHz  
166 core clock 200 MHz  
166 core clock 266 MHz  
166 core clock 300 MHz  
Core limited to 2 × maximum DDR frequency  
Core limited to 2 × maximum DDR frequency  
Core limited to 2 × maximum DDR frequency  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
23  
Electrical Characteristics  
2.5.3  
Reset Timing  
The MSC7119 device has several inputs to the reset logic. All MSC7119 reset sources are fed into the reset controller, which  
takes different actions depending on the source of the reset. The reset status register indicates the most recent sources to cause  
a reset. Table 14 describes the reset sources.  
Table 14. Reset Sources  
Name  
Direction  
Description  
Power-on reset  
(PORESET)  
Input  
Initiates the power-on reset flow that resets the MSC7119 and configures various attributes of the  
MSC7119. On PORESET, the entire MSC7119 device is reset. SPLL and DLL states are reset,  
HRESET is driven, the SC1400 extended core is reset, and system configuration is sampled. The  
system is configured only when PORESET is asserted.  
External Hard  
reset (HRESET)  
Input/ Output  
Initiates the hard reset flow that configures various attributes of the MSC7119. While HRESET is  
asserted, HRESET is an open-drain output. Upon hard reset, HRESET is driven and the SC1400  
extended core is reset.  
Software  
watchdog reset  
Internal  
Internal  
Internal  
When the MSC7119 watchdog count reaches zero, a software watchdog reset is signalled. The  
enabled software watchdog event then generates an internal hard reset sequence.  
Bus monitor  
reset  
When the MSC7119 bus monitor count reaches zero, a bus monitor hard reset is asserted. The  
enabled bus monitor event then generates an internal hard reset sequence.  
JTAG EXTEST,  
CLAMP, or  
When a Test Access Port (TAP) executes an EXTEST, CLAMP, or HIGHZ command, the TAP logic  
asserts an internal reset signal that generates an internal soft reset sequence.  
HIGHZ command  
Table 15 summarizes the reset actions that occur as a result of the different reset sources.  
Table 15. Reset Actions for Each Reset Source  
Power-On Reset  
(PORESET)  
Hard Reset  
(HRESET)  
Soft Reset  
(SRESET)  
Reset Action/Reset Source  
External or  
Internal (Software  
Watchdog or Bus  
Monitor)  
JTAG Command:  
EXTEST, CLAMP,  
or HIGHZ  
External only  
Configuration pins sampled (refer to Section 2.5.3.1 for  
details).  
Yes  
No  
No  
PLL and clock synthesis states Reset  
HRESET Driven  
Yes  
Yes  
Yes  
Yes  
No  
No  
No  
Yes  
Yes  
Yes  
Software watchdog and bus time-out monitor registers  
Yes  
Yes  
Clock synthesis modules (STOPCTRL, HLTREQ, and  
HLTACK) reset  
Extended core reset  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Peripheral modules reset  
2.5.3.1  
Power-On Reset (PORESET) Pin  
Asserting PORESET initiates the power-on reset flow. PORESET must be asserted externally for at least 16 CLKIN cycles after  
external power to the MSC7119 reaches at least 2/3 VDD  
.
MSC7119 Data Sheet, Rev. 8  
24  
Freescale Semiconductor  
Electrical Characteristics  
2.5.3.2  
Reset Configuration  
The MSC7119 has two mechanisms for writing the reset configuration:  
From a host through the host interface (HDI16)  
From memory through the I2C interface  
Five signal levels (see Chapter 1 for signal description details) are sampled on PORESET deassertion to define the boot and  
operating conditions:  
BM[0–1]  
SWTE  
H8BIT  
HDSP  
2.5.3.3  
Reset Timing Tables  
Table 16 and Figure 4 describe the reset timing for a reset configuration write.  
Table 16. Timing for a Reset Configuration Write  
No.  
Characteristics  
Expression  
Unit  
1
2
Required external PORESET duration minimum  
16/F  
clocks  
clocks  
CLKIN  
Delay from PORESET deassertion to HRESET deassertion  
Timings are not tested, but are guaranteed by design.  
521/F  
CLKIN  
Note:  
1
PORESET  
Input  
Configuration Pins  
are sampled  
PORESET  
Internal  
HRESET  
Output(I/O)  
2
Figure 4. Timing Diagram for a Reset Configuration Write  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
25  
Electrical Characteristics  
2.5.4  
DDR DRAM Controller Timing  
This section provides the AC electrical characteristics for the DDR DRAM interface.  
2.5.4.1  
DDR DRAM Input AC Timing Specifications  
Table 17 provides the input AC timing specifications for the DDR DRAM interface.  
Table 17. DDR DRAM Input AC Timing  
No.  
Parameter  
Symbol  
Min  
Max  
Unit  
AC input low voltage  
AC input high voltage  
V
V
– 0.31  
V
V
IL  
REF  
V
V
+ 0.31  
V
+ 0.3  
IH  
REF  
DDM  
201  
202  
Maximum Dn input setup skew relative to DQSn input  
Maximum Dn input hold skew relative to DQSn input  
900  
900  
ps  
ps  
Notes: 1. Maximum possible skew between a data strobe (DQSn) and any corresponding bit of data (D[8n + {0...7}] if 0 n 7).  
2. See Table 18 for t value.  
CK  
3. Dn should be driven at the same time as DQSn. This is necessary because the DQSn centering on the DQn data tenure is  
done internally.  
DQSn  
202  
202  
D1  
D0  
Dn  
201  
201  
Note: DQS centering is done internally.  
Figure 5. DDR DRAM Input Timing Diagram  
2.5.4.2  
DDR DRAM Output AC Timing Specifications  
Table 18 and Table 19 list the output AC timing specifications and measurement conditions for the DDR DRAM  
interface.  
Table 18. DDR DRAM Output AC Timing  
No.  
Parameter  
Symbol  
Min  
Max  
Unit  
1
200  
CK cycle time, (CK/CK crossing)  
t
CK  
100 MHz (DDR200)  
150 MHz (DDR300)  
10  
6.67  
ns  
ns  
204  
205  
206  
207  
208  
An/RAS/CAS/WE/CKE output setup with respect to CK  
An/RAS/CAS/WE/CKE output hold with respect to CK  
CSn output setup with respect to CK  
t
t
t
0.5 × t – 1000  
ps  
ps  
ps  
ps  
ps  
DDKHAS  
CK  
0.5 × t – 1000  
DDKHAX  
CK  
0.5 × t – 1000  
DDKHCS  
DDKHCX  
DDKHMH  
CK  
CSn output hold with respect to CK  
t
0.5 × t – 1000  
CK  
2
CK to DQSn  
t
–600  
600  
MSC7119 Data Sheet, Rev. 8  
26  
Freescale Semiconductor  
Electrical Characteristics  
Table 18. DDR DRAM Output AC Timing (continued)  
No.  
Parameter  
Symbol  
Min  
Max  
Unit  
3
209  
Dn/DQMn output setup with respect to DQSn  
t
0.25 × t – 750  
ps  
DDKHDS,  
CK  
t
DDKLDS  
3
210  
Dn/DQMn output hold with respect to DQSn  
t
0.25 × t – 750  
ps  
DDKHDX,  
CK  
t
DDKLDX  
DDKHMP  
DDKHME  
4
211  
212  
DQSn preamble start  
t
t
–0.25 × t  
ps  
ps  
CK  
5
DQSn epilogue end  
–600  
600  
Notes: 1. All CK/CK referenced measurements are made from the crossing of the two signals ±0.1 V.  
2. can be modified through the TCFG2[WRDD] DQSS override bits. The DRAM requires that the first write data strobe  
t
DDKHMH  
arrives 75–125% of a DRAM cycle after the write command is issued. Any skew between DQSn and CK must be considered  
when trying to achieve this 75%–125% goal. The TCFG2[WRDD] bits can be used to shift DQSn by 1/4 DRAM cycle  
increments. The skew in this case refers to an internal skew existing at the signal connections. By default, the CK/CK crossing  
occurs in the middle of the control signal (An/RAS/CAS/WE/CKE) tenure. Setting TCFG2[ACSM] bit shifts the control signal  
assertion 1/2 DRAM cycle earlier than the default timing. This means that the signal is asserted no earlier than 600 ps before  
the CK/CK crossing and no later than 600 ps after the crossing time; the device uses 1200 ps of the skew budget (the interval  
from –600 to +600 ps). Timing is verified by referencing the falling edge of CK. See Chapter 10 of the MSC711x Reference  
Manual for details.  
3. Determined by maximum possible skew between a data strobe (DQS) and any corresponding bit of data. The data strobe  
should be centered inside of the data eye.  
4. Please note that this spec is in reference to the DQSn first rising edge. It could also be referenced from CK(r), but due to  
programmable delay of the write strobes (TCFG2[WRDD]), there pre-amble may be extended for a full DRAM cycle. For this  
reason, we reference from DQSn.  
5. All outputs are referenced to the rising edge of CK. Note that this is essentially the CK/DQSn skew in spec 208. In addition  
there is no real “maximum” time for the epilogue end. JEDEC does not require this is as a device limitation, but simply for the  
chip to guarantee fast enough write-to-read turn-around times. This is already guaranteed by the memory controller operation.  
Figure 6 shows the DDR DRAM output timing diagram.  
CK  
CK  
200  
204  
205  
206  
An  
RAS  
207  
CAS  
WE  
CKE  
Write A0  
NOOP  
211  
DQMn  
208  
DQSn  
Dn  
212  
209  
209  
D0  
D1  
210  
210  
Figure 6. DDR DRAM Output Timing Diagram  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
27  
Electrical Characteristics  
Figure 7 provides the AC test load for the DDR DRAM bus.  
Output  
VOUT  
Z0 = 50 Ω  
RL = 50 Ω  
Figure 7. DDR DRAM AC Test Load  
Table 19. DDR DRAM Measurement Conditions  
Symbol  
DDR DRAM  
Unit  
1
V
V
V
± 0.31 V  
REF  
V
V
TH  
2
0.5 × V  
OUT  
DDM  
Notes: 1. Data input threshold measurement point.  
2. Data output measurement point.  
2.5.5  
TDM Timing  
Table 20. TDM Timing  
Expression  
No.  
Characteristic  
Min  
Max  
Units  
300  
301  
302  
303  
304  
305  
306  
307  
308  
309  
310  
311  
TDMxRCK/TDMxTCK  
TC  
20.0  
8.0  
8.0  
3.0  
3.5  
2.0  
4.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TDMxRCK/TDMxTCK High Pulse Width  
TDMxRCK/TDMxTCK Low Pulse Width  
TDM all input Setup time  
0.4 × TC  
0.4 × TC  
TDMxRD Hold time  
TDMxTFS/TDMxRFS input Hold time  
TDMxTCK High to TDMxTD output active  
TDMxTCK High to TDMxTD output valid  
TDMxTD hold time  
14.0  
2.0  
TDMxTCK High to TDMxTD output high impedance  
TDMxTFS/TDMxRFS output valid  
TDMxTFS/TDMxRFS output hold time  
10.0  
13.5  
2.5  
Notes: 1. Output values are based on 30 pF capacitive load.  
2. Inputs are referenced to the sampling that the TDM is programmed to use. Outputs are referenced to the programming edge  
they are programmed to use. Use of the rising edge or falling edge as a reference is programmable. Refer to the MSC711x  
Reference Manual for details. TDMxTCK and TDMxRCK are shown using the rising edge.  
300  
302  
301  
304  
TDMxRCK  
TDMxRD  
303  
305  
303  
TDMxRFS  
310  
311  
TDMxRFS (output)  
Figure 8. TDM Receive Signals  
MSC7119 Data Sheet, Rev. 8  
28  
Freescale Semiconductor  
Electrical Characteristics  
300  
302  
301  
TDMxTCK  
309  
308  
307  
306  
TDMxTD  
TDMxRCK  
310  
311  
TDMxTFS (output)  
TDMxTFS (input)  
305  
303  
Figure 9. TDM Transmit Signals  
2.5.6  
Ethernet Timing  
Receive Signal Timing  
2.5.6.1  
Table 21. Receive Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
800  
Receive clock period:  
• MII: RXCLK (max frequency = 25 MHz)  
• RMII: REFCLK (max frequency = 50 MHz)  
40  
20  
ns  
ns  
801  
802  
Receive clock pulse width high—as a percent of clock period  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
Receive clock pulse width low—as a percent of clock period:  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
803  
804  
RXDn, RX_DV, CRS_DV, RX_ER to receive clock rising edge setup time  
Receive clock rising edge to RXDn, RX_DV, CRS_DV, RX_ER hold time  
4
2
ns  
ns  
800  
802  
801  
Receive  
clock  
803  
804  
RXDn  
RX_DV  
CRS_DV  
RX_ER  
Valid  
Figure 10. Ethernet Receive Signal Timing  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
29  
Electrical Characteristics  
2.5.6.2  
Transmit Signal Timing  
Table 22. Transmit Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
800  
Transmit clock period:  
• MII: TXCLK  
40  
20  
ns  
ns  
• RMII: REFCLK  
801  
802  
Transmit clock pulse width high—as a percent of clock period  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
Transmit clock pulse width low—as a percent of clock period:  
• MII: RXCLK  
• RMII: REFCLK  
35  
14  
7
65  
%
ns  
ns  
805  
806  
Transmit clock to TXDn, TX_EN, TX_ER invalid  
Transmit clock to TXDn, TX_EN, TX_ER valid  
4
ns  
ns  
14  
800  
802  
801  
Transmit  
clock  
806  
805  
TXDn  
TX_EN  
TX_ER  
Valid  
Figure 11. Ethernet Receive Signal Timing  
2.5.6.3  
Asynchronous Input Signal Timing  
Table 23. Asynchronous Input Signal Timing  
Characteristics  
No.  
Min  
Max  
Unit  
807  
• MII: CRS and COL minimum pulse width (1.5 × TXCLK period)  
• RMII: CRS_DV minimum pulse width (1.5 x REFCLK period)  
60  
30  
ns  
ns  
CRS  
COL  
807  
CRS_DV  
Figure 12. Asynchronous Input Signal Timing  
MSC7119 Data Sheet, Rev. 8  
30  
Freescale Semiconductor  
Electrical Characteristics  
2.5.6.4  
Management Interface Timing  
Table 24. Ethernet Controller Management Interface Timing  
Characteristics  
No.  
Min  
Max  
Unit  
808  
809  
810  
811  
812  
813  
814  
MDC period  
400  
160  
160  
0
15  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
MDC pulse width high  
MDC pulse width low  
MDS falling edge to MDIO output invalid (minimum propagation delay)  
MDS falling edge to MDIO output valid (maximum propagation delay)  
MDIO input to MDC rising edge setup time  
10  
MDC rising edge to MDIO input hold time  
10  
808  
809  
810  
MDC (output)  
MDIO (output)  
811  
812  
813  
814  
MDIO (input)  
Figure 13. Serial Management Channel Timing  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
31  
Electrical Characteristics  
2.5.7  
HDI16 Signals  
Table 25. Host Interface (HDI16) Timing1, 2  
No.  
Characteristics3  
Expression  
Value  
Unit  
40  
Host Interface Clock period  
T
Note 1  
ns  
ns  
CORE  
4
44a  
Read data strobe minimum assertion width  
HACK read minimum assertion width  
2.0 × T  
+ 9.0  
Note 11  
CORE  
4
4
44b  
44c  
Read data strobe minimum deassertion width  
HACK read minimum deassertion width  
1.5 × T  
Note 11  
Note 11  
ns  
ns  
CORE  
Read data strobe minimum deassertion width after “Last Data Register”  
2.5 × T  
1.5 × T  
CORE  
CORE  
5,6  
7
reads , or between two consecutive CVR, ICR, or ISR reads  
HACK minimum deassertion width after “Last Data Register” reads  
5,6  
8
45  
46  
Write data strobe minimum assertion width  
Note 11  
ns  
HACK write minimum assertion width  
8
Write data strobe minimum deassertion width  
HACK write minimum deassertion width after ICR, CVR and Data Register  
5
writes  
2.5 × T  
Note 11  
2.5  
ns  
ns  
ns  
CORE  
8
47  
48  
49  
Host data input minimum setup time before write data strobe deassertion  
Host data input minimum setup time before HACK write deassertion  
8
Host data input minimum hold time after write data strobe deassertion  
Host data input minimum hold time after HACK write deassertion  
2.5  
Read data strobe minimum assertion to output data active from high  
impedance  
4
HACK read minimum assertion to output data active from high impedance  
1.0  
Note 11  
9.0  
ns  
ns  
ns  
4
50  
51  
52  
Read data strobe maximum assertion to output data valid  
HACK read maximum assertion to output data valid  
(2.0 × T  
) + 8.0  
CORE  
4
Read data strobe maximum deassertion to output data high impedance  
HACK read maximum deassertion to output data high impedance  
4
Output data minimum hold time after read data strobe deassertion  
Output data minimum hold time after HACK read deassertion  
1.0  
0.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
4
53  
54  
55  
56  
57  
58  
61  
HCS[1–2] minimum assertion to read data strobe assertion  
8
HCS[1–2] minimum assertion to write data strobe assertion  
0.0  
HCS[1–2] maximum assertion to output data valid  
(2.0 × T  
(3.0 × T  
) + 6.0  
) + 6.0  
Note 11  
0.5  
CORE  
9
HCS[1–2] minimum hold time after data strobe deassertion  
9
HA[0–2], HRW minimum setup time before data strobe assertion  
5.0  
9
HA[0–2], HRW minimum hold time after data strobe deassertion  
5.0  
Maximum delay from read data strobe deassertion to host request  
Note 11  
CORE  
4, 5, 10  
deassertion for “Last Data Register” read  
62  
63  
64  
Maximum delay from write data strobe deassertion to host request  
deassertion for “Last Data Register” write  
5,8,10  
(3.0 × T  
(2.0 × T  
(5.0 × T  
) + 6.0  
) + 1.0  
) + 6.0  
Note 11  
Note 11  
Note 11  
ns  
ns  
ns  
CORE  
CORE  
CORE  
Minimum delay from DMA HACK (OAD=0) or Read/Write data  
strobe(OAD=1) deassertion to HREQ assertion.  
Maximum delay from DMA HACK (OAD=0) or Read/Write data  
strobe(OAD=1) assertion to HREQ deassertion  
Notes: 1.  
2. In the timing diagrams below, the controls pins are drawn as active low. The pin polarity is programmable.  
3. = 3.3 V ± 0.15 V; T = –40°C to +105 °C, C = 30 pF for maximum delay timings and C = 0 pF for minimum delay timings.  
T
= core clock period. At 300 MHz, T  
= 3.333 ns.  
CORE  
CORE  
V
DD  
J
L
L
4. The read data strobe is HRD/HRD in the dual data strobe mode and HDS/HDS in the single data strobe mode.  
5. For 64-bit transfers, the “last data register” is the register at address 0x7, which is the last location to be read or written in data  
transfers. This is RX0/TX0 in the little endian mode (HBE = 0), or RX3/TX3 in the big endian mode (HBE = 1).  
6. This timing is applicable only if a read from the “last data register” is followed by a read from the RX[0–3] registers without first  
polling RXDF or HREQ bits, or waiting for the assertion of the HREQ/HREQ signal.  
7. This timing is applicable only if two consecutive reads from one of these registers are executed.  
8. The write data strobe is HWR in the dual data strobe mode and HDS in the single data strobe mode.  
9. The data strobe is host read (HRD/HRD) or host write (HWR/HWR) in the dual data strobe mode and host data strobe  
(HDS/HDS) in the single data strobe mode.  
10. The host request is HREQ/HREQ in the single host request mode and HRRQ/HRRQ and HTRQ/HTRQ in the double host  
request mode. HRRQ/HRRQ is deasserted only when HOTX fifo is empty, HTRQ/HTRQ is deasserted only if HORX fifo is full  
11. Compute the value using the expression.  
12. The read and write data strobe minimum deassertion width for non-”last data register” accesses in single and dual data strobe  
modes is based on timings 57 and 58.  
MSC7119 Data Sheet, Rev. 8  
32  
Freescale Semiconductor  
Figure 14 and Figure 15 show HDI16 read signal timing. Figure 16 and Figure 17 show HDI16 write signal timing.  
HA[0–2]  
57  
58  
56  
53  
HCS[1–2]  
57  
58  
HRW  
HDS  
44a  
44b  
51  
55  
50  
44c  
52  
49  
HD[0–15]  
61  
HREQ (single host request)  
HRRQ (double host request)  
Figure 14. Read Timing Diagram, Single Data Strobe  
HA[0–2]  
57  
58  
56  
53  
HCS[1–2]  
HRD  
44a  
44b  
51  
55  
44a  
50  
52  
49  
HD[0–15]  
61  
HREQ (single host request)  
HRRQ (double host request)  
Figure 15. Read Timing Diagram, Double Data Strobe  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
33  
HA[0–2]  
57  
58  
56  
54  
HCS[1–2]  
HRW  
57  
58  
45  
HDS  
46  
47  
48  
HD[0–15]  
62  
HREQ (single host request)  
HTRQ (double host request)  
Figure 16. Write Timing Diagram, Single Data Strobe  
HA[0–2]  
57  
58  
56  
54  
HCS[1–2]  
HWR  
45  
46  
48  
47  
HD[0–15]  
62  
HREQ (single host request)  
HTRQ (double host request)  
Figure 17. Write Timing Diagram, Double Data Strobe  
MSC7119 Data Sheet, Rev. 8  
34  
Freescale Semiconductor  
HREQ  
(Output)  
63  
64  
44a  
44b  
RX[0–3]  
Read  
HACK  
51  
50  
49  
52  
Data  
Valid  
HD[0–15]  
(Output)  
Figure 18. Host DMA Read Timing Diagram, HPCR[OAD] = 0  
HREQ  
(Output)  
63  
64  
46  
45  
TX[0–3]  
Write  
HACK  
47  
48  
Data  
Valid  
HD[0–15]  
(Input)  
Figure 19. Host DMA Write Timing Diagram, HPCR[OAD] = 0  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
35  
2
2.5.8  
I C Timing  
Table 26. I2C Timing  
Fast  
No.  
Characteristic  
Unit  
Min  
Max  
450  
451  
452  
453  
454  
455  
456  
457  
458  
459  
460  
Note:  
SCL clock frequency  
0
400  
kHz  
μs  
μs  
μs  
μs  
μs  
ns  
ns  
ns  
μs  
μs  
Hold time START condition  
SCL low period  
(SCL clock period/2) – 0.3  
(SCL clock period/2) – 0.3  
(SCL clock period/2) – 0.1  
SCL high period  
Repeated START set-up time (not shown in figure)  
Data hold time  
2 × 1/F  
BCK  
0
Data set-up time  
250  
SDA and SCL rise time  
SDA and SCL fall time  
Set-up time for STOP  
700  
300  
(SCL clock period/2) – 0.7  
(SCL clock period/2) – 0.3  
Bus free time between STOP and START  
SDA set-up time is referenced to the rising edge of SCL. SDA hold time is referenced to the falling edge of SCL. Load capacitance  
on SDA and SCL is 400 pF.  
453  
458  
3
457  
Start Condition  
Stop Condition  
Start Condition  
1
4
5
6
SCL  
SDA  
2
7
8
9
A
C
K
452  
451  
Data Byte  
457  
460  
458  
459  
Start Condition  
SCL  
SDA  
Data Byte  
Figure 20. I2C Timing Diagram  
MSC7119 Data Sheet, Rev. 8  
36  
Freescale Semiconductor  
2.5.9  
UART Timing  
Table 27. UART Timing  
Expression  
No.  
Characteristics  
Min  
Max  
Unit  
Internal bus clock (APBCLK)  
F
/2  
6.67  
106.67  
150  
5
MHz  
ns  
CORE  
Internal bus clock period (1/APBCLK)  
URXD and UTXD inputs high/low duration  
URXD and UTXD inputs rise/fall time  
UTXD output rise/fall time  
T
APBCLK  
400  
401  
402  
16 × T  
ns  
APBCLK  
ns  
5
ns  
401  
401  
UTXD, URXD  
inputs  
400  
400  
Figure 21. UART Input Timing  
402  
402  
UTXD Output  
Figure 22. UART Output Timing  
2.5.10 EE Timing  
Table 28. EE0 Timing  
Type  
Number  
Characteristics  
Min  
65  
66  
EE0 input to the core  
Asynchronous  
4 core clock periods  
1 core clock period  
EE0 output from the core  
Synchronous to core clock  
Notes: 1. The core clock is the SC1400 core clock. The ratio between the core clock and CLKOUT is configured during power-on-reset.  
2. Configure the direction of the EE pin in the EE_CTRL register (see the SC140/SC1400 Core Reference Manual for details.  
3. Refer to Table 1-11 on page 1-16 for details on EE pin functionality.  
Figure 24 shows the signal behavior of the EE pin.  
65  
EE0 In  
66  
EE0 Out  
Figure 23. EE Pin Timing  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
37  
2.5.11 Event Timing  
Table 29. EVNT Signal Timing  
Type  
Number  
Characteristics  
Min  
67  
68  
EVNT as input  
EVNT as output  
Asynchronous  
1.5 × APBCLK periods  
1 APBCLK period  
Synchronous to core clock  
Notes: 1. Refer to Table 27 for a definition of the APBCLK period.  
2. Direction of the EVNT signal is configured through the GPIO and Event port registers.  
3. Refer to the signal chapter in the MSC711x Reference Manual for details on EVNT pin functionality.  
Figure 24 shows the signal behavior of the EVNT pins.  
67  
EVNT in  
68  
EVNT out  
Figure 24. EVNT Pin Timing  
2.5.12 GPIO Timing  
Table 30. GPIO Signal Timing1,2,3  
Number  
Characteristics  
Type  
Min  
4.5  
5
601  
602  
603  
604  
GPI  
Asynchronous  
Synchronous to core clock  
Asynchronous  
1.5 × APBCLK periods  
1 APBCLK period  
GPO  
Port A edge-sensitive interrupt  
Port A level-sensitive interrupt  
1.5 × APBCLK periods  
6
Asynchronous  
3 × APBCLK periods  
Notes: 1. Refer to Table 27 for a definition of the APBCLK period.  
2. Direction of the GPIO signal is configured through the GPIO port registers.  
3. Refer to Section 1.5 for details on GPIO pin functionality.  
4. GPI data is synchronized to the APBCLK internally and the minimum listed is the capability of the hardware to capture data  
into a register when the GPADR is read. The specification is not tested due to the asynchronous nature of the input and  
dependence on the state of the DSP core. It is guaranteed by design.  
5. The output signals cannot toggle faster than 75 MHz.  
6. Level-sensitive interrupts should be held low until the system determines (via the service routine) that the interrupt is  
acknowledged.  
Figure 25 shows the signal behavior of the GPI/GPO pins.  
601  
GPI  
602  
GPO  
Figure 25. GPI/GPO Pin Timing  
MSC7119 Data Sheet, Rev. 8  
38  
Freescale Semiconductor  
2.5.13 JTAG Signals  
Table 31. JTAG Timing  
All frequencies  
No.  
Characteristics  
Unit  
Min  
Max  
700  
TCK frequency of operation (1/(T × 3)  
0.0  
40.0  
MHz  
C
Note:  
T
= 1/CLOCK which is the period of the core clock. The TCK  
C
frequency must less than 1/3 of the core frequency with an absolute  
maximum limit of 40 MHz.  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
Note:  
TCK cycle time  
25.0  
11.0  
0.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width measured at V  
TCK rise and fall times  
1.6 V  
M =  
3.0  
Boundary scan input data set-up time  
Boundary scan input data hold time  
TCK low to output data valid  
TCK low to output high impedance  
TMS, TDI data set-up time  
TMS, TDI data hold time  
5.0  
14.0  
0.0  
20.0  
20.0  
0.0  
5.0  
14.0  
0.0  
TCK low to TDO data valid  
TCK low to TDO high impedance  
TRST assert time  
24.0  
10.0  
0.0  
100.0  
All timings apply to OCE module data transfers as the OCE module uses the JTAG port as an interface.  
701  
702  
V
M
V
M
V
TCK  
(Input)  
IH  
V
IL  
703  
703  
Figure 26. Test Clock Input Timing Diagram  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
39  
V
TCK  
(Input)  
IH  
V
IL  
704  
705  
Data  
Inputs  
Input Data Valid  
706  
707  
Data  
Outputs  
Output Data Valid  
Data  
Outputs  
Figure 27. Boundary Scan (JTAG) Timing Diagram  
V
IH  
TCK  
(Input)  
V
IL  
709  
708  
Input Data Valid  
TDI  
TMS  
(Input)  
710  
TDO  
(Output)  
Output Data Valid  
711  
TDO  
(Output)  
Figure 28. Test Access Port Timing Diagram  
TRST  
(Input)  
712  
Figure 29. TRST Timing Diagram  
MSC7119 Data Sheet, Rev. 8  
40  
Freescale Semiconductor  
Hardware Design Considerations  
3
Hardware Design Considerations  
This section described various areas to consider when incorporating the MSC7119 device into a system design.  
3.1  
Thermal Design Considerations  
An estimation of the chip-junction temperature, TJ, in °C can be obtained from the following:  
TJ = TA + (R JA × PD)  
Eqn. 1  
θ
where  
TA = ambient temperature near the package (°C)  
R
JA = junction-to-ambient thermal resistance (°C/W)  
θ
PD = PINT + PI/O = power dissipation in the package (W)  
PINT = IDD × VDD = internal power dissipation (W)  
PI/O = power dissipated from device on output pins (W)  
The power dissipation values for the MSC7119 are listed in Table 4. The ambient temperature for the device is the air  
temperature in the immediate vicinity that would cool the device. The junction-to-ambient thermal resistances are JEDEC  
standard values that provide a quick and easy estimation of thermal performance. There are two values in common usage: the  
value determined on a single layer board and the value obtained on a board with two planes. The value that more closely  
approximates a specific application depends on the power dissipated by other components on the printed circuit board (PCB).  
The value obtained using a single layer board is appropriate for tightly packed PCB configurations. The value obtained using a  
board with internal planes is more appropriate for boards with low power dissipation (less than 0.02 W/cm2 with natural  
convection) and well separated components. Based on an estimation of junction temperature using this technique, determine  
whether a more detailed thermal analysis is required. Standard thermal management techniques can be used to maintain the  
device thermal junction temperature below its maximum. If TJ appears to be too high, either lower the ambient temperature or  
the power dissipation of the chip.  
You can verify the junction temperature by measuring the case temperature using a small diameter thermocouple (40 gauge is  
recommended) or an infrared temperature sensor on a spot on the device case. Use the following equation to determine TJ:  
TJ = TT + (ΨJT × PD)  
Eqn. 2  
where  
TT = thermocouple (or infrared) temperature on top of the package (°C)  
JT = thermal characterization parameter (°C/W)  
PD = power dissipation in the package (W)  
Ψ
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
41  
Hardware Design Considerations  
3.2  
Power Supply Design Considerations  
This section outlines the MSC7119 power considerations: power supply, power sequencing, power planes, decoupling, power  
supply filtering, and power consumption. It also presents a recommended power supply design and options for low-power  
consumption. For information on AC/DC electrical specifications and thermal characteristics, refer to Section 2.  
3.2.1  
Power Supply  
The MSC7119 requires four input voltages, as shown in Table 32.  
Table 32. MSC7119 Voltages  
Symbol  
Voltage  
Value  
Core  
V
V
1.2 V  
2.5 V  
1.25 V  
3.3 V  
DDC  
DDM  
Memory  
Reference  
I/O  
V
REF  
V
DDIO  
You should supply the MSC7119 core voltage via a variable switching supply or regulator to allow for compatibility with  
possible core voltage changes on future silicon revisions. The core voltage is supplied with 1.2 V (+5% and –10%) across VDDC  
and GND and the I/O section is supplied with 3.3 V (± 10%) across VDDIO and GND. The memory and reference voltages supply  
the DDR memory controller block. The memory voltage is supplied with 2.5 V across VDDM and GND. The reference voltage  
is supplied across VREF and GND and must be between 0.49 × VDDM and 0.51 × VDDM. Refer to the JEDEC standard JESD8  
(Stub Series Terminated Logic for 2.5 Volts (STTL_2)) for memory voltage supply requirements.  
3.2.2  
Power Sequencing  
One consequence of multiple power supplies is that the voltage rails ramp up at different rates when power is initially applied.  
The rates depend on the power supply, the type of load on each power supply, and the way different voltages are derived. It is  
extremely important to observe the power up and power down sequences at the board level to avoid latch-up, forward biasing  
of ESD devices, and excessive currents, which all lead to severe device damage.  
Note: There are five possible power-up/power-down sequence cases. The first four cases listed in the following sections are  
recommended for new designs. The fifth case is not recommended for new designs and must be carefully evaluated  
for current spike risks based on actual information for the specific application.  
MSC7119 Data Sheet, Rev. 8  
42  
Freescale Semiconductor  
Hardware Design Considerations  
3.2.2.1  
Case 1  
The power-up sequence is as follows:  
1. Turn on the VDDIO (3.3 V) supply first.  
2. Turn on the VDDC (1.2 V) supply second.  
3. Turn on the VDDM (2.5 V) supply third.  
4. Turn on the VREF (1.25 V) supply fourth (last).  
The power-down sequence is as follows:  
1. Turn off the VREF (1.25 V) supply first.  
2. Turn off the VDDM (2.5 V) supply second.  
3. Turn off the VDDC (1.2 V) supply third.  
4. Turn of the VDDIO (3.3 V) supply fourth (last).  
Use the following guidelines:  
Make sure that the time interval between the ramp-down of VDDIO and VDDC is less than 10 ms.  
Make sure that the time interval between the ramp-up or ramp-down for VDDC and VDDM is less than 10 ms for  
power-up and power-down.  
Refer to Figure 30 for relative timing for power sequencing case 1.  
Ramp-down  
Ramp-up  
VDDIO = 3.3 V  
VDDM = 2.5 V  
VREF = 1.25 V  
VDDC = 1.2 V  
<10 ms  
<10 ms  
<10 ms  
<10 ms  
Time  
Figure 30. Voltage Sequencing Case 1  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
43  
Hardware Design Considerations  
3.2.2.2  
Case 2  
The power-up sequence is as follows:  
1. Turn on the VDDIO (3.3 V) supply first.  
2. Turn on the VDDC (1.2 V) and VDDM (2.5 V) supplies simultaneously (second).  
3. Turn on the VREF (1.25 V) supply last (third).  
Note: Make sure that the time interval between the ramp-up of VDDIO and VDDC/VDDM is less than 10 ms.  
The power-down sequence is as follows:  
1. Turn off the VREF (1.25 V) supply first.  
2. Turn off the VDDM (2.5 V) supply second.  
3. Turn off the VDDC (1.2 V) supply third.  
4. Turn of the VDDIO (3.3 V) supply fourth (last).  
Use the following guidelines:  
Make sure that the time interval between the ramp-down for VDDIO and VDDC is less than 10 ms.  
Make sure that the time interval between the ramp-up or ramp-down for VDDC and VDDM is less than 10 ms for  
power-up and power-down.  
Refer to Figure 31 for relative timing for Case 2.  
Ramp-down  
Ramp-up  
VDDIO = 3.3 V  
VDDM = 2.5 V  
VREF = 1.25 V  
VDDC = 1.2 V  
<10 ms  
<10 ms  
<10 ms  
Time  
Figure 31. Voltage Sequencing Case 2  
MSC7119 Data Sheet, Rev. 8  
44  
Freescale Semiconductor  
Hardware Design Considerations  
3.2.2.3  
Case 3  
The power-up sequence is as follows:  
1. Turn on the VDDIO (3.3 V) supply first.  
2. Turn on the VDDC (1.2 V) supply second.  
3. Turn on the VDDM (2.5 V) and VREF (1.25 V) supplies simultaneously (third).  
Note: Make sure that the time interval between the ramp-up of VDDIO and VDDC is less than 10 ms.  
The power-down sequence is as follows:  
1. Turn off the VDDM (2.5 V) and VREF (1.25 V) supplies simultaneously (first).  
2. Turn off the VDDC (1.2 V) supply second.  
3. Turn of the VDDIO (3.3 V) supply third (last).  
Use the following guidelines:  
Make sure that the time interval between the ramp-down for VDDIO and VDDC is less than 10 ms.  
Make sure that the time interval between the ramp-up or ramp-down time for VDDC and VDDM is less than 10 ms for  
power-up and power-down.  
Refer to Figure 32 for relative timing for Case 3.  
Ramp-down  
Ramp-up  
VDDIO = 3.3 V  
VDDM = 2.5 V  
VREF = 1.25 V  
VDDC = 1.2 V  
<10 ms  
<10 ms  
<10 ms  
<10 ms  
Time  
Figure 32. Voltage Sequencing Case 3  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
45  
Hardware Design Considerations  
3.2.2.4  
Case 4  
The power-up sequence is as follows:  
1. Turn on the VDDIO (3.3 V) supply first.  
2. Turn on the VDDC (1.2 V), VDDM (2.5 V), and VREF (1.25 V) supplies simultaneously (second).  
Note: Make sure that the time interval between the ramp-up of VDDIO and VDDC is less than 10 ms.  
The power-down sequence is as follows:  
1. Turn off the VDDC (1.2 V), VREF (1.25 V), and VDDM (2.5 V) supplies simultaneously (first).  
2. Turn of the VDDIO (3.3 V) supply last.  
Use the following guidelines:  
Make sure that the time interval between the ramp-up or ramp-down time for VDDC and VDDM is less than 10 ms for  
power-up and power-down.  
Refer to Figure 33 for relative timing for Case 4.  
Ramp-down  
Ramp-up  
VDDIO = 3.3 V  
VDDM = 2.5 V  
VREF = 1.25 V  
VDDC = 1.2 V  
<10 ms  
<10 ms  
Time  
Figure 33. Voltage Sequencing Case 4  
MSC7119 Data Sheet, Rev. 8  
46  
Freescale Semiconductor  
Hardware Design Considerations  
3.2.2.5  
Case 5 (not recommended for new designs)  
The power-up sequence is as follows:  
1. Turn on the VDDIO (3.3 V) supply first.  
2. Turn on the VDDM (2.5 V) supply second.  
3. Turn on the VDDC (1.2 V) supply third.  
4. Turn on the VREF (1.25 V) supply fourth (last).  
Note: Make sure that the time interval between the ramp-up of VDDIO and VDDM is less than 10 ms.  
The power-down sequence is as follows:  
1. Turn off the VREF (1.25 V) supply first.  
2. Turn off the VDDC (1.2 V) supply second.  
3. Turn off the VDDM (2.5 V) supply third.  
4. Turn of the VDDIO (3.3 V) supply fourth (last).  
Use the following guidelines:  
Make sure that the time interval between the ramp-down of VDDIO and VDDM is less than 10 ms.  
Make sure that the time interval between the ramp-up or ramp-down for VDDC and VDDM is less than 2 ms for  
power-up and power-down.  
Refer to Figure 34 for relative timing for power sequencing case 5.  
Ramp-down  
Ramp-up  
VDDIO = 3.3 V  
VDDM = 2.5 V  
VREF = 1.25 V  
VDDC = 1.2 V  
<2 ms  
<2 ms  
<10 ms  
<10 ms  
Time  
Figure 34. Voltage Sequencing Case 5  
Note: Cases 1, 2, 3, and 4 are recommended for system design. Designs that use Case 5 may have large current spikes on  
the VDDM supply at startup and is not recommended for most designs. If a design uses case 5, it must accommodate  
the potential current spikes. Verify risks related to current spikes using actual information for the specific application.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
47  
Hardware Design Considerations  
3.2.3  
Power Planes  
Each power supply pin (VDDC, VDDM, and VDDIO) should have a low-impedance path to the board power supply. Each GND pin  
should be provided with a low-impedance path to ground. The power supply pins drive distinct groups of logic on the device.  
The MSC7119 VDDC power supply pins should be bypassed to ground using decoupling capacitors. The capacitor leads and  
associated printed circuit traces connecting to device power pins and GND should be kept to less than half an inch per capacitor  
lead. A minimum four-layer board that employs two inner layers as power and GND planes is recommended. See Section 3.5  
for DDR Controller power guidelines.  
3.2.4  
Decoupling  
Both the I/O voltage and core voltage should be decoupled for switching noise. For I/O decoupling, use standard capacitor  
values of 0.01 μF for every two to three voltage pins. For core voltage decoupling, use two levels of decoupling. The first level  
should consist of a 0.01 µF high frequency capacitor with low effective series resistance (ESR) and effective series inductance  
(ESL) for every two to three voltage pins. The second decoupling level should consist of two bulk/tantalum decoupling  
capacitors, one 10 μF and one 47 μF, (with low ESR and ESL) mounted as closely as possible to the MSC7119 voltage pins.  
Additionally, the maximum drop between the power supply and the DSP device should be 15 mV at 1 A.  
3.2.5  
PLL Power Supply Filtering  
The MSC7119 VDDPLL power signal provides power to the clock generation PLL. To ensure stability of the internal clock, the  
power supplied to this pin should be filtered with capacitors that have low and high frequency filtering characteristics. VDDPLL  
can be connected to VDDC through a 2 Ω resistor. VSSPLL can be tied directly to the GND plane. A circuit similar to the one  
shown in Figure 35 is recommended. The PLL loop filter should be placed as closely as possible to the VDDPLL pin (which are  
located on the outside edge of the silicon package) to minimize noise coupled from nearby circuits.The 0.01 µF capacitor should  
be closest to VDDPLL, followed by the 0.1 µF capacitor, the 10 µF capacitor, and finally the 2-Ω resistor to VDDC. These traces  
should be kept short.  
2 Ω  
VDDC  
VDDPLL  
0.1 µF 0.01 µF  
10 µF  
Figure 35. PLL Power Supply Filter Circuits  
3.2.6  
Power Consumption  
You can reduce power consumption in your design by controlling the power consumption of the following regions of the device:  
Extended core. Use the SC1400 Stop and Wait modes by issuing a stop or wait instruction.  
Clock synthesis module. Disable the PLL, timer, watchdog, or DDR clocks or disable the CLKO pin.  
AHB subsystem. Freeze or shut down the AHB subsystem using the GPSCTL[XBR_HRQ] bit.  
Peripheral subsystem. Halt the individual on-device peripherals such as the DDR memory controller, Ethernet MAC,  
HDI16, TDM, UART, I2C, and timer modules.  
For details, see the “Clocks and Power Management” chapter of the MSC711x Reference Manual.  
MSC7119 Data Sheet, Rev. 8  
48  
Freescale Semiconductor  
Hardware Design Considerations  
3.2.7  
Power Supply Design  
One of the most common ways to derive power is to use either a simple fixed or adjustable linear regulator. For the system I/O  
voltage supply, a simple fixed 3.3 V supply can be used. However, a separate adjustable linear regulator supply for the core  
voltage VDDC should be implemented. For the memory power supply, regulators are available that take care of all DDR power  
requirements.  
Table 33. Recommended Power Supply Ratings  
Supply  
Symbol  
Nominal Voltage  
Current Rating  
Core  
V
V
1.2 V  
2.5 V  
1.25 V  
3.3 V  
1.5 A per device  
0.5 A per device  
10 µA per device  
1.0 A per device  
DDC  
DDM  
Memory  
Reference  
I/O  
V
REF  
V
DDIO  
3.3  
Estimated Power Usage Calculations  
The following equations permit estimated power usage to be calculated for individual design conditions. Overall power is  
derived by totaling the power used by each of the major subsystems:  
PTOTAL = PCORE + PPERIPHERALS + PDDRIO + PIO + PLEAKAGE  
This equation combines dynamic and static power. Dynamic power is determined using the generic equation:  
C × V2 × F × 10–3 mW  
Eqn. 3  
Eqn. 4  
where,  
C = load capacitance in pF  
V = peak-to-peak voltage swing in V  
F = frequency in MHz  
3.3.1  
Core Power  
Estimation of core power is straightforward. It uses the generic dynamic power equation and assumes that the core load  
capacitance is 750 pF, core voltage swing is 1.2 V, and the core frequency is 300 MHz. This yields:  
PCORE = 750 pF × (1.2 V)2 × 300 MHz × 10–3 = 324.0 mW  
Eqn. 5  
This equation allows for adjustments to voltage and frequency if necessary.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
49  
Hardware Design Considerations  
3.3.2  
Peripheral Power  
Peripherals include the DDR memory controller, Ethernet controller, DMA controller, HDI16, TDM, UART, timers, GPIOs,  
and the I2C module. Basic power consumption by each module is assumed to be the same and is computed by using the  
following equation which assumes an effective load of 20 pF, core voltage swing of 1.2 V, and a switching frequency of 100  
MHz. This yields:  
PPERIPHERAL = 20 pF × (1.2 V)2 × 150 MHz × 10–3 = 4.32 mW per peripheral  
Eqn. 6  
Multiply this value by the number of peripherals used in the application to compute the total peripheral power consumption.  
3.3.3  
External Memory Power  
Estimation of power consumption by the DDR memory system is complex. It varies based on overall system signal line usage,  
termination and load levels, and switching rates. Because the DDR memory includes terminations external to the MSC7119  
device, the 2.5 V power source provides the power for the termination, which is a static value of 16 mA per signal driven high.  
The dynamic power is computed, however, using a differential voltage swing of ±0.200 V, yielding a peak-to-peak swing of 0.4  
V. The equations for computing the DDR power are:  
PDDRIO = PSTATIC + PDYNAMIC  
Eqn. 7  
Eqn. 8  
PSTATIC = (unused pins × % driven high) × 16 mA × 2.5 V  
P
DYNAMIC = (pin activity value) × 20 pF × (0.4 V)2 × 300 MHz × 10–3 mW  
Eqn. 9  
pin activity value = (active data lines × % activity × % data switching) + (active address lines × % activity)  
Eqn. 10  
As an example, assume the following:  
unused pins = 16 (DDR uses 16-pin mode)  
% driven high = 50%  
active data lines = 16  
% activity = 60%  
% data switching = 50%  
active address lines = 3  
In this example, the DDR memory power consumption is:  
PDDRIO = ((16 × 0.5) × 16 × 2.5) + (((16 × 0.6 × 0.5) + (3 × 0.6)) × 20 × (0.4)2 × 300 × 10–3) = 326.3 mW  
Eqn. 11  
3.3.4  
External I/O Power  
The estimation of the I/O power is similar to the computation of the peripheral power estimates. The power consumption per  
signal line is computed assuming a maximum load of 20 pF, a voltage swing of 3.3 V, and a switching frequency of 25 MHz,  
which yields:  
PIO = 20 pF × (3.3 V)2 × 25 MHz × 10–3 = 5.44 mW per I/O line  
Eqn. 12  
Multiply this number by the number of I/O signal lines used in the application design to compute the total I/O power.  
Note: The signal loading depends on the board routing. For systems using a single DDR device, the load could be as low as  
7 pF.  
3.3.5  
Leakage Power  
The leakage power is for all power supplies combined at a specific temperature. The value is temperature dependent. The  
observed leakage value at room temperature is 64 mW.  
MSC7119 Data Sheet, Rev. 8  
50  
Freescale Semiconductor  
Hardware Design Considerations  
3.3.6  
Example Total Power Consumption  
Using the examples in this section and assuming four peripherals and 10 I/O lines active, a total power consumption value is  
estimated as the following:  
PTOTAL = 324.0 + (4 × 4.32) + 326.3 + (10 × 5.44) + 64 = 784.98 mW  
Eqn. 13  
3.4  
Reset and Boot  
This section describes the recommendations for configuring the MSC7119 at reset and boot.  
3.4.1  
Reset Circuit  
HRESET is a bidirectional signal and, if driven as an input, should be driven with an open collector or open-drain device. For  
an open-drain output such as HRESET, take care when driving many buffers that implement input bus-hold circuitry. The  
bus-hold currents can cause enough voltage drop across the pull-up resistor to change the logic level to low. Either a smaller  
value of pull-up or less current loading from the bus-hold drivers overcomes this issue. To avoid exceeding the MSC7119 output  
current, the pull-up value should not be too small (a 1 KΩ pull-up resistor is used in the MSC711xADS reference design).  
3.4.2  
Reset Configuration Pins  
Table 34 shows the MSC7119 reset configuration signals. These signals are sampled at the deassertion (rising edge) of  
PORESET. For details, refer to the Reset chapter of the MSC711x Reference Manual.  
Table 34. Reset Configuration Signals  
Signal  
Description  
Settings  
BM[3–0]  
SWTE  
Determines boot mode.  
See Table 35 for details.  
Determines watchdog functionality.  
0
1
0
1
0
1
Watchdog timer disabled.  
Watchdog timer enabled.  
HDSP  
H8BIT  
Configures HDI16 strobe polarity.  
Configures HDI16 operation mode.  
Host Data strobes active low.  
Host Data strobes active high.  
HDI16 port configured for 16-bit operation.  
HDI16 port configured for 8-bit operation.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
51  
Hardware Design Considerations  
Table 35. Boot Mode Source Selection  
Boot  
Port  
Input Clock  
Frequency  
Clock  
Divide  
RNG  
Bit  
Core Clock  
Frequency  
BM[3–0]  
PLL  
CKSEL  
Comments  
HDI Boot Modes  
0000  
HDI16  
< F  
N/A  
N/A  
00  
0
< F  
Not clocked by the PLL.  
max  
max  
Can boot as 8- or 16-bit HDI.  
0101  
0010  
0111  
0100  
HDI16  
HDI16  
HDI16  
HDI16  
22.2-25 MHz  
25-33.3 MHz  
33-66 MHz  
1
2
3
2
12  
32  
12  
12  
11  
01  
11  
11  
1
1
1
1
266–300 MHz  
200–266 MHz  
132–264 MHz  
266–300 MHz  
Can boot as 8- or 16-bit HDI.  
44.3-50 MHz  
SPI Boot Modes - Using HA3, HCS2, BM3, BM2 Pins  
1000  
1001  
1010  
1011  
SPI (SW)  
SPI (SW)  
SPI (SW)  
SPI (SW)  
< F  
15.6-25 MHz  
33-50 MHz  
N/A  
1
N/A  
17  
00  
11  
11  
11  
0
0
0
0
< F  
The boot program automatically  
determines whether EEPROM  
or Flash memory.  
max  
max  
133–212.5 MHz  
132–200 MHz  
133–225 MHz  
2
16  
44.3-75 MHz  
3
18  
SPI Boot Modes - Using URXD, UTXD, SCL, SDA Pins  
1100  
SPI (SW)  
< F  
N/A  
N/A  
N/A  
00  
00  
0
0
< F  
Boots through different set of  
pins.  
max  
max  
2
I C Boot Modes  
0001  
2
I C  
< 100 MHz  
N/A  
< 100 MHz  
Not clocked by the PLL.  
2
I C is limited to a maximum bit  
rate of 400 Kbps. With a clock  
divider of 128, this limits the  
maximum input clock frequency  
to 100 MHz.  
Reserved  
0011  
0110  
1101  
1110  
1111  
Reserved  
Reserved  
Reserved  
Reserved  
Reserved  
Notes: 1. The clock divider determines the value used in the clock module CLKCTRL[PLLDVF] field.  
2. The clock multiplier determines the value used in the clock module CLKCTRL[PLLMLTF] field.  
3.  
F
is determined by the maximum frequency of the peripheral and of the SC1400 core as specified in the data sheet.  
max  
3.4.3  
Boot  
After a power-on reset, the PLL is bypassed and the device is directly clocked from the CLKIN pin. Thus, the device operates  
slowly during the boot process. After the boot program is loaded, it can enable the PLL and start the device operating at a higher  
speed. The MSC7119 can boot from an external host through the HDI16 or download a user program through the I2C port. The  
boot operating mode is set by configuring the BM[0–3] signals sampled at the rising edge of PORESET, as shown in Table 35.  
See the MSC711x Reference Manual for details of boot program operation.  
3.4.3.1  
HDI16 Boot  
If the MSC7119 device boots from an external host through the HDI16, the port is configured as follows:  
Operate in Non-DMA mode.  
Operate in polled mode on the device side.  
Operate in polled mode on the external host side.  
External host must write four 16-bit values at a time with the first word as the most significant and the fourth word as  
the least significant.  
MSC7119 Data Sheet, Rev. 8  
52  
Freescale Semiconductor  
Hardware Design Considerations  
When booting from a power-on reset, the HDI16 is additionally configurable as follows:  
8- or 16-bit mode as specified by the H8BIT pin.  
Data strobe as specified by the HDSP and HDDS pins.  
These pins are sampled only on the deassertion of power-on reset. During a boot from a hard reset, the configuration of these  
pins is unaffected.  
Note: When the HDI16 is used for booting or other purposes, bit 0 is the least significant bit and not the most significant bit  
as for other DSP products.  
3.4.3.2  
I2C Boot  
When the MSC7119 device is configured to boot from the I2C port, the boot program configures the GPIO pins for I2C  
operation. Then the MSC7118 device initiates accesses to the I2C module, downloading data to the MSC7118 device. The I2C  
interface is configured as follows:  
PLL is disabled and bypassed so that the I2C module is clocked with the IPBus clock.  
I2C interface operates in master mode and polling is used.  
EPROM operates in slave mode.  
Clock divider is set to 128.  
Address of slave during boot is 0xA0.  
The IPBus clock is internally divided to generate the bit clock, as follows:  
CLKIN must be a maximum of 100 MHz  
PLL is bypassed.  
IPBus clock = CLKIN/2 is a maximum of 50 MHz.  
I2C bit clock must be less than or equal to:  
— IPBus clock/I2C clock divider  
— 50 MHz (max)/128  
— 390.6 KHz  
This satisfies the maximum clock rate requirement of 400 kbps for the I2C interface. For details on the boot procedure, see the  
“Boot Program” chapter of the MSC711x Reference Manual.  
3.4.3.3  
SPI Boot  
When the MSC7119 device is configured to boot from the SPI port, the boot program configures the GPIO pins for SPI  
operation. Then the MSC7118 device initiates accesses to the SPI module, downloading data to the MSC7118 device. When  
the SPI routines run in the boot ROM, the MSC7118 is always configured as the SPI master. Booting through the SPI is  
supported for serial EEPROM devices and serial Flash devices. When a READ_ID instruction is issued to the serial memory  
device and the device returns a value of 0x00 or 0xFF, the routines for accessing a serial EEPROM are used, at a maximum  
frequency of 4 Mbps. Otherwise, the routines for accessing a serial Flash are used, and they can run at faster speeds. Booting is  
performed through one of two sets of pins:  
Main set: BM[2–3], HA3, and HCS2, which allow use of the PLL.  
Alternate set: UTXD, URXD, SDA, and SCL, which cannot be used with the PLL.  
In either configuration, an error during SPI boot is flagged on the EVNT3 pin. For details on the boot procedure, see the “Boot  
Program” chapter of the MSC711x Reference Manual.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
53  
Hardware Design Considerations  
3.5  
DDR Memory System Guidelines  
MSC7119 devices contain a memory controller that provides a glueless interface to external double data rate (DDR) SDRAM  
memory modules with Class 2 Series Stub Termination Logic 2.5 V (SSTL_2). There are two termination techniques, as shown  
in Figure 36. Technique B is the most popular termination technique.  
VTT  
Generator  
VTT  
Controller  
RS  
DDR  
Bank  
DDR  
Bank  
RT  
SSTL_2  
SSTL_2  
Address  
Command  
Chip Selects  
Technique A  
RS  
RT  
Data  
Strobes  
Mask  
SSTL_2  
VREF  
VTT  
Generator  
Controller  
RS  
DDR  
Bank  
DDR  
Bank  
RT  
SSTL_2  
SSTL_2  
Address  
Command  
Technique B  
Chip Selects  
RS  
RT  
Data  
Strobes  
Mask  
SSTL_2  
Figure 36. SSTL Termination Techniques  
Figure 37 illustrates the power wattage for the resistors. Typical values for the resistors are as follows:  
RS = 22 Ω  
RT = 24 Ω  
MSC7119 Data Sheet, Rev. 8  
54  
Freescale Semiconductor  
Hardware Design Considerations  
VTT  
Driver  
VDDQ  
RT  
Receiver  
RS  
VREF  
VSS  
Figure 37. SSTL Power Value  
3.5.1  
V
and V Design Constraints  
REF TT  
VTT and VREF are isolated power supplies at the same voltage, with VTT as a high current power source. This section outlines  
the voltage supply design needs and goals:  
Minimize the noise on both rails.  
VTT must track variation in the VREF DC offsets. Although they are isolated supplies, one possible solution is to use a  
single IC to generate both signals.  
Both references should have minimal drift over temperature and source supply.  
It is important to minimize the noise from coupling onto VREF as follows:  
— Isolate VREF and shield it with a ground trace.  
— Use 15–20 mm track.  
— Use 20–30 mm clearance between other traces for isolating.  
— Use the outer layer route when possible.  
— Use distributed decoupling to localize transient currents and return path and decouple with an inductance less than  
3 nH.  
Max source/sink transient currents of up to 1.8 A for a 32-bit data bus.  
Use a wide island trace on the outer layer:  
— Place the island at the end of the bus.  
— Decouple both ends of the bus.  
— Use distributed decoupling across the island.  
— Place SSTL termination resistors inside the VTT island and ensure a good, solid connection.  
Place the VTT regulator as closely as possible to the termination island.  
— Reduce inductance and return path.  
— Tie current sense pin at the midpoint of the island.  
3.5.2  
Decoupling  
The DDR decoupling considerations are as follows:  
DDR memory requires significantly more burst current than previous SDRAMs.  
In the worst case, up to 64 drivers may be switching states.  
Pay special attention and decouple discrete ICs per manufacturer guidelines.  
Leverage VTT island topology to minimize the number of capacitors required to supply the burst current needs of the  
termination rail.  
See the Micron DesignLine publication entitled Decoupling Capacitor Calculation for a DDR Memory Channel  
(http://download.micron.com/pdf/pubs/designline/3Q00dl1-4.pdf).  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
55  
Hardware Design Considerations  
3.5.3  
General Routing  
The general routing considerations for the DDR are as follows:  
All DDR signals must be routed next to a solid reference:  
— For data, next to solid ground planes.  
— For address/command, power planes if necessary.  
All DDR signals must be impedance controlled. This is system dependent, but typical values are 50–60 ohm.  
Minimize other cross-talk opportunities. As possible, maintain at least a four times the trace width spacing between all  
DDR signals to non-DDR signals.  
Keep the number of vias to a minimum to eliminate additional stubs and capacitance.  
Signal group routing priorities are as follows:  
— DDR clocks.  
— Route MVTT/MVREF.  
— Data group.  
— Command/address.  
Minimize data bit jitter by trace matching.  
3.5.4  
Routing Clock Distribution  
The DDR clock distribution considerations are as follows:  
DDR controller supports six clock pairs:  
— 2 DIMM modules.  
— Up to 36 discrete chips.  
For route traces as for any other differential signals:  
— Maintain proper difference pair spacing.  
— Match pair traces within 25 mm.  
Match all clock traces to within 100 mm.  
Keep all clocks equally loaded in the system.  
Route clocks on inner critical layers.  
3.5.5  
Data Routing  
The DDR data routing considerations are as follows:  
Route each data group (8-bits data + DQS + DM) on the same layer. Avoid switching layers within a byte group.  
Take care to match trace lengths, which is extremely important.  
To make trace matching easier, let adjacent groups be routed on alternate critical layers.  
Pin swap bits within a byte group to facilitate routing (discrete case).  
Tight trace matching is recommended within the DDR data group. Keep each 8-bit datum and its DM signal within ±  
25 mm of its respective strobe.  
Minimize lengths across the entire DDR channel:  
— Between all groups maintain a delta of no more than 500 mm.  
— Allows greater flexibility in the design for readjustments as needed.  
DDR data group separation:  
— If stack-up allows, keep DDR data groups away from the address and control nets.  
— Route address and control on separate critical layers.  
— If resistor networks (RNs) are used, attempt to keep data and command lines in separate packages.  
MSC7119 Data Sheet, Rev. 8  
56  
Freescale Semiconductor  
Ordering Information  
3.6  
Connectivity Guidelines  
This section summarizes the connections and special conditions, such as pull-up or pull-down resistors, for the MSC7119  
device. Following are guidelines for signal groups and configuration settings:  
Clock and reset signals.  
SWTE is used to configure the MSC7119 device and is sampled on the deassertion of PORESET, so it should be  
tied to VDDC or GND either directly or through pull-up or pull-down resistors until PORESET is deasserted. After  
PORESET, this signal can be left floating.  
BM[0–1] configure the MSC7119 device and are sampled until PORESET is deasserted, so they should be tied to  
VDDIO or GND either directly or through pull-up or pull-down resistors.  
HRESET should be pulled up.  
Interrupt signals. When used, IRQ pins must be pulled up.  
HDI16 signals.  
— When they are configured for open-drain, the HREQ/HREQ or HTRQ/HTRQ signals require a pull-up resistor.  
However, these pins are also sampled at power-on reset to determine the HDI16 boot mode and may need to be  
pulled down. When these pins must be pulled down on reset and pulled up otherwise, a buffer can be used with  
the HRESET signal as the enable.  
— When the device boots through the HDI16, the HDDS, HDSP and H8BIT pins should be pulled up or down,  
depending on the required boot mode settings.  
Ethernet MAC/TDM2 signals. The MDIO signal requires an external pull-up resistor.  
I2C signals. The SCL and SDA signals, when programmed for I2C, requires an external pull-up resistor.  
General-purpose I/O (GPIO) signals. An unused GPIO pin can be disconnected. After boot, program it as an output  
pin.  
Other signals.  
— The TEST0 pin must be connected to ground.  
— The TPSEL pin should be pulled up to enable debug access via the EOnCE port and pulled down for boundary  
scan.  
— Pins labelled NO CONNECT (NC) must not be connected.  
— When a 16-pin double data rate (DDR) interface is used, the 16 unused data pins should be no connects (floating)  
if the used lines are terminated.  
— Do not connect DBREQ to DONE (as you would for the MSC8101 device). Connect DONE to one of the EVNT  
pins, and DBREQ to HRRQ.  
4
Ordering Information  
Consult a Freescale Semiconductor sales office or authorized distributor to determine product availability and place an order.  
Core  
Pin  
Count  
Part  
Supply Voltage  
Package Type  
Frequency  
(MHz)  
Solder Spheres  
Order Number  
MSC7119  
1.2 V core  
2.5 V memory  
3.3 V I/O  
Molded Array Process-Ball Grid  
Array (MAP-BGA)  
400  
300  
Lead-free  
MSC7119VM1200  
MSC7119VF1200  
Lead-bearing  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
57  
Package Information  
5
Package Information  
Notes:  
1. All dimensions in millimeters.  
2. Dimensioning and tolerancing  
per ASME Y14.5M–1994.  
3. Maximum solder ball diameter  
measured parallel to Datum A.  
4. Datum A, the seating plane, is  
determined by the spherical  
crowns of the solder balls.  
5. Parallelism measurement shall  
exclude any effect of mark on  
top surface of package.  
CASE 1568-01  
Figure 38. MSC7119 Mechanical Information, 400-pin MAP-BGA Package  
6
Product Documentation  
MSC711x Reference Manual (MSC711xRM). Includes functional descriptions of the extended cores and all the  
internal subsystems including configuration and programming information.  
Application Notes. Cover various programming topics related to the StarCore DSP core and the MSC7119 device.  
SC140/SC1400 DSP Core Reference Manual. Covers the SC140 and SC1400 core architecture, control registers, clock  
registers, program control, and instruction set.  
MSC7119 Data Sheet, Rev. 8  
58  
Freescale Semiconductor  
Revision History  
7
Revision History  
Table 36 provides a revision history for this data sheet.  
Table 36. Document Revision History  
Description  
Revision  
Date  
0
1
2
Sep. 2005  
Oct 2005  
Oct. 2005  
Initial public release.  
Added explanatory note to HDI16 timing table.  
Added information about signals GPIOB11, GPIOC11, GPIOD7, and GPIOD8 to the signal descriptions  
and pinout location lists.  
3
Dec. 2005  
Added information about signals GPIOA16, GPIOA17, GPIOA27, GPIOA28, and GPIOA29 to signal  
description and pinout location lists.  
4
5
Feb. 2006  
Nov. 2006  
Updated orderable part numbers.  
Updated Reference Manual reference to MSC711x Reference Manual.  
Updated arrows in Host DMA Writing Timing figure.  
6
7
8
Jun. 2007  
Aug 2007  
Apr 2008  
Updated to new data sheet format. Reorganized and renumbered sections, figures, and tables.  
Added a note to clarify the definition of TCK timing 700 in new Table 31.  
Removed references to VCCSYN and VCCSYN1 in the new power supply design recommendation Section  
3.2.  
The power-up and power-down sequences described in Section 3.2 starting on page 42 have been expanded  
to five possible design scenarios/cases. These cases replace the previously recommended  
power-up/power-down sequence recommendations. Section 3.2 has been clarified by adding subsection  
headings.  
Change the PLL filter resistor from 20 Ω to 2 Ω in Section 3.2.5.  
MSC7119 Data Sheet, Rev. 8  
Freescale Semiconductor  
59  
How to Reach Us:  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or  
+1-480-768-2130  
www.freescale.com/support  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku  
Tokyo 153-0064  
Japan  
0120 191014 or  
+81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
Semiconductor was negligent regarding the design or manufacture of the part.  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
support.asia@freescale.com  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
For Literature Requests Only:  
Freescale Semiconductor  
Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
+1-800 441-2447 or  
Freescale™, the Freescale logo, CodeWarrior, fieldBIST, and StarCore are trademarks  
of Freescale Semiconductor, Inc. IEEE, 802.3, 802.3u, 802.3x, and 802.3ac are  
trademarks of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). All other  
product or service names are the property of their respective owners.  
+1-303-675-2140  
Fax: +1-303-675-2150  
LDCForFreescaleSemiconductor  
@hibbertgroup.com  
© Freescale Semiconductor, Inc. 2004, 2008. All rights reserved.  
Document Number: MSC7119  
Rev. 8  
4/2008  

相关型号:

MSC7128

5 x 7-Dot Character x 16-Digit Display Controller/Driver
OKI

MSC7128-01GS-BK

Dot Matrix LCD Driver, 16 X 36 Dots, CMOS, PQFP64, 14 X 20 MM, 1 MM PITCH, PLASTIC, QFP-64
OKI

MSC7128-XX

5 x 7-Dot Character x 16-Digit Display Controller/Driver
OKI

MSC7128-XXGS-BK

Dot Matrix LCD Driver, 16 X 36 Dots, CMOS, PQFP64, 14 X 20 MM, 1 MM PITCH, PLASTIC, QFP-64
OKI

MSC7128-XXSS

Dot Matrix LCD Driver, 16 X 36 Dots, CMOS, PDIP64, 0.750 INCH, 1.78 MM PITCH, PLASTIC, SDIP-64
OKI

MSC7165

16-Bit Grid Driver with 4 to 16-Decoder
OKI

MSC7165GS-K

Vacuum Fluorescent Driver, 16-Segment, PDSO24, PLASTC, SOP-24
OKI

MSC7166

16-Bit Grid Driver with 4 to 16-Decoder
OKI

MSC7166GS-K

Vacuum Fluorescent Driver, 16-Segment, PDSO24, PLASTC, SOP-24
OKI

MSC7170-01

5x7 Dot Character x 16-Digit x 2-Line Display Controller/Driver with Keyscan Function
OKI

MSC7170-01GS-BK

Vacuum Fluorescent Driver, 72-Segment, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
OKI

MSC7171

12-Bit Grid Driver
OKI