NE56632-46D [NXP]

Active-LOW system reset with adjustable delay time; 带可调延时低有效的系统复位
NE56632-46D
型号: NE56632-46D
厂家: NXP    NXP
描述:

Active-LOW system reset with adjustable delay time
带可调延时低有效的系统复位

电源电路 电源管理电路 光电二极管 输入元件
文件: 总16页 (文件大小:142K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
NE56632-XX  
Active-LOW system reset  
with adjustable delay time  
Product data  
2002 Mar 25  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
DESCRIPTION  
The NE56632-XX is a family of Active-LOW, power-on reset that  
offers precision threshold voltage detection within ±1.5% and super  
low operating supply current of typically 3.0 µA. It includes a reset  
delay that is user adjustable with an external capacitor.  
Several detection threshold voltages are available at 1.9V , 2.0 V,  
2.7 V, 2.8 V, 2.9 V, 3.0 V, 3.1 V, 4.2 V, 4.3 V, 4.4 V, 4.5 V, and 4.6 V.  
Other thresholds are offered upon request at 100 mV steps from  
1.9 V to 4.6 V.  
With its ultra low supply current and high precision voltage threshold  
detection capability, the NE56632-XX is well suited for various  
battery powered applications such as reset circuits for logic and  
microprocessors, voltage check, and level detecting. It is available in  
the SOT23-5 package.  
FEATURES  
APPLICATIONS  
High precision threshold detection voltage: V ±1.5%  
Reset for microprocessor and logic circuits  
Voltage level detection circuit  
S
Super low operating supply current: 3 µA typ.  
Built-in hysteresis voltage: 50 mV typ.  
Battery voltage check circuit  
Detection threshold voltage: 1.9 V, 2.0 V, 2.7 V, 2.8 V, 2.9 V,  
Detection circuit for battery back-up  
3.0 V, 3.1 V, 4.2 V, 4.3 V, 4.4 V, 4.5 V, and 4.6 V.  
Reset Output: Active-LOW, open collector  
Other detection threshold voltages available upon request at  
100 mV steps from 1.9 V to 4.6 V.  
Large low reset output current: 30 mA typ.  
Power-on reset delay time adjustable with external capacitor:  
200 µs to 200 ms  
Reset assertion with V down to 0.65 V  
CC  
SIMPLIFIED SYSTEM DIAGRAM  
TO V  
TO RESET  
TERMINAL  
OF CPU  
CC  
R
PU  
5
1
4
3
NE56632-XX  
2
C
D
SL01605  
Figure 1. Simplified system diagram.  
2
2002 Mar 25  
853–2329 27919  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
ORDERING INFORMATION  
PACKAGE  
TEMPERATURE  
RANGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
NE56632-XXD  
SOT23-5 / SOT25 (SO5)  
plastic small outline package; 5 leads (see dimensional drawing)  
Part number marking  
–20 to +75 °C  
NOTE:  
The device has 12 voltage output options, indicated by the XX on  
the ‘Type number’.  
The package is marked with a four letter code. The first three letters  
designate the product. The fourth letter, represented by ‘x’, is a date  
tracking code.  
XX  
19  
20  
27  
28  
29  
30  
31  
42  
43  
44  
45  
46  
VOLTAGE (Typical)  
1.9 V  
Part Number  
NE56632-19D  
NE56632-20D  
NE56632-27D  
NE56632-28D  
NE56632-29D  
NE56632-30D  
NE56632-31D  
NE56632-42D  
NE56632-43D  
NE56632-44D  
NE56632-45D  
NE56632-46D  
Marking  
AKZx  
ALAx  
ALBx  
ALCx  
ALDx  
ALEx  
ALFx  
ALGx  
ALHx  
ALJx  
2.0 V  
2.7 V  
2.8 V  
2.9 V  
3.0 V  
3.1 V  
4.2 V  
4.3 V  
4.4 V  
4.5 V  
ALKx  
ALLx  
4.6 V  
PIN CONFIGURATION  
PIN DESCRIPTION  
PIN  
SYMBOL  
DESCRIPTION  
1
TC  
Delay time control; set with external  
capacitor.  
TC  
SUB  
GND  
1
2
3
5
4
V
V
CC  
2
3
4
5
SUB  
GND  
Substrate. Connect to ground (GND).  
Ground. Negative supply.  
NE56632-XX  
V
OUT  
Reset output voltage. Active-LOW.  
OUT  
V
CC  
Positive supply voltage; detection threshold  
voltage input.  
SL01604  
Figure 2. Pin configuration.  
MAXIMUM RATINGS  
SYMBOL  
PARAMETER  
MIN.  
–0.3  
–20  
–40  
MAX.  
+10  
UNIT  
V
V
CC  
Supply voltage  
T
amb  
Ambient operating temperature  
Storage temperature  
+75  
°C  
T
stg  
+125  
150  
°C  
P
Power dissipation  
mW  
3
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
ELECTRICAL CHARACTERISTICS  
T
amb  
= 25 °C, unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
-XX  
46  
45  
44  
43  
42  
31  
30  
29  
28  
27  
20  
19  
MIN.  
4.531  
4.432  
4.334  
4.235  
4.137  
3.053  
2.955  
2.856  
2.758  
2.659  
1.970  
1.871  
25  
TYP.  
4.600  
4.500  
4.400  
4.300  
4.200  
3.100  
3.000  
2.900  
2.800  
2.700  
2.000  
1.900  
50  
MAX.  
4.669  
4.568  
4.466  
4.365  
4.263  
3.147  
3.045  
2.944  
2.842  
2.741  
2.030  
1.929  
100  
UNIT  
V
V
S
Detection threshold  
V
= HIGH-to-LOW; R = 4.7 k; S1=ON;  
CC  
L
V
OL  
0.4 V;  
V
Test Circuit 1 (Figure 27)  
V
V
V
V
V
V
V
V
V
V
V
hys  
Hysteresis voltage  
R = 4.7 k; V = LOW-to-HIGH-to-LOW; S1 = ON; Test  
mV  
L
CC  
Circuit 1 (Figure 27)  
V /T  
Detection threshold voltage  
temperature coefficient  
R = 4.7 k; T = –20 °C to +75 °C; S1 = ON;  
±0.01  
%/°C  
S
L
amb  
Test Circuit 1 (Figure 27)  
V
OL  
LOW-level output voltage  
V
CC1  
= V  
– 0.05 V; R = 4.7 k; S1 = ON;  
0.2  
0.4  
V
S(min)  
L
Test Circuit 1 (Figure 27)  
I
I
I
t
t
Output leakage current  
Supply current (ON time)  
Supply current (OFF time)  
LOW-to-HIGH delay time  
HIGH-to-LOW delay time  
V
= V  
= 10 V; S2 = ON; Test Circuit 1 (Figure 27)  
±0.1  
9.0  
5.0  
µA  
µA  
µA  
ms  
µs  
V
LO  
CC1  
CC2  
V
CC1  
= V  
– 0.05 V; R = ; Test Circuit 1 (Figure 27)  
5.0  
CCL  
CCH  
PLH  
PHL  
S(min)  
L
V
= V  
/0.85; R = ; Test Circuit 1 (Figure 27)  
3.0  
CC1  
S(typ)  
L
C = 100 pF; R = 4.7 k; C = 10 nF (Note 1)  
L
(Note 3)  
(Note 3)  
0.65  
L
D
C = 100 pF; R = 4.7 k; C = 10 nF (Note 2)  
L
L
D
V
Minimum operating  
threshold voltage  
R = 4.7 k; V 0.4 V; S1 = ON;  
0.80  
OPL  
L
OL  
Test Circuit 1 (Figure 27)  
I
Output current (ON Time 1)  
V
CC2  
= 0.4 V; R = 0; V  
= 0.4 V; S2 = ON; Test Circuit 1 (Figure 27)  
= V – 0.05 V;  
S(min)  
5
3
mA  
mA  
OL1  
O
L
CC1  
V
I
Output current (ON Time 2)  
V
O
= 0.4 V; R = 0; V  
= V  
– 0.05 V;  
S(min)  
OL2  
L
CC1  
T
amb  
= –20 °C to +75 °C; S2 = ON;  
Test Circuit 1 (Figure 27)  
NOTES:  
1. t  
2. t  
:
:
V
V
= (V  
= (V  
– 0.4 V) to (V  
+ 0.4 V) to (V  
+ 0.4 V); t  
– 0.4 V); t  
is release delay time (Test Circuit 2, Figure 28).  
is assertion delay time (Test Circuit 2, Figure 28).  
PLH  
CC  
S(typ)  
S(typ)  
S(typ)  
S(typ)  
PLH  
PHL  
PHL  
CC  
3. See Table 1.  
Table 1. NE56632-XX series typical delay time  
–XX  
46  
45  
44  
43  
42  
31  
30  
29  
28  
27  
20  
19  
t
t
PHL  
PLH  
195 ms  
190 ms  
185 ms  
180 ms  
175 ms  
120 ms  
115 ms  
110 ms  
105 ms  
100 ms  
65 ms  
140 µs  
140 µs  
140 µs  
140 µs  
140 µs  
120 µs  
120 µs  
120 µs  
100 µs  
100 µs  
100 µs  
100 µs  
60 ms  
4
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TYPICAL PERFORMANCE CURVES, NE56632-20  
2.0050  
2.0025  
2.0000  
1.9975  
1.9950  
1.9925  
1.9900  
1.9875  
1.9850  
100  
90  
80  
70  
60  
50  
40  
30  
Test Circuit 1  
= HIGH-to-LOW  
Test Circuit 1  
V
CC  
V = LOW-to-HIGH-to-LOW  
R
= 4.7 kΩ  
0.4 V  
CC  
L
R
= 4.7 kΩ  
V
L
OL  
S1 = ON  
S1 = ON  
–40  
–20  
–40 –20  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
100  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
amb  
SL01620  
SL01621  
Figure 3. Detection threshold versus temperature.  
Figure 4. Hysteresis voltage versus temperature.  
0.225  
9
8
7
6
5
0.220  
0.215  
0.210  
0.205  
0.200  
0.195  
0.190  
0.185  
Test Circuit 1  
= V  
4
V
– 0.05 V  
S(min)  
Test Circuit 1  
CC1  
R
= 4.7 kΩ  
V
R
= V  
= ∞  
– 0.05 V  
0
L
CC1  
L
S(min)  
S1 = ON  
3
–40  
–20  
–40  
–20  
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
amb  
SL01622  
SL01623  
Figure 5. LOW-level output voltage versus temperature.  
Figure 6. Supply current (ON time) versus temperature.  
0.9  
0.8  
0.7  
0.6  
0.5  
4.5  
4.0  
3.5  
3.0  
2.5  
Test Circuit 1  
0.4  
Test Circuit 1  
R
V
= 4.7 kΩ  
0.4 V  
L
OL  
R
V
= ∞  
L
= V  
/0.85  
S(typ)  
S1 = ON  
CC1  
2.0  
0.3  
–40  
–40  
–20  
–20  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01624  
SL01625  
Figure 7. Supply current (OFF time) versus temperature.  
Figure 8. Min. operating threshold voltage versus temperature.  
5
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TYPICAL PERFORMANCE CURVES, NE56632-20 (continued)  
100  
90  
80  
70  
60  
50  
40  
37  
35  
33  
31  
29  
27  
25  
Test Circuit 2  
C
R
C
= 100 pF  
= 4.7 kΩ  
= 10 nF  
L
L
D
Test Circuit 1  
V
V
V
= V  
= 0.4 V  
= 0.4 V  
= 0 Ω  
– 0.05 V  
CC1  
CC2  
O
S(min)  
V
= (V  
– 0.4 V) to (V  
+ 0.4 V)  
S(typ)  
CC  
S(typ)  
R
L
S2 = ON  
t
= Release Delay Time  
PLH  
–40 –20  
–40  
–20  
0
20  
40  
60  
(°C)  
80  
100  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
amb  
SL01626  
SL01627  
Figure 9. Output current (ON time 1) versus temperature.  
Figure 10. LOW-to-HIGH delay time versus temperature.  
120  
Test Circuit 2  
C
R
C
= 100 pF  
= 4.7 kΩ  
= 10 nF  
L
L
D
115  
110  
105  
100  
95  
90  
85  
V
= (V  
+ 0.4 V) to (V  
– 0.4 V)  
S(typ)  
CC  
S(typ)  
t
= Assertion Delay Time  
PHL  
80  
–40  
–20  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
SL01628  
Figure 11. HIGH-to-LOW delay time versus temperature.  
6
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TYPICAL PERFORMANCE CURVES, NE56632-31  
3.11  
3.10  
3.09  
3.08  
90  
80  
70  
60  
50  
40  
30  
Test Circuit 1  
Test Circuit 1  
= LOW-to-HIGH  
V
R
= HIGH-to-LOW  
= 4.7 kΩ  
CC  
L
V
CC  
R
= 4.7 kΩ  
V
0.4 V  
L
OL  
S1 = ON  
S1 = ON  
–40  
–20  
–40 –20  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01629  
SL01630  
Figure 12. Detection threshold versus temperature.  
Figure 13. Hysteresis voltage versus temperature.  
0.23  
0.22  
0.21  
0.20  
0.19  
9
8
7
6
5
4
Test Circuit 1  
= V  
0.18  
Test Circuit 1  
3
V
– 0.05 V  
S(min)  
CC1  
V
= V  
– 0.05 V  
0
R
= 4.7 kΩ  
CC1  
S(min)  
L
R
= ∞  
S1 = ON  
L
0.17  
–40  
2
–20  
–40  
–20  
0
20  
40  
60  
80  
100  
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
amb  
SL01631  
SL01632  
Figure 14. LOW–level output voltage versus temperature.  
Figure 15. Supply current (ON time) versus temperature.  
0.9  
0.8  
0.7  
0.6  
0.5  
4.5  
4.0  
3.5  
3.0  
Test Circuit 1  
0.4  
2.5  
Test Circuit 1  
R
V
= 4.7 kΩ  
0.4 V  
L
R
V
= ∞  
L
OL  
S1 = ON  
= V  
/0.85  
CC1  
S(typ)  
2.0  
–40  
0.3  
–40  
–20  
–20  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01633  
SL01634  
Figure 16. Supply current (OFF time) versus temperature.  
Figure 17. Min. operating threshold voltage versus  
temperature.  
7
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TYPICAL PERFORMANCE CURVES, NE56632-31 (continued)  
36  
37  
34  
35  
32  
30  
33  
28  
31  
26  
Test Circuit 1  
V
V
V
= V  
= 0.4 V  
= 0.4 V  
– 0.05 V  
– 0.05 V  
24  
22  
20  
CC1  
CC2  
O
S(min)  
29  
R
= 0 Ω  
R = 0 Ω  
L
L
S2 = ON  
S2 = ON  
–20  
27  
–40  
–20  
–40  
0
20  
40  
60  
80  
100  
0
20  
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T (°C)  
amb  
amb  
SL01635  
SL01636  
Figure 18. Output current (ON time 1) versus temperature.  
Figure 19. Output current (ON time 2) versus temperature.  
180  
160  
Test Circuit 2  
Test Circuit 2  
C
R
C
= 100 pF  
= 4.7 kΩ  
= 10 nF  
C
R
C
= 100 pF  
= 4.7 kΩ  
= 10 nF  
L
L
D
L
L
D
150  
140  
130  
120  
110  
100  
90  
160  
140  
120  
100  
80  
60  
V
t
= (V  
+ 0.4 V) to (V  
– 0.4 V)  
S(typ)  
V
t
= (V  
– 0.4 V) to (V  
+ 0.4 V)  
S(typ)  
CC  
S(typ)  
CC  
S(typ)  
= Assertion Delay Time  
= Release Delay Time  
PHL  
20  
PLH  
20  
40  
80  
–40  
–20  
–40  
–20  
0
40  
60  
80  
100  
0
40  
60  
80  
100  
AMBIENT TEMPERATURE, T  
(°C)  
AMBIENT TEMPERATURE, T  
(°C)  
amb  
amb  
SL01637  
SL01638  
Figure 20. LOW-to-HIGH delay time versus temperature.  
Figure 21. HIGH-to-LOW delay time versus temperature.  
8
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
the threshold comparator which is less than V , causing the output  
TECHNICAL DISCUSSION  
REF  
of the comparator to go to a HIGH state. This causes the common  
emitter amplifier, Q1 to turn ON pulling down the non-inverting  
terminal of Comparator 2 which causes its output to go to a HIGH  
state. This HIGH output level turns on the output common emitter  
transistor, Q2. The collector output of Q2 is pulled LOW through the  
external pull-up resistor, thereby asserting the Active-LOW reset.  
The NE56632-XX is a bipolar IC designed to provide power source  
monitoring and a system reset function in the event the power sags  
below an acceptable level for the system to operate reliably. The  
reset threshold incorporates a typical hysteresis of 50 mV to prevent  
erratic reasserts from being generated. An internal delay time circuit  
provides a adjustable power-on reset delay of typically 200 µs to  
200 ms using an external capacitor.  
Threshold hysteresis is established by turning on the bipolar common  
emitter transistor, Q1 when the input threshold Comparator 1 goes  
The output of the NE56632-XX utilizes an open collector topology,  
to a HIGH state. This occurs when V sags to or below the  
CC  
which requires an external pull-up resistor to V . Though this may  
CC  
threshold level. With the output of Q1 connected to the non-inverting  
terminal of Comparator 2, the non-inverting terminal has a level near  
ground at about 0.4 V when the reset is asserted (Active-LOW). For  
the Comparator 2 to reverse its output, the Comparator 1 output and  
Q1 must overcome the additional pull-down voltage present on the  
inverting input of Comparator 2. The differential voltage required to  
do this establishes the hysteresis voltage of the sensed threshold  
voltage. Typically, it is 50 mV.  
be regarded as a disadvantage, it is advantageous in many  
sensitive applications. Because the open collector output cannot  
source reset current when both are operated from a common supply,  
the NE56632-XX offers a safe interconnect to a wide variety of  
microprocessors.  
The NE56632-XX operates at low supply currents, typically 3 µA,  
while offering precision threshold detection (±1.5%).  
Figure 22 is a functional block diagram of the NE56632-XX. The  
When V sags, and it is below the detection Threshold (V ), the  
CC  
SL  
internal reference source voltage, V  
, is typically 0.65 V over the  
REF  
device will assert a Reset LOW output at or near ground potential.  
As V rises from (V < V ) to V or higher, the Reset is  
temperature range. The reference voltage is connected to the  
non-inverting inputs of the threshold Comparator 1 and  
Comparator 2, while the inverting input of Comparator 1 monitors  
the supply voltage through a voltage divider (R1 and R2). The output  
of the comparator drives the series base resistor, R3 of a common  
emitter amplifier, Q1. The collector of Q1 is connected to the  
inverting terminal of Comparator 2. The output of Comparator 2 is  
connected to the series base resistor, R4 of the output common  
emitter transistor, Q2. The open collector output of Q2 provides the  
reset output.  
CC  
CC  
SL  
SH  
released and the output follows V . Conversely, decreases in V  
CC  
CC  
from (V > V ) to V will cause the output to be pulled to ground.  
CC  
SL  
SL  
Hysteresis voltage = Release voltage – Detection Threshold voltage  
V
hys  
= V – V  
SH SL  
where:  
V
SH  
V
SL  
= V + V  
SL  
hys  
hys  
= V – V  
SH  
The Delay Time Control is outputted at the junction of the collector  
of Q1 and the inverting input of Comparator 2. The reset release  
When V drops below the minimum operating voltage, typically  
0.65 V, the output is undefined and the output reset low assertion is  
CC  
time delay, t  
is set with an external capacitor. Figures 25 and 26  
PLH  
no longer guaranteed. At this level of V the output will try to rise to  
CC  
show t  
as a function of the external delay capacitor, C .  
D
PLH  
V
CC  
. As V drops even further to zero, V  
reset also goes to  
OUT  
CC  
zero.  
When the supply voltage sags to the threshold detection voltage, the  
resistor divider network supplies a voltage to the inverting terminal of  
5
V
CC  
I
D
R1  
R2  
COMP1  
COMP2  
4
V
OUT  
V
REF  
R3  
R4  
Q1  
Q2  
GND  
SUB  
3
2
1
(SUBSTRATE)  
SL01607  
TC  
Figure 22. Functional diagram.  
9
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TIMING DIAGRAM  
The timing diagram in Figure 23 depicts the operation of the device.  
Letters A–N on the TIME axis indicates specific events.  
G-H: At “G”, V is above the upper threshold and begins to fall,  
CC  
causing V  
to follow it. As long as V remains above the V  
,
OUT  
CC  
SH  
no reset signal will be generated.  
A: At “A”, V begins to increase. Also the V  
voltage initially  
CC  
OUT  
increases but abruptly decreases when V reaches the level  
H: At event “H”, V falls until the V undervoltage detection  
CC  
CC  
SL  
(approximately 0.65 V) that activates the internal bias circuitry and  
RESET is asserted.  
threshold is reached. At this level, a RESET signal is generated and  
goes LOW.  
V
OUT  
B: At “B”, V reaches the threshold level of V . At this point the  
H-I: Between “H” and “I”, V continues to fall and then starts to  
CC  
CC  
SH  
delay time, t  
is initiated while V rises above V to its normal  
rise rising. V rises to the V level at “I”, where the delay time is  
CC SH  
PLH  
CC  
SH  
operating level. The V  
voltage remains in a low voltage state.  
again initiated.  
OUT  
C: At “C”, V is above V and the delay time elapses. At this  
I-J: Between “I” and “J”, V rises above V to V normal and  
CC SH CC  
CC  
SL  
instant, the IC releases the hold on the V  
reset. The reset output  
then falls back to V level at “J”. At “J”, the reset signal is  
OUT  
SL  
then goes HIGH (assuming the reset pull-up resistor R is  
reasserted before the delay time has elapsed. The time between “I”  
PU  
connected to V ). In a microprocessor based system these events  
and “J” is less than t  
(reset delay time). Thus, the reset is not  
CC  
PLH  
release the reset from the microprocessor, allowing the  
microprocessor to function normally.  
released and the reset output remains LOW.  
K–L: Between “K” and “L”, V rises again back to normal  
CC  
D-E: At “D”, V begins to fall, causing V  
to follow. V  
CC  
operating level causing the reset delay to be initiated at “K” and the  
reset to be released at “L”.  
CC  
OUT  
continues to fall until the V undervoltage detection threshold is  
SL  
reached at “E”. This causes a reset signal to be generated (V  
goes LOW).  
OUT  
M: At “M”, V falls to V where the reset is asserted (V  
OUT  
Reset goes LOW).  
CC  
SL  
E-F: Between “E” and “F”, V continues to fall and then starts  
rising.  
CC  
N: At “N”, the V voltage has decreased until normal internal  
CC  
circuit bias is unable to maintain a V  
reset. As a result, V may  
CC  
OUT  
F: At “F”, V rises to the V level. Once again, the device  
rise to less than 0.65 V. As V decreases further, the V  
reset  
CC  
SH  
CC  
OUT  
initiates the delay timer.  
also decreases to zero.  
F-G:  
(t  
V
rises above V and returns to normal. At “G”, the delay  
CC SH  
) times out and once again, then it releases the hold on the  
PLH  
V
OUT  
reset.  
V
V
hys  
V
V
SH  
SL  
V
CC  
< t  
PLH  
V
V
OUT  
(RESET)  
t
t
t
PLH  
PLH  
PLH  
A
B
C
D
E
F
G
H
I
J
K
L
M
N
SL01606  
Figure 23. Timing diagram.  
10  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
APPLICATION INFORMATION  
A typical application circuit for the NE56632-XX is shown in  
1.0E+00  
Figure 24. Note that a pull-up resistor, R is necessary since the  
PU  
output is an open collector. The value of RPU is calculated by the  
following expression.  
1.0E–01  
1.0E–02  
1.0E–03  
1.0E–04  
1.0E–05  
R
(V – V  
) / I  
RESET OL  
PU  
CC  
where:  
V
V
= V  
– 0.05 V (for a 3 V reset this is 2.905 V)  
S(min)  
CC  
= 0.4 V (this is V  
)
RESET  
OL(max)  
I
OL  
= 5 mA; minimum output current at T  
= 25 °C  
amb  
Substituting these values into the expression and calculating, finds  
should be greater than or equal to 510 Ω. To ensure that the  
R
PU  
Active-LOW level is sufficient, a value of 4.7 kis chosen in the test  
and application examples.  
1.0E+00  
1.0E+01  
1.0E+02  
(pF)  
1.0E+03  
1.0E+04  
C
D
SL01611  
TO V  
TO RESET  
TERMINAL  
OF CPU  
CC  
Figure 25. NE56632-20 C versus t  
characteristics.  
D
PLH  
R
PU  
1.0E+00  
1.0E–01  
1.0E–02  
1.0E–03  
1.0E–04  
1.0E–05  
5
1
4
3
NE56632-XX  
2
C
D
SL01605  
Figure 24. Typical application.  
1.0E+00  
1.0E+01  
1.0E+02  
(pF)  
1.0E+03  
1.0E+04  
Figure 25 (NE56632-20 C versus t  
) and Figure 26  
PLH  
D
C
D
(NE56632-44 C versus t  
delay or reset release delay time varies as a function of the external  
) show how t  
, the “H” transmission  
PHL  
D
PLH  
SL01612  
delay capacitance, C . From Figure 26, typical range of the delay  
Figure 26. NE56632-44 C versus t  
characteristics.  
D
D
PLH  
capacitance is 1 pF to 10 nF which yields typical delays from 200 µs  
to 200 ms.  
The following formula can be used to find the approximate delay  
Table 2. Delay time coefficient  
Device  
time based on external delay capacitance, C and the delay time  
D
d
coefficient, d shown in Table 2.  
4
NE56632–46  
1.95 × 10  
t
(ms) C (µF) × d  
D
PLH  
4
NE56632–45  
1.90 × 10  
For example, a NE56632-44 using an external capacitor,  
4
NE56632–44  
1.85 × 10  
C
= 1 nF = 1000 pF yields:  
D
4
NE56632–43  
1.80 × 10  
–3  
4
t
(ms) (1 × 10 ) (1.85 × 10 ) 18.5 ms  
PLH  
4
NE56632–42  
1.75 × 10  
Compare this to the value of t  
extracted from Figure 26.  
17 ms for C = 1000 pF that is  
D
PLH  
4
NE56632–31  
1.20 × 10  
4
NE56632–30  
1.15 × 10  
4
NE56632–29  
1.10 × 10  
4
NE56632–28  
1.05 × 10  
4
NE56632–27  
1.00 × 10  
4
NE56632–20  
0.65 × 10  
4
NE56632–19  
0.60 × 10  
11  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
TEST CIRCUITS  
S1  
R
L
A1  
S2  
A2  
5
1
4
3
10 µF  
/10 V  
V1  
V2  
V
V
CC2  
NE56632-XX  
CC1  
2
C
D
S3  
SL01608  
Figure 27. Test circuit 1.  
5
1
4
3
R
L
10 µF  
/10 V  
V
+ 0.4 V  
V
– 0.4 V  
S(typ)  
S(typ)  
5.0 V  
INPUT  
PULSE  
0V  
NE56632-XX  
SL01610  
2
Figure 29. Input pulse.  
CRT  
C
L
100 pF  
C
D
NOTES:  
A = DC amperemeter  
V = DC voltmeter  
CRT = oscilloscope  
SL01609  
Figure 28. Test circuit 2.  
12  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
PACKING METHOD  
The NE56632-XX is packed in reels, as shown in Figure 30.  
GUARD  
BAND  
TAPE  
TAPE DETAIL  
REEL  
ASSEMBLY  
COVER TAPE  
CARRIER TAPE  
BARCODE  
LABEL  
BOX  
SL01305  
Figure 30. Tape and reel packing method.  
13  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
SOT23-5: plastic small outline package; 5 leads; body width 1.5 mm  
1.2  
1.0  
0.55  
0.41  
0.22  
0.08  
3.00  
2.70  
1.70  
1.50  
0.55  
0.35  
0.025  
1.35  
14  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
NOTES  
15  
2002 Mar 25  
Philips Semiconductors  
Product data  
Active-LOW system reset with adjustable delay time  
NE56632-XX  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Product data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Koninklijke Philips Electronics N.V. 2002  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 08-02  
9397 750 10239  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

NE56632-XX

Active-LOW system reset with adjustable delay time
NXP

NE566D

Function generator
NXP

NE566D-T

Waveform Generator/Support
ETC

NE566DSIIB

Waveform Generation, BIPolar, PDSO8
PHILIPS

NE566F

Function generator
NXP

NE566F-B

Waveform Generator/Support
ETC

NE566N

Function generator
NXP

NE566N-B

Waveform Generator/Support
ETC

NE566T

Waveform Generation, BIPolar, MBCY8
PHILIPS

NE566T

IC SQUARE; TRIANGULAR, WAVEFORM GENERATION, MBCY8, Analog Waveform Generation Function
NXP

NE566V

Waveform Generation, BIPolar, PDIP8
PHILIPS

NE567

Tone decoder/phase-locked loop
NXP