NE600 [NXP]

1GHz LNA and mixer; 1GHz的LNA和混频器
NE600
型号: NE600
厂家: NXP    NXP
描述:

1GHz LNA and mixer
1GHz的LNA和混频器

文件: 总17页 (文件大小:283K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
1,2  
AC ELECTRICAL CHARACTERISTICS  
LIMITS  
TYP  
SYMBOL  
PARAMETER  
TEST CONDITIONS  
UNITS  
–3σ  
+3σ  
LNA (V = V  
= +5V, T = 25°C; Enable = Hi, Test Figure 1, unless otherwise stated.)  
CC  
CCMX  
A
S
S
Amplifier gain  
900MHz  
Enable = LO, 900MHz  
900MHz  
14.9  
–9.0  
16  
-7.5  
-0.008  
-0.014  
-0.014  
-42  
17.1  
–6.0  
dB  
dB  
21  
Amplifier gain in thru mode  
21  
S /T Gain temperature sensitivity enabled  
dB/°C  
dB/°C  
dB/MHz  
dB  
21  
S /T Gain temperature sensitivity in thru mode  
Enable = LO, 900MHz  
800MHz - 1.2GHz  
900MHz  
21  
S /f  
Gain frequency variation  
Amplifier reverse isolation  
21  
S
12  
S
11  
S
22  
–47  
–11  
–37  
–9  
3
Amplifier input match  
900MHz  
-10  
dB  
Amplifier output match  
900MHz  
–16.8  
–21.2  
–11.6  
-15  
–13.2  
–18.8  
–8.6  
dB  
P
-1dB  
Amplifier input 1dB gain compression  
Amp input 3rd-order intercept  
Amp input 3rd-order intercept (thru mode)  
Amplifier noise figure  
900MHz  
-20  
dBm  
dBm  
dBm  
dB  
IP  
Test Fig. 2, 900MHz  
Test Fig. 2, 900MHz, Enable = LO  
900MHz  
-10  
3
+26  
1.9  
1.7  
2.2  
2.5  
2.3  
Amp noise figure w/shunt 15nH inductor  
at input  
NF  
900MHz  
2.0  
dB  
Coupling = 100pF  
Enable Lo Hi  
30  
3
µs  
ms  
t
Amplifier turn-on time  
Amplifier turn-off time  
ON  
Coupling = 0.01µF  
Coupling = 100pF  
Enable Hi Lo  
10  
1
µs  
ms  
t
OFF  
Coupling = 0.01µF  
Mixer (V = V  
= +5V, T = 25°C, Enable = Hi, f = 1GHz @ 0dBm, f = 900MHz, f = 100MHz, Test Fig. 1, unless otherwise stated)  
A LO RF IF  
CC  
CCMX  
VG  
PG  
Mixer voltage conversion gain  
Mixer power conversion gain  
Mixer input match  
R
R
= R = 1kΩ  
9.5  
–3.05  
–23  
12.2  
–5.3  
+5  
10.4  
–2.6  
-20  
14  
11.3  
–2.15  
–17  
dB  
dB  
C
C
L1  
L1  
L2  
= R = 1kΩ  
L2  
S
11RF  
900MHz  
dB  
NF  
Mixer SSB noise figure  
Test Fig. 3, 900MHz, f = 80MHz  
15.8  
–2.7  
+7  
dB  
M
IF  
P
-1dB  
Mixer input 1dB gain compression  
Mixer input third order intercept  
Mixer input second order intercept  
Mixer RF feedthrough  
900MHz  
900MHz  
900MHz  
-4  
dBm  
dBm  
dBm  
dB  
IP  
3INT  
IP  
2INT  
+6  
+18  
+20  
–7  
+22  
G
900MHz, C = 3pF  
IF  
RFM-IF  
G
Mixer LO feedthrough  
900MHz, C = 3pF  
-10  
-33  
–20  
-46  
-39  
dB  
LO-IF  
IF  
G
Local oscillator to mixer input feedthrough  
LO input match  
900MHz  
900MHz  
900MHz  
900MHz  
dB  
LO-RFM  
S
–24  
–16  
dB  
11LO  
G
Local oscillator to RF input feedthrough  
Filter feedthrough  
dB  
LO-RF  
G
dB  
RFO-RFM  
LNA + Mixer (V =V  
=+5V, T =25°C, Enable=Hi, f =1GHz @ 0dBm, f = 900MHz, f = 100MHz, Test Fig. 1, unless otherwise  
A LO RF IF  
CC  
CCMX  
stated)  
PG  
Overall power conversion gain  
Overall noise figure  
13.4  
3.5  
dB  
dB  
C
NF  
IP  
Overall input 3rd-order intercept  
–13  
dBm  
3
NOTE:  
1. All meausrements include the effects of the NE/SA600 Evaluation Board (see Figure ) unless otherwise noted. Measurement system  
impedance is 50.  
2. Standard deviations are estimated from design simulations to represent manufacturing variations over the life of the product.  
3. With a shunt 15nH inductor at the input of the LNA, the value of S is typically –15dB.  
11  
49  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
TYPICAL APPLICATION  
TEST FIGURE 1  
+5V  
+5V  
R
L1  
1k  
1
14  
13  
12  
11  
10  
9
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
RFC  
IF OUT  
100MHz  
RFC  
10µH  
10µH  
IF OUT  
0.1µF  
0.1µF  
2
0.01µF  
50Ω  
1kΩ  
R
L2  
RF  
IF FILTER  
RF  
INPUT  
900MHz  
3
4
5
6
7
INPUT  
100pF  
0.01µF  
900MHz  
RF IN MX  
RF IN MX  
NE/SA600  
NE/SA600  
0.01µF  
IMAGE  
REJECTION  
FILTER  
BYPASS  
0.01µF  
BYPASS  
1µF  
RF OUT A  
RF OUT A  
0.01µF  
8
8
100pF  
0.01µF  
POWER-DOWN  
CONTROL  
POWER-DOWN  
CONTROL  
LO INPUT  
0dBm  
LO INPUT  
0dBm  
1.0GHz  
1.0GHz  
NOTES:  
RATIO OF BYPASS TO SIGNAL COUPLING CAPS FOR LNA SHOULD BE 100:1  
OR GREATER.  
IF FILTER SHOULD BE AC COUPLED.  
TEST FIGURE 2  
TEST FIGURE 3  
+5V  
+5V  
R
R
L1  
L1  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
1
14  
13  
12  
11  
10  
9
1kΩ  
1kΩ  
RFC  
10µH  
RFC  
10µH  
0.1µF  
0.1µF  
2
470nH IF OUT  
470nH IF OUT  
0.01µF  
0.01µF  
0.01µF  
RF  
RF  
INPUT  
900MHz  
4.7pF  
4.7pF  
50Ω  
50Ω  
3
4
5
6
7
INPUT  
900MHz  
100pF  
0.01µF  
1µF  
RF IN MX  
RF IN MX  
IMAGE  
NE/SA600  
NE/SA600  
100pF  
100pF  
BYPASS  
0.01µF  
BYPASS  
REJECTION  
FILTER  
RF OUT A  
RF OUT A  
0.01µF  
8
8
100pF  
0.01µF  
POWER-DOWN  
CONTROL  
POWER-DOWN  
CONTROL  
LO INPUT  
0dBm  
LO INPUT  
0dBm  
1.0GHz  
1.0GHz  
SR00084  
Figure 3. Test Application and Test Figures 1, 2 and 3  
50  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
NOTE: All performance curves include the effects of the NE/SA600 evaluation board.  
LNA S21 CHARACTERISTICS 4.5V V = V  
5.5V, Test Figure 1, unless otherwise specified.  
CC  
CCMX  
LNA S21 vs Frequency  
LNA S21 vs Frequency  
40  
20  
15  
10  
5
30  
ENABLE=HI  
ENABLE=HI  
20  
10  
0
0
ENABLE=LO  
–10  
–5  
–10  
ENABLE=LO  
–20  
10  
100  
1000 2000  
800  
900  
1000  
1100  
1200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
LNA S21 Phase vs Frequency  
LNA S21 vs Frequency and V  
CC  
0
–20  
18  
17.5  
17  
–40  
16.5  
16  
–60  
–80  
15.5  
15  
V
= 4.5V  
–100  
–120  
CC  
V
V
= 5.0V  
= 5.5V  
CC  
CC  
800  
900  
1000  
1100  
1200  
800  
900  
FREQUENCY (MHz)  
1000  
FREQUENCY (MHz)  
LNA Thru S21 vs Frequency and Temperature  
LNA S21 vs Frequency and Temperature  
20  
0
18  
16  
14  
12  
10  
8
–40°C  
–2  
–4  
–6  
25°C  
85°C  
–40°C  
–8  
6
25°C  
4
–10  
–12  
85°C  
2
0
800  
900  
1000  
1100  
1200  
800  
900  
1000  
FREQUENCY (MHz)  
1100  
1200  
FREQUENCY (MHz)  
SR00085  
Figure 4. LNA S21 Performance Characteristics  
51  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
LNA S11/S12/S22 CHARACTERISTICS 4.5V V = V  
5.5V, Test Figure 1, unless otherwise specified.  
CC  
CCMX  
LNA S11 vs Frequency and Temperature  
LNA S12 vs Frequency  
0
0
–2  
–4  
–10  
–20  
–30  
–40  
–6  
–40°C  
–8  
25°C  
–10  
85°C  
–12  
ENABLE=HI  
–50  
–60  
–70  
–80  
–14  
–16  
–18  
–20  
800  
900  
1000  
1100  
1200  
10  
100  
FREQUENCY (MHz)  
1000  
2000  
FREQUENCY (MHz)  
LNA S22 vs Frequency and Temperature  
LNA Thru S11 and S22 vs Frequency  
0
–2  
0
–2  
–4  
–6  
–8  
–4  
–6  
S22  
S11  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
85°C  
–12  
–14  
–16  
–18  
–20  
25°C  
–40°C  
800  
900  
1000  
1100  
1200  
800  
900  
1000  
1100  
1200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SR00086  
Figure 5. LNA S11/S12/S22 Performance Characteristics  
Table 1.  
S-Parameters  
Freq. MHz  
S
11  
S
12  
S
21  
S
22  
800  
-9.5  
-9.5  
-9.4  
-9.1  
-8.9  
-160  
-172  
-173  
-200  
-216  
-46  
-43  
-40  
-37  
-35  
8
17.9  
16.4  
15.1  
13.8  
12.9  
125  
105  
88  
-18.0  
-15.8  
-14.0  
-12.4  
-11.1  
151  
122  
98  
900  
19  
17  
12  
1
1000  
1100  
70  
77  
1200  
55  
58  
52  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
LNA OVERLOAD/NOISE/DISTORTION CHARACTERISTICS  
4.5V V = V  
5.5V, Test Fig. 1, unless otherwise specified.  
CC  
CCMX  
LNA Input 1dB Gain Compression Point vs Frequency  
LNA Input 1dB Gain Compression Point vs Temperature  
0
0
–5  
–10  
–15  
–20  
–25  
–30  
–5  
–10  
–15  
–20  
–25  
–30  
800  
900  
1000  
1100  
1200  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
FREQUENCY (MHz)  
LNA 50Noise Figure vs Frequency  
LNA 50Noise Figure vs Temperature  
3
2.5  
2
3
2.5  
2
1.5  
1
1.5  
1
F = 900MHz  
0.5  
0
0.5  
0
800  
900  
1000  
1100  
1200  
–40  
–20  
0
20  
40  
60  
80  
100  
FREQUENCY (MHz)  
TEMPERATURE (°C)  
LNA Input Third-Order Intercept vs Frequency  
LNA Input Third-Order Intercept vs Temperature  
0
0
TEST FIGURE 2  
TEST FIGURE 2  
–2  
–2  
–4  
–6  
–4  
–6  
–8  
–8  
–10  
–12  
–14  
–16  
–18  
–20  
–10  
–12  
–14  
F2 = F1 + 100kHz  
–16  
F1 = 900MHz  
F2 = 900.1MHz  
–18  
–20  
800  
900  
1000  
FREQUENCY (MHz)  
1100  
1200  
–40  
–20  
0
20  
40  
60  
80  
100  
TEMPERATURE (°C)  
SR00087  
Figure 6. LNA Overload/Noise/Distortion Performance Characteristics  
53  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
MIXER GAIN/NOISE CHARACTERISTICS 4.5V V = V  
5.5V, Test Figure 1, unless otherwise specified.  
CC  
CCMX  
Mixer Voltage Conversion Gain vs LO Power  
Mixer Voltage Conversion Gain vs IF Frequency  
12  
12  
10  
8
10  
8
6
6
Frf = 900MHz  
Flo = 1GHz  
Fif = 100MHz  
Scaled to R  
L1  
Frf = 900MHz  
Flo > Frf  
4
4
2
0
Plo = 0dBm  
Scaled to R  
= R  
L2  
= 1kΩ  
= R  
L2  
= 1kΩ  
L1  
2
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
0
50  
100  
150  
200  
250  
300  
LO POWER (dBm)  
IF FREQUENCY (MHz)  
Mixer Voltage Conversion Gain vs Temperature  
12  
Mixer 50Noise Figure vs LO Power  
24  
TEST FIGURE 3  
22  
20  
18  
16  
14  
12  
10  
8
10  
8
6
Frf = 900MHz  
Flo = 1GHz  
Fif = 100MHz  
Plo = 0dBm  
4
2
0
Frf = 881MHz  
Plo = 981MHz  
Fif = 100MHz  
Scaled to R  
= R  
L2  
= 1kΩ  
L1  
6
–12 –10  
–8  
–6  
–4  
–2  
0
2
4
6
–40  
–20  
0
20  
40  
60  
80  
100  
LO POWER (dBm)  
TEMPERATURE (°C)  
Mixer Noise Figure vs IF Frequency  
Mixer Noise Figure vs Temperature  
24  
22  
20  
18  
16  
14  
12  
10  
8
24  
22  
20  
18  
16  
14  
12  
10  
8
TEST FIGURE 3  
TEST FIGURE 3  
Frf = 881MHz  
Flo > Frf  
Plo = 0dBm  
Frf = 881MHz  
Flo = 981MHz  
Fif = 100MHz  
Plo = 0dBm  
IF Tuned to 81MHz  
6
6
50  
60  
70  
80  
90  
100  
110  
120  
–40  
–20  
0
20  
40  
60  
80  
100  
SR00088  
TEMPERATURE (°C)  
IF FREQUENCY (MHz)  
Figure 7. Mixer Gain/Noise Performance Characteristics  
54  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
MIXER OVERLOAD/DISTORTION CHARACTERISTICS 4.5 V = V  
5.5V, Test Fig. 1, unless otherwise specified  
CC  
CCMX  
Mixer Input 1dB Gain Compression Point vs LO Power  
Mixer Input 1dB Gain Compression Point vs Temperature  
0
0
TEST FIGURE 2  
TEST FIGURE 2  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
–1  
–2  
–3  
–4  
–5  
–6  
–7  
Frf = 900MHz  
Flo = 1GHz  
Fif = 100MHz  
Plo = 0dBm  
–8  
–8  
–9  
Frf = 900MHz  
Plo = 1GHz  
Fif = 100MHz  
–9  
–10  
–10  
–10  
–8  
–6  
–4  
–2  
0
2
4
6
–40  
–20  
0
20  
40  
60  
80  
100  
LO POWER (dBm)  
TEMPERATURE (°C)  
Mixer Input Third-Order Intercept Point vs IF Frequency  
Mixer Input Third-Order Intercept Point vs LO Power  
10  
10  
9
8
7
6
5
4
9
8
7
6
5
4
3
3
Frf1 = 900MHz  
Frf2 = 901MHz  
2
Frf1 = 900MHz  
2
Frf2 = 901MHz  
Flo = 1GHz  
Fif = 100MHz  
Flo > Frf  
1
0
1
0
–10  
–8  
–6  
–4  
–2  
0
2
4
6
50  
75  
100  
125  
150  
175  
200  
LO POWER (dBm)  
IF FREQUENCY (MHz)  
Mixer Input Third-Order Intercept Point vs Temperature  
Mixer Input Third-Order Intercept Point vs RF Frequency  
10  
10  
9
8
7
6
5
4
9
8
7
6
5
4
3
3
Frf1 = 900MHz  
Frf2 = 901MHz  
Flo = 1GHz  
Plo = 0dBm  
Fif = 100MHz  
Frf1 = X00MHz  
Frf2 = X01MHz  
X = 8, 9, 10, 11, 12  
Flo > Frf  
2
1
0
2
1
0
Fif = 100MHz  
–40  
–20  
0
20  
40  
60  
80  
100  
800  
900  
1000  
FREQUENCY (MHz)  
1100  
1200  
SR00089  
TEMPERATURE (°C)  
Figure 8. Mixer Overload/Distortion Characteristics  
55  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
MIXER S11/ISOLATION/INTERFERENCE CHARACTERISTICS  
4.5 V = V  
5.5V, Test Fig. 1, unless otherwise specified  
CC  
CCMX  
Mixer S11 at RF Port  
vs Frequency and Temperature  
Mixer S11 at LO Port  
vs Frequency and Temperature  
0
–5  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
–40  
–10  
–15  
–20  
–25  
–40°C  
–40°C  
25°C  
25°C  
85°C  
85°C  
800  
900  
1000  
1100  
1200  
800  
900  
1000  
FREQUENCY (MHz)  
1100  
1200  
FREQUENCY (MHz)  
Mixer Output Interferring Signal vs  
Input Interferring Signal Strength  
Conversion Gain Variation vs  
RF Signal Overdrive  
0
–10  
–20  
–30  
–40  
–50  
–60  
–70  
0
–5  
–10  
–15  
–20  
–25  
–30  
–35  
Frf = 900MHz  
Frf–interf = 901MHz  
Flo = 1GHz  
Plo = 0dBm  
Fif = 100MHz  
Frf = 900MHz  
Flo = 1GHz  
Plo = 0dBm  
Fif = 100MHz  
Fif–interf = 98MHz  
–30  
–25  
–20 –15  
–10  
–5  
0
5
10  
–20  
–15  
–10  
–5  
0
5
10  
15  
20  
INPUT INTERFERRING SIGNAL (dBm)  
RF SIGNAL POWER  
SR00090  
Figure 9. Mixer S11/Isolation/Interference Characteristics  
56  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
OVERALL PERFORMANCE: ISOLATION CHARACTERISTICS  
4.5 V = V  
5.5V, Test Fig. 1, unless otherwise specified  
CC  
CCMX  
Isolation From LNA Output to Mixer  
RF Input vs Frequency  
Isolation From LO vs Frequency  
0
–10  
–20  
–30  
–40  
–50  
–60  
0
–10  
–20  
–30  
–40  
–50  
–60  
At LNA input – ENABLE = LO  
At Mixer RF input  
ENABLE=LO  
ENABLE=HI  
At LNA input – ENABLE = HI  
800  
900  
1000  
1100  
1200  
800  
900  
1000  
1100  
1200  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SR00091  
Figure 10. Overall Performance: Isolation Characteristics  
LO  
SPECIFICATIONS  
IN  
Mixer LO port, AC coupling required, DC=3.35V, frequency range  
from 100MHz to 2.5GHz, impedance close to 50resistive.  
The goal of the Specifications section of the datasheet is to provide  
information on the NE/SA600 in such a way that the designer can  
estimate statistical variations, and can reproduce the  
measurements. To this end the high frequency measurements are  
specified with a particular PC board layout. Variations in board  
layout will cause parameter variations (sensitive parameters are  
discussed in the sections on the LNA and mixer below). For many  
RF parameters the ±3 sigma limits are specified. Statistically only  
0.26% of the units will be outside these limits.  
IF  
OUT  
Mixer IF port, open-collector output with 1.6mA DC, frequency range  
DC to 1GHz, impedance approximately 1pF capacitive.  
Enable  
TTL/CMOS compatible input. Bias current approximately zero.  
The LNA + mixer conversion gain is measured with an incident  
900MHz signal and a 83MHZ SAW filter at the IF output. This  
measurement along with a gain measurement of the LNA ensure the  
correct operation of the chip and also allows a calculation of mixer  
conversion gain.  
CONVERSION GAIN DEFINITIONS  
Referring to the figure above, we define the ratio of V (at the IF  
A
frequency) to V (at the RF frequency) to be the Available Voltage  
I
Conversion Gain, or more simply Voltage Conversion Gain,  
PIN DESCRIPTIONS AND OPERATIONAL LIMITS  
R
10µH  
L1  
IF FILTER  
RF  
INA  
V
O
Input of LNA, AC coupling required, DC = 0.78V, frequency range  
from DC to 2GHz, gain at low frequencies is 40dB — so be careful  
of overload, impedance below 50, shunt 15-18nH inductor helps  
input match and noise figure.  
V
A
R
L2  
1kΩ  
LO  
RF  
OUTA  
V
I
Output of LNA, AC coupling required, DC = 1.27V, frequency range  
RF  
SR00092  
from DC to 2GHz, impedance above 50.  
Figure 11.  
BYPASS  
Bypass capacitor should be 100 times larger than the largest signal  
coupling capacitor for the LNA, DC = 1.05V.  
VA  
+ 20 logǒ Ǔ  
VGC  
VI  
RF  
INMX  
where V and V are expressed in similar voltage units (such as  
peak-to-peak). The voltage output V is decreased by the IF Filter  
A
I
Mixer RF port, AC coupling required, DC = 1.43V, frequency range  
from 100MHz to 2.5GHz, impedance close to 50resistive.  
A
57  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
loss (and any other matching required). Typically, VG is 10.4dB for  
draw is 9.8mA while enable is high (1mA powered down). The Pin  
C
the NE/SA600 mixer with the net IF impedance equal to 500.  
14 V  
powers the mixer and typically has 3.2mA of current  
CCMX  
(assuming an inductor biasing the IFout back to V  
). Care must  
CCMX  
It is more common to express the conversion gain in terms of power,  
be taken to avoid bringing any IC pin above V by more than 0.3V,  
CC  
so we have the Power Conversion Gain,  
PA  
or below any ground by more than 0.3V. For example, this can  
occur if the enable pin is fed from a microcontroller that is powered  
up quicker than the NE/SA600. In this condition the internal  
electrostatic discharge (ESD) protection network may turn-on,  
possibly causing a part misfunction. Generally this condition is  
reversible, so long as the source creating the overstress is current  
limited to less than 100mA. To avoid the problem, make sure both  
+ 10 logǒ Ǔ * 3dB  
PGC  
PI  
2
2
where P = V / R and P = V / R . R is the net resistance at  
A
A
IF  
I
I
RF  
IF  
the IF frequency at the IF port, and R is the input impedance at  
RF  
the mixer RF port. With a 500IF impedance and a 50RF input  
impedance, the conversion gain works out to –2.6dB typically. The  
power delivered to the load is down 3dB with respect to the available  
V
CC  
pins are tied together near the IC, and install a 1kresistor in  
series with the enable pin if it is likely to go above V  
.
CC  
power because of loss in R  
.
L1  
BOARD LAYOUT CONSIDERATIONS  
THEORY OF OPERATION  
The LNA is sensitive to mutual inductance from the input to ground.  
Therefore long narrow input traces will degrade the input match.  
Ideally, a top side ground-plane should be employed to maximize  
LNA gain and minimize stray coupling (such as LO to antenna). To  
avoid amplifier peaking, the output and input grounds should not be  
run together. Attach both grounds to a solid ground plane. A solid  
ground plane beneath the package will maximize gain. Top side to  
back side ground through holes are highly recommended.  
The NE/SA600 is fabricated on the Philips Semiconductors  
advanced QUBiC technology that features 1µm channel length  
MOSFETs and 13GHz FT bipolar transistors.  
LNA  
The Low Noise Amplifier (LNA) is a two stage design incorporating  
feedback to stablize the amplifier. An external bypass capacitor of  
(typically) 0.01µF is used. The inputs and outputs are matched to  
50. The amplifier has two gain states: when the ENABLE pin is  
taken high, the amplifier draws 9mA of current and has 16dB of gain  
at 900MHz. When the ENABLE pin is low, the amplifier current goes  
to zero, and the amplifier is replaced by a thru. Typical loss for the  
thru is 7dB. This dual-gain state approach can be used in  
bang-bang control systems to achieve a low gain, high overload  
front-end as well as the more usual high gain, low overload  
front-end.  
The mixer is relatively insensitive to grounding. Care should be  
taken to minimize the capacitance on the RF port (Pin 11) for best  
noise figure. Also, the capacitance on the IFout pin must be kept  
small to avoid conversion gain rolloff when using high IF  
frequencies. The purpose of the inductor from IFout to V is to set  
CC  
the midpoint of the IF swing to be V . Without this inductor the  
CC  
part is sensitive to output overload under low V (V = 4.5V) and  
CC  
CC  
hot temperature conditions. The V  
pin must be kept at the  
CCMX  
same potential as the V pin.  
The amplifier has gain to frequencies past 2GHz, but a practical  
upper end is 1.6-1.7GHz. Both the input match and the noise figure  
(NF) can be improved with a shunt 15-18nH inductor at the input.  
Typically, the gain increases 0.4dB, the match improves to 13-16dB,  
and the noise figure drops to 1.95-2dB. Variations of any of the RF  
CC  
APPLICATIONS INFORMATION  
The NE/SA600 is a high performance, wide-band, low power, low  
noise amplifier (LNA) and mixer circuit integrated in a BiCMOS  
technology. It is ideally suited for RF receiver front-ends for both  
analog and digital communications systems.  
parameters with V is negliglible, and variation with temperature is  
CC  
minimal.  
Mixer  
There are several advantages to using the NE/SA600 as a high  
frequency front-end block instead of a discrete implementation. First  
is the simplicity of use. The NE/SA600 does not need any external  
biasing components. Due to the higher level of integration and  
small footprint (SO14) package it occupies less space on the printed  
circuit board and reduces the manufacturing cost of the system.  
Also the higher level of integration improves the reliability of the LNA  
and mixer over a discrete implementation with several components.  
The mixer is a single-balanced topology designed to draw very low  
current, typically 4mA, and provide a very high input third-order  
intermodulation intercept point , typically IP3=+6dBm. The RF and  
LO ports impedances are nearly 50resistive, and the IF output is  
an open collector. The open-collector output allows direct  
interfacing with high impedance IF filters, such as surface acoustic  
wave (SAW) filters without the need for external step-up  
transformers (which are needed for 50output mixers).  
The LNA thru mode in NE/SA600 helps reduce power consumption  
in applications where the amplifiers can be disabled due to higher  
received signal strength (RSSI). Other advantages of this feature  
are described later in this section.  
The basic mixer is functional from DC to well over 2.5GHz, but RF  
and LO return losses degrade below 100MHz. The IF output can be  
used from DC to 500MHz or more, although typically the  
intermediate frequency is in the range 45-120MHz in many 900MHz  
receivers. To achieve the lowest noise, the LO drive level should be  
increased as high as possible, consistent with power dissipation  
limitations.  
The mixer is an active mixer with excellent conversion gain at low  
LO input levels, so LO levels as low as -5dBm to -10dBm can be  
used depending on the applications requirement for mixer gain,  
mixer noise figure and mixer third order intercept point. This  
reduces the LO drive requirements from the VCO buffer, thus  
reducing its current consumption. Also, due to lower LO levels, the  
shielding requirements can be minimized or eliminated, resulting in  
substantial cost savings and weight and space reduction.  
POWER SUPPLY ISSUES  
V
CC  
bypassing is important, but not extremely critical because of  
the internal supply regulation of the NE/SA600. The Pin 1 V  
CC  
supplies the LNA and powers overhead circuitry. Typical current  
58  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
And last but not least, is the impedance matching at LNA inputs and  
outputs and mixer RF and LO input ports. Only those who have  
toiled through discrete transistor implementations for 50input and  
output impedance matching can truly appreciate the elegance and  
simplicity of the NE/SA600 input and output impedance matching to  
50. Also, the mixer output impedance is high, so matching to a  
crystal or SAW IF filter becomes extremely easy without the need for  
additional IF impedance transformers (tapped-C networks with  
inductors or baluns).  
LNA gain = 16.5dB  
LNA through = –7dB  
Mixer gain =–3dB (into a 50load)  
LNA noise figure = 2dB  
Mixer noise figure = 14dB  
LNA IP = –10dBm (in gain mode)  
3
LNA IP = +26dBm (in through mode)  
3
LNA 1dB compression point = –20dBm  
Mixer 1dB compression point = –4dBm  
The NE/SA600 applications and demo board features standard low  
cost 62mil FR-4 board. A top-side ground plane is used and 50Ω  
The shunt inductor L1 for input match is optional. Figure 16 shows  
the effect of the inductor value from 8.2nH to 15nH on gain, noise  
figure and input match.  
coplanar transmission lines are used. LO and RF  
traces are  
INA  
perpendicular. Provisions for the image reject filter between RF  
OUTA  
The total power gain for the LNA and mixer (excluding the image  
reject filter) in a system where the output of the mixer is loaded with  
50is about 14dB. In an actual system the output impedance of  
the mixer is usually much higher than 50(more like 1kor higher)  
and so it is more important to consider the voltage gain from the  
input at the LNA to the mixer output. The voltage gain in this case  
will be about 29.85V/V. The total noise figure for the LNA and mixer  
combination is be about 3.27dB. The input third order intercept  
point for the LNA and mixer is about -11dBm. In the LNA through  
mode, the intercept point for the combination is higher than  
+19dBm. This LNA through feature provides an additional boost to  
the total dynamic range of the system.  
and RF  
are provided. A simple LC match for 80MHz IF is used  
INMX  
so that 50measurements can be made on the demo board.  
The NE/SA600 applications evaluation board schematic is shown in  
Figure 1. The V (Pin 1) and V (Pin 14) are tied together and  
CC  
CCMX  
the power supply is bypassed with capacitors C5 and C6. These  
capacitors should be placed as close to the device as practically  
possible.  
C1 is the DC blocking capacitor to the input of the LNA. L1 provides  
additional input matching to the LNA for an improved return loss  
(S11). This inductor can be a surface-mount component or can be  
easily drawn on the printed circuit board (small spiral or serpentine).  
This additional match improves the gain of the LNA by 0.4dB and  
lowers the noise figure to 2dB or less. If the typical gain of the LNA  
of 16dB is acceptable with 2.2dB of noise figure, then L1 can be  
eliminated. If the LNA input is fed from a duplexer or selectivity  
filter after the antenna, C1 can also be eliminated since the filter will  
also provide DC blocking. The LNA bypass capacitor C3 should be  
at least 100 times C1 or C9 for low frequency stability. Switch S1  
toggles the LNA gain/through function. R1 is used only to limit the  
maximum current into the enable pin and only necessary if enable  
The NE/SA600 finds applications in many areas of RF  
communications. It is an ideal down converter block for high  
performance, low cost, low power RF communications transceivers.  
The front-end of a typical AMPS/TACS/NMT/TDMA/CDMA cellular  
phone is shown in Figure 13. This could also be the front-end of a  
VHF/UHF handheld transceiver, UHF cordless telephone or a  
spread spectrum system.  
The antenna is connected to the duplexer input. The receiver output  
of the duplexer is connected to the RF input of the LNA. If the  
additional improvement in noise figure and gain are not needed to  
meet the system specifications then L1 and C1 can be eliminated.  
In TDMA systems, the NE/SA600 can be totally powered down by  
Q1 and the two resistors. In this mode the current consumption will  
be zero mA. Care should be taken in the software of the system to  
insure that the enable pin on NE/SA600 tied to the LNA gain control  
port is held low while the device is in total power down mode. L2  
and C2 can be tuned to the IF frequency and to match to the IF filter  
impedance.  
may power up before the V  
.
CC  
C4 is a DC blocking capacitor for the LO input pin and may not be  
needed in actual applications if the VCO output is isolated and will  
not upset the internal DC biasing of the mixer. The image reject  
filter goes between the output of the LNA and the RF input to the  
mixer. Since the LO input, RF output and mixer input are all 50Ω  
matched impedances internally, there is no need for any external  
components. C8 and C9 are DC blocking capacitors to the  
connectors and will not be needed in an actual application.  
R2 and L2 are the load to the mixer output which is typical of the IF  
crystal or SAW filters. C2 and L3 provide a match from the high  
impedance mixer output to a 50test set-up (spectrum analyzer,  
etc.) and C7 is a DC blocking capacitor for the mixer output.  
A complete analysis of the front-end shows that the total voltage  
gain from the antenna input to the mixer output is about 9.5V/V. This  
value includes a 3.2dB loss for the duplexer and a 1.8dB loss for the  
bandpass filter. The noise figure as referred to the antenna is 7dB  
and the input third order intercept point is about -7.5dBm. In LNA  
through mode the input third order intercept point increases to about  
+24dBm.  
The printed circuit board layout for the schematic of Figure 1 is  
shown in Figure 14. It is a very simple printed circuit board layout  
with all the components on a single side. The layout also  
accomodates a two pole image reject filter between the LNA outupt  
and mixer input. All the input and output traces to the LNA and  
mixer should be 50tracks with the exception of mixer output,  
which can be very narrow due to the higher impedances of the filter.  
During normal operation of a handheld RF receiver the received  
signal strength (RSSI) is nominally greater than -100dBm. The  
signal only drops below this level due to severe multipath fading,  
shadow effect or when the receiver is at extreme fringes of cell  
coverage. The LNA through mode can be used here as a two step  
gain control such that when RSSI is below a certain threshold level  
(e.g. -90dBm), the LNA has a -7dB loss and the total current  
consumption of the NE/SA600 is only 4.3mA. The sensitivity of the  
system will not suffer because the received RF signal is much higher  
than the noise floor of the system. When the RSSI falls below a  
certain threshold (e.g. -95dBm) the LNA is enabled to give the full  
The NE/SA600 internal supply is very well regulated. This is seen  
from Figure 15 which shows the I vs. V for the NE/SA600.  
CC  
CC  
Table NO TAG shows the S11, S21, S22 and S21 for the LNA from  
800-1200MHz. Typical measurements at 900MHz for the critical  
parameters such as gain, noise figure, IP , 1dB compression point,  
3
etc. as measured on an applications evaluation board are as follows  
:
59  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
16.5dB of gain with 2dB of noise figure. In this mode the current  
consumption is increased to 13mA. But for hand-held equipment,  
the average current consumption will be closer to 5-6mA. The other  
advantage of the LNA through mode besides power savings is the  
input overload characteristics. Due to the much higher input third  
order intercept point of the LNA (+26dBm), the receiver is immune to  
strong adjacent channel interference. Implementing this feature with  
an FM/IF device such as the NE625/7 with fast RSSI response and  
a window comparator toggling the LNA mode of NE/SA600, a fast  
two-step AGC with response time less than 10µs can be achieved.  
This is a very useful feature to equalize multipath fading effects in a  
mobile radio system.  
In conclusion, the NE/SA600 offers higher level of integration, higher  
reliability, higher level of performance, ease of use, simpler system  
design at a cost lower than the discrete multi-transistor  
implementations. In addition, the NE/SA600 provides unique  
features to enhance receiver performance which are almost  
unattainable with discrete implementations.  
C6  
V
CC  
10nF  
R2  
C5  
0.1µF  
C7  
10nF  
L2  
1kΩ  
IF OUT  
L3  
10µH  
1
14  
13  
12  
11  
10  
9
V
C
V
CCMX  
470nH  
C2  
C
GND  
4.7pF  
2
3
4
5
6
7
IF  
OUT  
B
RF  
C1  
RF IN  
GND  
GND  
INPUT  
900MHz  
A
MX  
100pF  
C8  
MIXER IN  
L1  
RF IN  
A1  
MX  
15nH  
100pF  
BYPASS  
C3  
10nF  
BYPASS  
GND  
A2  
BANDPASS  
FILTER  
GND  
LO  
RF OUT  
A
IN  
OUT  
RF OUT  
C9  
8
LO  
IN  
ENABLE  
C4  
100pF  
100pF  
S1  
NE/SA600  
LO INPUT  
R1  
1kΩ  
V
CC  
SR00093  
Figure 12.  
60  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
POWER DOWN  
15kΩ  
V
CC  
5.1kΩ  
Q1  
BCX17  
from Power Amp  
1
C5  
10nF  
ANTENNA  
IF FILTER  
C4  
L2  
0.1µF  
1
2
3
1
14  
13  
12  
11  
10  
9
I
DUPLEXER  
O
V
V
C
CCMX  
G
2
To FM-IF Circuits  
NE605/6/7/8  
C2  
C
GND  
2
3
4
5
6
7
IF  
OUT  
B
C1  
3
RF IN  
GND  
A
MX  
100pF  
L1  
GND  
RF IN  
A1  
MX  
15nH  
BYPASS  
GND  
A2  
C3  
10nF  
BANDPASS  
FILTER  
GND  
LO  
RF OUT  
A
IN  
OUT  
8
LO  
IN  
ENABLE  
NE/SA600  
R1  
from VCO/Synthesizer UMA1014  
1kΩ  
LNA GAIN CONTROL  
SR00094  
Figure 13.  
61  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
SILKSCREEN  
TOP  
BOTTOM  
SR00095  
Figure 14. PC Board Layout  
62  
1993 Dec 15  
Philips Semiconductors  
Product specification  
1GHz LNA and mixer  
NE/SA600  
Total Supply Current vs V  
Total Supply Current vs Temperature  
CC  
16  
14  
12  
10  
8
16  
14  
12  
10  
8
ENABLE=HI  
ENABLE=HI  
6
6
4
4
ENABLE=LO  
ENABLE=LO  
2
2
0
0
–40  
–20  
0
20  
40  
60  
80  
100  
4.5  
4.75  
5
5.25  
5.5  
TEMPERATURE (°C)  
V
(V)  
CC  
SR00096  
Figure 15.  
LNA Noise Figure vs. Frequency  
and Shunt Inductance  
LNA Gain vs. Frequency  
and Shunt Inductance  
20  
3
2.8  
2.6  
2.4  
2.2  
2
15nH  
8.2nH  
19  
18  
17  
16  
15  
14  
13  
12  
0nH  
8.2nH  
0nH  
15nH  
1.8  
1.6  
1.4  
1.2  
1
700  
800  
900  
1000  
1100  
700  
800  
900  
1000  
1100  
FREQUENCY (MHz)  
FREQUENCY (MHz)  
SR00097  
Figure 16.  
63  
1993 Dec 15  

相关型号:

NE6006

Power Field-Effect Transistor, 30A I(D), 200V, 0.095ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-258AA,
MICROSEMI

NE600D

1GHz LNA and mixer
NXP

NE600D-T

RF/Microwave Mixer, 800 MHz - 1200 MHz RF/MICROWAVE DOUBLE BALANCED MIXER
NXP

NE602A

DOUBLE BALANCED MIXER AND OSCILLATOR
NXP

NE602AD

DOUBLE BALANCED MIXER AND OSCILLATOR
NXP

NE602AD-T

RF/Microwave Mixer, RF/MICROWAVE DOUBLE BALANCED MIXER
NXP

NE602AFE

DOUBLE BALANCED MIXER AND OSCILLATOR
NXP

NE602AN

DOUBLE BALANCED MIXER AND OSCILLATOR
NXP

NE604A

High performance low power FM IF system
NXP

NE604AD

Single Radio Communication IF Amplifier
ETC

NE604AD-T

IC FM, AUDIO DEMODULATOR, PDSO16, Receiver IC
NXP

NE604AD-T

Audio Demodulator, FM, PDSO16
YAGEO