NTP53321G0JTZ [NXP]

NTAG 5 link - NFC Forum-compliant I2C bridge;
NTP53321G0JTZ
型号: NTP53321G0JTZ
厂家: NXP    NXP
描述:

NTAG 5 link - NFC Forum-compliant I2C bridge

文件: 总133页 (文件大小:1212K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Rev. 3.3 — 3 July 2020  
Product data sheet  
544533  
COMPANY PUBLIC  
1 General description  
Optimized for sensor-driven applications, this highly integrated NFC IC creates a secure,  
standard-based link from the device to the cloud, in a future proof way to address and  
even power sensors.  
NTAG 5 link is available in two different variants (see Section 4). NTP5332 supports all  
features of NTP5312, and on top of these, it offers also I2C master features, as well as  
AES mutual authentication.  
NXP's NTAG 5 link lets designers of sensor-equipped systems add an NFC interface  
with a wired host interface that’s configurable as an I2C master/slave, a pulse width  
modulator (PWM), or a general-purpose I/O (GPIO). Operating at 13.56 MHz, it is an  
NFC Forum-compliant Type 5 Tag (customer development board is NFC Forum certified  
- Certification ID: 58626) that can be read and written by an NFC-enabled device at close  
range and by an ISO/IEC 15693-enabled industrial reader over a longer range.  
2
l C  
SRAM  
1
0
1
0
1
0
MCU  
EEPROM  
e.g  
T SENSOR  
2
TRANSPARENT I C MASTER CHANNEL  
energy harvesting  
data  
data  
event detection  
energy  
energy  
aaa-034224  
Figure 1.ꢀNTAG 5 link overview  
The NTAG 5 link can act as a direct bridge between an NFC-enabled device and any I2C  
slave, such as a sensor or external memory. This is especially useful in environments  
that require zero-power, single-shot measurements.  
With NTAG 5 link, the device can connect to the cloud with a single tap. The connection  
uses an NFC Forum-compliant data exchange mechanism involving SRAM to ensure  
highly interoperable data transfers.  
Support for ISO/IEC 15693 lets the NTAG 5 link communicate securely in two ways: with  
powerful industrial readers, at a range of up to 60 cm and with NFC-enabled devices  
in proximity range. This duality makes it possible for the device to be calibrated and  
parameterized automatically while in the factory and then, when put to be used in the  
field, safely communicate with contactless devices such as mobile phones.  
NTAG 5 link offers 2048 bytes (16384 bits) bytes of memory which can be divided  
into three areas, and each area can use a different protection level, varying from no  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
protection to 32-/64-bit password-protected read/write access or up to 128-bit-AES  
mutual authentication protected read/write access.  
The NTAG 5 link comes with pre-programmed proof-of-origin functionality to verify  
authenticity. The ECC-based originality signature can be reprogrammed or locked by the  
customer.  
The NTAG 5 link can operate without a battery by drawing power from the NFC reader  
instead. It supports energy harvesting, which means it can be used to supply power to  
other components in the system. When sufficient energy is available, NTAG 5 link can  
supply a fixed, configurable voltage level to ensure a stable overall system.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
2 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
2 Features and benefits  
Reading distance with long-range reader > 60 cm (> 25 inches)  
Zero-power readout of an I2C sensor  
Adjustable security levels up to mutual AES authentication (NTP5332 only)  
Flexible split between three open and/or protected memory areas  
Ensured authenticity of product through value chain  
Interoperable data exchange according to NFC Forum standards  
Energy-efficient design with reduced bill of material  
Interoperable and high performance NFC interface  
ISO/IEC 15693 and NFC Forum Type 5 Tag compliant  
64-bit Unique IDentifier  
Reliable and robust memory  
2048 bytes (16384 bits) user EEPROM on top of configuration memory  
256 bytes (2048 bits) SRAM for frequently changing data and pass-through mode  
40 years data retention  
Write endurance of 1 000 000 cycles  
Configurable contact interface  
I2C slave standard (100 kHz) and fast (400 kHz) mode  
NTP5332 offers a Transparent I2C master channel (for example, read sensors  
without an MCU)  
One configurable event detection pin  
Two GPIOs as multiplexed I2C lines  
Two Pulse Width Modulation (PWM) channels as multiplexed GPIOs and/or ED pin  
1.62 V to 5.5 V supply voltage  
Scalable security for access and data protection  
Disable NFC interface temporarily  
Disable I2C interface temporarily  
NFC PRIVACY mode  
Read-only protection as defined in NFC Forum Type 5 Tag Specification  
Full, read-only, or no memory access based on 32-bit password from both interfaces  
Optional 64-bit password protection from NFC perspective  
128-bit AES authentication as defined in ISO/IEC 15693 for NTP5332  
ECC-based reprogrammable originality signature  
Multiple fast data transfer mode  
Pass-through mode with 256 byte SRAM buffer  
Standardized data transfer mode (PHDC, TNEP)  
Low-power budget application support  
Energy harvesting with configurable output voltage up to 30 mW  
Low-power standby current typically <6 µA  
Hard power down current typically <0.25 µA  
Very robust architecture  
-40 °C to 105 °C for EEPROM read, SRAM and register access  
-40 °C to 85 °C for EEPROM write access  
Extensive product support package  
Feature specific application notes  
Development board including software and source code  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
3 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Hands-on training  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
4 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
3 Applications  
Use cases  
Simple dynamic secure pairing  
Commissioning  
Parameterization  
Diagnosis  
Firmware download  
Low BoM and low-power data acquisition for sensors  
Calibration  
Trimming  
Authenticity check and data protection  
Late "in the box" configuration  
LED driver configuration  
NFC charging  
Applications  
Lighting  
Smart home  
Hearable and Wearable  
Consumer  
Industrial  
Gaming  
Smart sensor  
Smart metering  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
5 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
4 Ordering information  
Table 1.ꢀOrdering information  
Package  
Orderable part  
number  
Name  
Description  
NTAG 5 link; with I2C interface and 2048 bytes user  
Version  
NTP53121G0JHKZ  
NTP53121G0JTTZ  
XQFN16  
SOT1161-2  
EEPROM plastic,  
extremely thin quad flat package; no leads; 16 terminals  
TSSOP16 NTAG 5 link; with I2C interface and 2048 bytes user  
EEPROM plastic,  
SOT403-1  
thin shrink small outline package; 16 leads; 0.65 mm pitch;  
5 mm x 4.4 mm x 1.1 mm body  
NTP53121G0JTZ  
SO8  
NTAG 5 link; with I2C interface and 2048 bytes user  
EEPROM plastic,  
SOT96-1  
small outline package; 8 leads; 1.27 mm pitch;  
4.9 mm x 3.9 mm x 1.75 mm body  
NTP53121G0FUAV  
NTP53321G0JHKZ  
Wafer  
NTAG 5 link; 8 inch wafer, 150 µm thickness, on film frame  
carrier, electronic fail die marking according to SECS-II  
format)  
NTAG 5 link with I2C master/slave interface, AES  
authentication and 2048 bytes user EEPROM  
-
XQFN16  
SOT1161-2  
plastic, extremely thin quad flat package; no leads; 16  
terminals  
NTP53321G0JTTZ  
NTP53321G0JTZ  
NTP53321G0FUAV  
TSSOP16 NTAG 5 link with I2C master/slave interface, AES  
authentication and 2048 bytes user EEPROM plastic,  
SOT403-1  
SOT96-1  
-
thin shrink small outline package; 16 leads; 0.65 mm pitch;  
5 mm x 4.4 mm x 1.1 mm body  
SO8  
NTAG 5 link with I2C master/slave interface, AES  
authentication and 2048 bytes user EEPROM plastic,  
small outline package; 8 leads; 1.27 mm pitch;  
4.9 mm x 3.9 mm x 1.75 mm body  
Wafer  
NTAG 5 link; 8 inch wafer, 150 µm thickness, on film frame  
carrier, electronic fail die marking according to SECS-II  
format)  
REMARK: Wafer specification addendum is available after exchange of a non-disclosure  
agreement (NDA)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
6 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
5 Marking  
Table 2.ꢀMarking codes  
Type number  
Marking code  
Line A  
Line B  
DBSN|ASID  
DBID|ASID  
DBSN|ASID  
DBSN|ASID  
DBID|ASID  
DBSN|ASID  
Line C  
DYWW  
Line D  
NTP53121G0JHK  
NTP53121G0JTT  
NTP53121G0JT  
NTP53321G0JHK  
NTP53321G0JTT  
NTP53321G0JT  
I21  
-
NP53121  
NP53121  
D21  
ZnDYY  
nDYWW  
DYWW  
ZnDYY  
nDYWW  
WW  
-
-
NP53321  
NP53321  
WW  
-
Used abbreviations:  
ASID: Assembly Sequence ID  
D: RHF-2006 indicator  
DBID: Diffusion Batch ID  
DBSN: Diffusion Batch Sequence Number  
n: Assembly Centre Code  
WW: week  
Y or YY: year  
Z: Diffusion Centre Code  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
7 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
6 Block diagram  
V
V
GND  
HPD  
OUT  
CC  
2
RF INTERFACE  
PMU  
I C INTERFACE  
MEMORY  
ENERGY  
HARVESTING  
RX  
SLAVE  
EEPROM  
SECURITY  
SRAM  
SCL  
GPIO  
PWM  
AES (NTP5332)  
TRANSPARENT  
MASTER CHANNEL  
(NTP5332)  
TX  
ORIG. SIG.  
PWD AUTH.  
SESSION  
REGISTERS  
LA  
LB  
SDA  
GPIO  
PWM  
DIGITAL CONTROL UNIT  
ED  
PWM  
2
RF CONTROLLER  
ARBITER  
I C CONTROLLER  
CLOCK  
LOW POWER  
FIELD DETECTION  
ED, GPIO AND PWM  
CONTROLLER  
COMMAND  
INTERPRETER  
MEMORY  
CONTROLLER  
aaa-034218  
* HPD and VOUT are not available for SO8 package  
Figure 2.ꢀBlock diagram NTAG 5 link  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
8 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
7 Pinning information  
1
2
3
4
12  
11  
10  
9
aaa-034213  
Transparent top view  
Figure 3.ꢀPin configuration for XQFN16 package  
Table 3.ꢀPin description for XQFN16  
Pin  
1
Symbol  
GND  
GND  
N.C.  
Description  
Ground  
When unused  
connect to GND  
connect to GND  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
connect to GND  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
2
Ground  
3
not connected  
not connected  
not connected  
4
N.C.  
5
N.C.  
6
SDA/GPIO1/PWM1 Multiplexed serial data I2C, GPIO1 and PWM1  
SCL/GPIO0/PWM0 Multiplexed serial clock I2C, GPIO0 and PWM0  
7
8
ED/PWM0  
VCC  
Multiplexed event detection and PWM0  
External power supply  
Hard power down  
9
10  
11  
12  
13  
14  
15  
16  
HPD  
GND  
VOUT  
N.C.  
LB  
Ground  
Energy harvesting voltage output  
not connected  
Antenna connection  
Antenna connection  
not connected  
LA  
N.C.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
9 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
aaa-034214  
Figure 4.ꢀPin configuration for TSSOP16 package  
Table 4.ꢀPin description for TSSOP16  
Pin  
1
Symbol  
LA  
Description  
Antenna connection  
not connected  
Ground  
When unused  
keep floating  
keep floating  
connect to GND  
connect to GND  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
keep floating  
connect to GND  
keep floating  
keep floating  
keep floating  
2
N.C.  
GND  
GND  
N.C.  
N.C.  
N.C.  
3
4
Ground  
5
not connected  
not connected  
not connected  
6
7
8
SDA/GPIO1/PWM1 Multiplexed serial data I2C, GPIO1 and PWM1  
SCL/GPIO0/PWM0 Multiplexed serial clock I2C, GPIO0 and PWM0  
9
10  
11  
12  
13  
14  
15  
16  
ED/PWM0  
VCC  
Multiplexed event detection and PWM0  
External power supply  
Hard power down  
HPD  
GND  
VOUT  
N.C.  
Ground  
Energy harvesting voltage output  
not connected  
LB  
Antenna connection  
1
2
3
4
8
7
6
5
aaa-034220  
Figure 5.ꢀPin configuration for SO8 package  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
10 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 5.ꢀPin description for SO8  
Pin  
1
Symbol  
Description  
Ground  
When unused  
connect to GND  
keep floating  
keep floating  
connect to GND  
keep floating  
keep floating  
GND  
LA  
2
Antenna connection  
Antenna connection  
Ground  
3
LB  
4
GND  
5
SDA/GPIO1/PWM1 Multiplexed GPIO1 and PWM1  
SCL/GPIO0/PWM0 Multiplexed GPIO0 and PWM0  
6
7
ED/PWM0  
VCC  
Multiplexed event detection and PWM0  
External power supply  
keep floating  
keep floating  
8
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
11 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8 Functional description  
8.1 Memory Organization  
8.1.1 General  
The entire memory is divided into three different parts:  
User memory  
This part of the memory is intended to be used to store user data. It is organized in  
blocks of 4 bytes each (see Section 8.1.2).  
According to NFC Forum Type 5 Tag Specification, EEPROM block 0 contains the  
Capability Container directly followed by the NDEF Message TLV. If NTAG 5 link is  
used in a proprietary way, any user data may be stored in the user memory. Direct  
read/write access with the standard READ BLOCK and WRITE BLOCK commands  
(see Section 8.2.3.5) to this part of the memory is possible depending on the related  
security and write protection conditions.  
16-bit counter  
The last block of the EEPROM memory from NFC perspective contains the 16-bit  
counter and the counter protection flag (see Section 8.1.2.1). This counter is not  
accessible from I2C perspective.  
Configuration area  
Within this part of the memory all configuration options are stored (see Section 8.1.3).  
This memory area can only be accessed with the READ CONFIG (see  
Section 8.2.3.2.1) or WRITE CONFIG (see Section 8.2.3.2.2) commands from NFC  
perspective. From I2C perspective, normal READ and WRITE commands are used.  
The configuration area contains required security-related information, such as access  
keys with related privileges, headers, customer ID (CID), originality signature and  
many more which will be loaded at power-on reset.  
Access to configuration blocks may be blocked at all or password protected with  
related configuration bits.  
All session registers are accessible in the configuration area as long as not locked  
by LOCK_SESSION_REG. These configuration items can be changed on the fly and  
have immediate effect, but get lost after power-on reset.  
SRAM  
SRAM is accessible when NTAG 5 link is VCC supplied and SRAM_ENABLE is set to  
1b.  
Volatile SRAM can be used for fast and frequent data transfer (see Section 8.1.5).  
With WRITE SRAM (see Section 8.2.3.6.2) and READ SRAM (see Section 8.2.3.6.1),  
the content is written or read.  
When the SRAM gets mapped to user memory (the start address is always block 0  
from both interfaces), then standard READ BLOCK and WRITE BLOCK commands  
can be used. This mechanism is used, e.g., for PHDC or dynamic pairing.  
From I2C perspective, SRAM is always located from address 2000h to 203Fh.  
WARNING: The content of bytes and bits defined as RFU SHALL NOT be changed.  
8.1.2 User memory  
According to NFC Forum Type 5 Tag Specification, the user accessible EEPROM  
memory is divided into blocks. A block is the smallest access unit. For NTAG 5 link,  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
12 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
each block consists of 4 bytes (1 block = 32 bits). Bit 0 in each byte represents the least  
significant bit (lsb) and bit 7 the most significant bit (msb), respectively.  
User EEPROM map looks totally the same from NFC and I2C perspective.  
The last block contains the 16-bit counter (see Section 8.1.2.1). It is only accessible from  
NFC perspective.  
NTAG 5 link offers 2048 bytes (16384 bits) of user memory.  
Table 6.ꢀUser memory organization  
Block Address  
Description  
Byte 0  
(LSB)  
Byte 3  
(MSB)  
Byte 1  
Byte 2  
NFC  
00h  
01h  
:
I2C  
0000h  
0001h  
:
Capability Container  
User Memory  
or user memory  
1FEh  
1FFh  
01FEh  
-
C0  
C1  
00h  
PROT  
Counter  
User data at delivery contains an NFC Forum-compliant capability container and an  
NDEF message containing the URL www.nxp.com/nfc. First 6 blocks are initialized as  
illustrated in below table. The counter block is initialized with all 00h. Content of the rest  
of the user memory is undefined and contains random (rnd) data at delivery.  
Table 7.ꢀMemory content at delivery  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
...  
I2C  
0000h  
0001h  
0002h  
0003h  
0004h  
0005h  
0006h  
...  
E1h  
03h  
0Ch  
78h  
6Fh  
66h  
rnd  
40h  
10h  
55h  
70h  
6Dh  
63h  
rnd  
80h  
D1h  
01h  
2Eh  
2Fh  
FEh  
rnd  
09h  
01h  
6Eh  
63h  
6Eh  
00h  
rnd  
rnd  
rnd  
rnd  
rnd  
1FFh  
-
00h  
00h  
00h  
00h  
8.1.2.1 16-bit counter  
Last Block of the user memory contains the 16-bit counter. The block can be accessed  
with the standard read and write commands but special data format is required.  
The standard protection conditions for the user memory are not valid for the counter  
block.  
Counter block can only be accessed from NFC perspective.  
The 16-bit counter can be  
preset to initial start value protected with the write password or by mutual  
authentication with a key with the Write privilege  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
13 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
read  
increased by one, optionally protected with the read password or by mutual  
authentication with a key with the Read privilege  
The counter can be read with an (EXTENDED) READ SINGLE BLOCK to the last block  
or (EXTENDED) READ MULTIPLE BLOCK command including the last block. The 4 byte  
data of the counter block provide the following information in Table 8.  
Table 8.ꢀCOUNTER BLOCK data structure  
Byte  
Name  
C0 (LSB)  
C1 (MSB)  
-
Value  
00h - FFh  
00h - FFh  
00h  
Description  
0
1
2
Counter value  
RFU  
00h  
Incrementing of the counter value is not protected  
3
PROT  
01h  
Incrementing of the counter value is protected with the read password or by  
mutual authentication depending on the used security level  
The counter can be preset to a start value with an (EXTENDED) WRITE SINGLE BLOCK  
command to counter block. The counter can only be preset to a start value after a SET  
PASSWORD command with the write password or a valid mutual authentication with a  
key with the Write privilege, depending on the used security level.  
The PROT byte (data byte 3) value defines if the protection to increment the counter is  
enabled or disabled. If the protection is enabled, the read password or a valid mutual  
authentication with a key with the Read privilege is required to increment the counter  
value, again depending on the used security level.  
The data for the (EXTENDED) WRITE SINGLE BLOCK command to preset the counter  
is defined in Table 9.  
Remark: A Preset counter value of 0x0001 is not possible, a (EXTENDED) WRITE  
SINGLE BLOCK command with that value will only increment the counter.  
Table 9.ꢀPreset counter data structure  
Byte  
Name  
Value  
Description  
0
C0  
00h, 02h -  
FFh (LSB)  
Counter value  
1
C1  
00h - FFh  
(MSB)  
2
3
-
00h  
00h  
01h  
RFU  
PROT  
Disable the protection to increment the counter  
Enable the protection to increment the counter with read password or mutual  
authentication  
To increment the counter by one with a (EXTENDED) WRITE SINGLE BLOCK  
command to counter block. If the protection to increment the counter is enabled, a SET  
PASSWORD command with the read password or a valid mutual authentication with a  
key with the Read privilege is required before.  
The data for the (EXTENDED) WRITE SINGLE BLOCK command to increment the  
counter is defined in Table 10.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
14 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Remark: The counter can only be incremented with the C0 and C1 values defined in  
Table 10. Other values than that preset the counter if a SET PASSWORD command with  
the write password or a valid mutual authentication with a key with the Write privilege has  
been executed before or leads to an error message.  
Table 10.ꢀIncrement counter data structure  
Byte  
Name  
Value  
Description  
0
1
2
3
C0  
C1  
-
01h (LSB)  
00h (MSB)  
00h  
Value to increment the counter  
RFU  
RFU  
-
00h  
8.1.3 Configuration memory  
The configuration memory contains the security and configuration information. Access  
to this memory area is only possible with WRITE CONFIG (see Section 8.2.3.2.2) and  
READ CONFIG (see Section 8.2.3.2.1) commands depending on the initialization status.  
Writing to blocks with only RFU bytes is not possible and results in error code 0Fh from  
NFC perspective and NAK from I2C perspective. Reading complete RFU blocks results in  
receiving all bytes 00h.  
Changing RFU bytes and bits is not allowed and may result in unintended behavior.  
From I2C perspective, the configuration can be accessed using READ MEMORY and  
WRITE MEMORY command. Block address of configuration area from I2C perspective  
starts from 1000h.  
In Table 11 all NFC_KHs, NFC_KPs and AES_KEYs (all marked with an asterisk) are  
only available in AES mode. NFC_KHs and NFC_KPs are not available at all and set to  
RFU in plain password mode. In the area of KEY_0 and KEY_1, the plain passwords are  
stored (see Section 8.1.3.9). The rest of the KEY area is RFU in plain password mode.  
NOTE: AES mode is only available for NTP5332.  
Different features can be configured with CONFIG bits. Similar to all other configuration  
options, the effect does not take place in the current session. The effect takes place after  
POR. If immediate change is expected, related session register bytes or bits need to be  
used (see Section 8.1.4).  
To which section each block belongs is defined in first column (Sec.). Sections might be  
locked by setting related bit to 1b (see Section 8.1.3.32).  
Table 11.ꢀConfiguration Memory organization  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
00h  
...  
I2C  
1000h  
...  
0
0
0
32 byte Originality  
Signature  
ORIGINALITY_SIGNATURE  
(see Section 8.1.3.1)  
07h  
1007h  
Configuration Header  
(see Section 8.1.3.2)  
0
08h  
1008h  
CH  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
15 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
I2C  
Customer ID (see  
Section 8.1.3.3)  
0
09h  
1009h  
CID  
RFU  
N/A  
N/A  
0Ah  
0Bh  
100Ah  
100Bh  
RFU  
RFU  
NFC Global Crypto  
Header (see  
Section 8.1.3.4)  
0
0
0
0Ch  
0Dh  
0Eh  
100Ch  
100Dh  
100Eh  
RFU  
RFU  
NFC_GCH  
NFC_CCH  
RFU  
RFU  
RFU  
NFC Crypto  
Configuration Header  
(see Section 8.1.3.5)  
NFC Authentication  
Limit Counter (see  
Section 8.1.3.6)  
NFC_AUTH_LIMIT  
N/A  
0
0Fh  
10h  
100Fh  
1010h  
RFU  
NFC_KH0*  
NFC Key Header 0  
(see Section 8.1.3.7)  
RFU  
NFC_KP0*  
RFU  
RFU  
RFU  
RFU  
RFU  
NFC Key Privileges 0  
(see Section 8.1.3.8)  
0
0
0
0
0
0
0
11h  
12h  
13h  
14h  
15h  
16h  
17h  
1011h  
1012h  
1013h  
1014h  
1015h  
1016h  
1017h  
RFU  
RFU  
RFU  
RFU  
NFC Key Header 1  
(see Section 8.1.3.7)  
NFC_KH1*  
NFC Key Privileges 1  
(see Section 8.1.3.8)  
NFC_KP1*  
RFU  
NFC Key Header 2  
(see Section 8.1.3.7)  
NFC_KH2*  
NFC_KH3*  
NFC Key Privileges 2  
(see Section 8.1.3.8)  
NFC_KP2*  
RFU  
NFC Key Header 3  
(see Section 8.1.3.7)  
NFC Key Privileges 3  
(see Section 8.1.3.8)  
NFC_KP3*  
N/A  
N/A  
N/A  
0
18h  
...  
1018h  
...  
RFU  
1Fh  
20h  
21h  
22h  
23h  
101Fh  
1020h  
1021h  
1022h  
1023h  
AES key 0 or  
0
NFC_PWD_0 to  
NFC_PWD_3 (see  
Section 8.1.3.9)  
KEY_0*  
0
0
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
16 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
I2C  
0
0
0
0
0
0
0
0
0
0
0
0
1024h  
1025h  
1026h  
1027h  
1028h  
1029h  
102Ah  
102Bh  
102Ch  
102Dh  
102Eh  
102Fh  
AES key 1 or  
NFC_PWD_4 to  
NFC_PWD_6 (see  
Section 8.1.3.9)  
KEY_1*  
AES key 2 or RFU  
(see Section 8.1.3.9)  
KEY_2*  
KEY_3*  
AES key 3 or RFU  
(see Section 8.1.3.9)  
I2C Key Header (see  
Section 8.1.3.10)  
I2C Protection Pointer  
and Config (see  
1
1
30h  
31h  
1030h  
1031h  
I2C_KH  
I2C_PP  
RFU  
I2C_PPC  
RFU  
RFU  
Section 8.1.3.11)  
Authentication  
Limit Counter (see  
Section 8.1.3.12)  
1
32h  
1032h  
I2C_AUTH_LIMIT  
I2C read password  
(see Section 8.1.3.9)  
I2C write password  
(see Section 8.1.3.9)  
1
1
33h  
34h  
1033h  
1034h  
I2C_PWD_0  
I2C_PWD_1  
Restricted AREA_1  
I2C read password  
(see Section 8.1.3.9)  
1
35h  
1035h  
I2C_PWD_2  
Restricted AREA_1  
I2C write password  
(see Section 8.1.3.9)  
1
2
36h  
37h  
1036h  
1037h  
I2C_PWD_3  
CONFIG  
Feature Configuration  
(see Section 8.1.3.13)  
Block may be used  
for data transfer  
synchronization (see  
Section 8.1.3.14)  
3
38h  
1038h  
SYNC_DATA_BLOCK  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
17 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
I2C  
PWM and GPIO  
Configuration (see  
Section 8.1.3.15)  
3
39h  
1039h  
PWM_GPIO_CONFIG  
RFU  
PWM1 Configuration  
(see Section 8.1.3.16)  
3
3
3Ah  
3Bh  
103Ah  
103Bh  
PWM0_ON_OFF  
PWM1_ON_OFF  
PWM1 Configuration  
(see Section 8.1.3.16)  
Watch Dog Timer  
Configuration (see  
Section 8.1.3.17) and  
SRAM Copy Bytes  
(see Section 8.1.5)  
SRAM_  
COPY_  
BYTES  
3
3Ch  
103Ch  
WDT_CONFIG  
Energy Harvesting  
(see Section 8.1.3.18)  
and Event  
3
3
3Dh  
3Eh  
103Dh  
103Eh  
EH_CONF  
RFU  
ED_CONF  
RFU  
Detection Pin (see  
Section 8.1.3.19)  
Configuration  
I2C Configuration (see  
Section 8.1.3.20 and  
Section 8.1.3.21)  
I2C_MASTER_CONFIG  
(NTP5332)  
I2C_SLAVE_CONFIG  
Device Security  
Configuration (see  
Section 8.1.3.22)  
SRAM and  
SRAM_  
SEC_CONF  
Configuration  
Protection (see  
Section 8.1.3.23)  
3
3Fh  
103Fh  
PP_AREA_1  
CONF_PROT  
AREA_1 Protection  
Pointer (see  
Section 8.1.3.24)  
N/A  
N/A  
N/A  
7
40h  
...  
1040h  
...  
RFU  
44h  
45h  
...  
1044h  
1045  
...  
Default SRAM content  
(see Section 8.1.5)  
7
SRAM_DEFAULT  
7
54h  
1054  
Application Family  
Identifier (see  
Section 8.2.3.9.1)  
4
55h  
56h  
1055h  
1056h  
AFI  
RFU  
DSFID (see  
Section 8.1.3.26)  
4
DSFID  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
18 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
EAS ID (see  
NFC  
I2C  
4
4
57h  
1057h  
EAS_ID  
RFU  
RFU  
Section 8.1.3.27)  
NFC Protection  
Pointer (see  
Section 8.1.3.28)  
and NFC Protection  
Pointer Conditions  
(see Section 8.1.3.29)  
NFC_  
PP_AREA_0H  
58h  
1058h  
NFC_PPC  
N/A  
N/A  
N/A  
5
59h  
...  
1059h  
...  
RFU  
69h  
6Ah  
...  
1069h  
106Ah  
...  
NFC Lock block  
configuration (see  
Section 8.6.1)  
5
NFC_LOCK_BLOCK  
RFU  
RFU  
5
89h  
8Ah  
...  
1089h  
108Ah  
...  
I2C Lock block  
configuration (see  
Section 8.1.3.31)  
6
6
I2C_LOCK_BLOCK  
6
91h  
92h  
1091h  
1092h  
8
NFC_  
SECTION_  
LOCK  
NFC section lock  
bytes (see Table 81)  
RFU  
RFU  
8
8
8
93h  
94h  
95h  
1093h  
1094h  
1095h  
I2C_  
SECTION_  
LOCK  
I2C section lock bytes  
(see Table 83)  
I2C read password  
authenticate(see  
Section 8.1.3.9)  
I2C write password  
authenticate (see  
Section 8.1.3.9)  
RFU from NFC perspective  
I2C_PWD_0_AUTH  
N/A  
N/A  
96h  
97h  
1096h  
1097h  
RFU from NFC perspective  
I2C_PWD_1_AUTH  
Restricted AREA_1  
I2C read password  
authenticate (see  
Section 8.1.3.9)  
RFU from NFC perspective  
I2C_PWD_2_AUTH  
N/A  
N/A  
98h  
99h  
1098h  
1099h  
Restricted AREA_1  
I2C write password  
authenticate (see  
Section 8.1.3.9)  
RFU from NFC perspective  
I2C_PWD_3_AUTH  
N/A  
N/A  
9Ah  
...  
109Ah  
...  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
19 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Sec.  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
I2C  
N/A  
9Fh  
109Fh  
8.1.3.1 Originality Signature  
The Originality signature (see Section 8.8) is stored in first 8 blocks (block 00h to  
block 07h) of configuration memory and may be verified by the NFC device using the  
corresponding ECC public key. As the NXP originality signature is on default not locked,  
it may be re-programmed by the customer. If the originality check is not needed, it may  
even be used as additional 32 byte user EEPROM.  
Table 12.ꢀ32 Byte Originality Signature  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
I2C  
1000h  
1001h  
1002h  
1003h  
1004h  
1005h  
1006h  
1007h  
SIG0 (LSB)  
SIG4  
SIG1  
SIG5  
SIG2  
SIG6  
SIG3  
SIG7  
SIG8  
SIG9  
SIG10  
SIG14  
SIG18  
SIG22  
SIG26  
SIG30  
SIG11  
SIG12  
SIG16  
SIG20  
SIG24  
SIG28  
SIG13  
SIG17  
SIG21  
SIG25  
SIG29  
SIG15  
SIG19  
SIG23  
SIG27  
SIG31 (MSB)  
8.1.3.2 Configuration Header  
The Configuration Header (CH) byte defines the access conditions of both, Customer ID  
and Originality Signature.  
Table 13.ꢀConfiguration Header (CH) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
08h  
1008h  
CH  
RFU  
Configuration Header byte can be read with READ CONFIG command (see  
Section 8.2.3.2.1) and written with WRITE CONFIG command (see Section 8.2.3.2.2).  
Once locked (set to E7h), CH byte cannot be updated anymore and Originality Signature  
and Customer ID gets locked permanently from NFC perspective.  
From I2C perspective this block can be read and written if not locked by the I2C section  
lock. Once locked, CH byte cannot be updated anymore and Originality Signature and  
CID gets locked permanently from I2C perspective.  
Table 14.ꢀConfiguration Header Codes  
Value  
81h  
Mode  
Writeable (default)  
Locked  
Write Access  
Yes  
No  
E7h  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
20 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Value  
Mode  
Write Access  
All others  
Invalid  
No  
8.1.3.3 Customer ID (CID)  
The Customer ID at delivery is C000h and can be reprogrammed and locked. It might be  
used to identify the product.  
The two most significant bits (b7 and b6 of CID (MSB)) are always equal to 11b. Only  
CID[13-0] may be written by customer. Note, that other values of the two most significant  
bits are RFU.  
When the CID is written with WRITE CONFIG command, the 2 most significant bits are  
always set to 11b. The input CID in WRITE CONFIG command (see Section 8.2.3.2.2) is  
bit wise ORed with C000h.  
As long as not locked by the I2C section lock, CID maybe updated from I2C perspective  
with the same logic as from NFC perspective.  
Example: When setting CID to 10AAh, resulting customer-specific CID is D0AAh.  
Table 15.ꢀCustomer ID (CID) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
09h  
1009h  
CID (LSB)  
CID (MSB)  
RFU  
The CID can be permanently locked by setting the Configuration Header to Locked state  
(see Table 14) using WRITE CONFIG command. Note, that Originality Signature gets  
locked, too.  
8.1.3.4 NFC Global Crypto Header  
The NFC Global Crypto Header (NFC_GCH) defines the status and access of the  
NFC passwords in plain password mode and all other NFC features listed below  
NFC Keys  
NFC Protection Pointer  
NFC Protection Pointer Conditions  
NFC Key Headers  
NFC Key Privileges  
NFC Crypto Configuration Header  
EAS and AFI protection  
As long as not locked by the RF section lock, the NFC Global Crypto Header can be  
written with WRITE CONFIG command (see Section 8.2.3.2.2). The programming of  
NFC Global Crypto Header can be done in only one direction from lower state to higher  
independently from the interface and it is irreversible.  
Same rules apply from I2C perspective, as long as not locked by the I2C section lock.  
Once locked (as per table below), GCH cannot be updated anymore.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
21 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 16.ꢀNFC Global Crypto Header (GCH) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
0Ch  
100Ch  
RFU  
NFC_GCH  
RFU  
Table 17.ꢀGlobal Crypto Header Configuration in plain password mode  
Value  
Status  
Description  
81h  
Writable (default)  
The NFC passwords can be read and written with the READ CONFIG  
and WRITE CONFIG commands.  
E7h  
Locked  
Invalid  
The NFC passwords cannot be read and written with the READ  
CONFIG and WRITE CONFIG commands.  
all others  
NOTE: LOCK PASSWORD command is needed to lock NFC passwords permanently  
(see Section 8.2.3.3.4).  
Table 18.ꢀGlobal Crypto Header Configuration Value in AES mode  
Value  
Status  
Description  
81h  
Deactivated (default)  
The settings of the NFC Protection Pointer and the NFC Protection  
Pointer Condition are not activated. Read and write access to the  
user memory is possible independent of the settings without a  
previous mutual authentication.  
The Protection Pointer Address and the NFC Protection Pointer  
Condition byte can be modified with a PROTECT PAGE command  
without a previous mutual authentication except of the LOCK PAGE  
PROTECTION CONDITION command has been successfully  
executed before.  
The Keys and Key Privileges can be read and written with the READ  
CONFIG and WRITE CONFIG commands according to the status of  
the related Key Header.  
The settings for the EAS/AFI protection are not activated. Access with  
the related commands to EAS and AFI is possible without a previous  
mutual authentication.  
87h  
C1h  
Deactivated & privileges locked  
Access right activated  
The status is the same as for 81h with the exception that the Key  
Privileges are locked and cannot longer be modified.  
The settings for the EAS/AFI protection are not activated. Access with  
the related commands to EAS and AFI is possible without a previous  
mutual authentication.  
The settings of the Protection Pointer address and the Protection  
Pointer Condition are enabled. Read and write access protection is  
enabled according to the initialized values.  
The Keys and Key Privileges can be read and written with the READ  
CONFIG and WRITE CONFIG commands according to the status of  
the related Key Header.  
The settings for the EAS/AFI protection are enabled. Access with the  
related commands to EAS and AFI is only possible according to the  
EAS/AFI protection conditions.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
22 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Value  
Status  
Description  
C7h  
Access right activated &privileges The status is the same as for C1h with the exception that the Key  
locked  
Privileges are locked and cannot longer be modified.  
The settings for the EAS/AFI protection are enabled. Access with the  
related commands to EAS and AFI is only possible according to the  
EAS/AFI protection conditions.  
E7h  
Activated  
The settings of the NFC Protection Pointer and the NFC Protection  
Pointer Condition are enabled. Read and write access protection is  
enabled according to the initialized values.  
All Key Header Privileges and Keys are locked cannot be modified  
The settings for the EAS/AFI protection are enabled. Access with the  
related commands to EAS and AFI is only possible according to the  
EAS/AFI protection conditions.  
all others  
Invalid  
8.1.3.5 NFC Crypto Configuration Header  
The value of the NFC Crypto Configuration Header (NFC_CCH) locks the NFC  
Authentication Limit to the defined value and can only be changed after authentication.  
NFC_CCH can be written by using the WRITE CONFIGURATION command (see  
Section 8.2.3.2.2).  
From I2C perspective, NFC_CCH can be accessed with READ and WRITE command, as  
long as not locked by the I2C section lock.  
Table 19.ꢀCrypto Configuration Header (CCH) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
0Dh  
100Dh  
RFU  
NFC_CCH  
RFU  
Table 20.ꢀCrypto Configuration Header Values  
Value  
81h  
Mode  
Write Access  
Authentication limit can be modified.  
Unlocked (default)  
Locked  
E7h  
Authentication limit is locked and can only be modified  
after mutual authentication with a key with activated  
crypto configuration privilege or authenticating with  
the write password. In 64-bit password mode both, the  
read and write password are required, depending on  
the used security level.  
All others Invalid  
8.1.3.6 NFC Authentication Limit Counter  
The NFC Authentication Limit Counter is a feature to limit the number of  
authentications. When enabled, the counter is incremented for every CHALLENGE  
(see Section 8.2.3.4.5) or AUTHENTICATION (see Section 8.6.4) command. Both,  
positive and negative attempts get counted. On default. the counter is not enabled  
(NFC_AUTH_LIMIT = 0000h).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
23 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
In plain password mode, NTAG 5 link implements the NFC Authentication Limit in  
counting negative Password Authentication attempts with the SET PASSWORD  
command, except for the Privacy password. The counter will be reset automatically to  
zero after a successful authentication.  
Table 21.ꢀNFC Authentication Limit Counter (NFC_AUTH_LIMIT) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
NFC_AUTH_  
LIMIT (LSB)  
NFC_AUTH_  
LIMIT (MSB)  
0Eh  
100Eh  
RFU  
Byte 0 of Block 0Eh is LSB and Byte 1 is MSB of the NFC Authentication Limit counter  
value.  
The Authentication limit is enabled with the most significant bit of Byte 1 is set to 1b. The  
remaining 15 bits of NFC_AUTH_LIMIT are defining the preset value.  
The start value for the Authentication Limit can be preset with a WRITE CONFIG  
command (see Section 8.2.3.2.2) if  
the Crypto Config Header is not set to "Locked" and the NFC Global Crypto Header is  
not set to "Activated" or  
a valid mutual authentication with a key with the Crypto Config privilege set has been  
executed before.  
In plain password mode, the Counter can be written with a WRITE CONFIG command  
(see Section 8.2.3.2.2) if  
the Crypto Config Header is not set to "Locked" and NFC Global Crypto Header is not  
set to "Locked", or  
a valid SET_PASSWORD command with the write password has been executed  
before. In 64-bit password mode, both read and write passwords are required.  
Examples:  
8000h enables and presets the authentication limit to 0, which means the maximum  
number of authentications (32767) before a preset is required again  
F000h enables and presets the authentication limit to 28672  
If the NFC Authentication Limit is enabled, the authentication limit value is increased by  
one at each CHALLENGE or AUTHENTICATE command (first step only). As soon as the  
value of the Authentication limit reaches  
FF00h: only mutual authentication will be accepted to reset the authentication limit  
FFFFh: no further authentication is possible any longer. This status is irreversible.  
Remark: The absolute maximum authentication limit value is FFFEh before a preset is  
required, otherwise the authentication is irreversibly locked (no longer available).  
From I2C perspective, this block can be read and written if not locked by the I2C section  
lock.  
8.1.3.7 NFC Key Header  
The NFC Key Header bytes (NFC_KH0, NFC_KH1, NFC_KH2, NFC_KH3) define the  
status for the related NFC key.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
24 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
The programming of NFC Key Header can be done in only one direction from lower state  
to higher and it is irreversible from NFC perspective.  
Same rules apply from I2C perspective, as long as not locked by the I2C section lock.  
Once locked (as per table below) cannot be updated anymore from I2C interface.  
Table below shows the location of the NFC Key Headers in the configuration memory.  
When using password authentication, these bytes and blocks are all RFU.  
NOTE: Key headers are only available for NTP5332 in AES mode.  
Table 22.ꢀNFC Key Header (KHx) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
10h  
12h  
14h  
16h  
I2C  
1010h  
1012h  
1014h  
1016h  
RFU  
RFU  
RFU  
RFU  
NFC_KH0*  
NFC_KH1*  
NFC_KH2*  
NFC_KH3*  
RFU  
RFU  
RFU  
RFU  
If the Global Crypto Header is in the "Activate and locked" state, all crypto settings (Key  
Headers, Keys and Privileges) are locked and cannot longer be modified.  
Table 23.ꢀNFC Key Header Values  
Value Status  
Description  
81h  
E7h  
Not active (default)  
The related Key and the Key Privileges can be read and  
written with the READ CONFIG and WRITE CONFIG  
commands. The related key is not active and cannot be  
used. The Key Privileges of the related Key are not valid.  
Active and locked  
The related Key and its privileges are active and locked  
and cannot be modified any longer. The related Key  
cannot be read or written with the READ CONFIG and  
WRITE CONFIG commands. The related Key Header and  
Key Privileges can only be read with the READ CONFIG  
command.  
FFh  
Disabled  
Related Key is disabled and cannot be used  
Remark: It is recommended to set the key header for not required keys to disabled  
(FFh).  
8.1.3.8 NFC Key Privileges  
The NFC Key Privileges bytes define the privileges for the related key. Writing with  
WRITE CONFIG command to the related block depends on the status of the related NFC  
Key Header (see Table 23)  
From I2C perspective, this block can be read and written if not locked by the I2C section  
lock.  
Table shows the location of the Key Privileges in the configuration memory.  
NOTE: Key privileges are only available for NTP5332.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
25 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 24.ꢀNFC Key Privileges (KPx) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
11h  
13h  
15h  
17h  
I2C  
1011h  
1013h  
1015h  
1017h  
NFC_KP0  
NFC_KP1  
NFC_KP2  
NFC_KP3  
RFU  
RFU  
RFU  
RFU  
Table 25 shows the definition of the Key Privileges bytes KPx. The bits define the  
privileges for the related key used with mutual authentication. If the related bit is set to  
1b, the access for the dependent area/feature is granted after mutual authentication with  
the related key.  
Table 25.ꢀDefinition of NFC Key Privileges bytes KPx  
Bit Privilege  
Description  
7
6
5
4
Restricted AREA_1 Write  
Write access to restricted user memory AREA_1  
Read access to restricted user memory AREA_1  
Preset of Authentication Limit  
Restricted AREA_1 Read  
Crypto Config  
EAS/AFI  
Access for write alike command for EAS and AFI as  
following:  
PROTECT EAS/AFI  
SET EAS  
RESET EAS  
LOCK EAS  
WRITE EAS ID  
WRITE AFI  
LOCK AFI  
3
2
1
0
Destroy  
Privacy  
Write  
Access to the DESTROY functionality  
Enable/disable of the PRIVACY mode  
Write access to protected user memory area  
Read access to protected user memory area  
Read  
8.1.3.9 Keys and passwords  
The keys or passwords are stored in the configuration memory. The usage of the  
individual keys depends on the related Key Privileges.  
The state of the keys (including read and write access with the READ CONFIG and  
WRITE CONFIG commands) depends on the status of the related Key Header and the  
status of the Global Crypto Header.  
From I2C perspective, these blocks can be written if not locked by the I2C section lock.  
Table below shows the location of the 128-bit AES Table 26 keys in the configuration  
memory.  
NOTE: AES keys are only available for NTP5332 in AES mode.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
26 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 26.ꢀKey location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
2Dh  
2Eh  
2Fh  
I2C  
1020h  
1021h  
1022h  
1023h  
1024h  
1025h  
1026h  
1027h  
1028h  
1029h  
102Ah  
102Bh  
102Ch  
102Dh  
102Eh  
102Fh  
KEY0_0 (LSB)  
KEY0_4  
KEY0_1  
KEY0_5  
KEY0_9  
KEY0_13  
KEY1_1  
KEY1_5  
KEY1_9  
KEY1_13  
KEY2_1  
KEY2_5  
KEY2_9  
KEY2_13  
KEY3_1  
KEY3_5  
KEY3_9  
KEY3_13  
KEY0_2  
KEY0_6  
KEY0_10  
KEY0_14  
KEY1_2  
KEY1_6  
KEY1_10  
KEY1_14  
KEY2_2  
KEY2_6  
KEY2_10  
KEY2_14  
KEY3_2  
KEY3_6  
KEY3_10  
KEY3_14  
KEY0_3  
KEY0_7  
KEY0_8  
KEY0_11  
KEY0_12  
KEY1_0 (LSB)  
KEY1_4  
KEY0_15 (MSB)  
KEY1_3  
KEY1_7  
KEY1_8  
KEY1_11  
KEY1_12  
KEY2_0 (LSB)  
KEY2_4  
KEY1_15 (MSB)  
KEY2_3  
KEY2_7  
KEY2_8  
KEY2_11  
KEY2_12  
KEY3_0 (LSB)  
KEY3_4  
KEY2_15 (MSB)  
KEY3_3  
KEY3_7  
KEY3_8  
KEY3_11  
KEY3_12  
KEY3_15 (MSB)  
If using NFC plain password mode, block addresses 20h to 26h (from NFC perspective)  
and 1020h to 1026h (from I2C perspective) are used to store seven 32-bit passwords  
as shown in Table 27. Blocks from 27h up to and including 2Fh are not used in plain  
password mode and are set to RFU.  
Default password bytes of Privacy and Destroy password are all 0Fh, Read, Write and  
EAS/AFI password bytes have a default value of all 00h.  
The usage of passwords, read and write access to passwords depends upon NFC Global  
Crypto Header settings.  
Table 27.ꢀPlain Password location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
20h  
21h  
22h  
23h  
24h  
I2C  
NFC_PWD0_  
0 (LSB)  
NFC_PWD0_  
3 (MSB)  
Read Password  
Write Password  
1020h  
1021h  
1022h  
1023h  
1024h  
NFC_PWD0_1  
NFC_PWD1_1  
NFC_PWD2_1  
NFC_PWD3_1  
NFC_PWD4_1  
NFC_PWD0_2  
NFC_PWD1_2  
NFC_PWD2_2  
NFC_PWD3_2  
NFC_PWD4_2  
NFC_PWD1_  
0 (LSB)  
NFC_PWD1_  
3 (MSB)  
NFC_PWD2_  
0 (LSB)  
NFC_PWD2_  
3 (MSB)  
Privacy Password  
Destroy Password  
EAS/AFI Password  
NFC_PWD3_  
0 (LSB)  
NFC_PWD3_  
3 (MSB)  
NFC_PWD4_  
0 (LSB)  
NFC_PWD4_  
3 (MSB)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
27 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
25h  
26h  
I2C  
NFC_PWD5_  
0 (LSB)  
NFC_PWD5_  
3 (MSB)  
AREA_1 Read  
Password  
1025h  
1026h  
NFC_PWD5_1  
NFC_PWD6_1  
NFC_PWD5_2  
NFC_PWD6_2  
NFC_PWD6_  
0 (LSB)  
NFC_PWD6_  
3 (MSB)  
AREA_1 Write  
Password  
For I2C password authentication, there are four 32-bit I2C passwords (default value of all  
password bytes is 00h) which can be read or written by the host depending on the I2C  
Key Header configuration.  
Table 28.ꢀI2C Password location  
Block Address  
Byte 0  
Description  
Byte 1  
Byte 2  
Byte 3  
NFC  
33h  
34h  
35h  
36h  
I2C  
I2C_PWD0_  
0 (LSB)  
I2C_PWD0_  
3 (MSB)  
Read Password  
Write Password  
1033h  
1034h  
1035h  
1036h  
I2C_PWD0_1  
I2C_PWD1_1  
I2C_PWD2_1  
I2C_PWD3_1  
I2C_PWD0_2  
I2C_PWD1_2  
I2C_PWD2_2  
I2C_PWD3_2  
I2C_PWD1_  
0 (LSB)  
I2C_PWD1_  
3 (MSB)  
I2C_ PWD2_  
0 (LSB)  
I2C_PWD2_  
3 (MSB)  
AREA_1 Read  
Password  
I2C_ PWD3_  
0 (LSB)  
I2C_PWD3_  
3 (MSB)  
AREA_1 Write  
Password  
Password authentication from I2C perspective is done by using I2C write command with  
the password to the I2C Key authenticate location. This will make the I2C logic to enter  
the Authenticated state if the key matches with the respective key.  
Table 29.ꢀI2C Key Authenticate Password location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
I2C_PWD0_  
0_AUTH (LSB)  
I2C_PWD0_  
1_AUTH  
I2C_PWD0_  
2_AUTH  
I2C_PWD0_3_  
AUTH (MSB)  
Read Authenticate  
Write Authenticate  
1096h  
I2C_PWD1_  
0_AUTH (LSB)  
I2C_PWD1_  
1_AUTH  
I2C_PWD1_  
2_AUTH  
I2C_PWD1_3_  
AUTH (MSB)  
1097h  
I2C_PWD2_  
0_AUTH (LSB)  
I2C_PWD2_  
1_AUTH  
I2C_PWD2_  
2_AUTH  
I2C_PWD2_3_  
AUTH (MSB)  
AREA_1 Read  
Authenticate  
1098h  
I2C_PWD3_  
0_AUTH (LSB)  
I2C_PWD3_  
1_AUTH  
I2C_PWD3_  
2_AUTH  
I2C_PWD3_3_  
AUTH (MSB)  
AREA_1Write  
Authenticate  
1099h  
8.1.3.10 I2C Key Header  
The Host interface can access the user memory with I2C READ and I2C WRITE  
commands. The memory access may be protected by plain password depending on the  
access conditions.  
The programming of I2C Key Header can be done in only one direction from lower state  
to higher state and it is irreversible.  
The NFC interface can access this block with READ CONFIG and WRITE CONFIG  
commands if not locked by NFC section lock. Once locked as per table below, I2C_KH  
cannot be updated from the NFC interface anymore.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
28 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table below shows the location of the I2C Key Header Configuration in the configuration  
memory:  
Table 30.ꢀI2C Key Header (I2C_KH) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
30h  
1030h  
I2C_KH  
RFU  
Table 31.ꢀI2C Key Header Values  
Value  
Status  
Description  
81h  
Not active  
(default)  
The related I2C passwords, I2C Protection Pointer and I2C Protection Pointer  
Condition can be read and written with the I2C READ and I2C WRITE commands.  
The related password is not active and cannot be used.  
C3h  
E7h  
Active  
The I2C passwords are active. After authentication with write key the I2C_PP,  
I2C_PPC and Key header can be written and I2C Keys can be read or written.  
Active and locked The I2C key is active and locked and cannot be modified any longer. The related key  
cannot be read or written with the I2C READ or I2C WRITE command. The I2C_PP  
and I2C_PPC can be read with the READ command, but writing with the WRITE  
command is not possible any longer.  
all other  
Disabled  
Key is disabled and cannot be used  
8.1.3.11 I2C Protection Pointer and Condition  
The I2C Protection pointer (I2C_PP) defines the address of the user memory where  
the user memory below PP_AREA_1 is divided into AREA_0-L and AREA_0-H, two  
arbitrarily sized sections with independent access conditions, which are defined by  
condition byte (I2C_PPC).  
The NFC interface can access this configuration block with READ CONFIG and WRITE  
CONFIG commands if not locked by NFC section lock.  
Table 32.ꢀI2C Protection Pointer and Configuration location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
31h  
1031h  
I2C_PP  
I2C_PPC  
RFU  
RFU  
The protection pointer address (I2C_PP) defines the base address where the user  
memory below PP_ARA_1 is divided into higher and lower sections.  
The memory address below protection pointer address is called I2C AREA_0-L.  
The memory address above and including protection pointer address is called I2C  
AREA_0-H  
I2C AREA_0-H ends, where AREA_1 starts. Note it is the same position (PP_AREA_1)  
as from NFC perspective (see Section 8.1.3.24).  
Below is an example where the memory is divided into to areas with I2C_PP address  
set to 0050h. In this example PP_AREA_1 is pointing outside the user EEPROM, which  
means I2C AREA_0-H ends at the end of the user memory.  
Default value of I2C_PP is FFh.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
29 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 33.ꢀI2C Memory organization example  
Block  
0000h  
0001h  
0002h  
...  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
AREA_0-L  
...  
...  
...  
...  
004Eh  
004Fh  
0050h  
0051h  
:
AREA_0-H  
:
:
:
:
01FEh  
01FFh  
RFU  
Note: Counter  
page from NFC  
perspective  
If the protection pointer address is set to block 0, then the entire user memory is defined  
as AREA_0-H.  
The protection pointer address and protection pointer configuration can be only changed  
under following conditions:  
I2C Key Header Configuration status is "Not Active"  
I2C Key Header Configuration status is "Active and read/write after authentication" with  
read and write privilege key I2C authentication has been executed before successfully.  
The protection pointer address and protection pointer configuration cannot be changed  
when I2C configuration status is "Active and Locked". This status is irreversible.  
Configuration area and SRAM access can be protected by I2C authentication when  
related bits in SRAM_CONF_PROT are set to 1b.  
The default value of I2C_PPC is 00h. Which means full access to AREA_0-L and  
AREA_0-H.  
Table 34.ꢀI2C Protection Pointer Configuration (I2C_PPC)  
Bit  
7
Name  
Value Description  
RFU  
RFU  
0b  
0b  
6
0b  
1b  
0b  
1b  
0b  
0b  
0b  
1b  
AREA_0-H is not write protected  
5
4
WRITE_AREA_H  
REA_AREA_H  
AREA_0-H is write protected  
AREA_0-H is not read protected  
AREA_0-H is read protected  
3
2
RFU  
RFU  
AREA_0-L is not write protected  
AREA_0-L is write protected  
1
WRITE_AREA_L  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
30 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
Name  
Value Description  
0b  
1b  
AREA_0-L is not read protected  
AREA_0-L is read protected  
0
READ_AREA_L  
8.1.3.12 I2C Authentication Limit Counter  
The I2C Authentication Limit Counter is a feature to limit the maximum number of failed  
authentications from I2C perspective. The counter is incremented for failed password  
write to block 1096h to 1099h. The counter resets on positive authentication.  
The NFC interface can access this block with READ CONFIG and WRITE CONFIG  
commands if not locked by NFC section lock.  
Table 35.ꢀI2C Authentication Limit Counter (I2C_AUTH_LIMIT) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
I2C_AUTH_  
LIMIT (LSB)  
I2C_AUTH_  
LIMT (MSB)  
32h  
1032h  
RFU  
Byte 0 of Block 32h is LSB and Byte 1 is MSB of the I2C Authentication Limit counter  
value. Default value of I2C_AUTH_LIMIT is 00h.  
The start value for the Authentication Limit can be preset with an I2C WRITE command if  
I2C Key header is not locked or Not active  
I2C Key header is Active then after valid authentication with a write key.  
The Authentication limit is enabled with the most significant bit of Byte 1 is set to 1b. The  
remaining 15 bit of I2C_AUTH_LIMIT are defining the preset value.  
Example:  
8000h enables and presets the authentication limit to 0, which means the maximum  
number of failed authentications before a successful is required again is 32767.  
Remark: The absolute maximum authentication limit value is FFFEh before a positive  
authentication is required, otherwise the authentication is irreversibly locked (no longer  
available).  
As soon as the value of the Authentication limit reaches  
FFFFh: no further authentication possible any longer. This status is irreversible.  
8.1.3.13 Configuration  
Different features can be configured with CONFIG bits. The effect does not take place  
in the current session. The effect takes place after POR. All config bits can be read and  
written from both interfaces.  
Table 36.ꢀConfiguration Bytes Location (CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
37h  
1037h  
CONFIG_0  
CONFIG_1  
CONFIG_2  
RFU  
On POR, all CONFIG bits are copied to CONFIG_REG (see Section 8.1.4.2).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
31 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 37.ꢀConfiguration Definition (CONFIG_0)  
Bit  
Name  
SRAM_COPY_EN  
RFU  
Value  
0b  
Description  
SRAM copy on POR disabled (default)  
SRAM copy on POR enabled  
7
1b  
6 to 4  
3
0b  
00b  
01b  
RFU  
EH_MODE  
Energy harvesting optimized for low field strength  
(default)  
10b  
2
1
0
11b  
0b  
1b  
0b  
1b  
Energy harvesting optimized for high field strength  
NFC Write access to all session register (default)  
No NFC write access to session registers A3h to A7h  
Normal Operation Mode (Default)  
LOCK_SESSION_REG  
AUTO_STANDBY_MODE_EN  
IC enters standby mode after boot if there is no RF field  
present automatically.  
Table 38.ꢀConfiguration Definition (CONFIG_1)  
Bit  
Name  
EH_ARBITER_MODE_EN  
RFU  
Value  
Description  
In energy harvesting use case, ARBITER_MODE  
needs to be set with session registers after startup  
(default)  
0b  
7
ARBITER_MODE is set automatically in any case after  
startup  
1b  
6
5
0b  
00b  
01b  
10b  
11b  
I2C slave (default)  
I2C master only for NTP5332  
GPIO/PWM  
USE_CASE_CONF  
ARBITER_MODE  
4
All host interface functionality disabled and pads are in  
3-state mode  
00b  
01b  
10b  
11b  
0b  
Normal Mode (default)  
3
2
1
0
SRAM mirror mode  
SRAM passes through mode  
SRAM PHDC mode  
SRAM is not accessible (default)  
SRAM is available (when VCC supplied)  
Data transfer direction is I2C to NFC (default)  
Data transfer direction is NFC to I2C  
SRAM_ENABLE  
1b  
0b  
PT_TRANSFER_DIR  
1b  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
32 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 39.ꢀConfiguration Definition (CONFIG_2)  
Bit  
Name  
Value  
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
0b  
Description  
Receiver disabled  
7
Plain input with weak pull-up  
Plain input  
GPIO1_IN  
6
5
4
3
2
1
0
Plain input with weak pull-down (Default)  
Receiver disabled (Default)  
Plain input with weak pull-up  
Plain input  
GPIO0_IN  
Plain input with weak pull-down (Default)  
Extended commands are disabled  
Extended commands are supported (Default)  
Lock block commands are disabled  
Lock block commands are supported (Default)  
Low Speed GPIO  
EXTENDED_COMMANDS_  
SUPPORTED  
1b  
0b  
LOCK_BLOCK_  
COMMAND_SUPPORTED  
1b  
0b  
GPIO1_SLEW_RATE  
GPIO0_SLEW_RATE  
1b  
High Speed GPIO (Default)  
Low Speed GPIO  
0b  
1b  
High Speed GPIO (Default)  
8.1.3.14 Synchronization Block  
These bytes define the block address of the user memory being a terminator  
block. Whenever there is read or written to the block address as specified in  
SYNCH_DATA_BLOCK from the NFC interface the respective status bit is set. And also  
ED pin is set accordingly if configured to detect SYNCH_DATA_BLOCK access.  
Table 40.ꢀSynchronization Block Bytes Location (SYNCH_DATA_BLOCK)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
SYNCH_DATA_  
BLOCK (LSB)  
SYNCH_DATA_  
BLOCK (MSB)  
RFU  
38h  
1038h  
Table 41.ꢀSynchronization Block Register Bytes Location (SYNCH_DATA_BLOCK_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
SYNCH_DATA_  
BLOCK_REG (LSB)  
SYNCH_DATA_  
BLOCK_REG (MSB)  
RFU  
A2h  
10A2h  
8.1.3.15 Pulse Width Modulation and GPIO configuration  
These configuration bytes define the various configuration bits for GPIO/PWM use case  
(see Section 8.1.3.13). All features can be configured from NFC and I2C perspective  
as long NTAG 5 link is configured for slave mode. For details refer to Section 8.3.3 and  
Section 8.3.4.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
33 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 42.ꢀPWM and GPIO Configuration Location (PWM_GPIO_CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
PWM_GPIO_  
CONFIG_0  
PWM_GPIO_  
CONFIG_1  
RFU  
39h  
1039h  
Table 43.ꢀPWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_0)  
Bit  
Name  
Value  
0b  
Description  
Output status on pad is LOW (default)  
Output status on pad is HIGH  
7
SDA_GPIO1_OUT_STATUS  
1b  
0b  
Output status on pad is LOW (default)  
Output status on pad is HIGH  
6
5 to 4  
3
SCL_GPIO0_OUT_STATUS  
1b  
RFU  
00b  
0b  
Output (Default)  
Input  
SDA_GPIO1  
1b  
0b  
Output (Default)  
Input  
2
1
0
SCL_GPIO0  
1b  
0b  
GPIO (Default)  
PWM  
SDA_GPIO1_PWM1  
SCL_GPIO0_PWM0  
1b  
0b  
GPIO (Default)  
PWM  
1b  
Table 44.ꢀPWM and GPIO Configuration Definition (PWM_GPIO_CONFIG_1 and PWM_GPIO_CONFIG_1_REG)  
Bit  
7
Name  
Value  
Description  
Pre-scalar configuration for PWM1 channel  
(default 00b)  
PWM1_PRESCALE  
PWM0_PRESCALE  
00b  
6
5
Pre-scalar configuration for PWM0 channel  
(default 00b)  
00b  
4
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
6-bit resolution (default)  
8-bit resolution  
3
2
1
0
PWM1_RESOLUTION_CONF  
PWM0_RESOLUTION_CONF  
10-bit resolution  
12-bit resolution  
6-bit resolution (default)  
8-bit resolution  
10-bit resolution  
12-bit resolution  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
34 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.1.3.16 Pulse Width Modulation duty cycle settings  
Details can be found in PWM Mode section (see Section 8.3.4).  
Table 45.ꢀPulse Width Modulation Duty Cycle Configuration Location (PWMx_ON and PWMx_OFF)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
3Ah  
3Bh  
I2C  
103Ah  
103Bh  
PWM0_ON (LSB)  
PWM1_ON (LSB)  
PWM0_ON (MSB)  
PWM1_ON (MSB)  
PWM0_OFF (LSB)  
PWM1_OFF (LSB)  
PWM0_OFF (MSB)  
PWM1_OFF (MSB)  
Table 46.ꢀPulse Width Modulation Duty Cycle Session Register Location (PWMx_ON and PWMx_OFF)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
A4h  
A5h  
I2C  
PWM0_ON_  
REG (LSB)  
PWM0_ON_  
REG (MSB)  
PWM0_OFF_  
REG (MSB)  
PWM0_OFF_REG (LSB)  
PWM1_OFF_REG (LSB)  
10A4h  
10A5h  
PWM1_ON_  
REG (LSB)  
PWM1_ON_  
REG (MSB)  
PWM1_OFF_  
REG (MSB)  
Table 47.ꢀPulse Width Modulatin ON time Configuration Definition (PWMx_ON and PWMx_ON_REG)  
Bit  
Name  
Default  
Value  
Description  
7 to 4  
3 to 0  
7 to 0  
RFU  
all 0b  
all 0b  
all 0b  
PWMx_ON (MSB)  
PWMx_ON (LSB)  
coded time PWM channel x output will be asserted HIGH  
Table 48.ꢀPulse Width Modulation OFF time Configuration Definition (PWMx_OFF and PWMx_OFF_REG)  
Bit  
Name  
Default  
Value  
Description  
7 to 4  
3 to 0  
7 to 0  
RFU  
all 0b  
all 0b  
all 0b  
PWMx_OFF (MSB)  
PWMx_OFF (LSB)  
coded time PWM channel x output will be asserted LOW  
PWM on and off times are coded by using maximum 12 bits. To code for example,  
PWM0_ON as 0123h, PWM0_ON (LSB) is set to 23h, and PWM0_ON (MSB) is set to  
01h.  
8.1.3.17 Watch Dog Timer settings  
I2C Watch Dog Timer settings can be adjusted and enabled via configuration bytes from  
both interfaces. Related session registers are read only. Watch Dog Timer 16-bit default  
value is 0848h. Details can be found in WDT section (see Section 8.3.1.3).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
35 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 49.ꢀWatch Dog Timer Configuration Location (WDT_CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
3Ch  
103Ch  
WDT_CONFIG (LSB) WDT_CONFIG (MSB)  
WDT_ENABLE  
SRAM_COPY_BYTES  
Table 50.ꢀWatch Dog Timer Configuration Register Location (WDT_CONFIG_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
WDT_CONFIG_  
REG (LSB)  
WDT_CONFIG_  
REG (MSB)  
WDT_EN_REG  
RFU  
A6h  
10A6h  
Table 51.ꢀWatch Dog Timer Enable Definition (WDT_ENABLE and WDT_EN_REG)  
Bit  
Name  
Default  
Value  
Description  
7 to 1  
0
RFU  
all 0b  
0b  
Watch Dog Timer disabled  
WDT_ENABLE  
1b  
Watch Dog Timer enabled (default)  
8.1.3.18 Energy harvesting settings  
Energy harvesting configuration controls the behavior of the energy harvesting  
output pin. If DISABLE_POWER_CHECK is 0b and energy harvesting is enabled  
with EH_ENABLE is 1b, only when the applied field strength is sufficient to generate  
configured minimum output load current (EH_IOUT_SEL) and voltage (EH_VOUT_SEL),  
the energy harvesting output is enabled.  
If energy harvesting will be enabled during the session with register bits,  
EH_IOUT_SEL and EH_VOUT_SEL define the needed output power. However,  
DISABLE_POWER_CHECK and EH_ENABLE bits need to be set to 0b in this case.  
Details can be found in energy harvesting section (see Section 8.5).  
Table 52.ꢀEnergy harvesting Configuration Location (EH_CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
3Dh  
103Dh  
EH_CONFIG  
RFU  
ED_CONFIG  
RFU  
Table 53.ꢀEnergy harvesting Configuration Value Definition (EH_CONFIG)  
Bit  
7
Name  
Value  
Description  
RFU  
6
000b  
001b  
010b  
>0.4 mA (Default)  
>0.6 mA  
EH_VOUT_I_SEL  
>1.4 mA  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
36 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
Name  
Value  
Description  
>2.7 mA  
5
011b  
100b  
101b  
110b  
111b  
0b  
>4.0 mA  
>6.5 mA  
4
>9.0 mA  
>12.5 mA  
Only if sufficient power can be harvested, VOUT  
will be enabled (default)  
DISABLE_  
3
POWER_CHECK  
1b  
Power level will not be checked, VOUT will be  
enabled immediately after startup  
2
1
0
00b  
01b  
10b  
11b  
0b  
1.8 V (Default)  
2.4 V  
EH_VOUT_V_SEL  
EH_ENABLE  
3 V  
RFU  
Energy harvesting disabled (default)  
Energy harvesting enabled  
1b  
8.1.3.19 Event detection pin configuration settings  
Event detection and field detection functionality define the behavior of the active low ED  
pin depending on various events. As this pin is an open-drain active low implementation,  
ED pin state ON means that signal is LOW and OFF means that signal is HIGH. More  
details can be found in ED section (see Section 8.3.2).  
Table 54.ꢀEvent Detection Configuration Location (ED_CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
3Dh  
103Dh  
EH_CONFIG  
RFU  
ED_CONFIG  
RFU  
Table 55.ꢀEvent Detection Configuration Register Location (ED_CONFIG_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
A8h  
10A8h ED_COFIG_REG  
RFU  
Table 56.ꢀEvent Detection Definition (ED_CONFIG and ED_CONFIG_REG)  
Bit  
Name  
Value  
ED pin  
state  
Description  
7 to 4  
3 to 0  
RFU  
0000b  
0000b  
N/A  
OFF  
ON  
Disable ED  
Event detection pin disabled (default)  
NFC field present  
NFC Field detect  
0001b  
OFF  
NFC field absent  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
37 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
Name  
Value  
ED pin  
state  
Description  
ON  
Pulse width modulation signal during OFF period  
Pulse width modulation signal during On period  
PWM  
0010b  
OFF  
Last byte of SRAM data has been read via NFC; host  
can access SRAM again  
Last byte written by I2C, or  
NFC off, or  
ON  
OFF  
ON  
I2C to NFC pass-through  
0011b  
0100b  
VCC is off  
Last byte written by NFC; host can read data from  
SRAM  
NFC to I2C pass-through  
Arbiter lock  
Last byte has been read from I2C, or  
NFC off, or  
OFF  
VCC off  
ON  
OFF  
ON  
Arbiter locked access to NFC interface  
Lock to NFC interface released  
0101b  
0110b  
0111b  
1000b  
Length byte(block 1, byte 1) is not ZERO  
Length byte (block 1, byte1) is ZERO  
IC is NOT in standby mode  
NDEF Message TLV  
Length  
OFF  
ON  
Stand-by mode  
OFF  
ON  
IC is in standby mode  
Start of programming cycle during WRITE command  
Start of response to WRITE command or NFC off  
Start of read cycle during READ command  
WRITE command  
indication  
OFF  
ON  
READ command  
indication  
1001b  
End of read access, or  
NFC off  
OFF  
ON  
Start of (any) command  
Start of command  
indication  
1010b  
1011b  
1100b  
1101b  
End of response to command, or  
NFC off  
OFF  
ON  
Data read from SYNCH_BLOCK  
READ from SYNCH_  
BLOCK  
Event needs to be cleared by setting b0 of ED_  
RESET_REG to 1b or NFC off  
OFF  
ON  
Data written to SYNCH_BLOCK  
WRITE to SYNCH_  
BLOCK  
Event needs to be cleared by setting b0 of ED_  
RESET_REG to 1b or NFC off  
OFF  
ON  
1101b written to ED_CONFIG  
Software Interrupt  
Event needs to be cleared by setting b0 of ED_  
RESET_REG to 1b  
OFF  
RFU  
RFU  
1110b  
1111b  
N/A  
N/A  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
38 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 57.ꢀEvent Detection Clear Register Location (ED_INTR_CLEAR_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
ED_INTR_  
CLEAR_REG  
RFU  
ABh  
10ABh  
Table 58.ꢀEvent Detection Clear Register (ED_INTR_CLEAR_REG)  
Bit  
7 to 1  
0
Name  
Value  
all 0b  
1b  
Description  
RFU  
ED_INTR_CLEAR  
write 1b to release ED pin  
ED pin is cleared i.e. released when writing 01h to the ED clear register. The bit gets  
automatically cleared after clearing the ED pin.  
8.1.3.20 I2C slave configuration settings  
I2C slave functionality can be configured with the following configuration registers from  
both interfaces.  
Table 59.ꢀI2C Slave Configuration Location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
I2C_MASTER_  
SCL_LOW  
I2C_MASTER_  
SCL_HIGH  
I2C_SLAVE_ADDR  
I2C_SLAVE_CONFIG  
3Eh  
103Eh  
Table 60.ꢀI2C Slave Configuration Definition (I2C_SLAVE_ADDR)  
Bit  
7
Name  
Value  
0b  
Description  
RFU  
6 to 0  
I2C_SLAVE_ADDR  
54h  
I2C slave address used in slave configuration  
Table 61.ꢀI2C Slave Configuration Definition (I2C_SLAVE_CONFIG)  
Bit  
Name  
Value  
00000b  
0b  
Description  
7 to 3  
RFU  
Slave does not reset if repeated start is received (Default)  
I2C slave resets internal state machine on repeated start  
2
I2C_S_REPEATED_START  
1b  
1
0
RFU  
RFU  
0b  
0b  
8.1.3.21 I2C master clock configuration settings  
I2C Master baud rate and SCL high and low can be configured by the related  
configuration values.  
Details about the formula can be found in I2C master section.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
39 / 133  
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
NOTE: I2C master is only available for NTP5332.  
Table 62.ꢀI2C Master Clock Settings Configuration Location (I2C_MASTER_CONFIG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
I2C_MASTER_  
SCL_LOW  
I2C_MASTER_  
SCL_HIGH  
I2C_SLAVE_ADDR  
I2C_SLAVE_CONFIG  
3Eh  
103Eh  
Table 63.ꢀI2C Master Clock Configuration Definition (I2C_MASTER_SCL_LOW)  
Bit  
Name  
Default  
Value  
Description  
7
RFU  
09h  
I2C master configuration SCL low period. Default: 400 kHz,  
41%duty cycle.  
6 to 0  
I2C_MASTER_SCL_LOW  
Table 64.ꢀI2C Master Clock Configuration Definition (I2C_MASTER_SCL_HIGH)  
Bit  
Name  
Default  
Value  
Description  
7
RFU  
02h  
I2C master configuration SCL HIGH period. Default: 400  
kHz, 41%duty cycle.  
6 to 0  
I2C_MASTER_SCL_HIGH  
8.1.3.22 Device security configuration bytes  
NTAG 5 link features scale-able security. The level of security can be selected with  
DEV_SEC_CONFIG byte.  
SRAM_CONF_PROT is described in Section 8.1.3.23.  
PP_AREA_1 is described in Section 8.1.3.24.  
Table 65.ꢀDevice Security Configuration Byte location  
Block Address  
Byte 0  
Byte 3  
Byte 1  
Byte 2  
NFC  
I2C  
3Fh  
103Fh  
DEV_SEC_CONFIG  
SRAM_CONF_PROT  
PP_AREA_1 (LSB)  
PP_AREA_1 (MSB)  
The IC security features can be enabled or disabled or can choose different security  
options available from NFC perspective:  
AES authentication scheme  
Plain password feature  
Table 66.ꢀDevice Security Byte Definition (DEV_SEC_CONFIG)  
Bit  
Name  
Value  
010b  
101b  
other  
Description  
block 3Fh with device security configuration bytes is locked  
7 to 5  
Security Lock  
block 3Fh is writeable (default)  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
40 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
4
Name  
RFU  
Value  
Description  
00b  
3
2
other  
010b  
101b  
RFU  
1
NFC Security  
AES (only applicable for NTP5332 - do NOT use for NTP5312)  
plain password (default)  
0
8.1.3.23 SRAM and Configuration protection  
Access to complete SRAM and blocks 37h to 54h of configuration area can be restricted  
with SRAM_CONFIG_PROT byte.  
Table 67.ꢀSRAM and Configuration Byte location  
Block Address  
Byte 0  
Byte 3  
Byte 1  
Byte 2  
NFC  
I2C  
3Fh  
103Fh  
DEV_SEC_CONFIG  
SRAM_CONF_PROT  
PP_AREA_1 (LSB)  
PP_AREA_1 (MSB)  
Table 68.ꢀSRAM and Configuration Protection (SRAM_CONF_PROT)  
Bit  
Name  
Value  
Description  
7 to 6  
RFU  
00b  
Configuration area is not write protected from I2C perspective  
(default)  
Configuration area is write protected from I2C perspective  
Configuration area is not read protected from I2C perspective  
(Default)  
0b  
1b  
0b  
5
4
I2C_CONFIG_W  
I2C_CONFIG_R  
1b  
0b  
1b  
0b  
1b  
Configuration area is read protected from I2C perspective  
SRAM is not write protected from NFC perspective (Default)  
SRAM is write protected from NFC perspective  
3
2
NFC_SRAM_W  
NFC_SRAM_R  
SRAM is not read protected from NFC perspective (Default)  
SRAM is read protected from NFC perspective  
Configuration area is not write protected from NFC perspective  
(Default)  
0b  
1b  
0b  
1b  
1
0
NFC_CONFIG_W  
NFC_CONFIG_R  
Configuration area is write protected from NFC perspective  
Configuration area is not read protected from NFC perspective  
(Default)  
Configuration area is read protected from NFC perspective  
8.1.3.24 Restricted AREA_1 pointer  
The AREA_1 Pointer (PP_AREA_1) can be configured by directly writing PP_AREA_1  
byte to configuration memory using WRITE CONFIG command (see Section 8.2.3.2.2).  
This 16-bit block address is the same for NFC and I2C perspective. The default value is  
FFFFh.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
41 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 69.ꢀRestricted AREA_1 Pointer location  
Block Address  
Byte 0  
Byte 3  
Byte 2  
Byte 1  
SRAM_CONF_PROT  
NFC  
I2C  
3Fh  
103Fh  
DEV_SEC_CONFIG  
PP_AREA_1 (LSB)  
PP_AREA_1 (MSB)  
In below example, NFC protection pointer (NFC_PP_AREA_0H) is set to 50h and  
PP_AREA_1 is set to 0060h, e.g. PP_AREA_1 (LSB) is 60h and PP_AREA_1 (MSB) is  
00h. This example illustrates the view from NFC perspective.  
From I2C perspective Area 1 will be the same, however Area 0-L and Area 0-H may look  
different depending on I2C protection pointer.  
Table 70.ꢀMemory organization example from NFC perspective  
Block  
0000h  
0001h  
0002h  
...  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
AREA_0-L  
...  
...  
...  
...  
...  
...  
...  
...  
004Fh  
0050h  
0051h  
...  
AREA_0-H  
005Fh  
0060h  
0061h  
...  
AREA_1  
Counter  
...  
...  
...  
...  
01FEh  
01FFh  
C0  
C1  
00h  
PROT  
8.1.3.25 Application Family Identifier  
The Application Family Identifier (AFI) represents the type of application targeted by the  
device and is used to extract from all the ICs present only the ICs meeting the required  
application criteria.  
AFI can be configured using WRITE AFI command (see Section 8.2.3.9.1) or directly  
writing AFI byte to configuration memory using WRITE CONFIG command (see  
Section 8.2.3.2.2).  
Default value of AFI is 00h.  
From I2C perspective, this byte can be accessed with normal READ and WRITE  
commands as long as not locked by I2C section locks.  
Table 71.ꢀApplication Family Identifier (AFI) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
55h  
1055h  
AFI  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
42 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.1.3.26 Data Storage Format Identifier  
The Data Storage Format Identifier may indicate how the data is structured in the VICC  
memory. If not used, this byte shall be set to 00h, which is the default value.  
The Data Storage Format Identifier (DSFID) can be configured using WRITE DSFID  
command (see Section 8.2.3.9.3) or directly writing DSFID byte to configuration memory  
using WRITE CONFIG command (see Section 8.2.3.2.2).  
From I2C perspective, this byte can be accessed with normal READ and WRITE  
commands as long as not locked by I2C section locks.  
Table 72.ꢀData Storage Format Identifier (DSFID) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
56h  
1056h  
DSFID  
RFU  
8.1.3.27 Electronic Article Surveillance ID  
The Electronic Article Surveillance ID (EAS ID) can be configured using WRITE EAS  
ID (see Section 8.2.3.9.10) command or directly writing EAS_ID byte to configuration  
memory using WRITE CONFIG command (see Section 8.2.3.2.2).  
Default value of EAS_ID is 0000h.  
From I2C perspective, this byte can be accessed with normal READ and WRITE  
commands as long as not locked by I2C section locks.  
Table 73.ꢀElectronic Article Surveillance ID (EASID) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
57h  
1057h  
EAS_ID (LSB)  
EAS_ID (MSB)  
RFU  
8.1.3.28 NFC protection pointer  
The NFC protection pointer (NFC_PP_AREA_0H) can be configured using PROTECT  
PAGE command (see Section 8.2.3.3.6) or directly writing NFC_PP_AREA_0H byte to  
configuration memory using WRITE CONFIG command (see Section 8.2.3.2.2).  
Default value is FFh.  
Table 74.ꢀNFC Protection Pointer (NFC PP) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
NFC_  
58h  
1058h  
PP_AREA_0H  
NFC_PPC  
RFU  
RFU  
In below example, NFC protection pointer is set to 50h. PP_AREA_1 is out side of the  
EEPROM area in this example. This example illustrates the view from NFC perspective.  
Table 75.ꢀMemory organization example  
Block  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
AREA_0-L  
0000h  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
43 / 133  
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
0001h  
0002h  
...  
...  
...  
...  
...  
004Fh  
0050h  
0051h  
...  
AREA_0-H  
...  
...  
...  
...  
01FEh  
01FFh  
C0  
C1  
00h  
PROT  
Counter  
8.1.3.29 NFC Protection Pointer Conditions  
The NFC Protection Pointer Conditions (NFC PPC) can be configured using PROTECT  
PAGE command (see Section 8.2.3.3.6) or directly writing NFC_PPC byte to  
configuration memory using WRITE CONFIG command (see Section 8.2.3.2.2) as  
defined in table below.  
Table 76.ꢀNFC Protection Pointer Conditions (NFC_PPC) location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
58h  
1058h  
NFC_PP_AREA_0H  
NFC_PPC  
RFU  
RFU  
Table 77.ꢀNFC Protection Pointer Configuration (NFC_PPC)  
Bit  
7
Name  
RFU  
Value Description  
0b  
0b  
6
RFU  
0b  
1b  
0b  
1b  
0b  
0b  
0b  
1b  
0b  
1b  
AREA_0-H is not write protected (Default)  
AREA_0-H is write protected  
5
4
Write AREA_0_H  
Read AREA_0_H  
AREA_0-H is not read protected (Default)  
AREA_0-H is read protected  
3
2
RFU  
RFU  
Write AREA_0_L  
AREA_0-L is not write protected (Default)  
AREA_0-L is write protected  
1
0
Read AREA_0_L  
AREA_0-L is not read protected (Default)  
AREA_0-L is read protected  
8.1.3.30 NFC lock bytes  
User blocks can be blocked from writing by the NFC interface. These bits are one time  
programmable. Once written to 1b, they cannot be changed back to 0b. Each bit locks  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
44 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
one block of user memory area (e.g., bit 0 of byte 0 locks block 0).These bytes can be  
written by NFC and I2C. The access to these bytes for the particular interface can be  
restricted by configuring the device SECTION_LOCK (see Table 80).  
Table 78.ꢀNFC Lock Block Configuration location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
6Ah  
...  
I2C  
106Ah  
...  
NFC_LOCK_BL00  
...  
NFC_LOCK_BL01  
...  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
89h  
1089h  
NFC_LOCK_BL62  
NFC_LOCK_BL63  
8.1.3.31 I2C lock bytes  
User blocks can be blocked from writing by the I2C interface. These bits are one time  
programmable. Once written 1b, they cannot be changed back to 0b. Each bit locks 4  
blocks of user memory area (e.g., bit 0 of byte 0 locks blocks 0, 1, 2 and 3).These bytes  
can be written by NFC and I2C. The access to these bytes for the particular interface can  
be restricted by configuring the device configuration section locks bytes (see Table 80).  
I2C_LOCK_BL00 – bit 0 – will lock user blocks 0,1,2,3 from I2C perspective.  
Table 79.ꢀI2C Lock Block Configuration location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
8Ah  
...  
I2C  
108Ah I2C_LOCK_BL00 I2C_LOCK_BL01  
... ... ...  
1091h I2C_LOCK_BL14 I2C_LOCK_BL15  
RFU  
RFU  
RFU  
RFU  
RFU  
RFU  
91h  
8.1.3.32 Device configuration section lock bytes  
Lock bits are provided to lock different sections of the configuration area. 16 bits for  
each interface are provided to define access conditions for different sections of the  
configuration area.  
First column in the configuration memory table (see Table 11) defines the affiliated blocks  
of each section.  
Table 80.ꢀDevice configuration section lock bytes location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
92h  
93h  
94h  
95h  
I2C  
1092h  
1093h  
1094h  
1095h  
NFC_LOCK_0  
NFC_LOCK_1  
I2C_LOCK_0  
I2C_LOCK_1  
RFU  
RFU  
RFU  
RFU  
These section lock configurations are provided to allow customer to initialize NTAG 5 link  
during customer configuration from either I2C or NFC interface. After the configuration  
is done, it is recommended to write the appropriate lock conditions and lock the device  
configuration bytes.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
45 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
These lock bytes take the highest priority above all locks. Different section access  
conditions have to be chosen appropriately, so that the other interface does not change  
and corrupt the other interface security configuration.  
If I2C_LOCK_0 and NFC_LOCK_0 bits are set to 1b, then the lock bytes cannot be  
updated and gets locked permanently. If any interface is not locked i.e. any one of the  
I2C_LOCK_0 and NFC_LOCK_0 bits are 0b, then the particular interface can unlock the  
other.  
Table 81.ꢀNFC configuration section lock byte 0 definition (NFC_SECTION_LOCK_0)  
Bit  
Name  
Value  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
Description  
Section 7 is writable by NFC  
Section 7 is not writable by NFC  
Section 6 is writable by NFC  
Section 6 is not writable by NFC  
Section 5 is writable by NFC  
Section 5 is not writable by NFC  
Section 4 is writable by NFC  
Section 4 is not writable by NFC  
Section 3 is writable by NFC  
Section 3 is not writable by NFC  
Section 2 is writable by NFC  
Section 2 is not writable by NFC  
Section 1 is writable by NFC  
Section 1 is not writable by NFC  
Section 0 is writable by NFC  
Section 0 is not writable by NFC  
7
Section 7  
6
5
4
3
2
1
0
Section 6  
Section 5  
Section 4  
Section 3  
Section 2  
Section 1  
Section 0  
Table 82.ꢀNFC configuration section lock Byte 1 definition (NFC_SECTION_LOCK_1)  
Bit  
Name  
Value  
0b  
Description  
Section 8 is writable by NFC  
Section 8 is not writeable by NFC  
Section 6 is readable by NFC  
Section 6 is not readable by NFC  
Section 5 is readable by NFC  
Section 5 is not readable by NFC  
Section 4 is readable by NFC  
Section 4 is not readable by NFC  
Section 3 is readable by NFC  
Section 3 is not readable by NFC  
Section 2 is readable by NFC  
7
Section 8  
1b  
0b  
6
5
4
Section 6  
Section 5  
Section 4  
1b  
0b  
1b  
0b  
1b  
0b  
3
2
Section 3  
Section 2  
1b  
0b  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
46 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
Name  
Value  
Description  
1b  
0b  
1b  
0b  
1b  
Section 2 is not readable by NFC  
Section 1 is readable by NFC  
Section 1 is not readable by NFC  
Section 0 is readable by NFC  
Section 0 is not readable by NFC  
1
0
Section 1  
Section 0  
Table 83.ꢀI2C configuration section lock byte 0 definition (I2C_SECTION_LOCK_0)  
Bit  
Name  
Value  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
Description  
Section 7 is writable by I2C  
Section 7 is not writable by I2C  
Section 6 is writable by I2C  
Section 6 is not writable by I2C  
Section 5is writable by I2C  
Section 5 is not writable by I2C  
Section 4 is writable by I2C  
Section 4 is not writable by I2C  
Section 3 is writable by I2C  
Section 3 is not writable by I2C  
Section 2 is writable by I2C  
Section 2 is not writable by I2C  
Section 1 is writable by I2C  
Section 1 is not writable by I2C  
Section 0 is writable by I2C  
Section 0 is not writable by I2C  
7
Section 7  
6
5
4
3
2
1
0
Section 6  
Section 5  
Section 4  
Section 3  
Section 2  
Section 1  
Section 0  
Table 84.ꢀI2C configuration section lock byte 1 definition (I2C_SECTION_LOCK_1)  
Bit  
Name  
Value  
0b  
Description  
Section 8 writable by I2C  
7
Section 8  
1b  
Section 8 is not writeable by I2C  
Section 6 is readable by I2C  
Section 6 is not readable by I2C  
Section 5is readable by I2C  
Section 5 is not readable by I2C  
Section 4 is readable by I2C  
Section 4 is not readable by I2C  
Section 3 is readable by I2C  
0b  
6
5
Section 6  
Section 5  
1b  
0b  
1b  
0b  
4
3
Section 4  
Section 3  
1b  
0b  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
47 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Bit  
Name  
Value  
Description  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
Section 3 is not readable by I2C  
Section 2 is readable by I2C  
Section 2 is not readable by I2C  
Section 1 is readable by I2C  
Section 1 is not readable by I2C  
Section 0 is readable by I2C  
Section 0 is not readable by I2C  
2
1
0
Section 2  
Section 1  
Section 0  
Note: Section 7 (default SRAM content) and Section 8 (Device configuration lock bytes)  
are always readable.  
In case of not readable and/or not writeable, IC responds with an NACK from I2C  
perspective and with an error from NFC perspective, when trying to access locked  
sections.  
8.1.4 Session registers  
After POR, the content of the configuration settings (see Section 8.1.3) is loaded  
into the session register. The values of session registers can be changed during a  
session. Change to session registers take effect immediately, but only for the current  
communication session. After POR, the session registers values will again contain the  
configuration register values as before.  
To change the default behavior, changes to the related configuration bytes are needed,  
but the related effect will only be visible after the next POR.  
Session registers starting from block A3h until the end may be write protected with  
LOCK_REGISTER bit.  
Reading and writing the session registers via I2C can only be done with READ  
REGISTER and WRITE REGISTER commands.  
Most of the parameters are defined in the configuration memory section.  
Table 85.ꢀSession Register Location  
Block Address  
Remark  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
Status  
STATUS_REG  
RFU  
Register (see  
Section 8.1.4.1)  
A0h  
A1h  
10A0h  
10A1h  
Configuration (see  
Section 8.1.4.2)  
CONFIG_REG  
Block  
SYNC_DATA_BLOCK_REG  
PWM_GPIO_CONFIG_REG  
RFU  
RFU  
Address (see  
Section 8.1.4.3)  
A2h  
A3h  
10A2h  
10A3h  
PWM and GPIO  
Configuration(see  
Section 8.1.4.4)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
48 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Remark  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
PWM1  
A4h  
10A4h  
PWM0_ON_OFF_REG  
Configuration (see  
Section 8.1.4.5)  
PWM1  
A5h  
10A5h  
PWM1_ON_OFF_REG  
Configuration (see  
Section 8.1.4.5)  
Watch Dog Timer  
Configuration (see  
Section 8.1.4.6)  
WDT_CONFIG_REG  
RFU  
A6h  
A7h  
10A6h  
Energy Harvesting  
Configuration (see  
Section 8.1.4.7)  
10A7h EH_CONFIG_REG  
10A8h ED_CONFIG_REG  
RFU  
RFU  
Event detection  
functionality (see  
Section 8.1.4.8)  
A8h  
I2C Slave  
I2C_SLAVE_CONFIG_REG  
RFU  
Configuration (see  
Section 8.1.4.9)  
A9h  
AAh  
10A9h  
10AAh  
Reset  
Register (see  
Section 8.1.4.10)  
RESET_  
GEN_REG  
RFU  
RFU  
RFU  
RFU  
Clear Event  
Detection (see  
Section 8.1.4.11)  
I2C Master  
Configuration (see  
Section 8.1.4.12)  
I2C Master  
Configuration (see  
Section 8.1.4.12)  
ED_INTR_  
CLEAR_REG  
ABh  
ACh  
10ABh  
10ACh  
I2C_M_S_  
ADD_REG  
I2C_M_LEN_REG  
RFU  
I2C_M_  
STATUS_REG  
ADh  
AEh  
AFh  
10ADh  
10AEh  
10AFh  
RFU  
RFU  
8.1.4.1 Status register  
Different status of NTAG 5 link can be known by reading status register. The status  
register can be read by READ_CONFG.  
Some of the registers may be cleared. Setting status bits to 1b is not possible at all.  
Table 86.ꢀStatus Register Location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
A0h  
10A0h  
STATUS0_REG  
STATUS1_REG  
RFU  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
49 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 87.ꢀ Status 0 Register  
Access  
NFC  
Bit  
Name  
Value Description  
I2C  
0b  
1b  
EEPROM is not busy  
7
EEPROM_WR_BUSY  
R
R/W  
R
R
EEPROM is busy (programming cycle  
ongoing)  
0b  
1b  
all data written successfully  
6
5
4
3
EEPROM_WR_ERROR  
SRAM_DATA_READY  
SYNCH_BLOCK_WRITE  
SYNCH_BLOCK_READ  
R/W  
R
EEPROM write error happened. This bit  
needs to be cleared.  
0b  
data not yet ready used in pass-through  
mode  
1b  
0b  
data ready, used in pass-through mode  
data has NOT been written to SYNCH_  
BLOCK  
R
R/W  
R/W  
1b  
0b  
data had been written to SYNCH_BLOCK  
data has NOT been read from SYNCH_  
BLOCK  
R
1b  
0b  
1b  
0b  
1b  
0b  
1b  
data had been read from SYNCH_BLOCK  
I2C to NFC pass-through direction  
NFC to I2C pass-through direction  
VCC supply not present  
2
1
0
PT_TRANSFER_DIR  
VCC_SUPPLY_OK  
NFC_FIELD_OK  
R
R
R
R
R
R
VCC supply available  
No NFC field present  
NFC field present  
Table 88.ꢀ Status 1 Register  
Bit Name  
Access  
Value  
Description  
NFC  
I2C  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
VCC boot not done  
VCC boot done  
7
6
5
VCC_BOOT_OK  
NFC_BOOT_OK  
RFU  
R
R
NFC boot not done  
NFC boot done  
R
R
R
R
GPIO_1 input is LOW  
GPIO_1 input is HIGH  
GPIO_0 input is LOW  
4
3
GPIO1_IN_STATUS  
GPIO0_IN_STATUS  
R
R
R
R
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
50 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Access  
NFC  
Bit  
Name  
Value  
Description  
I2C  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
GPIO_0 input is HIGH  
2
1
0
RFU  
R
R
R
R
R/W  
R
I2C Interface not locked by arbiter  
Arbiter locked to I2C  
I2C_IF_LOCKED  
NFC_IF_LOCKED  
NFC interface not locked by arbiter  
Arbiter locked to NFC  
8.1.4.2 Configuration register  
On POR all CONFIG bits (see Section 8.1.3.13) are copied to CONFIG_REG. Some  
of these features may be changed with CONFIG_REG bits during a session. These  
features are valid at once. Most of them are just read only from NFC and/or I2C  
perspective.  
Table 89.ꢀConfiguration Register Location (CONFIG_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
A1h  
10A1h CONFIG_0_REG CONFIG_1_REG CONFIG_2_REG  
RFU  
Table 90.ꢀConfiguration Definition (CONFIG_0_REG)  
Access  
NFC  
Bit  
Name  
Value Description  
I2C  
R
0b  
1b  
0b  
0b  
1b  
SRAM copy on POR disabled  
7
6
SRAM_COPY_EN  
RFU  
R
R
SRAM copy on POR enabled  
R
NFC interface enabled  
5
DISABLE_NFC  
R
R/W  
NFC interface disabled, no response to  
NFC commands  
4
3
2
1
RFU  
RFU  
RFU  
RFU  
R
R
R
R
R
R
R
R
0b  
0b  
0b  
0b  
0b  
1b  
Normal Operation Mode  
0
AUTO_STANDBY_MODE_EN  
R
R/W  
IC enters standby mode after boot if there  
is no RF field present automatically.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
51 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 91.ꢀConfiguration Definition (CONFIG_1_REG)  
Access  
NFC acc. I2C acc.  
Bit  
Name  
Value Description  
7
6
RFU  
RFU  
R
R
R
R
0b  
0b  
00b  
01b  
10b  
11b  
I2C slave  
I2C master  
5
4
USE_CASE_CONF  
ARBITER_MODE  
R
R
R
GPIO/PWM  
All host interface functionality disabled and  
pads are in 3-state mode  
00b  
01b  
10b  
11b  
0b  
Normal Mode  
3
2
1
0
SRAM mirror mode  
R/W  
SRAM passes through mode  
SRAM PHDC mode  
SRAM is not accessible  
SRAM_ENABLED  
R
R
R
1b  
SRAM is accessible  
0b  
Data transfer direction is I2C to NFC  
Data transfer direction is NFC to I2C  
PT_TRANSFER_DIR  
R/W  
1b  
Table 92.ꢀConfiguration Definition (CONFIG_2_REG)  
Bit  
Name  
Access  
NFC acc. I2C acc.  
Value Description  
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
0b  
Receiver disabled  
7
6
5
4
3
2
1
0
Plain input with weak pull-up  
Plain input  
GPIO1_IN  
R
R
R
R
Plain input with weak pull-down  
Receiver disabled  
Plain input with weak pull-up  
Plain input  
GPIO0_IN  
Plain input with weak pull-down  
Extended commands are disabled  
Extended commands are supported  
Lock block commands are disabled  
Lock block commands are supported  
Low-Speed GPIO  
EXTENDED_COMMANDS_  
SUPPORTED  
R
R
R
R
R
R
R
R
1b  
0b  
LOCK_BLOCK_COMMAND_  
SUPPORTED  
1b  
0b  
GPIO1_SLEW_RATE  
GPIO0_SLEW_RATE  
1b  
High-Speed GPIO  
0b  
Low-Speed GPIO  
1b  
High-Speed GPIO  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
52 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.1.4.3 Synchronization block register  
The terminator block maybe changed during one session from both interfaces (see  
Section 8.1.3.14). Both interfaces do have read and write access.  
8.1.4.4 Pulse Width Modulation and GPIO configuration register  
These session register bytes define the various configurations for GPIO/PWM use case  
(see Section 8.1.3.13). From NFC perspective IN_STATUS bits are read only, all others  
maybe changed during a session. From I2C perspective, all bits are read only. For details  
refer to Section 8.3.3 and Section 8.3.4.  
Table 93.ꢀPWM and GPIO Configuration Register Location (PWM_GPIO_CONFIG_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
PWM_GPIO_  
CONFIG_0_REG  
PWM_CONFIG_  
1_REG  
RFU  
A3h  
10A3h  
Table 94.ꢀPWM and GPIO Configuration Register Definition (PWM_GPIO_CONFIG_0_REG)  
Bit  
Name  
Access  
Value Description  
NFC acc. I2C acc.  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
0b  
1b  
Output status on pad is LOW  
7
6
5
4
3
2
1
0
SDA_GPIO1_OUT_STATUS  
SCL_GPIO0_OUT_STATUS  
SDA_GPIO1_SDA_IN_STATUS  
SCL_GPIO0_IN_STATUS  
SDA_GPIO1  
R/W  
R/W  
R
R
R
R
R
R
R
R
R
Output status on pad is HIGH  
Output status on pad is LOW  
Output status on pad is HIGH  
Input status  
Input status  
R
Output  
Input  
R/W  
R/W  
R/W  
R/W  
Output  
Input  
SCL_GPIO0  
GPIO  
PWM  
GPIO  
PWM  
SDA_GPIO1_PWM1  
SCL_GPIO0_PWM0  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
53 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 95.ꢀPWM and GPIO Configuration Register Definition (PWM_GPIO_CONFIG_1_REG)  
Bit  
Name  
Access  
Value Description  
NFC  
I2C Acc.  
Acc.  
7
6
5
4
PWM1_PRESCALE  
PWM0_PRESCALE  
R/W  
R
R
00b  
00b  
Pre-scalar configuration for PWM1 channel  
R/W  
R/W  
Pre-scalar configuration for PWM0 channel  
00b  
01b  
10b  
11b  
00b  
01b  
10b  
11b  
6-bit resolution  
8-bit resolution  
10-bit resolution  
12-bit resolution  
6-bit resolution  
8-bit resolution  
10-bit resolution  
12-bit resolution  
3
2
1
0
PWM1_RESOLUTION_CONF  
PWM0_RESOLUTION_CONF  
R
R
R/W  
8.1.4.5 Pulse Width Modulation duty cycle register  
The PWM duty cycle maybe changed during one session from NFC perspective (see  
Section 8.1.3.16).  
As long as the I2C slave use case is enabled, these settings can also be done from I2C  
perspective.  
8.1.4.6 Watch Dog Timer register  
Watch Dog Timer register settings are read only (see Section 8.1.3.17).  
8.1.4.7 Energy harvesting register  
Energy harvesting registers may be used to enable energy harvesting during one  
NFC session. In this case, EH_ENABLE bit of EH_CONFIG byte in block 3Dh is set  
to 0b. Required EH_VOUT_I_SEL and EH_VOUT_V_SEL need to be set in that  
EH_CONFIG byte. Desired energy harvesting mode (EH_MODE) needs to be configured  
in CONFIG_0 byte of block 37h. In case of energy harvesting is enabled already during  
boot (EH_ENABLE bit of EH_CONFIG is 1b), or energy harvesting is not used at all, this  
register byte gives no information.  
Setting EH_TRIGGER to 1b is needed to trigger power detection.  
Polling for bit EH_LOAD_OK should be used to check, if sufficient energy is available.  
Only if EH_LOAD_OK = 1b, energy harvesting may be enabled via session registers by  
writing 09h to this byte.  
There is only read only access from I2C perspective.  
Details can be found in energy harvesting section (see Section 8.5).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
54 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 96.ꢀEnergy Harvesting Configuration Register Location (EH_CONFIG_REG)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
A7h  
10A7h  
EH_COFIG_REG  
RFU  
Table 97.ꢀEnergy Harvesting Register Value Definition EH_CONFIG_REG)  
Access  
I2C Acc.  
Bit  
Name  
Value Description  
NFC  
Acc.  
0b  
1b  
Field is not sufficient to provied configured  
power on VOUT. Do not enable energy  
harvesting.  
7
EH_LOAD_OK  
R
R
Minimum desired energy available.  
VOUT may be enabled. As soon as  
EH_ENABLE is set to 1b, this bit gets  
cleared automatically.  
6 to 4  
RFU  
R
R
R
0b  
1b  
When reading, this byte this bit is RFU and  
the value is undefined and may be 0b or  
1b.  
3
EH_TRIGGER  
R/W  
When writing to this byte, this bit needs to  
be set to 1b always  
2 to 1  
0
RFU  
R
R
R
0b  
1b  
Energy Harvesting disabled (default)  
Energy Harvesting enabled  
EH_ENABLE  
R/W  
8.1.4.8 Event detection register  
Event detection and field detection functionality define the behavior of the ED pin  
depending on various events. Indicated event may be changed during one session from  
both interfaces. More details can be found in ED section (see Section 8.3.2).  
8.1.4.9 I2C slave register settings  
I2C slave settings can be read out from both interfaces.  
I2C interface can be disabled via NFC interface only. Repeated start functionality can be  
enabled via I2C interface only.  
Table 98.ꢀI2C Slave Configuration Register Location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
I2C_SLAVE_  
ADDR_REG  
I2C_SLAVE_  
CONFIG_REG  
RFU  
A9h  
10A9h  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
55 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 99.ꢀI2C Slave Configuration Definition (I2C_SLAVE_ADDR_REG)  
Access  
Bit  
Name  
Value Description  
NFC  
R
I2C  
7
RFU  
R
0b  
R
R
54h  
I2C slave address used in slave  
configuration  
6 to 0  
I22_SLAVE_ADDR  
Table 100.ꢀI2C Slave Configuration Definition (I2C_SLAVE_CONFIG_REG)  
Bit  
Name  
Access  
Value  
Description  
NFC  
R
I2C  
R
7 to 5  
4
RFU  
000b  
0b  
I2C_WDT_EXPIRED  
R
R
WDTdid not expire in previous  
transaction  
1b  
Previous transaction was not  
successful. WDT expired. This bit  
gets cleared automatically, when new  
transaction is triggered.  
3
2
I2C_SOFT_RESET  
R/W  
R
R/W  
R/W  
0b  
Setting this bit to 1b, resets the I2C  
state machine and relases th SCL/  
SDA lines. This bit gets cleared  
automatically.  
0b  
1b  
Slave does not reset if repeated start is  
received (Default)  
I2C slave resets internal state machine  
on repeated start  
I2C_S_REPEATED_  
START  
1
0
RFU  
R
R
R
0b  
0b  
1b  
R/W  
I2C interface enabled (default)  
I2C interface disabled  
DISABLE_I2C (see  
Section 8.3.1.1.6)  
8.1.4.10 System reset generation  
System reset can be generated by both the interfaces by writing to RESET_GEN_REG  
register using WRITE CONFIG command (see Section 8.2.3.2.2). Writing E7h will trigger  
the system reset. This byte gets automatically reset after the system reset.  
Table 101.ꢀRESET_GEN_REG location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
AAh  
10AAh  
RESET_GEN_REG  
RFU  
8.1.4.11 Clear event detection register  
Event detection pin is cleared i.e. released when writing 01h to the Clear Event Detection  
Register from NFC or I2C interface. The bit gets cleared after releasing the ED pin  
automatically. Other values are RFU.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
56 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 102.ꢀED_INTR_CLEAR_REG location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
I2C  
ED_INTR_  
ABh  
10ABh  
CLEAR_REG  
RFU  
8.1.4.12 I2C master status registers  
I2C master status can be checked by reading I2C master session register bits from NFC  
perspective. There is no write access to these registers. Details can be found in I2C  
master section.  
NOTE: In I2C master mode there is no access to the registers from I²C perspective.  
NOTE: I2C master is only available for NTP5332.  
Table 103.ꢀI2C Master Configuration Register Location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
ACh  
ADh  
I2C  
10ACh  
10ADh  
I2C_M_S_ADD_REG  
I2C_M_STATUS_REG  
I2C_M_LEN_REG  
RFU  
RFU  
RFU  
Table 104.ꢀI2C Slave Address used in I2C master transaction (I2C_M_S_ADD_REG)  
Bit  
Name  
Access  
Value  
Description  
NFC  
I2C  
7
I2C_M_RS_EN  
R
R
0b  
STOP condition generated at the end of  
transaction  
1b  
no STOP condition generated  
6 to 0  
I2C_M_S_ADD  
R
R
00h  
I2C slave of last addressed slave  
Table 105.ꢀI2C Master Data Length Definition (I2C_M_LEN_REG)  
Bit  
Name  
Value  
Description  
all 0b  
Codes the data length written to or read from I2C slave during last  
I2C transaction. Data length in bytes is I2C_M_LEN_REG plus 1.  
7 to 0  
I2C_M_LEN_REG  
Table 106.ꢀI2C Master Status Definition (I2C_M_STATUS_REG)  
Access  
Bit  
7 to 4  
3
Name  
NFC I2C  
Value  
0000b  
0b  
Description  
RFU  
R
R
R
R
WDT did not expire in last transaction  
I2C_M_WDT_EXPIRED  
1b  
WDT expired in last transaction. This bit resets  
automatically, when new transaction is triggered.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
57 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Access  
Bit  
Name  
NFC I2C  
Value  
Description  
2 to 1  
R
R
00b  
Reset value, automatically when new transaction  
starts  
01b  
10b  
11b  
0b  
Address NAK  
I2C_M_TRANS_STATUS  
Data NAK  
Transaction successful  
0
R
R
I2C Master interface ready. No transaction ongoing  
I2C Master interface busy. Transaction ongoing  
I2C_M_BUSY  
1b  
8.1.5 SRAM  
For frequently changing data, a volatile memory of 256 bytes with unlimited write  
endurance is built in. The 256 bytes are mapped in a similar way as done in the  
EEPROM, i.e., 256 bytes are seen as 64 pages of 4 bytes.  
SRAM is only available when supplied by VCC and SRAM_ENABLE bit is set to 1b.  
The SRAM can be mirrored in the User Memory from block 00h to 3Fh for access from  
both interfaces as illustrated in the table below. This allows using NFC Forum read and  
write commands to access the SRAM.  
The lock block condition (e.g. user EEPROM blocks are set to read-only) is not valid for  
the mirrored SRAM.  
The access conditions (e.g. first blocks of user EEPROM are password protected) are  
valid for the mirrored SRAM, too, for both interfaces.  
The access conditions for READ SRAM and WRITE SRAM commands can be restricted  
with SRAM_CONF_PROT security bits.  
From I2C perspective, SRAM is located in blocks 2000h to 203Fh and can be accessed  
at any time without any protection.  
NOTE: SRAM values are not initialized during boot and may have arbitrary data.  
Table 107.ꢀSRAM mirroring  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
00h  
01h  
02h  
03h  
:
I2C  
0000h  
0001h  
0002h  
0003h  
:
SRAM  
:
:
:
:
When SRAM is mirrored to  
user memory, READ and  
WRITE commands address  
SRAM  
3Fh  
40h  
:
003Fh  
0040h  
:
SRAM  
EEPROM  
EEPROM  
From block 40h onwards,  
READ and WRITE  
commands always address  
EEPROM  
:
:
:
:
1FEh  
01FEh  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
58 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
NFC  
I2C  
1FFh  
N/A  
C0  
C1  
00h  
PROT  
Counter  
In the pass-through mode, READ and WRITE SRAM commands should be used to  
transfer data between the two interfaces.  
After POR the SRAM can be pre-loaded with default data (e.g. NDEF message)  
depending on SRAM_COPY_ENABLE bit in CONFIG register. If SRAM_COPY_ENABLE  
bit and SRAM_ENABLE both are set to 1b, then the copy feature will be triggered after  
POR. The startup time depends upon the number of bytes (maximum 64) to be copied.  
In the table below, an example is illustrated where 48 bytes are copied to the SRAM on  
POR.  
Table 108.ꢀSRAM mirroring with default content  
Block  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
0
:
SRAM_DEF00  
SRAM_DEF01  
SRAM_DEF02  
SRAM_DEF03  
When SRAM is mirrored and  
SRAM_COPY_BYTES is equal  
to 30h, 48 bytes will be copied to  
SRAM after POR automatically  
...SRAM_DEF...  
11  
12  
:
SRAM_DEF44  
:
SRAM_DEF45  
:
SRAM_DEF46  
SRAM_DEF47  
:
SRAM  
Rest of mirrored SRAM will be  
random data  
:
63  
64  
:
SRAM  
EEPROM  
EEPROM  
From block 64 onwards again  
EEPROM will be addressed  
:
:
:
:
510  
511  
C0  
C1  
00h  
PROT  
Counter  
Table 109.ꢀSRAM COPY BYTES (SRAM_COPY_BYTES)  
Block Address  
Byte 0  
Byte 1  
Byte 2  
WDT_ENABLE  
Byte 3  
NFC  
I2C  
3Ch  
103Ch  
WDT_CONFIG  
SRAM_COPY_BYTES  
Table 110.ꢀSRAM_COPY_BYTES Definition  
Bit  
Name  
Description  
7 to 6  
RFU  
RFU  
6-bit length field. Defines the number of bytes (SRAM_COPY_BYTES + 1)  
to be copied from CONFIG memory to SRAM at startup. Maximum is 3Fh.  
Higher values are RFU. Default all bits are 0b.  
5 to 0  
SRAM_COPY_BYTES  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
59 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 111.ꢀSRAM Default Content location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
45h  
...  
I2C  
1045h  
...  
SRAM_DEF00  
SRAM_DEF60  
SRAM_DEF01  
SRAM_DEF02  
SRAM_DEF62  
SRAM_DEF03  
SRAM_DEF63  
...SRAM_DEF...  
54h  
1054h  
SRAM_DEF61  
8.2 NFC interface  
The definition of the NFC interface is according to the ISO/IEC 15693 and NFC Forum  
Type 5 Tag. The details of passive communication mode are described in Section 8.2.1.  
Supported bitrates for different modes and communication directions are listed in tables  
below.  
Table 112.ꢀBit rates from reader to tag  
Mode  
passive  
passive  
Condition  
NFC only  
1.66 kbps 26 kbps  
yes  
yes  
yes  
yes  
VCC supplied  
Table 113.ꢀBit rates from tag to reader  
Mode  
passive  
passive  
Condition  
6 kbps 26 kbps 53 kbps  
single subcarrier  
dual subcarrier  
yes  
yes  
yes  
yes  
yes  
no  
8.2.1 Passive communication mode  
Main uses cases for passive communication mode are Smart Metering, Home  
automation and in the box configuration. With antenna sizes of Class 4 or bigger, energy  
harvesting on the one side and long-distance read/write access to the EEPROM is  
possible in a very efficient way.  
8.2.2 State diagram and state transitions  
The state diagram illustrates the different states and state transitions of NTAG 5 link.  
The SELECTED SECURE state is only available for NTP5332, when AES security is  
enabled.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
60 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
POWER-OFF  
out of field  
in field  
SELECTED  
SECURE  
READY  
QUIET  
SELECTED  
aaa-035481  
Figure 6.ꢀState Machine and State Transitions  
8.2.2.1 POWER-OFF state  
8.2.2.1.1 State transitions from and to POWER-OFF state  
If NFC field is switched off or below, HMIN NTAG 5 link goes to POWER-OFF state.  
POWER-OFF state will be left to READY state no later than 1 ms after NTAG 5 link is  
powered by an NFC field greater than HMIN  
.
NOTE: When loading default data to mirrored SRAM, start-up time, dependent on the  
pre-loaded bytes, might be greater than 1 ms.  
8.2.2.2 READY state  
8.2.2.2.1 Transitions between READY and SELECTED state  
Transition from READY to SELECTED state is done when  
receiving a SELECT command with a matching UID  
8.2.2.2.2 Transitions between READY and QUIET state  
Transition from READY to QUIET state is done when  
receiving a STAY QUIET command with a matching UID  
receiving a (FAST) INVENTORY READ command (extended mode) with Quiet_Flag  
set  
8.2.2.2.3 Transitions between READY and SELECTED SECURE state  
Transition from READY to SELECTED SECURE state is done when  
mutual authentication with AUTHENTICATE command with a matching UID was  
successful  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
61 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.2.2.2.4 Commands which stay in READY state  
NTAG 5 link stays in READY state when  
receiving any other command where Select_Flag is not set  
8.2.2.3 SELECTED state  
8.2.2.3.1 Transitions between SELECTED and READY state  
Transition from SELECTED to READY state is done by  
receiving a RESET TO READY command where Select_Flag is set  
receiving a SELECT command with a different UID  
8.2.2.3.2 Transitions between SELECTED and QUIET state  
Transition from SELECTED to QUIET state is done when  
receiving a STAY QUIET command with a matching UID  
8.2.2.3.3 Transitions between SELECTED and SELECTED SECURE state  
Transition from SELECTED to SELECTED SECURE state is done by  
mutual authentication with AUTHENTICATE command with Select_Flag set was  
successful  
8.2.2.3.4 Transitions between SELECTED and NFC PRIVACY mode  
Transition from SELECTED to NFC PRIVACY mode is done by  
receiving an ENABLE NFC PRIVACY command  
8.2.2.3.5 Commands which stay in SELECTED state  
NTAG 5 link stays in SELECTED state when  
receiving any other command where Select_Flag is set  
8.2.2.4 SELECTED SECURE state  
8.2.2.4.1 Transitions between SELECTED SECURE and READY state  
Transition from SELECTED SECURE to READY state is done by  
receiving a RESET_TO_READY command where Select_Flag is set  
receiving a SELECT command with a different UID  
receiving a CHALLENGE command  
receiving a new AUTHENTICATE command  
8.2.2.4.2 Transitions between SELECTED SECURE and QUIET state  
Transition from SELECTED to QUIET state is done when  
receiving a STAY QUIET command with a matching UID  
8.2.2.4.3 Transitions between SELECTED SECURE and SELECTED state  
Transition from SELECTED to SELECTED SECURE state is done by  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
62 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
receiving a SELECT command with a matching UID  
8.2.2.4.4 Commands which stay in SELECTED SECURE state  
NTAG 5 link stays in SELECTED SECURE state when  
receiving READBUFFER command  
receiving any other command where Select_Flag is set  
8.2.2.5 QUIET state  
8.2.2.5.1 Transitions between QUIET and READY state  
Transition from QUIET to READY state is done by  
receiving a RESET_TO_READY command  
8.2.2.5.2 Transitions between QUIET and SELECTED state  
Transition from QUIET to SELECTED state is done by  
receiving a SELECT command with a matching UID  
8.2.2.5.3 Transitions between QUIET and SELECTED SECURE state  
Transition from QUIET to SELECTED SECURE state is done when  
mutual authentication with AUTHENTICATE command with a matching UID was  
successful  
8.2.2.5.4 Commands which stay in QUIET state  
NTAG 5 link stays in QUIET state when  
receiving any other command where Addressed_Flag is set AND Inventory_Flag is not  
set  
8.2.3 Command set  
ISO/IEC 15693 mandatory commands are  
INVENTORY  
STAY QUIET  
NFC Forum Type 5 Tag mandatory commands are  
READ SINGLE BLOCK  
WRITE SINGLE BLOCK  
LOCK SINGLE BLOCK  
On top of those, all optional commands of ISO/IEC 15693 are implemented. Several  
customer-specific commands are implemented to, e.g., improve overall transaction time.  
These custom commands all use NXP manufacturer code 04h.  
A complete list of all supported commands is given in below table.  
Table 114.ꢀNFC command set supported by NTAG 5 link  
Code ISO/IEC 15693 NFC Forum T5T  
Command name  
01h  
Mandatory  
Mandatory  
INVENTORY (see ISO/IEC 15693 and Digital Protocol)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
63 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Code ISO/IEC 15693 NFC Forum T5T  
Command name  
02h  
20h  
21h  
22h  
23h  
Mandatory  
Optional  
Optional  
Optional  
Optional  
Mandatory  
STAY QUIET (see ISO/IEC 15693) and Type 5 Tag -  
SLPV_REQ)  
Mandatory  
READ SINGLE BLOCK (see ISO/IEC 15693 and Type 5 Tag -  
READ_SINGLE_BLOCK_REQ)  
Mandatory in READ/WRITE  
state  
WRITE SINGLE BLOCK (see ISO/IEC 15693 and Type 5 Tag -  
WRITE_SINGLE_BLOCK_REQ)  
Optional  
LOCK BLOCK (see ISO/IEC 15693 and Type 5 Tag -  
LOCK_SINGLE_BLOCK_REQ)  
Optional  
READ MULTIPLE BLOCKS ( ISO/IEC 15693 and Type 5 Tag -  
READ_MULTIPLE_BLOCK_REQ)  
25h  
26h  
27h  
28h  
29h  
2Ah  
2Bh  
2Ch  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
SELECT (see ISO/IEC 15693 and Type 5 Tag - SELECT_REQ)  
RESET TO READY (see ISO/IEC 15693)  
WRITE AFI (see ISO/IEC 15693)  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
LOCK AFI (see ISO/IEC 15693)  
WRITE DSFID (see ISO/IEC 15693)  
LOCK DSFID (see ISO/IEC 15693)  
GET SYSTEM INFORMATION (see ISO/IEC 15693)  
GET MULTIPLE BLOCK SECURITY STATUS (see ISO/IEC  
15693)  
2Dh  
30h  
Optional  
Optional  
Not defined  
FAST READ MULTIPLE BLOCKS (see ISO/IEC 15693)  
Mandatory when supporting 2  
byte addressing  
EXTENDED READ SINGLE BLOCK (see ISO/IEC 15693 and  
Type 5 Tag - EXTENDED_READ_SINGLE_BLOCK_REQ)  
31h  
Optional  
Mandatory when supporting  
2 byte addressing in READ/  
WRITE state  
EXTENDED WRITE SINGLE BLOCK (see ISO/IEC 15693 and  
Type 5 Tag - EXTENDED_WRITE_SINGLE_BLOCK_REQ)  
32h  
33h  
35h  
39h  
3Ah  
3Bh  
3Ch  
3Dh  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
Optional  
EXTENDED LOCK BLOCK (see ISO/IEC 15693 and Type 5 Tag  
- EXTENDED_LOCK_SINGLE_BLOCK_REQ)  
Optional  
EXTENDED READ MULTIPLE BLOCK ( ISO/IEC 15693 and  
Type 5 Tag - EXTENDED_READ_MULTIPLE_BLOCK_REQ)  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
AUTHENTICATE (see ISO/IEC 15693) is only available in AES  
mode  
CHALLENGE (see ISO/IEC 15693) is only available in AES  
mode  
READBUFFER (see ISO/IEC 15693) is only available in AES  
mode  
EXTENDED GET SYSTEM INFORMATION (see ISO/IEC  
15693)  
EXTENDED GET MULTIPLE BLOCK SECURITY STATUS (see  
ISO/IEC 15693)  
FAST EXTENDED READ MULTIPLE BLOCKS (see ISO/IEC  
15693)  
A0h  
A1h  
Custom  
Custom  
Not defined  
Not defined  
INVENTORY READ (see Section 8.2.3.5.1)  
FAST INVENTORY READ (see Section 8.2.3.5.2)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
64 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Code ISO/IEC 15693 NFC Forum T5T  
Command name  
A2h  
A3h  
A4h  
A5h  
A6h  
A7h  
ABh  
B2h  
B3h  
B3h  
B4h  
B5h  
B6h  
B7h  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
SET EAS (see Section 8.2.3.9.5)  
RESET EAS (see Section 8.2.3.9.6)  
LOCK EAS (see Section 8.2.3.9.7)  
EAS ALARM (see Section 8.2.3.9.8)  
PROTECT EAS/AFI (see Section 8.2.3.9.9)  
WRITE EAS ID (see Section 8.2.3.9.10)  
GET NXP SYSTEM INFORMATION (see Section 8.2.3.9.14)  
GET RANDOM NUMBER (see Section 8.2.3.3.1)  
SET PASSWORD (see Section 8.2.3.3.2)  
DISABLE NFC PRIVACY (see Section 8.2.3.3.10)  
WRITE PASSWORD (see Section 8.2.3.3.3)  
LOCK PASSWORD (see Section 8.2.3.3.4)  
PROTECT PAGE (see Section 8.2.3.3.6)  
LOCK PAGE PROTECTION CONDITION (see  
Section 8.2.3.3.7)  
B9h  
BAh  
BBh  
BDh  
C0h  
C1h  
C2h  
D2h  
D3h  
D4h  
D5h  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Custom  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
Not defined  
DESTROY (see Section 8.2.3.3.8)  
ENABLE NFC PRIVACY (see Section 8.2.3.3.9)  
64 BIT PASSWORD PROTECTION (see Section 8.2.3.3.5)  
READ SIGNATURE (see Section 8.2.3.7.1)  
READ CONFIGURATION (see Section 8.2.3.2.1)  
WRITE CONFIGURATION (see Section 8.2.3.2.2)  
PICK RANDOM UID (see Section 8.2.3.9.15)  
READ SRAM (see Section 8.2.3.6.1)  
WRITE SRAM (see Section 8.2.3.6.2)  
WRITE I2C (see Section 8.2.3.8.1)  
READ I2C (see Section 8.2.3.8.2)  
All command/responses are sent/received in the request/response format as defined in  
ISO/IEC 15693 and NFC Forum Type 5 Tag specification.  
8.2.3.1 Commands for state transitions  
Following commands are implemented for all possible state transitions according to ISO/  
IEC 15693.  
INVENTORY  
STAY QUIET  
SELECT  
RESET TO READY  
On top of these commands, NTAG 5 link offers  
INVENTORY READ in extended mode (see Section 8.2.3.5.1)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
65 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
FAST INVENTORY READ in extended mode (see Section 8.2.3.5.2)  
AUTHENTICATE to move to SELECTED SECURE state (see Section 8.2.3.4.4)  
8.2.3.2 Configuration operations  
8.2.3.2.1 READ CONFIGURATION  
Command code = C0h  
The READ CONFIG command returns configuration memory content starting with the  
first block defined by the Block Address and reads Number of Blocks + 1 configuration  
blocks.  
Access to the configuration blocks depends on the status and definition of the related  
block within the configuration memory (see Section 8.1.3).  
If one of the requested configuration blocks is not accessible due to the actual status,  
NTAG 5 link will respond with Error_flag set.  
A READ CONFIG command can read one or multiple blocks of the following areas of the  
configuration memory within one command execution:  
Block 00h to block 17h  
Keys can only be read separately if "NOT active" or after a mutual authentication with a  
key with the Crypto Config privilege set in "active" state  
Key0: block 20h-23h  
Key1: block 24h-27h  
Key2: block 28h-2Bh  
Key3: block 2Ch-2Fh  
rest of configuration memory  
Only Option_flag = 0b is supported.  
Table 115.ꢀREAD CONFIG request format  
Flags  
READ CONFIG Manuf. code  
UID  
Block Address Number of  
Blocks  
CRC16  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
16 bits  
Table 116.ꢀREAD CONFIG response format when Error_flag is NOT set  
Flags  
Data  
CRC16  
(Number of blocks + 1) times  
32 bits  
8 bits  
16 bits  
Table 117.ꢀREAD CONFIGURATION response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.2.2 WRITE CONFIGURATION  
Command code = C1h  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
66 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
The WRITE CONFIG command writes the 4 byte data to the requested block address of  
the configuration memory.  
Access to the configuration blocks depends on the status and definition of the related  
block within the configuration memory (see Section 8.1.3).  
If the requested configuration block is not write accessible due to the actual status, NTAG  
5 link will respond with Error_flag set.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 118.ꢀWRITE CONFIG request format  
Flags  
WRITE  
CONFIG  
Manuf.  
code  
UID  
Block  
Address  
Data  
CRC16  
8 bits  
8 bits  
8 bits  
64 (optional) 8 bits  
32 bits  
16 bits  
Table 119.ꢀWRITE CONFIG response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 120.ꢀWRITE CONFIG response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.3 PWD Authentication  
NTAG 5 link can be configured to be used for plain password authentication.  
8.2.3.3.1 GET RANDOM NUMBER  
Command code = B2h  
The GET RANDOM NUMBER command is required to receive a 16-bit random number.  
The passwords that will be transmitted with the SET PASSWORD, ENABLE/DISABLE  
NFC PRIVACY and DESTROY commands have to be calculated with the password and  
the random number (see Section 8.2.3.3.2).  
Table 121.ꢀGET RANDOM NUMBER request format  
Flags  
GET RANDOM  
NUMBER  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
Table 122.ꢀGET RANDOM NUMBER response format when Error_flag is NOT set  
Flags  
Random_Number  
CRC16  
8 bits  
16 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
67 / 133  
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 123.ꢀGET RANDOM NUMBER response format when Error_flag is set  
Flags  
Error Code  
8 bits  
CRC16  
8 bits  
16 bits  
8.2.3.3.2 SET PASSWORD  
Command code = B3h  
The SET PASSWORD command enables the different passwords to be transmitted to  
the IC to access the different protected functionalities of the following commands. The  
SET PASSWORD command has to be executed just once for the related password if the  
IC is powered.  
Remark: The SET PASSWORD command can only be executed in addressed or  
selected mode and the timing of the SET PASSWORD command is write alike.  
The XOR password has to be calculated with the password and two times the received  
random number from the last GET RANDOM NUMBER command:  
XOR_Password[31:0] = Password[31:0] XOR {Random_Number[15:0],  
Random_Number[15:0]}.  
The different passwords are addressed with the password identifier.  
Only Option_flag = 0b is supported.  
Table 124.ꢀSET PASSWORD request format  
Flags  
SET  
PASSWORD  
Manuf. code  
UID  
Password  
identifier  
XOR password CRC16  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
32 bits  
16 bits  
Table 125.ꢀPassword Identifier  
Password Identifier  
Password  
Read  
01h  
02h  
04h  
08h  
10h  
40h  
80h  
Write  
see Section 8.2.3.3.10  
Destroy  
EAS/AFI  
Read from AREA_1  
Write to AREA_1  
Table 126.ꢀSET PASSWORD response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
68 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 127.ꢀSET PASSWORD response format when Error_flag is set  
Flags  
Error Code  
8 bits  
CRC16  
8 bits  
16 bits  
Remark: If the IC receives an invalid password, it will not execute any following  
command until a Power-On Reset (POR) (NFC reset) is executed.  
8.2.3.3.3 WRITE PASSWORD  
Command code = B4h  
The WRITE PASSWORD command enables a new password to be written into  
the related memory if the related old password has already been transmitted with  
a SET PASSWORD command and the addressed password is not locked (see  
Section 8.2.3.3.4).  
Remark: The WRITE PASSWORD command can only be executed in addressed or  
SELECTED mode. The new password takes effect immediately which means that the  
new password has to be transmitted with the SET PASSWORD command to access  
protected blocks/pages.  
The different passwords are addressed with the password identifier as defined in  
Table 125.  
The timing of the command is write-alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 128.ꢀWRITE PASSWORD request format  
Flags  
WRITE  
PASSWORD  
Manuf. code  
UID  
Password  
identifier  
Password  
CRC16  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
32 bits  
16 bits  
Table 129.ꢀWRITE PASSWORD response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 130.ꢀWRITE PASSWORD response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.3.4 LOCK PASSWORD  
Command code = B5h  
The LOCK PASSWORD command enables the addressed password to be locked if the  
related password has already been transmitted with a SET PASSWORD command. A  
locked password cannot be changed.  
The different passwords are addressed with the password identifier (see Table 125).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
69 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 131.ꢀLOCK PASSWORD request format  
Flags  
LOCK  
PASSWORD  
Manuf. code  
UID  
Password  
identifier  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
8 bits  
16 bits  
Table 132.ꢀLOCK PASSWORD response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 133.ꢀLOCK PASSWORD response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.3.5 64 BIT PASSWORD PROTECTION  
Command code = BBh  
The 64-bit PASSWORD PROTECTION command enables NTAG 5 link to be instructed  
that both, Read and Write passwords are required to get access to password protected  
blocks. This mode can be enabled if the Read and Write passwords have been  
transmitted first with a SET PASSWORD command.  
If the 64-bit password protection is enabled, both passwords are required for read & write  
access to protected blocks.  
Once the 64-bit password protection is enabled, a change back to 32-bit password  
protection (read and write password) is not possible.  
Remark: A retransmission of the passwords is not required after the execution of the 64-  
bit PASSWORD PROTECTION command.  
Remark: The 64-bit PASSWORD PROTECTION does not include the 16-bit counter  
block.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 134.ꢀ64 BIT PASSWORD PROTECTION request format  
Flags  
64 BIT PASSWORD  
PROTECTION  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
70 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 135.ꢀ64 BIT PASSWORD PROTECTION response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 136.ꢀ64 BIT PASSWORD PROTECTION response format when Error_flag is NOT set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.3.6 PROTECT PAGE  
Command code = B6h  
The PROTECT PAGE command defines the protection pointer address of the user  
memory to divide the user memory into two arbitrarily sized pages and defines the  
access conditions for the two pages.  
The protection pointer address defines the base address of the higher user memory  
segment Page 0-H. All block addresses smaller than the protection pointer address are in  
the user memory segment Page 0-L.  
Table below shows an example of the user memory segmentation with the protection  
pointer address NFC_PP_AREA_0H 14h.  
Remark: In the example below PP_AREA_1 is pointing outside the user memory.  
Table 137.ꢀMemory organization  
Block Byte 0  
Byte 1  
Byte 2  
Byte 3  
Description  
00h  
01h  
02h  
Page 0-L  
:
:
:
:
:
12h  
13h  
14h  
15h  
:
Page 0-H  
Counter  
:
:
:
:
1FFh  
C0  
C1  
00  
Protection  
Remark: If the protection pointer address is set to block 0, the entire user memory is  
defined as Page 0-H.  
The access conditions and the protection pointer address can be changed under the  
following circumstances for plain password mode:  
The related passwords (Read and Write password) have been transmitted first with the  
SET PASSWORD command.  
The page protection condition is not locked (see Section 8.2.3.3.7)  
The access conditions and the protection pointer address can be changed under the  
following circumstances for AES mode:  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
71 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
The Global Crypto Header is set to "Deactivated" or  
if the Global Crypto Header is not set to "Deactivated" and a valid mutual authentication  
with a key with read and write privileges has been executed before and the page  
protection condition is not locked (see Section 8.2.3.3.7).  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 138.ꢀPROTECT PAGE request format  
Flags  
PROTECT Manuf.  
UID  
Protection Extended  
CRC16  
PAGE  
code  
pointer  
address  
protection  
status  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
16 bits  
Remark: The IC only accepts protection pointer address values from 00h to FFh. The  
block containing the 16-bit counter is excluded from the standard user memory protection  
scheme.  
Table 139.ꢀExtended Protection status byte  
Bit  
Name  
RFU  
Value  
0b  
Description  
7
6
RFU  
0b  
0b  
Page 0-H is not write protected  
Page 0-H is write protected  
Page 0-H is not read protected  
Page 0-H is read protected  
5
4
WH  
RH  
1b  
0b  
1b  
3
2
RFU  
RFU  
0b  
0b  
0b  
Page 0-L is not write protected  
Page 0-L is write protected  
Page 0-L is not read protected  
Page 0-L is read protected  
1
0
WL  
RL  
1b  
0b  
1b  
Table 140.ꢀProtection status bits definition in plain password mode  
WH/WL RH/RL 32-bit Protection 64-bit Protection  
0b  
0b  
0b  
1b  
Public  
Public  
Read and Write protected by the  
Read password  
Read and Write protected by the  
Read plus Write password  
1b  
1b  
0b  
1b  
Write protected by the Write password Write protected by the Read plus  
Write password  
Read protected by the Read  
Read and Write protected by the  
password and Write protected by the Read plus Write password  
Read and Write password  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
72 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 141.ꢀProtection status bits definition in AES mode  
WH/WL  
RH/RL  
0b  
Protection  
0b  
0b  
Public  
1b  
Read and Write protected: Mutual authentication with a key with  
read privilege is required  
1b  
1b  
0b  
1b  
Write protected: Mutual authentication with a key with write  
privilege is required  
Read and Write protected: Mutual authentication with a key with  
read and write privileges is required  
Table 142.ꢀPROTECT PAGE response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 143.ꢀPROTECT PAGE response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
The information about the stored settings of the protection pointer address and access  
conditions can be read with the GET NXP SYSTEM INFORMATION command (see  
Section 8.2.3.9.14).  
8.2.3.3.7 LOCK PAGE PROTECTION CONDITION  
Command code = B7h  
The LOCK PAGE PROTECTION CONDITON command locks the protection pointer  
address and the status of the page protection conditions.  
The LOCK PAGE PROTECTION CONDITON command can be successfully executed  
under the following circumstances:  
The Global Crypto Header is set to "Deactivated".  
If the Global Crypto Header is not set to "Deactivated" and a valid mutual  
authentication with a key with read and write privileges has been executed before.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 144.ꢀLOCK PAGE PROTECTION CONDITION request format  
Flags  
LOCK PAGE  
PROTECTION  
CONDITION  
Manuf. code  
UID  
Protection  
pointer address  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
73 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 145.ꢀLOCK PAGE PROTECTION CONDITION response format when Error_flag is NOT  
set  
Flags  
CRC16  
8 bits  
16 bits  
Table 146.ꢀLOCK PAGE PROTECTION CONDITION response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
Remark: If the transmitted protection pointer address does not match with the stored  
address the IC will respond according to the error handling.  
8.2.3.3.8 DESTROY  
Command code = B9h  
In plain password mode the DESTROY command disables NTAG 5 link if the destroy  
password is correct. This command is irreversible and NTAG 5 link will never respond to  
any command neither NFC nor I2C again.  
The DESTROY command can only be executed in addressed or SELECTED mode.  
The XOR password has to be calculated with the password and two times the received  
random number from the last GET RANDOM NUMBER command:  
XOR_Password[31:0] = Password[31:0] XOR {Random_Number[15:0],  
Random_Number[15:0]}.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
NOTE: In AES mode, Mutual Authentication with Purpose_MAM2 = 1011b needs to be  
executed to destroy NTAG 5 link.  
Table 147.ꢀDESTROY request format  
Flags  
DESTROY  
Manuf. code  
UID  
XOR password  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
16 bits  
Table 148.ꢀDESTROY response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 149.ꢀDESTROY response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
74 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.2.3.3.9 ENABLE NFC PRIVACY  
Command code = BAh  
The ENABLE NFC PRIVACY command in plain password mode enables NFC PRIVACY  
mode (see Section 8.7) for NTAG 5 link if the Privacy password is correct.  
The XOR password has to be calculated with the password and two times the received  
random number from the last GET RANDOM NUMBER command:  
XOR_Password[31:0] = Password[31:0] XOR {Random_Number[15:0],  
Random_Number[15:0]}.  
To get out of the NFC PRIVACY mode, the valid Privacy password has to be transmitted  
to the IC with the DISABLE NFC PRIVACY command.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
NOTE: In AES mode, Mutual Authentication with Purpose_MAM2 = 1001b needs to be  
executed to enable the NFC PRIVACY mode for NTAG 5 link.  
Table 150.ꢀENABLE NFC PRIVACY request format  
Flags  
SET  
IC Mfg  
code  
UID  
XOR  
CRC16  
PASSWORD  
password  
64 bits  
8 bits  
8 bits  
8 bits  
32 bits  
16 bits  
optional  
Table 151.ꢀENABLE NFC PRIVACY response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 152.ꢀENABLE NFC PRIVACY response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.3.10 DISABLE NFC PRIVACY  
Command code = B3h  
The DISABLE NFC PRIVACY command moves the NTAG 5 link out of the NFC  
PRIVACY mode.  
Remark: The timing of the DISABLE PRIVACY command is write alike.  
The XOR password has to be calculated with the password and two times the received  
random number from the last GET RANDOM NUMBER command:  
XOR_Password[31:0] = Password[31:0] XOR {Random_Number[15:0],  
Random_Number[15:0]}.  
The Privacy identifier is 04h.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
75 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Option_flag = 1b and Option_flag = 0b are supported.  
Table 153.ꢀDISABLE NFC PRIVACY request format  
Flags  
SET  
Manuf.  
UID  
Privacy  
XOR  
CRC16  
PASSWORD code  
identifier  
password  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
32 bits  
16 bits  
Table 154.ꢀDISABLE NFC PRIVACY response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 155.ꢀDISABLE NFC PRIVACY response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
Remark: If the IC receives an invalid password, it will not execute any following  
command until a Power-On Reset (POR) (NFC reset) is executed.  
8.2.3.4 AES Authentication  
8.2.3.4.1 Introduction  
NXP implements a scalable security approach. This means, during lifetime the security  
level may be changed. In production, NXP configures the IC, that plain password mode  
is enabled. With the DEV_SEC_CONFIG byte (see Table 66) AES mutual authentication  
may be activated. Only in case NFC Security is set to AES mode following commands  
and AES mutual authentication is enabled. To lock the security level, the Security Lock  
bits need to be set to 010b (see Table 66).  
NOTE: AES authentication mode and this flexibility is only available for NTP5332.  
8.2.3.4.2 PROTECT PAGE  
See Section 8.2.3.3.6  
8.2.3.4.3 LOCK PAGE PROTECTION CONDITION  
See Section 8.2.3.3.7  
8.2.3.4.4 AUTHENTICATE  
As defined in ISO/IEC 15693 and ISO/IEC 29167-10.  
Command code = 35h  
CSI code= 00h (AES Crypto Suite)  
The AUTHENTICATE command allows the interrogator to perform the following  
authentication procedures as defined in ISO/IEC 15693:  
Tag Authentication (TAM1)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
76 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Mutual Authentication (MAM1, MAM2)  
After receiving a valid AUTHENTICATE command, NTAG 5 link calculates the response  
and as soon as the calculation is finalized, the response with the result of the crypto  
calculation (b3 flag is set) is sent. Only for tag authentication the calculation result is  
additionally stored in the response buffer (b2 flag is set).  
NTAG 5 link supports the Crypto Suite AES128 as defined in ISO/IEC 29167-10.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 156.ꢀAUTHENTICATE request format  
Flags  
AUTHENTICATE UID  
CSI  
Message  
CRC16  
Depending on  
TAM1 (96 bit),  
MAM1 (96 bit) or  
MAM2 (136 bit)  
8 bits  
8 bits  
64 bits (optional)  
8 bits  
16 bits  
Table 157 defines the response of NTAG 5 link to an AUTHENTICATE command.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 157.ꢀAUTHENTICATE response format when Error_flag is NOT set(in process reply)  
Flags  
Barker Code  
TResponse  
CRC16  
Depending on TAM1 (128  
8 bits (b2 and b3 is set)  
8 bits (Done flag is set)  
bit), MAM1(176 bit) or MAM2 16 bits  
(0 bit)  
Table 158.ꢀAUTHENTICATE response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
Tag Authentication (TAM1)  
Table 159 defines the message within the AUTHENTICATE command for tag  
authentication (TAM1).  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 159.ꢀMessage format for TAM1  
AuthMethode CustomData  
TAM1_RFU  
5
KeyID  
8
IChallenge_TAM1  
# of bits  
2
1
80  
Description  
00b  
0b  
00000b  
[7:0]  
random interrogator challenge  
Table 160 defines the response of NTAG 5 link to an AUTHENTICATE command.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 160.ꢀTResponse for TAM1  
TResponse TAM1 (128 bit)  
AES-ECB-ENC(Key[KeyID].ENC_key,C_TAM1[15:0] || TRnd_TAM1[31:0] || IChallenge_TAM1[79:0])  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
77 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Mutual Authentication (MAM1, MAM2)  
The mutual authentication is a two-pass authentication procedure. The first  
AUTHENTICATE command (MAM1) is executing the tag authentication and gets  
the challenge from NTAG 5 link. The second AUTHENTICATE command (MAM2) is  
executing the interrogator authentication.  
Table 161 defines the message within the AUTHENTICATE command for mutual  
authentication (MAM1).  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 161.ꢀMessage format for MAM1  
AuthMethode Step  
MAM1_RFU  
KeyID  
8
IChallenge_MAM1  
# of bits  
2
2
4
80  
Description  
10b  
00b  
0000b  
[7:0]  
random interrogator challenge  
Table 162 defines the response of NTAG 5 link to an AUTHENTICATE command for  
MAM1.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 162.ꢀTReseponse for MAM1  
TResponse MAM1 (176 bit)  
AES-ECB-ENC(Key[KeyID].ENC_key,C_TAM1[15:0] || TChallenge_MAM1[31:0] || IChallenge_TAM1[79:0]) || TChallenge_  
MAM1[79:32]  
Table 163 defines the message within the AUTHENTICATE command for mutual  
authentication (MAM2).  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 163.ꢀMessage format for MAM2  
AuthMethode  
Step  
2
MAM2_RFU  
IResponse  
# of bits  
2
4
128  
Description  
10b  
01b  
0000b  
AES-DEC(, Key[KeyID].ENC_key,C_  
MAM2[11:0] || Purpose_MAM2[3:0] ||  
IChallenge_MAM1[31:0] || TChallenge_  
MAM1[79:0])  
Table 164 defines valid values for Purpose_MAM2 for NTAG 5 link.  
Table 164.ꢀDefinition of Purpose_MAM2  
Purpose_MAM2  
Description  
Standard  
0000b  
Mutual Authentication  
RFU  
all other 0xxxb  
1000b  
NXP specific  
Disable NFC Privacy Mode until NFC field reset  
Enable NFC Privacy Mode  
Disable NFC Privacy Mode  
Destroy NTAG 5 link  
RFU  
1001b  
1010b  
1011b  
all other 1xxxb  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
78 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 165 defines the response of NTAG 5 link to an AUTHENTICATE command for  
MAM2.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 165.ꢀTReseponse for MAM2  
TResponse MAM2 (0 bit)  
Empty message (no data)  
8.2.3.4.5 CHALLENGE  
As defined in ISO/IEC 15693 and ISO/IEC 29167-10.  
Command code = 39h  
CSI code= 00h (AES Crypto Suite)  
The CHALLENGE command transmits the message (challenge) to NTAG 5 link to  
authenticate as defined in ISO/IEC 15693.  
The CHALLENGE command can only be executed in the READY state and in not  
addressed mode.  
After receiving a valid CHALLENGE command, NTAG 5 link starts with the crypto  
calculation.  
If the calculation is finalized, NTAG 5 link will respond to a valid READBUFFER  
command with the result of the crypto calculation based on the previous CHALLENGE  
command message.  
NTAG 5 link supports the Crypto Suite AES128 as defined in ISO/IEC 29167-10.  
Only Option_flag = 0b is supported.  
Table 166.ꢀCHALLENGE request format  
Flags  
CHALLENGE  
UID  
CSI  
Message  
CRC16  
8 bits  
8 bits  
64 bits (optional)  
8 bits  
96 bits  
16 bits  
Table 167 defines the message within the CHALLENGE command.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 167.ꢀMessage format  
AuthMethode CustomData  
TAM1_RFU  
5
KeyID  
8
IChallenge_TAM1  
# of bits  
2
1
80  
Description  
00b  
0b  
00000b  
[7:0]  
random interrogator challenge  
No response is sent on a CHALLENGE command.  
For more detailed information, refer to ISO/IEC 29167-10.  
8.2.3.4.6 READBUFFER  
As defined in ISO/IEC 15693 and ISO/IEC 29167-10.  
Command code = 3Ah  
The READBUFFER command allows the interrogator to request the crypto calculation  
result based on a valid previous CHALLENGE command from NTAG 5 link.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
79 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
NTAG 5 link supports the Crypto Suite AES128 as defined in ISO/IEC 29167-10.  
Only Option_flag = 0b is supported.  
Table 168.ꢀREADBUFFER request format  
Flags  
READBUFFER  
UID  
CRC16  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 169 and Table 170 defines the response of NTAG 5 link to a READBUFFER  
command.  
For more detailed information, refer to ISO/IEC 29167-10.  
Table 169.ꢀREADBUFFER response format when Error_flag is NOT set  
Flags  
TResponse  
CRC16  
128 bits  
8 bits  
16 bits  
(see Table 122)  
Table 170.ꢀTResponse  
TResponse  
AES-ECB-ENC(Key[KeyID].ENC_key,C_TAM1[15:0] || TRnd_TAM1[31:0] || IChallenge_TAM1[79:0])  
Table 171.ꢀREADBUFFER response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.5 Memory operations  
Following commands are implemented for accessing user memory according to ISO/IEC  
15693.  
READ SINGLE BLOCK  
WRITE SINGLE BLOCK  
LOCK BLOCK  
READ MULTIPLE BLOCKS up to 3Fh blocks  
EXTENDED READ SINGLE BLOCK  
EXTENDED WRITE SINGLE BLOCK  
EXTENDED LOCK BLOCK  
EXTENDED READ MULTIPEL BLOCKS up to 3Fh blocks  
On top of these commands, NTAG 5 link offers INVENTORY READ and FAST  
INVENTORY READ  
8.2.3.5.1 INVENTORY READ  
Command code = A0h  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
80 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
When receiving the INVENTORY READ request, NTAG 5 link performs the same as the  
anti-collision sequence, with the difference that instead of the UID and the DSFID, the  
requested response is defined by additional options.  
The INVENTORY READ command provides two modes which are defined by the most  
significant bit of the mask length byte as follows:  
Standard mode (most significant bit of mask length byte equal 0b)  
(see Section 8.2.3.5.1.1)  
Extended mode (most significant bit of mask length byte equal 1b)  
The extended mode offers additional features to optimize the inventory procedure for  
different requirements (see Section 8.2.3.5.1.2)  
The INVENTORY READ command may also be transmitted in addressed or SELECTED  
mode. Then the command behaves similar to a READ or READ MULTIPLE BLOCK (see  
Section 8.2.3.5.1.3).  
8.2.3.5.1.1 Standard mode  
If most significant bit of mask length byte is equal 0b the INVENTORY READ command  
is used in the standard mode.  
If the Inventory_flag is set to 1b and an error is detected, NTAG 5 link remains silent.  
If the Option flag is set to 0b, n blocks of data are transmitted. If the Option flag is set to  
1b, n blocks of data and the part of the UID which is not part of the mask are transmitted.  
The request contains:  
Flags  
INVENTORY READ command code  
IC manufacturer code  
AFI (if AFI_flag is set to 1b)  
Mask length (most significant bit equal 0b)  
Mask value (if mask length > 00h)  
First block number to be read  
Number of blocks to be read  
CRC 16  
Table 172.ꢀINVENTORY READ request format  
Flags  
INVENTORY Manuf.  
AFI  
Mask  
Mask value First block Number of CRC16  
READ  
code  
length  
number  
blocks  
8 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
0 to 8 bytes 8 bits  
8 bits  
16 bits  
If the Inventory_flag is set to 1b, only NTAG 5 link in the READY or SELECTED  
(SECURE) state will respond (same behavior as in the INVENTORY command). The  
meaning of Flags bits 7 to 4 is as defined in ISO/IEC 15693.  
The INVENTORY READ command can also be transmitted in the addressed or  
SELECTED mode (see Section 8.2.3.5.1.3).  
The number of blocks in the request is one less than the number of blocks that NTAG 5  
link returns in its response.  
If the Option_flag in the request is set to logic 0b the response contains:  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
81 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 173.ꢀINVENTORY READ response format: Option flag logic 0b  
Flags  
Data  
CRC16  
8 bits  
Number of blocks times 32 bits 16 bits  
NTAG 5 link reads the requested block(s) and sends back their value in the response.  
The mechanism and timing of the INVENTORY READ command performs the same as  
the INVENTORY command which is defined in ISO/IEC 15693.  
If the Option_flag in the request is set to logic 1b, the response contains:  
Table 174.ꢀINVENTORY READ response format: Option flag logic 1b  
Flags  
Rest of UID which is not  
part of  
Data  
CRC16  
the mask and slot number  
0 to 64 bit, always a multiple Number of blocks times 32  
of 8 bits bits  
8 bits  
16 bits  
NTAG 5 link reads the requested block(s) and sends back their value in the response.  
Additionally the bytes of the UID, which are not parts of the mask and the slot number  
in case of 16 slots, are returned. Instead of padding with zeros up to the next byte  
boundary, the corresponding bits of the UID are returned. The mechanism and timing  
of the INVENTORY READ command perform the same as the INVENTORY command  
which is defined in ISO/IEC 15693.  
Remark: The number of bits of the retransmitted UID can be calculated as follows:  
16 slots: 60 bits (bit 64 to bit 4) - mask length rounded up to the next byte boundary  
1 slot: 64 bits - mask length rounded up to the next byte boundary  
Remark: If the sum of first block number and number of blocks exceeds the total  
available number of user blocks, the number of transmitted blocks is less than the  
requested number of blocks. This means that the last returned block is the highest  
available user block, followed by the 16-bit CRC and the EOF.  
Example: mask length = 30 bits  
Returned: bit 64 to bit 4 (30 bits) = 30 gives 4 bytes  
Table 175.ꢀExample: mask length = 30  
Byte 0 Byte 1 Byte 2 Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
UID  
mask value including padding with zeros  
-
transmitted by  
interrogator  
returned value  
transmitted by NTAG 5  
link  
8.2.3.5.1.2 Extended Mode  
If the most significant bit of the Mask Length byte is equal 1b the response format is  
defined by the extended option byte.  
The request contains:  
Flags  
Inventory Read command code  
IC Manufacturer code  
AFI (if the AFI flag is set to 1b)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
82 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Mask length (most significant bit equal 1b)  
Extended Options  
Mask value (if mask length > 0)  
First Block Number to be read, if specified in extended options byte  
Number of Blocks to be read, if specified in extended options byte  
CRC 16  
Table 176.ꢀInventory Read (extended mode) request format  
Flags  
INVENTORYManuf.  
AFI  
Mask  
ext.Optio Mask  
First  
Number  
CRC 16  
READ  
code  
Length  
ns  
Value  
block  
number  
of blocks  
8 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
0 to 64 bits  
16 bits  
(optional) (optional)  
If the Inventory_flag is set to 1b, only NTAG 5 link in the READY or SELECTED  
(SECURE) state will respond (same behavior as in the INVENTORY command). The  
meaning of flags 5 to 8 is in accordance with table 5 in ISO/IEC 15693.  
The INVENTORY READ command can also be transmitted in the addressed or  
SELECTED mode (see Section 8.2.3.5.1.3).  
Table 177.ꢀExtended options  
Bit  
7
Name  
RFU  
Value Feature  
0
0
6
RFU  
0
1
0
remain in current state  
5
4
QUIET  
go to QUIET state after response  
NTAG 5 link will add the user memory blocks in the response  
as requested with first block number byte and number of blocks  
byte in the command  
SKIP_DATA  
1
No user memory data is requested, first block number byte and  
number of blocks byte shall not be transmitted in the command  
3
2
0
1
0
1
Custom ID (CID) will be NOT transmitted in the response  
Custom ID (CID) will be transmitted in the response  
No CID is transmitted in the command  
CID_RESPONSE  
CID_COMPARE  
16-bit CID will be transmitted in the command and only NTAG 5  
link with the same CID will respond  
1
0
0
1
UID will be transmitted as in regular mode (truncated reply  
depending on least significant 7 bits value of mask length and  
the mask value)  
UID_MODE  
EAS_MODE  
Complete UID will be transmitted (independent from mask  
length)  
0
1
NTAG 5 link responds independent from the EAS status  
Respond only, when EAS is enabled  
If the Option_flag in the request is set to 1b the response contains the truncated or  
complete UID depending on the extended option UID_MODE bit.  
If the Option_flag in the request is set to 0b the UID is not part of the response.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
83 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 178.ꢀInventory Read (extended mode) response format: Option_flag 1b  
Flags  
Optional truncated UID OR Optional data  
complete UID  
CRC16  
8 bits  
0 to 64 bits  
Block length  
16 bits  
Multiple of 8 bits  
Repeated as needed  
The mechanism and timing of the INVENTORY READ command performs the same as  
at the INVENTORY command which is defined in ISO/IEC 15693.  
If the UID is requested in the truncated format the retransmitted UID can be calculated as  
follows:  
16 slots: 64 - 4 - mask length rounded up to the next byte boundary  
1 slot: 64 - mask length rounded up to the next byte boundary  
Example: mask length = 30 Returned: 64 - 4 - 30 = 30 gives 4 bytes  
Table 179.ꢀExample  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
Byte 4  
Byte 5  
Byte 6  
Byte 7  
UID  
mask value incl. padding with zeros  
transmitted by  
Interrogator  
returned value  
transmitted by NTAG 5  
link  
8.2.3.5.1.3 Addressed and SELECTED mode  
The INVENTORY READ command can also be transmitted in the addressed or  
SELECTED mode. In this case, the Inventory_flag is set to 0 and the meaning of flags 7  
to 4 is in accordance with ISO/IEC 15693.  
In the addressed or selected mode, the INVENTORY READ command behaves similar to  
a READ or READ MULTIPLE BLOCK command.  
In the addressed mode, it is recommended to address the IC with a mask length of 64  
and to transmit the complete UID in the mask value field.  
In the selected mode (IC has been selected with a valid SELECT command before), it is  
recommended to address the IC with a mask length of 0 (and do not transmit the mask  
value field).  
Remark: If the INVENTORY READ command is used in the addressed or selected  
mode, the AFI shall not be transmitted and the IC will only respond in the first-time slot.  
8.2.3.5.2 FAST INVENTORY READ  
Command code = A1h  
When receiving the FAST INVENTORY READ command, NTAG 5 link behaves the  
same as the INVENTORY READ command with the following exceptions:  
The data rate in the direction NTAG 5 link to the reader is twice as defined in ISO/IEC  
15693 depending on the Datarate_flag 53 kbit (high data rate) or 13 kbit (low data rate).  
The data rate from the reader to NTAG 5 link and the time between the rising edge of the  
EOF from the reader to NTAG 5 link remains unchanged (stays the same as defined in  
ISO/IEC 15693).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
84 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Only the single subcarrier mode is supported for the response to the FAST INVENTORY  
READ command.  
8.2.3.6 SRAM operations  
When SRAM is mirrored to user EEPROM address space, standard READ BLOCK and  
WRITE BLOCK commands can be used. To have a more efficient way to access the 256  
bytes SRAM, READ SRAM and WRITE SRAM are implemented  
8.2.3.6.1 READ SRAM  
Command code = D2h  
This command can only be used, when NTAG 5 link is powered via VCC end  
SRAM_ENABLE bit (see Table 38) is set to 1b.  
When receiving READ SRAM desired SRAM blocks will be returned.  
NTAG 5 link returns only the requested blocks. The blocks are numbered from 00h to  
3Fh. The number of blocks in the request is one less than the number of blocks that  
NTAG 5 link returns in its response. EXAMPLE: A value of 06h in the "Number of Blocks"  
field requests to read 7 blocks. A value of 00h requests to read a single block from  
SRAM.  
If SRAM is read or write protected a valid authentication needs to be proceeded.  
It is recommended to use this command in pass-through mode.  
Only Option_flag = 0b is supported.  
Table 180.ꢀREAD SRAM request format  
Flags  
READ  
SRAM  
Manuf.  
code  
UID  
Block  
Address  
Number of CRC16  
Blocks  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
16 bits  
Table 181.ꢀREAD SRAM response format when Error_flag is NOT set  
Flags  
Block Security Status (optional) + Data  
CRC16  
16 bits  
8 bits  
(Number of Blocks+1) x 32 bits Data  
Block Security Status and Data bytes repeat as a duple.  
Table 182.ꢀREAD SRAM response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.6.2 Write SRAM  
Command code = D3h  
This command can only be used, when NTAG 5 link is powered via VCC end  
SRAM_ENABLE bit (see Table 38) is set to 1b.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
85 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
When receiving WRITE SRAM desired SRAM blocks will be written to the SRAM. It is  
recommended to use this command in pass-through mode because of performance  
reasons.  
If SRAM is write protected a valid authentication needs to be preceded.  
The blocks are numbered from 00h to 3Fh. The number of blocks in the request is one  
less than the number of blocks that the VICC shall write. E.g., to write one block to SRAM  
Number of Blocks is coded as 00h.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 183.ꢀWRITE SRAM request format  
Flags  
WRITE  
SRAM  
IC Mfg  
code  
UID  
Block  
Address  
Number of  
blocks  
Data  
CRC16  
(Number of  
blocks + 1)  
times 32 bits  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
16 bits  
Table 184.ꢀWRITE SRAM response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 185.ꢀWRITE SRAM response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.7 Originality Signature  
8.2.3.7.1 READ SIGNATURE  
Command code = BDh  
The READ SIGNATURE command returns an IC-specific, 32 byte ECC signature. How  
to change and / or lock the originality signature is described in Section 8.8.  
Only Option_flag = 0b is supported.  
Table 186.ꢀREAD SIGNATURE request format  
Flags  
READ  
Manuf. code  
UID  
CRC16  
SIGNATURE  
8 bits  
8 bits  
8 bits  
64 bits (optional) 16 bits  
Table 187.ꢀREAD SIGNATURE response format when Error_flag is NOT set  
Flags  
Originality Signature  
CRC16  
8 bits  
256 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
86 / 133  
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 188.ꢀREAD SIGNATURE response format when Error_flag is set  
Flags  
Error Code  
8 bits  
CRC16  
8 bits  
16 bits  
Details on how to validate the signature is provided in AN11350.  
8.2.3.8 I2C Transparent Channel  
NTAG 5 link offers an NFC to I2C bridge. With this mode, different I2C slaves (e.g.,  
sensors) can be connected without a microcontroller. There shall be no other active I2C  
master on the same bus. The needed power for the sensors may be provided with NTAG  
5 link energy harvesting capability.  
I2C master communication can do maximum 256 bytes to read from, and write to the  
connected slave.  
I2C master clock speed needs to be configured with I2C_MASTER_SCL_LOW and  
I2C_MASTER_SCL_HIGH (see Table 62). I2C slave address will be selected directly  
within WRITE I2C and READ I2C command.  
SRAM needs to be enabled by setting SRAM_ENABLE bit (see Table 38) to 1b.  
Basic principle for triggering an I2C write to the connected slave is illustrated in the figure  
below. NFC reader will get the response immediately, and then polls for the status of the  
I2C transaction (see Table 106).  
Details of the NFC command WRITE I2C can be found in Section 8.2.3.8.1.  
NOTE: This feature is only available for NTP5332.  
RF sends custom I2C write  
command and sends Payload  
along with the command for  
I2C Write transaction.  
RF polls for I2C Master  
session registers to know  
the current I2C  
RF  
READER  
transaction status.  
IC initiates I2C  
transaction. I2C Master  
sends I2C write  
2
I C  
INTERFACE  
command to the  
specified slave address.  
RF to I2C Master read communication sequences  
aaa-035483  
Figure 7.ꢀI2C Master write principle  
Basic principle for triggering an I2C read and getting the response of the connected slave  
is illustrated in the figure below. Again the NFC reader will get a response immediately,  
and then polls for the status of the I2C transaction (see Table 106). Finally the result can  
be read from SRAM.  
Details of the NFC command READ I2C can be found in Section 8.2.3.8.2  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
87 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
RF polls for I2C Master  
session registers to know  
the current I2C  
RF  
READER  
RF sends custom I2C read  
command.  
RF reads data  
from SRAM.  
transaction status.  
IC initiates I2C  
IC stores  
the data  
in SRAM.  
2
transaction. I2C Master  
sends I2C read  
I C  
INTERFACE  
command to the  
specified slave address.  
RF to I2C Master read communication sequences  
aaa-035482  
Figure 8.ꢀI2C Master read principle  
8.2.3.8.1 WRITE I2C  
Command code = D4h  
WRITE I2C command is used to trigger an I2C master write command (R/W bit is 0b) on  
the I2C bus.  
Command parameters:  
I2C param contains I2C slave address and STOP condition option.  
Data length N byte codes the length of bytes to be sent to the slave. N+1 bytes need to  
be put in the Data field and will be sent to the slave. E.g., to send one byte, 00h needs  
to be coded.  
Data field contains the data to be sent to the I2C slave. Minimum number of bytes is 1  
byte, maximum is 256 bytes.  
If SRAM is read or write protected a valid authentication needs to be preceded.  
Response to this command will follow immediately.  
To check the status and result of the WRITE I2C command, I2C Master Status Registers  
ADh should be checked (see Table 106).  
Only Option_flag = 0b is supported.  
Table 189.ꢀWRITE I2C request format  
Flags  
WRITE I2C  
Manuf. code UID  
I2C param  
Data length Data  
N
CRC16  
64 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits  
8 bits  
(N+1) x 8 bits 16 bits  
Table 190.ꢀI2C param byte  
I2C param bit Status  
Value Description  
0b  
STOP condition will be generated at the end of transaction  
STOP condition will be omitted at the end of transaction  
7-bit I2C slave address of connected slave  
7
Disable STOP condition  
I2C Address  
1b  
6 to 0  
xxh  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
88 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 191.ꢀWRITE I2C response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 192.ꢀWRITE I2C response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.8.2 READ I2C  
Command code = D5h  
READ I2C command is used to trigger an I2C master read command (R/W bit is 1b) on  
the I2C bus.  
Command parameters:  
I2C param contains I2C address and STOP condition option  
Data length N byte codes the length of bytes to be read from the slave. N+1 bytes will  
be read from the slave. E.g., to read one byte 00h needs to be coded. Maximum is  
FFh, which means 256 bytes will be read.  
Response to this command will follow immediately.  
The status register Table 106 indicates when the I2C read command is completed.  
To get the response of the addressed I2C slave device, the READ SRAM (see  
Section 8.2.3.6.1) command is used.  
Only Option_flag = 0b is supported.  
Table 193.ꢀREAD I2C request format  
Flags  
READ  
I2C  
IC Mfg  
code  
UID  
I2C  
Data length  
CRC16  
param  
8 bits  
8 bits  
8 bits  
64 bits  
8 bits  
8 bits  
16 bits  
optional  
Table 194.ꢀI2C param byte  
Bit  
Status  
Value Description  
0b  
STOP condition will be generated at the end of transaction  
7
Disable STOP condition  
I2C Address  
1b  
STOP condition will be omitted at the end of transaction  
6 to 0  
xxh 7-bit I2C slave address of connected slave  
Table 195.ꢀREAD I2C response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
89 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 196.ꢀREAD I2C response format when Error_flag is set  
Flags  
Error Code  
8 bits  
CRC16  
8 bits  
16 bits  
8.2.3.9 Other  
8.2.3.9.1 WRITE AFI  
As defined in ISO/IEC 15693.  
8.2.3.9.2 LOCK AFI  
As defined in ISO/IEC 15693.  
8.2.3.9.3 WRITE DSFID  
As defined in ISO/IEC 15693.  
8.2.3.9.4 LOCK DSFID  
As defined in ISO/IEC 15693.  
8.2.3.9.5 SET EAS  
Command code = A2h  
The SET EAS command enables the EAS mode if the EAS mode is not locked.  
If the EAS mode is password protected the EAS password has to be first transmitted with  
the SET PASSWORD command.  
If AES authentication scheme is enabled and EAS mode is protected, a valid mutual  
authentication with a key with the EAS/AFI privilege set has to executed before.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 197.ꢀSET EAS request format  
Flags  
SET EAS  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional) 16 bits  
Table 198.ꢀSET EAS response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 199.ꢀSET EAS response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
90 / 133  
 
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.2.3.9.6 RESET EAS  
Command code = A3h  
The RESET EAS command disables the EAS mode if the EAS mode is not locked.  
If the EAS mode is password protected the EAS password has to be first transmitted with  
the SET PASSWORD command.  
If AES authentication scheme is enabled and EAS mode is protected a valid mutual  
authentication with a key with the EAS/AFI privilege set has to executed before.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 200.ꢀRESET EAS request format  
Flags  
RESET EAS  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits optional  
16 bits  
Table 201.ꢀRESET EAS response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 202.ꢀRESET EAS response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.9.7 LOCK EAS  
Command code = A4h  
The LOCK EAS command locks the current state of the EAS mode and the EAS ID.  
If the EAS mode is password protected the EAS password has to be first transmitted with  
the SET PASSWORD command.  
If AES authentication scheme is enabled and EAS mode is protected a valid mutual  
authentication with a key with the EAS/AFI privilege set has to executed before.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 203.ꢀLOCK EAS request format  
Flags  
LOCK EAS  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional) 16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
91 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 204.ꢀLOCK EAS response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 205.ꢀLOCK EAS response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.9.8 EAS ALARM  
Command code = A5h  
The EAS ALARM command can be used in the following configurations:  
Option_flag is set to 0b:  
EAS ID mask length and EAS ID value shall not be transmitted.  
If the EAS mode is enabled, the EAS response is returned from the IC.  
Option_flag is set to 1b:  
Within the command, the EAS ID mask length has to be transmitted to identify how  
many bits of the following EAS ID value are valid (multiple of 8-bits). Only those ICs will  
respond with the EAS sequence which have stored the corresponding data in the EAS  
ID configuration (selective EAS) and if the EAS Mode is set.  
If the EAS ID mask length is set to 00h, the IC will answer with its EAS ID.  
Table 206.ꢀEAS ALARM Request format  
Flags  
EAS ALARM  
Manuf. code  
UID  
EAS ID mask  
length  
EAS ID value  
CRC16  
64 bits  
(optional)  
0, 8 or 16 bits  
(optional)  
8 bits  
8 bits  
8 bits  
8 bits (optional)  
16 bits  
If an error is detected the IC remains silent.  
Option_flag is set to 0b or Option_flag is set to logic 1b and the EAS ID mask length is  
not equal to 00h:  
Table 207.ꢀEAS ALARM Response format (Option flag logic 0)  
Flags  
EAS sequence  
CRC16  
8 bits  
256 bits  
16 bits  
EAS sequence (starting with the least significant bit, which is transmitted first; read from  
left to right):  
11110100 11001101 01000110 00001110 10101011 11100101 00001001 11111110  
00010111 10001101 00000001 00011100 01001011 10000001 10010010 01101110  
01000001 01011011 01011001 01100001 11110110 11110101 11010001 00001101  
10001111 00111001 10001011 01001000 10100101 01001110 11101100 11110111  
Option_flag is set to 1b and the EAS ID mask length is equal to 00h:  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
92 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 208.ꢀEAS ALARM Response format(Option flag logic 1)  
Flags  
EAS ID value  
16 bits  
CRC16  
8 bits  
16 bits  
Table 209.ꢀEAS ALAMR response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
If the EAS mode is disabled, the IC remains silent.  
Remark: NTAG 5 link in the QUIET state will not respond to an EAS ALARM command  
except the addressed flag is set.  
8.2.3.9.9 PROTECT EAS/AFI  
Command code = A6h  
In plain password mode the PROTECT EAS/AFI command enables the password  
protection for EAS and/or AFI if the EAS/AFI password is first transmitted with the SET  
PASSWORD command.  
In AES mode, the PROTECT EAS/AFI command enables the protection for EAS and/or  
AFI if a valid mutual authentication with the EAS/AFI privilege has been executed before.  
Option_flag set to 0b: EAS will be protected.  
Option_flag set to 1b: AFI will be protected.  
Both protections (AFI and EAS) can be enabled separately.  
Once the EAS/AFI protection is enabled, it is not possible to change back to unprotected  
EAS and/or AFI.  
The timing of the command is write-alike as of write commands with Option_flag set to  
0b.  
Note: Option_flag is only related to the parameter to be locked, and NOT to the response  
behavior.  
Table 210.ꢀPROTECT EAS/AFI request format  
Flags  
PROTECT EAS/AFI  
Manuf. code  
UID  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
Table 211.ꢀPROTECT EAS/AFI response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 212.ꢀPROTECT EAS/AFI response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
93 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.2.3.9.10 WRITE EAS ID  
Command code = A7h  
The command WRITE EAS ID enables a new EAS Identifier to be stored in the  
corresponding configuration memory.  
If EAS is password protected (for Set and Reset EAS) the EAS password has to be first  
transmitted with the SET PASSWORD command.  
If AES mode is enabled and the EAS is protected a valid mutual authentication with a key  
with the EAS/AFI privilege set has to executed before.  
The timing of the command is write alike.  
Option_flag = 0b and Option_flag = 1b is supported and is in accordance with ISO/IEC  
15693 write-alike commands.  
Table 213.ꢀWRITE EAS ID request format  
Flags  
WRITE EAS ID  
Manuf. code  
UID  
EAS ID value  
CRC16  
8 bits  
8 bits  
8 bits  
64 bits (optional)  
16 bits  
16 bits  
Table 214.ꢀWRITE EAS ID response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
Table 215.ꢀWRITE EAS ID response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.9.11 GET MULTIPLE BLOCK SECURITY STATUS  
As defined in ISO/IEC 15693.  
8.2.3.9.12 GET SYSTEM INFORMATION  
As defined in ISO/IEC 15693.  
The TAG type of NTAG 5 link is "01h".  
8.2.3.9.13 EXTENDED GET SYSTEM INFORMATION  
As defined in ISO/IEC 15693 and ISO/IEC 29167-10.  
Command code = 3Bh  
8.2.3.9.14 GET NXP SYSTEM INFORMATION  
Command code = ABh  
The GET NXP SYSTEM INFORMATION command provides information about the IC  
access conditions and supported features.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
94 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 216.ꢀGET NXP SYSTEM INFORMATION request format  
Flags  
Get NXP System Info Manuf. code  
8 bits 8 bits  
UID  
CRC16  
8 bits  
64 bits (optional)  
16 bits  
Table 217.ꢀGET NXP SYSTEM INFORMATION response format when Error_flag is NOT set  
Flags  
PP  
PP  
Lock bits  
Feature  
flag  
CRC16  
pointer  
condition  
8 bits  
8 bits  
8 bits  
8 bits  
32 bits  
16 bits  
On a valid received command the IC responds with detailed information:  
PP pointer byte contains the block address of the protection pointer.  
PP condition byte contains information about the access condition to Page H and Page L.  
Table 218.ꢀProtection Pointer condition byte  
Bit  
7
Name  
RFU  
Value  
0b  
Description  
6
RFU  
0b  
0b  
Page 0-H is not write protected  
Page 0-H is write protected  
Page 0-H is not read protected  
Page 0-H is read protected  
5
4
WH  
RH  
1b  
0b  
1b  
3
2
RFU  
RFU  
0b  
0b  
0b  
Page 0-L is not write protected  
Page 0-L is write protected  
Page 0-L is not read protected  
Page 0-L is read protected  
1
0
WL  
RL  
1b  
0b  
1b  
Lock bits byte contains information about permanently locked features.  
Table 219.ꢀLock bits byte  
Bit  
Name  
Value  
0b  
Description  
7 to 4  
RFU  
0b  
NFC_PP_AREA_0H and NFC_PPC is NOT locked  
NFC_PP_AREA_0H and NFC_PPC is locked  
DSFID is NOT locked  
NFC_PP_AREA_0H and  
NFC_PPC  
3
2
1
0
1b  
0b  
DSFID  
EAS  
AFI  
1b  
DSFID is locked  
0b  
EAS is NOT locked  
1b  
EAS is locked  
0b  
AFI is NOT locked  
1b  
AFI is locked  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
95 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Feature flag byte contains information about supported features (related bit is 1b) of  
NTAG 5 link. With this response, it is possible to distinguish the different NTAG 5 family  
members.  
Table 220.ꢀFeature flags byte 0  
Bit  
7
Name  
CID  
Description  
NTAG 5  
1b  
Customer ID supported (see Section 8.1.3.3)  
6
EAS IR  
EAS selection supported by extended mode in INVENTORY  
READ command (see Section 8.2.3.5.1)  
1b  
5
INVENTORY READ EXT  
Extended mode supported by INVENTORY READ command  
(see Section 8.2.3.5.1)  
1b  
4
3
2
AFI PROT  
EAS PROT  
EAS ID  
AFI protection supported (see Section 8.2.3.9.9)  
EAS protection supported (see Section 8.2.3.9.9)  
1b  
1b  
1b  
EAS ID supported by EAS ALARM command (see  
Section 8.2.3.9.10)  
1
0
COUNTER  
UM PROT  
NFC Counter supported (see Section 8.1.2.1)  
1b  
1b  
User memory protection supported (see Section 8.2.3.3.6)  
Table 221.ꢀFeature flags byte 1  
NTAG 5  
NTP5312  
NTP5332  
NTA5332  
Bit  
Name  
Description  
NTP5210  
7
6
5
4
3
2
1
0
HIGH BITRATES  
WRITE CID  
DESTROY  
NFC PRIVACY  
RFU  
high bitrates supported (see Section 8.2)  
0b  
1b  
Write and Lock CID enabled (see Section 8.1.3.3)  
DESTROY feature supported (see Section 8.2.3.3.8)  
NFC Privacy mode supported (see Section 8.2.3.3.9)  
1b  
1b  
1b  
0b  
0b  
0b  
1b  
PERS QUIET  
RFU  
PERSISTENT QUIET feature supported  
ORIG SIG  
Originality signature supported (see Section 8.1.3.1)  
Table 222.ꢀFeature flags byte 2  
NTAG 5  
Bit  
Name  
Description  
NTP5210  
NTP5312  
NTP5332  
NTA5332  
7 to 3  
2
RFU  
all 0b  
KEY PRIV  
Key privileges supported (see  
Section 8.1.3.8)  
0b  
0b  
1b  
1b  
1
MUTUAL AUTH  
Mutual Authentication feature supported (see  
Section 8.6.4)  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
96 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
NTAG 5  
Bit  
Name  
Description  
NTP5210  
NTP5312  
NTP5332  
NTA5332  
Tag Authentication feature supported (see  
Section 8.6.4)  
0b  
1b  
0
TAG AUTH  
Table 223.ꢀFeature flags byte 3  
NTAG 5  
NTP5312  
0b  
Bit  
Name  
Description  
NPT5332  
NTA5332  
NTP5210  
7
EXT FLAG  
Additional 32 bits feature flags are  
transmitted  
00b only NFC interface available  
01b GPIO/ED host interface  
10b RFU  
6-5  
Interface  
01b  
11b  
11b GPIO and I2C host interface  
4
RFU  
0b  
3 to 0  
NUM KEYS  
Number of Keys  
0h  
4h  
Table 224.ꢀGET NXP SYSTEM INFORMATION response format when Error_flag is set  
Flags  
Error Code  
CRC16  
8 bits  
8 bits  
16 bits  
8.2.3.9.15 PICK RANDOM ID  
Command code = C2h  
In AES mode the PICK RANDOM ID commandinstructs NTAG 5 link in NFC PRIVACY  
Mode to generate a random ID. After a valid PICK RANDOM ID command, the IC will  
respond with that random ID on following INVENTORY commands or GET SYSTEM  
INFORMATION command until an RF reset to allow an anti-collision procedure.The  
random ID will include the CID to identify the group-password or group-key to disable the  
privacy mode.  
Only Option_flag = 0b is supported.  
Table 225.ꢀPICK RANDOM ID request format  
Flags  
Pick Random ID Manuf. code  
8 bits 8 bits  
UID  
CRC16  
8 bits  
64 bits (optional) 16 bits  
Table 226.ꢀPICK RANDOM ID response format when Error_flag is NOT set  
Flags  
CRC16  
8 bits  
16 bits  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
97 / 133  
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 227.ꢀPICK RANDOM ID response format when Error_flag is set  
Flags  
Error Code  
8 bits  
CRC16  
8 bits  
16 bits  
After a successful PICK_RANDOM_ID the NTAG 5 link will respond on an INVENTORY  
command with a random ID as defined in the table below.  
Table 228.ꢀRandom ID  
MSB  
LSB  
63:56  
E0h  
55:48  
04h  
47:40  
00h  
39:32  
00h  
31:24  
23:16  
15:0  
CID_1  
CID_0  
16-bit random  
ID  
8.2.4 Data integrity  
Following mechanisms are implemented in the contactless communication link between  
reader and NTAG 5 link to ensure very reliable data transmission:  
16-bit CRC per block  
Bit count checking  
Bit coding to distinguish between logic 1, logic 0, and no information  
Channel monitoring (protocol sequence and bit stream analysis)  
8.2.5 Error Handling  
8.2.5.1 Transmission Errors  
According to ISO/IEC 15693 NTAG 5 link will not respond if a transmission error (CRC,  
bit coding, bit count, wrong framing) is detected and will silently wait for the next correct  
received command.  
8.2.5.2 Not supported commands or options  
If the received command or option is not supported, the behavior depends on the  
addressing mechanism.  
Non-Addressed Mode  
NTAG 5 link remains silent  
Addressed or selected Mode  
NTAG 5 link responds with error code 0Fh (no information given, or error code not  
supported).  
If the Inventory flag or the Protocol Extension flag is set, the IC will not respond if the  
command or option is not supported.  
Parameter out of range  
Read alike commands  
If the sum of the first block number and the number of blocks exceeds the total  
available number of user blocks, the number of transmitted blocks is less than the  
requested number of blocks. This means that the last returned block is the highest  
available user block, followed by the 16-bit CRC and the EOF.  
Write alike commands  
If the address of a block to be written does not exist or a block to be written is locked,  
the behavior of the IC depends on the addressing mechanism.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
98 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
– Non-Addressed Mode  
NTAG 5 link remains silent.  
– Addressed or SELECTED Mode  
NTAG 5 link responds with error code 0Fh (no information given, or error code not  
supported).  
8.3 Wired Interface  
NTAG 5 link has not only an NFC interface, but also a wired interface. Details are  
described in following clauses.  
8.3.1 I2C interface  
The definition of the I2C interface is according to the UM10204. The details of slave and  
master mode are described in Section 8.3.1.1 and Section 8.3.1.2.  
NOTE: I2C master mode is only available for NTP5332.  
8.3.1.1 Slave mode  
For details about I2C interface, refer to UM10204.  
The I2C slave interface supports both standard (up to 100 kHz) and fast mode (up to  
400 kHz) communication speeds for both read and write. Implementation will be a so-  
called asynchronous interface which uses the SCL clock for the I2C protocol handling  
after which the data is synchronized to the system clock for memory access. NTAG 5 link  
can be used in multi-master/multi-slave applications.  
SCL  
SDA  
Start  
Condition  
SDA  
Input  
SDA  
Change  
Stop  
Condition  
SCL  
SDA  
1
2
3
7
8
9
MSB  
ACK  
Start  
Condition  
SCL  
1
2
3
7
8
9
SDA  
MSB  
ACK  
Stop  
Condition  
001aao231  
Figure 9.ꢀI2C bus protocol  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
99 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
NTAG 5 link supports the I2C protocol defined in UM10204. Any device that sends data  
onto the bus is defined as a transmitter, and any device that reads the data from the bus  
is defined as a receiver. The device that controls the data transfer is known as the "bus  
master", and the other as the "slave" device. A data transfer can only be initiated by the  
bus master, which will also provide the serial clock for synchronization.  
8.3.1.1.1 Start condition  
Start is identified by a falling edge of Serial Data (SDA), while Serial Clock (SCL) is  
stable in the high state. A Start condition must precede any data transfer command.  
NTAG 5 link continuously monitors SDA (except during a Write cycle) and SCL for a Start  
condition, and will not respond unless one is given.  
8.3.1.1.2 Stop condition  
Stop is identified by a rising edge of SDA while SCL is stable and driven high. A Stop  
condition terminates communication between NTAG 5 link and the bus master. A Stop  
condition at the end of a Write command triggers the internal write cycle.  
8.3.1.1.3 Acknowledge bit (ACK)  
The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter,  
whether it is the bus master or slave device, releases Serial Data (SDA) after sending 8  
bits of data. During the ninth clock pulse period, the receiver pulls Serial Data (SDA) low  
to acknowledge the receipt of the 9th data bits.  
8.3.1.1.4 Data input  
During data input, the IC samples SDA on the rising edge of SCL. For correct device  
operation, SDA must be stable during the rising edge of SCL, and the SDA signal must  
change only when SCL is driven low.  
8.3.1.1.5 Addressing  
To start communication between a bus master and NTAG 5 link, the bus master must  
initiate a Start condition. Following this initiation, the bus master sends the device  
address. The IC address from I2C consists of a 7-bit device identifier (see Table 229 for  
default value).  
As long as I2C address is 7 bit long, the 8th bit (least significant bit) is used as the Read/  
Write bit (R/W). This bit is set to 1b for Read and 0b for Write operations.  
If a match occurs on the device address, the IC gives an acknowledgment on SDA during  
the 9th bit time. If the IC does not match the device select code, it deselects itself from  
the bus and clears the register I2C_IF_LOCKED (see Table 88).  
Table 229.ꢀDefault NTAG 5 I2C address from I2C  
Device address  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Value  
1 [1]  
0 [1]  
1 [1]  
0 [1]  
1 [1]  
0 [1]  
0 [1]  
[1] Initial values - can be changed.  
The I2C address of NTAG 5 link (Configuration Byte) can be modified by the NFC and I2C  
interface.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
100 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.3.1.1.6 Disable I2C Interface  
NTAG 5 link offers the option to disable the I2C interface temporarily using the session  
register bit DISABLE_I2C (see Table 100). With this feature, the NFC Device can easily  
get exclusive access to EEPROM.  
This feature can be enabled via the NFC interface during the session by setting related  
session bit.  
8.3.1.2 Master mode of NTP5332  
NTAG 5 link can be configured in I2C master mode. Using I2C Master interface, I2C slave  
device like sensors or memories can be connected to NTAG 5 link without an external  
microcontroller. Using energy harvesting capability, I2C device can be powered by NTAG  
5 link .  
When using I2C master mode, it must be ensured, that there is no other active I2C master  
on the same bus. The USE_CASE_CONF needs to be set to I2C master (01b) and  
SRAM needs to be enabled in CONFIG_1 byte (see Table 38).  
The used clock speed can be configured by setting I2C_MASTER_SCL_LOW and  
I2C_MASTER_SCL_HIGH (see Section 8.1.3.21).  
To communicate with the connected I2C slave device two custom commands are  
implemented.  
WRITE I2C (see Section 8.2.3.8.1)  
READ I2C (see Section 8.2.3.8.2)  
The response from the READ I2C command will be stored in the SRAM and can be read  
(see Section 8.2.3.6.1) afterwards from NFC perspective. Due to the 256 byte SRAM,  
only 256 bytes can be written / read at once to / from the I2C interface.  
Of course, all other NFC commands are working in master mode and the user memory  
as well as configuration memory is accessible from NFC perspective.  
WARNING: When enabling I2C master mode and disabling NFC interface in parallel,  
NTAG 5 link gets disabled for current session.  
Implementation details can be found in AN12368.  
8.3.1.3 Watch Dog Timer  
A programmable watchdog timer is implemented to unlock the I2C host from NTAG 5  
link latest after a defined maximum time period. The host itself will not be notified of this  
event directly but the NFC status register is updated accordingly.  
On default Watch Dog Timer is enabled with a value of 0848h (~20 ms) but the watchdog  
timer can be freely set with WDT_CONFIG from 0000h (9.434 μs) up to (FFFFh+1) *  
9.434 µs (~618 ms). It is recommended to keep this time as short as possible, by setting  
the value above, but close to the maximum needed I2C transaction time.  
The timer is only active, when WDT_ENABLE is set to 1b and the IC is VCC powered.  
The timer starts ticking when the I2C communication starts. The Watch Dog Timer  
ensures, that I2C interface gets released after the configured time period in any case.  
In the case where the I2C communication has completed before the end of the timer and  
the status register I2C_IF_LOCKED was not cleared by the host, it will be cleared when  
defined watchdog time elapses.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
101 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
NOTE: If WDT_CONFIG configured time elapses before ongoing I2C communication is  
finished, WDT will release SDA line in between of ongoing I2C communication.  
The timer is reset automatically, when I2C_IF_LOCKED gets cleared, or the IC is not VCC  
powered.  
In I2C master use case, watchdog timer is always enabled independently of  
WDT_ENABLE. It is important to set WDT_CONFIG in accordance with maximum  
execution time.  
8.3.1.4 Command Set  
NTAG 5 link offers an easy to use I2C command set.  
WRITE MEMORY and READ MEMORY to access user and configuration memory  
WRITE MEMORY to present the related password, when password authentication from  
I2C perspective is enabled  
WRITE REGISTER and READ REGISTER to access session registers  
In Figure 10 the access to EEPROM with READ MEMORY and WRITE MEMORY is  
illustrated and following symbols are used:  
START: I2C Start condition as defined in Section 8.3.1.1.1.  
SL_AD: 7-bit slave address (msb aligned) plus (lsb) R/W bit as defined in  
Section 8.3.1.1.5  
BL_AD1 (MSB) / BL_AD0 (LSB): 16-bit block address  
A/N: Acknowledge / NAK as defined in Section 8.3.1.1.3  
DATA 0, DATA 1, … , DATA N: Data bytes to be read or written.  
N shall be 3 for writing to EEPROM  
N shall be multiple of 4 reduced by 1; maximum 255 for writing to SRAM  
N is any number for reading data. NTAG 5 link will respond until host's NACK.  
Stop: Stop condition as defined in Section 8.3.1.1.2  
Read Data  
HOST  
START SL_AD  
BL_AD1  
BL_AD0  
STOP  
START SL_AD  
R
A
A
A
A/N STOP  
W
A
DATA 0  
DATA 1  
DATA 2  
DATA N  
SLAVE  
A
A
A
Write Data  
HOST  
START SL_AD  
BL_AD1  
BL_AD0  
DATA 0  
DATA 1  
DATA 2  
DATA 3  
STOP  
W
SLAVE  
A
A
A
A
A
A
A
aaa-035477  
Figure 10.ꢀREAD MEMORY and WRITE MEMORY command  
In Figure 11 the access to Registers with READ REGISTER and WRITE REGISTER is  
illustrated and following symbols are used:  
START: I2C Start conditions as defined in Section 8.3.1.1.1.  
SL_AD: 7-bit slave address (msb aligned) plus (lsb) R/W bit as defined in  
Section 8.3.1.1.5  
BL_AD1 (MSB) | BL_AD0 (LSB): 16-bit register block address  
REGA: 8-bit register address  
MASK: 8-bit control register bit mask. Only if corresponding control bit is set to 1b, the  
register bit will be overwritten.  
A/N: Acknowledge / Not Acknowledge as defined in Section 8.3.1.1.3  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
102 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
REGDAT: 8-bit register data to read/write  
STOP: Stop condition as defined in Section 8.3.1.1.2  
Read Data  
HOST  
START SL_AD  
W
BL_AD1  
BL_AD0  
REGA  
STOP  
START SL_AD  
R
A/N STOP  
A
SLAVE  
REGDATA  
A
A
A
A
Write Data  
HOST  
START SL_AD  
BL_AD1  
BL_AD0  
REGA  
MASK  
REGDATA  
STOP  
W
SLAVE  
A
A
A
A
A
A
aaa-035478  
Figure 11.ꢀREAD REGISTER and WRITE REGISTER command  
8.3.1.5 Error Handling  
In case of any detected error, NTAG 5 link in slave mode responds with a NACK:  
Memory Write  
EEPROM  
generated on the fourth data byte if the block is not writable  
SRAM  
generated on the first byte if the block is not writable  
Arbiter locked to NFC interface, or  
EEP cycle ongoing, or  
I2C interface disabled  
generate on block address BL_AD0  
Memory Read  
EEPROM/SRAM  
returned data will be FFh if the access is to restricted region  
Arbiter locked to NFC interface, or  
EEP cycle ongoing, or  
I2C interface disabled  
generate on block address BL_AD0  
Register Access  
Registers are always accessible. NACK will only be generated:  
DATA NACK due to register write command to trigger system reset  
NACK for register read/write command on BL_AD0 if I2C interface is disabled  
8.3.2 Event detection  
The event detection feature provides the capability to trigger an external device (e.g.,  
µController) or switch on the connected circuitry by an external power management unit  
depending on activities on the NFC interface. On top this active low pin can be used as  
one of the two possible PWM channels to offer I2C and PWM functionality.  
As the event detection pin functionality is operated via NFC field power, VCC supply for  
the IC itself is only required when ED pin is used as PWM channel.  
NOTE: In some cases VOUT pin might be used as field detection trigger.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
103 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
The configurable events indicated at event detection pin are:  
The presence/absence of the NFC field  
Data read/written in pass-through mode  
Arbiter locked/unlocked EEPROM to NFC interface  
NDEF Message TLV length field is ZERO/non-ZERO  
IC is/is not in standby mode  
Dedicated config bit is ZERO  
Write/Read command ongoing  
Event detection pin is an active LOW signal. Due to open-drain implementation an  
external pull-up resistor shall be used on this pin.  
How to use the event detection pin in applications is described in AN11203.  
8.3.3 GPIO  
I2C pins (SCL/SDA) are multiplexed and can be used as general-purpose input/  
output pins linked to configuration/session bits. When configured as GPIO pins, I2C  
communication is not possible anymore.  
At POR, the GPIO are set to high-impedance state. When configuration is read, the pins  
are controlled to behave as per the configuration.  
GPIOs can be configured to be either input or output (see Section 8.1.3.15). In input  
mode, the status of the pad will be available in one of the session register bits. In output  
mode status depends on the session register/config bits content.  
How to use the GPIO pins in applications is described in AN11203.  
8.3.4 PWM  
I2C pins (SDA/SCL) and ED pin are multiplexed and can be used as a pulse width  
modulation output. I2C pins have push-pull architecture, ED pin is an open-drain  
implementation, which means the PWM signal gets inverted.  
PWM resolution, pre-scalar factor (see Section 8.1.3.15) as well as duty cycle can be  
configured using configuration bytes (see Section 8.1.3.16).  
The pulse width modulation resolution (PWMx_RESOLUTION_CONF) defines the  
maximum number of pulses that are available in the given PWM period. PWM resolution  
can be set independently for both outputs to either 6, 8, 10 or 12 bits.  
The 2-bit PWMx_PRESCALE value divides the PWM input frequency (1695 kHz) by a  
factor of 1, 2, 4 or 8.  
Table 230.ꢀPulse Width Modulation Frequency  
Pre-scalar  
Resolution  
00b  
01b  
10b  
11b  
12 bit  
10 bit  
8 bit  
413 Hz  
1.7 kHz  
6.6 kHz  
26.4 kHz  
206 Hz  
825.0 Hz  
3.3 kHz  
13.2 kHz  
103 Hz  
412.6 Hz  
1.7 kHz  
6.6 kHz  
52 Hz  
206.2 Hz  
825.0 Hz  
3.3 kHz  
6 bit  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
104 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
PWMx_ON and PWMx_OFF defines the starting point and end point of the PWMx output  
is asserted to HIGH.  
To calculate proper PWMx_ON (start of HIGH level) and PWMx_OFF (end of HIGH level)  
values, PWMx_RESOLUTION_CONF value and PWM_PRESCALE values need to be  
set to achieve desired PWM frequency. As an example 12-bit resolution is chosen. Duty  
cycle shall be set to 20 % and start time shall be 10 % offset.  
Start Time 10 %: 212 * 10/100= 4096 * 10/100 = ~410 -> PWMx_ON = 19Ah  
PWM Duty Cycle 20 %: 212 * 20/100= 4096 * 20/100 = ~819 -> PWMx_OFF = 410 + 819  
= 1229 = 4CDh  
0
819  
4095  
0
819  
4095  
PWM_ON  
410  
410  
PWM_OFF  
1229  
1229  
aaa-035480  
Figure 12.ꢀPulse Width Modulation Example  
How to use PWM in applications is described in AN11203.  
8.3.5 Standby mode  
To minimize overall current consumption, when the IC is supplied via VCC NTAG 5 link  
can be set to standby mode by writing related session bit form NFC or I2C perspective.  
The IC will leave standby mode according to configuration when NFC field is detected,  
automatically, or HPD pin gets pulled to HIGH for at least 20 µs and released again. In  
standby mode the current is typically less than 6 µA.  
Worst case standby current consumption values can be found in Section 10.1 table.  
In case SDA/SCLGPIO/PWM pins are not used the pins can be left floating. However, to  
ensure lowest standby current, following settings are needed:  
CONFIG bytes USE_CASE_CONF shall be set in any case to GPIO/PWM, both pins  
SDA_GPIO1 and SCL_GPIO0 shall be set as input using weak pull-up (GPIOx_IN in).  
Block 37h: CONFIG_1, USE_CASE_CONF shall be set to GPIO/PWM (10b) and  
CONFIG, GPIOx_IN, both shall be set to plain input with weak pullup (01b).  
Block 39h: PWM_GPIO_CONFIG_0, SDA_GPIO1 and SCL_GPIO0 shall both be set to  
1b to define them as general-purpose input.  
8.3.6 Hard power-down mode  
In hard power-down mode NTAG 5 link is switched off using hard power down pin. When  
pulled to HIGH, the hard power down current is typically less than 0.25 µA. This mode  
can only be left by connecting HPD pin to ground.  
There is no hard power-down mode, when using SO8 packaged version of NTAG 5 link.  
Worst case hard power down current consumption values can be found in Section 10.1  
table.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
105 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.4 Arbitration between NFC and I2C interface  
There are different modes implement to ensure access to the EEPROM and described in  
detail hereafter. Two status bits (I2C_IF_LOCKED and NFC_IF_LOCKED) are provided  
to show the status of arbiter.  
Details about the different arbitrations modes can be found in AN12364.  
8.4.1 NFC Mode  
If NTAG 5 link is only powered by NFC, arbiter needs only to lock to the NFC interface  
if the IC receives a valid NFC command. After completion of the NFC command,  
NFC_IF_LOCKED will be cleared automatically.  
8.4.2 I2C Mode  
If NTAG 5 link is only powered by VCC, arbiter needs only to lock to the I2C interface  
if the IC is correctly addressed for the memory access. The host needs to clear  
I2C_IF_LOCKED. Otherwise, the bit will be cleared automatically if the watchdog timer  
expires.  
In I2C mode, availability of the SRAM as part of the memory depends on  
SRAM_ENABLE bit.  
8.4.3 Normal Mode  
If NTAG 5 link is powered by NFC and VCC, arbiter locks interface on a first come first  
serve principle.  
When receiving a valid NFC command and access is not locked to I2C, then the arbiter  
locks to the NFC interface. After completion of the NFC command, the lock will be  
released automatically. The host can access the registers at any time. Only access to  
EEPROM is locked.  
When NTAG 5 link is correctly addressed by its I2C address for the memory access and  
access is not locked to NFC, then the arbiter locks to the I2C interface. The host needs  
to clear the lock actively. If not, the lock will be released automatically as soon as the  
watchdog timer expires. NFC reader can access the registers at any time. Only access to  
EEPROM is locked.  
In this mode, availability of the SRAM depends on SRAM_ENABLE bit.  
How to exchange data based on NDEF messages is defined in NFC Forum Tag NDEF  
Exchange Protocol (TNEP) Specification.  
8.4.4 SRAM Mirror Mode  
In this mode arbiter works like in normal mode with the exception, that SRAM is used  
instead of EEPROM.  
8.4.5 SRAM Pass-Through Mode  
In this mode, the NTAG 5 link transfers data from NFC to I2C and vice versa using the  
SRAM. The arbiter switches automatically between the two interfaces when accessing  
the terminator block (last block of SRAM).  
Details can be found in AN12364.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
106 / 133  
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.4.6 SRAM PHDC Mode  
This mode is similar to SRAM mirror mode. This mode needs to be enabled, when PHDC  
communication scheme as defined in NFC Forum PHDC specification shall be used.  
NFC will always get a response when accessing SRAM.  
8.5 Energy harvesting  
NTAG 5 link provides the capability to supply external low-power devices with energy  
harvested from the NFC field of an NFC device.  
When DISABLE_POWER_CHECK bit is set to 0b, minimum provided output power can  
be configured by setting desired voltage and minimum required output current in the  
related configuration bytes (see Section 8.1.3.18).  
WARNING: Sufficient RF field is required when DISABLE_ POWER_CHECK is  
set to 0b to have access to EEPROM. As long as NTAG 5 link detects too less  
energy to be harvested from the field only INVENTORY command and READ/WRITE  
CONFIGURATION to access session registers will be handled. This feature ensures  
a stable system, as the host will only be supplied if there is sufficient energy available.  
However, during design phase we recommend disabling this power check.  
The provided output power in general of course depends on many parameters like the  
strength of the NFC field, the antenna size, or the distance from the NFC device. The  
design ensures with the right settings, that VOUT is only enabled, when sufficient energy  
can be harvested from the NFC field.  
1.8 V, 2.4 V or 3 V output voltage can be selected by coding EH_VOUT_V_SEL  
accordingly.  
Minimum required load current can be coded in EH_VOUT_I_SEL configuration field.  
VOUT and VCC need to be connected as soon as energy harvesting is used. Otherwise  
there is no EEPROM access possible from NFC perspective and status registers may  
contain invalid information.  
Appropriate capacitor dependent on load needs to be placed between VOUT and ground  
to close energy gaps during miller pauses. An example circuit is illustrated in the figure  
below.  
VOUT pin shall be kept floating (not connected) in case energy harvesting feature is not  
used. If energy harvesting is disabled, pin will be connected to GND internally.  
With EH_ENABLE configuration bit st to 1b, energy harvesting will be enabled after boot,  
automatically and all energy harvesting-related session register bits are meaningless.  
When enabling energy harvesting via session registers, EH_MODE, EH_VOUT_SEL  
and EH_IOUT_SEL needs to be configured properly in the related configuration bytes.  
EH_ENABLE configuration bit need to be 0b in this case.  
After boot, session registers can be used to first trigger current detection by setting  
EH_TRIGGER to 1b, then poll for EH_LOAD_OK that gets 1b and finally set  
EH_TRIGGER and EH_ENABLE to 1b, or directly enable energy harvesting by setting  
EH_TRIGGER and EH_ENABLE bit to 1b (see Table 97).  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
107 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
V
OUT configurable to 1.8 V, 2.4 V or 3 V  
1 µF  
Rpu  
VDD  
VCC  
LA  
VOUT  
tuning cap  
HOST  
LB  
ED  
GND  
GND  
optional open drain control  
signal to control host  
aaa-035476  
Figure 13.ꢀEnergy harvesting example circuit  
How to use energy harvesting in applications is described in AN12365.  
8.6 Security  
NTAG 5 link implements different levels to protect data. The easiest, but efficient method  
is to lock EEPROM to read only.  
With the plain password authentication scheme, the memory can be split in three  
different parts with different access conditions.  
With NTP5332's mutual AES authentication the memory is split in three different parts  
again, but with the advantage, that the password will never be transmitted in plain text.  
Configuration area and SRAM can be protected from both interfaces as well.  
Further implementation details can be found in AN12366.  
8.6.1 Locking EEPROM to read only  
Independent on the split of the memory, the user memory may be locked to read-only.  
If the user EEPROM shall stay in read/write state, the LOCK BLOCK command can be  
disabled (see Table 39) and lock block sections can be locked (see Table 80). With these  
features, it can be ensured, NTAG 5 link stays in read/write state.  
Locking the complete EEPROM to read-only as defined in NFC Forum Type 5 Tag  
specification is quite time consuming. Every single block needs to be addressed by a  
LOCK BLOCK command (see Section 8.2.3.5). To accelerate this locking, NTAG 5 link  
stores the information in the configuration area. With this feature, locking the EEPROM  
can be accelerated by a factor of 16. Note, that these bits are one time programmable  
(see Section 8.1.3.30) and blocks are indicated as locked in the Get Multiple Block  
Security Status response.  
As long as I2C Lock Block Configuration bytes are not set to 1b, the user EEPROM may  
still be modified from I2C perspective.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
108 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Table 231.ꢀNFC Lock Block Configuration location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
6Ah  
...  
I2C  
106Ah  
...  
NFC_LOCK_BL0  
...  
NFC_LOCK_BL1  
...  
RFU  
RFU  
89h  
1089h  
NFC_LOCK_BL62  
NFC_LOCK_BL63  
Table 232.ꢀI2C Lock Block Configuration location  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
8Ah  
8Bh  
I2C  
108Ah  
108Bh  
I2C_LOCK_BL0  
I2C_LOCK_BL2  
I2C_LOCK_BL1  
I2C_LOCK_BL3  
RFU  
RFU  
RFU  
RFU  
8.6.2 Memory Areas  
The memory may be split into three different configurable areas with different access  
conditions.  
Highest priority has the 16-bit Protection Pointer PP_AREA_1. It splits the memory into  
an AREA_0 and an AREA_1 at the address configured with the PP_AREA_1.  
Restricted area AREA_1, starting from block address PP_AREA_1 is automatically  
protected by the AREA_1 read and AREA_1 write password in plain password mode.  
In AES mode, a key with read and write privilege is needed to be able to access the  
restricted area.  
To enable password protection to AREA_1 from I2C perspective, I2C passwords need to  
be enabled by setting I2C key header (I2C_KH) to active. In that case AREA_1 read and  
write passwords need to be presented to NTAG 5 link.  
The split configured with the 16-bit Protection Pointer is the same for both, NFC and I2C  
perspective.  
The area below this address can be split into two more areas with the 8-bit  
NFC_PP_AREA_0-H (see Section 8.1.3.28) and the 8-bit I2C_PP_AREA_0-H (see  
Section 8.1.3.11), independently of the NFC and I2C perspective.  
NFC AREA_0-L, usually used to store NDEF messages, starts from block 0. NFC  
AREA_0-H, usually used as password protected area to store private data, starts from  
block address configured by the 8-bit NFC_PP_AREA_0H and ends just before the block  
addressed with the PP_AREA_1 configuration byte. If PP_AREA_1 points outside the  
addressable memory space, only AREA_0-L and AREA_0-H are available.  
I2C AREA_0-L starts from block 0. I2C AREA_0-H, starts from the block address  
configured by the 8-bit I2C_PP_AREA_0H.  
The concept is illustrated in the Figure below and further details can be found in  
AN12366.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
109 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
2
I C  
AREA_0-L  
NFC  
AREA_0-L  
8 - bit I2C_PP  
8 - bit  
NFC_PP_AREA_0-H  
2
I C  
NFC  
AREA_0-H  
AREA_0-L  
16 - bit  
PP_AREA_1  
AREA_1  
COUNTER  
aaa-035479  
Figure 14.ꢀConcept of memory areas  
8.6.3 Plain password authentication  
NTAG 5 link implements plain password authentication scheme from NFC perspective.  
In summary, seven 32-bit passwords are available from NFC perspective.  
Read  
Write  
Restricted AREA_1 Read  
Restricted AREA_1 Write  
Destroy  
NFC Privacy password (is used to come out of NFC PRIVACY mode)  
EAS/AFI protection  
64-bit password protection can be enabled for read and write operations.  
A 32-bit password is used to authenticate, before doing memory operations. The  
mechanism is easy to use. After setting and locking the password, and setting right  
access conditions in initialization phase, the NFC Device needs to fetch a random  
number from the ICs. XORing the plain password and this random number results in  
used password to authenticate.  
From I2C perspective, plain password authentication can be enabled with two 32-bit  
passwords for the restricted AREA_1 and two for the rest of user EEPROM.  
To resist brute force attacks, a negative authentication counter can be enabled.  
How to use plain password authentication in applications is described in AN12366.  
8.6.4 AES authentication  
NTP5332 version of NTAG 5 link implements AES authentication from NFC perspective.  
Highest security level of NTAG 5 link is AES mutual authentication based on the Crypto  
Suite AES128 as defined in ISO/IEC 29167-10. A 128-bit password is used to (mutual)  
authenticate, before doing memory operations.  
From I2C perspective, only plain password authentication can be enabled.  
How to use AES authentication in applications is described in AN12366.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
110 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
8.7 NFC privacy mode  
In the privacy mode, the NTAG 5 link is not traceable by its UID neither by data stored  
in the user memory. All NTAG 5 link in the NFC PRIVACY mode will respond to an  
Inventory command with the UID E0 04 00 00 00 00 00 00, consequently also the user  
memory is NOT accessible.  
NTOE: An anti-collision procedure is not possible in plain password mode.  
In plain password mode ENABLE NFC PRIVACY Mode command (see  
Section 8.2.3.3.9) with a valid privacy password is used to set NTAG 5 link to this mode  
and DISABLE NFC PRIVACY (see Section 8.2.3.3.10) is used to disable it again.  
In AES mode, a valid mutual authentication (see Section 8.2.3.4.4) with the vendor-  
specific Purpose_MAM2[3:0] (see Table 164) and a key with the privacy privilege set to  
1b is needed to enable using Purpose_MAM2 = 1001b and disable the NFC PRIVACY  
mode using Purpose_MAM2 = 1000b until next NFC field reset or 1010b permanently.  
NTAG 5 link in NFC PRIVACY mode only support following commands:  
INVENTORY  
SELECT  
STAY QUIET  
RESET TO READY  
PICK RANDOM ID (in AES mode to allow an anti-collision procedure)  
GET RANDOM NUMBER  
DISABLE NFC PRIVACY in plain password mode  
AUTHENTICATE  
8.8 Programmable Originality signature  
NTAG 5 link original signature is based on standard Elliptic Curve Cryptography (curve  
name secp128r1), according to the ECDSA algorithm. The use of a standard algorithm  
and curve ensures easy software integration of the originality check procedure in NFC  
devices without specific hardware requirements.  
The UID is signed with an NXP private key and the resulting 32 byte signature is stored  
in the configuration memory during IC production.  
The originality signature is stored in the configuration memory block 00h to block 07h.  
Table 233.ꢀ32 Byte Originality Signature  
Block Address  
Byte 0  
Byte 1  
Byte 2  
Byte 3  
NFC  
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
I2C  
1000h  
1001h  
1002h  
1003h  
1004h  
1005h  
1006h  
1007h  
SIG0 (LSB)  
SIG4  
SIG1  
SIG5  
SIG2  
SIG6  
SIG3  
SIG7  
SIG8  
SIG9  
SIG10  
SIG14  
SIG18  
SIG22  
SIG26  
SIG30  
SIG11  
SIG12  
SIG16  
SIG20  
SIG24  
SIG28  
SIG13  
SIG17  
SIG21  
SIG25  
SIG29  
SIG15  
SIG19  
SIG23  
SIG27  
SIG31 (MSB)  
© NXP B.V. 2020. All rights reserved.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
111 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
This signature can be retrieved using the READ_SIGNATURE command or with  
the READ CONFIG command and can be verified in the NFC device by using the  
corresponding ECC public key provided by NXP. In case the NXP public key is stored  
in the reader device, the complete signature verification procedure can be performed  
offline.  
To verify the signature (for example with the use of the public domain crypto library  
OpenSSL) the tool domain parameters shall be set to secp128r1, defined within the  
standards for elliptic curve cryptography SEC.  
NTAG 5 link provides the possibility to customize the originality signature to personalize  
the IC individually for specific application. At delivery, the NTAG 5 link is pre-programmed  
with the NXP originality signature described above. This signature is unlocked in the  
dedicated memory. If needed, the signature can be reprogrammed with a custom-specific  
signature using the WRITE CONFIG command during the personalization process by  
the customer. The signature can be permanently locked afterwards by setting the Config  
Header to “locked” with the WRITE CONFIG command to avoid further modifications.  
In any case, it is recommended to permanently lock the originality signature during the  
initialization process by setting the Config Header to lock with the WRITE CONFIG  
command.  
How to use and verify Originality Signature in applications is described in AN11350.  
How to generate Originality Signature is described in AN11859.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
112 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
9 Limiting values  
Table 234.ꢀLimiting values In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
°C  
Tstg  
Tj  
storage temperature  
junction temperature  
junction temperature  
all packages  
-65  
+150  
+95  
EEPROM write operation  
-
-
°C  
Tj  
EEPROM read, SRAM and  
register operation  
+115  
°C  
VESD  
electrostatic discharge voltage charged device model (CDM)[1]  
human body model (HBM)[2]  
-2  
2
kV  
kV  
V
-2  
2
VCC  
Vi  
supply voltage  
input voltage  
on pin VCC  
-0.5  
-0.5  
-0.5  
-0.5  
7.15  
7.15  
5.2  
5.2  
on pin SDA, SCL,ED, HPD  
on pin LA/LB  
V
VI (RF)  
Vi  
RF input voltage  
input voltage  
Vp  
Vp  
on pin LA; LB is 0 V; sine wave  
of 13.56 MHz  
on pin LB; LA is 0 V; sine wave  
of 13.56 MHz  
-0.5  
5.2  
Vp  
Ii(max)  
maximum input current  
La/Lb; peak  
-168  
168  
mA  
[1] According to ANSI/ESDA/JEDEC JS-002.  
[2] According to ANSI/ESDA/JEDEC JS-001.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
113 / 133  
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
10 Characteristics  
10.1 Static Characteristics  
Table 235.ꢀCharacteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
General  
fi  
input frequency  
ISO/IEC 15693  
13.553  
13.56  
13.567  
MHz  
pF  
Ci  
input capacitance  
LA-LB, Pin capacitance,  
VLA-LB @ 1.8Vp, Network  
Analyzer (13.56 MHz)  
@Room temp  
-
15  
-
Ri  
Impedance from LA to LB  
VLALB=1.8Vpp  
30  
-
-
kΩ  
Operating conditions  
Tamb ambient temperature  
Tj<Tj_max; for EEPROM  
write operation  
-40  
-40  
25  
25  
85  
°C  
°C  
Tamb  
ambient temperature  
Tj<Tj_max; for EEPROM  
read, SRAM and register  
operation  
105  
RTH_JA  
RTH_JA  
RTH_JA  
thermal resistance  
thermal resistance  
thermal resistance  
JEDEC 2s2p board and  
SO8 package  
-
-
-
82  
126  
75  
-
-
-
K/W  
K/W  
K/W  
JEDEC 2s2p board and  
TSSOP16 package  
JEDEC 2s2p board and  
XQFN16 package  
VCC  
Ii  
supply voltage  
input current  
on pin VCC  
1.62  
-
-
-
5.5  
V
La/Lb; 12 A/m; RMS  
La/Lb; 12 A/m; peak  
-
-
43.75  
61.87  
mA  
mA  
Current consumption  
IVCC  
VCC supply current  
VCC = 5.5 V; NFC passive  
communication no host  
activity  
-
120  
150  
µA  
IVCC  
VCC supply current  
VCC supply current  
VCC supply current  
VCC supply current  
VCC supply current  
standby current  
VCC = 5.5 V, IDLE Mode.  
No NFC or Host activity  
-
-
-
-
-
-
-
120  
175  
163  
163  
168  
16  
µA  
µA  
µA  
µA  
µA  
µA  
IVCC  
VCC = 5.5 V, PWM/GPIO  
use case  
VCC = 1.8 V, 400 kHz, I2C  
read/write operation  
VCC = 3.3 V, 400 kHz, I2C  
read/write operation  
VCC = 5.5 V, 400 kHz, I2C  
read/write operation.  
128  
115  
115  
138  
5.5  
IVCC  
IVCC  
IVCC  
Istandby Vcc  
VCC = 1.8 V wake-up via  
I2C  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
114 / 133  
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Istandby Vcc  
standby current  
VCC = 3.3 V wake-up via  
I2C  
-
-
-
-
-
5.9  
6.9  
18  
21  
µA  
Istandby Vcc  
standby current  
VCC = 5.5 V wake-up via  
I2C  
µA  
µA  
µA  
µA  
Ihrd_pwr_dwn  
hard power down current  
hard power down current  
hard power down current  
VCC = 1.8 V; XQFN16  
package only  
0.23  
0.25  
0.31  
2.3  
Vcc  
Ihrd_pwr_dwn  
VCC = 3.3 V; XQFN16  
package only  
3.44  
5.72  
Vcc  
Ihrd_pwr_dwn  
VCC = 5.5 V; XQFN16  
package only  
Vcc  
Energy harvesting VOUT pad  
configured to 1.8 V; load  
current <= configured  
output current  
1.62  
2.16  
2.7  
-
-
-
-
1.98  
2.64  
3.3  
V
configured to 2.4 V; load  
current <= configured  
output current  
V
Vout  
output voltage  
configured to 3.0 V; load  
current <= configured  
output current  
V
Iout  
min. output current  
at different regulated output  
voltages when current  
detection is enabled and  
dependent on selected  
output current value  
0.4  
12.5  
mA  
ED pin characteristics  
VOL  
IIED  
LOW-level output voltage  
leakage current  
IOL = 3 mA  
-
-
-
0.4  
V
VIN = 0 V to 5.5 V  
10  
1000  
nA  
HPD pin characteristics for XQFN16 package  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
input capacitance  
0
-
-
-
-
-
0.3*VCC  
V
0.7*VCC  
VCC  
-
V
VIN = 0 V  
-1  
-
µA  
µA  
pF  
IIH  
Ci  
VIN = 5.5 V  
1
-
1.2  
GPIO pad pin characteristics in I2C mode  
VIH  
VIL  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
LOW-level input current  
HIGH-level input current  
HIGH-level output voltage  
LOW-level output voltage  
input capacitance  
0.7*VCC  
-
-
-
-
-
-
-
-
0.3*VCC  
-
V
-
V
VIN = 0 V  
-1  
µA  
µA  
V
IIH  
VIN = 5.5 V  
IOH < 3 mA  
IOL < 3 mA  
-
1
VOH  
VOL  
Ci  
0.7*VCC  
VCC  
0.4  
0
-
V
3.5  
pF  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
115 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CL  
load capacitance  
-
400  
-
-
pF  
GPIO pad pin characteristics in GPIO mode  
VIH  
VIL  
IOL  
IOH  
IIL  
HIGH-level input voltage  
LOW-level input voltage  
static output low current  
static output high current  
LOW-level input current  
HIGH-level output current  
input capacitance  
0.7*VCC  
-
V
-
4
4
-1  
-
-
0.3*VCC  
V
at VOL = 0.4 V  
-
-
1
µA  
µA  
µA  
µA  
pF  
pF  
at VOH = VCC - 0.4 V  
-
-
-
IOH  
Ci  
-
-
1
-
3.5  
-
CL  
load capacitance  
-
400  
10.2 Dynamic characteristics  
Table 236.ꢀ  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I2C master SCL/SDA pin characteristics  
fSCL  
SCL clock frequency  
set-up time for a  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
-
-
-
400  
-
kHz  
ns  
tSU;STA  
600  
(repeated) START  
condition  
tHD;STA  
tLOW  
hold time (repeated)  
STARTcondition  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
600  
1.3  
-
-
-
-
ns  
us  
low period of the SCL  
clock  
tHIGH  
high period of the SCL  
clock  
fast mode; Cb < 400 pF  
600  
-
-
ns  
tSU;DAT  
tHD;DAT  
trSDA  
data set-up time  
data hold time  
SDA rise time  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
100  
0
-
-
-
-
ns  
ns  
ns  
900  
250  
CL = 100 pF, Rpull-up = 2  
K, Standard and fast mode  
30  
tfSDA  
Vhys  
SDA fall time  
CL = 100 pF, Rpull-up = 2  
K, Standard and fast mode  
30  
-
-
250  
-
ns  
V
hysteresis of Schmitt  
trigger inputs  
fast mode; Cb < 400 pF  
0.05 *VCC  
I2C slave SDA/SCL pin characteristics  
tr  
rise time  
CL = 100 pF, Rpull-up = 2  
K,standard and fast mode  
30  
30  
-
-
250  
250  
ns  
ns  
tf  
fall time  
CL = 100 pF, Rpull-up = 2  
K,standard and fast mode  
PWM AC timings  
PWMfreq  
PWM output frequency  
414  
-
26400  
Hz  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
116 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
µs  
Pulse Width PWM signal pulse width  
0.6  
-
-
-
-
PWMfreq_tol  
PWMV_tol  
PWM output frequency  
tolerance  
10  
%
PWM output voltage  
tolerance  
IOH = 4 mA  
VCC - 0.4  
-
VCC  
V
GPIO pin characteristics  
tr  
tf  
rise time  
CL = 20 pF; VCC = 1.8 V  
CL = 20 pF; VCC = 3.3 V  
CL = 20 pF; VCC = 5.5 V  
CL = 20 pF; VCC = 1.8 V  
CL = 20 pF; VCC = 3.3 V  
CL = 20 pF; VCC = 5.5 V  
-
-
-
-
-
-
-
-
-
-
-
-
20.9  
ns  
ns  
ns  
ns  
ns  
ns  
10.92  
8.22  
129  
fall time  
77.9  
66.9  
Start Up time  
tStart_VCC  
VCC startup time from  
power OFF state. After  
this time, the IC is able to  
receive the command from  
I2C interface.  
-
-
3
ms  
tStart_RF  
Startup time from NFC from  
Power OFF state. After  
this time, the IC is able to  
receive the command from  
NFC interface.  
-
-
1
ms  
EEPROM characteristics  
tret  
retention time  
write endurance  
Ta < 85 °C  
Ta <85 °C  
40  
-
-
-
-
year  
Nendu(W)  
1000000  
cycle  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
117 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
11 Package outline  
Figure 15.ꢀPackage outline XQFN16  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
118 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
1
0.2  
0.13  
0.1  
0.25  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Figure 16.ꢀPackage outline TSSOP16  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
119 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
v
c
y
H
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
detail X  
w
M
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
0.25  
0.01  
0.25  
0.1  
1.75  
0.25  
0.01  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT96-1  
076E03  
MS-012  
Figure 17.ꢀPackage outline SO8  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
120 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
12 Handling information  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe  
precautions for handling electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5,  
JESD625-A or equivalent standards.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
121 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
13 Abbreviations  
Table 237.ꢀAbbreviations  
Acronym  
BoM  
Description  
Bill of Material  
CCH  
Crypto Configuration Header  
Configuration Header  
CH  
CID  
Customer ID  
ECC  
Elliptic Curve Cryptography  
Electrically Erasable Programmable Read-only Memory  
General Purpose Input Output  
Integrated Circuit  
EEPROM  
GPIO  
IC  
lsb  
least significant bit  
LSB  
Least Significant Byte  
Manuf. Code  
msb  
IC Manufacturing Code of NXP is 04h.  
most significant bit  
MSB  
Most Significant Byte  
NDEF  
NFC  
NFC Data Exchange Format  
Near Field Communication  
Power On Reset  
POR  
PWM  
RFU  
Pulse Width Modulation  
Reserved for Future Use  
Tag NDEF Exchange Protocol  
Static Random-Access Memory  
TNEP  
SRAM  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
122 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
14 References  
[1] NFC Forum specification, Digital Protocol - Technical Specification Version 2.1  
2019-04-03 [T5T] NFC ForumTM  
https://nfc-forum.org/product-category/specification/  
[2] NFC Forum specification, Type 5 Tag - Technical Specification Version 1.0  
2018-04-27 [T5T] NFC ForumTM  
https://nfc-forum.org/product-category/specification/  
[3] NFC Forum specification, Tag NDEF Exchange Protocol - Technical Specification  
Version 1.0 2019-04-24 [TNEP] NFC ForumTM  
https://nfc-forum.org/our-work/specifications-and-application-documents/  
specifications/nfc-forum-candidate-technical-specifications/  
[4] NFC Forum Personal Health Care Devices (PHDC) specification  
https://nfc-forum.org/product-category/specification/  
[5] ISO/IEC 15693  
https://www.iso.org/ics/35.240.15/x/  
[6] ISO/IEC 29167-10  
https://www.iso.org/ics/35.240.15/x/  
[7] AN11203 - NTAG 5 Use of PWM, GPIO and Event detection, doc.no. 5302xx  
https://www.nxp.com/docs/en/application-note/AN11203.pdf  
[8] AN12364 - NTAG 5 Bidirectional data exchange, doc.no. 5303xx  
https://www.nxp.com/docs/en/application-note/AN12364.pdf  
[9] AN11201 - NTAG 5 How to use energy harvesting, doc.no. 5304xx  
https://www.nxp.com/docs/en/application-note/AN12365.pdf  
[10] AN12366 - NTAG 5 Memory Configuration and Scalable Security, doc.no. 5305xx  
https://www.nxp.com/docs/en/application-note/AN12366.pdf  
[11] AN12368 - NTAG 5 Link I2C Master mode, doc.no. 5306xx  
https://www.nxp.com/docs/en/application-note/AN12368.pdf  
[12] AN11859 - MIFARE Ultralight and NTAG Generating Originality Signature  
https://www.docstore.nxp.com/products  
[13] AN11350 - NTAG Originality Signature Validation  
https://www.nxp.com/confidential/AN11350  
[14] UM10204 - I2C-bus specification and user manual  
https://www.nxp.com/docs/en/user-guide/UM10204.pdf  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
123 / 133  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
15 Revision history  
Table 238.ꢀRevision history  
Document ID  
NTP53x2 v. 3.3  
Modifications:  
Release date  
Data sheet status  
Change notice  
Supersedes  
20200703  
Product data sheet  
.
NTP53x2 v. 3.2  
Clarified, that I2C master registers are only accessible from NFC perspective  
Clarified, that PICK RANDOM ID is only supported in AES mode  
Clarified that SRAM_CONFIG_PROT restricts access to blocks 37h to 54h (see  
Section 8.1.3.23)  
Password identifier for access to restricted area added (see Table 125)  
Editorial updates  
NTP53x2 v. 3.2  
NTP53x2 v. 3.1  
NTP53x2 v. 3.0  
NTP53x2 v. 2.0  
NTP53x2 v. 1.0  
20200427  
20200324  
20200116  
20191002  
20190528  
Product data sheet  
Product data sheet  
Product data sheet  
Preliminary data sheet  
Objective data sheet  
.
.
.
-
NTP53x2 v. 3.1  
NTP53x2 v. 3.0  
NTP53x2 v. 2.0  
-
-
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
124 / 133  
 
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
16 Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
16.2 Definitions  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — A draft status on a document indicates that the content is still  
under internal review and subject to formal approval, which may result  
in modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included in a draft version of a document and shall have no  
liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
16.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
125 / 133  
 
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Security — While NXP Semiconductors has implemented advanced  
security features, all products may be subject to unidentified vulnerabilities.  
Customers are responsible for the design and operation of their applications  
and products to reduce the effect of these vulnerabilities on customer’s  
applications and products, and NXP Semiconductors accepts no liability for  
any vulnerability that is discovered. Customers should implement appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
16.4 Licenses  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Purchase of NXP ICs with NFC technology  
Purchase of an NXP Semiconductors IC that complies with one of the  
Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/  
IEC 21481 does not convey an implied license under any patent right  
infringed by implementation of any of those standards. Purchase of NXP  
Semiconductors IC does not include a license to any NXP patent (or other  
IP right) covering combinations of those products with other products,  
whether hardware or software.  
16.5 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
I2C-bus — logo is a trademark of NXP B.V.  
NTAG — is a trademark of NXP B.V.  
NXP — wordmark and logo are trademarks of NXP B.V.  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
126 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Ordering information ..........................................6  
Tab. 45. Pulse Width Modulation Duty Cycle  
Configuration Location (PWMx_ON and  
PWMx_OFF) ....................................................35  
Tab. 46. Pulse Width Modulation Duty Cycle Session  
Register Location (PWMx_ON and PWMx_  
Marking codes ...................................................7  
Pin description for XQFN16 .............................. 9  
Pin description for TSSOP16 .......................... 10  
Pin description for SO8 ...................................11  
User memory organization .............................. 13  
Memory content at delivery .............................13  
COUNTER BLOCK data structure .................. 14  
Preset counter data structure ..........................14  
OFF) ................................................................ 35  
Tab. 47. Pulse  
Width  
Modulatin  
ON  
time  
Configuration Definition (PWMx_ON and  
PWMx_ON_REG) ............................................35  
Tab. 48. Pulse Width Modulation OFF time  
Configuration Definition (PWMx_OFF and  
Tab. 10. Increment counter data structure .................... 15  
Tab. 11. Configuration Memory organization .................15  
Tab. 12. 32 Byte Originality Signature ...........................20  
Tab. 13. Configuration Header (CH) location ................ 20  
Tab. 14. Configuration Header Codes ...........................20  
Tab. 15. Customer ID (CID) location .............................21  
Tab. 16. NFC Global Crypto Header (GCH) location .....22  
Tab. 17. Global Crypto Header Configuration in plain  
password mode ...............................................22  
Tab. 18. Global Crypto Header Configuration Value  
in AES mode ...................................................22  
Tab. 19. Crypto Configuration Header (CCH) location ...23  
Tab. 20. Crypto Configuration Header Values ...............23  
Tab. 21. NFC Authentication Limit Counter (NFC_  
AUTH_LIMIT) location .....................................24  
Tab. 22. NFC Key Header (KHx) location ..................... 25  
Tab. 23. NFC Key Header Values .................................25  
Tab. 24. NFC Key Privileges (KPx) location ..................26  
Tab. 25. Definition of NFC Key Privileges bytes KPx .... 26  
Tab. 26. Key location .....................................................27  
Tab. 27. Plain Password location ..................................27  
Tab. 28. I2C Password location .................................... 28  
Tab. 29. I2C Key Authenticate Password location .........28  
Tab. 30. I2C Key Header (I2C_KH) location ................. 29  
Tab. 31. I2C Key Header Values .................................. 29  
Tab. 32. I2C Protection Pointer and Configuration  
location ............................................................ 29  
Tab. 33. I2C Memory organization example ..................30  
Tab. 34. I2C Protection Pointer Configuration (I2C_  
PPC) ................................................................30  
Tab. 35. I2C Authentication Limit Counter (I2C_  
AUTH_LIMIT) location .....................................31  
PWMx_OFF_REG) ..........................................35  
Tab. 49. Watch Dog Timer Configuration Location  
(WDT_CONFIG) ..............................................36  
Tab. 50. Watch Dog Timer Configuration Register  
Location (WDT_CONFIG_REG) ......................36  
Tab. 51. Watch Dog Timer Enable Definition (WDT_  
ENABLE and WDT_EN_REG) ........................36  
Tab. 52. Energy harvesting Configuration Location  
(EH_CONFIG) ................................................. 36  
Tab. 53. Energy harvesting Configuration Value  
Definition (EH_CONFIG) .................................36  
Tab. 54. Event Detection Configuration Location  
(ED_CONFIG) ................................................. 37  
Tab. 55. Event Detection Configuration Register  
Location (ED_CONFIG_REG) .........................37  
Tab. 56. Event Detection Definition (ED_CONFIG  
and ED_CONFIG_REG) ................................. 37  
Tab. 57. Event Detection Clear Register Location  
(ED_INTR_CLEAR_REG) ............................... 39  
Tab. 58. Event Detection Clear Register (ED_INTR_  
CLEAR_REG) ..................................................39  
Tab. 59. I2C Slave Configuration Location ....................39  
Tab. 60. I2C Slave Configuration Definition (I2C_  
SLAVE_ADDR) ................................................39  
Tab. 61. I2C Slave Configuration Definition (I2C_  
SLAVE_CONFIG) ............................................39  
Tab. 62. I2C Master Clock Settings Configuration  
Location (I2C_MASTER_CONFIG) ................. 40  
Tab. 63. I2C Master Clock Configuration Definition  
(I2C_MASTER_SCL_LOW) ............................ 40  
Tab. 64. I2C Master Clock Configuration Definition  
(I2C_MASTER_SCL_HIGH) ............................40  
Tab. 65. Device Security Configuration Byte location ....40  
Tab. 66. Device Security Byte Definition (DEV_SEC_  
CONFIG) ......................................................... 40  
Tab. 67. SRAM and Configuration Byte location ........... 41  
Tab. 68. SRAM and Configuration Protection  
(SRAM_CONF_PROT) ....................................41  
Tab. 69. Restricted AREA_1 Pointer location ................42  
Tab. 70. Memory organization example from NFC  
perspective ...................................................... 42  
Tab. 71. Application Family Identifier (AFI) location ...... 42  
Tab. 72. Data Storage Format Identifier (DSFID)  
location ............................................................ 43  
Tab. 36. Configuration Bytes Location (CONFIG) ......... 31  
Tab. 37. Configuration Definition (CONFIG_0) ..............32  
Tab. 38. Configuration Definition (CONFIG_1) ..............32  
Tab. 39. Configuration Definition (CONFIG_2) ..............33  
Tab. 40. Synchronization Block Bytes Location  
(SYNCH_DATA_BLOCK) ................................33  
Tab. 41. Synchronization Block Register Bytes  
Location (SYNCH_DATA_BLOCK_REG) ........33  
Tab. 42. PWM and GPIO Configuration Location  
(PWM_GPIO_CONFIG) .................................. 34  
Tab. 43. PWM and GPIO Configuration Definition  
(PWM_GPIO_CONFIG_0) .............................. 34  
Tab. 44. PWM and GPIO Configuration Definition  
(PWM_GPIO_CONFIG_1  
and  
PWM_  
GPIO_CONFIG_1_REG) .................................34  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
127 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Tab. 73. Electronic Article Surveillance ID (EASID)  
location ............................................................ 43  
Tab. 74. NFC Protection Pointer (NFC PP) location ......43  
Tab. 75. Memory organization example ........................ 43  
Tab. 76. NFC Protection Pointer Conditions (NFC_  
PPC) location .................................................. 44  
Tab. 77. NFC Protection Pointer Configuration  
(NFC_PPC) ..................................................... 44  
Tab. 78. NFC Lock Block Configuration location ...........45  
Tab. 79. I2C Lock Block Configuration location .............45  
Tab. 80. Device configuration section lock bytes  
location ............................................................ 45  
Tab. 81. NFC configuration section lock byte 0  
definition (NFC_SECTION_LOCK_0) ..............46  
Tab. 82. NFC configuration section lock Byte 1  
definition (NFC_SECTION_LOCK_1) ..............46  
Tab. 112. Bit rates from reader to tag .............................60  
Tab. 113. Bit rates from tag to reader .............................60  
Tab. 114. NFC command set supported by NTAG 5  
link ................................................................... 63  
Tab. 115. READ CONFIG request format ....................... 66  
Tab. 116. READ CONFIG response format when  
Error_flag is NOT set ...................................... 66  
Tab. 117. READ CONFIGURATION response format  
when Error_flag is set ..................................... 66  
Tab. 118. WRITE CONFIG request format ......................67  
Tab. 119. WRITE CONFIG response format when  
Error_flag is NOT set ...................................... 67  
Tab. 120. WRITE CONFIG response format when  
Error_flag is set ...............................................67  
Tab. 121. GET RANDOM NUMBER request format ........67  
Tab. 122. GET RANDOM NUMBER response format  
when Error_flag is NOT set .............................67  
Tab. 123. GET RANDOM NUMBER response format  
when Error_flag is set ..................................... 68  
Tab. 124. SET PASSWORD request format ................... 68  
Tab. 125. Password Identifier ..........................................68  
Tab. 126. SET PASSWORD response format when  
Error_flag is NOT set ...................................... 68  
Tab. 127. SET PASSWORD response format when  
Error_flag is set ...............................................69  
Tab. 128. WRITE PASSWORD request format ...............69  
Tab. 129. WRITE PASSWORD response format when  
Error_flag is NOT set ...................................... 69  
Tab. 130. WRITE PASSWORD response format when  
Error_flag is set ...............................................69  
Tab. 131. LOCK PASSWORD request format ................ 70  
Tab. 132. LOCK PASSWORD response format when  
Error_flag is NOT set ...................................... 70  
Tab. 133. LOCK PASSWORD response format when  
Error_flag is set ...............................................70  
Tab. 134. 64 BIT PASSWORD PROTECTION request  
format .............................................................. 70  
Tab. 135. 64 BIT PASSWORD PROTECTION  
response format when Error_flag is NOT set ...71  
Tab. 136. 64 BIT PASSWORD PROTECTION  
response format when Error_flag is NOT set ...71  
Tab. 137. Memory organization .......................................71  
Tab. 138. PROTECT PAGE request format ....................72  
Tab. 139. Extended Protection status byte ......................72  
Tab. 140. Protection status bits definition in plain  
password mode ...............................................72  
Tab. 141. Protection status bits definition in AES mode ...73  
Tab. 142. PROTECT PAGE response format when  
Error_flag is NOT set ...................................... 73  
Tab. 143. PROTECT PAGE response format when  
Error_flag is set ...............................................73  
Tab. 144. LOCK PAGE PROTECTION CONDITION  
request format .................................................73  
Tab. 145. LOCK PAGE PROTECTION CONDITION  
response format when Error_flag is NOT set ...74  
Tab. 146. LOCK PAGE PROTECTION CONDITION  
response format when Error_flag is set ...........74  
Tab. 147. DESTROY request format ...............................74  
Tab. 83. I2C configuration section lock byte  
definition (I2C_SECTION_LOCK_0) ............... 47  
Tab. 84. I2C configuration section lock byte  
0
1
definition (I2C_SECTION_LOCK_1) ............... 47  
Tab. 85. Session Register Location .............................. 48  
Tab. 86. Status Register Location .................................49  
Tab. 87. Status 0 Register ............................................ 50  
Tab. 88. Status 1 Register ............................................ 50  
Tab. 89. Configuration Register Location (CONFIG_  
REG) ................................................................51  
Tab. 90. Configuration Definition (CONFIG_0_REG) .... 51  
Tab. 91. Configuration Definition (CONFIG_1_REG) .... 52  
Tab. 92. Configuration Definition (CONFIG_2_REG) .... 52  
Tab. 93. PWM and GPIO Configuration Register  
Location (PWM_GPIO_CONFIG_REG) .......... 53  
Tab. 94. PWM and GPIO Configuration Register  
Definition (PWM_GPIO_CONFIG_0_REG) .....53  
Tab. 95. PWM and GPIO Configuration Register  
Definition (PWM_GPIO_CONFIG_1_REG) .....54  
Tab. 96. Energy Harvesting Configuration Register  
Location (EH_CONFIG_REG) .........................55  
Tab. 97. Energy Harvesting Register Value Definition  
EH_CONFIG_REG) .........................................55  
Tab. 98. I2C Slave Configuration Register Location ......55  
Tab. 99. I2C Slave Configuration Definition (I2C_  
SLAVE_ADDR_REG) ......................................56  
Tab. 100. I2C Slave Configuration Definition (I2C_  
SLAVE_CONFIG_REG) .................................. 56  
Tab. 101. RESET_GEN_REG location ............................56  
Tab. 102. ED_INTR_CLEAR_REG location ....................57  
Tab. 103. I2C Master Configuration Register Location ....57  
Tab. 104. I2C Slave Address used in I2C master  
transaction (I2C_M_S_ADD_REG) ................. 57  
Tab. 105. I2C Master Data Length Definition (I2C_M_  
LEN_REG) .......................................................57  
Tab. 106. I2C Master Status Definition (I2C_M_  
STATUS_REG) ............................................... 57  
Tab. 107. SRAM mirroring ...............................................58  
Tab. 108. SRAM mirroring with default content ...............59  
Tab. 109. SRAM COPY BYTES (SRAM_COPY_  
BYTES) ............................................................59  
Tab. 110. SRAM_COPY_BYTES Definition .................... 59  
Tab. 111. SRAM Default Content location ...................... 60  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
128 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Tab. 148. DESTROY response format when Error_flag  
is NOT set .......................................................74  
Tab. 188. READ SIGNATURE response format when  
Error_flag is set ...............................................87  
Tab. 149. DESTROY response format when Error_flag  
is set ................................................................74  
Tab. 150. ENABLE NFC PRIVACY request format ......... 75  
Tab. 151. ENABLE NFC PRIVACY response format  
when Error_flag is NOT set .............................75  
Tab. 152. ENABLE NFC PRIVACY response format  
when Error_flag is set ..................................... 75  
Tab. 153. DISABLE NFC PRIVACY request format ........ 76  
Tab. 154. DISABLE NFC PRIVACY response format  
when Error_flag is NOT set .............................76  
Tab. 189. WRITE I2C request format ..............................88  
Tab. 190. I2C param byte ............................................... 88  
Tab. 191. WRITE I2C response format when Error_  
flag is NOT set ................................................89  
Tab. 192. WRITE I2C response format when Error_  
flag is set .........................................................89  
Tab. 193. READ I2C request format ............................... 89  
Tab. 194. I2C param byte ............................................... 89  
Tab. 195. READ I2C response format when Error_flag  
is NOT set .......................................................89  
Tab. 155. DISABLE NFC PRIVACY response format  
when Error_flag is set ..................................... 76  
Tab. 196. READ I2C response format when Error_flag  
is set ................................................................90  
Tab. 156. AUTHENTICATE request format .....................77  
Tab. 157. AUTHENTICATE response format when  
Error_flag is NOT set(in process reply) ........... 77  
Tab. 197. SET EAS request format .................................90  
Tab. 198. SET EAS response format when Error_flag  
is NOT set .......................................................90  
Tab. 158. AUTHENTICATE response format when  
Error_flag is set ...............................................77  
Tab. 199. SET EAS response format when Error_flag  
is set ................................................................90  
Tab. 159. Message format for TAM1 .............................. 77  
Tab. 160. TResponse for TAM1 ......................................77  
Tab. 161. Message format for MAM1 ..............................78  
Tab. 162. TReseponse for MAM1 ................................... 78  
Tab. 163. Message format for MAM2 ..............................78  
Tab. 164. Definition of Purpose_MAM2 ...........................78  
Tab. 165. TReseponse for MAM2 ................................... 79  
Tab. 166. CHALLENGE request format .......................... 79  
Tab. 167. Message format .............................................. 79  
Tab. 168. READBUFFER request format ........................80  
Tab. 169. READBUFFER response format when  
Error_flag is NOT set ...................................... 80  
Tab. 200. RESET EAS request format ............................91  
Tab. 201. RESET EAS response format when Error_  
flag is NOT set ................................................91  
Tab. 202. RESET EAS response format when Error_  
flag is set .........................................................91  
Tab. 203. LOCK EAS request format ..............................91  
Tab. 204. LOCK EAS response format when Error_  
flag is NOT set ................................................92  
Tab. 205. LOCK EAS response format when Error_  
flag is set .........................................................92  
Tab. 206. EAS ALARM Request format ..........................92  
Tab. 207. EAS ALARM Response format (Option flag  
logic 0) ............................................................ 92  
Tab. 208. EAS ALARM Response format(Option flag  
logic 1) ............................................................ 93  
Tab. 170. TResponse ...................................................... 80  
Tab. 171. READBUFFER response format when  
Error_flag is set ...............................................80  
Tab. 172. INVENTORY READ request format ................ 81  
Tab. 173. INVENTORY READ response format:  
Option flag logic 0b .........................................82  
Tab. 174. INVENTORY READ response format:  
Option flag logic 1b .........................................82  
Tab. 209. EAS ALAMR response format when Error_  
flag is set .........................................................93  
Tab. 210. PROTECT EAS/AFI request format ................ 93  
Tab. 211. PROTECT EAS/AFI response format when  
Error_flag is NOT set ...................................... 93  
Tab. 175. Example: mask length = 30 ............................ 82  
Tab. 176. Inventory Read (extended mode) request  
format .............................................................. 83  
Tab. 177. Extended options ............................................ 83  
Tab. 178. Inventory Read (extended mode) response  
format: Option_flag 1b .....................................84  
Tab. 179. Example ...........................................................84  
Tab. 180. READ SRAM request format ...........................85  
Tab. 181. READ SRAM response format when Error_  
flag is NOT set ................................................85  
Tab. 182. READ SRAM response format when Error_  
flag is set .........................................................85  
Tab. 183. WRITE SRAM request format .........................86  
Tab. 184. WRITE SRAM response format when Error_  
flag is NOT set ................................................86  
Tab. 185. WRITE SRAM response format when Error_  
flag is set .........................................................86  
Tab. 186. READ SIGNATURE request format ................ 86  
Tab. 187. READ SIGNATURE response format when  
Error_flag is NOT set ...................................... 86  
Tab. 212. PROTECT EAS/AFI response format when  
Error_flag is set ...............................................93  
Tab. 213. WRITE EAS ID request format ........................94  
Tab. 214. WRITE EAS ID response format when  
Error_flag is NOT set ...................................... 94  
Tab. 215. WRITE EAS ID response format when  
Error_flag is set ...............................................94  
Tab. 216. GET NXP SYSTEM INFORMATION request  
format .............................................................. 95  
Tab. 217. GET NXP SYSTEM INFORMATION  
response format when Error_flag is NOT set ...95  
Tab. 218. Protection Pointer condition byte .....................95  
Tab. 219. Lock bits byte ..................................................95  
Tab. 220. Feature flags byte 0 ........................................96  
Tab. 221. Feature flags byte 1 ........................................96  
Tab. 222. Feature flags byte 2 ........................................96  
Tab. 223. Feature flags byte 3 ........................................97  
Tab. 224. GET NXP SYSTEM INFORMATION  
response format when Error_flag is set ...........97  
Tab. 225. PICK RANDOM ID request format .................. 97  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
129 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Tab. 226. PICK RANDOM ID response format when  
Error_flag is NOT set ...................................... 97  
Tab. 227. PICK RANDOM ID response format when  
Error_flag is set ...............................................98  
Tab. 233. 32 Byte Originality Signature .........................111  
Tab. 234. Limiting values In accordance with the  
Absolute Maximum Rating System (IEC  
60134). .......................................................... 113  
Tab. 228. Random ID ......................................................98  
Tab. 229. Default NTAG 5 I2C address from I2C ..........100  
Tab. 230. Pulse Width Modulation Frequency ...............104  
Tab. 231. NFC Lock Block Configuration location .........109  
Tab. 232. I2C Lock Block Configuration location ...........109  
Tab. 235. Characteristics ...............................................114  
Tab. 236. ........................................................................116  
Tab. 237. Abbreviations .................................................122  
Tab. 238. Revision history .............................................124  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
130 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
NTAG 5 link overview ....................................... 1  
Fig. 10. READ MEMORY and WRITE MEMORY  
command .......................................................102  
Fig. 11. READ REGISTER and WRITE REGISTER  
command .......................................................103  
Fig. 12. Pulse Width Modulation Example ..................105  
Fig. 13. Energy harvesting example circuit ................ 108  
Fig. 14. Concept of memory areas .............................110  
Fig. 15. Package outline XQFN16 ..............................118  
Fig. 16. Package outline TSSOP16 ............................119  
Fig. 17. Package outline SO8 .................................... 120  
Block diagram NTAG 5 link ...............................8  
Pin configuration for XQFN16 package .............9  
Pin configuration for TSSOP16 package .........10  
Pin configuration for SO8 package ..................10  
State Machine and State Transitions .............. 61  
I2C Master write principle ............................... 87  
I2C Master read principle ................................88  
I2C bus protocol ..............................................99  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
131 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
Contents  
1
2
3
4
5
6
7
8
General description ............................................ 1  
8.1.4.9  
I2C slave register settings ............................... 55  
8.1.4.10 System reset generation ..................................56  
8.1.4.11 Clear event detection register ..........................56  
8.1.4.12 I2C master status registers ..............................57  
Features and benefits .........................................3  
Applications .........................................................5  
Ordering information .......................................... 6  
Marking .................................................................7  
Block diagram ..................................................... 8  
Pinning information ............................................ 9  
Functional description ......................................12  
Memory Organization ...................................... 12  
General ............................................................ 12  
User memory ...................................................12  
16-bit counter ...................................................13  
Configuration memory ..................................... 15  
Originality Signature ........................................ 20  
Configuration Header .......................................20  
Customer ID (CID) ...........................................21  
NFC Global Crypto Header ............................. 21  
NFC Crypto Configuration Header ...................23  
NFC Authentication Limit Counter ................... 23  
NFC Key Header .............................................24  
NFC Key Privileges ......................................... 25  
Keys and passwords ....................................... 26  
8.1.5  
8.2  
SRAM ...............................................................58  
NFC interface .................................................. 60  
Passive communication mode .........................60  
State diagram and state transitions ................. 60  
POWER-OFF state ..........................................61  
READY state ................................................... 61  
SELECTED state .............................................62  
SELECTED SECURE state .............................62  
QUIET state .....................................................63  
Command set .................................................. 63  
Commands for state transitions .......................65  
Configuration operations ..................................66  
PWD Authentication .........................................67  
AES Authentication ..........................................76  
Memory operations ..........................................80  
SRAM operations .............................................85  
Originality Signature ........................................ 86  
I2C Transparent Channel ................................ 87  
Other ................................................................90  
Data integrity ................................................... 98  
Error Handling ................................................. 98  
Transmission Errors .........................................98  
Not supported commands or options ...............98  
Wired Interface ................................................ 99  
I2C interface .................................................... 99  
Slave mode ......................................................99  
Master mode of NTP5332 ............................. 101  
Watch Dog Timer .......................................... 101  
Command Set ................................................102  
Error Handling ............................................... 103  
Event detection ..............................................103  
GPIO ..............................................................104  
PWM .............................................................. 104  
Standby mode ............................................... 105  
Hard power-down mode ................................ 105  
Arbitration between NFC and I2C interface ....106  
NFC Mode ..................................................... 106  
I2C Mode .......................................................106  
Normal Mode .................................................106  
SRAM Mirror Mode ........................................106  
SRAM Pass-Through Mode ...........................106  
SRAM PHDC Mode .......................................107  
Energy harvesting ..........................................107  
Security ..........................................................108  
Locking EEPROM to read only ......................108  
Memory Areas ............................................... 109  
Plain password authentication .......................110  
AES authentication ........................................ 110  
NFC privacy mode .........................................111  
Programmable Originality signature ...............111  
Limiting values ................................................113  
Characteristics ................................................ 114  
8.2.1  
8.2.2  
8.2.2.1  
8.2.2.2  
8.2.2.3  
8.2.2.4  
8.2.2.5  
8.2.3  
8.2.3.1  
8.2.3.2  
8.2.3.3  
8.2.3.4  
8.2.3.5  
8.2.3.6  
8.2.3.7  
8.2.3.8  
8.2.3.9  
8.2.4  
8.2.5  
8.2.5.1  
8.2.5.2  
8.3  
8.3.1  
8.3.1.1  
8.3.1.2  
8.3.1.3  
8.3.1.4  
8.3.1.5  
8.3.2  
8.3.3  
8.3.4  
8.3.5  
8.3.6  
8.4  
8.1  
8.1.1  
8.1.2  
8.1.2.1  
8.1.3  
8.1.3.1  
8.1.3.2  
8.1.3.3  
8.1.3.4  
8.1.3.5  
8.1.3.6  
8.1.3.7  
8.1.3.8  
8.1.3.9  
8.1.3.10 I2C Key Header ...............................................28  
8.1.3.11 I2C Protection Pointer and Condition .............. 29  
8.1.3.12 I2C Authentication Limit Counter .....................31  
8.1.3.13 Configuration ....................................................31  
8.1.3.14 Synchronization Block ..................................... 33  
8.1.3.15 Pulse Width Modulation and GPIO  
configuration .................................................... 33  
8.1.3.16 Pulse Width Modulation duty cycle settings .....35  
8.1.3.17 Watch Dog Timer settings ............................... 35  
8.1.3.18 Energy harvesting settings .............................. 36  
8.1.3.19 Event detection pin configuration settings ....... 37  
8.1.3.20 I2C slave configuration settings .......................39  
8.1.3.21 I2C master clock configuration settings ........... 39  
8.1.3.22 Device security configuration bytes ................. 40  
8.1.3.23 SRAM and Configuration protection ................ 41  
8.1.3.24 Restricted AREA_1 pointer ..............................41  
8.1.3.25 Application Family Identifier .............................42  
8.1.3.26 Data Storage Format Identifier ........................ 43  
8.1.3.27 Electronic Article Surveillance ID .....................43  
8.1.3.28 NFC protection pointer .................................... 43  
8.1.3.29 NFC Protection Pointer Conditions ..................44  
8.1.3.30 NFC lock bytes ................................................44  
8.1.3.31 I2C lock bytes ..................................................45  
8.1.3.32 Device configuration section lock bytes ...........45  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.5  
8.1.4  
Session registers ............................................. 48  
Status register ................................................. 49  
Configuration register ...................................... 51  
Synchronization block register .........................53  
Pulse Width Modulation and GPIO  
configuration register ....................................... 53  
Pulse Width Modulation duty cycle register ..... 54  
Watch Dog Timer register ............................... 54  
Energy harvesting register ...............................54  
Event detection register ...................................55  
8.1.4.1  
8.1.4.2  
8.1.4.3  
8.1.4.4  
8.6  
8.6.1  
8.6.2  
8.6.3  
8.6.4  
8.7  
8.8  
9
10  
8.1.4.5  
8.1.4.6  
8.1.4.7  
8.1.4.8  
NTP53x2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2020. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 3.3 — 3 July 2020  
544533  
132 / 133  
NXP Semiconductors  
NTP53x2  
NTAG 5 link - NFC Forum-compliant I2C bridge  
10.1  
10.2  
11  
12  
13  
14  
15  
16  
Static Characteristics .....................................114  
Dynamic characteristics .................................116  
Package outline ...............................................118  
Handling information ...................................... 121  
Abbreviations .................................................. 122  
References .......................................................123  
Revision history .............................................. 124  
Legal information ............................................125  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2020.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 3 July 2020  
Document number: 544533  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY