OQ2536HP [NXP]

SDH/SONET STM16/OC48 demultiplexer; SDH / SONET STM16 / OC48解复用器
OQ2536HP
型号: OQ2536HP
厂家: NXP    NXP
描述:

SDH/SONET STM16/OC48 demultiplexer
SDH / SONET STM16 / OC48解复用器

解复用器
文件: 总20页 (文件大小:131K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
OQ2536HP  
SDH/SONET STM16/OC48  
demultiplexer  
1998 Mar 10  
Product specification  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
FEATURES  
DESCRIPTION  
Normal and loop (test) modes  
The OQ2536HP is a 32-channel demultiplexer intended  
for use in STM16/OC48 applications. It demultiplexes a  
single 2.5 Gbits/s input channel to 32 × 78 Mbits/s output  
channels. The data and clock outputs on the low speed  
interface are GTL compatible, while the high speed data  
and clock inputs are CML compatible.  
1.2 V GTL (Gunning Transceiver Logic) level compatible  
data and clock outputs (low speed interface)  
Differential CML (Current-Mode Logic) data and clock  
inputs  
High input sensitivity (100 mV for the high speed inputs)  
Boundary Scan Test (BST) at low speed interface, in  
accordance with “IEEE Std 1149.1-1990”  
Low power dissipation (typically 1.45 W).  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
OQ2536HP  
HLQFP100 plastic heat-dissipating low profile quad flat package; 100 leads; body  
SOT470-1  
14 × 14 × 1.4 mm  
BLOCK DIAGRAM  
54  
DIN  
2.5 Gbits/s  
78  
Mbits/s  
622  
Mbits/s  
53  
DINQ  
(1)  
75  
D0  
to  
D31  
4 ×  
1 : 8 DMUX  
1 : 4 DMUX  
56  
57  
4
CIN  
CINQ  
ENL  
68  
69  
70  
72  
71  
TRST  
TMS  
TCK  
TDI  
OQ2536HP  
65  
66  
DLOOP  
TDO  
DLOOPQ  
622 MHz  
78 MHz  
12  
CDIV  
DIVIDE BY 4  
DIVIDE BY 8  
60  
59  
CLOOP  
2.5 GHz  
CLOOPQ  
32  
31  
DIOA  
DIOC  
BAND GAP  
REFERENCE 2  
BAND GAP  
REFERENCE 1  
13, 14, 36,  
26, 27, 28, 37, 63, 85,  
(2)  
11, 38, 39,  
62, 88  
74  
34  
51  
73  
76, 77  
86  
29  
GND  
5
7
5
V
V
V
V
BGCAP2  
BGCAP1 REFC  
MGK346  
DD  
CC2  
EE  
CC1  
(1) See Chapter “Pinning” for D0 to D31 pin numbers.  
(2) Pins 1, 8, 17, 22, 25, 29, 33, 35, 40 to 50, 52, 55, 58, 61, 64, 67, 78, 82, 91 and 96.  
Fig.1 Block diagram.  
1998 Mar 10  
2
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
PINNING  
SYMBOL  
PIN  
TYPE(1)  
DESCRIPTION  
GND  
D29  
D25  
D21  
D17  
D13  
D9  
1
S
O
O
O
O
O
O
S
O
O
S
O
S
S
O
O
S
O
O
O
O
S
O
O
S
I
ground  
2
78 Mbits/s data output channel for D29  
78 Mbits/s data output channel for D25  
78 Mbits/s data output channel for D21  
78 Mbits/s data output channel for D17  
78 Mbits/s data output channel for D13  
78 Mbits/s data output channel for D9  
ground  
3
4
5
6
7
GND  
D5  
8
9
78 Mbits/s data output channel for D5  
78 Mbits/s data output channel for D1  
supply voltage (4.5 V)  
D1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
VEE  
CDIV  
VCC2  
VCC2  
D28  
D24  
GND  
D20  
D16  
D12  
D8  
78 MHz clock output  
supply voltage (+1.5 V)  
supply voltage (+1.5 V)  
78 Mbits/s data output channel for D28  
78 Mbits/s data output channel for D24  
ground  
78 Mbits/s data output channel for D20  
78 Mbits/s data output channel for D16  
78 Mbits/s data output channel for D12  
78 Mbits/s data output channel for D8  
ground  
GND  
D4  
78 Mbits/s data output channel for D4  
78 Mbits/s data output channel for D0  
ground  
D0  
GND  
VDD  
supply voltage (+3.3 V)  
VDD  
I
supply voltage (+3.3 V)  
VDD  
I
supply voltage (+3.3 V)  
GND  
i.c.  
S
ground  
internally connected, to be left open-circuit  
cathode of temperature diode array  
anode of temperature diode array  
ground  
DIOC  
DIOA  
GND  
BGCAP2  
GND  
VCC2  
VCC2  
VEE  
A
A
S
A
S
S
S
S
S
S
pin for connecting external band gap decoupling capacitor (4 × 1 : 8 DMUX)  
ground  
supply voltage (+1.5 V)  
supply voltage (+1.5 V)  
supply voltage (4.5 V)  
supply voltage (4.5 V)  
ground  
VEE  
GND  
1998 Mar 10  
3
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
SYMBOL  
PIN  
TYPE(1)  
DESCRIPTION  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
GND  
BGCAP1  
GND  
DINQ  
DIN  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
S
S
S
S
S
S
S
S
S
S
A
S
I
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
ground  
pin for connecting external band gap decoupling capacitor (1 : 4 DMUX)  
ground  
inverted data input in normal mode  
data input in normal mode  
I
GND  
CIN  
S
I
ground  
clock input in normal mode  
CINQ  
GND  
CLOOPQ  
CLOOP  
GND  
VEE  
I
inverted clock input in normal mode  
ground  
S
I
inverted clock input from multiplexer IC OQ2535 (loop mode)  
clock input from multiplexer IC OQ2535 (loop mode)  
ground  
I
S
S
S
S
I
supply voltage (4.5 V)  
VCC2  
supply voltage (+1.5 V)  
GND  
DLOOP  
DLOOPQ  
GND  
TRST  
TMS  
ground  
data input from multiplexer IC OQ2535 (loop mode)  
inverted data input from multiplexer IC OQ2535 (loop mode)  
ground  
I
S
I
test RESET input for BST mode (active LOW)  
test mode select input for BST  
test clock input for BST mode  
serial test data output for BST mode  
serial test data input for BST mode  
I
TCK  
I
TDO  
O
I
TDI  
REFC  
A
pin for connecting external reference decoupling capacitor (for standard TTL  
reference)  
VCC1  
ENL  
VDD  
74  
75  
76  
77  
78  
79  
80  
S
I
supply voltage (+5.0 V)  
loop mode enable input (active LOW)  
supply voltage (+3.3 V)  
I
VDD  
I
supply voltage (+3.3 V)  
GND  
D31  
D27  
S
O
O
ground  
78 Mbits/s data output channel for D31  
78 Mbits/s data output channel for D27  
1998 Mar 10  
4
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
SYMBOL  
PIN  
TYPE(1)  
DESCRIPTION  
78 Mbits/s data output channel for D23  
D23  
GND  
D19  
D15  
VCC2  
VCC2  
D11  
VEE  
D7  
81  
82  
83  
84  
85  
86  
87  
88  
89  
90  
91  
92  
93  
94  
95  
96  
97  
98  
99  
100  
O
S
ground  
O
O
S
78 Mbits/s data output channel for D19  
78 Mbits/s data output channel for D15  
supply voltage (+1.5 V)  
S
supply voltage (+1.5 V)  
O
S
78 Mbits/s data output channel for D11  
supply voltage (4.5 V)  
O
O
S
78 Mbits/s data output channel for D7  
78 Mbits/s data output channel for D3  
ground  
D3  
GND  
D30  
D26  
D22  
D18  
GND  
D14  
D10  
D6  
O
O
O
O
S
78 Mbits/s data output channel for D30  
78 Mbits/s data output channel for D26  
78 Mbits/s data output channel for D22  
78 Mbits/s data output channel for D18  
ground  
O
O
O
O
78 Mbits/s data output channel for D14  
78 Mbits/s data output channel for D10  
78 Mbits/s data output channel for D6  
78 Mbits/s data output channel for D2  
D2  
Note  
1. Pin type abbreviations: O = Output, I = Input, S = power Supply, A = Analog function.  
1998 Mar 10  
5
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
GND  
D29  
D25  
D21  
D17  
D13  
D9  
1
2
75 ENL  
V
74  
73  
CC1  
3
REFC  
4
72 TDI  
5
71 TDO  
6
TCK  
TMS  
70  
69  
68  
7
GND  
D5  
8
TRST  
9
67 GND  
D1  
10  
11  
12  
13  
14  
15  
DLOOPQ  
66  
65  
V
DLOOP  
EE  
CDIV  
64 GND  
OQ2536HP  
V
V
V
63  
62  
61  
CC2  
CC2  
EE  
V
CC2  
D28  
GND  
D24 16  
GND 17  
60 CLOOP  
59 CLOOPQ  
D20  
D16  
D12  
18  
19  
20  
GND  
58  
57  
CINQ  
56 CIN  
D8 21  
GND 22  
D4 23  
55 GND  
DIN  
54  
53  
DINQ  
D0 24  
52 GND  
GND 25  
51 BGCAP1  
MGK345  
Fig.2 Pin configuration.  
6
1998 Mar 10  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
IC. If multiple decoupling capacitors are used for a single  
supply node, large distance between the capacitances  
should be avoided in order to avoid resonance.  
FUNCTIONAL DESCRIPTION  
The OQ2536HP is a 32-channel demultiplexer, intended  
for use in STM16/OC48 applications. It demultiplexes a  
single 2.5 Gbits/s input channel to 32 × 78 Mbits/s output  
channels.  
To minimize low frequency switching noise in the vicinity of  
the OQ2536HP, all power supply lines should be filtered  
once by an LC-circuit with a low cutoff frequency  
(as shown in the application diagram, Fig.7).  
The demultiplexing is performed in two stages.  
The 2.5 Gbits/s data channel is first demultiplexed to four  
622 Mbits/s data channels. Each of these channels is then  
fed to a 1 : 8 demultiplexer to generate 32 × 78 Mbits/s  
output channels.  
Ground connection  
The ground connection on the PCB needs to be a large  
copper area fill connected to a common ground plane with  
low inductance.  
The ENL control input is used for switching between  
normal and loop modes. When loop mode is enabled  
(ENL = LOW), inputs DLOOP, DLOOPQ, CLOOP and  
CLOOPQ are selected. In normal mode (ENL = HIGH),  
inputs DIN, DINQ, CIN and CINQ are selected.  
RF connections  
A coupled stripline or microstrip with an odd mode  
characteristic impedance of 50 (nominal value) should  
be used for the RF connections on the PCB.  
The connections should be kept as short as possible. This  
applies to the CML differential line pairs CIN and CINQ,  
DIN and DINQ, CLOOP and CLOOPQ, and DLOOP and  
DLOOPQ. In addition, the following lines should not vary in  
length by more than 5 mm:  
The signal applied to CIN and CINQ is a 2.5 GHz  
recovered clock signal, e.g. coming from the OQ2541 data  
and clock recovery IC. The clock is divided down to  
78 MHz, which is used for receive logic timing and is  
available as a GTL compatible output at pin CDIV.  
High bit rate stage: 1 : 4 DMUX  
CIN, CINQ, DIN and DINQ  
The 2.5 Gbits/s data stream is fed into a 1 : 4  
demultiplexer to generate four 622 Mbits/s channels.  
DLOOP, DLOOPQ, CLOOP and CLOOPQ.  
The input pins DIN, DINQ, DLOOP, DLOOPQ, CIN, CINQ,  
CLOOP and CLOOPQ are terminated internally with 50 Ω  
resistors to GND.  
Interface to receive logic  
The 78 Mbits/s interface lines, CDIV and D0 to D31,  
should not exceed 50 mm in length. The parasitic  
capacitance of these lines should be as small as possible  
(less than 3 pF is desirable).  
Low bit rate part: 4 × 1 : 8 DMUX  
The four 622 Mbits/s output channels coming from the  
high bit rate stage are loaded into four 8-bit shift registers.  
The 622 MHz clock for these shift registers comes from the  
preceding stage.  
ESD protection  
All pads are protected by ESD protection diodes, with the  
exception of the high frequency inputs DIN, DINQ,  
DLOOP, DLOOPQ, CIN, CINQ, CLOOP and CLOOPQ.  
The 32 bits contained in the shift registers are loaded into  
latches and made available on outputs D0 to D31. These  
outputs are 1.2 V GTL compatible and have internal 100 Ω  
pull up resistors. The 78 MHz clock output, CDIV, has an  
internal 50 pull up resistor.  
Cooling  
In many cases it is necessary to mount a special cooling  
device on the package. The thermal resistance from  
The first serial data bit coming in at DIN or DLOOP is given  
out at pin D31 (MSB) and so on.  
junction to case, Rth j-c and from junction to ambient, Rth j-a  
are given in Chapter “Thermal characteristics”. Since the  
heat-slug in the package is connected to the die, the  
cooling device should be electrically isolated.  
,
The data outputs may not always represent four STM  
bytes. This is because the internal load pulse for the output  
latches is not synchronized to the STM16 frame.  
To calculate if a heatsink is necessary, the maximum  
allowed total thermal resistance R is calculated as:  
Power supply connections  
Tj Tamb  
Rth  
=
(1)  
-----------------------  
The power supply pins need to be individually decoupled  
using chip capacitors mounted as close as possible to the  
Ptot  
1998 Mar 10  
7
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
where:  
Rth = total thermal resistance from junction to ambient  
If for instance Rth c-h = 0.5 K/W and Rth j -a = 33 K/W then:  
1
1
Rthh a  
1 3.1 17.0  
[K W]  
(5)  
----------- ------  
12.5 33  
in the application  
Tj = junction temperature  
Tamb = ambient temperature.  
Built in temperature sensor  
Three series-connected diodes have been integrated for  
measuring junction temperature. The diode array,  
accessed by means of the DIOA (anode) and DIOC  
(cathode) pins, has a temperature dependency of  
approximately 6 mV/°C. With a diode current of 1 mA,  
the voltage will be somewhere in the range 1.7 to 2.5 V,  
depending on temperature.  
As long as Rth is greater than Rth j-a of the OQ2536HP  
including environmental conditions like air flow and board  
layout, no heatsink is necessary. For example if  
Tj = 120 °C, Tamb = 70 °C and Ptot = 1.45 W, then:  
(120 70)  
Rth  
=
= 34.4  
[K W]  
(2)  
----------------------------  
1.45  
which is more than the worst case Rth j-a = 33 K/W, so no  
heatsink is necessary.  
Boundary Scan Test (BST) interface  
Boundary scan test logic has been implemented for all  
digital inputs and outputs on the low frequency interface, in  
accordance with “IEEE Std 1149.1-1990”. All scan tests  
other than SAMPLE mode are available. The boundary  
scan test logic consists of a TAP controller, a BYPASS  
register, a 2-bit instruction register, a 32-bit identification  
register and a 36-bit boundary scan register (the last two  
are combined). The architecture of the TAP controller and  
the BYPASS register is in accordance with IEEE  
recommendations.  
Another example; if for safety reasons Tj should stay as  
low as 110 °C, while Tamb = 85 °C and Ptot = 2 W, then:  
(110 85)  
Rth  
=
= 12.5  
[K W]  
(3)  
----------------------------  
2.0  
In this case extra cooling is needed. The thermal  
resistance of the heatsink is calculated as follows:  
1
1
Rthh a  
1 Rthj c Rthc h  
(4)  
-------- ----------------  
Rth R thj a  
The four command modes, selected be means of the  
instruction register, are: EXTEST (00), PRELOAD (01),  
IDCODE (10) and BYPASS (11).  
All boundary scan test inputs, TDI, TMS, TCK and TRST,  
have internal pull up resistors. The maximum test clock  
frequency at TCK is 12 MHz.  
where:  
Rth h-a = thermal resistance from heatsink to ambient  
Rth c-h = thermal resistance from case to heatsink  
Rth j-c = thermal resistance from junction to case,  
see Chapter “Thermal characteristics”.  
Table 1 BST identifier code  
VERSION  
OQ  
2536 (BINARY)  
00 1001 1110 1000  
PHILIPS SEMICONDUCTORS  
LSB(1)  
0001  
01  
0000 0011 101(2)  
1
Notes  
1. LSB is shifted out first on the TDO pin.  
2. The manufacturer’s code was implemented incorrectly. It should have been 0000 0010 101.  
1998 Mar 10  
8
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
Table 2 BST bit order  
BIT NUMBER  
SYMBOL  
D31  
PIN  
33 (MSB)  
79  
80  
81  
83  
84  
87  
89  
90  
92  
93  
94  
95  
97  
98  
99  
100  
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
10  
9
D27  
D23  
D19  
D15  
D11  
D7  
D3  
D30  
D26  
D22  
D18  
D14  
D10  
D6  
D2  
D29  
D25  
D21  
D17  
D13  
D9  
3
4
5
6
7
D5  
9
D1  
10  
12  
15  
16  
18  
19  
20  
21  
23  
24  
75  
CDIV  
D28  
D24  
D20  
D16  
D12  
D8  
8
7
6
5
4
3
2
D4  
1
D0  
0 (LSB)(1)  
ENL  
Note  
1. LSB is shifted out first on the TDO pin.  
1998 Mar 10  
9
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
0.5  
MAX.  
+6.0  
UNIT  
VCC1  
VEE  
VDD  
VCC2  
Vn  
supply voltage  
supply voltage  
supply voltage  
supply voltage  
DC voltage  
V
V
V
V
6.0  
0.5  
0.5  
+0.5  
+5.0  
+2.0  
pins 2 to 7, 9, 10, 15, 16, 18 to 21, 23, 24, 79, 80, 81, 83, 84, 87, 89, 0.0  
90, 92 to 95 and 97 to 100  
2.0  
V
pins 53, 54, 56, 57, 59, 60, 65 and 66  
pins 68, 69, 70, 72, 73 and 75  
pins 30, 34 and 51  
1.0  
0.5  
+0.5  
V
V
V
V
VCC1 + 0.5  
VEE 0.5 0.5  
pins 31and 32  
VEE 0.5 VCC1 + 0.5  
In  
DC current  
pins 2 to 7, 9, 10, 15, 16, 18 to 21, 23, 24, 79, 80, 81, 83, 84, 87, 89,  
90, 92 to 95, and 97 to 100  
15  
mA  
pin 12  
30  
mA  
mA  
mA  
W
pins 31 and 32  
pin 71  
10  
50  
Ptot  
Tj  
total power dissipation  
junction temperature  
storage temperature  
2.6  
120  
°C  
Tstg  
65  
+150  
°C  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-c  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
thermal resistance from junction to case  
2.6  
K/W  
Rth j-a  
thermal resistance from junction to  
ambient  
see note 1  
airflow = 0 ft/min  
33  
28  
25  
22  
20  
K/W  
K/W  
K/W  
K/W  
K/W  
airflow = 100 ft/min  
airflow = 200 ft/min  
airflow = 400 ft/min  
airflow = 600 ft/min  
Note  
1. The thermal resistance from junction to ambient is strongly depending on the board design and airflow. The values  
given in the table are typical values and are measured on a single sided test board with dimensions of  
76 × 114 × 1.6 mm. Better values can be obtained when mounted on multilayer boards with large ground planes.  
1998 Mar 10  
10  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
DC CHARACTERISTICS  
Typical values at Tamb = 25 °C and at typical supply voltages; minimum and maximum values are valid over the entire  
ambient temperature range and supply voltage range.  
SYMBOL  
General  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VCC1  
VEE  
VDD  
VCC2  
ICC1  
IEE  
supply voltage  
supply voltage  
supply voltage  
supply voltage  
supply current  
supply current  
supply current  
supply current  
4.75  
5.0  
5.25  
4.25  
3.47  
1.6  
V
4.75 4.5  
V
3.14  
1.1  
3.3  
1.5  
14  
V
V
22  
mA  
mA  
mA  
mA  
W
170  
100  
190  
1.45  
215  
185  
525  
2.6  
IDD  
ICC2  
Ptot  
note 1  
note 1  
total power dissipation  
junction temperature  
ambient temperature  
Tj  
+120 °C  
Tamb  
40  
+85  
°C  
TTL input: ENL  
VIL  
VIH  
IIL  
LOW-level input voltage  
0.8  
V
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
2.0  
90  
-
V
-
µA  
µA  
IIH  
210  
TTL inputs: TDI, TCK, TMS and TRST; note 2  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
0.4  
V
V
2.0  
CML inputs: CIN, CINQ, DIN, DINQ, CLOOP, CLOOPQ, DLOOP and DLOOPQ; note 3  
Vi(p-p)  
VIO  
input voltage (peak-to-peak value)  
permitted input offset voltage  
input voltages  
50 measurement 100  
250  
500  
+25  
mV  
mV  
system  
25  
VI,IQ  
Zi  
600  
+250 mV  
single ended input impedance  
for DC signal  
IOL = 4 mA  
50  
TTL output: TDO; note 4  
VOL  
LOW-level output voltage  
0.3  
0.5  
V
1998 Mar 10  
11  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
SYMBOL  
VOH  
IOZ  
Outputs: CDIV and D0 to D31; notes 5 and 6  
PARAMETER  
HIGH-level output voltage  
output current in high impedance state  
CONDITIONS  
MIN.  
2.4  
TYP. MAX. UNIT  
IOH = 400 µA  
4.0  
V
1
µA  
VOL  
VOH  
LOW-level output voltage  
Open outputs  
II(d) = 1 mA  
-
0.3  
1.5  
0.4  
1.6  
V
V
HIGH-level output voltage; note 7  
1.1  
Temperature diode array  
VDIOA-DIOC diode voltage range(8)  
2.1  
V
Notes  
1. Maximum current ICC2 and maximum power dissipation Ptot are worst case figures i.e. data outputs D0 to D31 remain  
in LOW state.  
2. TDI, TCK, TMS and TRST are connected via 90 kto VDD  
3. See Fig.3 for symbol definitions.  
.
4. TDO is switched to high impedance state if BST is inactive.  
5. Output CDIV has an internal pull-up resistor of 50 to VCC2. Outputs D0 to D31 have internal pull-up resistors of  
100 to VCC2  
6. The first serial data bit coming in at DIN or DLOOP is given out at D31 (MSB) and so on.  
7. The HIGH-level output voltage depends on the supply voltage VCC2  
.
.
8. The temperature diode array can be used to measure the temperature of the die. The temperature dependency of  
this voltage is approximately 6 mV/K.  
CML INPUT  
CML OUTPUT  
V
I(max)  
GND  
GND  
V
O(max)  
V
V
IQH  
OQH  
V
V
OH  
IH  
V
V
i (p-p)  
o (p-p)  
V
V
V
IQL  
V
OQL  
OO  
IO  
V
V
OL  
IL  
V
V
O(min)  
I(min)  
MGK144  
Fig.3 Logic level symbol definitions for CML.  
1998 Mar 10  
12  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
TIMING  
Typical values at Tamb = 25 °C and at typical supply voltages; minimum and maximum values are valid over the entire  
ambient temperature range and supply voltage range.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
CML input timing; note 1; Fig.5  
fclk(CIN)  
tsu  
input clock frequency  
input data set-up time  
input data hold time  
clock slew rate  
2.488  
140  
80  
GHz  
ps  
th  
ps  
SRCIN  
1
V/ns  
TTL output timing; note 2; Fig.6  
fclk(CDIV)  
δCDIV  
tr(CDIV)  
tf(CDIV)  
output clock frequency  
output clock duty factor  
output clock rise time  
output clock fall time  
fclk(CDIV) = 2.488 GHz  
-
77.76  
MHz  
%
50  
-
Measured between  
10% and 90% levels  
of full output swing  
2700 ps  
1000 ps  
5100 ps  
1000 ps  
2700 ps  
2850 ps  
tr(D0 to D31) data out rise time  
tf(D0 to D31) data out fall time  
tCDV  
tDI  
clock edge to data valid time  
data invalid time  
Notes  
1. The specified timing characteristics are applicable in both normal and loop modes.  
2. A capacitive load of 15 pF was connected at all outputs. An input reference level of 1 V was used.  
handbook, halfpage  
V
V
handbook, halfpage  
CC2  
CC2  
50 Ω  
100 Ω  
CDIV  
GND  
D0 to D31  
GND  
MBK757  
MBK756  
Fig.4 GTL output circuits.  
1998 Mar 10  
13  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
T
cy(CIN)  
50%  
CIN  
100 mV  
DIN  
MGK347  
t
su  
valid data  
t
h
Fig.5 CML input timing.  
T
cy(CDIV)  
CDIV  
1.0 V  
1.1 V  
0.9 V  
D0 to D31  
MGK348  
t
DI  
t
CDV  
Fig.6 Output timing.  
14  
1998 Mar 10  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
APPLICATION INFORMATION  
DATA AND CLOCK RECOVERY  
OQ2541  
D
DQ  
CL  
CLQ  
DIN  
DINQ  
53  
CINQ  
57  
CIN  
56  
V
EE  
54  
10 nF  
BGCAP1  
51  
V
EE  
ENL  
75  
10 nF  
BGCAP2  
REFC  
micro-  
controller  
34  
73  
33 nF  
DIOA  
DIOC  
TDI  
32  
31  
72  
70  
69  
68  
71  
TCK  
TMS  
BOUNDARY SCAN  
TEST EQUIPMENT  
ferrite  
bead  
TRST  
TDO  
V
CC2  
(1)  
74  
100  
nF  
OQ2536  
1 µF  
ferrite  
bead  
V
CC1  
100  
nF  
1 µF  
1 µF  
1 µF  
ferrite  
bead  
V
DD  
(2)  
DLOOP  
DLOOPQ  
CLOOP  
100  
nF  
65  
66  
60  
59  
DLOOP  
DLOOPQ  
OQ2535  
MUX  
ferrite  
bead  
V
EE  
CLOOP  
(3)  
(4)  
CLOOPQ  
100  
nF  
CLOOPQ  
GND  
D0 to D31  
D0 to D31  
12  
CDIV  
C78  
RECEIVE LOGIC  
MGK349  
(1) VCC2 pins 13, 14, 36, 37, 63, 85 and 86 should be connected together, and to the filter network.  
(2) VDD pins 26, 27, 28, 76 and 77 should be connected together, and to the filter network.  
(3) VEE pins 11, 38, 39, 62 and 8 should be connected together, and to the filter network.  
(4) All GND pins (pins 1, 4, 8, 9, 11, 15, 17, 21, 25, 36, 40, 56, 64, 67, 70, 73, 76, 77, 79, 80, 81, 84, 89, 92 to 98 and 100) must be connected directly  
to the PCB ground plane.  
Fig.7 Application diagram.  
1998 Mar 10  
15  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
PACKAGE OUTLINE  
HLQFP100: plastic heat-dissipating low profile quad flat package;  
100 leads; body 14 x 14 x 1.4 mm  
SOT470-1  
y
X
A
51  
75  
50  
76  
Z
E
e
H
E
J
E
A
2
A
(A )  
3
w M  
p
A
1
b
θ
L
p
pin 1 index  
L
detail X  
100  
26  
1
25  
Z
D
v
M
A
e
w M  
b
p
D
B
H
v M  
B
D
0
5
scale  
10 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
E
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
J
L
L
v
w
y
Z
D
Z
θ
1
2
3
p
E
p
max.  
7o  
0o  
0.20 1.5  
0.05 1.3  
0.28 0.18 14.1 14.1  
0.16 0.12 13.9 13.9  
16.25 16.25 10.15  
15.75 15.75 9.15  
0.75  
0.45  
1.15 1.15  
0.85 0.85  
mm  
1.6  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Notes  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
2. Heatsink intrusion 0.0127 maximum.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-01-13  
SOT470-1  
1998 Mar 10  
16  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Even with these conditions, do not consider wave  
soldering LQFP packages LQFP48 (SOT313-2),  
LQFP64 (SOT314-2) or LQFP80 (SOT315-1).  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011). During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all LQFP  
packages.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for LQFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1998 Mar 10  
17  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1998 Mar 10  
18  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48 demultiplexer  
OQ2536HP  
NOTES  
1998 Mar 10  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
Fax. +43 160 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 488 3263  
Hungary: see Austria  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Uruguay: see South America  
Vietnam: see Singapore  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA57  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
425102/200/01/pp20  
Date of release: 1998 Mar 10  
Document order number: 9397 750 01623  

相关型号:

OQ2538HP

SDH/SONET STM16/OC48 main amplifiers
NXP

OQ2538HP-T

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, ATM/SONET/SDH IC
NXP

OQ2538HP/S1

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, 7 X 7 X 1.40 MM, PLASTIC, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2538HPB-S

IC ATM/SONET/SDH SUPPORT CIRCUIT, PQFP48, 7 X 7 X 1.40 MM, PLASTIC, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2538HP_97

SDH/SONET main amplifier
NXP

OQ2538U

SDH/SONET STM16/OC48 main amplifiers
NXP

OQ2541BHP

IC CLOCK RECOVERY CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, MS-026, SOT-313-2, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2541BU

IC CLOCK RECOVERY CIRCUIT, UUC48, DIE-48, ATM/SONET/SDH IC
NXP

OQ2541HP

SDH/SONET data and clock recovery unit STM1/4/16 OC3/12/48 GE
NXP

OQ2541HPB-S

IC CLOCK RECOVERY CIRCUIT, PQFP48, PLASTIC, SOT-313, LQFP-48, ATM/SONET/SDH IC
NXP

OQ2541U

SDH/SONET data and clock recovery unit STM1/4/16 OC3/12/48 GE
NXP

OQ2545BHP

SDH/SONET STM16/OC48 laser drivers
NXP