P80C32NBBB [NXP]

CMOS single-chip 8-bit microcontrollers; CMOS单芯片8位微控制器
P80C32NBBB
型号: P80C32NBBB
厂家: NXP    NXP
描述:

CMOS single-chip 8-bit microcontrollers
CMOS单芯片8位微控制器

微控制器
文件: 总62页 (文件大小:663K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C32/87C52  
CMOS single-chip 8-bit microcontrollers  
Product specification  
IC20 Data Handbook  
1996 Aug 16  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
DESCRIPTION  
PIN CONFIGURATIONS  
The Philips 80C32/87C52 is a high-performance microcontroller  
fabricated with Philips high-density CMOS technology. The Philips  
CMOS technology combines the high speed and density  
characteristics of HMOS with the low power attributes of CMOS.  
Philips epitaxial substrate minimizes latch-up sensitivity.  
40  
39  
V
DD  
P1.0/T2  
P1.1/T2EX  
P1.2  
1
2
3
P0.0/AD0  
38 P0.1/AD1  
37 P0.2/AD2  
The 87C52 contains an 8k × 8 EPROM and the 80C32 is ROMless.  
Both contain a 256 × 8 RAM, 32 I/O lines, three 16-bit  
counter/timers, a six-source, two-priority level nested interrupt  
structure, a serial I/O port for either multi-processor  
communications, I/O expansion or full duplex UART, and on-chip  
oscillator and clock circuits.  
P1.3  
P1.4  
4
5
36  
P0.3/AD3  
35 P0.4/AD4  
34  
P1.5  
P1.6  
P1.7  
RST  
6
7
8
9
P0.5/AD5  
33 P0.6/AD6  
In addition, the 80C32/87C52 has two software selectable modes of  
power reduction—idle mode and power-down mode. The idle mode  
freezes the CPU while allowing the RAM, timers, serial port, and  
interrupt system to continue functioning. The power-down mode  
saves the RAM contents but freezes the oscillator, causing all other  
chip functions to be inoperative.  
32  
31  
30  
P0.7/AD7  
CERAMIC  
AND  
PLASTIC  
DUAL  
IN-LINE  
PACKAGE  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
INT1/P3.3 13  
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
V
EA/V  
PP  
ALE/PROG  
29 PSEN  
28  
P2.7/A15  
27 P2.6/A14  
26  
See 80C52/80C54/80C58 datasheet for ROM device specifications.  
P2.5/A13  
FEATURES  
25 P2.4/A12  
24 P2.3/A11  
23 P2.2/A10  
80C51 based architecture  
8032 compatible  
8k × 8 EPROM (87C52)  
22  
21  
P2.1/A9  
P2.0/A8  
ROMless (80C32)  
20  
SS  
256 × 8 RAM  
SU00060  
Three 16-bit counter/timers  
Full duplex serial channel  
Boolean processor  
Memory addressing capability  
64k ROM and 64k RAM  
Power control modes:  
Idle mode  
Power-down mode  
CMOS and TTL compatible  
Three speed ranges:  
3.5 to 16MHz  
3.5 to 24MHz  
3.5 to 33MHz  
Five package styles  
Extended temperature ranges  
OTP package available  
2
1996 Aug 16  
853–1562 17195  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
ORDERING INFORMATION  
TEMPERATURE RANGE °C  
FREQ  
DRAWING  
NUMBER  
1
ROMless  
P80C32EBP N  
P80C32EBA A  
EPROM  
AND PACKAGE  
MHz  
16  
16  
16  
16  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
24  
24  
24  
24  
33  
33  
33  
33  
33  
33  
P87C52EBP N  
OTP  
OTP  
UV  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Ceramic Dual In-line Package  
0 to +70, Ceramic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
SOT129-1  
SOT187-2  
0590B  
P87C52EBA A  
P87C52EBF FA  
P87C52EBL KA  
P87C52EBB B  
P87C52EFP N  
P87C52EFA A  
P87C52EFF FA  
P87C52EFB B  
P87C52IBP N  
P87C52IBA A  
UV  
1472A  
P80C32EBB B  
P80C32EFP N  
P80C32EFA A  
OTP  
OTP  
OTP  
UV  
SOT307-2  
SOT129-1  
SOT187-2  
0590B  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Ceramic Dual In-line Package  
–40 to +85, Plastic Quad Flat Pack  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
P80C32EFB B  
P80C32IBP N  
P80C32IBA A  
P80C32IBB B  
OTP  
OTP  
OTP  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
0590B  
P87C52IBF FA  
P87C52IBL KA  
UV  
UV  
0 to +70, Ceramic Dual In-line Package  
0 to +70, Ceramic Leaded Chip Carrier  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Quad Flat Pack  
–40 to +85, Ceramic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Quad Flat Pack  
1472A  
P80C32IFP  
P80C32IFA  
P80C32IFB  
N
A
B
P87C52IFP  
P87C52IFA  
N
A
OTP  
OTP  
SOT129-1  
SOT187-2  
SOT307-2  
0590B  
P87C52IFF FA  
UV  
P80C32NBA A  
P80C32NBP N  
P80C32NBB B  
P80C32NFA A  
P80C32NFP N  
SOT187-2  
SOT129-1  
SOT307-2  
SOT187-2  
SOT129-1  
SOT307-2  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Quad Flat Pack  
P80C32NFB B  
NOTE:  
1. OTP = One Time Programmable EPROM. UV = UV erasable EPROM  
2. For 33MHz ROM 80C52 operation, see 80C52/80C54/80C58 data sheet.  
3
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
CERAMIC AND PLASTIC LEADED CHIP CARRIER  
PIN FUNCTIONS  
PLASTIC QUAD FLAT PACK  
PIN FUNCTIONS  
44  
34  
6
1
40  
7
39  
29  
1
33  
23  
PQFP  
LCC  
11  
17  
12  
22  
18  
28  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
1
2
P1.5  
P1.6  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
NC*  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
SS  
1
2
3
NC*  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
T0/P3.4  
T1/P3.5  
WR/P3.6  
RD/P3.7  
XTAL2  
XTAL1  
V
SS  
NC*  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
31  
P2.7/A15  
PSEN  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
T2/P1.0  
T2EX/P1.1  
P1.2  
3
P1.7  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
ALE/PROG  
NC*  
4
RST  
4
5
6
RxD/P3.0  
NC*  
EA/V  
PP  
5
P1.3  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
6
P1.4  
7
8
9
10  
11  
12  
13  
14  
15  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
T0/P3.4  
T1/P3.5  
WR/P3.6  
RD/P3.7  
XTAL2  
XTAL1  
7
P1.5  
V
CC  
8
P1.6  
NC*  
9
P1.7  
T2/P1.0  
T2EX/P1.1  
P1.2  
P1.3  
P1.4  
10  
11  
12  
13  
14  
15  
RST  
RxD/P3.0  
NC*  
TxD/P3.1  
INT0/P3.2  
INT1/P3.3  
ALE/PROG  
NC*  
EA/V  
PP  
V
CC  
P0.7/AD7  
* DO NOT CONNECT  
* DO NOT CONNECT  
SU00061  
SU00062  
LOGIC SYMBOL  
V
V
SS  
CC  
XTAL1  
ADDRESS AND  
DATA BUS  
XTAL2  
RST  
T2  
T2EX  
EA/V  
PP  
PSEN  
ALE/PROG  
RxD  
TxD  
INT0  
INT1  
T0  
ADDRESS BUS  
T1  
WR  
RD  
SU00063  
4
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
BLOCK DIAGRAM  
P0.0–P0.7  
P2.0–P2.7  
PORT 0  
DRIVERS  
PORT 2  
DRIVERS  
V
CC  
V
SS  
ROM/  
EPROM  
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 2  
LATCH  
RAM  
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
PCON SCON TMOD TCON  
ALU  
T2CON  
TH0  
TL0  
TL2 RCAP2H  
IE IP  
INTERRUPT, SERIAL  
TH1  
TL1  
TH2  
PC  
INCRE-  
MENTER  
RCAP2L SBUF  
PSW  
PORT AND TIMER BLOCKS  
PROGRAM  
COUNTER  
PSEN  
ALE  
EA  
TIMING  
AND  
CONTROL  
DPTR  
RST  
PORT 1  
LATCH  
PORT 3  
LATCH  
PD  
OSCILLATOR  
PORT 1  
DRIVERS  
PORT 3  
DRIVERS  
XTAL1  
XTAL2  
P1.0–P1.7  
P3.0–P3.7  
SU00064  
5
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
Table 1.  
8XC52 Special Function Registers  
DIRECT  
DESCRIPTION  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
ADDRESS MSB  
LSB  
ACC*  
B*  
Accumulator  
B register  
E0H  
F0H  
E7  
F7  
E6  
F6  
E5  
F5  
E4  
F4  
E3  
F3  
E2  
F2  
E1  
F1  
E0  
00H  
F0  
00H  
DPTR:  
DPH  
DPL  
Data pointer (2 bytes)  
Data pointer high  
Data pointer low  
83H  
82H  
00H  
00H  
AF  
EA  
BF  
AE  
AD  
ET2  
BD  
AC  
ES  
BC  
PS  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*  
IP*  
Interrupt enable  
Interrupt priority  
A8H  
B8H  
0x000000B  
xx000000B  
BE  
PT2  
PT1  
PX1  
PT0  
PX0  
87  
86  
85  
84  
83  
82  
81  
80  
P0*  
P1*  
P2*  
P3*  
Port 0  
Port 1  
Port 2  
80H  
90H  
A0H  
AD7  
AD6  
AD5  
AD4  
AD3  
AD2  
AD1  
AD0  
FFH  
FFH  
FFH  
97  
96  
95  
94  
93  
92  
91  
90  
T2  
T2EX  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A9  
A0  
A8  
A15  
A14  
A13  
A12  
A11  
A10  
B7  
RD  
B6  
WR  
B5  
T1  
B4  
T0  
B3  
B2  
B1  
TxD  
PD  
B0  
RxD  
IDL  
Port 3  
B0H  
87H  
INT1  
GF1  
INT0  
GF0  
FFH  
1
PCON  
Power control  
SMOD  
0xxxxxxxB  
D7  
CY  
D6  
AC  
D5  
F0  
D4  
D3  
D2  
D1  
D0  
P
PSW*  
Program status word  
D0H  
RS1  
RS0  
OV  
00H  
RCAP2H# Capture high  
CBH  
CAH  
00H  
00H  
RCAPL#  
Capture low  
SBUF  
Serial data buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SCON*  
SP  
Serial controller  
Stack pointer  
98H  
81H  
SM0  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer control  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00H  
CF  
CE  
CD  
CC  
CB  
CA  
C9  
C8  
T2CON*#  
Timer 2 control  
C8H  
TF2  
EXF2 RCLK TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2 00H  
TH0  
TH1  
TH2#  
TL0  
TL1  
TL2#  
Timer high 0  
Timer high 1  
Timer high 2  
Timer low 0  
Timer low 1  
Timer low 2  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
00H  
00H  
00H  
00H  
00H  
00H  
TMOD  
Timer mode  
89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
*
#
Bit addressable  
SFRs are modified from or added to the 80C51 SFRs.  
1. Bits GF1, GF0, PD, and IDL of the PCON register are not implemented in the NMOS 8XC52.  
6
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
PIN DESCRIPTION  
PIN NO.  
MNEMONIC  
DIP  
20  
LCC  
22  
QFP TYPE NAME AND FUNCTION  
V
SS  
V
CC  
16  
38  
I
I
Ground: 0V reference.  
40  
44  
Power Supply: This is the power supply voltage for normal, idle, and power-down  
operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the  
code bytes during program verification in the 87C52. External pull-ups are required during  
program verification.  
P1.0–P1.7  
1–8  
2–9  
40–44  
1–3  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 1 pins that are externally pulled low will source current because of the internal  
pull-ups. (See DC Electrical Characteristics: I ). Pins P1.0 and P1.1 also. Port 1 also  
IL  
receives the low-order address byte during program memory verification. Port 1 also serves  
alternate functions for timer 2:  
1
2
2
3
40  
41  
I
I
T2 (P1.0): Timer/counter 2 external count input.  
T2EX (P1.1): Timer/counter 2 trigger input.  
P2.0–P2.7  
21–28 24–31 18–25  
I/O  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 2 pins that are externally being pulled low will source current because of the  
internal pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order  
IL  
address byte during fetches from external program memory and during accesses to  
external data memory that use 16-bit addresses (MOVX @DPTR). In this application, it  
uses strong internal pull-ups when emitting 1s. During accesses to external data memory  
that use 8-bit addresses (MOV @Ri), port 2 emits the contents of the P2 special function  
register.  
P3.0–P3.7  
10–17  
11,  
5,  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As  
inputs, port 3 pins that are externally being pulled low will source current because of the  
13–19 7–13  
pull-ups. (See DC Electrical Characteristics: I ). Port 3 also serves the special features of  
IL  
the 80C51 family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
10  
11  
12  
13  
RST  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an external  
SS  
capacitor to V  
.
CC  
ALE/PROG  
30  
33  
27  
I/O  
Address Latch Enable/Program Pulse: Output pulse for latching the low byte of the  
address during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 1/6 the oscillator frequency, and can be used for external timing or clocking.  
Note that one ALE pulse is skipped during each access to external data memory. This pin is  
also the program pulse input (PROG) during EPROM programming.  
PSEN  
29  
31  
32  
35  
26  
29  
O
I
Program Store Enable: The read strobe to external program memory. When the device is  
executing code from the external program memory, PSEN is activated twice each machine  
cycle, except that two PSEN activations are skipped during each access to external data  
memory. PSEN is not activated during fetches from internal program memory.  
EA/V  
External Access Enable/Programming Supply Voltage: EA must be externally held low  
to enable the device to fetch code from external program memory locations 0000H to  
1FFFH. If EA is held high, the device executes from internal program memory unless the  
program counter contains an address greater than 1FFFH. This pin also receives the  
PP  
12.75V programming supply voltage (V ) during EPROM programming.  
PP  
XTAL1  
XTAL2  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
O
Crystal 2: Output from the inverting oscillator amplifier.  
7
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
transition at external input T2EX will also trigger the 16-bit reload  
and set EXF2. The auto-reload mode is illustrated in Figure 3.  
DIFFERENCES FROM THE 80C51  
Special Function Registers  
The baud rate generation mode is selected by RCLK = 1 and/or  
TCLK = 1. It will be described in conjunction with the serial port.  
The special function register space is the same as the 80C51 except  
that the 80C32/87C52 contains the additional special function  
registers T2CON, RCAP2L, RCAP2H, TL2, and TH2. Since the  
standard 80C51 on-chip functions are identical in the 8XC52, the  
SFR locations, bit locations, and operation are likewise identical.  
The only exceptions are in the interrupt mode and interrupt priority  
SFRs (see Table 1).  
Serial Port  
The serial port of the 8XC52 is identical to that of the 80C51 except  
that counter/timer 2 can be used to generate baud rates.  
In the 8XC52, Timer 2 is selected as the baud rate generator by  
setting TCLK and/or RCLK in T2CON (see Figure 1). Note that the  
baud rate for transmit and receive can be simultaneously different.  
Setting RCLK and/or TCLK puts Timer into its baud rate generator  
mode, as shown in Figure 4.  
Timer/Counters  
In addition to timer/counters 0 and 1 of the 80C51, the 80C32/87C52  
contains timer/counter 2. Like timers 0 and 1, timer 2 can operate as  
either an event timer or as an event counter. This is selected by bit  
C/T2 in the special function register T2CON (see Figure 1). It has  
three operating modes: capture, auto-load, and baud rate generator,  
which are selected by bits in the T2CON as shown in Table 2.  
The baud rate generator mode is similar to the auto-reload mode, in  
that a rollover in TH2 causes the Timer 2 registers to be reloaded  
with the 16-bit value in registers RCAP2H and RCAP2L, which are  
preset by software.  
In the Capture Mode there are two options which are selected by bit  
EXEN2 in T2CON. If EXEN2 = 0, then Timer 2 is a 16-bit timer or  
counter which upon overflowing sets bit TF2, the Timer 2 overflow  
bit, which can be used to generate an interrupt. If EXEN2 = 1, then  
Timer 2 still does the above, but with the added feature that a 1-to-0  
transition at external input T2EX causes the current value in the  
Timer 2 registers, TL2 and TH2, to be captured into registers  
RCAP2L and RCAP2H, respectively. (RCAP2L and RCAP2H are  
new special function registers in the 80C52.) In addition, the  
transition at T2EX causes bit EXF2 in T2CON to be set, and EXF2  
like TF2 can generate an interrupt. The Capture Mode is illustrated  
in Figure 2.  
Now, the baud rates in Modes 1 and 3 are determined by Timer 2’s  
overflow rate as follows:  
Timer 2 Overflow Rate  
Modes 1, 3 Baud Rate +  
16  
The timer can be configured for either “timer” or “counter” operation.  
In the most typical applications, it is configured for “timer” operation  
(C/T2 = 0). “Timer” operation is a little different for Timer 2 when it’s  
being used as a baud rate generator. Normally, as a timer it would  
increment every machine cycle (thus at 1/12 the oscillator  
frequency). As a baud rate generator, however, it increments every  
state time (thus at 1/2 the oscillator frequency). In that case the  
baud rate is given by the formula:  
In the auto-reload mode, there are again two options, which are  
selected by bit EXEN2 in T2CON. If EXEN2 = 0, then when Timer 2  
rolls over it not only sets TF2 but also causes the Timer 2 registers  
to be reloaded with the 16-bit value in registers RCAP2L and  
RCAP2H, which are preset by software. If EXEN2 = 1, then Timer 2  
still does the above, but with the added feature that a 1-to-0  
Oscillator Frequency  
Modes 1, 3 Baud Rate +  
32   [65536 * (RCAP2H, RCAP2L)]  
where (RCAP2H, RCAP2L) is the content of RCAP2H and RCAP2L  
taken as a 16-bit unsigned integer.  
(MSB)  
(LSB)  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
Symbol  
Position  
Name and Significance  
TF2  
T2CON.7  
T2CON.6  
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set when either RCLK or TCLK = 1.  
EXF2  
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and EXEN2 = 1. When Timer 2  
interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2 interrupt routine. EXF2 must be cleared by software.  
RCLK  
TCLK  
T2CON.5  
T2CON.4  
T2CON.3  
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock in modes 1 and 3. RCLK = 0  
causes Timer 1 overflow to be used for the receive clock.  
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock in modes 1 and 3. TCLK = 0  
causes Timer 1 overflows to be used for the transmit clock.  
EXEN2  
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative transition on T2EX if Timer 2 is not  
being used to clock the serial port. EXEN2 = 0 causes Timer 2 to ignore events at T2EX.  
TR2  
T2CON.2  
T2CON.1  
Start/stop control for Timer 2. A logic 1 starts the timer.  
C/T2  
Timer or counter select. (Timer 2)  
0 = Internal timer (OSC/12)  
1 = External event counter (falling edge triggered).  
CP/RL2  
T2CON.0  
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When cleared, auto-reloads will  
occur either with Timer 2 overflows or negative transitions at T2EX when EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is  
ignored and the timer is forced to auto-reload on Timer 2 overflow.  
SU00065  
Figure 1. Timer/Counter 2 (T2CON) Control Register  
8
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
OSC  
÷ 12  
C/T2 = 0  
C/T2 = 1  
TL2  
(8-bits)  
TH2  
(8-bits)  
TF2  
T2 Pin  
Control  
TR2  
Capture  
Transition  
Detector  
Timer 2  
Interrupt  
RCAP2L  
RCAP2H  
T2EX Pin  
EXF2  
Control  
EXEN2  
SU00066  
Figure 2. Timer 2 in Capture Mode  
OSC  
÷ 12  
C/T2 = 0  
C/T2 = 1  
TL2  
(8-BITS)  
TH2  
(8-BITS)  
T2 PIN  
CONTROL  
TR2  
RELOAD  
TRANSITION  
DETECTOR  
RCAP2L  
RCAP2H  
TF2  
TIMER 2  
INTERRUPT  
T2EX PIN  
EXF2  
CONTROL  
EXEN2  
SU00067  
Figure 3. Timer 2 in Auto-Reload Mode  
9
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
Timer 1  
Overflow  
÷ 2  
NOTE: OSC. Freq. is divided by 2, not 12.  
“0”  
“1”  
OSC  
÷ 2  
C/T2 = 0  
C/T2 = 1  
SMOD  
RCLK  
“1”  
“0”  
TL2  
(8-bits)  
TH2  
(8-bits)  
T2 Pin  
Control  
÷ 16  
RX Clock  
“1”  
“0”  
TR2  
Reload  
TCLK  
Transition  
Detector  
RCAP2L  
RCAP2H  
÷ 16  
TX Clock  
Timer 2  
Interrupt  
T2EX Pin  
EXF2  
Control  
EXEN2  
Note availability of additional external interrupt.  
SU00068  
Figure 4. Timer 2 in Baud Rate Generator Mode  
Table 2.  
Timer 2 Operating Modes  
RCLK + TCLK  
CP/RL2  
TR2  
1
MODE  
0
0
1
X
0
1
16-bit Auto-reload  
16-bit Capture  
1
X
X
1
Baud rate generator  
(off)  
0
Timer 2 as a baud rate generator is shown in Figure 4. This figure is  
valid only if RCLK + TCLK = 1 in T2CON. Note that a rollover in TH2  
does not set TF2, and will not generate an interrupt. Therefore, the  
Timer 2 interrupt does not have to be disabled when Timer 2 is in  
the baud rate generator mode. Note too, that if EXEN2 is set, a  
1-to-0 transition in T2EX will set EXF2 but will not cause a reload  
from (RCAP2H, RCAP2L) to (TH2, TL2). Thus when Timer 2 is in  
use as a baud rate generator, T2EX can be used as an extra  
external interrupt, if desired.  
Timer/Counter 2 Set-up  
Except for the baud rate generator mode, the values given for  
T2CON do not include the setting of the TR2 bit. Therefore, bit TR2  
must be set, separately, to turn the timer on. See Table 3 for set-up  
of timer 2 as a timer. See Table 4 for set-up of timer 2 as a counter.  
Using Timer/Counter 2 to Generate Baud Rates  
For this purpose, Timer 2 must be used in the baud rate generating  
mode. If Timer 2 is being clocked through pin T2 (P1.0) the baud  
rate is:  
It should be noted that when Timer 2 is running (TR2 = 1) in “timer”  
function in the baud rate generator mode, one should not try to read  
or write TH2 or TL2. Under these conditions the timer is being  
incremented every state time, and the results of a read or write may  
not be accurate. The RCAP registers may be read, but should not  
be written to, because a write might overlap a reload and cause  
write and/or reload errors. Turn the timer off (clear TR2) before  
accessing the Timer 2 or RCAP registers, in this case.  
Timer 2 Overflow Rate  
Baud Rate +  
16  
And if it is being clocked internally, the baud rate is:  
Oscillator Frequency  
Baud Rate +  
32   [65536 * (RCAP2H, RCAP2L)]  
To obtain the reload value for RCAP2H and RCA02L, the above  
equation can be rewritten as:  
Oscillator Frequency  
RCAP2H, RCAP2L + 65536 *  
32   Baud Rate  
10  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
by hardware. That is, interrupts can be generated or pending  
interrupts can be canceled in software.  
Interrupts  
The 80C32/87C52 has 6 interrupt sources. All except TF2 and EXF2  
are identical sources to those in the 80C51.  
The interrupt vector addresses and the interrupt priority for requests  
in the same priority level are given in the following:  
The Interrupt Enable Register and the Interrupt Priority Register are  
modified to include the additional 80C32/87C52 interrupt sources.  
The operation of these registers is identical to the 80C51.  
Source  
Vector Priority Within  
Address  
0003H  
000BH  
0013H  
001BH  
0023H  
Level  
(highest)  
1. IE0  
2. TF0  
3. IE1  
4. TF1  
5. RI + TI  
In the 80C32/87C52, the Timer 2 Interrupt is generated by the  
logical OR of TF2 and EXF2. Neither of these flags is cleared by  
hardware when the service routine is vectored to. In fact, the service  
routine may have to determine whether it was TF2 or EXF2 that  
generated the interrupt, and the bit will have to be cleared in  
software.  
6. TF2 + EXF2 002BH  
(lowest)  
Note that they are identical to those in the 80C51 except for the  
addition of the Timer 2 (TF1 and EXF2) interrupt at 002BH and at  
the lowest priority within a level.  
All of the bits that generate interrupts can be set or cleared by  
software, with the same result as though it has been set or cleared  
Table 3.  
Timer 2 as a Timer  
MODE  
T2CON  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit Auto-Reload  
00H  
01H  
34H  
24H  
14H  
08H  
09H  
36H  
26H  
16H  
16-bit Capture  
Baud rate generator receive and transmit same baud rate  
Receive only  
Transmit only  
Table 4.  
Timer 2 as a Counter  
MODE  
TMOD  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit  
02H  
03H  
0AH  
0BH  
Auto-Reload  
NOTES:  
1. Capture/reload occurs only on timer/counter overflow.  
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when timer 2 is used in the baud rate  
generator mode.  
11  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
of the special function registers remain intact during this mode. The  
idle mode can be terminated either by any enabled interrupt (at  
which time the process is picked up at the interrupt service routine  
and continued), or by a hardware reset which starts the processor in  
the same manner as a power-on reset.  
OSCILLATOR CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator, as shown in the Logic Symbol, page 4.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
POWER-DOWN MODE  
In the power-down mode, the oscillator is stopped and the  
instruction to invoke power-down is the last instruction executed.  
Only the contents of the on-chip RAM are preserved. A hardware  
reset is the only way to terminate the power-down mode. the control  
bits for the reduced power modes are in the special function register  
PCON.  
RESET  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-up reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles.  
DESIGN CONSIDERATIONS  
At power-on, the voltage on V and RST must come up at the  
CC  
same time for a proper start-up.  
Table 5 shows the state of I/O ports during low current operating  
modes.  
IDLE MODE  
In idle mode, the CPU puts itself to sleep while all of the on-chip  
peripherals stay active. The instruction to invoke the idle mode is the  
last instruction executed in the normal operating mode before the  
idle mode is activated. The CPU contents, the on-chip RAM, and all  
As a precaution to coming out of an unexpected power down, INT0  
and INT1 should be disabled prior to enterring power down.  
Table 5. External Pin Status During Idle and Power-Down Modes  
MODE  
PROGRAM MEMORY  
Internal  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
Idle  
Idle  
1
1
0
0
1
1
0
0
External  
Float  
Data  
Address  
Data  
Data  
Power-down  
Power-down  
Internal  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
12  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
Electrical Deviations from Commercial Specifications for Extended Temperature Range (87C52)  
DC and AC parameters not included here are the same as in the commercial temperature range table.  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
TEST  
LIMITS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.5  
0
MAX  
0.2V –0.15  
UNIT  
V
V
V
V
V
Input low voltage, except EA  
IL  
CC  
Input low voltage to EA  
0.2V –0.35  
V
IL1  
IH  
CC  
Input high voltage, except XTAL1, RST  
Input high voltage to XTAL1, RST  
Logical 0 input current, ports 1, 2, 3  
Logical 1-to-0 transition current, ports 1, 2, 3  
0.2V +1  
V
CC  
V
CC  
+0.5  
+0.5  
V
CC  
0.7V +0.1  
V
IH1  
CC  
I
I
I
V
= 0.45V  
= 2.0V  
IN  
–75  
µA  
µA  
IL  
IN  
V
–750  
TL  
Power supply current:  
Active mode  
V
CC  
= 4.5–5.5V,  
CC  
Frequency range =  
3.5 to 16MHz  
32  
5
50  
mA  
mA  
µA  
Idle mode  
Power-down mode  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
UNIT  
°C  
°C  
V
Operating temperature under bias  
Storage temperature range  
0 to +70 or –40 to +85  
–65 to +150  
0 to +13.0  
–0.5 to +6.5  
15  
Voltage on EA/V pin to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Maximum I per I/O pin  
mA  
W
OL  
Power dissipation (based on package heat transfer limitations, not  
device power consumption)  
1.5  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
13  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V (87C52)  
CC SS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V (80C32)  
CC SS  
TEST  
LIMITS  
1
SYMBOL  
PARAMETER  
CONDITIONS  
MIN  
–0.5  
0
TYP  
MAX  
0.2V –0.1  
UNIT  
V
7
V
V
V
V
V
V
V
Input low voltage, except EA  
IL  
CC  
7
Input low voltage to EA  
0.2V –0.3  
V
IL1  
IH  
CC  
7
Input high voltage, except XTAL1, RST  
0.2V +0.9  
V
CC  
V
CC  
+0.5  
+0.5  
V
CC  
7
Input high voltage, XTAL1, RST  
0.7V  
V
IH1  
OL  
OL1  
OH  
CC  
9
2
Output low voltage, ports 1, 2, 3  
I
I
I
= 1.6mA  
0.45  
0.45  
V
OL  
OL  
OH  
9
2
Output low voltage, port 0, ALE, PSEN  
= 3.2mA  
V
3
Output high voltage, ports 1, 2, 3, ALE, PSEN  
= –60µA,  
= –25µA  
= –10µA  
2.4  
V
V
V
I
I
0.75V  
OH  
OH  
CC  
CC  
0.9V  
V
OH1  
Output high voltage (port 0 in external bus mode)  
I
I
= –800µA,  
= –300µA  
2.4  
V
V
V
OH  
OH  
I
0.75V  
CC  
CC  
= –80µA  
0.9V  
OH  
7
I
I
I
I
Logical 0 input current, ports 1, 2, 3  
V
= 0.45V  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
7
Logical 1-to-0 transition current, ports 1, 2, 3  
See note 4  
= V or V  
IH  
TL  
LI  
Input leakage current, port 0  
V
IN  
IL  
7
Power supply current:  
See note 6  
CC  
5
Active mode @ 16MHz  
11.5  
1.3  
3
32  
5
50  
mA  
mA  
µA  
Idle mode @ 16MHz  
Power-down mode  
T
amb  
= 0 to 70°C  
T
amb  
= –40 to +85°C  
75  
µA  
R
C
Internal reset pull-down resistor  
50  
300  
15  
kΩ  
RST  
IO  
10  
Pin capacitance  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9V specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. I  
at other frequencies is given by: Active mode: I  
= 1.5 × FREQ + 8.0: Idle mode: I  
= 0.14 × FREQ +2.31,  
CCMAX  
CCMAX  
CCMAX  
where FREQ is the external oscillator frequency in MHz. I  
is given in mA. See Figure 12.  
CCMAX  
6. See Figures 13 through 16 for I test conditions.  
CC  
7. These values apply only to T  
= 0°C to +70°C. For T  
= –40°C to +85°C, see table on previous page.  
amb  
amb  
8. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
9. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA (*NOTE: This is 85°C specification.)  
OL  
Maximum I per 8-bit port:  
26mA  
67mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
10.This limit is for plastic packages. For ceramic packages, the maximum limit is 20pF.  
14  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V (87C52)  
CC SS  
16MHz CLOCK  
VARIABLE CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
UNIT  
1/t  
5
Oscillator frequency  
Speed versions  
CLCL  
: E  
3.5  
16  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
5
5
5
5
5
5
5
5
5
5
5
ALE pulse width  
85  
22  
32  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
PSEN pulse width  
t
–40  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
t
–30  
150  
82  
4t  
3t  
–100  
CLCL  
32  
t
–30  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
142  
3t  
–45  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
CLCL  
0
0
37  
207  
10  
t
–25  
CLCL  
5t  
–105  
CLCL  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
7
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
Data float after RD  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
147  
5t  
–165  
CLCL  
0
0
65  
2t  
–60  
CLCL  
350  
397  
239  
8t  
CLCL  
9t  
CLCL  
–150  
–165  
AVDV  
LLWL  
137  
122  
13  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
4t  
t
–130  
–50  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
CLCL  
CLCL  
CLCL  
13  
t
–50  
Data valid to WR high  
287  
7t  
–150  
6, 7  
6, 7  
RD low to address float  
RD or WR high to ALE high  
0
0
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
t
t
t
t
9
9
9
9
High time  
Low time  
Rise time  
Fall time  
20  
20  
20  
20  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
20  
20  
20  
20  
Shift Register  
t
t
t
t
t
8
8
8
8
8
Serial port clock cycle time  
750  
492  
8
12t  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
0
492  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the 80C32/52 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. See application note AN457 for external memory interface.  
15  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
24MHz CLOCK  
VARIABLE CLOCK  
33MHz CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
1/t  
5
Oscillator frequency  
Speed versions : I  
: N  
CLCL  
3.5  
24  
MHz  
3.5  
21  
5
33  
t
t
t
t
t
t
t
t
t
t
t
5
5
5
5
5
5
5
5
5
5
5
ALE pulse width  
43  
17  
17  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
5
102  
65  
4t  
3t  
–65  
56  
CLCL  
17  
80  
t
–25  
5
0
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
–45  
46  
31  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
CLCL  
0
0
17  
128  
10  
t
–25  
5
CLCL  
5t  
–80  
72  
10  
CLCL  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
6, 7  
7
RD pulse width  
150  
150  
6t  
–100  
–100  
82  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
Data float after RD  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
118  
5t  
2t  
–90  
–28  
62  
CLCL  
0
0
0
55  
33  
92  
CLCL  
183  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
108  
141  
AVDV  
LLWL  
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
41  
46  
0.3  
5
CLCL  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
4t  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
12  
t
t
–30  
CLCL  
CLCL  
CLCL  
17  
–25  
Data valid to WR high  
162  
7t  
–130  
82  
6, 7  
6, 7  
RD low to address float  
RD or WR high to ALE high  
0
0
0
5
17  
67  
t
–25  
t
+25  
5
CLCL  
CLCL  
External Clock  
t
t
t
t
9
9
9
9
High time  
Low time  
Rise time  
Fall time  
17  
17  
17  
17  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
5
5
5
5
Shift Register  
t
t
t
t
t
8
8
8
8
8
Serial port clock cycle time  
505  
283  
3
12t  
363  
170  
19  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t –133  
CLCL  
QVXH  
XHQX  
XHDX  
XHDV  
2t  
CLCL  
–80  
0
0
0
283  
10t  
–133  
170  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the 8XC52 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0 drivers.  
4. Variable clock is specified for oscillator frequencies greater than 16MHz to 33MHz. For frequencies equal or less than 16MHz, see 16MHz  
“AC Electrial Characteristics”, page 15.  
16  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
designations are:  
P – PSEN  
Q – Output data  
R – RD signal  
t – Time  
A – Address  
V – Valid  
C – Clock  
D – Input data  
H – Logic level high  
W– WR signal  
X – No longer a valid logic level  
Z – Float  
I – Instruction (program memory contents)  
L – Logic level low, or ALE  
Examples: t  
= Time for address valid to ALE low.  
= Time for ALE low to PSEN low.  
AVLL  
t
LLPL  
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 5. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00025  
Figure 6. External Data Memory Read Cycle  
17  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00069  
Figure 7. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
VALID  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 8. Shift Register Mode Timing  
V
–0.5  
CC  
0.7V  
CC  
CC  
0.45V  
0.2V  
–0.1  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 9. External Clock Drive  
18  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
V
–0.5  
CC  
0.2V  
0.2V  
+0.9  
–0.1  
CC  
CC  
0.45V  
NOTE:  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
CC  
Timing measurements are made at V min for a logic ‘1’ and V max for a logic ‘0’.  
IH  
IL  
SU00010  
Figure 10. AC Testing Input/Output  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
V
LOAD  
–0.1V  
LOAD  
+0.1V  
OL  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from load voltage occurs,  
and begins to float when a 100mV change from the loaded V /V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00011  
Figure 11. Float Waveform  
65  
60  
55  
MAX ACTIVE MODE  
MAX = 1.5 X FREQ. + 8.0  
I
CC  
50  
45  
40  
35  
I
mA  
CC  
30  
25  
20  
15  
10  
5
TYP ACTIVE MODE  
MAX IDLE MODE  
TYP IDLE MODE  
4MHz 8MHz 12MHz 16MHz 20MHz 24MHz 28MHz 32MHz 36MHz  
FREQ AT XTAL1  
SU00070B  
Figure 12.  
I
vs. FREQ  
CC  
Valid only within frequency specifications of the device under test  
19  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
V
V
CC  
CC  
I
I
CC  
CC  
V
V
CC  
CC  
V
RST  
V
V
CC  
CC  
CC  
P0  
EA  
P0  
EA  
RST  
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
SU00719  
SU00720  
Figure 13.  
I
Test Condition, Active Mode  
Figure 14.  
I
Test Condition, Idle Mode  
CC  
CC  
All other pins are disconnected  
All other pins are disconnected  
V
–0.5  
CC  
0.7V  
CC  
CC  
0.45V  
0.2V  
–0.1  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 15. Clock Signal Waveform for I Tests in Active and Idle Modes  
CC  
t
= t  
= 5ns  
CHCL  
CLCH  
V
CC  
CC  
I
CC  
V
CC  
V
RST  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
SU00016  
Figure 16.  
I
Test Condition, Power Down Mode  
CC  
All other pins are disconnected. V = 2V to 5.5V  
CC  
20  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
Program Verification  
EPROM CHARACTERISTICS  
If security bit 2 has not been programmed, the on-chip program  
memory can be read out for program verification. The address of the  
program memory locations to be read is applied to ports 1 and 2 as  
shown in Figure 19. The other pins are held at the ‘Verify Code Data’  
levels indicated in Table 6. The contents of the address location will  
be emitted on port 0. External pull-ups are required on port 0 for this  
operation.  
The 87C52 is programmed by using a modified Quick-Pulse  
Programming algorithm. It differs from older methods in the value  
used for V (programming supply voltage) and in the width and  
PP  
number of the ALE/PROG pulses.  
The 87C52 contains two signature bytes that can be read and used  
by an EPROM programming system to identify the device. The  
signature bytes identify the device as an 87C52 manufactured by  
Philips.  
If the encryption table has been programmed, the data presented at  
port 0 will be the exclusive NOR of the program byte with one of the  
encryption bytes. The user will have to know the encryption table  
contents in order to correctly decode the verification data. The  
encryption table itself cannot be read out.  
Table 6 shows the logic levels for reading the signature byte, and for  
programming the program memory, the encryption table, and the  
security bits. The circuit configuration and waveforms for quick-pulse  
programming are shown in Figures 17 and 18. Figure 19 shows the  
circuit configuration for normal program memory verification.  
Reading the Signature Bytes  
The signature bytes are read by the same procedure as a normal  
verification of locations 030H and 031H, except that P3.6 and P3.7  
need to be pulled to a logic low. The values are:  
(030H) = 15H indicates manufactured by Philips  
(031H) = 97H indicates 87C52  
Quick-Pulse Programming  
The setup for microcontroller quick-pulse programming is shown in  
Figure 17. Note that the 87C52 is running with a 4 to 6MHz  
oscillator. The reason the oscillator needs to be running is that the  
device is executing internal address and program data transfers.  
Program/Verify Algorithms  
Any algorithm in agreement with the conditions listed in Table 6, and  
which satisfies the timing specifications, is suitable.  
The address of the EPROM location to be programmed is applied to  
ports 1 and 2, as shown in Figure 17. The code byte to be  
programmed into that location is applied to port 0. RST, PSEN and  
pins of ports 2 and 3 specified in Table 6 are held at the ‘Program  
Code Data’ levels indicated in Table 6. The ALE/PROG is pulsed  
low 25 times as shown in Figure 18.  
Erasure Characteristics  
Erasure of the EPROM begins to occur when the chip is exposed to  
light with wavelengths shorter than approximately 4,000 angstroms.  
Since sunlight and fluorescent lighting have wavelengths in this  
range, exposure to these light sources over an extended time (about  
1 week in sunlight, or 3 years in room level fluorescent lighting)  
could cause inadvertent erasure. For this and secondary effects,  
it is recommended that an opaque label be placed over the  
window. For elevated temperature or environments where solvents  
are being used, apply Kapton tape Fluorglas part number 2345–5, or  
equivalent.  
To program the encryption table, repeat the 25 pulse programming  
sequence for addresses 0 through 1FH, using the ‘Pgm Encryption  
Table’ levels. Do not forget that after the encryption table is  
programmed, verification cycles will produce only encrypted data.  
To program the security bits, repeat the 25 pulse programming  
sequence using the ‘Pgm Security Bit’ levels. After one security bit is  
programmed, further programming of the code memory and  
encryption table is disabled. However, the other security bit can still  
be programmed.  
The recommended erasure procedure is exposure to ultraviolet light  
(at 2537 angstroms) to an integrated dose of at least 15W-s/cm .  
Exposing the EPROM to an ultraviolet lamp of 12,000µW/cm rating  
for 20 to 39 minutes, at a distance of about 1 inch, should be  
sufficient.  
2
Note that the EA/V pin must not be allowed to go above the  
2
PP  
maximum specified V level for any amount of time. Even a narrow  
PP  
glitch above that voltage can cause permanent damage to the  
device. The V source should be well regulated and free of glitches  
PP  
Erasure leaves the array in an all 1s state.  
and overshoot.  
Table 6. EPROM Programming Modes  
MODE  
Read signature  
RST  
PSEN  
ALE/PROG  
EA/V  
P2.7  
P2.6  
P3.7  
P3.6  
PP  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
0
1
0
1
1
1
0
0
0
0
1
1
0
1
1
1
1
0
0
1
1
0
1
0
Program code data  
Verify code data  
Pgm encryption table  
Pgm security bit 1  
0*  
1
V
PP  
1
0*  
0*  
0*  
V
PP  
PP  
PP  
V
V
Pgm security bit 2  
NOTES:  
1. ‘0’ = Valid low for that pin, ‘1’ = valid high for that pin.  
2. V = 12.75V ±0.25V.  
PP  
3. V = 5V±10% during programming and verification.  
CC  
4. *ALE/PROG receives 25 programming pulses while V is held at 12.75V. Each programming pulse is low for 100µs (±10µs) and high for a  
PP  
minimum of 10µs.  
Trademark phrase of Intel Corporation.  
21  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
+12.75V  
P1  
1
1
1
RST  
P3.6  
EA/V  
PP  
25 100µs PULSES TO GROUND  
ALE/PROG  
PSEN  
0
1
87C52  
P3.7  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A12  
P2.0–P2.4  
V
SS  
SU00071  
Figure 17. Programming Configuration  
25 PULSES  
1
0
ALE/PROG:  
ALE/PROG:  
10µs MIN  
100µs+10  
1
0
SU00018  
Figure 18. PROG Waveform  
+5V  
V
CC  
P0  
A0–A7  
PGM DATA  
P1  
1
1
1
RST  
P3.6  
1
1
EA/V  
PP  
ALE/PROG  
PSEN  
0
87C52  
P3.7  
0 ENABLE  
XTAL2  
P2.7  
0
P2.6  
4–6MHz  
XTAL1  
A8–A12  
P2.0–P2.4  
V
SS  
SU00072  
Figure 19. Program Verification  
22  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
EPROM PROGRAMMING AND VERIFICATION CHARACTERISTICS  
T
amb  
= 21°C to +27°C, V = 5V±10%, V = 0V (See Figure 20)  
CC SS  
SYMBOL  
PARAMETER  
MIN  
MAX  
13.0  
50  
UNIT  
V
V
PP  
Programming supply voltage  
Programming supply current  
Oscillator frequency  
12.5  
I
PP  
mA  
MHz  
1/t  
CLCL  
4
6
t
t
t
t
t
t
t
t
t
t
t
t
Address setup to PROG low  
Address hold after PROG  
Data setup to PROG low  
Data hold after PROG  
48t  
AVGL  
CLCL  
CLCL  
CLCL  
CLCL  
CLCL  
48t  
48t  
48t  
48t  
GHAX  
DVGL  
GHDX  
EHSH  
SHGL  
GHSL  
GLGH  
AVQV  
ELQZ  
EHQZ  
GHGL  
P2.7 (ENABLE) high to V  
PP  
V
PP  
V
PP  
setup to PROG low  
hold after PROG  
10  
10  
90  
µs  
µs  
µs  
PROG width  
110  
Address to data valid  
48t  
CLCL  
CLCL  
CLCL  
ENABLE low to data valid  
Data float after ENABLE  
PROG high to PROG low  
48t  
48t  
0
10  
µs  
PROGRAMMING*  
VERIFICATION*  
ADDRESS  
P1.0–P1.7  
P2.0–P2.4  
ADDRESS  
t
AVQV  
PORT 0  
DATA IN  
DATA OUT  
t
t
t
DVGL  
GHDX  
GHAX  
t
AVGL  
ALE/PROG  
t
t
GLGH  
GHGL  
t
t
SHGL  
GHSL  
LOGIC 1  
LOGIC 1  
EA/V  
PP  
LOGIC 0  
t
t
t
EHSH  
ELQV  
EHQZ  
P2.7  
ENABLE  
SU00020  
NOTE:  
*
FOR PROGRAMMING VERIFICATION SEE FIGURE 17.  
FOR VERIFICATION CONDITIONS SEE FIGURE 19.  
Figure 20. EPROM Programming and Verification  
23  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
24  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
25  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
0590B  
40-PIN (600 mils wide) CERAMIC DUAL IN-LINE (F) PACKAGE (WITH WINDOW (FA) PACKAGE)  
853–0590B 06688  
26  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
1472A  
44-PIN CERQUAD J-BEND (K) PACKAGE  
853-1472A 05854  
27  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
28  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
NOTES  
29  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C32/87C52  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes  
only. PhilipsSemiconductorsmakesnorepresentationorwarrantythatsuchapplicationswillbesuitableforthespecifiedusewithoutfurthertesting  
or modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
orsystemswheremalfunctionofaPhilipsSemiconductorsandPhilipsElectronicsNorthAmericaCorporationProductcanreasonablybeexpected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Sunnyvale, California 94088–3409  
Philips Semiconductors and Philips Electronics North America Corporation  
register eligible circuits under the Semiconductor Chip Protection Act.  
Copyright Philips Electronics North America Corporation 1996  
All rights reserved. Printed in U.S.A.  
Telephone 800-234-7381  
INTEGRATED CIRCUITS  
80C52/80C54/80C58  
CMOS single-chip 8-bit microcontrollers  
Product specification  
IC20 Data Handbook  
1996 Aug 16  
Philips  
Semiconductors  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
DESCRIPTION  
PIN CONFIGURATIONS  
The 80C52/80C54/80C58 Single-Chip 8-Bit Microcontroller is  
manufactured in an advanced CMOS process and is a derivative of  
the 80C51 microcontroller family. The 80C52/80C54/80C58 has the  
same instruction set as the 80C51.  
T2/P1.0  
40  
39  
V
CC  
1
2
3
T2EX/P1.1  
P0.0/AD0  
P1.2  
38 P0.1/AD1  
37 P0.2/AD2  
This device provides architectural enhancements that make it  
applicable in a variety of applications for general control systems.  
The 80C52 contains 8k × 8 ROM memory, the 80C54 contains  
16k × 8 ROM memory, and 80C58 contains 32k × 8 ROM memory, a  
volatile 256 × 8 read/write data memory, four 8-bit I/O ports, three  
16-bit timer/event counters, a multi-source, four-priority-level, nested  
interrupt structure, an enhanced UART and on-chip oscillator and  
timing circuits. For systems that require extra capability, the  
80C52/54/58 can be expanded using standard TTL compatible  
memories and logic.  
P1.3  
P1.4  
4
5
36  
P0.3/AD3  
35 P0.4/AD4  
34  
P1.5  
P1.6  
P1.7  
RST  
6
7
8
9
P0.5/AD5  
33 P0.6/AD6  
32  
P0.7/AD7  
31 EA  
30  
DUAL  
IN-LINE  
PACKAGE  
RxD/P3.0 10  
TxD/P3.1 11  
INT0/P3.2 12  
Its added features make it an even more powerful microcontroller for  
applications that require pulse width modulation, high-speed I/O and  
up/down counting capabilities such as motor control. It also has a  
more versatile serial channel that facilitates multiprocessor  
communications.  
ALE  
29 PSEN  
28  
13  
INT1/P3.3  
P2.7/A15  
27 P2.6/A14  
26  
T0/P3.4 14  
T1/P3.5 15  
WR/P3.6 16  
RD/P3.7 17  
XTAL2 18  
XTAL1 19  
See 87C52/80C32 and 87C54/87C58 data sheets for EPROM and  
ROMless devices.  
P2.5/A13  
25 P2.4/A12  
24 P2.3/A11  
FEATURES  
80C51 central processing unit  
Full static operation  
23  
22  
P2.2/A10  
P2.1/A9  
P2.0/A8  
21  
V
20  
SS  
8k × 8 ROM: 80C52;  
SU00740  
16k × 8 ROM: 80C54;  
32k × 8 ROM: 80C58;  
all capable of addressing external memory to 64k bytes  
Two level program security system  
64 byte encryption array  
256 × 8 RAM, expandable externally to 64k bytes  
Speed range up to 33MHz  
Operating voltage 5V ±10%  
Three 16-bit timer/counters  
T2 is an up/down counter  
6 interrupt sources  
4 level priority  
Four 8-bit I/O ports  
Full-duplex enhanced UART  
Framing error detection  
Automatic address recognition  
Power control modes  
Idle mode  
Power-down mode  
Once (On Circuit Emulation) Mode  
Five package styles  
Programmable clock out  
Low EMI (Inhibit ALE)  
Second DPTR register  
Asynchronous port reset  
2
1996 Aug 16  
853–1470 17196  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
ORDERING INFORMATION  
ROM  
8k × 8  
ROM  
16k × 8  
ROM  
32k × 8  
TEMPERATURE RANGE °C  
FREQ DRAWING  
AND PACKAGE  
MHz  
16  
16  
16  
16  
16  
16  
24  
24  
24  
24  
24  
24  
33  
33  
33  
33  
33  
33  
NUMBER  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT129-1  
SOT187-2  
SOT307-2  
SOT187-2  
SOT129-1  
SOT307-2  
SOT187-2  
SOT129-1  
SOT307-2  
P80C52EBPN P80C54EBPN P80C58EBPN  
P80C52EBAA P80C54EBAA P80C58EBAA  
P80C52EBBB P80C54EBBB P80C58EBBB  
P80C52EFPN P80C54EFPN P80C58EFPN  
P80C52EFA A P80C54EFA A P80C58EFA A  
P80C52EFBB P80C54EFBB P80C58EFBB  
P80C52IBP N P80C54IBP N P80C58IBP N  
P80C52IBA A P80C54IBA A P80C58IBA A  
P80C52IBB B P80C54IBB B P80C58IBB B  
P80C52IFP N P80C54IFP N P80C58IFP N  
P80C52IFA A P80C54IFA A P80C58IFA A  
P80C52IFB B P80C54IFB B P80C58IFB B  
P80C52NBAA P80C54NBAA P80C58NBAA  
P80C52NBPN P80C54NBPN P80C58NBPN  
P80C52NBBB P80C54NBBB P80C58NBBB  
P80C52NFAA P80C54NFAA P80C58NFAA  
P80C52NFPN P80C54NFPN P80C58NFPN  
P80C52NFBB P80C54NFBB P80C58NFBB  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Quad Flat Pack  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Quad Flat Pack  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Quad Flat Pack  
0 to +70, Plastic Leaded Chip Carrier  
0 to +70, Plastic Dual In-line Package  
0 to +70, Plastic Quad Flat Pack  
–40 to +85, Plastic Leaded Chip Carrier  
–40 to +85, Plastic Dual In-line Package  
–40 to +85, Plastic Quad Flat Pack  
LOGIC SYMBOL  
V
V
SS  
CC  
XTAL1  
ADDRESS AND  
DATA BUS  
XTAL2  
T2  
T2EX  
RST  
EA  
PSEN  
ALE  
RxD  
TxD  
INT0  
INT1  
T0  
ADDRESS BUS  
T1  
WR  
RD  
SU00732  
3
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
BLOCK DIAGRAM  
P0.0–P0.7  
P2.0–P2.7  
PORT 0  
DRIVERS  
PORT 2  
DRIVERS  
V
V
CC  
SS  
8
8
RAM ADDR  
REGISTER  
PORT 0  
LATCH  
PORT 2  
LATCH  
ROM  
RAM  
16  
B
STACK  
POINTER  
ACC  
REGISTER  
PROGRAM  
ADDRESS  
REGISTER  
TMP1  
TMP2  
BUFFER  
ALU  
SFRs  
PC  
INCRE-  
MENTER  
TIMERS  
PSW  
8
16  
PROGRAM  
COUNTER  
PSEN  
ALE  
EA  
MULTIPLE  
DPTRs  
TIMING  
AND  
CONTROL  
RST  
PORT 1  
LATCH  
PORT 3  
LATCH  
PD  
OSCILLATOR  
PORT 1  
DRIVERS  
PORT 3  
DRIVERS  
XTAL1  
XTAL2  
P1.0–P1.7  
P3.0–P3.7  
SU00733B  
4
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Table 1.  
80C52/80C54/80C58 Special Function Registers  
DIRECT  
DESCRIPTION  
BIT ADDRESS, SYMBOL, OR ALTERNATIVE PORT FUNCTION  
RESET  
VALUE  
SYMBOL  
ADDRESS MSB  
LSB  
ACC*  
AUXR#  
AUXR1#  
B*  
Accumulator  
Auxiliary  
E0H  
8EH  
A2H  
F0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
E0  
00H  
AO  
DPS  
F0  
xxxxxxx0B  
xxxxxxx0B  
00H  
Auxiliary 1  
B register  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
DPTR:  
DPH  
DPL  
Data Pointer (2 bytes)  
Data Pointer High  
Data Pointer Low  
83H  
82H  
00H  
00H  
AF  
EA  
BF  
AE  
EC  
BE  
AD  
ET2  
BD  
AC  
ES  
BC  
PS  
B4  
AB  
ET1  
BB  
AA  
EX1  
BA  
A9  
ET0  
B9  
A8  
EX0  
B8  
IE*  
Interrupt Enable  
Interrupt Priority  
Interrupt Priority High  
Port 0  
A8H  
B8H  
B7H  
80H  
90H  
A0H  
00H  
IP*  
PT2  
B5  
PT1  
B3  
PX1  
B2  
PT0  
B1  
PX0  
B0  
x0000000B  
x0000000B  
FFH  
B7  
B6  
IPH#  
P0*  
P1*  
P2*  
P3*  
PT2H  
85  
PSH  
84  
PT1H  
83  
PX1H PT0H  
PX0H  
80  
87  
86  
82  
AD2  
92  
81  
AD1  
91  
AD7  
97  
AD6  
96  
AD5  
95  
AD4  
94  
AD3  
93  
AD0  
90  
Port 1  
T2EX  
A1  
T2  
FFH  
A7  
AD15  
B7  
RD  
A6  
AD14  
B6  
WR  
A5  
A4  
A3  
A2  
A0  
Port 2  
AD13  
B5  
AD12  
B4  
AD11  
B3  
AD10  
B2  
AD9  
B1  
AD8  
B0  
FFH  
Port 3  
B0H  
87H  
T1  
T0  
INT1  
INT0  
TxD  
RxD  
FFH  
1
2
PCON#  
Power Control  
SMOD1  
D7  
SMOD0  
D6  
POF  
GF1  
D3  
GF0  
D2  
PD  
D1  
IDL  
D0  
P
00xx0000B  
D5  
F0  
D4  
PSW*  
Program Status Word  
D0H  
CY  
AC  
RS1  
RS0  
OV  
00H  
RACAP2H  
#
Timer 2 Capture High  
Timer 2 Capture Low  
CBH  
CAH  
00H  
00H  
RACAP2L  
#
SADDR#  
SADEN#  
Slave Address  
Slave Address Mask  
A9H  
B9H  
00H  
00H  
SBUF  
Serial Data Buffer  
99H  
xxxxxxxxB  
9F  
9E  
9D  
9C  
9B  
9A  
99  
TI  
98  
RI  
SM0/FE  
SCON*  
SP  
Serial Control  
Stack Pointer  
98H  
81H  
SM1  
SM2  
REN  
TB8  
RB8  
00H  
07H  
8F  
TF1  
CF  
TF2  
8E  
TR1  
CE  
8D  
TF0  
CD  
8C  
TR0  
CC  
8B  
IE1  
8A  
IT1  
CA  
TR2  
89  
IE0  
88  
IT0  
C8  
TCON*  
Timer Control  
88H  
00H  
CB  
C9  
T2CON*  
Timer 2 Control  
C8H  
EXF2  
RCLK  
TCLK  
EXEN2  
C/T2  
T2OE  
CP/RL2 00H  
T2MOD#  
TH0  
TH1  
TH2#  
TL0  
TL1  
Timer 2 Mode Control  
Timer High 0  
Timer High 1  
Timer High 2  
Timer Low 0  
C9H  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
DCEN xxxxxx00B  
00H  
00H  
00H  
00H  
00H  
00H  
Timer Low 1  
Timer Low 2  
TL2#  
TMOD  
Timer Mode  
89H  
GATE  
C/T  
M1  
M0  
GATE  
C/T  
M1  
M0  
00H  
*
SFRs are bit addressable.  
#
SFRs are modified from or added to the 80C51 SFRs.  
Reserved bits.  
1. Reset value depends on reset source.  
2. Bit will not be affected by Reset. POF is not present in 80C52.  
5
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
PLASTIC LEADED CHIP CARRIER PIN FUNCTIONS  
PLASTIC QUAD FLAT PACK PIN FUNCTIONS  
44  
34  
6
1
40  
7
39  
1
33  
LCC  
PQFP  
11  
23  
17  
29  
18  
28  
12  
Pin Function  
22  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
Pin Function  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
NC*  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
31  
P2.7/A15  
PSEN  
ALE  
NC*  
EA  
P0.7/AD7  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
P1.5  
P1.6  
P1.7  
RST  
P3.0/RxD  
NC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P3.4/T0  
P3.5/T1  
P3.6/WR  
P3.7/RD  
XTAL2  
XTAL1  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
V
NC*  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P0.6/AD6  
P0.5/AD5  
P0.4/AD4  
P0.3/AD3  
P0.2/AD2  
P0.1/AD1  
P0.0/AD0  
SS  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
P1.0/T2  
P1.1/T2EX  
P1.2  
P1.3  
P1.4  
P1.5  
P1.6  
P1.7  
RST  
P3.0/RxD  
NC*  
P3.1/TxD  
P3.2/INT0  
P3.3/INT1  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
P2.7/A15  
PSEN  
ALE  
NC*  
EA  
P0.7/AD7  
XTAL1  
V
SS  
NC*  
V
CC  
P2.0/A8  
P2.1/A9  
P2.2/A10  
P2.3/A11  
P2.4/A12  
P2.5/A13  
P2.6/A14  
NC*  
P1.0/T2  
P1.1/T2EX  
P1.2  
P1.3  
P1.4  
V
CC  
* DO NOT CONNECT  
* DO NOT CONNECT  
SU00741A  
SU00742A  
PIN DESCRIPTIONS  
PIN NUMBER  
MNEMONIC DIP  
LCC  
QFP  
16  
TYPE NAME AND FUNCTION  
V
V
20  
40  
22  
44  
I
I
Ground: 0V reference.  
SS  
38  
Power Supply: This is the power supply voltage for normal, idle, and power-down  
CC  
operation.  
P0.0–0.7  
39–32 43–36 37–30  
I/O  
I/O  
Port 0: Port 0 is an open-drain, bidirectional I/O port. Port 0 pins that have 1s written to  
them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application, it uses strong internal pull-ups when emitting 1s. Port 0 also outputs the  
code bytes during program verification. External pull-ups are required during program  
verification.  
P1.0–P1.7  
1–8  
2–9  
40–44,  
1–3  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups. Port 1 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 1 pins that are externally pulled low will source current because of the internal pull-ups.  
(See DC Electrical Characteristics: I ). Port 1 also receives the low-order address byte  
IL  
during program memory verification. Alternate functions include:  
T2 (P1.0): Timer/Counter 2 external count input/Clockout  
T2EX (P1.1): Timer/Counter 2 Reload/Capture/Direction Control  
1
2
3
4
5
6
7
8
2
3
4
5
6
7
8
9
40  
41  
42  
43  
44  
1
I/O  
I
I
I/O  
I/O  
I/O  
I/O  
I/O  
2
3
P2.0–P2.7  
21–28 24–31 18–25  
I/O  
Port 2: Port 2 is an 8-bit bidirectional I/O port with internal pull-ups. Port 2 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 2 pins that are externally being pulled low will source current because of the internal  
pull-ups. (See DC Electrical Characteristics: I ). Port 2 emits the high-order address byte  
IL  
during fetches from external program memory and during accesses to external data memory  
that use 16-bit addresses (MOVX @DPTR). In this application, it uses strong internal  
pull-ups when emitting 1s. During accesses to external data memory that use 8-bit  
addresses (MOV @Ri), port 2 emits the contents of the P2 special function register.  
6
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
PIN DESCRIPTIONS (Continued)  
PIN NUMBER  
MNEMONIC DIP  
LCC  
QFP  
TYPE NAME AND FUNCTION  
P3.0–P3.7  
10–17  
11,  
5,  
I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins that have 1s  
written to them are pulled high by the internal pull-ups and can be used as inputs. As inputs,  
port 3 pins that are externally being pulled low will source current because of the pull-ups.  
13–19 7–13  
(See DC Electrical Characteristics: I ). Port 3 also serves the special features of the 80C51  
IL  
family, as listed below:  
10  
11  
12  
13  
14  
15  
16  
17  
11  
13  
14  
15  
16  
17  
18  
19  
5
7
8
I
O
I
I
I
I
O
O
RxD (P3.0): Serial input port  
TxD (P3.1): Serial output port  
INT0 (P3.2): External interrupt  
INT1 (P3.3): External interrupt  
T0 (P3.4): Timer 0 external input  
T1 (P3.5): Timer 1 external input  
WR (P3.6): External data memory write strobe  
RD (P3.7): External data memory read strobe  
9
10  
11  
12  
13  
RST  
ALE  
9
10  
4
I
Reset: A high on this pin for two machine cycles while the oscillator is running, resets the  
device. An internal diffused resistor to V permits a power-on reset using only an external  
SS  
capacitor to V  
.
CC  
30  
33  
27  
O
Address Latch Enable: Output pulse for latching the low byte of the address during an  
access to external memory. In normal operation, ALE is emitted at a constant rate of 1/6 the  
oscillator frequency, and can be used for external timing or clocking. Note that one ALE  
pulse is skipped during each access to external data memory. ALE can be disabled by  
setting SFR auxiliary.0. With this bit set, ALE will be active only during a MOVX instruction.  
PSEN  
29  
31  
32  
35  
26  
29  
O
I
Program Store Enable: The read strobe to external program memory. When the  
80C52/80C54/80C58 is executing code from the external program memory, PSEN is  
activated twice each machine cycle, except that two PSEN activations are skipped during  
each access to external data memory. PSEN is not activated during fetches from internal  
program memory.  
EA  
External Access Enable: EA must be externally held low to enable the device to fetch code  
from external program memory locations 0000H and 7FFFH. If EA is held high, the device  
executes from internal program memory unless the program counter contains an address  
greater than 7FFFH. If security bit 1 is programmed, EA will be internally latched on Reset.  
XTAL1  
19  
18  
21  
20  
15  
14  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator  
circuits.  
XTAL2  
O
Crystal 2: Output from the inverting oscillator amplifier.  
NOTE:  
To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher than V + 0.5V or V – 0.5V, respectively.  
CC  
SS  
7
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Figure 3). When reset is applied the DCEN=0 which means Timer 2  
will default to counting up. If DCEN bit is set, Timer 2 can count up  
or down depending on the value of the T2EX pin.  
TIMER 2 OPERATION  
Timer 2  
Timer 2 is a 16-bit Timer/Counter which can operate as either an  
event timer or an event counter, as selected by C/T2* in the special  
function register T2CON (see Figure 1). Timer 2 has three operating  
modes:Capture, Auto-reload (up or down counting) ,and Baud Rate  
Generator, which are selected by bits in the T2CON as shown in  
Table 2.  
Figure 4 shows Timer 2 which will count up automatically since  
DCEN=0. In this mode there are two options selected by bit EXEN2  
in T2CON register. If EXEN2=0, then Timer 2 counts up to 0FFFFH  
and sets the TF2 (Overflow Flag) bit upon overflow. This causes the  
Timer 2 registers to be reloaded with the 16-bit value in RCAP2L  
and RCAP2H.  
Capture Mode  
The values in RCAP2L and RCAP2H are preset by software means.  
If EXEN2=1, then a 16-bit reload can be triggered either by an  
overflow or by a 1-to-0 transition at input T2EX. This transition also  
sets the EXF2 bit. The Timer 2 interrupt, if enabled, can be  
generated when either TF2 or EXF2 are 1.  
In the capture mode there are two options which are selected by bit  
EXEN2 in T2CON. If EXEN2=0, then timer 2 is a 16-bit timer or  
counter (as selected by C/T2* in T2CON) which, upon overflowing  
sets bit TF2, the timer 2 overflow bit. This bit can be used to  
generate an interrupt (by enabling the Timer 2 interrupt bit in the  
IE register/SFR table). If EXEN2= 1, Timer 2 operates as described  
above, but with the added feature that a 1- to -0 transition at external  
input T2EX causes the current value in the Timer 2 registers, TL2  
and TH2, to be captured into registers RCAP2L and RCAP2H,  
respectively. In addition, the transition at T2EX causes bit EXF2 in  
T2CON to be set, and EXF2 like TF2 can generate an interrupt  
(which vectors to the same location as Timer 2 overflow interrupt.  
The Timer 2 interrupt service routine can interrogate TF2 and EXF2  
to determine which event caused the interrupt). The capture mode is  
illustrated in Figure 2 (There is no reload value for TL2 and TH2 in  
this mode. Even when a capture event occurs from T2EX, the  
counter keeps on counting T2EX pin transitions or osc/12 pulses.).  
In Figure 5 DCEN=1 which enables Timer 2 to count up or down.  
This mode allows pin T2EX to control the direction of count. When a  
logic 1 is applied at pin T2EX Timer 2 will count up. Timer 2 will  
overflow at 0FFFFH and set the TF2 flag, which can then generate  
an interrupt, if the interrupt is enabled. This timer overflow also  
causes the 16–bit value in RCAP2L and RCAP2H to be reloaded  
into the timer registers TL2 and TH2.  
When a logic 0 is applied at pin T2EX this causes Timer 2 to count  
down. The timer will underflow when TL2 and TH2 become equal to  
the value stored in RCAP2L and RCAP2H. Timer 2 underflow sets  
the TF2 flag and causes 0FFFFH to be reloaded into the timer  
registers TL2 and TH2.  
Auto-Reload Mode (Up or Down Counter)  
The external flag EXF2 toggles when Timer 2 underflows or  
overflows. This EXF2 bit can be used as a 17th bit of resolution if  
needed. The EXF2 flag does not generate an interrupt in this mode  
of operation.  
In the 16-bit auto-reload mode, Timer 2 can be configured (as either  
a timer or counter (C/T2* in T2CON)) then programmed to count up  
or down. The counting direction is determined by bit DCEN(Down  
Counter Enable) which is located in the T2MOD register (see  
(MSB)  
(LSB)  
TF2  
EXF2  
RCLK  
TCLK  
EXEN2  
TR2  
C/T2  
CP/RL2  
Symbol  
Position  
Name and Significance  
TF2  
T2CON.7  
T2CON.6  
Timer 2 overflow flag set by a Timer 2 overflow and must be cleared by software. TF2 will not be set  
when either RCLK or TCLK = 1.  
EXF2  
Timer 2 external flag set when either a capture or reload is caused by a negative transition on T2EX and  
EXEN2 = 1. When Timer 2 interrupt is enabled, EXF2 = 1 will cause the CPU to vector to the Timer 2  
interrupt routine. EXF2 must be cleared by software. EXF2 does not cause an interrupt in up/down  
counter mode (DCEN = 1).  
RCLK  
TCLK  
T2CON.5  
T2CON.4  
T2CON.3  
Receive clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its receive clock  
in modes 1 and 3. RCLK = 0 causes Timer 1 overflow to be used for the receive clock.  
Transmit clock flag. When set, causes the serial port to use Timer 2 overflow pulses for its transmit clock  
in modes 1 and 3. TCLK = 0 causes Timer 1 overflows to be used for the transmit clock.  
EXEN2  
Timer 2 external enable flag. When set, allows a capture or reload to occur as a result of a negative  
transition on T2EX if Timer 2 is not being used to clock the serial port. EXEN2 = 0 causes Timer 2 to  
ignore events at T2EX.  
TR2  
T2CON.2  
T2CON.1  
Start/stop control for Timer 2. A logic 1 starts the timer.  
C/T2  
Timer or counter select. (Timer 2)  
0 = Internal timer (OSC/12)  
1 = External event counter (falling edge triggered).  
CP/RL2  
T2CON.0  
Capture/Reload flag. When set, captures will occur on negative transitions at T2EX if EXEN2 = 1. When  
cleared, auto-reloads will occur either with Timer 2 overflows or negative transitions at T2EX when  
EXEN2 = 1. When either RCLK = 1 or TCLK = 1, this bit is ignored and the timer is forced to auto-reload  
on Timer 2 overflow.  
SU00728  
Figure 1. Timer/Counter 2 (T2CON) Control Register  
8
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Table 2. Timer 2 Operating Modes  
RCLK + TCLK  
CP/RL2  
TR2  
1
MODE  
0
0
1
X
0
1
16-bit Auto-reload  
16-bit Capture  
Baud rate generator  
(off)  
1
X
X
1
0
OSC  
÷ 12  
C/T2 = 0  
TL2  
(8-bits)  
TH2  
(8-bits)  
TF2  
C/T2 = 1  
T2 Pin  
Control  
TR2  
Capture  
Transition  
Detector  
Timer 2  
Interrupt  
RCAP2L  
RCAP2H  
T2EX Pin  
EXF2  
Control  
EXEN2  
SU00066  
Figure 2. Timer 2 in Capture Mode  
T2MOD  
Symbol  
Address = 0C9H  
Not Bit Addressable  
Reset Value = XXXX XX00B  
6
5
4
3
2
T2OE  
DCEN  
0
Bit  
7
1
Function  
Not implemented, reserved for future use.*  
Timer 2 Output Enable bit. See details in Programmable Clock-Out.  
Down Count Enable bit. When set, this allows Timer 2 to be configured as an up/down counter.  
T2OE  
DCEN  
*
User software should not write 1s to reserved bits. These bits may be used in future 8051 family products to invoke new features.  
In that case, the reset or inactive value of the new bit will be 0, and its active value will be 1. The value read from a reserved bit is  
indeterminate.  
SU00746  
Figure 3. Timer 2 Mode (T2MOD) Control Register  
9
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
OSC  
÷ 12  
C/T2 = 0  
C/T2 = 1  
TL2  
(8-BITS)  
TH2  
(8-BITS)  
T2 PIN  
CONTROL  
TR2  
RELOAD  
TRANSITION  
DETECTOR  
RCAP2L  
RCAP2H  
TF2  
TIMER 2  
INTERRUPT  
T2EX PIN  
EXF2  
CONTROL  
EXEN2  
SU00067  
Figure 4. Timer 2 in Auto-Reload Mode (DCEN = 0)  
(DOWN COUNTING RELOAD VALUE)  
FFH  
FFH  
TOGGLE  
EXF2  
OSC  
÷12  
C/T2 = 0  
OVERFLOW  
TL2  
TH2  
TF2  
INTERRUPT  
C/T2 = 1  
T2 PIN  
CONTROL  
TR2  
COUNT  
DIRECTION  
1 = UP  
0 = DOWN  
RCAP2L  
RCAP2H  
(UP COUNTING RELOAD VALUE)  
T2EX PIN  
SU00730  
Figure 5. Timer 2 Auto Reload Mode (DCEN = 1)  
10  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Timer 1  
Overflow  
÷ 2  
NOTE: OSC. Freq. is divided by 2, not 12.  
“0”  
“0”  
“1”  
OSC  
÷ 2  
C/T2 = 0  
C/T2 = 1  
SMOD  
RCLK  
“1”  
TL2  
(8-bits)  
TH2  
(8-bits)  
T2 Pin  
Control  
÷ 16  
RX Clock  
“1”  
“0”  
TR2  
Reload  
TCLK  
Transition  
Detector  
RCAP2L  
RCAP2H  
÷ 16  
TX Clock  
Timer 2  
Interrupt  
T2EX Pin  
EXF2  
Control  
EXEN2  
Note availability of additional external interrupt.  
SU00068  
Figure 6. Timer 2 in Baud Rate Generator Mode  
The baud rates in modes 1 and 3 are determined by Timer 2’s  
overflow rate given below:  
Table 3. Timer 2 Generated Commonly Used  
Baud Rates  
Timer 2 Overflow Rate  
Modes 1 and 3 Baud Rates +  
Timer 2  
16  
Baud Rate  
Osc Freq  
RCAP2H  
RCAP2L  
The timer can be configured for either “timer” or “counter” operation.  
In many applications, it is configured for “timer” operation (C/T2*=0).  
Timer operation is different for Timer 2 when it is being used as a  
baud rate generator.  
375K  
9.6K  
2.8K  
2.4K  
1.2K  
300  
110  
300  
110  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
12MHz  
6MHz  
FF  
FF  
FF  
FF  
FE  
FB  
F2  
FD  
F9  
FF  
D9  
B2  
64  
C8  
1E  
AF  
8F  
57  
Usually, as a timer it would increment every machine cycle (i.e., 1/12  
the oscillator frequency). As a baud rate generator, it increments  
every state time (i.e., 1/2 the oscillator frequency). Thus the baud  
rate formula is as follows:  
Modes 1 and 3 Baud Rates =  
6MHz  
Oscillator Frequency  
[32   [65536 * (RCAP2H, RCAP2L)]]  
Baud Rate Generator Mode  
Where: (RCAP2H, RCAP2L)= The content of RCAP2H and  
RCAP2L taken as a 16-bit unsigned integer.  
Bits TCLK and/or RCLK in T2CON (Table 2) allow the serial port  
transmit and receive baud rates to be derived from either Timer 1 or  
Timer 2. When TCLK= 0, Timer 1 is used as the serial port transmit  
baud rate generator. When TCLK= 1, Timer 2 is used as the serial  
port transmit baud rate generator. RCLK has the same effect for the  
serial port receive baud rate. With these two bits, the serial port can  
have different receive and transmit baud rates – one generated by  
Timer 1, the other by Timer 2.  
The Timer 2 as a baud rate generator mode shown in Figure 6, is  
valid only if RCLK and/or TCLK = 1 in T2CON register. Note that a  
rollover in TH2 does not set TF2, and will not generate an interrupt.  
Thus, the Timer 2 interrupt does not have to be disabled when  
Timer 2 is in the baud rate generator mode. Also if the EXEN2  
(T2 external enable flag) is set, a 1-to-0 transition in T2EX  
(Timer/counter 2 trigger input) will set EXF2 (T2 external flag) but  
will not cause a reload from (RCAP2H, RCAP2L) to (TH2,TL2).  
Therefore when Timer 2 is in use as a baud rate generator, T2EX  
can be used as an additional external interrupt, if needed.  
Figure 6 shows the Timer 2 in baud rate generation mode. The baud  
rate generation mode is like the auto-reload mode,in that a rollover  
in TH2 causes the Timer 2 registers to be reloaded with the 16-bit  
value in registers RCAP2H and RCAP2L, which are preset by  
software.  
11  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
When Timer 2 is in the baud rate generator mode, one should not try  
to read or write TH2 and TL2. As a baud rate generator, Timer 2 is  
incremented every state time (osc/2) or asynchronously from pin T2;  
under these conditions, a read or write of TH2 or TL2 may not be  
accurate. The RCAP2 registers may be read, but should not be  
written to, because a write might overlap a reload and cause write  
and/or reload errors. The timer should be turned off (clear TR2)  
before accessing the Timer 2 or RCAP2 registers.  
To obtain the reload value for RCAP2H and RCAP2L, the above  
equation can be rewritten as:  
fOSC  
RCAP2H, RCAP2L + 65536 * ǒ  
Ǔ
32   Baud Rate  
Timer/Counter 2 Set-up  
Except for the baud rate generator mode, the values given for  
T2CON do not include the setting of the TR2 bit. Therefore, bit TR2  
must be set, separately, to turn the timer on. see Table 4 for set-up  
of Timer 2 as a timer. Also see Table 5 for set-up of Timer 2 as a  
counter.  
Table 3 shows commonly used baud rates and how they can be  
obtained from Timer 2.  
Summary Of Baud Rate Equations  
Timer 2 is in baud rate generating mode. If Timer 2 is being clocked  
through pin T2(P1.0) the baud rate is:  
3
POWER OFF FLAG  
Timer 2 Overflow Rate  
Baud Rate +  
The Power Off Flag (POF) is set by on-chip circuitry when the V  
CC  
16  
level on the 80C54/80C58 rises from 0 to 5V. The POF bit can be  
set or cleared by software allowing a user to determine if the reset is  
If Timer 2 is being clocked internally, the baud rate is:  
the result of a power-on or a warm start after powerdown. The V  
CC  
fOSC  
level must remain above 3V for the POF to remain unaffected by the  
level.  
Baud Rate +  
[32   [65536 * (RCAP2H, RCAP2L)]]  
V
CC  
Where f  
= Oscillator Frequency  
OSC  
Table 4. Timer 2 as a Timer  
T2CON  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit Auto-Reload  
00H  
01H  
34H  
24H  
14H  
08H  
09H  
36H  
26H  
16H  
16-bit Capture  
Baud rate generator receive and transmit same baud rate  
Receive only  
Transmit only  
Table 5. Timer 2 as a Counter  
TMOD  
MODE  
INTERNAL CONTROL  
(Note 1)  
EXTERNAL CONTROL  
(Note 2)  
16-bit  
02H  
03H  
0AH  
0BH  
Auto-Reload  
NOTES:  
1. Capture/reload occurs only on timer/counter overflow.  
2. Capture/reload occurs on timer/counter overflow and a 1-to-0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate  
generator mode.  
3. POF not present in 80C52.  
12  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
oscillator but bringing the pin back high completes the exit. Once the  
interrupt is serviced, the next instruction to be executed after RETI  
will be the one following the instruction that put the device into  
Power Down.  
OSCILLATOR CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
Design Consideration  
When the idle mode is terminated by a hardware reset, the device  
normally resumes program execution, from where it left off, up to  
two machine cycles before the internal rest algorithm takes  
control. On-chip hardware inhibits access to internal RAM in this  
event, but access to the port pins is not inhibited. To eliminate the  
possibility of an unexpected write when Idle is terminated by reset,  
the instruction following the one that invokes Idle should not be  
one that writes to a port pin or to external memory.  
Reset  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-on reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At power-on, the voltage on  
ONCE Mode  
The ONCE (“On-Circuit Emulation”) Mode facilitates testing and  
debugging of systems using the 80C52/54/58 without removing the  
device from the circuit. The ONCE Mode is invoked by:  
1. Pull ALE low while the device is in reset and PSEN is high;  
V
CC  
and RST must come up at the same time for a proper start-up.  
Ports 1, 2, and 3 will asynchronously be driven to their reset  
condition when a voltage above V  
(min.) is applied to RESET.  
IH1  
2. Hold ALE low as RST is deactivated.  
Idle Mode  
While the device is in ONCE Mode, the Port 0 pins go into a float  
state, and the other port pins and ALE and PSEN are weakly pulled  
high. The oscillator circuit remains active. While the 80C52/54/58 is  
in this mode, an emulator or test CPU can be used to drive the  
circuit. Normal operation is restored when a normal reset is applied.  
In the idle mode (see Table 6), the CPU puts itself to sleep while all  
of the on-chip peripherals stay active. The instruction to invoke the  
idle mode is the last instruction executed in the normal operating  
mode before the idle mode is activated. The CPU contents, the  
on-chip RAM, and all of the special function registers remain intact  
during this mode. The idle mode can be terminated either by any  
enabled interrupt (at which time the process is picked up at the  
interrupt service routine and continued), or by a hardware reset  
which starts the processor in the same manner as a power-on reset.  
Programmable Clock-Out  
The 80C52/54/58 has a new feature. A 50% duty cycle clock can be  
programmed to come out on P1.0. This pin, besides being a regular  
I/O pin, has two alternate functions. It can be programmed:  
1. to input the external clock for Timer/Counter 2, or  
2. to output a 50% duty cycle clock ranging from 61Hz to 4MHz at a  
16MHz operating frequency.  
Power-Down Mode  
To save even more power, a Power Down mode (see Table 6) can  
be invoked by software. In this mode, the oscillator is stopped and  
the instruction that invoked Power Down is the last instruction  
executed. The on-chip RAM and Special Function Registers retain  
their values until the Power Down mode is terminated.  
To configure the Timer/Counter 2 as a clock generator, bit C/T2 (in  
T2CON) must be cleared and bit T2OE in T2MOD must be set. Bit  
TR2 (T2CON.2) also must be set to start the timer.  
The Clock-Out frequency depends on the oscillator frequency and  
the reload value of Timer 2 capture registers (RCAP2H, RCAP2L)  
as shown in this equation:  
On the 80C52/54/58 either a hardware reset or external interrupt  
can be used to exit from Power Down. Reset redefines all the SFRs  
but does not change the on-chip RAM. An external interrupt allows  
both the SFRs and the on-chip RAM to retain their values.  
Oscillator Frequency  
To properly terminate Power Down the reset or external interrupt  
4   (65536 * RCAP2H, RCAP2L)  
should not be executed before V is restored to its normal  
CC  
In the Clock-Out mode Timer 2 roll-overs will not generate an  
interrupt. This is similar to when it is used as a baud-rate generator.  
It is possible to use Timer 2 as a baud-rate generator and a clock  
generator simultaneously. Note, however, that the baud-rate and the  
Clock-Out frequency will be the same.  
operating level and must be held active long enough for the  
oscillator to restart and stabilize (normally less than 10ms).  
With an external interrupt, INT0 and INT1 must be enabled and  
configured as level-sensitive. Holding the pin low restarts the  
Table 6. External Pin Status During Idle and Power-Down Mode  
PROGRAM  
MEMORY  
MODE  
ALE  
PSEN  
PORT 0  
PORT 1  
PORT 2  
PORT 3  
Idle  
Idle  
Internal  
1
1
0
0
1
1
0
0
Data  
Float  
Data  
Float  
Data  
Data  
Data  
Data  
Data  
Address  
Data  
Data  
Data  
Data  
Data  
External  
Internal  
Power-down  
Power-down  
External  
Data  
13  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Slave 1  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1110  
1100 000X  
Enhanced UART  
The UART operates in all of the usual modes that are described in  
the first section of Data Handbook IC20, 80C51-Based 8-Bit  
Microcontrollers. In addition the UART can perform framing error  
detect by looking for missing stop bits, and automatic address  
recognition. The 80C52/54/58 UART also fully supports  
multiprocessor communication as does the standard 80C51 UART.  
In the above example SADDR is the same and the SADEN data is  
used to differentiate between the two slaves. Slave 0 requires a 0 in  
bit 0 and it ignores bit 1. Slave 1 requires a 0 in bit 1 and bit 0 is  
ignored. A unique address for Slave 0 would be 1100 0010 since  
slave 1 requires a 0 in bit 1. A unique address for slave 1 would be  
1100 0001 since a 1 in bit 0 will exclude slave 0. Both slaves can be  
selected at the same time by an address which has bit 0 = 0 (for  
slave 0) and bit 1 = 0 (for slave 1). Thus, both could be addressed  
with 1100 0000.  
When used for framing error detect the UART looks for missing stop  
bits in the communication. A missing bit will set the FE bit in the  
SCON register. The FE bit shares the SCON.7 bit with SM0 and the  
function of SCON.7 is determined by PCON.6 (SMOD0) (see  
Figure 7). If SMOD0 is set then SCON.7 functions as FE. SCON.7  
functions as SM0 when SMOD0 is cleared. When used as FE  
SCON.7 can only be cleared by software. Refer to Figure 8.  
In a more complex system the following could be used to select  
slaves 1 and 2 while excluding slave 0:  
Automatic Address Recognition  
Slave 0  
Slave 1  
Slave 2  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1001  
1100 0XX0  
Automatic Address Recognition is a feature which allows the UART  
to recognize certain addresses in the serial bit stream by using  
hardware to make the comparisons. This feature saves a great deal  
of software overhead by eliminating the need for the software to  
examine every serial address which passes by the serial port. This  
feature is enabled by setting the SM2 bit in SCON. In the 9 bit UART  
modes, mode 2 and mode 3, the Receive Interrupt flag (RI) will be  
automatically set when the received byte contains either the “Given”  
address or the “Broadcast” address. The 9 bit mode requires that  
the 9th information bit is a 1 to indicate that the received information  
is an address and not data. Automatic address recognition is shown  
in Figure 9.  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1010  
1110 0X0X  
SADDR  
SADEN  
Given  
=
=
=
1110 0000  
1111 1100  
1110 00XX  
In the above example the differentiation among the 3 slaves is in the  
lower 3 address bits. Slave 0 requires that bit 0 = 0 and it can be  
uniquely addressed by 1110 0110. Slave 1 requires that bit 1 = 0 and  
it can be uniquely addressed by 1110 and 0101. Slave 2 requires  
that bit 2 = 0 and its unique address is 1110 0011. To select Slaves 0  
and 1 and exclude Slave 2 use address 1110 0100, since it is  
necessary t make bit 2 = 1 to exclude slave 2.  
The 8 bit mode is called Mode 1. In this mode the RI flag will be set  
if SM2 is enabled and the information received has a valid stop bit  
following the 8 address bits and the information is either a Given or  
Broadcast address.  
Mode 0 is the Shift Register mode and SM2 is ignored.  
The Broadcast Address for each slave is created by taking the  
logical OR of SADDR and SADEN. Zeros in this result are teated as  
don’t-cares. In most cases, interpreting the don’t-cares as ones, the  
broadcast address will be FF hexadecimal.  
Using the Automatic Address Recognition feature allows a master to  
selectively communicate with one or more slaves by invoking the  
Given slave address or addresses. All of the slaves may be  
contacted by using the Broadcast address. Two special Function  
Registers are used to define the slave’s address, SADDR, and the  
address mask, SADEN. SADEN is used to define which bits in the  
SADDR are to b used and which bits are “don’t care”. The SADEN  
mask can be logically ANDed with the SADDR to create the “|Given”  
address which the master will use for addressing each of the slaves.  
Use of the Given address allows multiple slaves to be recognized  
while excluding others. The following examples will help to show the  
versatility of this scheme:  
Upon reset SADDR (SFR address 0A9H) and SADEN (SFR  
address 0B9H) are leaded with 0s. This produces a given address  
of all “don’t cares” as well as a Broadcast address of all “don’t  
cares”. this effectively disables the Automatic Addressing mode and  
allows the microcontroller to use standard 80C51 type UART drivers  
which do not make use of this feature.  
Slave 0  
SADDR  
SADEN  
Given  
=
=
=
1100 0000  
1111 1101  
1100 00X0  
14  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
SCON Address = 98H  
Reset Value = 0000 0000B  
Bit Addressable  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
Tl  
Rl  
Bit:  
7
6
5
4
3
2
1
0
(SMOD0 = 0/1)*  
Symbol  
FE  
Function  
Framing Error bit. This bit is set by the receiver when an invalid stop bit is detected. The FE bit is not cleared by valid  
frames but should be cleared by software. The SMOD0 bit must be set to enable access to the FE bit.  
SM0  
SM1  
Serial Port Mode Bit 0, (SMOD0 must = 0 to access bit SM0)  
Serial Port Mode Bit 1  
SM0  
SM1  
Mode  
Description  
Baud Rate**  
f /12  
OSC  
0
0
1
1
0
1
0
1
0
1
2
3
shift register  
8-bit UART  
9-bit UART  
9-bit UART  
variable  
/64 or f  
f
/32  
OSC  
OSC  
variable  
SM2  
Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then Rl will not be set unless the  
received 9th data bit (RB8) is 1, indicating an address, and the received byte is a Given or Broadcast Address.  
In Mode 1, if SM2 = 1 then Rl will not be activated unless a valid stop bit was received, and the received byte is a  
Given or Broadcast Address. In Mode 0, SM2 should be 0.  
REN  
TB8  
RB8  
Enables serial reception. Set by software to enable reception. Clear by software to disable reception.  
The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.  
In modes 2 and 3, the 9th data bit that was received. In Mode 1, if SM2 = 0, RB8 is the stop bit that was received.  
In Mode 0, RB8 is not used.  
Tl  
Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the  
other modes, in any serial transmission. Must be cleared by software.  
Rl  
Receive interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or halfway through the stop bit time in  
the other modes, in any serial reception (except see SM2). Must be cleared by software.  
NOTE:  
*SMOD0 is located at PCON6.  
**f = oscillator frequency  
OSC  
SU00043  
Figure 7. SCON: Serial Port Control Register  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
START  
BIT  
DATA BYTE  
ONLY IN  
MODE 2, 3  
STOP  
BIT  
SET FE BIT IF STOP BIT IS 0 (FRAMING ERROR)  
SM0 TO UART MODE CONTROL  
SCON  
(98H)  
SM0 / FE  
SMOD1  
SM1  
SM2  
REN  
POF  
TB8  
GF1  
RB8  
GF0  
TI  
RI  
PCON  
(87H)  
SMOD0  
PD  
IDL  
0 : SCON.7 = SM0  
1 : SCON.7 = FE  
SU00747  
Figure 8. UART Framing Error Detection  
15  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
SCON  
(98H)  
SM0  
SM1  
SM2  
REN  
1
TB8  
X
RB8  
TI  
RI  
1
1
1
0
1
RECEIVED ADDRESS D0 TO D7  
PROGRAMMED ADDRESS  
COMPARATOR  
IN UART MODE 2 OR MODE 3 AND SM2 = 1:  
INTERRUPT IF REN=1, RB8=1 AND “RECEIVED ADDRESS” = “PROGRAMMED ADDRESS”  
– WHEN OWN ADDRESS RECEIVED, CLEAR SM2 TO RECEIVE DATA BYTES  
– WHEN ALL DATA BYTES HAVE BEEN RECEIVED: SET SM2 TO WAIT FOR NEXT ADDRESS.  
SU00045  
Figure 9. UART Multiprocessor Communication, Automatic Address Recognition  
Interrupt Priority Structure  
PRIORITY BITS  
INTERRUPT PRIORITY LEVEL  
The 80C52/54/58 has a 6-source four-level interrupt structure. There  
are 3 SFRs associated with the interrupts on the 80C52/54/58. They  
are the IE and IP. (See Figures 10 and 11.) In addition, there is the  
IPH (Interrupt Priority High) register that makes the four-level  
interrupt structure possible. The IPH is located at SFR address B7H.  
The structure of the IPH register and a description of its bits is  
shown below:  
IPH.x  
IP.x  
0
0
0
1
1
Level 0 (lowest priority)  
Level 1  
1
0
Level 2  
1
Level 3 (highest priority)  
IPH (Interrupt Priority High) (B7H)  
The priority scheme for servicing the interrupts is the same as that  
for the 80C51, except there are four interrupt levels on the  
80C52/54/58 rather than two as on the 80C51. An interrupt will be  
serviced as long as an interrupt of equal or higher priority is not  
already being serviced. If an interrupt of equal or higher level priority  
is being serviced, the new interrupt will wait until it is finished before  
being serviced. If a lower priority level interrupt is being serviced, it  
will be stopped and the new interrupt serviced. When the new  
interrupt is finished, the lower priority level interrupt that was  
stopped will be completed.  
7
6
5
4
3
2
1
0
PT2H  
PSH  
PT1H  
PX1H  
PT0H  
PX0H  
IPH.0 PX0H External interrupt 0 priority high  
IPH.1 PT0H Timer 0 interrupt priority high  
IPH.2 PX1H External interrupt 1 priority high  
IPH.3 PT1H Timer 1 interrupt priority high  
IPH.4 PSH Serial Port interrupt high  
IPH.5 PT2H Timer 2 interrupt priority high  
IPH.6  
IPH.7  
Not implemented  
Not implemented  
The function of the IPH SFR is simple and when combined with the  
IP SFR determines the priority of each interrupt. The priority of each  
interrupt is determined as shown in the following table:  
Table 7.  
Interrupt Table  
SOURCE  
POLLING PRIORITY  
REQUEST BITS  
HARDWARE CLEAR?  
VECTOR ADDRESS  
1
2
X0  
T0  
1
2
3
4
5
6
7
IE0  
TP0  
N (L) Y (T)  
03H  
0BH  
13H  
1BH  
23H  
2BH  
33H  
Y
X1  
IE1  
N (L) Y (T)  
T1  
TF1  
Y
N
N
N
SP  
T2  
R1, TI  
TF2, EXF2  
PCA  
CF, CCFn  
n = 0–4  
NOTES:  
1. L = Level activated  
2. T = Transition activated  
16  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
7
6
5
4
3
2
1
0
IE0 (A8H)  
EA  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Enable Bit = 1 enables the interrupt.  
Enable Bit = 0 disables it.  
BIT  
SYMBOL FUNCTION  
IE.7  
EA  
Global disable bit. If EA = 0, all interrupts are disabled. If EA = 1, each interrupt can be individually  
enabled or disabled by setting or clearing its enable bit.  
IE.6  
IE.5  
IE.4  
IE.3  
IE.2  
IE.1  
IE.0  
ET2  
ES  
ET1  
EX1  
ET0  
EX0  
Timer 2 interrupt enable bit.  
Serial Port interrupt enable bit.  
Timer 1 interrupt enable bit.  
External interrupt 1 enable bit.  
Timer 0 interrupt enable bit.  
External interrupt 0 enable bit.  
SU00743  
Figure 10. IE Registers  
7
6
5
4
3
2
1
0
IP0 (B8H)  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Priority Bit = 1 assigns high priority  
Priority Bit = 0 assigns low priority  
BIT  
IP.7  
IP.6  
IP.5  
IP.4  
IP.3  
IP.2  
IP.1  
IP.0  
SYMBOL FUNCTION  
Not implemented, reserved for future use.  
PT2  
PS  
PT1  
PX1  
PT0  
PX0  
Timer 2 interrupt priority bit.  
Serial Port interrupt priority bit.  
Timer 1 interrupt priority bit.  
External interrupt 1 priority bit.  
Timer 0 interrupt priority bit.  
External interrupt 0 priority bit.  
SU00744  
Figure 11. IP Registers  
17  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
Reduced EMI Mode  
The AO bit (AUXR.0) in the AUXR register when set disables the  
ALE output.  
DPS  
BIT0  
AUXR1  
80C52/80C54/80C58 Reduced EMI Mode  
DPTR1  
DPTR0  
DPL  
AUXR (8EH)  
DPH  
(83H)  
(82H)  
EXTERNAL  
DATA  
MEMORY  
7
6
5
4
3
2
1
0
AO  
SU00745A  
AO: Turns off ALE output.  
Figure 12. DPTR Structure  
Dual Data Pointer Register (DPTR)  
The dual DPTR structure (see Figure 12) is a way by which the  
DPTR Instructions  
80C52/54/58 will specify the address of an external data memory  
location. There are two 16-bit DPTR registers that address the  
external memory, and a single bit called DPS = AUXR1/bit0 that  
allows the program code to switch between them.  
The instructions that refer to DPTR refer to the data pointer that is  
currently selected using the AUXR1/bit 0 register. The six  
instructions that use the DPTR are as follows:  
INC DPTR  
Increments the data pointer by 1  
Register Name: AUXR1#  
SFR Address: A2H  
Reset Value: xxxxxxx0B  
MOV DPTR, #data16  
MOV A, @ A+DPTR  
Loads the DPTR with a 16-bit constant  
Move code byte relative to DPTR to  
ACC  
7
6
5
4
3
2
1
0
MOVX A, @ DPTR  
MOVX @ DPTR , A  
JMP @ A + DPTR  
Move external RAM (16-bit address) to  
ACC  
DPS  
Where:  
Move ACC to external RAM (16-bit  
address)  
DPS = AUXR1/bit0 = Switches between DPTR0 and DPTR1.  
Select Reg  
DPTR0  
DPS  
Jump indirect relative to DPTR  
0
1
The data pointer can be accessed on a byte-by-byte basis by  
specifying the Low or High byte in an instruction which accesses the  
SFRs. See application note AN458 for detailed operation  
DPTR1  
The DPS bit status whould be saved by software when switching  
between DPTR0 and DPTR1.  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
Operating temperature under bias  
RATING  
0 to +70 or –40 to +85  
–65 to +150  
0 to +13.0  
–0.5 to +6.5  
15  
UNIT  
°C  
°C  
V
Storage temperature range  
Voltage on EA/V pin to V  
PP  
SS  
Voltage on any other pin to V  
V
SS  
Maximum I per I/O pin  
mA  
W
OL  
Power dissipation (based on package heat transfer limitations, not device power consumption)  
NOTES:  
1.5  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
18  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
DC ELECTRICAL CHARACTERISTICS  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5.0V ±10%; V = 0V  
CC SS  
LIMITS  
TEST  
CONDITIONS  
SYMBOL  
PARAMETER  
UNIT  
1
MIN  
TYP  
MAX  
0.2V –0.1  
V
V
V
Input low voltage  
4.5V < V < 5.5V  
–0.5  
V
V
V
IL  
CC  
CC  
Input high voltage (ports 0, 1, 2, 3, EA)  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
+0.5  
+0.5  
IH  
CC  
CC  
CC  
0.7V  
V
IH1  
CC  
V
OL  
= 4.5V  
= 1.6mA  
CC  
8
V
V
V
V
Output low voltage, ports 1, 2, 3  
0.4  
V
V
V
OL  
2
I
I
V
CC  
= 4.5V  
8, 7  
Output low voltage, port 0, ALE, PSEN  
0.4  
OL1  
OH  
2
= 3.2mA  
OL  
V
CC  
= 4.5V  
= –30µA  
3
Output high voltage, ports 1, 2, 3  
V
V
– 0.7  
– 0.7  
CC  
I
OH  
Output high voltage (port 0 in external bus mode),  
V
CC  
= 4.5V  
= –3.2mA  
V
OH1  
CC  
9
3
ALE , PSEN  
I
OH  
I
I
Logical 0 input current, ports 1, 2, 3  
V
V
= 0.4V  
= 2.0V  
–1  
–50  
–650  
±10  
µA  
µA  
µA  
IL  
IN  
IN  
6
Logical 1-to-0 transition current, ports 1, 2, 3  
TL  
See note 4  
I
I
Input leakage current, port 0  
0.45 < V < V – 0.3  
LI  
IN  
CC  
Power supply current (see Figure 20):  
See note 5  
CC  
5
Active mode @ 16MHz  
Idle mode @ 16MHz  
16  
4
50  
mA  
mA  
µA  
5
Power-down mode  
T
= 0 to +70°C  
3
amb  
T
amb  
= –40 to +85°C  
75  
µA  
R
C
Internal reset pull-down resistor  
40  
225  
15  
kΩ  
RST  
IO  
10  
Pin capacitance (except EA)  
pF  
NOTES:  
1. Typical ratings are not guaranteed. The values listed are at room temperature, 5V.  
2. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100pF), the noise pulse on the ALE pin may exceed 0.8V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
3. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the (V –0.7) specification when the  
OH  
CC  
address bits are stabilizing.  
4. Pins of ports 1, 2 and 3 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when V is approximately 2V.  
IN  
5. See Figures 21 through 24 for I test conditions.  
CC  
Active Mode:  
Idle Mode:  
I
I
= 0.9 × FREQ + 1.1;  
= 0.18 × FREQ +1.0; See Figure 20.  
CC  
CC  
6. This value applies to T  
= 0°C to +70°C. For T = –40°C to +85°C, I = –750µA.  
amb TL  
amb  
7. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
8. Under steady state (non-transient) conditions, I must be externally limited as follows:  
OL  
Maximum I per port pin:  
15mA (*NOTE: This is 85°C specification.)  
OL  
Maximum I per 8-bit port:  
26mA  
71mA  
OL  
Maximum total I for all outputs:  
OL  
If I exceeds the test condition, V may exceed the related specification. Pins are not guaranteed to sink current greater than the listed  
OL  
OL  
test conditions.  
9. ALE is tested to V  
, except when ALE is off then V is the voltage specification.  
OH  
OH1  
10.Pin capacitance is characterized but not tested. Pin capacitance is less than 25pF. Pin capacitance of ceramic package is less than 15pF  
(except EA it is 25pF).  
19  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
16MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
13  
CLCL  
Speed versions : E  
3.5  
16  
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
t
t
t
t
t
t
t
t
t
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
ALE pulse width  
85  
22  
32  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–40  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–30  
150  
82  
4t  
3t  
–100  
CLCL  
32  
t
–30  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
142  
3t  
–45  
CLCL  
4
PSEN low to valid instruction in  
–105  
CLCL  
Input instruction hold after PSEN  
Input instruction float after PSEN  
0
0
37  
207  
10  
t
–25  
CLCL  
4
Address to valid instruction in  
5t  
–105  
CLCL  
PSEN low to address float  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
15  
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
147  
5t  
–165  
CLCL  
0
0
Data float after RD  
65  
2t  
–60  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
350  
397  
239  
8t  
CLCL  
9t  
CLCL  
–150  
–165  
AVDV  
LLWL  
137  
122  
13  
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–50  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
CLCL  
CLCL  
CLCL  
13  
t
–50  
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
287  
7t  
–150  
14, 15  
14, 15  
0
0
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
t
t
t
t
17  
17  
17  
17  
High time  
Low time  
Rise time  
Fall time  
20  
20  
20  
20  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
20  
20  
20  
20  
Shift Register  
t
t
t
t
t
16  
16  
16  
16  
16  
Serial port clock cycle time  
750  
492  
8
12t  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
0
492  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the 80C52/54/58 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. See application note AN457 for external memory interfacing.  
20  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
AC ELECTRICAL CHARACTERISTICS  
1, 2, 3  
T
amb  
= 0°C to +70°C or –40°C to +85°C, V = 5V ±10%, V = 0V  
CC SS  
4
24MHz CLOCK  
VARIABLE CLOCK  
33MHz CLOCK  
SYMBOL FIGURE  
PARAMETER  
MIN  
MAX  
MIN  
MAX  
MIN  
MAX  
UNIT  
1/t  
CLCL  
13  
Oscillator frequency  
3.5  
33  
Speed versions : I (24MHz)  
: N (33MHz)  
3.5  
24  
MHz  
3.5  
21  
5
33  
t
t
t
t
t
t
t
t
t
t
t
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
13  
ALE pulse width  
43  
17  
17  
2t  
–40  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–25  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
–25  
102  
65  
4t  
3t  
–65  
55  
30  
CLCL  
17  
80  
t
–25  
5
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
CLCL  
–45  
45  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
CLCL  
0
0
0
17  
128  
10  
t
–25  
5
CLCL  
5t  
CLCL  
–80  
70  
10  
10  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
14, 15  
15  
RD pulse width  
150  
150  
6t  
–100  
–100  
82  
82  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
CLCL  
WR pulse width  
6t  
CLCL  
RD low to valid data in  
Data hold after RD  
118  
5t  
2t  
–90  
–28  
60  
CLCL  
0
0
0
Data float after RD  
55  
32  
90  
CLCL  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data hold after WR  
183  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
9t  
105  
140  
AVDV  
LLWL  
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
40  
45  
0
CLCL  
4t  
AVWL  
QVWX  
WHQX  
QVWH  
RLAZ  
WHLH  
CLCL  
12  
t
t
–30  
CLCL  
CLCL  
CLCL  
17  
–25  
5
Data valid to WR high  
RD low to address float  
RD or WR high to ALE high  
162  
7t  
–130  
80  
14, 15  
14, 15  
0
0
0
17  
67  
t
–25  
t
+25  
5
55  
CLCL  
CLCL  
External Clock  
t
t
t
t
17  
17  
17  
17  
High time  
Low time  
Rise time  
Fall time  
17  
17  
17  
17  
t
–t  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
CLCL CLCX  
t
–t  
CLCL CHCX  
5
5
5
5
Shift Register  
t
t
t
t
t
16  
16  
16  
16  
16  
Serial port clock cycle time  
505  
283  
3
12t  
360  
167  
ns  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t –133  
CLCL  
QVXH  
XHQX  
XHDX  
XHDV  
2t  
CLCL  
–80  
0
0
0
283  
10t  
–133  
167  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100pF, load capacitance for all other outputs = 80pF.  
3. Interfacing the 80C52/54/58 to devices with float times up to 45ns is permitted. This limited bus contention will not cause damage to Port 0  
drivers.  
4. Variable clock is specified for oscillator frequencies greater than 16MHz to 33MHz. For frequencies equal or less than 16MHz, see 16MHz  
“AC Electrial Characteristics”, page 20.  
21  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
designations are:  
P – PSEN  
Q – Output data  
R – RD signal  
t – Time  
A – Address  
V – Valid  
C – Clock  
W– WR signal  
D – Input data  
H – Logic level high  
X – No longer a valid logic level  
Z – Float  
I – Instruction (program memory contents)  
L – Logic level low, or ALE  
Examples: t  
= Time for address valid to ALE low.  
=Time for ALE low to PSEN low.  
AVLL  
t
LLPL  
t
LHLL  
ALE  
t
t
LLPL  
AVLL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
LLAX  
t
PXIZ  
t
PLAZ  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A0–A15  
A8–A15  
SU00006  
Figure 13. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
RLAZ  
t
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00025  
Figure 14. External Data Memory Read Cycle  
22  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
LLAX  
t
t
WHQX  
t
AVLL  
QVWX  
t
QVWH  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPF  
A0–A15 FROM PCH  
SU00026  
Figure 15. External Data Memory Write Cycle  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
t
SET TI  
VALID  
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU00027  
Figure 16. Shift Register Mode Timing  
V
–0.5  
CC  
0.7V  
CC  
CC  
0.45V  
0.2V  
–0.1  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
t
CLCL  
SU00009  
Figure 17. External Clock Drive  
23  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
V
–0.5  
CC  
V
V
+0.1V  
LOAD  
V
V
–0.1V  
TIMING  
REFERENCE  
POINTS  
OH  
0.2V  
0.2V  
+0.9  
–0.1  
CC  
V
LOAD  
CC  
–0.1V  
LOAD  
+0.1V  
OL  
0.45V  
NOTE:  
NOTE:  
For timing purposes, a port is no longer floating when a 100mV change from  
load voltage occurs, and begins to float when a 100mV change from the loaded  
AC inputs during testing are driven at V –0.5 for a logic ‘1’ and 0.45V for a logic ‘0’.  
Timing measurements are made at V min for a logic ‘1’ and V max for a logic ‘0’.  
CC  
IH  
IL  
V
/V level occurs. I /I ≥ ±20mA.  
OH OL  
OH OL  
SU00717  
SU00718  
Figure 18. AC Testing Input/Output  
Figure 19. Float Waveform  
35  
30  
25  
20  
MAX ACTIVE MODE  
MAX = 0.9 X FREQ. + 1.1  
I
CC  
I
CC  
mA  
15  
10  
5
TYP ACTIVE MODE  
MAX IDLE MODE  
TYP IDLE MODE  
4MHz 8MHz 12MHz 16MHz 20MHz 24MHz 28MHz 32MHz 36MHz  
FREQ AT XTAL1  
SU00768  
Figure 20. I vs. FREQ  
CC  
Valid only within frequency specifications of the device under test  
24  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
V
V
CC  
CC  
I
I
CC  
CC  
V
V
CC  
CC  
V
RST  
V
V
CC  
CC  
CC  
P0  
EA  
P0  
EA  
RST  
(NC)  
XTAL2  
XTAL1  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
CLOCK SIGNAL  
V
V
SS  
SS  
SU00719  
SU00720  
Figure 21. I Test Condition, Active Mode  
Figure 22. I Test Condition, Idle Mode  
CC  
CC  
All other pins are disconnected  
All other pins are disconnected  
V
–0.5  
CC  
0.7V  
CC  
–0.1  
0.45V  
0.2V  
CC  
t
CHCX  
t
t
t
CLCH  
CHCL  
CLCX  
t
CLCL  
SU00009  
Figure 23. Clock Signal Waveform for I Tests in Active and Idle Modes  
CC  
t
= t  
= 5ns  
CHCL  
CLCH  
V
CC  
I
CC  
V
CC  
V
RST  
CC  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
SU00016  
Figure 24. I Test Condition, Power Down Mode  
CC  
All other pins are disconnected. V = 2V to 5.5V  
CC  
25  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
internal memory, EA is latched on Reset and all further programming  
of the EPROM is disabled. When security bits 1 and 2 are  
programmed, in addition to the above, verify mode is disabled.  
Security Bits  
With none of the security bits programmed the code in the program  
memory can be verified. If the encryption table is programmed, the  
code will be encrypted when verified. When only security bit 1 (see  
Table 8) is programmed, MOVC instructions executed from external  
program memory are disabled from fetching code bytes from the  
Encryption Array  
64 bytes of encryption array are initially unprogrammed (all 1s).  
Table 8. Program Security Bits  
1, 2  
PROGRAM LOCK BITS  
SB1  
SB2  
PROTECTION DESCRIPTION  
1
U
U
No Program Security features enabled.  
(Code verify will still be encrypted by the Encryption Array if programmed.)  
2
P
U
MOVC instructions executed from external program memory are disabled from fetching code bytes from  
internal memory, EA is sampled and latched on Reset, and further programming of the EPROM is disabled.  
NOTES:  
1. P – programmed. U – unprogrammed.  
2. Any other combination of the security bits is not defined.  
80C52 ROM CODE SUBMISSION  
When submitting ROM code for the 80C52, the following must be specified:  
1. 8k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 1FFFH  
2000H to 201FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
2020H  
2020H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
26  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
80C54 ROM CODE SUBMISSION  
When submitting ROM code for the 80C54, the following must be specified:  
1. 16k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 3FFFH  
4000H to 401FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
4020H  
4020H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
If the ROM Code file does not include the options, the following information must be included with the ROM code.  
For each of the following, check the appropriate box, and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
27  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
80C58 ROM CODE SUBMISSION  
When submitting ROM code for the 80C58, the following must be specified:  
1. 32k byte user ROM data  
2. 64 byte ROM encryption key  
3. ROM security bits.  
If submitting a file, the format is as follows:  
ADDRESS  
CONTENT  
DATA  
BIT(S)  
7:0  
COMMENT  
0000H to 7FFFH  
8000H to 801FH  
User ROM Data  
KEY  
7:0  
ROM Encryption Key  
FFH = no encryption  
8020H  
8020H  
SEC  
SEC  
0
1
ROM Security Bit 1  
0 = enable security  
1 = disable security  
ROM Security Bit 2  
0 = enable security  
1 = disable security  
Security Bit 1: When programmed, this bit has two effects on masked ROM parts:  
1. External MOVC is disabled, and  
2. EA is latched on Reset.  
Security Bit 2: When programmed, this bit inhibits Verify User ROM.  
If the ROM code file does not include the options, the following information must be included with the ROM code.  
For each of the following check the appropriate box and send to Philips along with the code:  
Security Bit #1:  
Security Bit #2:  
Encryption:  
V Enabled  
V Enabled  
V No  
V Disabled  
V Disabled  
V Yes  
If Yes, must send key file.  
28  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
DIP40: plastic dual in-line package; 40 leads (600 mil)  
SOT129-1  
29  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
30  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
QFP44: plastic quad flat package; 44 leads (lead length 1.3 mm); body 10 x 10 x 1.75 mm  
SOT307-2  
31  
1996 Aug 16  
Philips Semiconductors  
Product specification  
CMOS single-chip 8-bit microcontrollers  
80C52/80C54/80C58  
DEFINITIONS  
Data Sheet Identification  
Product Status  
Definition  
This data sheet contains the design target or goal specifications for product development. Specifications  
may change in any manner without notice.  
Objective Specification  
Formative or in Design  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design  
and supply the best possible product.  
Preliminary Specification  
Product Specification  
Preproduction Product  
Full Production  
This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes  
at any time without notice, in order to improve design and supply the best possible product.  
Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products,  
including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright,  
or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only.  
Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
LIFE SUPPORT APPLICATIONS  
Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices,  
or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected  
to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips  
Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully  
indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.  
Philips Semiconductors  
811 East Arques Avenue  
P.O. Box 3409  
Sunnyvale, California 94088–3409  
Philips Semiconductors and Philips Electronics North America Corporation  
register eligible circuits under the Semiconductor Chip Protection Act.  
Copyright Philips Electronics North America Corporation 1996  
All rights reserved. Printed in U.S.A.  
Telephone 800-234-7381  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY