P80C552KBB [NXP]

Single-chip 8-bit microcontroller; 单芯片8位微控制器
P80C552KBB
型号: P80C552KBB
厂家: NXP    NXP
描述:

Single-chip 8-bit microcontroller
单芯片8位微控制器

微控制器和处理器 外围集成电路 时钟
文件: 总23页 (文件大小:185K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
80C552/83C552  
Single-chip 8-bit microcontroller with  
10-bit A/D, capture/compare timer,  
high-speed outputs, PWM  
Product data  
2002 Sep 03  
Supersedes data of 1998 Aug 13  
Philips  
Semiconductors  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
FEATURES  
80C51 central processing unit  
8k × 8 ROM expandable externally to 64 kbytes  
ROM code protection  
An additional 16-bit timer/counter coupled to four capture registers  
and three compare registers  
Two standard 16-bit timer/counters  
256 × 8 RAM, expandable externally to 64 kbytes  
Capable of producing eight synchronized, timed outputs  
A 10-bit ADC with eight multiplexed analog inputs  
Two 8-bit resolution, pulse width modulation outputs  
DESCRIPTION  
The 80C552/83C552 (hereafter generically referred to as 8XC552)  
Single-Chip 8-Bit Microcontroller is manufactured in an advanced  
CMOS process and is a derivative of the 80C51 microcontroller  
family. The 8XC552 has the same instruction set as the 80C51.  
Three versions of the derivative exist:  
Five 8-bit I/O ports plus one 8-bit input port shared with analog  
inputs  
2
I C-bus serial I/O port with byte oriented master and slave  
83C552—8 kbytes mask programmable ROM  
80C552—ROMless version of the 83C552  
functions  
Full-duplex UART compatible with the standard 80C51  
On-chip watchdog timer  
87C552—8 kbytes EPROM (described in a separate chapter)  
Three speed ranges:  
3.5 to 16 MHz  
The 8XC552 contains a non-volatile 8k × 8 read-only program  
memory (83C552), a volatile 256 × 8 read/write data memory, five  
8-bit I/O ports, one 8-bit input port, two 16-bit timer/event counters  
(identical to the timers of the 80C51), an additional 16-bit timer  
coupled to capture and compare latches, a 15-source,  
3.5 to 24 MHz (ROM, ROMless only)  
Three operating ambient temperature ranges:  
P83C552xBx: 0 °C to +70 °C  
two-priority-level, nested interrupt structure, an 8-input ADC, a dual  
DAC pulse width modulated interface, two serial interfaces (UART  
P83C552xFx: –40 °C to +85 °C  
(XTAL frequency max. 24 MHz)  
2
and I C-bus), a “watchdog” timer and on-chip oscillator and timing  
circuits. For systems that require extra capability, the 8XC552 can  
be expanded using standard TTL compatible memories and logic.  
P83C552xHx: –40 °C to +125 °C  
(XTAL frequency max. 16 MHz)  
In addition, the 8XC552 has two software selectable modes of  
power reduction—idle mode and power-down mode. The idle mode  
freezes the CPU while allowing the RAM, timers, serial ports, and  
interrupt system to continue functioning. The power-down mode  
saves the RAM contents but freezes the oscillator, causing all other  
chip functions to be inoperative.  
LOGIC SYMBOL  
V
V
SS  
DD  
XTAL1  
XTAL2  
EA  
ALE  
The device also functions as an arithmetic processor having  
facilities for both binary and BCD arithmetic plus bit-handling  
capabilities. The instruction set consists of over 100 instructions: 49  
one-byte, 45 two-byte, and 17 three-byte. With a 16 MHz (24 MHz)  
crystal, 58% of the instructions are executed in 0.75 µs (0.5 µs) and  
40% in 1.5 µs (1 µs). Multiply and divide instructions require 3 µs  
(2 µs).  
LOW ORDER  
ADDRESS AND  
DATA BUS  
PSEN  
AV  
AV  
AVref+  
AVref–  
SS  
DD  
CT0I  
CT1I  
CT2I  
CT3I  
STADC  
PWM0  
PWM1  
T2  
RT2  
SCL  
SDA  
ADC0-7  
HIGH ORDER  
ADDRESS AND  
DATA BUS  
CMSR0-5  
RxD/DATA  
TxD/CLOCK  
INT0  
INT1  
T0  
T1  
CMT0  
CMT1  
WR  
RD  
RST  
EW  
SU01691  
2
2002 Sep 03  
853-1467 28849  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
PIN CONFIGURATIONS  
Plastic Leaded Chip Carrier  
9
8
7
6
5
4
3
2
1
68 67 66 65 64 63 62 61  
P4.3/CMSR3 10  
P4.4/CMSR4 11  
P4.5/CMSR5 12  
P4.6/CMT0 13  
P4.7/CMT1 14  
RST 15  
60 AV  
SS  
59 AV  
58 AV  
REF+  
REF–  
57 P0.0/AD0  
56 P0.1/AD1  
55 P0.2/AD2  
54 P0.3/AD3  
53 P0.4/AD4  
52 P0.5/AD5  
51 P0.6/AD6  
50 P0.7/AD7  
49 EA  
P1.0/CT0I 16  
P1.1/CT1I 17  
P1.2/CT2I 18  
P1.3/CT3I 19  
P1.4/T2 20  
PLASTIC LEADED CHIP CARRIER  
P1.5/RT2 21  
P1.6/SCL 22  
P1.7/SDA 23  
P3.0/RxD 24  
P3.1/TxD 25  
P3.2/INT0 26  
48 ALE  
47 PSEN  
46 P2.7/A15  
45 P2.6/A14  
44 P2.5/A13  
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43  
SU00932  
* Do not connect.  
3
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
Plastic Quad Flat Pack  
80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65  
P4.1/CMSR1  
P4.2/CMSR2  
NC*  
1
2
3
4
5
6
7
8
9
64 P5.7/ADC7  
63 AV  
DD  
62 NC*  
P4.3/CMSR3  
P4.4/CMSR4  
P4.5/CMSR5  
P4.6/CMT0  
P4.7/CMT1  
RST  
61 AV  
60 AV  
59 AV  
SS  
REF+  
REF–  
58 P0.0/AD0  
57 P0.1/AD1  
56 P0.2/AD2  
55 P0.3/AD3  
54 P0.4/AD4  
53 P0.5/AD5  
52 P0.6/AD6  
51 P0.7/AD7  
50 EA  
P1.0/CT0I 10  
P1.1/CT1I 11  
P1.2/CT2I 12  
P1.3/CT3I 13  
P1.4/T2 14  
P1.5/RT2 15  
P1.6/SCL 16  
P1.7/SDA 17  
P3.0/RxD 18  
P3.1/TxD 19  
P3.2/INT0 20  
NC* 21  
PLASTIC QUAD FLAT PACK  
49 ALE  
48 PSEN  
47 P2.7/A15  
46 P2.6/A14  
45 P2.5/A13  
44 NC*  
NC* 22  
43 NC*  
P3.3/INT1 23  
PP3.4/T0 24  
42 P2.4/A12  
41 P2.3/A11  
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40  
SU00931  
* Do not connect.  
IC = Internally connected (do not use).  
4
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
BLOCK DIAGRAM  
T0  
T1  
INT0  
INT1  
PWM0 PWM1 AV  
AV  
ADC0-7 SDA SCL  
SS  
REF  
+
V
V
SS  
5
1
1
DD  
STADC  
3
3
3
3
AV  
DD  
XTAL1  
T0, T1  
PROGRAM  
MEMORY  
8k x 8 ROM  
DATA  
MEMORY  
256 x 8 RAM  
DUAL  
PWM  
SERIAL  
C PORT  
TWO 16-BIT  
TIMER/EVENT  
COUNTERS  
XTAL2  
EA  
ADC  
2
CPU  
I
ALE  
80C51 CORE  
EXCLUDING  
ROM/RAM  
PSEN  
3
WR  
RD  
8-BIT INTERNAL BUS  
3
0
16  
AD0-7  
T2  
T2  
16-BIT  
TIMER/  
EVENT  
FOUR  
16-BIT  
CAPTURE  
LATCHES  
16-BIT  
COMPARA-  
TORS  
wITH  
REGISTERS  
COMPARA-  
TOR  
OUTPUT  
SELECTION  
T3  
16  
PARALLEL I/O  
PORTS AND  
EXTERNAL BUS  
SERIAL  
UART  
PORT  
8-BIT  
PORT  
WATCHDOG  
TIMER  
2
COUNTERS  
A8-15  
3
3
1
1
1
4
P0  
P1  
P2  
P3  
TxD  
RxD  
P5  
P4  
CT0I-CT3I  
T2  
RT2  
CMSR0-CMSR5  
CMT0, CMT1  
RST EW  
3
4
5
0
1
2
ALTERNATE FUNCTION OF PORT 3  
ALTERNATE FUNCTION OF PORT 4  
ALTERNATE FUNCTION OF PORT 5  
ALTERNATE FUNCTION OF PORT 0  
ALTERNATE FUNCTION OF PORT 1  
ALTERNATE FUNCTION OF PORT 2  
SU01692  
5
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
ORDERING INFORMATION  
PHILIPS  
PART ORDER NUMBER  
DRAWING  
TEMPERATURE (°C)  
AND PACKAGE  
FREQ  
(MHz)  
PART MARKING  
NUMBER  
1
ROMless  
P80C552EBA  
ROM  
0 to +70,  
Plastic Leaded Chip Carrier  
P83C552EBA/xxx  
SOT188-2  
SOT318-2  
SOT188-2  
SOT318-2  
SOT188-2  
SOT318-2  
SOT188-2  
SOT318-2  
SOT188-2  
SOT318-2  
16  
16  
16  
16  
16  
16  
24  
24  
24  
24  
0 to +70,  
Plastic Quad Flat Pack  
P80C552EBB  
P80C552EFA  
P80C552EFB  
P80C552EHA  
P80C552EHB  
P80C552IBA  
P80C552IBB  
P80C552IFA  
P83C552EBB/xxx  
P83C552EFA/xxx  
P83C552EFB/xxx  
P83C552EHA/xxx  
P83C552EHB/xxx  
P83C552IBA/xxx  
P83C552IBB/xxx  
P83C552IFA/xxx  
P83C552IFB/xxx  
–40 to +85,  
Plastic Leaded Chip Carrier  
–40 to +85,  
Plastic Quad Flat Pack  
–40 to +125,  
Plastic Leaded Chip Carrier  
–40 to +125,  
Plastic Quad Flat Pack  
0 to +70,  
Plastic Leaded Chip Carrier  
0 to +70,  
Plastic Quad Flat Pack  
–40 to +85,  
Plastic Leaded Chip Carrier  
–40 to +85,  
Plastic Quad Flat Pack  
P80C552IFB  
NOTE:  
1. xxx denotes the ROM code number.  
2. For EPROM device specification, refer to 87C552 datasheet.  
6
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
PIN DESCRIPTION  
PIN NO.  
MNEMONIC  
PLCC  
QFP  
TYPE  
NAME AND FUNCTION  
V
DD  
2
72  
I
Digital Power Supply: +5 V power supply pin during normal operation, idle and  
power-down mode.  
STADC  
3
74  
I
Start ADC Operation: Input starting analog to digital conversion (ADC operation can also  
be started by software). This pin must not float.  
PWM0  
PWM1  
EW  
4
5
6
75  
76  
77  
O
O
I
Pulse Width Modulation: Output 0.  
Pulse Width Modulation: Output 1.  
Enable Watchdog Timer: Enable for T3 watchdog timer and disable power-down mode.  
This pin must not float.  
P0.0-P0.7  
57-50  
58-51  
I/O  
Port 0: Port 0 is an 8-bit open-drain bidirectional I/O port. Port 0 pins that have 1s written  
to them float and can be used as high-impedance inputs. Port 0 is also the multiplexed  
low-order address and data bus during accesses to external program and data memory. In  
this application it uses strong internal pull-ups when emitting 1s.  
P1.0-P1.7  
16-23  
16-21  
22-23  
16-19  
20  
10-17  
10-15  
16-17  
10-13  
14  
I/O  
I/O  
I/O  
I
Port 1: 8-bit I/O port. Alternate functions include:  
(P1.0-P1.5): Quasi-bidirectional port pins.  
(P1.6, P1.7): Open drain port pins.  
CT0I-CT3I (P1.0-P1.3): Capture timer input signals for timer T2.  
T2 (P1.4): T2 event input.  
I
21  
22  
23  
15  
16  
17  
I
RT2 (P1.5): T2 timer reset signal. Rising edge triggered.  
2
I/O  
I/O  
SCL (P1.6): Serial port clock line I C-bus.  
2
SDA (P1.7): Serial port data line I C-bus.  
Port 1 is also used to input the lower order address byte during EPROM programming and  
verification. A0 is on P1.0, etc.  
P2.0-P2.7  
P3.0-P3.7  
39-46  
24-31  
38-42,  
45-47  
I/O  
I/O  
Port 2: 8-bit quasi-bidirectional I/O port.  
Alternate function: High-order address byte for external memory (A08-A15).  
18-20,  
23-27  
Port 3: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
24  
25  
26  
27  
28  
29  
30  
31  
18  
19  
20  
23  
24  
25  
26  
27  
RxD(P3.0): Serial input port.  
TxD (P3.1): Serial output port.  
INT0 (P3.2): External interrupt.  
INT1 (P3.3): External interrupt.  
T0 (P3.4): Timer 0 external input.  
T1 (P3.5): Timer 1 external input.  
WR (P3.6): External data memory write strobe.  
RD (P3.7): External data memory read strobe.  
P4.0-P4.7  
P5.0-P5.7  
7-14  
7-12  
80, 1-2  
4-8  
I/O  
O
Port 4: 8-bit quasi-bidirectional I/O port. Alternate functions include:  
80, 1-2  
4-6  
CMSR0-CMSR5 (P4.0-P4.5): Timer T2 compare and set/reset outputs on a match with  
timer T2.  
13, 14  
7, 8  
O
I
CMT0, CMT1 (P4.6, P4.7): Timer T2 compare and toggle outputs on a match with timer T2.  
68-62,  
1
71-64,  
Port 5: 8-bit input port.  
ADC0-ADC7 (P5.0-P5.7): Alternate function: Eight input channels to ADC.  
RST  
15  
9
I/O  
I
Reset: Input to reset the 8XC552. It also provides a reset pulse as output when timer T3  
overflows.  
XTAL1  
35  
32  
Crystal Input 1: Input to the inverting amplifier that forms the oscillator, and input to the  
internal clock generator. Receives the external clock signal when an external oscillator is  
used.  
XTAL2  
34  
31  
O
Crystal Input 2: Output of the inverting amplifier that forms the oscillator. Left open-circuit  
when an external clock is used.  
7
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
PIN DESCRIPTION (Continued)  
PIN NO.  
MNEMONIC  
PLCC  
36, 37  
47  
QFP  
34-36  
48  
TYPE  
NAME AND FUNCTION  
V
SS  
I
Two Digital ground pins.  
PSEN  
O
O
Program Store Enable: Active-low read strobe to external program memory.  
ALE  
EA  
48  
49  
Address Latch Enable: Latches the low byte of the address during accesses to external  
memory. It is activated every six oscillator periods. During an external data memory  
access, one ALE pulse is skipped. ALE can drive up to eight LS TTL inputs and handles  
CMOS inputs without an external pull-up.  
49  
50  
I
External Access: When EA is held at TTL level high, the CPU executes out of the internal  
program ROM provided the program counter is less than 8192. When EA is held at TTL  
low level, the CPU executes out of external program memory. EA is not allowed to float.  
AV  
AV  
AV  
AV  
58  
59  
60  
61  
59  
60  
61  
63  
I
I
I
I
Analog to Digital Conversion Reference Resistor: Low-end.  
Analog to Digital Conversion Reference Resistor: High-end.  
Analog Ground  
REF–  
REF+  
SS  
Analog Power Supply  
DD  
NOTE:  
1. To avoid “latch-up” effect at power-on, the voltage on any pin at any time must not be higher or lower than V + 0.5 V or V – 0.5 V,  
DD  
SS  
respectively.  
service routine and continued), or by a hardware reset which starts  
the processor in the same manner as a power-on reset.  
OSCILLATOR CHARACTERISTICS  
XTAL1 and XTAL2 are the input and output, respectively, of an  
inverting amplifier. The pins can be configured for use as an on-chip  
oscillator, as shown in the logic symbol, page 2.  
POWER-DOWN MODE  
In the power-down mode, the oscillator is stopped and the  
instruction to invoke power-down is the last instruction executed.  
Only the contents of the on-chip RAM are preserved. A hardware  
reset is the only way to terminate the power-down mode. The control  
bits for the reduced power modes are in the special function register  
PCON. Table 1 shows the state of the I/O ports during low current  
operating modes.  
To drive the device from an external clock source, XTAL1 should be  
driven while XTAL2 is left unconnected. There are no requirements  
on the duty cycle of the external clock signal, because the input to  
the internal clock circuitry is through a divide-by-two flip-flop.  
However, minimum and maximum high and low times specified in  
the data sheet must be observed.  
RESET  
A reset is accomplished by holding the RST pin high for at least two  
machine cycles (24 oscillator periods), while the oscillator is running.  
To insure a good power-on reset, the RST pin must be high long  
enough to allow the oscillator time to start up (normally a few  
milliseconds) plus two machine cycles. At power-on, the voltage on  
ROM CODE PROTECTION (83C552)  
The 83C552 has an additional security feature. ROM code  
protection may be selected by setting a mask–programmable  
security bit (i.e., user dependent). This feature may be requested  
during ROM code submission. When selected, the ROM code is  
protected and cannot be read out at any time by any test mode or by  
any instruction in the external program memory space.  
V
DD  
and RST must come up at the same time for a proper start-up.  
IDLE MODE  
The MOVC instructions are the only instructions that have access to  
program code in the internal or external program memory. The EA  
input is latched during RESET and is “don’t care” after RESET  
(also if the security bit is not set). This implementation prevents  
reading internal program code by switching from external program  
memory to internal program memory during a MOVC instruction or  
any other instruction that uses immediate data.  
In the idle mode, the CPU puts itself to sleep while some of the  
on-chip peripherals stay active. The instruction to invoke the idle  
mode is the last instruction executed in the normal operating mode  
before the idle mode is activated. The CPU contents, the on-chip  
RAM, and all of the special function registers remain intact during  
this mode. The idle mode can be terminated either by any enabled  
interrupt (at which time the process is picked up at the interrupt  
Table 1. External Pin Status During Idle and Power-Down Modes  
PROGRAM  
MEMORY  
PWM0/  
PWM1  
MODE  
Idle  
ALE  
PSEN  
PORT 0  
Data  
PORT 1  
Data  
PORT 2  
Data  
PORT 3  
Data  
PORT 4  
Data  
Internal  
1
1
0
0
1
1
0
0
1
1
1
1
Idle  
External  
Internal  
Float  
Data  
Address  
Data  
Data  
Data  
Power-down  
Power-down  
Data  
Data  
Data  
Data  
External  
Float  
Data  
Data  
Data  
Data  
8
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
Serial Control Register (S1CON) – See Table 2  
CR2 ENS1 STA  
STO  
SI  
AA  
CR1 CR0  
S1CON (D8H)  
Bits CR0, CR1 and CR2 determine the serial clock frequency that is generated in the master mode of operation.  
Table 2. Serial Clock Rates  
BIT FREQUENCY (kHz) AT f  
OSC  
2
CR2  
CR1  
CR0  
6 MHZ  
12 MHz  
16 MHz  
24 MHz  
f
DIVIDED BY  
OSC  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
23  
27  
31  
37  
6.25  
50  
47  
54  
63  
75  
12.5  
62.5  
71  
83.3  
100  
17  
94  
107  
125  
150  
25  
200  
400  
256  
224  
192  
160  
960  
120  
60  
1
1
1
1
1
100  
200  
0.49 < 62.5  
0 < 254  
133  
267  
1
1
100  
0.24 < 62.5  
0 < 255  
0.65 < 55.6  
0 < 253  
0.98 < 50.0  
0 <251  
96 × (256 – (reload value Timer 1))  
reload value Timer 1 in Mode 2.  
NOTES:  
2
2
1. These frequencies exceed the upper limit of 100kHz of the I C-bus specification and cannot be used in an I C-bus application.  
2
2. At f  
= 24 MHz the maximum I C bus rate of 100kHz cannot be realized due to the fixed divider rates.  
OSC  
1, 2, 3  
ABSOLUTE MAXIMUM RATINGS  
PARAMETER  
RATING  
–65 to +150  
–0.5 to +6.5  
5.0  
UNIT  
°C  
Storage temperature range  
Voltage on any other pin to V  
V
SS  
Input, output DC current on any single I/O pin  
mA  
W
Power dissipation  
1.0  
(based on package heat transfer limitations, not device power consumption)  
NOTES:  
1. Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in the AC and DC Electrical Characteristics section  
of this specification is not implied.  
2. This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive static  
charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
3. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V unless otherwise  
SS  
noted.  
DEVICE SPECIFICATIONS  
SUPPLY VOLTAGE (V)  
FREQUENCY (MHz)  
TYPE  
MIN  
4.5  
4.5  
4.5  
4.5  
4.5  
MAX  
5.5  
5.5  
5.5  
5.5  
5.5  
MIN  
3.5  
3.5  
3.5  
3.5  
3.5  
MAX  
16  
TEMPERATURE RANGE (°C)  
0 to +70  
P83(0)C552EBx  
P83(0)C552EFx  
P83(0)C552EHx  
P83(0)C552IBx  
P83(0)C552IFx  
16  
–40 to +85  
16  
–40 to +125  
24  
0 to +70  
24  
–40 to +85  
9
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
DC ELECTRICAL CHARACTERISTICS  
V
SS  
, AV = 0 V; V , AV = 5 V ± 10%  
SS DD DD  
TEST  
LIMITS  
SYMBOL PARAMETER  
CONDITIONS  
MIN  
MAX  
UNIT  
I
I
I
Supply current operating:  
P83(0)C552EBx  
P83(0)C552EFx  
P83(0)C552EHx  
P83(0)C552IBx  
See notes 1 and 2  
DD  
f
f
f
f
f
= 16 MHz  
= 16 MHz  
= 16 MHz  
= 24 MHz  
= 24 MHz  
45  
45  
40  
55  
55  
mA  
mA  
mA  
mA  
mA  
OSC  
OSC  
OSC  
OSC  
OSC  
P83(0)C552IFx  
Idle mode:  
See notes 1 and 3  
ID  
P83(0)C552EBx  
P83(0)C552EFx  
P83(0)C552EHx  
P83(0)C552IBx  
P83(0)C552IFx  
f
f
f
f
f
= 16 MHz  
= 16 MHz  
= 16 MHz  
= 24 MHz  
= 24 MHz  
10  
10  
9
12.5  
12.5  
mA  
mA  
mA  
mA  
mA  
OSC  
OSC  
OSC  
OSC  
OSC  
Power-down current:  
See notes 1 and 4;  
2 V < V < V max  
PD  
PD  
DD  
P83(0)C552xBx  
P83(0)C552xFx  
P83(0)C552xHx  
50  
50  
150  
µA  
µA  
µA  
Inputs  
V
V
V
V
V
V
Input low voltage, except EA, P1.6, P1.7  
Input low voltage to EA  
–0.5  
–0.5  
–0.5  
0.2V –0.1  
V
V
IL  
DD  
0.2V –0.3  
IL1  
IL2  
IH  
DD  
5
Input low voltage to P1.6/SCL, P1.7/SDA  
0.3V  
V
DD  
Input high voltage, except XTAL1, RST, P1.6/SCL, P1.7/SDA  
Input high voltage, XTAL1, RST  
0.2V +0.9  
V
DD  
V
DD  
+0.5  
+0.5  
V
DD  
0.7V  
0.7V  
V
IH1  
IH2  
DD  
DD  
5
Input high voltage, P1.6/SCL, P1.7/SDA  
6.0  
V
I
I
Logical 0 input current, ports 1, 2, 3, 4, except P1.6, P1.7  
Logical 1-to-0 transition current, ports 1, 2, 3, 4, except P1.6, P1.7  
Input leakage current, port 0, EA, STADC, EW  
V
= 0.45 V  
–50  
–650  
10  
µA  
µA  
µA  
IL  
TL  
IN  
See note 6  
0.45 V < V < V  
DD  
±I  
±I  
±I  
IL1  
IL2  
IL3  
I
0 V < V < 6 V  
0 V < V < 5.5 V  
I
Input leakage current, P1.6/SCL, P1.7/SDA  
Input leakage current, port 5  
10  
1
µA  
µA  
DD  
0.45 V < V < V  
I
DD  
Outputs  
7
V
V
V
V
Output low voltage, ports 1, 2, 3, 4, except P1.6, P1.7  
Output low voltage, port 0, ALE, PSEN, PWM0, PWM1  
Output low voltage, P1.6/SCL, P1.7/SDA  
I
I
I
= 1.6mA  
= 3.2mA  
= 3.0mA  
0.45  
0.45  
0.4  
V
V
V
OL  
OL  
OL  
OL  
7
7
OL1  
OL2  
OH  
Output high voltage, ports 1, 2, 3, 4, except P1.6/SCL, P1.7/SDA  
–I = 60µA  
–I = 25µA  
–I = 10µA  
2.4  
V
V
V
OH  
0.75V  
OH  
DD  
DD  
0.9V  
OH  
–I = 400µA  
V
V
Output high voltage (port 0 in external bus mode, ALE,  
PSEN, PWM0, PWM1)  
2.4  
V
V
V
OH  
OH1  
8
–I = 150µA  
0.75V  
OH  
DD  
DD  
–I = 40µA  
OH  
0.9V  
Output high voltage (RST)  
–I = 400µA  
2.4  
0.8V  
V
V
OH2  
OH  
–I = 120µA  
OH  
DD  
R
C
Internal reset pull-down resistor  
Pin capacitance  
50  
150  
10  
kΩ  
RST  
IO  
Test freq = 1 MHz,  
pF  
T
= 25 °C  
amb  
10  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
DC ELECTRICAL CHARACTERISTICS (Continued)  
TEST  
CONDITIONS  
LIMITS  
SYMBOL  
PARAMETER  
MIN  
MAX  
UNIT  
Analog Inputs  
AI  
DD  
Analog supply current: operating: (16 MHz)  
Analog supply current: operating: (24 MHz)  
Port 5 = 0 to AV  
Port 5 = 0 to AV  
1.2  
1.0  
mA  
mA  
DD  
DD  
Idle mode:  
AI  
ID  
P83(0)C552EBx  
P83(0)C552EFx  
P83(0)C552EHx  
P83(0)C552IBx  
P83(0)C552IFx  
50  
50  
100  
50  
µA  
µA  
µA  
µA  
µA  
50  
Power-down mode:  
2 V < AV < AV  
AI  
PD  
PD  
DD  
max  
P83(0)C552xBx  
P83(0)C552xFx  
P83(0)C552xHx  
50  
50  
100  
µA  
µA  
µA  
AV  
AV  
Analog input voltage  
Reference voltage:  
AV –0.2  
AV +0.2  
V
IN  
SS  
DD  
REF  
AV  
AV  
AV –0.2  
V
V
REF–  
REF+  
SS  
AV +0.2  
DD  
R
C
Resistance between AV  
and AV  
REF–  
10  
50  
15  
kΩ  
pF  
REF  
REF+  
Analog input capacitance  
Sampling time  
IA  
t
t
8t  
CY  
µs  
ADS  
ADC  
Conversion time (including sampling time)  
50t  
µs  
CY  
10, 11, 12  
DL  
Differential non-linearity  
±1  
LSB  
LSB  
LSB  
%
e
10, 13  
IL  
e
Integral non-linearity  
±2  
±2  
10, 14  
OS  
Offset error  
e
10, 15  
G
Gain error  
±0.4  
±3  
e
10, 16  
A
e
Absolute voltage error  
LSB  
LSB  
dB  
M
CTC  
Channel to channel matching  
±1  
17  
C
Crosstalk between inputs of port 5  
0–100kHz  
–60  
t
NOTES FOR DC ELECTRICAL CHARACTERISTICS:  
1. See Figures 10 through 15 for I test conditions.  
DD  
2. The operating supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10 ns; V = V + 0.5 V;  
r
f
IL  
SS  
V
IH  
= V – 0.5 V; XTAL2 not connected; EA = RST = Port 0 = EW = V ; STADC = V  
.
DD  
DD  
SS  
3. The idle mode supply current is measured with all output pins disconnected; XTAL1 driven with t = t = 10 ns; V = V + 0.5 V;  
r
f
IL  
SS  
V
IH  
= V – 0.5 V; XTAL2 not connected; Port 0 = EW = V ; EA = RST = STADC = V  
.
DD  
DD  
SS  
4. The power-down current is measured with all output pins disconnected; XTAL2 not connected; Port 0 = EW = V  
;
DD  
EA = RST = STADC = XTAL1 = V  
.
SS  
2
5. The input threshold voltage of P1.6 and P1.7 (SIO1) meets the I C specification, so an input voltage below 1.5 V will be recognized as a  
logic 0 while an input voltage above 3.0 V will be recognized as a logic 1.  
6. Pins of ports 1 (except P1.6, P1.7), 2, 3, and 4 source a transition current when they are being externally driven from 1 to 0. The transition  
current reaches its maximum value when V is approximately 2 V.  
IN  
7. Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the V s of ALE and ports 1 and 3. The noise is due  
OL  
to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus operations. In the  
worst cases (capacitive loading > 100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be desirable to qualify  
ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. I can exceed these conditions provided that no  
OL  
single output sinks more than 5mA and no more than two outputs exceed the test conditions.  
8. Capacitive loading on ports 0 and 2 may cause the V on ALE and PSEN to momentarily fall below the 0.9 V specification when the  
OH  
DD  
address bits are stabilizing.  
9. The following condition must not be exceeded: V – 0.2 V < AV < V + 0.2 V.  
DD  
DD  
DD  
10.Conditions: AV  
= 0 V; AV = 5.0 V, AV  
(80C552, 83C552) = 5.12 V. ADC is monotonic with no missing codes. Measurement by  
REF–  
DD  
REF+  
continuous conversion of AV = –20 mV to 5.12 V in steps of 0.5 mV.  
IN  
11. The differential non-linearity (DL ) is the difference between the actual step width and the ideal step width. (See Figure 1.)  
e
12.The ADC is monotonic; there are no missing codes.  
13.The integral non-linearity (IL ) is the peak difference between the center of the steps of the actual and the ideal transfer curve after  
e
appropriate adjustment of gain and offset error. (See Figure 1.)  
11  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
14.The offset error (OS ) is the absolute difference between the straight line which fits the actual transfer curve (after removing gain error), and  
e
a straight line which fits the ideal transfer curve. (See Figure 1.)  
15.The gain error (G ) is the relative difference in percent between the straight line fitting the actual transfer curve (after removing offset error),  
e
and the straight line which fits the ideal transfer curve. Gain error is constant at every point on the transfer curve. (See Figure 1.)  
16.The absolute voltage error (A ) is the maximum difference between the center of the steps of the actual transfer curve of the non-calibrated  
e
ADC and the ideal transfer curve.  
17.This should be considered when both analog and digital signals are simultaneously input to port 5.  
Offset  
error  
Gain  
error  
OS  
e
G
e
1023  
1022  
1021  
1020  
1019  
1018  
(2)  
7
6
5
(1)  
Code  
Out  
(5)  
4
3
(4)  
(3)  
2
1
0
1 LSB  
(ideal)  
1
2
3
4
5
6
7
1018  
1019  
1020  
AV  
1021  
1022  
)
1023  
1024  
AV (LSB  
IN  
Offset  
error  
OS  
e
ideal  
AV  
(1)  
Example of an actual transfer curve.  
The ideal transfer curve.  
REF+  
REF–  
1 LSB =  
(2)  
(3)  
(4)  
(5)  
1024  
Differential non-linearity (DL ).  
e
Integral non-linearity (IL ).  
e
SU01693  
Center of a step of the actual transfer curve.  
Figure 1. ADC Conversion Characteristic  
12  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
1, 2  
AC ELECTRICAL CHARACTERISTICS  
16 MHz version  
16 MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
3.5  
16  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
85  
8
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
t
–55  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
28  
–35  
ns  
150  
83  
4t  
3t  
–100  
ns  
CLCL  
23  
t
–40  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
143  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–105  
ns  
CLCL  
0
0
ns  
38  
208  
10  
t
–25  
ns  
CLCL  
5t  
–105  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3
4
RD pulse width  
275  
275  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
CLCL  
WR pulse width  
6t  
CLCL  
3
RD low to valid data in  
Data hold after RD  
148  
5t  
–165  
CLCL  
3
0
0
3
Data float after RD  
55  
2t  
–70  
CLCL  
3
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data before WR  
350  
398  
238  
8t  
CLCL  
9t  
CLCL  
–150  
–165  
3
3, 4  
3, 4  
4
138  
120  
3
3t  
–50  
3t  
+50  
CLCL  
CLCL  
4t  
t
–130  
–60  
CLCL  
CLCL  
CLCL  
CLCL  
4
288  
13  
7t  
t
–150  
–50  
4
Data hold after WR  
WHQX  
RLAZ  
WHLH  
3
RD low to address float  
RD or WR high to ALE high  
0
0
3, 4  
23  
103  
t
–40  
t
+40  
CLCL  
CLCL  
External Clock  
4
t
t
t
t
5
5
5
5
High time  
20  
20  
20  
20  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
4
Low time  
4
Rise time  
20  
20  
20  
20  
4
Fall time  
4
Serial Timing – Shift Register Mode (Test Conditions: T  
= 0 °C to +70 °C; V = 0 V; Load Capacitance = 80 pF)  
SS  
amb  
t
t
t
t
t
6
6
6
6
6
Serial port clock cycle time  
0.75  
492  
8
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
–117  
0
0
492  
10t –133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
3. t  
= 1/f  
= 83.3ns at f  
= 62.5ns at f  
= one oscillator clock period.  
CLCL  
CLCL  
CLCL  
OSC  
t
t
= 12 MHz.  
= 16 MHz.  
OSC  
OSC  
4. These values are characterized but not 100% production tested.  
13  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
1, 2  
AC ELECTRICAL CHARACTERISTICS (Continued)  
24 MHz version  
24 MHz CLOCK  
VARIABLE CLOCK  
SYMBOL  
1/t  
FIGURE  
PARAMETER  
Oscillator frequency  
MIN  
MAX  
MIN  
MAX  
UNIT  
MHz  
ns  
2
2
2
2
2
2
2
2
2
2
2
2
3.5  
24  
CLCL  
t
t
t
t
t
t
t
t
t
t
t
ALE pulse width  
43  
17  
17  
2t  
–40  
LHLL  
CLCL  
Address valid to ALE low  
Address hold after ALE low  
ALE low to valid instruction in  
ALE low to PSEN low  
t
–25  
ns  
AVLL  
LLAX  
LLIV  
CLCL  
CLCL  
t
–25  
ns  
102  
65  
4t  
3t  
–65  
ns  
CLCL  
17  
80  
t
–25  
ns  
LLPL  
PLPH  
PLIV  
PXIX  
PXIZ  
AVIV  
PLAZ  
CLCL  
PSEN pulse width  
3t  
–45  
ns  
CLCL  
PSEN low to valid instruction in  
Input instruction hold after PSEN  
Input instruction float after PSEN  
Address to valid instruction in  
PSEN low to address float  
–60  
ns  
CLCL  
0
0
ns  
17  
128  
10  
t
–25  
ns  
CLCL  
5t  
–80  
ns  
CLCL  
10  
ns  
Data Memory  
t
t
t
t
t
t
t
t
t
t
t
t
t
t
3
4
RD pulse width  
150  
150  
6t  
–100  
–100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RLRH  
WLWH  
RLDV  
RHDX  
RHDZ  
LLDV  
AVDV  
LLWL  
AVWL  
QVWX  
DW  
CLCL  
WR pulse width  
6t  
CLCL  
3
RD low to valid data in  
Data hold after RD  
118  
5t  
2t  
–90  
–28  
CLCL  
3
0
0
3
Data float after RDxs  
ALE low to valid data in  
Address to valid data in  
ALE low to RD or WR low  
Address valid to WR low or RD low  
Data valid to WR transition  
Data before WR  
55  
CLCL  
3
183  
210  
175  
8t  
–150  
–165  
CLCL  
CLCL  
3
9t  
3, 4  
3, 4  
4
75  
92  
3t  
–50  
–75  
3t  
CLCL  
+50  
CLCL  
4t  
CLCL  
12  
t
CLCL  
7t  
CLCL  
t
CLCL  
–30  
4
162  
17  
–130  
–25  
4
Data hold after WR  
WHQX  
RLAZ  
WHLH  
3
RD low to address float  
RD or WR high to ALE high  
0
0
3, 4  
17  
67  
t
–25  
t
+25  
CLCL  
CLCL  
External Clock  
3
t
t
t
t
5
5
5
5
High time  
17  
17  
17  
17  
ns  
ns  
ns  
ns  
CHCX  
CLCX  
CLCH  
CHCL  
3
Low time  
3
Rise time  
5
5
20  
20  
3
Fall time  
3
Serial Timing – Shift Register Mode (Test Conditions: T  
= 0 °C to +70 °C; V = 0 V; Load Capacitance = 80 pF)  
SS  
amb  
t
t
t
t
t
6
6
6
6
6
Serial port clock cycle time  
0.5  
283  
23  
0
12t  
µs  
ns  
ns  
ns  
ns  
XLXL  
CLCL  
Output data setup to clock rising edge  
Output data hold after clock rising edge  
Input data hold after clock rising edge  
Clock rising edge to input data valid  
10t  
–133  
–60  
QVXH  
XHQX  
XHDX  
XHDV  
CLCL  
2t  
CLCL  
0
283  
10t  
–133  
CLCL  
NOTES:  
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
3. These values are characterized but not 100% production tested.  
4. t  
t
= 1/f  
= 41.7ns at f  
= one oscillator clock period.  
CLCL  
CLCL  
OSC  
= 24 MHz.  
OSC  
14  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
AC ELECTRICAL CHARACTERISTICS (Continued)  
SYMBOL  
PARAMETER  
INPUT  
OUTPUT  
2
I C Interface (Refer to Figure 9)  
1
t
t
t
t
t
t
t
t
t
t
t
t
t
t
START condition hold time  
14 t  
> 4.0 µs  
HD;STA  
LOW  
CLCL  
CLCL  
CLCL  
1
SCL low time  
16 t  
14 t  
> 4.7 µs  
1
SCL high time  
> 4.0 µs  
HIGH  
2
SCL rise time  
1 µs  
RC  
3
SCL fall time  
0.3 µs  
250ns  
250ns  
250ns  
0ns  
< 0.3 µs  
FC  
Data set-up time  
> 20 t  
– t  
SU;DAT1  
SU;DAT2  
SU;DAT3  
HD;DAT  
SU;STA  
SU;STO  
BUF  
CLCL  
RD  
1
SDA set-up time (before rep. START cond.)  
SDA set-up time (before STOP cond.)  
Data hold time  
> 1 µs  
> 8 t  
CLCL  
> 8 t  
– t  
CLCL  
FC  
1
Repeated START set-up time  
STOP condition set-up time  
Bus free time  
14 t  
14 t  
14 t  
> 4.7 µs  
> 4.0 µs  
> 4.7 µs  
CLCL  
CLCL  
CLCL  
1
1
2
SDA rise time  
1 µs  
0.3 µs  
RD  
3
SDA fall time  
< 0.3 µs  
FD  
NOTES:  
1. At 100 kbit/s. At other bit rates this value is inversely proportional to the bit-rate of 100 kbit/s.  
2. Determined by the external bus-line capacitance and the external bus-line pull-resistor, this must be < 1 µs.  
3. Spikes on the SDA and SCL lines with a duration of less than 3 t  
SCL = 400 pF.  
will be filtered out. Maximum capacitance on bus-lines SDA and  
CLCL  
4. t  
= 1/f  
= one oscillator clock period at pin XTAL1. For 62 ns, 42 ns < t  
< 285 ns (16 MHz, 24 MHz > f  
> 3.5 MHz) the SI01  
CLCL  
OSC  
CLCL  
OSC  
2
interface meets the I C-bus specification for bit-rates up to 100 kbit/s.  
15  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
EXPLANATION OF THE AC SYMBOLS  
Each timing symbol has five characters. The first character is always  
Q – Output data  
R – RD signal  
‘t’ (= time). The other characters, depending on their positions,  
indicate the name of a signal or the logical status of that signal. The  
t – Time  
designations are:  
A – Address  
V – Valid  
W – WR signal  
C – Clock  
D – Input data  
H – Logic level high  
X – No longer a valid logic level  
Z – Float  
Examples: t  
= Time for address valid to  
AVLL  
I
– Instruction (program memory contents)  
ALE low.  
L – Logic level low, or ALE  
P – PSEN  
t
= Time for ALE low to  
PSEN low.  
LLPL  
t
LHLL  
ALE  
t
PLPH  
t
t
LLPL  
AVLL  
t
LLIV  
PSEN  
t
PLIV  
t
PLAZ  
t
PXIZ  
t
LLAX  
t
PXIX  
A0–A7  
INSTR IN  
A0–A7  
PORT 0  
PORT 2  
t
AVIV  
A8–A15  
A8–A15  
SU01694  
Figure 2. External Program Memory Read Cycle  
ALE  
PSEN  
RD  
t
WHLH  
t
LLDV  
t
t
LLWL  
RLRH  
t
RHDZ  
t
LLAX  
t
t
RLDV  
AVLL  
t
t
RLAZ  
RHDX  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA IN  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
t
AVDV  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
SU01695  
Figure 3. External Data Memory Read Cycle  
16  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
ALE  
t
WHLH  
PSEN  
t
t
WLWH  
LLWL  
WR  
t
t
t
LLAX  
WHQX  
t
AVLL  
QVWX  
t
DW  
A0–A7  
FROM RI OR DPL  
PORT 0  
PORT 2  
DATA OUT  
A0–A7 FROM PCL  
INSTR IN  
t
AVWL  
P2.0–P2.7 OR A8–A15 FROM DPH  
A8–A15 FROM PCH  
SU01696  
Figure 4. External Data Memory Write Cycle  
t
r
t
f
t
HIGH  
V
0.8 V  
V
IH1  
0.8 V  
V
0.8 V  
V
IH1  
0.8 V  
IH1  
IH1  
t
LOW  
t
SU01697  
CLCL  
Figure 5. External Clock Drive XTAL1  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
t
QVXH  
OUTPUT DATA  
0
1
2
3
4
5
6
7
WRITE TO SBUF  
t
t
XHDX  
XHDV  
SET TI  
VALID  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
SU01678  
Figure 6. Shift Register Mode Timing  
17  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
V
–0.5  
DD  
V
+0.1 V  
–0.1 V  
V
V
–0.1 V  
TIMING  
REFERENCE  
POINTS  
LOAD  
OH  
0.2 V  
0.2 V  
+0.9  
–0.1  
DD  
V
LOAD  
DD  
V
+0.1 V  
LOAD  
OL  
0.45 V  
NOTE:  
NOTE:  
AC INPUTS DURING TESTING ARE DRIVEN AT V  
FOR TIMING PURPOSES, A PORT IS NO LONGER FLOATING WHEN A 100MV  
CHANGE FROM LOAD VOLTAGE OCCURS, AND BEGINS TO FLOAT WHEN A  
100 mV CHANGE FROM THE LOADED V  
20mA.  
–0.5 FOR A LOGIC ‘1’ AND  
DD  
0.45 V FOR A LOGIC ‘0’. TIMING MEASUREMENTS ARE MADE AT V MIN FOR A  
IH  
/V  
OH OL  
LEVEL OCCURS. I  
/I > +  
OH OL  
LOGIC ‘1’ AND V MAX FOR A LOGIC ‘0’.  
IL  
SU01700  
SU01699  
Figure 7. AC Testing Input/Output  
Figure 8. Float Waveform  
repeated START condition  
STOP condition  
START or repeated START condition  
START condition  
t
SU;STA  
t
RD  
SDA  
(INPUT/OUTPUT)  
0.7 V  
CC  
0.3 V  
CC  
t
BUF  
t
t
t
FC  
FD  
RC  
t
SU;STO  
0.7 V  
CC  
SCL  
(INPUT/OUTPUT)  
0.3 V  
CC  
t
SU;DAT3  
t
t
t
t
SU;DAT1  
t
t
SU;DAT2  
SU01701  
HD;STA  
LOW  
HIGH  
HD;DAT  
2
Figure 9. Timing SIO1 (I C) Interface  
18  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
50  
40  
30  
(1)  
(2)  
I
, I mA  
D
DD  
20  
(3)  
(4)  
10  
0
0
4
8
12  
16  
(1)  
Maximum operating mode; V  
Maximum operating mode; V  
= 6 V  
= 4 V  
DD  
DD  
(2)  
(3)  
(4)  
f (MHz)  
Maximum idle mode; V  
Maximum idle mode; V  
= 6 V  
DD  
DD  
NOTE:  
These values are valid only within the frequency specifications of the device under test.  
= 4 V  
SU01702  
Figure 10. 16 MHz Version Supply Current (I ) as a Function of Frequency at XTAL1 (f  
)
DD  
OSC  
60  
(1)  
50  
(2)  
40  
30  
I
, I mA  
D
DD  
20  
10  
0
(3)  
(4)  
0
4
8
12  
16  
20  
24  
f (MHz)  
(1)  
5.5 V  
Maximum operating mode; V  
Maximum operating mode; V  
=
=
DD  
DD  
(2)  
4.5 V  
(3)  
Maximum idle mode; V  
Maximum idle mode; V  
= 5.5 V  
= 4.5 V  
NOTE:  
These values are valid only within the frequency specifications of the device under test.  
DD  
DD  
(4)  
SU01703  
Figure 11. 24 MHz Version Supply Current (I ) as a Function of Frequency at XTAL1 (f  
)
DD  
OSC  
19  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
V
V
DD  
DD  
I
DD  
P1.6  
P1.7  
V
DD  
P0  
V
–0.5  
DD  
0.5 V  
V
V
DD  
DD  
0.7V  
DD  
–0.1  
0.2V  
DD  
t
CHCX  
RST  
t
t
CHCL  
t
CLCX  
CLCH  
EA  
STADC  
EW  
(NC)  
CLOCK SIGNAL  
XTAL2  
XTAL1  
t
CLCL  
AV  
SS  
V
SS  
AV  
ref–  
SU01706  
SU01704  
Figure 12. I Test Condition, Active Mode  
DD  
1
Figure 14. Clock Signal Waveform for I Tests in Active and  
DD  
All other pins are disconnected  
Idle Modes t  
= t  
= 5ns  
CHCL  
CLCH  
V
V
DD  
DD  
V
V
DD  
I
DD  
DD  
I
DD  
P1.6  
P1.6  
P1.7  
P1.7  
V
DD  
V
DD  
RST  
V
DD  
V
RST  
DD  
STADC  
STADC  
P0  
P0  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
EW  
EA  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
AV  
SS  
AV  
V
SS  
SS  
AV  
V
ref–  
SS  
AV  
ref–  
SU01705  
SU01707  
Figure 13. I Test Condition, Idle Mode  
DD  
2
All other pins are disconnected  
Figure 15. I Test Condition, Power Down Mode  
DD  
3
All other pins are disconnected. V = 2 V to 5.5 V  
DD  
NOTES:  
1. Active Mode:  
a. The following pins must be forced to V : EA, RST, Port 0, and EW.  
DD  
b. The following pins must be forced to V : STADC, AV , and AV .  
ref–  
SS  
ss  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
2. Idle Mode:  
a. The following pins must be forced to V : Port 0 and EW.  
DD  
b. The following pins must be forced to V : RST, STADC, AV ,, AV , and EA.  
SS  
ss  
ref–  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins. These pins must not have logic 0 written to them prior to this measurement.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
3. Power Down Mode:  
a. The following pins must be forced to V : Port 0 and EW.  
DD  
b. The following pins must be forced to V : RST, STADC, XTAL1, AV ,, AV , and EA.  
SS  
ss  
ref–  
c. Ports 1.6 and 1.7 should be connected to V through resistors of sufficiently high value such that the sink current into these pins cannot  
DD  
exceed the I  
spec of these pins. These pins must not have logic 0 written to them prior to this measurement.  
OL1  
d. The following pins must be disconnected: XTAL2 and all pins not specified above.  
20  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
PLCC68: plastic leaded chip carrier; 68 leads  
SOT188-2  
21  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
QFP80: plastic quad flat package; 80 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm  
SOT318-2  
22  
2002 Sep 03  
Philips Semiconductors  
Product data  
Single-chip 8-bit microcontroller with 10-bit A/D,  
capture/compare timer, high-speed outputs, PWM  
80C552/83C552  
2
2
Purchase of Philips I C components conveys a license under the Philips’ I C patent  
2
to use the components in the I C system provided the system conforms to the  
I C specifications defined by Philips. This specification can be ordered using the  
2
code 9398 393 40011.  
Data sheet status  
Product  
status  
Definitions  
[1]  
Data sheet status  
[2]  
Objective data  
Development  
This data sheet contains data from the objective specification for product development.  
Philips Semiconductors reserves the right to change the specification in any manner without notice.  
Preliminary data  
Qualification  
Production  
This data sheet contains data from the preliminary specification. Supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to change the specification  
without notice, in order to improve the design and supply the best possible product.  
Product data  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply.  
Changes will be communicated according to the Customer Product/Process Change Notification  
(CPCN) procedure SNW-SQ-650A.  
[1] Please consult the most recently issued data sheet before initiating or completing a design.  
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL  
http://www.semiconductors.philips.com.  
Definitions  
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one  
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or  
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended  
periods may affect device reliability.  
Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips  
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or  
modification.  
Disclaimers  
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications  
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.  
RighttomakechangesPhilipsSemiconductorsreservestherighttomakechanges, withoutnotice, intheproducts, includingcircuits,standard  
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Koninklijke Philips Electronics N.V. 2002  
Contact information  
All rights reserved. Printed in U.S.A.  
For additional information please visit  
http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
Date of release: 09-02  
9397 750 10294  
For sales offices addresses send e-mail to:  
sales.addresses@www.semiconductors.philips.com.  
Document order number:  
Philips  
Semiconductors  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY