P87C51MB2BA/02 [NXP]

IC 8-BIT, OTPROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, MS-018, SOT-187-2, LCC-44, Microcontroller;
P87C51MB2BA/02
型号: P87C51MB2BA/02
厂家: NXP    NXP
描述:

IC 8-BIT, OTPROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, MS-018, SOT-187-2, LCC-44, Microcontroller

可编程只读存储器 时钟 PC 微控制器 外围集成电路
文件: 总36页 (文件大小:964K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P87C51MB2/P87C51MC2  
80C51 8-bit microcontroller family with extended memory;  
64 kB/96 kB OTP with 2 kB/3 kB RAM  
Rev. 03 — 13 November 2003  
Product data  
1. General description  
The P87C51Mx2 represents the first microcontroller based on Philips  
Semiconductors’ new 51MX core. The P87C51MC2 features 96 kbytes of OTP  
program memory and 3 kbytes of data SRAM, while the P87C51MB2 has 64 kbytes  
of OTP and 2 kbytes of RAM. In addition, both devices are equipped with a  
Programmable Counter Array (PCA), a watchdog timer that can be configured to  
different time ranges through SFR bits, as well as two enhanced UARTs and Serial  
Peripheral Interface (SPI).  
Philips Semiconductors’ 51MX (Memory eXtension) core is an accelerated 80C51  
architecture that executes instructions at twice the rate of standard 80C51 devices.  
The linear address range of the 51MX has been expanded to support up to 8 Mbytes  
of program memory and 8 Mbytes of data memory. It retains full program code  
compatibility to enable design engineers to re-use 80C51 development tools,  
eliminating the need to move to a new, unfamiliar architecture. The 51MX core also  
retains 80C51 bus compatibility to allow for the continued use of 80C51-interfaced  
peripherals and Application Specific Integrated Circuits (ASICs).  
The P87C51Mx2 provides greater functionality, increased performance and overall  
lower system cost. By offering an embedded memory solution combined with the  
enhancements to manage the memory extension, the P87C51Mx2 eliminates the  
need for software work-around. The increased program memory enables design  
engineers to develop more complex programs in a high-level language like C, for  
example, without struggling to contain the program within the traditional 64 kbytes of  
program memory. These enhancements also greatly improve C Language efficiency  
for code size below 64 kbytes.  
The 51MX core is described in more detail in the 51MX Architecture Reference.  
2. Features  
2.1 Key features  
Extended features of the 51MX Core:  
23-bit program memory space and 23-bit data memory space  
Linear program and data address range expanded to support up to 8 Mbytes  
each  
Program counter expanded to 23 bits  
Stack pointer extended to 16 bits enabling stack space beyond the 80C51  
limitation  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
New 23-bit extended data pointer and two 24-bit universal pointers greatly  
improve C compiler code efficiency in using pointers to access variables in  
different spaces  
100% binary compatibility with the classic 80C51 so that existing code is  
completely reusable  
Up to 24 MHz CPU clock with 6 clock cycles per machine cycle  
96 kbytes (MC2) or 64 kbytes (MB2) of on-chip OTP  
3 kbytes (MC2) or 2 kbytes (MB2) of on-chip RAM  
Programmable Counter Array (PCA)  
Two full-duplex enhanced UARTs and Serial Peripheral Interface (SPI)  
communication modules  
2.2 Key benefits  
Increases program/data address range to 8 Mbytes each  
Enhances performance and efficiency for C programs  
Fully 80C51-compatible microcontroller  
Provides seamless and compelling upgrade path from classic 80C51  
Preserves 80C51 code base, investment/knowledge, and peripherals & ASICs  
Supported by wide range of 80C51 development systems and programming tools  
vendors  
The P87C51Mx2 makes it possible to develop applications at lower cost and with  
a reduced time-to-market  
2.3 Complete features  
Fully static  
Up to 24 MHz CPU clock with 6 clock cycles per machine cycle  
96 kbytes or 64 kbytes of on-chip OTP  
3 kbytes or 2 kbytes of on-chip RAM  
23-bit program memory space and 23-bit data memory space  
Four-level interrupt priority  
34 I/O lines (5 ports)  
Three Timers: Timer0, Timer1 and Timer2  
Two full-duplex enhanced UARTs with baud rate generator  
Framing error detection  
Automatic address recognition  
Supports industry-standard Serial Peripheral Interface (SPI) with a baud rate up to  
6 Mbits/s  
Power control modes  
Clock can be stopped and resumed  
Idle mode  
Power down mode with advanced clock control  
Second DPTR register  
Asynchronous port reset  
Programmable Counter Array (PCA) (compatible with 8xC51Rx+) with five  
Capture/Compare modules  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
2 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Low EMI (inhibit ALE)  
Watchdog timer with programmable prescaler for different time ranges  
(compatible with 8xC66x with added prescaler)  
3. Differences between P87C51MX2/02 part and previous revisions of  
P87C51MX2  
The P87C51MX2/02 offers several advantages over the previous generation of  
P87C51MX2 parts. Right now, SPI module is available, two more general purpose  
digital pins on P4 are present and additional power control features are implemented  
(advanced peripheral clock control). New memory interface mode and code size  
optimization options are available with the use of MXCON register.  
No changes are necessary when porting and loading code written for existing  
P87C51MX2 to the new P87C51MX2/02.  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Memory  
Temp  
VDD voltage Frequency  
Package  
Range range  
(°C)  
OTP RAM  
VDD = 2.7 VDD = 4.5 Name  
Description Version  
to 5.5 V  
to 5.5 V  
P87C51MB2BA/02 64 kB 2048 B 0 to +70 2.7 to 5.5 V 0 to  
12 MHz  
0 to  
24 MHz  
PLCC44 plastic leaded SOT187-2  
chip carrier;  
44 leads  
P87C51MC2BA/02 96 kB 3072 B 0 to +70 2.7 to 5.5 V 0 to  
12 MHz  
0 to  
24 MHz  
PLCC44 plastic leaded SOT187-2  
chip carrier;  
44 leads  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
3 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
5. Block diagram  
HIGH PERFORMANCE  
80C51 CPU  
(51 MX CORE)  
96kB/64kB  
CODE EPROM  
UART 0  
internal bus  
BAUD RATE  
3kB/2kB  
GENERATOR  
DATA RAM  
UART 1  
PORT 4  
PORT 3  
SPI  
TIMER 0  
TIMER 1  
PORT 2  
PORT 1  
TIMER 2  
PCA (PROGRAMMABLE  
COUNTER ARRAY)  
PORT 0  
CONFIGURABLE I/Os  
CRYSTAL OR  
RESONATOR  
OSCILLATOR  
WATCHDOG TIMER  
002aaa148  
Fig 1. Block diagram.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
4 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
6. Functional diagram  
V
V
SS  
DD  
T2  
T2EX  
ECI  
CEX0  
CEX1  
CEX2  
CEX3  
CEX4  
Address bus 0-7  
Data Bus  
MOSI  
SPICLK  
RXD0  
TXD0  
INT0  
INT1  
T0  
Address Bus 16-22  
P87C51Mx2  
T1  
WR  
RD  
MISO  
SS  
RXD1  
TXD1  
RST  
XTAL2  
XTAL1  
EA/V  
PP  
PSEN  
ALE/PROG  
002aaa147  
Fig 2. Functional diagram.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
5 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
7. Pinning information  
7.1 Pinning  
P1.5/CEX2/SPICLK  
P1.6/CEX3  
7
8
9
39 P0.4/AD4  
38 P0.5/AD5  
37 P0.6/AD6  
36 P0.7/AD7  
P1.7/CEX4  
RST 10  
P3.0/RXD0 11  
P4.0/RXD1/MIS0 12  
P3.1/TXD0 13  
P3.2/INT0 14  
35 EA/V  
PP  
P87C51MB2/  
P87C51MC2  
34 P4.1/TXD1/SS  
33 ALE  
32 PSEN  
P3.3/INT1 15  
31 P2.7/A15  
30 P2.6/A14/A22  
29 P2.5/A13/A21  
P3.4/T0 16  
P3.5/T1 17  
002aaa165  
Fig 3. Pinning.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
6 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
7.2 Pin description  
Table 2:  
Pin description  
Symbol  
Pin  
Type  
Description  
P0.0 - P0.7  
43 - 36  
I/O  
Port 0: Port 0 is an open drain, bidirectional I/O port. Port 0 pins that have 1s  
written to them float and can be used as high-impedance inputs. Port 0 is also  
the multiplexed low-order address and data bus during accesses to external  
program and data memory. In this application, it uses strong internal pull-ups  
when emitting 1s.  
P1.0 - P1.7  
2 - 9  
I/O  
Port 1: Port 1 is an 8-bit bidirectional I/O port with internal pull-ups on all pins.  
Port 1 pins that have 1s written to them are pulled HIGH by the internal pull-ups  
and can be used as inputs. As inputs, port 1 pins that are externally pulled LOW  
will source current because of the internal pull-ups.  
2
3
4
5
6
I/O  
I
P1.0, T2  
Timer/Counter 2 external count input/Clock out  
P1.1, T2EX  
Timer/Counter 2 Reload/Capture/Direction Control  
I
P1.2, ECI  
External Clock Input to the PCA  
I/O  
I/O  
I/O  
P1.3, CEX0  
Capture/Compare External I/O for PCA module 0  
P1.4, CEX1  
Capture/Compare External I/O for PCA module 1 (with pull-up on pin)  
MOSI  
SPI Master Out/Slave In (Selected when SPEN (SPCTL.6) is ‘1’, in which  
case the pull-up for this pin is disabled)  
7
I/O  
I/O  
P1.5, CEX2  
Capture/Compare External I/O for PCA module 2 (with pull-up on pin)  
SPICLK  
SPI Clock (Selected when SPEN (SPCTL.6) is ‘1’, in which case the  
pull-up for this pin is disabled)  
8
9
I/O  
I/O  
P1.6, CEX3  
Capture/Compare External I/O for PCA module 3  
P1.7, CEX4  
Capture/Compare External I/O for PCA module  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
7 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 2:  
Pin description…continued  
Symbol  
Pin  
Type  
Description  
P2.0 - P2.7  
24 - 31  
I/O  
Port 2: Port 2 is a 8-bit bidirectional I/O port with internal pull-ups on all pins.  
Port 2 pins that have 1s written to them are pulled HIGH by the internal pull-ups  
and can be used as inputs. As inputs, port 2 pins that are externally being pulled  
LOW will source current because of the internal pull-ups. (See Section 10  
“Static characteristics”, IIL). Port 2 emits the high-order address byte during  
fetches from external program memory and during accesses to external data  
memory that use 16-bit addresses (MOVX @ DPTR) or 23-bit addresses  
(MOVX @EPTR, EMOV). In this application, it uses strong internal pull-ups  
when emitting 1s. During accesses to external data memory that use 8-bit  
addresses (MOV @ Ri), port 2 emits the contents of the P2 Special Function  
Register.  
Note that when 23-bit address is used, address bits A16-A22 will be outputted  
to P2.0-P2.6 when ALE is HIGH, and address bits A8-A14 are outputted to  
P2.0-P2.6 when ALE is LOW. Address bit A15 is outputted on P2.7 regardless  
of ALE.  
P3.0 - P3.7  
11,13 -19 I/O  
Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. Port 3 pins  
that have 1s written to them are pulled HIGH by the internal pull-ups and can be  
used as inputs. As inputs, port 3 pins that are externally pulled LOW will source  
current because of the internal pull-ups.  
11  
I
P3.0, RXD0  
Serial input port 0  
13  
O
I
P3.1, TXD0  
Serial output port 0  
P3.2, INT0  
14  
External interrupt 0  
15  
I
P3.3, INT1  
External interrupt 1  
P3.4, T0  
16  
I
Timer0 external input  
17  
I
P3.5, T1  
Timer1 external input  
P3.6, WR  
18  
O
O
I/O  
External data memory write strobe  
19  
P3.7, RD  
External data memory read strobe  
P4.0 - P4.1  
12,34  
Port 4: Port 4 is an 2-bit bidirectional I/O port with internal pull-ups on all pins.  
Port 4 pins that have 1s written to them are pulled HIGH by the internal pull-ups  
and can be used as inputs. As inputs, port 4 pins that are externally pulled LOW  
will source current because of the internal pull-ups. As inputs, port 4 pins that  
are externally pulled LOW will source current because of the internal pull-ups.  
(Note: When SPEN, i.e.,SPCTL.6, is ’1’, the pull-ups at these port pins are  
disabled.)  
12  
I
P4.0, RXD1  
Serial input port 1 (with pull-up on pin)  
I/O  
MISO  
SPI Master In/Slave Out (Selected when SFR bit SPEN (SPCTL.6) is ‘1’,  
in which case the pull-up for this pin is disabled)  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
8 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 2:  
Symbol  
Pin description…continued  
Pin  
Type  
Description  
34  
O
P4.1, TXD1  
Serial output port 1 (with pull-up on pin)  
I/O  
SS  
SPI Slave Select (Selected when SPEN (SPCTL.6) is ‘1’, in which case  
the pull-up for this pin is disabled)  
RST  
ALE  
10  
33  
I
Reset: A HIGH on this pin for two machine cycles, while the oscillator is  
running, resets the device. An internal diffused resistor to VSS permits a  
power-on reset using only an external capacitor to VDD  
.
O
Address Latch Enable: Output pulse for latching the LOW byte of the address  
during an access to external memory. In normal operation, ALE is emitted at a  
constant rate of 16 the oscillator frequency, and can be used for external timing  
or clocking. Note that one ALE pulse is skipped during each access to external  
data memory. ALE can be disabled by setting SFR AUXR.0. With this bit is set,  
ALE will be active only during a MOVX/EMOV/MOVC instruction.  
PSEN  
EA/VPP  
XTAL1  
32  
35  
21  
O
Program Store Enable: The read strobe to external program memory. When  
executing code from the external program memory, PSEN is activated twice  
each machine cycle, except that two PSEN activations are skipped during each  
access to external data memory. PSEN is not activated during fetches from  
internal program memory.  
I
External Access Enable/Programming Supply Voltage: EA must be  
externally held LOW to enable the device to fetch code from external program  
memory locations. If EA is held HIGH, the device executes from internal  
program memory. The value on the EA pin is latched when RST is released and  
any subsequent changes have no effect.  
I
Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock  
generator circuits.  
XTAL2  
VSS  
20  
22  
44  
O
I
Crystal 2: Output from the inverting oscillator amplifier.  
Ground: 0 V reference.  
VDD  
I
Power Supply: This is the power supply voltage for normal operation as well as  
Idle and Power Down modes.  
(NC/VSS  
)
1
I
No Connect/Ground: This pin is internally connected to VSS on the  
P87C51MB2/MC2. If connected externally, this pin must only be connected to  
the same VSS as at pin 22. (Note: Connecting the second pair of VSS and VDD  
pins is not required. However, they may be connected in addition to the primary  
VSS and VDD pins to improve power distribution, reduce noise in output signals,  
and improve system-level EMI characteristics.)  
(NC/VDD  
)
23  
I
No Connect/Power Supply: This pin is internally connected to VDD on the  
P87C51MB2/MC2. If connected externally, this pin must only be connected to  
the same VDD as at pin 44. (Note: Connecting the second pair of VSS and VDD  
pins is not required. However, they may be connected in addition to the primary  
VSS and VDD pins to improve power distribution, reduce noise in output signals,  
and improve system-level EMI characteristics.)  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
9 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
8. Functional description  
8.1 Memory arrangement  
P87C51MB2 has 64 kbytes of OTP (MX universal map range: 80:0000-80:FFFF),  
while P87C51MC2 has 96 kbytes of OTP (MX universal map range:  
80:0000-81:7FFF).  
The P87C51MB2 and P87C51MC2 have 2 kbytes and 3 kbytes of on-chip RAM  
respectively:  
Table 3:  
Memory arrangement  
Data memory  
Size (bytes) and MX universal memory  
map range  
Type  
Description  
P87C51MB2  
P87C51MC2  
128  
DATA  
memory that can be addressed both 128  
directly and indirectly; can be used as (7F:0000-7F:007F)  
stack  
(7F:0000-7F:001F)  
IDATA  
superset of DATA; memory that can  
be addressed indirectly (where direct  
address for upper half is for SFR  
only); can be used as stack  
256  
256  
(7F:0000-7F:00FF)  
(7F:0000-7F:00FF)  
EDATA superset of DATA/IDATA; memory that 512  
can be addressed indirectly using  
512  
(7F:0000-7F:01FF)  
(7F:0000-7F:01FF)  
Universal Pointers (PR0,1); can be  
used as stack  
XDATA memory (on-chip ‘External Data’) that 1536  
is accessed via the MOVX/EMOV  
2560  
(00:0000-00:05FF)  
(00:0000-00:09FF)  
instructions using DPTR/EPTR  
For more detailed information, please refer to the P87C51Mx2 User Manual or the  
51MX Architecture Specification.  
8.2 Special Function Registers  
Special Function Register (SFR) accesses are restricted in the following ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the  
SFRs.  
SFR bits labeled ‘-’, ‘0’, or ‘1’ can only be written and read as follows:  
‘-’ MUST be written with ‘0’, but can return any value when read (even if it was  
written with ‘0’). It is a reserved bit and may be used in future derivatives.  
‘0’ MUST be written with ‘0’, and will return a ‘0’ when read.  
‘1’ MUST be written with ‘1’, and will return a ‘1’ when read.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
10 of 36  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4:  
Name  
Special Function Registers  
Description  
SFR  
Addr.  
Bit functions and addresses  
MSB  
Reset  
value  
LSB  
E0  
Bit address E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC[1]  
Accumulator  
E0H  
00H  
AUXR[2]  
AUXR1[2]  
Auxiliary Function Register  
Auxiliary Function Register 1  
8EH  
A2H  
-
-
-
-
-
-
-
EXTRAM AO  
00H[6]  
00H[6]  
-
-
LPEP  
GF2  
F3  
0
-
DPS  
F0  
Bit address F7  
F6  
F5  
F4  
F2  
F1  
B[1]  
B Register  
F0H  
00H  
BRGCON[2] Baud Rate Generator Control  
85H[3]  
-
-
-
-
-
-
S0BRGS BRGEN  
00H[6]  
BRGR0[2][5] Baud Rate Generator Rate LOW 86H[3]  
00H  
BRGR1[2][5] Baud Rate Generator Rate  
HIGH  
87H[3]  
00H  
CCAP0H[2] Module 0 Capture HIGH  
CCAP1H[2] Module 1 Capture HIGH  
CCAP2H[2] Module 2 Capture HIGH  
CCAP3H[2] Module 3 Capture HIGH  
CCAP4H[2] Module 4 Capture HIGH  
FAH  
FBH  
FCH  
FDH  
FEH  
EAH  
EBH  
ECH  
EDH  
EEH  
DAH  
DBH  
DCH  
DDH  
DEH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
XXH  
CCAP0L[2]  
CCAP1L[2]  
CCAP2L[2]  
CCAP3L[2]  
CCAP4L[2]  
Module 0 Capture LOW  
Module 1 Capture LOW  
Module 2 Capture LOW  
Module 3 Capture LOW  
Module 4 Capture LOW  
CCAPM0[2] Module 0 Mode  
CCAPM1[2] Module 1 Mode  
CCAPM2[2] Module 2 Mode  
CCAPM3[2] Module 3 Mode  
CCAPM4[2] Module 4 Mode  
-
-
-
-
-
ECOM_0 CAPP_0 CAPN_0 MAT_0  
ECOM_1 CAPP_1 CAPN_1 MAT_1  
ECOM_2 CAPP_2 CAPN_2 MAT_2  
ECOM_3 CAPP_3 CAPN_3 MAT_3  
ECOM_4 CAPP_4 CAPN_4 MAT_4  
TOG_0  
TOG_1  
TOG_2  
TOG_3  
TOG_4  
DA  
PWM_0  
PWM_1  
PWM_2  
PWM_3  
PWM_4  
D9  
ECCF_0 00H[6]  
ECCF_1 00H[6]  
ECCF_2 00H[6]  
ECCF_3 00H[6]  
ECCF_4 00H[6]  
D8  
Bit address DF  
DE  
DD  
DC  
DB  
CCON[1] [2]  
CH[2]  
CL[2]  
PCA Counter Control  
D8H  
F9H  
E9H  
D9H  
CF  
CR  
-
CCF4  
CCF3  
CCF2  
CCF1  
CCF0  
00H[6]  
PCA Counter HIGH  
PCA Counter LOW  
PCA Counter Mode  
00H  
00H  
00H[6]  
CMOD[2]  
CIDL  
WDTE  
-
-
-
CPS1  
CPS0  
ECF  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4:  
Name  
Special Function Registers…continued  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset  
value  
Addr.  
LSB  
DPTR  
DPH  
Data Pointer (2 bytes)  
00H  
00H  
00H  
Data Pointer HIGH  
83H  
82H  
DPL  
Data Pointer LOW  
EPTR  
EPL[2]  
EPM[2]  
EPH[2]  
Extended Data Pointer (3 bytes)  
Extended Data Pointer LOW  
Extended Data Pointer Middle  
Extended Data Pointer HIGH  
FCH[3]  
FDH[3]  
FEH[3]  
00H  
00H  
00H  
Bit address AF  
A8H EA  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
IEN0[1]  
IEN1[1]  
Interrupt Enable 0  
Interrupt Enable 1  
Interrupt Priority  
EC  
ET2  
ES0/  
ES0R  
EC  
ET1  
EX1  
ET0  
EX0  
00H  
Bit address EF  
E8H  
EE  
ED  
EB  
EA  
E9  
E8  
-
-
-
-
ESPI  
ES1T  
ES0T  
ES1/  
ES1R  
B8  
00H[6]  
Bit address BF  
BE  
BD  
BC  
BB  
BA  
B9  
IP0[1]  
IP0H  
B8H  
-
PPC  
PT2  
PS0/  
PS0R  
PS0H/  
PS0RH  
FC  
PT1  
PX1  
PT0  
PX0  
00H  
00H  
Interrupt  
Priority 0 HIGH  
B7H  
-
PPCH  
PT2H  
PT1H  
PX1H  
PT0H  
PX0H  
Bit address FF  
FE  
FD  
FB  
FA  
F9  
F8  
IP1[1]  
Interrupt Priority 1  
Interrupt Priority 1 HIGH  
MX Control Register  
Port 0  
F8H  
-
-
-
-
-
-
PSPI  
PS1T  
PS0T  
PS1/  
PS1R  
PS1H/  
PS1RH  
EIFM  
80  
00H[6]  
00H[6]  
00H[6]  
FFH  
IP1H  
F7H  
-
-
-
PSPIH  
PS1TH  
PS0TH  
MXCON[2]  
P0[1]  
FFH[3]  
-
-
ECRM  
84  
EAM1  
83  
EAM0  
82  
ESMM  
81  
Bit address 87  
86  
85  
80H  
AD7  
AD6  
96  
AD5  
95  
AD4  
94  
AD3  
93  
AD2  
92  
AD1  
91  
AD0  
90  
97  
P1[1]  
Port 1  
90H  
CEX4  
CEX3  
CEX2/  
CEX1/  
CEX0  
ECI  
T2EX  
T2  
FFH  
SPICLK MOSI  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4:  
Name  
Special Function Registers…continued  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset  
value  
Addr.  
LSB  
A0  
Bit address A7  
A6  
A5  
A4  
A3  
A2  
A1  
P2[1]  
Port 2  
A0H  
AD15  
AD14/  
AD22  
B6  
ADA13/ AD12/  
AD11/  
AD19  
B3  
AD10/  
AD18  
B2  
AD9/  
AD17  
B1  
AD8/  
AD16  
B0  
FFH  
AD21  
B5  
AD20  
B4  
Bit address B7  
P3[1]  
Port 3  
B0H  
RD  
WR  
C6[3]  
-
T1  
C5[3]  
T0  
C4[3]  
INT1  
C3[3]  
-
INT0  
C2[3]  
-
TxD0  
C1[3]  
TxD1/  
SS  
RxD0  
C0[3]  
RxD1/  
MISO  
IDL  
FFH  
FFH  
Bit address C7[3]  
P4[1] [2]  
PCON[2]  
PCONA[2]  
PSW[1]  
Port 4  
C0H[3]  
87H  
-
-
-
Power Control Register  
Power Control Register A  
Program Status Word  
SMOD1  
-
SMOD0  
-
POF  
GF1  
GF0  
PD  
00H/  
10H[4]  
B5H  
PCAPD  
D6  
-
SPIPD  
D4  
BRGPD T2PD  
S1PD  
D1  
S0PD  
D0  
Bit address D7  
D5  
F0  
D3  
D2  
D0H  
CBH  
CAH  
CY  
AC  
RS1  
RS0  
OV  
F1  
P
00H  
00H  
00H  
RCAP2H[2] Timer2 Capture HIGH  
RCAP2L[2]  
S0CON[1]  
S0BUF  
Timer2 Capture LOW  
Bit address 9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
Serial Port 0 Control  
98H  
SM0_0/  
FE_0  
SM1_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00H  
xxH  
Serial Port 0 Data Buffer  
Register  
99H  
S0ADDR  
S0ADEN  
S0STAT[2]  
Serial Port 0 Address Register  
Serial Port 0 Address Enable  
Serial Port 0 Status  
A9H  
B9H  
00H  
00H  
8CH[3] DBMOD_0 INTLO_0 CIDIS_0 DBISEL_ FE_0  
0
BR_0  
OE_0  
STINT_0 00H[6]  
Bit address 87[3]  
86[3]  
85[3]  
84[3]  
83[3]  
82[3]  
81[3]  
80[3]  
S1CON[1] [2] Serial Port 1 Control  
80H[3]  
SM0_1/  
FE_1  
SM1_1  
SM2_1  
REN_1  
TB8_1  
RB8_1  
TI_1  
RI_1  
00H  
S1BUF[2]  
Serial Port 1 Data buffer  
Register  
81H[3]  
XXH  
S1ADDR[2] Serial Port 1 Address Register  
S1ADEN[2]  
Serial Port 1 Address Enable  
82H[3]  
83H[3]  
00H  
00H  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4:  
Name  
Special Function Registers…continued  
Description  
SFR  
Bit functions and addresses  
Reset  
value  
Addr.  
MSB  
LSB  
S1STAT[2]  
SPCTL[2]  
SPCFG[2]  
SPDAT[2]  
SP  
Serial Port 1 Status  
SPI Control Register  
SPI Configuration Register  
SPI Data  
84H[3]  
E2H  
E1H  
E3H  
81H  
DBMOD_1 INTLO_1 CIDIS_1 DBISEL1 FE_1  
BR_1  
CPHA  
-
OE_1  
PSC1  
-
STINT_1 00H[6]  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
PSC0  
-
00H[6]  
00H[6]  
00H  
SPWCOL  
Stack Pointer (or Stack Pointer  
LOW Byte When EDATA  
Supported)  
07H  
SPE[2]  
Stack Pointer HIGH  
FBH[3]  
00H  
00H  
Bit address 8F  
8E  
8D  
8C  
8B  
IE1  
CB  
8A  
IT1  
CA  
89  
88  
TCON[1]  
Timer Control Register  
88H  
TF1  
TR1  
CE  
EXF2  
-
TF0  
CD  
TR0  
CC  
IE0  
C9  
IT0  
CF  
TF2  
-
C8  
T2CON[1][2] Timer2 Control Register  
T2MOD[2]  
C8H  
C9H  
8CH  
8DH  
CDH  
8AH  
8BH  
CCH  
89H  
RCLK  
ENT2  
TCLK  
TF2DE  
EXEN2 TR2  
C/T2  
CP/RL2  
DCEN  
00H  
00H[6]  
00H  
00H  
00H  
00H  
00H  
00H  
00H  
FFH  
Timer2 Mode Control  
Timer 0 HIGH  
T2GATE T2PWME T2OE  
TH0  
TH1  
Timer 1 HIGH  
TH2  
Timer 2 HIGH  
TL0  
Timer 0 LOW  
TL1  
Timer 1 LOW  
TL2  
Timer 2 LOW  
TMOD  
Timer 0 and 1 Mode  
GATE  
-
C/T  
-
M1  
-
M0  
-
GATE  
-
C/T  
M1  
M0  
WDTRST[2] Watchdog Timer Reset  
WDCON[2]  
Watchdog Timer Control  
A6H  
8FH[3]  
WDPRE2 WDPRE1 WDPRE0 00H[6]  
[1] SFRs are bit addressable.  
[2] SFRs are modified from or added to the 80C51 SFRs.  
[3] Extended SFRs accessed by preceding the instruction with MX escape (opcode A5h).  
[4] Power on reset is 10H. Other reset is 00H.  
[5] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is ‘0’. If any of them is written if BRGEN = 1, result is unpredictable.  
[6] The unimplemented bits (labeled ‘-’) in the SFRs are X’s (unknown) at all times. ‘1’s should not be written to these bits, as they may be used for other purposes in future  
derivatives. The reset values shown for these bits are ‘0’s although they are unknown when read.  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
8.3 Security bits  
The P87C51Mx2 has security bits to protect users’ firmware codes. With none of the  
security bits programmed, the code in the program memory can be verified. When  
only security bit 1 (see Table 5) is programmed, MOVC instructions executed from  
external program memory are disabled from fetching code bytes from the internal  
memory. EA is latched on Reset and all further programming of EPROM is disabled.  
When security bits 1 and 2 are programmed, in addition to the above, verify mode is  
disabled. When all three security bits are programmed, all of the conditions above  
apply and all external program memory execution is disabled.  
Table 5:  
EPROM security bits  
Security Bits[1][2]  
Bit 1  
Bit 2  
Bit 3  
Protection description  
1
2
U
P
U
U
No program security features enabled. EEPROM is  
programmable and verifiable.  
U
U
MOVC instructions executed from external program  
memory are disabled from fetching code bytes from  
internal memory, EA is sampled and latched on Reset,  
and further programming of the EPROM is disabled.  
3
4
P
P
P
P
U
P
Same as 2, also verification is disabled.  
Same as 3, external execution is disabled.  
[1] P - programmed. U - unprogrammed.  
[2] Any other combination of security bits is not defined.  
9. Limiting values  
Table 6:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Tamb  
Tstg  
Parameter  
Conditions  
Min  
Max  
Unit  
°C  
°C  
V
operating temperature  
under bias  
0
+70  
storage temperature range  
input voltage on EA/VPP pin to VSS  
input voltage on any other pin to VSS  
maximum IOL per I/O pin  
power dissipation  
65  
+150  
+13  
VI  
0
0.5  
VDD+ 0.5 V  
20  
V
II, IO  
P
-
-
mA  
W
based on package heat  
transfer, not device power  
consumption  
1.5  
[1] The following applies to the Limiting values:  
a) Stresses above those listed under Limiting values may cause permanent damage to the device. This is a stress rating only and  
functional operation of the device at these or any conditions other than those described in Section 10 “Static characteristics” and  
Section 11 “Dynamic characteristics” of this specification is not implied.  
b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maxima.  
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
15 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
10. Static characteristics  
Table 7:  
Static characteristics  
Tamb = 0 °C to +70 °C for commercial, unless otherwise specified; VDD = 2.7 V to 5.5 V unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ[1] Max  
0.2VDD0.1  
Unit  
V
VIL  
VIH  
Input low voltage  
0.5  
Input high voltage (ports 0, 1,  
2, 3, 4, EA)  
0.2VDD+0.9  
VDD+0.5  
VDD+0.5  
0.4  
V
VIH1  
VOL  
Input high voltage, XTAL1,  
RST  
0.7VDD  
-
V
V
Output low voltage, ports 1, VDD = 4.5 V, IOL = 1.6 mA  
2, 3, 4[8]  
VDD = 2.7 V, IOL = 1.6 mA  
VOL1  
Output LOW voltage, port 0, VDD = 4.5 V, IOL = 3.2 mA  
-
0.4  
V
V
V
ALE, PSEN[7][8]  
VDD = 2.7 V, IOL = 3.2 mA  
VOH  
Output high voltage, ports 1, VDD = 4.5 V, IOH = 30 A  
V
V
DD 0.7  
DD 0.7  
-
-
-
2, 3, 4  
VDD = 2.7 V, IOH = 10 A  
VOH1  
Output high voltage (port 0 in VDD = 4.5 V,  
external bus mode), ALE[9], IOH = 3.2 mA  
PSEN[3]  
VDD = 2.7 V,  
IOH = 3.2 mA  
IIL  
Logical 0 input current, ports VIN = 0.4 V  
1, 2, 3, 4  
1  
75  
µA  
µA  
[4]  
[5]  
ITL  
Logical 1-to-0 transition  
current, ports 1, 2, 3, 4[8]  
4.5 V < VDD < 5.5 V,  
IN = 2.0 V  
-
650  
V
IL1  
Input leakage current, port 0 0.45 < VIN < VDD0.3  
-
-
-
-
-
-
-
-
10  
µA  
ICC  
Power supply current  
Active mode[5]  
VDD = 5.5 V  
VDD = 3.6 V  
VDD = 5.5 V  
VDD = 3.6 V  
VDD = 5.0 V  
VDD = 5.5 V  
7 + 2.7 /MHz × fosc mA  
4 + 1.3 /MHz × fosc  
Idle mode[5]  
4 + 1.3 /MHz × fosc mA  
1 + 1.0 /MHz × fosc  
Power-down mode or clock  
stopped (see Figure 16 for  
conditions)  
20  
-
µA  
µA  
100  
RRST  
C10  
Internal reset pull-down  
resistor  
Pin capacitance[10]  
(except EA)  
40  
-
225  
15  
kΩ  
pF  
[1] Typical ratings are not guaranteed. The values listed are at room temperature (+25 ˚C), 5 V, unless otherwise stated.  
[2] Capacitive loading on ports 0 and 2 may cause spurious noise to be superimposed on the VOL of ALE and ports 1, 3 and 4. The noise is  
due to external bus capacitance discharging into the port 0 and port 2 pins when these pins make 1-to-0 transitions during bus  
operations. In the worst cases (capacitive loading >100 pF), the noise pulse on the ALE pin may exceed 0.8 V. In such cases, it may be  
desirable to qualify ALE with a Schmitt Trigger, or use an address latch with a Schmitt Trigger STROBE input. IOL can exceed these  
conditions provided that no single output sinks more than 5 mA and no more than two outputs exceed the test conditions.  
[3] Capacitive loading on ports 0 and 2 may cause the VOH on ALE and PSEN to momentarily fall below the VDD0.7 V specification when  
the address bits are stabilizing.  
[4] Pins of ports 1, 2, 3 and 4 source a transition current when they are being externally driven from 1 to 0. The transition current reaches its  
maximum value when VIN is approximately 2 V for 4.5 V < VDD < 5.5 V.  
[5] See Figure 13 through Figure 16 for ICC test conditions. fosc is the oscillator frequency in MHz.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
16 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
[6] This value applies to Tamb = 0 °C to +70 °C.  
[7] Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
[8] Under steady state (non-transient) conditions, IOL must be externally limited as follows:  
a) Maximum IOL per port pin: 15 mA  
b) Maximum IOL per 8-bit port: 26 mA  
c) Maximum total IOL for all outputs: 71 mA  
If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the  
listed test conditions.  
[9] ALE is tested to VOH1, except when ALE is off then VOH is the voltage specification.  
[10] Pin capacitance is characterized but not tested.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
17 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
11. Dynamic characteristics  
Table 8:  
Dynamic characteristics  
Tamb = 0 to +70 °C for commercial unless otherwise specified. Formulae including tCLCL assume oscillator signal with 50/50  
duty cycle.[1][2][3]  
Symbol Fig  
Parameter  
2.7 V < VDD < 5.5 V  
Variable clock[4]  
4.5 V < VDD < 5.5 V  
Variable clock[4]  
Unit  
fOSC  
12 MHz[4]  
Min Max Min  
=
fOSC =  
24 MHz[4]  
Min Max  
-
Min  
Max  
Max  
fOSC  
4
Oscillator  
frequency  
0
12  
-
0
24  
MHz  
tCLCL  
tLHLL  
tAVLL  
4
4
Clock cycle  
-
-
-
-
83  
68  
8
-
-
-
-
-
41.5  
26  
5
-
-
-
ns  
ns  
ns  
ALE pulse width  
tCLCL15  
tCLCL15  
4, 5, Address valid to 0.5tCLCL15  
ALE LOW  
4, 5, Address hold  
0.5tCLCL15 -  
6
tLLAX  
tLLIV  
tLLPL  
tPLPH  
tPLIV  
tPXIX  
tPXIZ  
tAVIV  
0.5tCLCL25  
-
16  
-
0.5tCLCL15 -  
5
-
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
6
after ALE LOW  
4
ALE LOW to valid  
instruction in  
-
0.5tCLCL25  
121  
-
-
2tCLCL 30  
53  
-
4
4
4
4
4
4
ALE LOW to  
PSEN LOW  
0.5tCLCL25  
-
16  
0.5tCLCL12 -  
1.5tCLCL20 -  
8
PSEN pulse  
width  
1.5tCLCL25  
-
100  
-
42  
-
PSEN LOW to  
valid instruction in  
-
1.5tCLCL45  
-
-
80  
-
-
1.5tCLCL35  
27  
-
Input instruction  
hold after PSEN  
0
-
0
-
0
-
-
0
-
Input instruction  
float after PSEN  
0.5tCLCL10  
2.5tCLCL35  
31  
173  
0.5tCLCL5  
15  
74  
Address to valid  
instruction in  
(non-Extended  
Addressing  
Mode)  
-
-
-
2.5tCLCL30 -  
tAVIV1  
4
4
Address  
-
-
1.5tCLCL44  
-
-
81  
16  
-
-
1.5tCLCL34 -  
28  
ns  
ns  
(A16-A22) to  
valid instruction in  
(Extended  
Addressing  
Mode)  
tPLAZ  
PSEN LOW to  
address float  
16  
8
-
8
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
18 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 8:  
Dynamic characteristics…continued  
Tamb = 0 to +70 °C for commercial unless otherwise specified. Formulae including tCLCL assume oscillator signal with 50/50  
duty cycle.[1][2][3]  
Symbol Fig  
Parameter  
2.7 V < VDD < 5.5 V  
Variable clock[4]  
4.5 V < VDD < 5.5 V  
Variable clock[4]  
Unit  
fOSC  
12 MHz[4]  
Min Max Min  
=
fOSC =  
24 MHz[4]  
Min  
Max  
Max  
Min Max  
Data Memory  
tRLRH  
tWLWH  
tRLDV  
5
6
5
RD pulse width  
WR pulse width  
3tCLCL25  
3tCLCL25  
-
-
225  
225  
-
-
3tCLCL20  
3tCLCL20  
-
-
-
105  
105  
-
ns  
ns  
ns  
-
-
-
RD LOW to valid  
data in  
2.5tCLCL55  
153  
2.5tCLCL40 -  
64  
tRHDX  
tRHDZ  
tLLDV  
tAVDV  
5
5
5
5
Data hold after  
RD  
0
-
-
0
-
-
0
-
-
0
-
ns  
ns  
Data float after  
RD  
t
CLCL20  
63  
283  
335  
t
CLCL15  
-
-
26  
ALE LOW to valid  
data in  
-
4tCLCL50  
-
-
4tCLCL35  
131 ns  
157 ns  
Address to valid  
data in  
-
4.5tCLCL40  
-
-
4.5tCLCL30 -  
(non-Extended  
Addressing  
Mode)  
tAVDV1  
5
Address  
-
3.5tCLCL45  
-
246  
-
3.5tCLCL35 -  
110 ns  
(A16-A22) to  
valid data in  
(Extended  
Addressing  
Mode)  
tLLWL  
tAVWL  
5, 6 ALE LOW to RD 1.5tCLCL5  
1.5tCLCL+20 120 145 1.5tCLCL10 1.5tCLCL+20 52  
82  
-
ns  
ns  
or WR LOW  
5, 6 Address valid to 2tCLCL5  
WR or RD LOW  
(non-Extended  
-
161  
-
2tCLCL5  
-
78  
Addressing  
Mode)  
tAVWL1  
5, 6 Address  
(A16-A22) valid  
tCLCL10  
-
73  
-
t
CLCL10  
-
31  
-
ns  
to WR or RD  
LOW (Extended  
Addressing  
Mode)  
tQVWX  
tWHQX  
tQVWH  
6
6
6
Data valid to WR 0.5tCLCL20  
transition  
-
-
-
21  
-
-
-
0.5tCLCL15 -  
0.5tCLCL11 -  
3.5tCLCL10 -  
5
-
-
-
ns  
ns  
ns  
Data hold after  
WR  
0.5tCLCL25  
16  
9
Data valid to WR 3.5tCLCL10  
281  
135  
HIGH  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
19 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 8:  
Dynamic characteristics…continued  
Tamb = 0 to +70 °C for commercial unless otherwise specified. Formulae including tCLCL assume oscillator signal with 50/50  
duty cycle.[1][2][3]  
Symbol Fig  
Parameter  
2.7 V < VDD < 5.5 V  
Variable clock[4]  
4.5 V < VDD < 5.5 V  
Variable clock[4]  
Unit  
fOSC  
12 MHz[4]  
Min Max Min  
=
fOSC =  
24 MHz[4]  
Min  
Max  
Max  
Min Max  
tRLAZ  
5
RD LOW to  
address float  
-
0
-
0
-
0
-
0
ns  
ns  
tWHLH  
5, 6 RD or WR HIGH 0.5tCLCL20 0.5tCLCL+10 21  
51  
0.5tCLCL11 0.5tCLCL+10 9  
30  
to ALE HIGH  
External Clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
12  
12  
12  
12  
HIGH time  
LOW time  
Rise time  
Fall Time  
33  
33  
-
t
t
CLCLtCLCX 33  
CLCLtCHCX 33  
-
16  
16  
-
t
t
CLCLtCLCX 16  
CLCLtCHCX 16  
-
ns  
ns  
ns  
ns  
-
-
8
8
-
-
8
8
4
4
-
-
4
4
-
-
Shift Register  
tXLXL  
7
Serial port clock 6tCLCL  
cycle time  
-
-
500  
406  
-
-
t
t
CLCLtCLCX  
CLCLtCHCX  
-
-
250  
198  
-
-
ns  
ns  
tQVXH  
7
Output data setup 5tCLCL10  
to clock rising  
edge  
tXHQX  
tXHDX  
tXHDV  
7
7
7
Output data hold  
after clock rising  
edge  
t
CLCL10  
-
68  
0
-
t
CLCL15  
-
26  
0
-
-
ns  
ns  
Input data hold  
after clock rising  
edge  
0
-
-
-
0
-
-
Clock rising edge  
to input data valid  
5tCLCL55  
-
361  
5tCLCL35  
-
173 ns  
SPI Interface  
fSPI  
MHz  
-
-
-
-
-
-
-
-
0
-
2.0  
-
0
-
2.0  
-
0
-
2.0  
-
0
-
2.0  
-
0
3.0  
0
3.0  
0
3.0  
0
3.0  
tSPICYC 8, 9, Cycle time  
ns  
10,  
11  
2.0 MHz  
(Master)  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
2.0 MHz  
(Slave)  
500  
-
500  
-
500  
-
500  
-
3.0 MHz  
(Master)  
3.0 MHz  
(Slave)  
333  
333  
333  
333  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
20 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 8:  
Dynamic characteristics…continued  
Tamb = 0 to +70 °C for commercial unless otherwise specified. Formulae including tCLCL assume oscillator signal with 50/50  
duty cycle.[1][2][3]  
Symbol Fig  
Parameter  
2.7 V < VDD < 5.5 V  
Variable clock[4]  
4.5 V < VDD < 5.5 V  
Variable clock[4]  
Unit  
ns  
fOSC  
12 MHz[4]  
Min Max Min  
=
fOSC =  
24 MHz[4]  
Min  
Max  
Max  
Min Max  
tSPILEAD 10,  
11  
Enable lead time  
(Slave)  
2.0 MHz  
3.0 MHz  
250  
240  
-
-
250  
240  
-
-
250  
240  
-
-
250  
240  
-
-
tSPILAG 10,  
11  
Enable lag time  
(Slave)  
ns  
2.0 MHz  
3.0 MHz  
250  
240  
-
-
250  
240  
-
-
250  
240  
-
-
250  
240  
-
-
tSPICLKH 8, 9, SPICLK HIGH  
ns  
10,  
time  
Master  
Slave  
tSPICLKL 8, 9, SPICLK LOW  
11  
340  
190  
-
-
340  
190  
-
-
340  
190  
-
-
340  
190  
-
-
ns  
10,  
time  
Master  
Slave  
tSPIDSU 8, 9, Data setup time  
11  
340  
190  
100  
-
-
-
340  
190  
100  
-
-
-
340  
190  
100  
-
-
-
340  
190  
100  
-
-
-
ns  
ns  
10,  
11  
(Master or Slave)  
tSPIDH  
8, 9, Data hold time  
100  
0
-
100  
0
-
100  
0
-
100  
0
-
10,  
11  
(Master or Slave)  
tSPIA  
10,  
11  
Access time  
(Slave)  
120  
120  
120  
120 ns  
ns  
tSPIDIS  
10,  
11  
Disable time  
(Slave)  
2.0 MHz  
3.0 MHz  
0
0
240  
167  
-
-
240  
167  
0
0
240  
167  
-
-
240  
167  
ns  
tSPIDV  
8, 9, Enable to output  
10,  
11  
data valid  
2.0 MHz  
3.0 MHz  
-
240  
167  
-
-
240  
167  
-
-
240  
167  
-
-
240  
167  
-
-
-
-
tSPIOH  
8, 9, Output data hold  
0
0
0
0
-
ns  
10,  
11  
time  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
21 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Table 8:  
Dynamic characteristics…continued  
Tamb = 0 to +70 °C for commercial unless otherwise specified. Formulae including tCLCL assume oscillator signal with 50/50  
duty cycle.[1][2][3]  
Symbol Fig  
Parameter  
2.7 V < VDD < 5.5 V  
Variable clock[4]  
4.5 V < VDD < 5.5 V  
Variable clock[4]  
Unit  
fOSC  
12 MHz[4]  
Min Max Min  
=
fOSC =  
24 MHz[4]  
Min  
Max  
Max  
Min Max  
tSPIR  
8, 9, Rise time  
10,  
ns  
SPI outputs  
-
100  
-
-
100  
-
100  
-
-
100  
11  
(SPICLK,  
MOSI, MISO)  
SPI outputs  
(SPICLK,  
MOSI, MISO,  
SS)  
-
2000  
2000 -  
2000  
2000  
tSPIF  
8, 9, Fall time  
10,  
ns  
SPI outputs  
-
-
100  
-
-
100  
-
100  
-
-
100  
11  
(SPICLK,  
MOSI, MISO)  
SPI outputs  
(SPICLK,  
MOSI, MISO,  
SS)  
2000  
2000 -  
2000  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Load capacitance for port 0, ALE, and PSEN = 100 pF, load capacitance for all other outputs = 80 pF.  
[3] Interfacing the microcontroller to devices with float times up to 45 ns is permitted. This limited bus contention will not cause damage to  
Port 0 drivers.  
[4] Parts are tested down to 2 MHz, but are guaranteed to operate down to 0 Hz.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
22 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
11.1 Explanation of AC symbols  
Each timing symbol has five characters. The first character is always ‘t’ (= time). The  
other characters, depending on their positions, indicate the name of a signal or the  
logical status of that signal. The designations are:  
A — Address  
C — Clock  
D — Input data  
H — Logic level HIGH  
I — Instruction (program memory contents)  
L — Logic level LOW, or ALE  
P — PSEN  
Q — Output data  
R — RD signal  
t — Time  
V — Valid  
W — WR signal  
X — No longer a valid logic level  
Z — Float  
Examples:  
tAVLL Time for address valid to ALE LOW  
tLLPL Time for ALE LOW to PSEN LOW  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
23 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
t
LHLL  
ALE  
t
LLPL  
t
PLPH  
t
LLIV  
t
PLIV  
PSEN  
t
PLAZ  
t
PXIZ  
t
AVLL  
t
t
PXIX  
LLAX  
PORT 0  
A0-A7  
INSTR IN  
A0-A7  
t
AVIV1  
t
AVIV  
PORT 2  
P2.0-P2.7 OR A8-A15  
P2.0-P2.7 OR  
A8-A15 OR  
A16-A22,P2.7  
002aaa150  
Fig 4. External program memory read cycle (extended memory cycle).  
ALE  
t
WHLH  
PSEN  
t
LLDV  
LLWL  
t
t
RLRH  
RD  
t
LLAX  
t
t
RLDV  
RLAZ  
t
RHDZ  
t
AVLL  
t
RHDX  
PORT 0  
INSTR IN  
A0-A7  
DATA in  
A0-A7 FROM PCL  
t
AVWL  
t
AVWL1  
AVDV1  
AVDV  
P2.0-P2.7 OR A8-A15  
t
t
PORT 2  
P2.0-P2.7 OR  
A8-A15 OR  
A16-A22,P2.7  
002aaa151  
Fig 5. External data memory read cycle.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
24 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
ALE  
PSEN  
WR  
t
WHLH  
t
t
WLWH  
LLWL  
t
LLAX  
t
QVWX  
t
WHQX  
t
AVLL  
t
QVWH  
DATA OUT  
AVWL1  
PORT 0  
PORT 2  
INSTR IN  
A0-A7  
A0-A7 FROM PCL  
t
t
AVWL  
P2.0-P2.7 OR A8-A15  
P2.0-P2.7 OR  
A8-A15 OR  
A16-A22,P2.7  
002aaa153  
Fig 6. External data memory write cycle.  
INSTRUCTION  
ALE  
0
1
2
3
4
5
6
7
8
t
XLXL  
CLOCK  
t
XHQX  
1
t
QVXH  
OUTPUT DATA  
0
2
3
4
5
6
7
WRITE TO SBUF  
t
XHDX  
SET TI  
t
XHDV  
INPUT DATA  
CLEAR RI  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
VALID  
SET RI  
002aaa155  
Fig 7. Shift register mode timing.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
25 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
SS  
t
CLCL  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
SPIDV  
t
t
t
t
SPIR  
SPIOH  
SPIDV  
t
SPIF  
MOSI  
(output)  
Master MSB/LSB out  
Master LSB/MSB out  
002aaa156  
Fig 8. SPI master timing (CPHA = 0).  
SS  
t
CLCL  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
SPIDV  
t
t
t
SPIOH  
SPIDV  
t
SPIDV  
t
t
SPIR  
SPIF  
MOSI  
(output)  
Master MSB/LSB out  
Master LSB/MSB out  
002aaa157  
Fig 9. SPI master timing (CPHA = 1).  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
26 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
SS  
t
SPIR  
t
SPIR  
t
CLCL  
t
t
SPIF  
t
SPILEAD  
t
SPIR  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(input)  
t
SPIOH  
t
t
SPIOH  
SPIOH  
t
SPIA  
t
t
t
SPIDIS  
SPIDV  
SPIDV  
MISO  
(output)  
Slave MSB/LSB out  
Slave LSB/MSB out  
Not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa158  
Fig 10. SPI slave timing (CPHA = 0).  
SS  
t
SPIR  
t
SPIR  
t
CLCL  
t
t
SPIF  
t
SPILEAD  
t
SPIR  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(input)  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDV  
SPIDIS  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
Slave LSB/MSB out  
Slave MSB/LSB out  
Not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa159  
Fig 11. SPI slave timing (CPHA = 1).  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
27 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
V
-0.5 V  
0.45 V  
DD  
0.7 V  
DD  
0.2 V  
DD  
-0.1 V  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
t
CLCL  
002aaa160  
Fig 12. External clock drive.  
V
V
DD  
DD  
DD  
I
CC  
RST  
V
DD  
V
P0  
EA  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
V
SS  
002aaa161  
Fig 13. ICC test condition, active mode (all other pins are disconnected).  
V
V
DD  
DD  
I
CC  
RST  
V
DD  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
CLOCK SIGNAL  
V
SS  
002aaa162  
Fig 14. ICC test condition, idle mode (all other pins are disconnected).  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
28 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
V
-0.5 V  
0.45 V  
DD  
0.7 V  
DD  
0.2 V  
DD  
-0.1 V  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
t
CLCL  
002aaa163  
Fig 15. Clock signal waveform for ICC tests in active and idle modes (tCLCH = tCHCL = 5 ns).  
V
V
DD  
DD  
I
CC  
RST  
V
DD  
P0  
EA  
(NC)  
XTAL2  
XTAL1  
V
SS  
002aaa164  
Fig 16. ICC test condition, power-down mode (all other pins are disconnected, VDD = 2.0 V to 5.5 V).  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
29 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
12. Package outline  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
e
e
D
E
y
X
A
39  
29  
b
p
Z
E
28  
40  
b
1
w
M
44  
1
H
E
E
pin 1 index  
A
A
1
A
4
e
(A )  
3
6
18  
β
L
p
k
detail X  
7
17  
v
M
A
e
Z
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm dimensions are derived from the original inch dimensions)  
(1)  
(1)  
A
A
Z
Z
E
4
1
(1)  
(1)  
D
UNIT  
mm  
A
A
b
D
E
e
e
e
H
H
k
L
p
v
w
y
β
b
3
1
D
E
D
E
p
max.  
min.  
max. max.  
4.57  
4.19  
0.81 16.66 16.66  
0.66 16.51 16.51  
16.00 16.00 17.65 17.65 1.22 1.44  
14.99 14.99 17.40 17.40 1.07 1.02  
0.53  
0.33  
0.51 0.25 3.05  
0.02 0.01 0.12  
1.27  
0.05  
0.18 0.18  
0.1  
2.16 2.16  
o
45  
0.180  
0.165  
0.032 0.656 0.656  
0.026 0.650 0.650  
0.63 0.63 0.695 0.695 0.048 0.057  
0.59 0.59 0.685 0.685 0.042 0.040  
0.021  
0.013  
inches  
0.007 0.007 0.004 0.085 0.085  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
01-11-14  
SOT187-2  
112E10  
MS-018  
EDR-7319  
Fig 17. SOT187-2.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
30 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
13. Soldering  
13.1 Introduction to soldering surface mount packages  
This text gives a very brief insight to a complex technology. A more in-depth account  
of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
There is no soldering method that is ideal for all IC packages. Wave soldering can still  
be used for certain surface mount ICs, but it is not suitable for fine pitch SMDs. In  
these situations reflow soldering is recommended. In these situations reflow  
soldering is recommended.  
13.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending on heating method.  
Typical reflow peak temperatures range from 215 to 270 °C depending on solder  
paste material. The top-surface temperature of the packages should preferably be  
kept:  
below 225 °C (SnPb process) or below 245 °C (Pb-free process)  
for all BGA, HTSSON..T and SSOP..T packages  
for packages with a thickness 2.5 mm  
for packages with a thickness < 2.5 mm and a volume 350 mm3 so called  
thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free process) for packages with  
a thickness < 2.5 mm and a volume < 350 mm3 so called small/thin packages.  
Moisture sensitivity precautions, as indicated on packing, must be respected at all  
times.  
13.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal  
results:  
Use a double-wave soldering method comprising a turbulent wave with high  
upward pressure followed by a smooth laminar wave.  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
9397 750 12302  
Product data  
Rev. 03 — 13 November 2003  
31 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
For packages with leads on two sides and a pitch (e):  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle  
to the transport direction of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 to 4 seconds at 250 °C or  
265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in  
most applications.  
13.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low  
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time  
must be limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 to 5 seconds between 270 and 320 °C.  
13.5 Package related soldering information  
Table 9:  
Suitability of surface mount IC packages for wave and reflow soldering  
methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, USON, VFBGA  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, not suitable[4]  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note  
(AN01026); order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal  
or external package cracks may occur due to vaporization of the moisture in them (the so called  
popcorn effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated  
Circuit Packages; Section: Packing Methods.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
32 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must  
on no account be processed through more than one soldering cycle or subjected to infrared reflow  
soldering with peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow  
oven. The package body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom  
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with  
the heatsink on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it  
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex  
foil by using a hot bar soldering process. The appropriate soldering profile can be provided on  
request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
33 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
14. Revision history  
Table 10: Revision history  
Rev Date  
CPCN  
-
Description  
03 20031113  
Product data (9397 750 12302); ECN 853-2426 01-A14402 dated 6 November 2003  
Modifications:  
Figure 5 “External data memory read cycle.on page 24; added tRLDV, removed  
‘non-extended memory cycle’ from figure title.  
Figure 6 “External data memory write cycle.on page 25; removed ‘non-extended  
memory cycle’ from figure title.  
02 20030519  
_1 20010406  
-
-
Product data (9397 750 11517)  
Preliminary specification (9397 750 08199)  
9397 750 12302  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
Product data  
Rev. 03 — 13 November 2003  
34 of 36  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
15. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
16. Definitions  
17. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.  
35 of 36  
9397 750 12302  
Product data  
Rev. 03 — 13 November 2003  
P87C51MB2/P87C51MC2  
Philips Semiconductors  
80C51 8-bit microcontroller family  
Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Key benefits . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Complete features . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.3  
3
Differences between P87C51MX2/02 part  
and previous revisions of P87C51MX2. . . . . . 3  
4
5
6
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 5  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 7  
8
Functional description . . . . . . . . . . . . . . . . . . 10  
Memory arrangement . . . . . . . . . . . . . . . . . . . 10  
Special Function Registers. . . . . . . . . . . . . . . 10  
Security bits . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1  
8.2  
8.3  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 15  
Static characteristics. . . . . . . . . . . . . . . . . . . . 16  
Dynamic characteristics . . . . . . . . . . . . . . . . . 18  
Explanation of AC symbols. . . . . . . . . . . . . . . 23  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 30  
10  
11  
11.1  
12  
13  
13.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . . 31  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . . 31  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 32  
Package related soldering information . . . . . . 32  
13.2  
13.3  
13.4  
13.5  
14  
15  
16  
17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 34  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 35  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
© Koninklijke Philips Electronics N.V. 2003.  
Printed in the U.S.A.  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 13 November 2003  
Document order number: 9397 750 12302  

相关型号:

P87C51MB2BA/02,512

P87C51MB2/P87C51MC2 - 80C51 8-bit microcontroller family with extended memory; 64 kB/96 kB OTP with 2 kB/3 kB RAM LCC 44-Pin
NXP

P87C51MB2BA/02,529

P87C51MB2/P87C51MC2 - 80C51 8-bit microcontroller family with extended memory; 64 kB/96 kB OTP with 2 kB/3 kB RAM LCC 44-Pin
NXP

P87C51MC2

80C51 8-bit microcontroller family with extended memory
NXP

P87C51MC2BA

80C51 8-bit microcontroller family with extended memory
NXP

P87C51MC2BA/02

IC 8-BIT, OTPROM, 24 MHz, MICROCONTROLLER, PQCC44, PLASTIC, MS-018, SOT-187-2, LCC-44, Microcontroller
NXP

P87C51MC2BA/02,529

P87C51MB2/P87C51MC2 - 80C51 8-bit microcontroller family with extended memory; 64 kB/96 kB OTP with 2 kB/3 kB RAM LCC 44-Pin
NXP

P87C51MC2BA/02Y

Microcontroller
NXP

P87C51RA

暂无描述
ROCHESTER

P87C51RA+4A

80C51 8-bit microcontroller family 8K.64K/256.1K OTP/ROM/ROMless, low voltage 2.7V.5.5V, low power, high speed 33 MHz
NXP

P87C51RA+4A-T

暂无描述
NXP

P87C51RA+4B

80C51 8-bit microcontroller family 8K.64K/256.1K OTP/ROM/ROMless, low voltage 2.7V.5.5V, low power, high speed 33 MHz
NXP

P87C51RA+4B

Microcontroller, 8-Bit, UVPROM, 8051 CPU, 16MHz, CMOS, PQFP44,
PHILIPS