P89LPC916 [NXP]

8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V Flash with 8-bit A/D converter; 8位微控制器与加速双时钟80C51核心2 KB 3 V闪存的8位A / D转换器
P89LPC916
型号: P89LPC916
厂家: NXP    NXP
描述:

8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V Flash with 8-bit A/D converter
8位微控制器与加速双时钟80C51核心2 KB 3 V闪存的8位A / D转换器

转换器 闪存 微控制器 时钟
文件: 总72页 (文件大小:330K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
2 kB 3 V Flash with 8-bit A/D converter  
Rev. 04 — 17 December 2004  
Product data  
1. General description  
The P89LPC915/916/917 are single-chip microcontrollers in low-cost 14-pin and  
16-pin packages, based on a high performance processor architecture that executes  
instructions in two to four clocks, six times the rate of standard 80C51 devices. Many  
system level functions have been incorporated into the P89LPC915/916/917 in order  
to reduce component count, board space, and system cost.  
2. Features  
2 kB byte-erasable Flash code memory organized into 256-byte sectors and  
16-byte pages. Single-byte erasing allows any byte(s) to be used as non-volatile  
data storage.  
256-byte RAM data memory.  
Two 16-bit counter/timers. Timer 0 (and Timer 1 - P89LPC917) may be configured  
to toggle a port output upon timer overflow or to become a PWM output.  
23-bit system timer that can also be used as a Real-Time clock.  
4-input multiplexed 8-bit A/D converter/single DAC output. Two analog  
comparators with selectable reference.  
Enhanced UART with fractional baud rate generator, break detect, framing error  
detection, automatic address detection and versatile interrupt capabilities.  
SPI communication port (P89LPC916).  
Internal RC oscillator option allows operation without external oscillator  
components. The RC oscillator (factory calibrated to ±1 %) option is selectable  
and fine tunable.  
2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
Up to 14 I/O pins when using internal oscillator and reset options (P89LPC916,  
P89LPC917).  
3. Additional features  
14-pin (P89LPC915) and 16-pin (P89LPC916, P89LPC917) TSSOP packages.  
A high performance 80C51 CPU provides instruction cycle times of 111 ns to  
222 ns for all instructions except multiply and divide when executing at 18 MHz.  
This is six times the performance of the standard 80C51 running at the same clock  
frequency. A lower clock frequency for the same performance results in power  
savings and reduced EMI.  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
In-Application Programming (IAP-Lite) and byte erase allows code memory to be  
used for non-volatile data storage.  
Serial Flash In-Circuit Programming (ICP) allows simple production coding with  
commercial EPROM programmers. Flash security bits prevent reading of sensitive  
application programs.  
Watchdog timer with separate on-chip oscillator, requiring no external  
components. The Watchdog prescaler is selectable from 8 values.  
Low-voltage reset (Brownout detect) allows a graceful system shutdown when  
power fails. May optionally be configured as an interrupt.  
Idle and two different power-down reduced power modes. Improved wake-up from  
Power-down mode (a low interrupt input starts execution). Typical power-down  
current is 1 µA (total power-down with voltage comparators disabled).  
Active-LOW reset. On-chip power-on reset allows operation without external reset  
components. A reset counter and reset glitch suppression circuitry prevent  
spurious and incomplete resets. A software reset function is also available.  
Programmable port output configuration options: quasi-bidirectional, open drain,  
push-pull, input-only.  
Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value  
of the pins match or do not match a programmable pattern.  
LED drive capability (20 mA) on all port pins. A maximum limit is specified for the  
entire chip.  
Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns  
minimum ramp times.  
Only power and ground connections are required to operate the  
P89LPC915/916/917 when internal reset option is selected.  
Four interrupt priority levels.  
Five (P89LPC916), six (P89LPC915), or seven (P89LPC917) keypad interrupt  
inputs.  
Second data pointer.  
Schmitt trigger port inputs.  
Emulation support.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
2 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
4. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
P89LPC915FDH TSSOP14 plastic thin shrink small outline package;  
14 leads; body width 4.4 mm  
SOT402-1  
P89LPC915HDH TSSOP14 plastic thin shrink small outline package;  
14 leads; body width 4.4 mm  
SOT402-1  
SOT403-1  
SOT403-1  
P89LPC916FDH TSSOP16 plastic thin shrink small outline package;  
16 leads; body width 4.4 mm  
P89LPC917FDH TSSOP16 plastic thin shrink small outline package;  
16 leads; body width 4.4 mm  
4.1 Ordering options  
Table 2:  
Ordering options[1]  
Type number  
Temperature range  
40 °C to +125 °C  
40 °C to +85 °C  
Frequency  
P89LPC915HDH  
P89LPC915FDH  
P89LPC916FDH  
P89LPC917FDH  
0 MHz to 18 MHz  
[1] Please contact your local Philips sales office for availability of extended temperature  
(40 °C to +125 °C) versions of the P89LPC916 and P89LPC917 devices.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
3 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
5. Block diagram  
P89LPC915  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
2 kB  
CODE FLASH  
UART  
INTERNAL  
BUS  
256-BYTE  
DATA RAM  
2
I C  
PORT 1  
CONFIGURABLE I/Os  
ADC1/DAC1  
PORT 0  
CONFIGURABLE I/Os  
REAL-TIME CLOCK/  
SYSTEM TIMER  
KEYPAD  
INTERRUPT  
TIMER 0  
TIMER 1  
WATCHDOG TIMER  
AND OSCILLATOR  
ANALOG  
COMPARATORS  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU  
CLOCK  
external  
clock  
input  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
ON-CHIP RC  
OSCILLATOR  
002aaa822  
Fig 1. P89LPC915 block diagram.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
4 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
P89LPC916  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
2 kB  
CODE FLASH  
UART  
INTERNAL  
BUS  
256-BYTE  
DATA RAM  
2
I C  
PORT 2  
CONFIGURABLE I/Os  
ADC1/DAC1  
SPI  
PORT 1  
CONFIGURABLE I/Os  
PORT 0  
CONFIGURABLE I/Os  
REAL-TIME CLOCK/  
SYSTEM TIMER  
TIMER 0  
TIMER 1  
KEYPAD  
INTERRUPT  
WATCHDOG TIMER  
AND OSCILLATOR  
ANALOG  
COMPARATORS  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU  
CLOCK  
external  
clock  
input  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
ON-CHIP RC  
OSCILLATOR  
002aaa823  
Fig 2. P89LPC916 block diagram.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
5 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
P89LPC917  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
2 kB  
CODE FLASH  
UART  
INTERNAL  
BUS  
256-BYTE  
DATA RAM  
2
I C  
PORT 2  
CONFIGURABLE I/Os  
ADC1/DAC1  
PORT 1  
CONFIGURABLE I/Os  
REAL-TIME CLOCK/  
SYSTEM TIMER  
PORT 0  
CONFIGURABLE I/Os  
TIMER 0  
TIMER 1  
KEYPAD  
INTERRUPT  
ANALOG  
COMPARATORS  
WATCHDOG TIMER  
AND OSCILLATOR  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU  
CLOCK  
external  
clock  
input  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
ON-CHIP RC  
OSCILLATOR  
CLKOUT  
002aaa824  
Fig 3. P89LPC917 block diagram.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
6 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
6. Pinning information  
6.1 Pinning  
CIN2B/KBI1/AD10/P0.1  
KBI0/CMP2/P0.0  
RST/P1.5  
1
2
3
4
5
6
7
14 P0.2/CIN2A/KBI2/AD11  
13 P0.3/CIN1B/KBI3/AD12  
12 P0.4/CIN1A/KBI4/AD13/DAC1  
11 P0.5/CMPREF/KBI5/CLKIN  
V
LPC915  
SS  
INT1/P1.4  
SDA/INT0/P1.3  
SCL/T0/P1.2  
10  
9
V
DD  
P1.0/TXD  
P1.1/RXD  
8
002aaa825  
Fig 4. P89LPC915 TSSOP14 pin configuration.  
CIN2B/KBI1/AD10/P0.1  
SS/P2.4  
1
2
3
4
5
6
7
8
16 P0.2/CIN2A/KBI2/AD11  
15 P0.3/CIN1B/KB13/AD12  
14 P0.4/CIN1A/KBI4/AD13/DAC1  
13 P0.5/CMPREF/KBI5/CLKIN  
RST/P1.5  
V
SS  
LPC916  
MISO/P2.3  
MOSI/P2.2  
12 V  
DD  
11 P2.5/SPICLK  
10 P1.0/TXD  
SDA/INT0/P1.3  
SCL/T0/P1.2  
9
P1.1/RXD  
002aaa826  
Fig 5. P89LPC916 TSSOP16 pin configuration.  
CIN2B/KBI1/AD10/P0.1  
KBI0/CMP2/P0.0  
RST/P1.5  
1
2
3
4
5
6
7
8
16 P0.2/CIN2A/KBI2/AD11  
15 P0.3/CIN1B/KB13/AD12  
14 P0.4/CIN1A/KBI4/AD13/DAC1  
13 P0.5/CMPREF/KBI5/CLKIN  
V
SS  
LPC917  
MOSI/P2.2  
INT1/P1.4  
12 V  
DD  
11 P0.7/T1/KBI7/CLKOUT  
10 P1.0/TXD  
SDA/INT0/P1.3  
SCL/T0/P1.2  
9
P1.1/RXD  
002aaa827  
Fig 6. P89LPC917 TSSOP16 pin configuration.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
7 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
6.2 Pin description  
Table 3:  
P89LPC915 pin description  
Symbol  
Pin  
Type  
Description  
P0.0 to P0.5  
I/O  
Port 0: Port 0 is a 6-bit I/O port with user-configurable outputs. During reset Port 0  
latches are configured in the input only mode with the internal pull-up disabled. The  
operation of Port 0 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to Section 9.12.1 “Port  
configurations” and Table 13 “DC electrical characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
2
1
I/O  
I
CMP2 — Comparator 2 output.  
KBI0 — Keyboard input 0.  
I
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — A/D channel 1, input 0  
P0.2 — Port 0 bit 2.  
14  
13  
12  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — A/D channel 1, input 1  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — A/D channel 1, input 2.  
P0.4 — Port 0 bit 4.  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — A/D channel 1, input 3.  
DAC1 — Digital to analog converter 1 output.  
P0.5 — Port 0 bit 5.  
O
11  
I/O  
I
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
CLKIN — External clock input.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
8 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 3:  
P89LPC915 pin description…continued  
Symbol  
Pin  
Type  
Description  
Port 1: Port 1 is a 6-bit I/O port with user-configurable outputs. During reset Port 1  
P1.0 to P1.5  
I/O  
(P1.2); latches are configured in the input only mode with the internal pull-up disabled. The  
I (P1.5) operation of the inputs and outputs depends upon the port configuration selected.  
Refer to Section 9.12.1 “Port configurations” and Table 13 “DC electrical  
characteristics” for details. P1.2 is an open drain when used as an output. P1.5 is  
input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
9
8
7
I/O  
O
P1.0 — Port 1 bit 0  
TxD — Serial port transmitter data.  
P1.1 — Port 1 bit 0  
I/O  
I
RxD — Serial port receiver data.  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P1.2 — Port 1 bit 2. (Open drain when used as an output.)  
T0 — Timer/counter 0 external count input, overflow output, or PWM output.  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 2. (Open drain when used as an output.)  
INT0 — External interrupt 0 input.  
6
SDA — I2C-bus serial data input/output.  
5
3
P1.4 — Port 1 bit 2.  
INT1 — External interrupt 1input.  
P1.5 — Port 1 bit 5. (Input only.)  
I
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input a LOW on this pin resets the microcontroller, causing I/O  
ports and peripherals to take on their default states, and the processor begins  
execution at address 0. When using an oscillator frequency above 12 MHz, the  
reset input function of P1.5 must be enabled. An external circuit is required to  
hold the device in reset at power-up until VDD has reached its specified level.  
When system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above 12 MHz, in some  
applications, an external brownout detect circuit may be required to hold the  
device in reset when VDD falls below the minimum specified operating voltage.  
Also used during a power-on sequence to force In-System Programming mode.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
10  
Power Supply: This is the power supply voltage for normal operation as well as Idle  
and Power-down modes.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
9 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 4:  
P89LPC916 pin description  
Symbol  
Pin  
Type  
Description  
P0.1 to P0.5  
I/O  
Port 0: Port 0 is a 5-bit I/O port with user-configurable outputs. During reset Port 0  
latches are configured in the input only mode with the internal pull-up disabled. The  
operation of Port 0 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to Section 9.12.1 “Port  
configurations” and Table 13 “DC electrical characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.1 — Port 0 bit 1.  
1
I/O  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — A/D channel 1, input 0  
P0.2 — Port 0 bit 2.  
16  
15  
14  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — A/D channel 1, input 1  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — A/D channel 1, input 2.  
P0.4 — Port 0 bit 4.  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — A/D channel 1, input 3.  
DAC1 — Digital to analog converter 1 output.  
P0.5 — Port 0 bit 5.  
O
13  
I/O  
I
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
CLKIN — External clock input.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
10 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 4:  
P89LPC916 pin description…continued  
Symbol  
Pin  
Type  
Description  
Port 1: Port 1 is a 5-bit I/O port with user-configurable outputs. During reset Port 1  
P1.0 to P1.5  
I/O  
(P1.2); latches are configured in the input only mode with the internal pull-up disabled. The  
I (P1.5) operation of the P1.2 input and outputs depends upon the port configuration selected.  
Refer to Section 9.12.1 “Port configurations” and Table 13 “DC electrical  
characteristics” for details. P1.2 is an open drain when used as an output. P1.5 is  
input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
10  
9
I/O  
O
P1.0 — Port 1 bit 0  
TxD — Serial port transmitter data.  
I/O  
I
P1.1 — Port 1 bit 0  
RxD — Serial port receiver data.  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P1.2 — Port 1 bit 2. (Open drain when used as an output.)  
T0 — Timer/counter 0 external count input, overflow output, or PWM output.  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 2. (Open drain when used as an output.)  
INT0 — External interrupt 0 input.  
7
3
SDA — I2C-bus serial data input/output.  
P1.5 — Port 1 bit 5. (Input only.)  
I
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input a LOW on this pin resets the microcontroller, causing I/O  
ports and peripherals to take on their default states, and the processor begins  
execution at address 0. When using an oscillator frequency above 12 MHz, the  
reset input function of P1.5 must be enabled. An external circuit is required to  
hold the device in reset at power-up until VDD has reached its specified level.  
When system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above 12 MHz, in some  
applications, an external brownout detect circuit may be required to hold the  
device in reset when VDD falls below the minimum specified operating voltage.  
Also used during a power-on sequence to force In-System Programming mode.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
11 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 4:  
P89LPC916 pin description…continued  
Symbol  
Pin  
Type  
Description  
P2.2 to P2.5  
I/O  
Port 2: Port 2 is a 4-bit I/O port having user-configurable output types. During reset  
Port 1 latches are configured in the input only mode with the internal pull-up disabled.  
The operation of the P2 input and outputs depends upon the port configuration  
selected. Refer to Section 9.12.1 “Port configurations” and Table 13 “DC electrical  
characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 2 also provides various special functions as described below:  
P2.2 — Port 2 bit 2.  
6
5
I/O  
O
MOSI — SPI master out slave in. When configured as a master this pin is an output.  
When configured as a slave, this pin is an input.  
I/O  
I
P2.3 — Port 2 bit 3.  
MISO — SPI master in slave out. When configured as a master this pin is an input.  
When configured as a slave, this pin is an output.  
2
I/O  
I/O  
I/O  
I/O  
P2.4 — Port 2 bit 4.  
SS — SPI Slave select.  
P2.5 — Port 2 bit 5.  
11  
SPICLK — When configured as a master this pin is an output. When configured as a  
slave, this pin is an input.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power Supply: This is the power supply voltage for normal operation as well as Idle  
and Power-down modes.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
12 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 5:  
P89LPC917 pin description  
Symbol  
Pin  
Type  
Description  
P0.0 to P0.5  
I/O  
Port 0: Port 0 is a 7-bit I/O port with user-configurable outputs. During reset Port 0  
latches are configured in the input only mode with the internal pull-up disabled. The  
operation of Port 0 pins as inputs and outputs depends upon the port configuration  
selected. Each port pin is configured independently. Refer to Section 9.12.1 “Port  
configurations” and Table 13 “DC electrical characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
2
1
I/O  
I
CMP2 — Comparator 2 output.  
KBI0 — Keyboard input 0.  
I
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — A/D channel 1, input 0  
P0.2 — Port 0 bit 2.  
16  
15  
14  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — A/D channel 1, input 1  
P0.3 — Port 0 bit 3.  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD12 — A/D channel 1, input 2.  
P0.4 — Port 0 bit 4.  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD13 — A/D channel 1, input 3.  
DAC1 — Digital to analog converter 1 output.  
P0.5 — Port 0 bit 5.  
O
13  
11  
I/O  
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
I
I
CLKIN — External clock input.  
P0.7 — Port 0 bit 7.  
I/O  
I
I
I
T1 — Timer/counter 1 external count input, overflow output, or PWM output.  
KBI7 — Keyboard input 7.  
CLKOUT — Clock output.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
13 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 5:  
P89LPC917 pin description…continued  
Symbol  
Pin  
Type  
Description  
Port 1: Port 1 is a 6-bit I/O port with user-configurable outputs. During reset Port 1  
P1.0 to P1.5  
I/O  
(P1.2); latches are configured in the input only mode with the internal pull-up disabled. The  
I (P1.5) operation of the outputs depends upon the port configuration selected. Refer to  
Section 9.12.1 “Port configurations” and Table 13 “DC electrical characteristics” for  
details. P1.2 and P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
10  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TxD — Serial port transmitter data.  
P1.1 — Port 1 bit 1.  
I/O  
I
RxD — Serial port receiver data.  
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P1.2 — Port 1 bit 2. (Open drain when used as an output.)  
T0 — Timer/counter 0 external count input, overflow, or PWM output.  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3. (Open drain when used as an output.)  
INT0 — External interrupt 0 input.  
7
SDA — I2C-bus serial data input/output.  
6
3
P1.4 — Port 1 bit 4.  
INT1 — External interrupt 1input.  
P1.5 — Port 1 bit 5. (Input only.)  
I
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input a LOW on this pin resets the microcontroller, causing I/O  
ports and peripherals to take on their default states, and the processor begins  
execution at address 0. When using an oscillator frequency above 12 MHz, the  
reset input function of P1.5 must be enabled. An external circuit is required to  
hold the device in reset at power-up until VDD has reached its specified level.  
When system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above 12 MHz, in some  
applications, an external brownout detect circuit may be required to hold the  
device in reset when VDD falls below the minimum specified operating voltage.  
Also used during a power-on sequence to force In-System Programming mode.  
P2.2  
5
I/O  
Port 2: Port 2.2 is a single-bit I/O port with a user-configurable output. During reset  
the Port 2.2 latch is configured in the input only mode with the internal pull-up  
disabled. The operation of the output depends upon the port configuration selected.  
Refer to Section 9.12.1 “Port configurations” and Table 13 “DC electrical  
characteristics” for details.  
This pin has a Schmitt triggered input.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power Supply: This is the power supply voltage for normal operation as well as Idle  
and Power-down modes.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
14 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
7. Logic symbols  
V
V
SS  
DD  
KBI0  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
TxD  
RxD  
T0  
INT0  
INT1  
RST  
AD10  
AD11  
AD12  
AD13  
CLKIN  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
SCL  
SDA  
P89LPC915  
DAC1  
CMPREF  
002aaa828  
Fig 7. P89LPC915 logic symbol.  
V
V
SS  
DD  
TxD  
RxD  
T0  
AD10  
AD11  
AD12  
AD13  
CLKIN  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
SCL  
SDA  
INT0  
DAC1  
P89LPC916  
RST  
MOSI  
MISO  
SS  
SPICLK  
002aaa829  
Fig 8. P89LPC916 logic symbol.  
V
V
SS  
DD  
KBI0  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
T1  
TxD  
RxD  
T0  
INT0  
INT1  
RST  
AD10  
AD11  
AD12  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
KBI7  
SCL  
SDA  
P89LPC917  
DAC1  
AD13  
CLKIN  
CLKOUT  
PORT 2  
002aaa830  
Fig 9. P89LPC917 logic symbol.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
15 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
7.1 Product comparison  
Table 6 highlights the differences between these three devices. For a complete list of  
device features, please see Section 2 “Features” on page 1.  
Table 6:  
Product comparison  
Type number  
Comp 2  
output  
SPI  
T1 PWM CLKOUT  
output  
INT1  
KBI  
P89LPC915  
P89LPC916  
P89LPC917  
X
-
-
X
-
-
-
-
-
X
-
6
5
7
X
X
X
X
8. Special function registers  
Remark: Special Function Registers (SFRs) accesses are restricted in the following  
ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the  
SFRs.  
SFR bits labeled ‘-’, ‘0’ or ‘1’ can only be written and read as follows:  
‘-’ Unless otherwise specified, must be written with ‘0’, but can return any value  
when read (even if it was written with ‘0’). It is a reserved bit and may be used in  
future derivatives.  
‘0’ must be written with ‘0’, and will return a ‘0’ when read.  
‘1’ must be written with ‘1’, and will return a ‘1’ when read.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
16 of 72  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 7:  
P89LPC915 Special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
00000000  
00000000  
ADCON1 A/D control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
ADCI1 ENADC1 ADCS11 ADCS10 00  
ADINS A/D input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
00000000  
00000000  
000x0000  
11111111  
00000000  
00000000  
00000000  
00000000  
00000000  
000000x0  
ADMODA A/D mode register A  
ADMODB A/D mode register B  
-
ENDAC1  
BSA1  
AD1BH  
AD1BL  
A/D_1 boundary high register C4H  
A/D_1 boundary low register  
BCH  
D5H  
AD1DAT0 A/D_1 data register 0  
AD1DAT1 A/D_1 data register 1  
AD1DAT2 A/D_1 data register 2  
AD1DAT3 A/D_1 data register 3  
D6H  
D7H  
F5H  
AUXR1  
Auxiliary function register  
A2H  
CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
00000000  
00000000  
00000000  
xxxxxx00  
xx000000  
xx000000  
00000000  
BRGR0[2] Baud rate generator rate low  
BRGR1[2] Baud rate generator rate high BFH  
BRGCON Baud rate generator control BDH  
BEH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2]  
CMP1  
CMP2  
DIVM  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1]  
CMF2 00[1]  
00  
OE2  
CPU clock divide-by-M  
control  
95H  
DPTR  
DPH  
DPL  
Data pointer (2 bytes)  
Data pointer high  
Data pointer low  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
00000000  
00000000  
00000000  
00000000  
FMADRH Program Flash address high  
FMADRL Program Flash address low  
-
-
-
-
-
-
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 Special function registers…continued  
Table 7:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
FMCON  
Program Flash Control  
(Read)  
E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
01110000  
Program Flash Control (Write)  
FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program Flash data  
I2C-bus slave address  
register  
E5H  
00  
00  
00000000  
00000000  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C-bus control register  
I2C-bus data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x00000x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
00000000  
00000000  
11111000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C-bus status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
0
0
F8  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
EX1  
EA  
ET0  
E9  
EX0  
E8  
00  
00000000  
00x00000  
Bit address  
E8H  
EST  
-
-
-
EC  
EKBI  
B9  
EI2C  
B8  
00[1]  
Bit address  
B8H  
BE  
BD  
BC  
BB  
BA  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PX1  
PX1H  
PT0  
PT0H  
PX0  
PX0H  
00[1]  
00[1]  
x0000000  
x0000000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
PI2CH 00[1]  
00[1]  
00x00000  
00x00000  
xxxxxx00  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
KBCON  
94H  
PATN  
_SEL  
KBIF  
00[1]  
KBMASK Keypad interrupt mask  
register  
86H  
93H  
00  
00000000  
11111111  
KBPATN  
Keypad pattern register  
FF  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 Special function registers…continued  
Table 7:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
80  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H  
-
-
CMPREF CIN1A  
CIN1B  
/KBI3  
CIN2A  
/KBI2  
CIN2B  
/KBI1  
CMP2  
/KBI0  
/KBI5  
95  
/KBI4  
94  
Bit address  
97  
96  
93  
92  
91  
90  
[1]  
90H  
-
-
RST  
INT1  
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
P0M1  
P0M2  
P1M1  
P1M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Power control register  
Power control register A  
84H  
85H  
91H  
92H  
-
-
-
-
-
-
-
-
(P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1]  
(P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1]  
11111111  
00000000  
11x1xx11  
00x0xx00  
00000000  
00000000  
-
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1]  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1]  
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
-
PMOD1 PMOD0 00  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
00[1]  
Bit address  
D7  
D6  
D2  
OV  
PSW*  
Program status word  
D0H  
F6H  
DFH  
D1H  
D2H  
D3H  
A9H  
B9H  
CY  
AC  
F0  
RS1  
RS0  
F1  
00  
00  
00000000  
PT0AD  
Port 0 digital input disable  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
xx00000x  
[3]  
RSTSRC Reset source register  
RTCCON Real-time clock control  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][6] 011xxx00  
RTCH  
RTCL  
Real-time clock register high  
Real-time clock register low  
Serial port address register  
Serial port address enable  
00[6]  
00[6]  
00  
00000000  
00000000  
00000000  
00000000  
xxxxxxxx  
SADDR  
SADEN  
SBUF  
00  
Serial Port data buffer register 99H  
xx  
Bit address  
9F  
9E  
9D  
9C  
9B  
TB8  
FE  
9A  
RB8  
BR  
99  
TI  
98  
SCON*  
SSTAT  
Serial port control  
98H SM0/FE  
BAH DBMOD  
SM1  
SM2  
CIDIS  
REN  
RI  
00  
00000000  
00000000  
Serial port extended status  
register  
INTLO  
DBISEL  
OE  
STINT 00  
SP  
Stack pointer  
81H  
07  
00000111  
xxx0xxx0  
TAMOD  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
-
-
-
-
T0M2  
88  
00  
00  
Bit address  
8F  
8E  
8D  
TF0  
8C  
8B  
IE1  
8A  
IT1  
89  
IE0  
TCON*  
Timer 0 and 1 control  
88H  
TF1  
TR1  
TR0  
IT0  
00000000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC915 Special function registers…continued  
Table 7:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
00  
Binary  
TH0  
Timer 0 high  
Timer 1 high  
Timer 0 low  
8CH  
8DH  
8AH  
8BH  
00000000  
00000000  
00000000  
00000000  
00000000  
TH1  
00  
TL0  
00  
TL1  
Timer 1 low  
00  
TMOD  
TRIM  
WDCON  
WDL  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
-
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H  
RCCLK  
PRE2  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
PRE1  
WDRUN WDTOF WDCLK  
FF  
11111111  
WFEED1 Watchdog feed 1  
WFEED2 Watchdog feed 2  
[1] All ports are in input only (high impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx110000.  
[4] After reset, the value is 111001x1, i.e., PRE[2:0] are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after Watchdog reset and is logic 0 after power-on reset. Other  
resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 8:  
P89LPC916 Special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
00000000  
00000000  
ADCON1 A/D control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
ADCI1 ENADC1 ADCS11 ADCS10 00  
ADINS A/D input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
00000000  
00000000  
000x0000  
11111111  
00000000  
00000000  
00000000  
00000000  
00000000  
000000x0  
ADMODA A/D mode register A  
ADMODB A/D mode register B  
-
ENDAC1  
BSA1  
AD1BH  
AD1BL  
A/D_1 boundary high register C4H  
A/D_1 boundary low register  
BCH  
D5H  
AD1DAT0 A/D_1 data register 0  
AD1DAT1 A/D_1 data register 1  
AD1DAT2 A/D_1 data register 2  
AD1DAT3 A/D_1 data register 3  
D6H  
D7H  
F5H  
AUXR1  
Auxiliary function register  
A2H  
CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
00000000  
00000000  
00000000  
xxxxxx00  
xx000000  
xx000000  
00000000  
BRGR0[2] Baud rate generator rate low  
BRGR1[2] Baud rate generator rate high BFH  
BRGCON Baud rate generator control BDH  
BEH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2]  
CMP1  
CMP2  
DIVM  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1]  
CMF2 00  
00  
OE2  
CPU clock divide-by-M  
control  
95H  
DPTR  
DPH  
DPL  
Data pointer (2 bytes)  
Data pointer high  
Data pointer low  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
00000000  
00000000  
00000000  
00000000  
FMADRH Program Flash address high  
FMADRL Program Flash address low  
-
-
-
-
-
-
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 Special function registers…continued  
Table 8:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
FMCON  
Program Flash Control  
(Read)  
E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
01110000  
Program Flash Control (Write)  
FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program Flash data  
I2C-bus slave address  
register  
E5H  
00  
00  
00000000  
00000000  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C-bus control register  
I2C-bus data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x00000x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
00000000  
00000000  
11111000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C-bus status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
-
0
0
F8  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
ET0  
E9  
EX0  
E8  
00  
00000000  
00x00000  
Bit address  
E8H  
EA  
EC  
BA  
-
EST  
-
-
ESPI  
BB  
EKBI  
B9  
EI2C  
B8  
00[1]  
Bit address  
B8H  
BE  
BD  
BC  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PT0  
PT0H  
PX0  
PX0H  
00[1]  
00[1]  
x0000000  
x0000000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
-
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
PSPI  
PSPIH  
-
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
PI2CH 00[1]  
00[1]  
00x00000  
00x00000  
xxxxxx00  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
KBCON  
94H  
PATN  
_SEL  
KBIF  
00[1]  
KBMASK Keypad interrupt mask  
register  
86H  
93H  
00  
00000000  
11111111  
KBPATN  
Keypad pattern register  
FF  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 Special function registers…continued  
Table 8:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
80  
-
Hex  
Binary  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
[1]  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H  
-
-
CMPREF CIN1A  
/KBI5  
95  
CIN1B  
/KBI3  
CIN2A  
/KBI2  
CIN2B  
/KBI1  
/KBI4  
Bit address  
97  
96  
94  
93  
92  
91  
90  
90H  
-
-
RST  
-
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
Bit address  
A0H  
97  
-
96  
-
95  
94  
93  
92  
91  
90  
-
P2*  
Port 2  
SPICLK  
SS  
MISO  
MOSI  
-
P0M1  
P0M2  
P1M1  
P1M2  
P2M1  
P2M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Port 2 output mode 1  
Port 2 output mode 2  
Power control register  
Power control register A  
84H  
-
-
(P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1)  
(P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1)  
-
FF[1]  
00[1]  
11111111  
00000000  
11x1xx11  
00x0xx00  
11111111  
00000000  
00000000  
00000000  
85H  
-
-
-
91H  
-
-
-
-
-
-
(P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1]  
(P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1]  
92H  
-
-
A4H  
-
-
(P2M1.5) (P2M1.4) (P2M1.3) (P2M1.2)  
(P2M2.5) (P2M2.4) (P2M2.3) (P2M2.2)  
-
-
-
-
FF[1]  
00[1]  
A5H  
-
-
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
SPPD  
D2  
PMOD1 PMOD0 00  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
00[1]  
Bit address  
D7  
D6  
PSW*  
Program status word  
D0H  
F6H  
DFH  
D1H  
D2H  
D3H  
A9H  
B9H  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
00  
00  
00000000  
PT0AD  
Port 0 digital input disable  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
xx00000x  
[3]  
RSTSRC Reset source register  
RTCCON Real-time clock control  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][6] 011xxx00  
RTCH  
RTCL  
Real-time clock register high  
Real-time clock register low  
Serial port address register  
Serial port address enable  
00[6]  
00[6]  
00  
00000000  
00000000  
00000000  
00000000  
xxxxxxxx  
SADDR  
SADEN  
SBUF  
00  
Serial Port data buffer register 99H  
xx  
Bit address  
9F  
9E  
9D  
9C  
9B  
TB8  
FE  
9A  
RB8  
BR  
99  
TI  
98  
SCON*  
SSTAT  
Serial port control  
98H SM0/FE  
BAH DBMOD  
SM1  
SM2  
CIDIS  
REN  
RI  
00  
00000000  
00000000  
Serial port extended status  
register  
INTLO  
DBISEL  
OE  
STINT 00  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC916 Special function registers…continued  
Table 8:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
07  
Binary  
SP  
Stack pointer  
81H  
00000111  
00000100  
00xxxxxx  
00000000  
xxx0xxx0  
SPCTL  
SPSTAT  
SPDAT  
TAMOD  
SPI control register  
SPI status register  
SPI data register  
E2H  
E1H  
E3H  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
CPHA  
-
SPR1  
-
SPR0  
-
04  
WCOL  
00  
00  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
-
-
8B  
-
-
8A  
-
-
T0M2  
88  
00  
Bit address  
8F  
8E  
8D  
TF0  
8C  
89  
IE0  
TCON*  
TH0  
Timer 0 and 1 control  
Timer 0 high  
88H  
8CH  
8DH  
8AH  
8BH  
TF1  
TR1  
TR0  
IT0  
00  
00  
00  
00  
00  
00  
00000000  
00000000  
00000000  
00000000  
00000000  
00000000  
TH1  
Timer 1 high  
TL0  
Timer 0 low  
TL1  
Timer 1 low  
TMOD  
TRIM  
WDCON  
WDL  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
-
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
[5] [6]  
Internal oscillator trim register 96H  
RCCLK  
PRE2  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
PRE1  
WDRUN WDTOF WDCLK  
FF  
11111111  
WFEED1 Watchdog feed 1  
WFEED2 Watchdog feed 2  
[1] All ports are in input only (high impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx110000.  
[4] After reset, the value is 111001x1, i.e., PRE[2:0] are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after Watchdog reset and is logic 0 after power-on reset. Other  
resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 9:  
P89LPC917 Special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
00000000  
00000000  
ADCON1 A/D control register 1  
97H  
ENBI1  
ENADCI  
1
TMM1  
EDGE1  
ADCI1 ENADC1 ADCS11 ADCS10 00  
ADINS A/D input select  
A3H  
C0H  
A1H  
ADI13  
BNDI1  
CLK2  
ADI12  
BURST1  
CLK1  
ADI11  
SCC1  
CLK0  
ADI10  
SCAN1  
-
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
00  
00  
00  
00  
00  
00  
00000000  
00000000  
000x0000  
11111111  
00000000  
00000000  
00000000  
00000000  
00000000  
000000x0  
ADMODA A/D mode register A  
ADMODB A/D mode register B  
-
ENDAC1  
BSA1  
AD1BH  
AD1BL  
A/D_1 boundary high register C4H  
A/D_1 boundary low register  
BCH  
D5H  
AD1DAT0 A/D_1 data register 0  
AD1DAT1 A/D_1 data register 1  
AD1DAT2 A/D_1 data register 2  
AD1DAT3 A/D_1 data register 3  
D6H  
D7H  
F5H  
AUXR1  
Auxiliary function register  
A2H  
CLKLP  
EBRR  
ENT1  
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
00  
00  
00  
00000000  
00000000  
00000000  
xxxxxx00  
xx000000  
xx000000  
00000000  
BRGR0[2] Baud rate generator rate low  
BRGR1[2] Baud rate generator rate high BFH  
BRGCON Baud rate generator control BDH  
BEH  
-
-
-
-
-
-
-
-
-
-
-
SBRGS BRGEN 00[2]  
CMP1  
CMP2  
DIVM  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
CO1  
CO2  
CMF1 00[1]  
CMF2 00[1]  
00  
OE2  
CPU clock divide-by-M  
control  
95H  
DPTR  
DPH  
DPL  
Data pointer (2 bytes)  
Data pointer high  
Data pointer low  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
00000000  
00000000  
00000000  
00000000  
FMADRH Program Flash address high  
FMADRL Program Flash address low  
-
-
-
-
-
-
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 Special function registers…continued  
Table 9:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
FMCON  
Program Flash Control  
(Read)  
E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
70  
01110000  
Program Flash Control (Write)  
FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program Flash data  
I2C-bus slave address  
register  
E5H  
00  
00  
00000000  
00000000  
DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
GC  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
D8  
I2CON*  
I2DAT  
I2C-bus control register  
I2C-bus data register  
D8H  
DAH  
DDH  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x00000x0  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
00  
00  
00000000  
00000000  
11111000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C-bus status register  
DCH  
D9H  
STA.4  
AF  
EA  
EF  
EAD  
BF  
-
STA.3  
AE  
STA.2  
AD  
STA.1  
AC  
STA.0  
AB  
0
AA  
0
0
F8  
Bit address  
A8H  
A9  
A8  
IEN0*  
IEN1*  
Interrupt enable 0  
Interrupt enable 1  
EWDRT  
EE  
EBO  
ED  
ES/ESR  
EC  
ET1  
EB  
EX1  
EA  
ET0  
E9  
EX0  
E8  
00  
00000000  
00x00000  
Bit address  
E8H  
EST  
-
-
-
EC  
EKBI  
B9  
EI2C  
B8  
00[1]  
Bit address  
B8H  
BE  
BD  
BC  
BB  
BA  
IP0*  
Interrupt priority 0  
PWDRT  
PBO  
PBOH  
PS/PSR  
PT1  
PT1H  
PX1  
PX1H  
PT0  
PT0H  
PX0  
PX0H  
00[1]  
00[1]  
x0000000  
x0000000  
IP0H  
Interrupt priority 0 high  
B7H  
-
PWDRT  
H
PSH/  
PSRH  
Bit address  
F8H  
FF  
PAD  
PADH  
-
FE  
PST  
PSTH  
-
FD  
FC  
FB  
FA  
PC  
PCH  
-
F9  
F8  
IP1*  
Interrupt priority 1  
-
-
-
-
-
-
-
-
-
PKBI  
PKBIH  
PI2C  
PI2CH 00[1]  
00[1]  
00x00000  
00x00000  
xxxxxx00  
IP1H  
Interrupt priority 1 high  
Keypad control register  
F7H  
KBCON  
94H  
PATN  
_SEL  
KBIF  
00[1]  
KBMASK Keypad interrupt mask  
register  
86H  
93H  
00  
00000000  
11111111  
KBPATN  
Keypad pattern register  
FF  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 Special function registers…continued  
Table 9:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
80  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
P0*  
P1*  
Port 0  
Port 1  
80H T1/KBI7/  
CLKOUT  
-
CMPREF CIN1A  
CIN1B  
/KBI3  
CIN2A  
/KBI2  
CIN2B  
/KBI1  
CMP2  
/KBI0  
/KBI5  
95  
/KBI4  
94  
Bit address  
90H  
97  
96  
93  
92  
91  
90  
[1]  
-
-
RST  
INT1  
INT0/  
SDA  
T0/SCL  
RXD  
TXD  
P0M1  
P0M2  
P1M1  
P1M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Power control register  
Power control register A  
84H (P0M1.7)  
85H (P0M2.7)  
-
-
-
-
(P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1]  
(P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1]  
11111111  
00000000  
11x1xx11  
00x0xx00  
00000000  
00000000  
91H  
92H  
-
-
-
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1]  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1]  
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
-
PMOD1 PMOD0 00  
B5H RTCPD  
-
SPD  
D1  
-
D0  
P
00[1]  
Bit address  
D7  
D6  
D2  
OV  
PSW*  
Program status word  
D0H  
F6H  
DFH  
D1H  
D2H  
D3H  
A9H  
B9H  
CY  
AC  
F0  
RS1  
RS0  
F1  
00  
00  
00000000  
PT0AD  
Port 0 digital input disable  
-
-
-
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
-
xx00000x  
[3]  
RSTSRC Reset source register  
RTCCON Real-time clock control  
-
BOF  
POF  
-
R_BK  
-
R_WD  
-
R_SF  
ERTC  
R_EX  
RTCF  
RTCS1  
RTCS0  
RTCEN 60[1][6] 011xxx00  
RTCH  
RTCL  
Real-time clock register high  
Real-time clock register low  
Serial port address register  
Serial port address enable  
00[6]  
00[6]  
00  
00000000  
00000000  
00000000  
00000000  
xxxxxxxx  
SADDR  
SADEN  
SBUF  
00  
Serial Port data buffer register 99H  
xx  
Bit address  
9F  
9E  
9D  
9C  
9B  
TB8  
FE  
9A  
RB8  
BR  
99  
TI  
98  
SCON*  
SSTAT  
Serial port control  
98H SM0/FE  
BAH DBMOD  
SM1  
SM2  
CIDIS  
REN  
RI  
00  
00000000  
00000000  
Serial port extended status  
register  
INTLO  
DBISEL  
OE  
STINT 00  
SP  
Stack pointer  
81H  
07  
00000111  
xxx0xxx0  
TAMOD  
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
T1M2  
8C  
-
-
-
T0M2  
88  
00  
00  
Bit address  
8F  
8E  
8D  
TF0  
8B  
IE1  
8A  
IT1  
89  
IE0  
TCON*  
Timer 0 and 1 control  
88H  
TF1  
TR1  
TR0  
IT0  
00000000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
P89LPC917 Special function registers…continued  
Table 9:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
00  
Binary  
TH0  
Timer 0 high  
Timer 1 high  
Timer 0 low  
8CH  
8DH  
8AH  
8BH  
00000000  
00000000  
00000000  
00000000  
00000000  
TH1  
00  
TL0  
00  
TL1  
Timer 1 low  
00  
TMOD  
TRIM  
WDCON  
WDL  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
ENCLK  
PRE1  
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H  
RCCLK  
PRE2  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
Watchdog control register  
Watchdog load  
A7H  
C1H  
C2H  
C3H  
WDRUN WDTOF WDCLK  
FF  
11111111  
WFEED1 Watchdog feed 1  
WFEED2 Watchdog feed 2  
[1] All ports are in input only (high impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC915/916/917 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset  
value is xx110000.  
[4] After reset, the value is 111001x1, i.e., PRE[2:0] are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after Watchdog reset and is logic 0 after power-on reset. Other  
resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9. Functional description  
Remark: Please refer to the P89LPC915/916/917 User’s Manual for a more detailed  
functional description.  
9.1 Enhanced CPU  
The P89LPC915/916/917 uses an enhanced 80C51 CPU which runs at 6 times the  
speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles,  
and most instructions execute in one or two machine cycles.  
9.2 Clocks  
9.2.1 Clock definitions  
The P89LPC915/916/917 device has several internal clocks as defined below:  
OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of three  
clock sources (see Figure 10) and can also be optionally divided to a slower  
frequency (see Section 9.7 “CPU Clock (CCLK) modification: DIVM register”).  
Note: fosc is defined as the OSCCLK frequency.  
CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per  
machine cycle, and most instructions are executed in one to two machine cycles (two  
or four CCLK cycles).  
RCCLK — The internal 7.373 MHz RC oscillator output.  
PCLK — Clock for the various peripheral devices and is CCLK/2  
9.2.2 CPU clock (OSCCLK)  
The P89LPC915/916/917 provide user-selectable oscillator options in generating the  
CPU clock. This allows optimization for a range of needs from high precision to lowest  
possible cost. These options are configured when the FLASH is programmed and  
include an on-chip Watchdog oscillator, an on-chip RC oscillator, and an external  
clock input.  
9.2.3 Clock output (P89LPC917)  
The P89LPC917 supports a user selectable clock output function on the CLKOUT  
pin. This allows external devices to synchronize to the P89LPC917. This output is  
enabled by the ENCLK bit in the TRIM register. The frequency of this clock output is  
12 that of the CCLK. If the clock output is not needed in Idle mode, it may be turned  
off prior to entering Idle, saving additional power.  
9.3 On-chip RC oscillator option  
The P89LPC915/916/917 has a 6-bit TRIM register that can be used to tune the  
frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory  
pre-programmed value to adjust the oscillator frequency to 7.373 MHz, ±1 % at room  
temperature. End-user applications can write to the TRIM register to adjust the  
on-chip RC oscillator to other frequencies.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
29 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.4 Watchdog oscillator option  
The Watchdog has a separate oscillator which has a frequency of 400 kHz. This  
oscillator can be used to save power when a high clock frequency is not needed.  
9.5 External clock input option  
In this configuration, the processor clock is derived from an external source driving  
the CLKIN pin. The rate may be from 0 Hz up to 18 MHz. When using an oscillator  
frequency above 12 MHz, the reset input function of P1.5 must be enabled. An  
external circuit is required to hold the device in reset at power-up until VDD has  
reached its specified level. When system power is removed VDD will fall below  
the minimum specified operating voltage. When using an oscillator frequency  
above 12 MHz, in some applications, an external brownout detect circuit may  
be required to hold the device in reset when VDD falls below the minimum  
specified operating voltage.  
RTCS1:0  
XCLK  
RTC  
RCCLK  
CLKOUT  
OSCCLK  
DIVM  
CLKIN  
CCLK  
CPU  
RCCLK  
RC  
OSCILLATOR  
ADC1/DAC1  
(7.3728 MHz)  
÷2  
PCLK  
WDT  
WATCHDOG  
OSCILLATOR  
peripheral clock  
(400 kHz)  
PCLK  
BAUD RATE  
GENERATOR  
SPI  
(P89LPC916)  
2
TIMERS 1 & 0  
I C  
UART  
002aaa831  
Fig 10. Block diagram of oscillator control.  
9.6 CPU Clock (CCLK) wake-up delay  
The P89LPC915/916/917 has an internal wake-up timer that delays the clock until it  
stabilizes. The delay is 224 OSCCLK cycles plus 60 to 100 µs.  
9.7 CPU Clock (CCLK) modification: DIVM register  
The OSCCLK frequency can be divided down up to 510 times by configuring a  
dividing register, DIVM, to generate CCLK. This feature makes it possible to  
temporarily run the CPU at a lower rate, reducing power consumption. By dividing the  
clock, the CPU can retain the ability to respond to events that would not exit Idle  
mode by executing its normal program at a lower rate. This can also allow bypassing  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
30 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
the oscillator start-up time in cases where Power-down mode would otherwise be  
used. The value of DIVM may be changed by the program at any time without  
interrupting code execution.  
9.8 Low power select  
The P89LPC915/916/917 are designed to run at 18 MHz (CCLK) maximum.  
However, if CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to  
logic 1 to lower the power consumption further. On any reset, CLKLP is logic 0  
allowing highest performance access. This bit can then be set in software if CCLK is  
running at 8 MHz or slower.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
31 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.9 A/D converter  
9.9.1 General description  
The P89LPC915/916/917 has an 8-bit, 4-channel multiplexed successive  
approximation analog-to-digital converter. A block diagram of the A/D converter is  
shown in Figure 11. The A/D consists of a 4-input multiplexer which feeds a  
sample-and-hold circuit providing an input signal to one of two comparator inputs.  
The control logic in combination with the successive approximation register (SAR)  
drives a digital-to-analog converter which provides the other input to the comparator.  
The output of the comparator is fed to the SAR.  
COMP  
+
INPUT  
MUX  
SAR  
CONTROL  
LOGIC  
8
DAC1  
CCLK  
002aaa783  
Fig 11. ADC block diagram.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
32 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.9.2 Features  
An 8-bit, 4-channel multiplexed input, successive approximation A/D converter  
Four A/D result registers  
Six operating modes  
Fixed channel, single conversion mode  
Fixed channel, continuous conversion mode  
Auto scan, single conversion mode  
Auto scan, continuous conversion mode  
Dual channel, continuous conversion mode  
Single step mode  
Three conversion start modes  
Timer triggered start  
Start immediately  
Edge triggered  
8-bit conversion time of 3.9 µs at an ADC clock of 3.3 MHz  
Interrupt or polled operation  
Boundary limits interrupt  
DAC output to a port pin with high output impedance  
Clock divider  
Power-down mode  
9.9.3 A/D operating modes  
Fixed channel, single conversion mode: A single input channel can be selected for  
conversion. A single conversion will be performed and the result placed in the result  
register which corresponds to the selected input channel. An interrupt, if enabled, will  
be generated after the conversion completes.  
Fixed channel, continuous conversion mode: A single input channel can be  
selected for continuous conversion. The results of the conversions will be sequentially  
placed in the four result registers. An interrupt, if enabled, will be generated after  
every four conversions. Additional conversion results will again cycle through the four  
result registers, overwriting the previous results. Continuous conversions continue  
until terminated by the user.  
Auto scan, single conversion mode: Any combination of the four input channels  
can be selected for conversion. A single conversion of each selected input will be  
performed and the result placed in the result register which corresponds to the  
selected input channel. An interrupt, if enabled, will be generated after all selected  
channels have been converted. If only a single channel is selected this is equivalent  
to single channel, single conversion mode.  
Auto scan, continuous conversion mode: Any combination of the four input  
channels can be selected for conversion. A conversion of each selected input will be  
performed and the result placed in the result register which corresponds to the  
selected input channel. An interrupt, if enabled, will be generated after all selected  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
33 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
channels have been converted. The process will repeat starting with the first selected  
channel. Additional conversion results will again cycle through the four result  
registers, overwriting the previous results. Continous conversions continue until  
terminated by the user.  
Dual channel, continuous conversion mode: This is a variation of the auto scan  
continuous conversion mode where conversion occurs on two user-selectable inputs.  
The result of the conversion of the first channel is placed in result register, AD1DAT0.  
The result of the conversion of the second channel is placed in result register,  
AD1DAT1. The first channel is again converted and its result stored in AD1DAT2. The  
second channel is again converted and its result placed in AD1DAT3. An interrupt is  
generated, if enabled, after every set of four conversions (two conversions per  
channel).  
Single step mode: This special mode allows ‘single-stepping’ in an auto scan  
conversion mode. Any combination of the four input channels can be selected for  
conversion. After each channel is converted, an interrupt is generated, if enabled,  
and the A/D waits for the next start condition. May be used with any of the start  
modes.  
9.9.4 Conversion start modes  
Timer triggered start: An A/D conversion is started by the overflow of Timer 0. Once  
a conversion has started, additional Timer 0 triggers are ignored until the conversion  
has completed. The Timer triggered start mode is available in all A/D operating  
modes.  
Start immediately: Programming this mode immediately starts a conversion. This  
start mode is available in all A/D operating modes.  
Edge triggered: (P89LPC915/917) An A/D conversion is started by rising or falling  
edge of P1.4. Once a conversion has started, additional edge triggers are ignored  
until the conversion has completed. The edge triggered start mode is available in all  
A/D operating modes.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
34 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.9.5 Boundary limits interrupt  
The A/D converters have both a high and low boundary limit register. After the four  
MSBs have been converted, these four bits are compared with the four MSBs of the  
boundary high and low registers. If the four MSBs of the conversion are outside the  
limit an interrupt will be generated, if enabled. If the conversion result is within the  
limits, the boundary limits will again be compared after all 8 bits have been converted.  
An interrupt will be generated, if enabled, if the result is outside the boundary limits.  
The boundary limit may be disabled by clearing the boundary limit interrupt enable.  
9.9.6 DAC output to a port pin with high output impedance  
The A/D converter’s DAC block can be output to a port pin. In this mode, the  
AD1DAT3 register is used to hold the value fed to the DAC. After a value has been  
written to AD1DAT3, the DAC output will appear on the channel 3 pin.  
9.9.7 Clock divider  
The A/D converter requires that its internal clock source be in the range of 500 kHz to  
3.3 MHz to maintain accuracy. A programmable clock divider that divides the clock  
from 1 to 8 is provided for this purpose.  
9.9.8 Power-down and Idle mode  
In Idle mode the A/D converter, if enabled, will continue to function and can cause the  
device to exit Idle mode when the conversion is completed if the A/D interrupt is  
enabled. In Power-down mode or Total power-down mode, the A/D does not function.  
If the A/D is enabled, it will consume power. Power can be reduced by disabling the  
A/D.  
9.10 Memory organization  
The various P89LPC915/916/917 memory spaces are as follows:  
DATA  
256 bytes of internal data memory space (00h:FFh) accessed via direct or indirect  
addressing, using instructions other than MOVX and MOVC. All or part of the  
Stack may be in this area.  
SFR  
Special Function Registers. Selected CPU registers and peripheral control and  
status registers, accessible only via direct addressing.  
CODE  
64 kB of Code memory space, accessed as part of program execution and via the  
MOVC instruction. The P89LPC915/916/917 has 2 kB of on-chip Code memory.  
9.11 Interrupts  
The P89LPC915/916/917 uses a four priority level interrupt structure. This allows  
great flexibility in controlling the handling of the many interrupt sources.  
The P89LPC915 and P89LPC917 support 13 interrupt sources: external interrupts 0  
and 1, timers 0 and 1, serial port Tx, serial port Rx, combined serial port Rx and Tx,  
brownout detect, Watchdog/Real-Time clock, I2C, keyboard, comparators 1 and 2,  
and the A/D converter.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
35 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
The P89LPC916supports 14 interrupt sources: external interrupt 0, timers 0 and 1,  
serial port Tx, serial port Rx, combined serial port Rx and Tx, brownout detect,  
Watchdog/Real-Time clock, I2C, keyboard, comparators 1 and 2, SPI, and the A/D  
converter.  
Each interrupt source can be individually enabled or disabled by setting or clearing a  
bit in the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a  
global disable bit, EA, which disables all interrupts.  
Each interrupt source can be individually programmed to one of four priority levels by  
setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1, and IP1H. An  
interrupt service routine in progress can be interrupted by a higher priority interrupt,  
but not by another interrupt of the same or lower priority. The highest priority interrupt  
service cannot be interrupted by any other interrupt source. If two requests of  
different priority levels are pending at the start of an instruction, the request of higher  
priority level is serviced.  
If requests of the same priority level are pending at the start of an instruction, an  
internal polling sequence determines which request is serviced. This is called the  
arbitration ranking. Note that the arbitration ranking is only used to resolve pending  
requests of the same priority level.  
9.11.1 External interrupt inputs  
The P89LPC915 and P89LPC917 have two external interrupt inputs as well as the  
Keypad Interrupt function. The P89LPC916 has one external interrupt input as well as  
the Keypad Interrupt function These external interrupt inputs are identical to those  
present on the standard 80C51 microcontrollers.  
These external interrupts can be programmed to be level-triggered or edge-triggered  
by setting or clearing bit IT1 or IT0 in Register TCON.  
In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one  
cycle and a LOW in the next cycle, the interrupt request flag IEn in TCON is set,  
causing an interrupt request.  
If an external interrupt is enabled when the P89LPC915/916/917 is put into  
Power-down or Idle mode, the interrupt will cause the processor to wake-up and  
resume operation. Refer to Section 9.14 “Power reduction modes” for details.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
36 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
IE0  
EX0  
IE1  
(P89LPC915/917)  
EX1  
BOF  
EBO  
RTCF  
WAKE-UP  
(IF IN POWER-DOWN)  
KBIF  
EKBI  
ERTC  
(RTCCON.1)  
WDOVF  
EWDRT  
CMF2  
CMF1  
EC  
EA (IE0.7)  
TF0  
ET0  
TF1  
ET1  
TI & RI/RI  
ES/ESR  
TI  
EST  
INTERRUPT  
TO CPU  
SI  
EI2C  
SPIF  
(P89LPC916)  
ESPI  
ENADCI1  
ADCI1  
ENBI1  
BNDI1  
EAD  
002aaa833  
Fig 12. Interrupt sources, interrupt enables, and power-down wake-up sources.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
37 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.12 I/O ports  
The P89LPC916 and P89LPC917 devices have three I/O ports: Port 0, Port 1, and  
Port 2. The exact number of I/O pins available depends on the clock and reset options  
chosen, as shown in Table 10.  
Table 10: Number of I/O pins available (P89LPC916, P89LPC917)  
Clock source  
Reset option  
Number of  
I/O pins  
(16-pin  
package)  
RC oscillator or Watchdog oscillator No external reset (except during  
power-up)  
14  
External RST pin supported  
13  
13  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
12  
[1] Required for operation above 12 MHz.  
The P89LPC915 has 2I/O ports: Port 0, and Port 1. The exact number of I/O pins  
available depends on the reset option chosen, as shown in Table 11.  
Table 11: Number of I/O pins available (P89LPC915)  
Clock source  
Reset option  
Number of  
I/O pins  
(14-pin  
package)  
RC oscillator or Watchdog oscillator No external reset (except during  
power-up)  
12  
External RST pin supported  
11  
11  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
10  
[1] Required for operation above 12 MHz.  
9.12.1 Port configurations  
Except as listed below, every I/O pin on the P89LPC915/916/917 may be configured  
by software to one of four types on a bit-by-bit basis. These are: quasi-bidirectional  
(standard 80C51 port outputs), push-pull, open drain, and input-only. Two  
configuration registers for each port select the output type for each port pin.  
P1.5/RST can only be an input and cannot be configured.  
SCL/T0/P1.2 and SDA/INTO/P1.3 may only be configured to be either input-only or  
open drain.  
9.12.2 Quasi-bidirectional output configuration  
Quasi-bidirectional output type can be used as both an input and output without the  
need to reconfigure the port. This is possible because when the port outputs a logic  
HIGH, it is weakly driven, allowing an external device to pull the pin LOW. When the  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
38 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
pin is driven LOW, it is driven strongly and able to sink a fairly large current. These  
features are somewhat similar to an open-drain output except that there are three  
pull-up transistors in the quasi-bidirectional output that serve different purposes.  
The P89LPC915/916/917 is a 3 V device, but the pins are 5 V-tolerant. In  
quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current  
flowing from the pin to VDD, causing extra power consumption. Therefore, applying  
5 V in quasi-bidirectional mode is discouraged.  
A quasi-bidirectional port pin has a Schmitt triggered input that also has a glitch  
suppression circuit.  
9.12.3 Open-drain output configuration  
The open-drain output configuration turns off all pull-ups and only drives the  
pull-down transistor of the port driver when the port latch contains a logic 0. To be  
used as a logic output, a port configured in this manner must have an external  
pull-up, typically a resistor tied to VDD  
.
An open-drain port pin has a Schmitt triggered input that also has a glitch  
suppression circuit.  
9.12.4 Input-only configuration  
The input-only port configuration has no output drivers. It is a Schmitt triggered input  
that also has a glitch suppression circuit.  
9.12.5 Push-pull output configuration  
The push-pull output configuration has the same pull-down structure as both the  
open-drain and the quasi-bidirectional output modes, but provides a continuous  
strong pull-up when the port latch contains a logic 1. The push-pull mode may be  
used when more source current is needed from a port output. A push-pull port pin  
has a Schmitt triggered input that also has a glitch suppression circuit.  
9.12.6 Port 0 analog functions  
The P89LPC915/916/917 incorporates two Analog Comparators. In order to give the  
best analog function performance and to minimize power consumption, pins that are  
being used for analog functions must have the digital outputs and digital inputs  
disabled.  
Digital outputs are disabled by putting the port output into the Input-Only (high  
impedance) mode as described in Section 9.12.4 “Input-only configuration”.  
Digital inputs on Port 0 may be disabled through the use of the PT0AD register. On  
any reset, the PT0AD bits default to logic 0s to enable digital functions.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
39 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.12.7 Additional port features  
After power-up, all pins are in Input-Only mode. After power-up all I/O pins except  
P1.5, may be configured by software.  
Pin P1.5 is input only.  
SCL/T0/P1.2 and SDA/INTO/P1.3 may only be configured to be either input-only or  
open drain.  
Every output on the P89LPC915/916/917 has been designed to sink typical LED  
drive current. However, there is a maximum total output current for all ports which  
must not be exceeded. Please refer to Table 13 “DC electrical characteristics” for  
detailed specifications.  
All port pins that can function as an output have slew rate controlled outputs to limit  
noise generated by quickly switching output signals. The slew rate is factory-set to  
approximately 10 ns rise and fall times.  
9.13 Power monitoring functions  
The P89LPC915/916/917 incorporates power monitoring functions designed to  
prevent incorrect operation during initial power-up and power loss or reduction during  
operation. This is accomplished with two hardware functions: Power-on detect and  
Brownout detect.  
9.13.1 Brownout detection  
The Brownout detect function determines if the power supply voltage drops below a  
certain level. The default operation is for a Brownout detection to cause a processor  
reset, however, it may alternatively be configured to generate an interrupt.  
Brownout detection may be enabled or disabled in software.  
If Brownout detection is enabled, the brownout condition occurs when VDD falls below  
the brownout trip voltage, VBO (see Table 13 “DC electrical characteristics”), and is  
negated when VDD rises above VBO. If the P89LPC915/916/917 device is to operate  
with a power supply that can be below 2.7 V, BOE should be left in the  
unprogrammed state so that the device can operate at 2.4 V, otherwise continuous  
brownout reset may prevent the device from operating.  
For correct activation of Brownout detect, the VDD rise and fall times must be  
observed. Please see Table 13 “DC electrical characteristics” for specifications.  
9.13.2 Power-on detection  
The Power-on detect has a function similar to the Brownout detect, but is designed to  
work as power comes up initially, before the power supply voltage reaches a level  
where Brownout detect can work. The POF flag in the RSTSRC register is set to  
indicate an initial power-up condition. The POF flag will remain set until cleared by  
software.  
9.14 Power reduction modes  
The P89LPC915/916/917 supports three different power reduction modes. These  
modes are Idle mode, Power-down mode, and total Power-down mode.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
40 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.14.1 Idle mode  
Idle mode leaves peripherals running in order to allow them to activate the processor  
when an interrupt is generated. Any enabled interrupt source or reset may terminate  
Idle mode.  
9.14.2 Power-down mode  
The Power-down mode stops the oscillator in order to minimize power consumption.  
The P89LPC915/916/917 exits Power-down mode via any reset, or certain interrupts.  
In Power-down mode, the power supply voltage may be reduced to the RAM  
keep-alive voltage VRAM. This retains the RAM contents at the point where  
Power-down mode was entered. SFR contents are not guaranteed after VDD has  
been lowered to VRAM, therefore it is highly recommended to wake up the processor  
via reset in this case. VDD must be raised to within the operating range before the  
Power-down mode is exited.  
Some chip functions continue to operate and draw power during Power-down mode,  
increasing the total power used during power-down. These include: Brownout detect,  
Watchdog Timer, Comparators (note that Comparators can be powered-down  
separately), and Real-Time Clock (RTC)/System Timer. The internal RC oscillator is  
disabled unless both the RC oscillator has been selected as the system clock and the  
RTC is enabled.  
9.14.3 Total Power-down mode  
This is the same as Power-down mode except that the brownout detection circuitry  
and the voltage comparators are also disabled to conserve additional power. The  
internal RC oscillator is disabled unless both the RC oscillator has been selected as  
the system clock and the RTC is enabled. If the internal RC oscillator is used to clock  
the RTC during Power-down, there will be high power consumption. Please use an  
external low frequency clock to achieve low power with the Real-Time Clock running  
during Power-down.  
9.15 Reset  
The P1.5/RST pin can function as either an active-LOW reset input or as a digital  
input, P1.5. The RPE (Reset Pin Enable) bit in UCFG1, when set to logic 1, enables  
the external reset input function on P1.5. When cleared, P1.5 may be used as an  
input pin.  
Remark: During a power-up sequence, the RPE selection is overridden and this pin  
will always function as a reset input. An external circuit connected to this pin  
should not hold this pin LOW during a power-on sequence as this will keep the  
device in reset. After power-up this input will function either as an external reset  
input or as a digital input as defined by the RPE bit. Only a power-up reset will  
temporarily override the selection defined by RPE bit. Other sources of reset will not  
override the RPE bit.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
41 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Reset can be triggered from the following sources:  
External reset pin (during power-up or if user configured via UCFG1. This option  
must be used for an oscillator frequency above 12 MHz.)  
Power-on detect  
Brownout detect  
Watchdog Timer  
Software reset  
UART break character detect reset.  
For every reset source, there is a flag in the Reset Register, RSTSRC. The user can  
read this register to determine the most recent reset source. These flag bits can be  
cleared in software by writing a logic 0 to the corresponding bit. More than one flag bit  
may be set:  
During a power-on reset, both POF and BOF are set but the other flag bits are  
cleared.  
For any other reset, previously set flag bits that have not been cleared will remain  
set.  
9.16 Timers/counters 0 and 1  
The P89LPC915/916/917 devices have two general purpose counter/timers which  
are upward compatible with the standard 80C51 Timer 0 and Timer 1. An option to  
automatically toggle the T0 pin upon timer overflow has been added. In addition an  
option to toggle the T1 pin upon overflow has been added on the P89LPC917. In the  
‘Timer’ function, the register is incremented every machine cycle. In the ‘Counter’  
function, the register of Timer 0 is incremented in response to a 1-to-0 transition at its  
external input pin. This external input is sampled once very machine cycle.  
Timer 0 has five operating modes (modes 0, 1, 2, 3, and 6).  
Timer 1 has four operating modes (modes 0, 1, 2, and 3), except on the P89LPC917  
where Timer 1 also has mode 6. Modes 0, 1, and 2 are the same for both  
Timers/Counters. Mode 3 is different.  
9.16.1 Mode 0  
Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit  
Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured  
as a 13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.  
9.16.2 Mode 1  
Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.  
9.16.3 Mode 2  
Mode 2 configures the Timer register as an 8-bit Counter with automatic reload.  
Mode 2 operation is the same for Timer 0 and Timer 1.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
42 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.16.4 Mode 3  
When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit  
counters and is provided for applications that require an extra 8-bit timer. When  
Timer 1 is in Mode 3 it can still be used by the serial port as a baud rate generator.  
9.16.5 Mode 6  
In this mode, the corresponding timer can be changed to a PWM with a full period of  
256 timer clocks.  
9.16.6 Timer overflow toggle output  
Timer 0 (and Timer 1 on the P89LPC917) can be configured to automatically toggle  
the timer output pin, Tx, whenever a timer overflow occurs. The same device pin that  
is used for the count input is also used for the timer toggle output. The port output will  
be a logic 1 prior to the first timer overflow when this mode is turned on.  
9.17 Real-Time clock/system timer  
The P89LPC915/916/917 devices have a simple Real-Time clock that allows a user  
to continue running an accurate timer while the rest of the device is powered-down.  
The Real-Time clock can be a wake-up or an interrupt source. The Real-Time clock is  
a 23-bit down counter comprised of a 7-bit prescaler and a 16-bit loadable down  
counter. When it reaches all logic 0s, the counter will be reloaded again and the  
RTCF flag will be set.  
The clock source for this counter can either be the CPU clock (CCLK) or the external  
clock input, provided that the external clock input is not being used as the CPU clock.  
If the external clock input is used as the CPU clock, then the RTC will use CCLK as its  
clock source.  
Only power-on reset will reset the Real-Time clock and its associated SFRs to the  
default state.  
9.18 UART  
The P89LPC915/916/917 has an enhanced UART that is compatible with the  
conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud  
rate source. The P89LPC915/916/917 does include an independent Baud Rate  
Generator. The baud rate can be selected from CCLK (divided by a constant),  
Timer 1 overflow, or the independent Baud Rate Generator. In addition to the baud  
rate generation, enhancements over the standard 80C51 UART include Framing  
Error detection, automatic address recognition, selectable double buffering and  
several interrupt options. The UART can be operated in 4 modes: shift register, 8-bit  
UART, 9-bit UART, and CCLK/32 or CCLK/16.  
9.18.1 Mode 0  
Serial data enters and exits through RxD. TxD outputs the shift clock. 8 bits are  
transmitted or received, LSB first. The baud rate is fixed at 116 of the CPU clock  
frequency.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
43 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.18.2 Mode 1  
10 bits are transmitted (through TxD) or received (through RxD): a start bit (logic 0),  
8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is  
stored in RB8 in Special Function Register SCON. The baud rate is variable and is  
determined by the Timer 1 overflow rate or the Baud Rate Generator (described in  
Section 9.18.5 “Baud rate generator and selection”).  
9.18.3 Mode 2  
11 bits are transmitted (through TxD) or received (through RxD): start bit (logic 0),  
8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When  
data is transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of  
logic 0 or 1. Or, for example, the parity bit (P, in the PSW) could be moved into TB8.  
When data is received, the 9th data bit goes into RB8 in Special Function Register  
SCON, while the stop bit is not saved. The baud rate is programmable to either 116 or  
1
32 of the CCLK frequency, as determined by the SMOD1 bit in PCON.  
9.18.4 Mode 3  
11 bits are transmitted (through TxD) or received (through RxD): a start bit (logic 0), 8  
data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact,  
Mode 3 is the same as Mode 2 in all respects except baud rate. The baud rate in  
Mode 3 is variable and is determined by the Timer 1 overflow rate or the Baud Rate  
Generator (described in section Section 9.18.5 “Baud rate generator and selection”).  
9.18.5 Baud rate generator and selection  
The P89LPC915/916/917 has an independent Baud Rate Generator. The baud rate  
is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0 SFRs  
which together form a 16-bit baud rate divisor value that works in a similar manner as  
Timer 1. If the baud rate generator is used, Timer 1 can be used for other timing  
functions.  
The UART can use either Timer 1 or the baud rate generator output (see Figure 13).  
Note that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The  
independent Baud Rate Generator uses CCLK.  
SMOD1 = 1  
SBRGS = 0  
SBRGS = 1  
Timer 1 Overflow  
(PCLK-based)  
2
Baud Rate Modes 1 and 3  
SMOD1 = 0  
Baud Rate Generator  
(CCLK-based)  
002aaa419  
Fig 13. Baud rate sources for UART (Modes 1, 3).  
9.18.6 Framing error  
Framing error is reported in the status register (SSTAT). In addition, if SMOD0  
(PCON.6) is logic 1, framing errors can be made available in SCON.7, respectively. If  
SMOD0 is logic 0, SCON.7 is SM0. It is recommended that SM0 and SM1  
(SCON.7:6) are set up when SMOD0 is logic 0.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
44 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.18.7 Break detect  
Break detect is reported in the status register (SSTAT). A break is detected when  
11 consecutive bits are sensed LOW. The break detect can be used to reset the  
device.  
9.18.8 Double buffering  
The UART has a transmit double buffer that allows buffering of the next character to  
be written to SBUF while the first character is being transmitted. Double buffering  
allows transmission of a string of characters with only one stop bit between any two  
characters, as long as the next character is written between the start bit and the stop  
bit of the previous character.  
Double buffering can be disabled. If disabled (DBMOD, i.e., SSTAT.7 = 0), the UART  
is compatible with the conventional 80C51 UART. If enabled, the UART allows writing  
to SnBUF while the previous data is being shifted out. Double buffering is only  
allowed in Modes 1, 2 and 3. When operated in Mode 0, double buffering must be  
disabled (DBMOD = 0).  
9.18.9 Transmit interrupts with double buffering enabled (Modes 1, 2 and 3)  
Unlike the conventional UART, in double buffering mode, the Tx interrupt is generated  
when the double buffer is ready to receive new data.  
9.18.10 The 9th bit (bit 8) in double buffering (Modes 1, 2 and 3)  
If double buffering is disabled TB8 can be written before or after SBUF is written, as  
long as TB8 is updated some time before that bit is shifted out. TB8 must not be  
changed until the bit is shifted out, as indicated by the Tx interrupt.  
If double buffering is enabled, TB8 must be updated before SBUF is written, as TB8  
will be double-buffered together with SBUF data.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
45 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.19 I2C-bus serial interface  
I2C-bus uses two wires (SDA and SCL) to transfer information between devices  
connected to the bus, and it has the following features:  
Bi-directional data transfer between masters and slaves  
Multi master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of  
serial data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate  
via one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend  
and resume serial transfer  
The I2C-bus may be used for test and diagnostic purposes.  
A typical I2C-bus configuration is shown in Figure 14. The P89LPC915/916/917  
device provides a byte-oriented I2C-bus interface that supports data transfers up to  
400 kHz.  
R
P
R
P
SDA  
SCL  
2
I C-BUS  
P1.3/SDA  
P1.2/SCL  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
2
2
P89LPC915/916/917  
002aaa834  
Fig 14. I2C-bus configuration.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
46 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
8
I2ADR  
ADDRESS REGISTER  
COMPARATOR  
P1.3  
INPUT  
FILTER  
P1.3/SDA  
SHIFT REGISTER  
8
ACK  
I2DAT  
OUTPUT  
STAGE  
BIT COUNTER /  
ARBITRATION &  
SYNC LOGIC  
CCLK  
INPUT  
FILTER  
TIMING  
&
CONTROL  
LOGIC  
P1.2/SCL  
SERIAL CLOCK  
GENERATOR  
OUTPUT  
STAGE  
INTERRUPT  
TIMER 1  
OVERFLOW  
I2CON  
I2SCLH  
I2SCLL  
P1.2  
CONTROL REGISTERS &  
SCL DUTY CYCLE REGISTERS  
8
STATUS  
DECODER  
STATUS BUS  
I2STAT  
STATUS REGISTER  
8
002aaa421  
Fig 15. I2C-bus serial interface block diagram.  
9.20 Serial Peripheral Interface (SPI - P89LPC916)  
The P89LPC916 provides another high-speed serial communication interface—the  
SPI interface. SPI is a full-duplex, high-speed, synchronous communication bus with  
two operation modes: Master mode and Slave mode. Up to 4.5 Mbit/s can be  
supported in either Master or 3.0 Mbit/s in Slave mode. It has a Transfer Completion  
Flag and Write Collision Flag Protection.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
47 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
S
M
MISO  
P2.3  
CPU clock  
M
S
8-BIT SHIFT REGISTER  
READ DATA BUFFER  
MOSI  
P2.2  
DIVIDER  
BY 4, 16, 64, 128  
SPICLK  
P2.5  
clock  
SPI clock (master)  
S
M
SELECT  
SS  
P2.4  
CLOCK LOGIC  
MSTR  
SPEN  
SPI CONTROL  
SPI CONTROL REGISTER  
SPI STATUS REGISTER  
SPI  
interrupt  
request  
internal  
data  
bus  
002aaa497  
Fig 16. SPI block diagram (P89LPC916).  
The SPI interface has four pins: SPICLK, MOSI, MISO, and SS:  
SPICLK, MOSI and MISO are typically tied together between two or more SPI  
devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and  
flows from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal  
is output in the master mode and is input in the slave mode. If the SPI system is  
disabled, i.e., SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port  
functions.  
SS is the optional slave select pin. In a typical configuration, an SPI master asserts  
one of its port pins to select one SPI device as the current slave. An SPI slave  
device uses its SS pin to determine whether it is selected.  
Typical connections are shown in Figure 17, 18, and 19.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
48 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.20.1 Typical SPI configurations  
Master  
Slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
PORT  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
002aaa435  
Fig 17. SPI single master single slave configuration.  
Master  
Slave  
MISO  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
port  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
Slave  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
port  
002aaa437  
Fig 18. SPI single master multiple slaves configuration.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
49 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Master  
Slave  
MISO  
MOSI  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
SPI CLOCK  
GENERATOR  
002aaa499  
Fig 19. SPI dual device configuration, where either can be a master or a slave.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
50 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
9.21 Analog comparators  
Two analog comparators are provided on the P89LPC915/916/917. Input and output  
options allow use of the comparators in a number of different configurations.  
Comparator operation is such that the output is a logic 1 when the positive input is  
greater than the negative input (selectable from a pin or an internal reference  
voltage). Otherwise the output is a zero. Each comparator may be configured to  
cause an interrupt when the output value changes. Comparator 1 may be output to a  
port pin.  
The overall connections to both comparators are shown in Figure 20. The  
comparators function to VDD = 2.4 V.  
When each comparator is first enabled, the comparator output and interrupt flag are  
not guaranteed to be stable for 10 microseconds. The corresponding comparator  
interrupt should not be enabled during that time, and the comparator interrupt flag  
must be cleared before the interrupt is enabled in order to prevent an immediate  
interrupt service.  
CP1  
Comparator 1  
(P0.4) CIN1A  
(P0.3) CIN1B  
CO1  
(P0.5) CMPREF  
V
Change Detect  
REF  
CMF1  
CN1  
Interrupt  
Change Detect  
EC  
CP2  
Comparator 2  
CMF2  
(P0.2) CIN2A  
(P0.1) CIN2B  
CMP2 (P0.0)  
CO2  
(P89LPC915/917)  
OE2  
002aaa835  
CN2  
Fig 20. Comparator input and output connections.  
9.22 Internal reference voltage  
An internal reference voltage generator may supply a default reference when a single  
comparator input pin is used. The value of the internal reference voltage, referred to  
as VREF, is 1.23 V ±10 %.  
9.23 Comparator interrupt  
Each comparator has an interrupt flag contained in its configuration register. This flag  
is set whenever the comparator output changes state. The flag may be polled by  
software or may be used to generate an interrupt. The two comparators use one  
common interrupt vector. If both comparators enable interrupts, after entering the  
interrupt service routine, the user needs to read the flags to determine which  
comparator caused the interrupt.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
51 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Possible comparator configurations are shown in Figure 20.  
9.24 Comparator and power reduction modes  
Either or both comparators may remain enabled when Power-down or Idle mode is  
activated, but both comparators are disabled automatically in Total Power-down  
mode.  
If a comparator interrupt is enabled (except in Total Power-down mode), a change of  
the comparator output state will generate an interrupt and wake up the processor. If  
the comparator output to a pin is enabled, the pin should be configured in the  
push-pull mode in order to obtain fast switching times while in Power-down mode.  
The reason is that with the oscillator stopped, the temporary strong pull-up that  
normally occurs during switching on a quasi-bidirectional port pin does not take  
place.  
Comparators consume power in Power-down and Idle modes, as well as in the  
normal operating mode. This fact should be taken into account when system power  
consumption is an issue. To minimize power consumption, the user can disable the  
comparators via PCONA.5, or put the device in Total Power-down mode.  
9.25 Keypad interrupt (KBI)  
The Keypad Interrupt function is intended primarily to allow a single interrupt to be  
generated when Port 0 is equal to or not equal to a certain pattern. This function can  
be used for bus address recognition or keypad recognition. The user can configure  
the port via SFRs for different tasks.  
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins  
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN)  
is used to define a pattern that is compared to the value of Port 0. The Keypad  
Interrupt Flag (KBIF) in the Keypad Interrupt Control Register (KBCON) is set when  
the condition is matched while the Keypad Interrupt function is active. An interrupt will  
be generated if enabled. The PATN_SEL bit in the Keypad Interrupt Control Register  
(KBCON) is used to define equal or not-equal for the comparison.  
In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x  
series, the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then  
any key connected to Port 0 which is enabled by the KBMASK register will cause the  
hardware to set KBIF and generate an interrupt if it has been enabled. The interrupt  
may be used to wake up the CPU from Idle or Power-down modes. This feature is  
particularly useful in handheld, battery-powered systems that need to carefully  
manage power consumption yet also need to be convenient to use.  
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held  
longer than six CCLKs.  
9.26 Watchdog timer  
The Watchdog timer causes a system reset when it underflows as a result of a failure  
to feed the timer prior to the timer reaching its terminal count. It consists of a  
programmable 12-bit prescaler, and an 8-bit down counter. The down counter is  
decremented by a tap taken from the prescaler. The clock source for the prescaler is  
either the PCLK or the nominal 400 kHz Watchdog oscillator. The Watchdog timer  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
9397 750 14397  
Product data  
Rev. 04 — 17 December 2004  
52 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
can only be reset by a power-on reset. When the Watchdog feature is disabled, it can  
be used as an interval timer and may generate an interrupt. Figure 21 shows the  
Watchdog timer in Watchdog mode. Feeding the Watchdog requires a two-byte  
sequence. If PCLK is selected as the Watchdog clock and the CPU is powered-down,  
the Watchdog is disabled. The Watchdog timer has a time-out period that ranges  
from a few µs to a few seconds. Please refer to the P89LPC915/916/917 User’s  
Manual for more details.  
WDL (C1H)  
MOV WFEED1, #0A5H  
MOV WFEED2, #05AH  
Watchdog  
oscillator  
8-BIT DOWN  
COUNTER  
PRESCALER  
÷32  
RESET  
see note (1)  
PCLK  
SHADOW  
REGISTER  
FOR WDCON  
CONTROL REGISTER  
PRE2  
PRE1  
PRE0  
WDRUN WDTOF WDCLK  
WDCON (A7H)  
002aaa423  
(1) Watchdog reset can also be caused by an invalid feed sequence, or by writing to WDCON not immediately followed by a  
feed sequence.  
Fig 21. Watchdog timer in Watchdog mode (WDTE = 1).  
9.27 Additional features  
9.27.1 Software reset  
The SRST bit in AUXR1 gives software the opportunity to reset the processor  
completely, as if an external reset or Watchdog reset had occurred. Care should be  
taken when writing to AUXR1 to avoid accidental software resets.  
9.27.2 Dual data pointers  
The dual Data Pointers (DPTR) provides two different Data Pointers to specify the  
address used with certain instructions. The DPS bit in the AUXR1 register selects  
one of the two Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that  
the DPS bit may be toggled (thereby switching Data Pointers) simply by incrementing  
the AUXR1 register, without the possibility of inadvertently altering other bits in the  
register.  
9.28 Flash program memory  
9.28.1 General description  
The P89LPC915/916/917 Flash memory provides in-circuit electrical erasure and  
programming. The Flash can be erased, read, and written as bytes. The Sector and  
Page Erase functions can erase any Flash sector (256 bytes) or page (16 bytes). The  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
53 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Chip Erase operation will erase the entire program memory. In-Circuit Programming  
using standard commercial programmers is available. In addition, In-Application  
Programming (IAP-Lite) and byte erase allows code memory to be used for  
non-volatile data storage. On-chip erase and write timing generation contribute to a  
user-friendly programming interface. The P89LPC915/916/917 Flash reliably stores  
memory contents even after 100,000 erase and program cycles. The cell is designed  
to optimize the erase and programming mechanisms. The P89LPC915/916/917 uses  
VDD as the supply voltage to perform the Program/Erase algorithms.  
9.28.2 Features  
Programming and erase over the full operating voltage range.  
Byte-erase allowing code memory to be used for data storage.  
Read/Programming/Erase using ICP.  
Any flash program operation in 4 ms.  
Programming with industry-standard commercial programmers.  
Programmable security for the code in the Flash for each sector.  
More than 100,000 minimum erase/program cycles for each byte.  
10-year minimum data retention.  
9.28.3 Flash organization  
The P89LPC915/916/917 program memory consists of eight 256- byte sectors. Each  
sector can be further divided into sixteen 16-byte pages. In addition to sector erase,  
page erase, and byte erase, a 16-byte page register is included which allows from  
1 to 16 bytes of a given page to be programmed at the same time, substantially  
reducing overall programming time. In addition, erasing and reprogramming of  
user-programmable configuration bytes including UCFG1, the Boot Status Bit, and  
the Boot Vector is supported.  
9.28.4 Flash programming and erasing  
Different methods of erasing or programming of the Flash are available. The Flash  
may be programmed or erased in the end-user application (IAP-Lite) under control of  
the application’s firmware. Another option is to use the In-Circuit Programming (ICP)  
mechanism. This ICP system provides for programming through a serial clock- serial  
data interface using a commercially available EPROM programmer which supports  
this device. This device does not provide for direct verification of code memory  
contents. Instead this device provides a 32-bit CRC result on either a sector or the  
entire 2 kB of user code space.  
9.28.5 In-circuit programming (ICP)  
In-Circuit Programming is performed without removing the microcontroller from the  
system. The In-Circuit Programming facility consists of internal hardware resources  
to facilitate remote programming of the P89LPC915/916/917 through a two-wire  
serial interface. The Philips In-Circuit Programming facility has made in-circuit  
programming in an embedded application, using commercially available  
programmers, possible with a minimum of additional expense in components and  
circuit board area. The ICP function uses five pins. Only a small connector (with VDD  
,
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
54 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
VSS, RST, clock, and data signals) needs to be available to interface your application  
to a commercial programmer in order to use this feature. Additional details may be  
found in the P89LPC915/916/917 User’s Manual.  
9.28.6 In-application programming (IAP-Lite)  
In-Application Programming is performed in the application under the control of the  
microcontroller’s firmware. The IAP-Lite facility consists of internal hardware  
resources to facilitate programming and erasing. The Philips In-Application  
Programming Lite has made in-application programming in an embedded application  
possible without additional components. This is accomplished through the use of four  
SFRs consisting of a control/status register, a data register, and two address  
registers. Additional details may be found in the P89LPC915/916/917 User’s Manual.  
9.28.7 Using flash as data storage  
The Flash code memory array of this device supports individual byte erasing and  
programming. Any byte in the code memory array may be read using the MOVC  
instruction, provided that the sector containing the byte has not been secured (a  
MOVC instruction is not allowed to read code memory contents of a secured sector).  
Thus any byte in a non-secured sector may be used for non-volatile data storage.  
9.28.8 User configuration bytes  
Some user-configurable features of the P89LPC915/916/917 must be defined at  
power-up and therefore cannot be set by the program after start of execution. These  
features are configured through the use of the Flash byte UCFG1. Please see the  
P89LPC915/916/917 User’s Manual for additional details.  
9.28.9 User sector security bytes  
There are eight User Sector Security Bytes, each corresponding to one sector.  
Please see the P89LPC915/916/917 User’s Manual for additional details.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
55 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
10. Limiting values  
Table 12: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Tamb(bias)  
Tstg  
Parameter  
Conditions  
Min  
Max  
+125  
+150  
+5.5  
8
Unit  
°C  
operating bias ambient temperature  
storage temperature range  
voltage on any pin to VSS  
55  
65  
°C  
Vn  
0.5  
V
IOH(I/O)  
IOL(I/O)  
high-level output current per I/O pin  
low-level output current per I/O pin  
-
-
-
-
mA  
mA  
mA  
W
20  
II/O(tot)(max) maximum total I/O current  
120  
1.5  
Ptot(pack)  
total power dissipation per package  
based on package heat  
transfer, not device power  
consumption  
[1] The following applies to Limiting values:  
a) Stresses above those listed under Table 12 may cause permanent damage to the device. This is a stress rating only and functional  
operation of the device at these or any conditions other than those described in Table 13 “DC electrical characteristics”, Table 14 “AC  
characteristics”and Table 15 “AC characteristics” of this specification are not implied.  
b) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
c) Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
56 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
11. Static characteristics  
Table 13: DC electrical characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
13  
Unit  
mA  
mA  
mA  
mA  
µA  
[2]  
[2]  
[2]  
[2]  
[2]  
[2]  
IDD(oper)  
power supply current,  
operating  
3.6 V; 12 MHz  
3.6 V; 18 MHz  
3.6 V; 12 MHz  
3.6 V; 18 MHz  
3.6 V, industrial  
3.6 V, extended  
-
-
-
-
-
-
7
11  
3.6  
4
16  
IDD(idle)  
power supply current, Idle  
mode  
4.8  
6
IDD(PD)  
power supply current,  
Power-down mode, voltage  
comparators powered-down  
45  
-
70  
150  
µA  
[2]  
[2]  
IDD(TPD)  
power supply current, total  
Power-down mode  
3.6 V, industrial  
3.6 V, extended  
-
< 0.1  
5
µA  
-
-
50  
2
µA  
(dVDD/dt)r VDD rise rate  
(dVDD/dt)f VDD fall rate  
-
-
mV/µs  
mV/µs  
V
-
-
50  
-
VRAM  
RAM keep-alive voltage  
1.5  
-
Vth(HL)  
negative-going threshold  
0.22VDD  
0.4VDD  
-
V
voltage (Schmitt trigger input)  
Vth(LH)  
positive-going threshold  
-
0.6VDD  
0.7VDD  
V
voltage (Schmitt trigger input)  
Vhys  
VOL  
hysteresis voltage  
-
-
-
-
0.2VDD  
0.6  
0.3  
0.2  
-
-
V
V
V
V
V
low-level output voltage,  
all ports  
IOL = 20 mA  
IOL = 10 mA  
IOL = 3.2 mA  
1.0  
0.5  
0.3  
-
VOH  
high-level output voltage,  
all ports  
IOH = 8 mA;  
push-pull mode  
V
V
V
DD 1  
I
OH = 3.2 mA;  
push-pull mode  
OH = 20 µA;  
DD 0.7  
DD 0.3  
V
DD 0.4  
DD 0.2  
-
-
V
V
I
V
quasi-bidirectional mode  
[3]  
[4]  
Cig  
IIL  
input-ground capacitance  
-
-
-
-
15  
pF  
logical 0 input current,  
all ports  
VIN = 0.4 V  
80  
µA  
[5]  
ILI  
input leakage current, all ports VIN = VIL or VIH  
-
-
-
± 10  
µA  
µA  
[6][7]  
ITL  
logical 1-to-0 transition  
current, all ports  
VIN = 2.0 V at  
VDD = 3.6 V  
30  
450  
RRST  
VBO  
internal reset pull-up resistor  
10  
-
-
30  
kΩ  
brownout trip voltage with  
BOV = 1, BOPD = 0  
2.4 V < VDD < 3.6 V  
2.40  
2.70  
V
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
57 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 13: DC electrical characteristics…continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
1.11  
-
Typ[1]  
1.23  
10  
Max  
1.34  
20  
Unit  
VREF  
band gap reference voltage  
V
TC(VREF) band gap temperature  
coefficient  
ppm/  
°C  
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
[2] The IDD(oper), IDD(idle), and IDD(PD) specifications are measured using an external clock with the following functions disabled: comparators,  
brownout detect, ADC, I2C-bus, UART, SPI, and Watchdog timer.  
[3] Pin capacitance is characterized but not tested.  
[4] Measured with port in quasi-bidirectional mode.  
[5] Measured with port in high-impedance mode.  
[6] Ports in quasi-bidirectional mode with weak pull-up (applies to all port pins with pull-ups)  
[7] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is  
highest when VIN is approximately 2 V.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
58 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
12. Dynamic characteristics  
Table 14: AC characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz  
Unit  
Min  
Max  
Min  
Max  
fRCOSC  
internal RC oscillator frequency  
(nominal f = 7.3728 MHz) trimmed  
to ± 1 % at Tamb = 25 °C  
industrial  
extended  
7.189  
7.004  
7.557  
7.741  
7.189  
7.004  
7.557  
7.741  
MHz  
MHz  
fWDOSC  
internal Watchdog oscillator  
320  
520  
320  
520  
kHz  
frequency (nominal f = 400 kHz)  
External clock input  
fosc  
oscillator frequency  
VDD = 2.4 V to  
3.6 V  
0
12  
-
-
MHz  
tCLCL  
clock cycle  
CLKLP active frequency  
high time  
see Figure 27  
83  
0
-
-
-
ns  
fCLKP  
8
-
-
MHz  
ns  
tCHCX  
see Figure 27  
see Figure 27  
see Figure 27  
see Figure 27  
22  
22  
-
tCLCL tCLCX  
22  
-
tCLCX  
low time  
tCLCL tCHCX 22  
-
ns  
tCLCH  
rise time  
8
8
-
-
8
8
ns  
tCHCL  
fall time  
-
ns  
Glitch filter  
glitch rejection, P1.5/RST pin  
-
50  
-
-
50  
-
ns  
ns  
ns  
signal acceptance, P1.5/RST pin  
125  
-
125  
-
glitch rejection, any pin except  
P1.5/RST  
15  
15  
signal acceptance, any pin except  
P1.5/RST  
50  
-
50  
-
ns  
Shift register (UART mode 0)  
tXLXL  
serial port clock cycle time  
see Figure 26  
see Figure 26  
16tCLCL  
13tCLCL  
-
-
1333  
1083  
-
-
ns  
ns  
tQVXH  
output data set-up to clock rising  
edge  
tXHQX  
tXHDX  
tDVXH  
output data hold after clock rising see Figure 26  
edge  
-
tCLCL + 20  
-
103  
ns  
ns  
ns  
input data hold after clock rising  
edge  
see Figure 26  
-
0
-
-
0
-
input data valid to clock rising edge see Figure 26  
150  
150  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
59 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 14: AC characteristics…continued  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz  
Unit  
Min  
Max  
Min  
Max  
SPI interface  
fSPI  
Operating frequency  
2.0 MHz (Slave)  
3.0 MHz (Master)  
Cycle time  
CCLK  
CCLK  
0
-
0
-
2.0  
-
MHz  
MHz  
6
4
tSPICYC  
see Figure 22,  
23, 24, 25  
6
2.0 MHz (Slave)  
3.0 MHz (Master)  
-
-
500  
-
-
-
ns  
ns  
CCLK  
4
CCLK  
tSPILEAD  
Enable lead time (Slave)  
see Figure 24,  
25  
2.0 MHz  
250  
250  
-
-
250  
250  
-
-
ns  
ns  
tSPILAG  
Enable lag time (Slave)  
see Figure 24,  
25  
2.0 MHz  
tSPICLKH  
SPICLK high time  
see Figure 22,  
23, 24, 25  
2
Master  
-
-
340  
190  
-
-
ns  
ns  
CCLK  
3
Slave  
CCLK  
tSPICLKL  
SPICLK low time  
see Figure 22,  
23, 24, 25  
2
3
Master  
Slave  
-
-
-
340  
190  
100  
-
-
-
ns  
ns  
ns  
CCLK  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
Data set-up time (Master or Slave) see Figure 22,  
23, 24, 25  
100  
100  
0
Data hold time (Master or Slave)  
see Figure 22,  
23, 24, 25  
-
100  
0
-
ns  
ns  
Access time (Slave)  
see Figure 24,  
25  
120  
120  
tSPIDIS  
Disable time (Slave)  
see Figure 24,  
25  
2.0 MHz  
0
240  
-
240  
ns  
tSPIDV  
Enable to output data valid  
see Figure 22,  
23, 24, 25  
2.0 MHz  
0
0
0
240  
167  
-
-
240  
167  
-
ns  
ns  
ns  
3.0 MHz  
-
tSPIOH  
Output data hold time  
see Figure 22,  
23, 24, 25  
0
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
60 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 14: AC characteristics…continued  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz  
Unit  
Min  
Max  
Min  
Max  
tSPIR  
Rise time  
see Figure 22,  
23, 24, 25  
SPI outputs (SPICLK, MOSI,  
MISO)  
-
-
100  
-
-
100  
ns  
ns  
SPI inputs (SPICLK, MOSI,  
MISO, SS)  
2000  
2000  
tSPIF  
Fall time  
see Figure 22,  
23, 24, 25  
SPI outputs (SPICLK, MOSI,  
MISO)  
-
-
100  
-
-
100  
ns  
ns  
SPI inputs (SPICLK, MOSI,  
MISO, SS)  
2000  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified. Parts are tested to 2 MHz, but are guaranteed to  
operate down to 0 Hz.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
61 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 15: AC characteristics  
VDD = 3.0 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 18 MHz  
Unit  
Min  
Max  
Min  
Max  
fRCOSC  
internal RC oscillator frequency  
(nominal f = 7.3728 MHz) trimmed  
to ± 1 % at Tamb = 25 °C  
industrial  
extended  
7.189  
7.004  
7.557  
7.741  
7.189  
7.004  
7.557  
7.741  
MHz  
MHz  
fWDOSC  
internal Watchdog oscillator  
320  
520  
320  
520  
kHz  
frequency (nominal f = 400 kHz)  
External clock input  
[1]  
fosc  
oscillator frequency  
0
18  
-
-
-
MHz  
ns  
tCLCL  
clock cycle  
CLKLP active frequency  
high time  
see Figure 27  
55  
0
-
-
fCLKP  
8
-
-
MHz  
ns  
tCHCX  
tCLCX  
see Figure 27  
see Figure 27  
see Figure 27  
see Figure 27  
22  
22  
-
tCLCL tCLCX  
22  
-
low time  
tCLCL tCHCX 22  
-
ns  
tCLCH  
rise time  
5
5
-
-
5
5
ns  
tCHCL  
fall time  
-
ns  
Glitch filter  
glitch rejection, P1.5/RST pin  
-
50  
-
-
50  
-
ns  
ns  
ns  
signal acceptance, P1.5/RST pin  
125  
-
125  
-
glitch rejection, any pin except  
P1.5/RST  
15  
15  
signal acceptance, any pin except  
P1.5/RST  
50  
-
50  
-
ns  
Shift register (UART mode 0)  
tXLXL  
serial port clock cycle time  
see Figure 26  
see Figure 26  
16tCLCL  
13tCLCL  
-
-
888  
722  
-
-
ns  
ns  
tQVXH  
output data set-up to clock rising  
edge  
tXHQX  
tXHDX  
output data hold after clock rising see Figure 26  
edge  
-
tCLCL + 20  
-
103  
ns  
ns  
ns  
input data hold after clock rising  
edge  
see Figure 26  
-
0
-
-
0
-
tDVXH  
input data valid to clock rising edge see Figure 26  
150  
150  
SPI interface  
fSPI  
Operating frequency  
3.0 MHz (Slave)  
CCLK  
0
-
0
-
3
MHz  
MHz  
6
CCLK  
4.5 MHz (Master)  
4.5  
4
tSPICYC  
Cycle time  
see Figure 22,  
23, 24, 25  
6
3.0 MHz (Slave)  
4.5 MHz (Master)  
-
-
333  
222  
-
-
ns  
ns  
CCLK  
4
CCLK  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
62 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 15: AC characteristics…continued  
VDD = 3.0 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 18 MHz  
Unit  
Min  
250  
250  
Max  
Min  
250  
250  
Max  
tSPILEAD  
Enable lead time (Slave)  
see Figure 24,  
25  
3.0 MHz  
-
-
-
-
ns  
ns  
tSPILAG  
Enable lag time (Slave)  
see Figure 24,  
25  
3.0 MHz  
tSPICLKH  
SPICLK high time  
see Figure 22,  
23, 24, 25  
2
Master  
-
-
111  
167  
-
-
ns  
ns  
CCLK  
3
Slave  
CCLK  
tSPICLKL  
SPICLK low time  
see Figure 22,  
23, 24, 25  
2
3
Master  
Slave  
-
-
-
111  
167  
100  
-
-
-
ns  
ns  
ns  
CCLK  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
Data set-up time (Master or Slave) see Figure 22,  
23, 24, 25  
100  
100  
0
Data hold time (Master or Slave)  
see Figure 22,  
23, 24, 25  
-
100  
0
-
ns  
ns  
Access time (Slave)  
see Figure 24,  
25  
80  
80  
tSPIDIS  
Disable time (Slave)  
see Figure 24,  
25  
3.0 MHz  
0
160  
-
160  
ns  
tSPIDV  
Enable to output data valid  
see Figure 22,  
23, 24, 25  
3.0 MHz  
0
0
0
160  
111  
-
-
160  
111  
-
ns  
ns  
ns  
4.5 MHz  
-
tSPIOH  
tSPIR  
Output data hold time  
see Figure 22,  
23, 24, 25  
0
Rise time  
see Figure 22,  
23, 24, 25  
SPI outputs (SPICLK, MOSI,  
MISO)  
-
-
100  
-
-
100  
ns  
ns  
SPI inputs (SPICLK, MOSI,  
MISO, SS)  
2000  
2000  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
63 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Table 15: AC characteristics…continued  
VDD = 3.0 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, 40 °C to +125 °C extended, unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 18 MHz  
Unit  
Min  
Max  
Min  
Max  
tSPIF  
Fall time  
see Figure 22,  
23, 24, 25  
SPI outputs (SPICLK, MOSI,  
MISO)  
-
-
100  
-
-
100  
ns  
ns  
SPI inputs (SPICLK, MOSI,  
MISO, SS)  
2000  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified. Parts are tested to 2 MHz, but are guaranteed to  
operate down to 0 Hz.  
[2] When using an oscillator frequency above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit is required to  
hold the device in reset at power-up until VDD has reached its specified level. When system power is removed VDD will fall below the  
minimum specified operating voltage. When using an oscillator frequency above 12 MHz, in some applications, an external brownout  
detect circuit may be required to hold the device in reset when VDD falls below the minimum specified operating voltage.  
SS  
t
CLCL  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
SPIDV  
t
t
t
t
SPIR  
SPIOH  
SPIDV  
t
SPIF  
MOSI  
(output)  
Master MSB/LSB out  
Master LSB/MSB out  
002aaa156  
Fig 22. SPI master timing (CPHA = 0).  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
64 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
SS  
t
CLCL  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
SPIDV  
t
t
t
SPIOH  
SPIDV  
t
SPIDV  
t
t
SPIR  
SPIF  
MOSI  
(output)  
Master MSB/LSB out  
Master LSB/MSB out  
002aaa157  
Fig 23. SPI master timing (CPHA = 1).  
SS  
t
SPIR  
t
SPIR  
t
CLCL  
t
t
SPIF  
t
SPILEAD  
t
SPIR  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(input)  
t
SPIOH  
t
t
SPIOH  
SPIOH  
t
SPIA  
t
t
t
SPIDIS  
SPIDV  
SPIDV  
MISO  
(output)  
Slave MSB/LSB out  
Slave LSB/MSB out  
Not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa158  
Fig 24. SPI slave timing (CPHA = 0).  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
65 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
SS  
t
SPIR  
t
SPIR  
t
CLCL  
t
t
SPIF  
t
SPILEAD  
t
SPIR  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(input)  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDV  
SPIDIS  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
Slave LSB/MSB out  
Slave MSB/LSB out  
Not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa159  
Fig 25. SPI slave timing (CPHA = 1).  
t
XLXL  
Clock  
t
XHQX  
t
QVXH  
Output Data  
0
1
2
3
4
5
6
7
Write to SBUF  
t
XHDX  
t
Set TI  
XHDV  
Input Data  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Valid  
Clear RI  
Set RI  
002aaa425  
Fig 26. Shift register mode timing.  
V
- 0.5 V  
0.45 V  
DD  
0.2 V  
+ 0.9  
DD  
0.2 V  
- 0.1 V  
DD  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
t
C
002aaa416  
Fig 27. External clock timing.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
66 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
13. Comparator electrical characteristics  
Table 16: Comparator electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial, unless otherwise specified.  
Symbol  
VIO  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mV  
V
offset voltage comparator inputs  
common mode range comparator inputs  
common mode rejection ratio  
response time  
-
-
± 20  
VCR  
0
-
-
VDD 0.3  
[1]  
CMRR  
-
50  
500  
10  
dB  
ns  
-
250  
comparator enable to output valid  
input leakage current, comparator  
-
-
-
µs  
IIL  
0 < VIN < VDD  
-
± 10  
µA  
[1] This parameter is characterized, but not tested in production.  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
67 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
14. Package outline  
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm  
SOT402-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
7
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.72  
0.38  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT402-1  
MO-153  
Fig 28. SOT402-1 (TSSOP14).  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
68 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 29. SOT403-1 (TSSOP16).  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
69 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
15. Revision history  
Table 17: Revision history  
Rev Date  
CPCN  
-
Description  
04 20041217  
Product data (9397 750 14397)  
Modifications:  
Added extended temperature device (P89LPC915HDH).  
Added 18 MHz information.  
03 20040701  
02 20040512  
01 20040408  
-
-
-
Preliminary data (9397 750 13522)  
Preliminary data (9397 750 13278)  
Preliminary data (9397 750 12986)  
9397 750 14397  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Product data  
Rev. 04 — 17 December 2004  
70 of 72  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
16. Data sheet status  
Level Data sheet status[1]  
Product status[2][3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
17. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Licenses  
Purchase of Philips I2C components  
18. Disclaimers  
Purchase of Philips I2C components conveys a license  
under the Philips’ I2C patent to use the components in the  
I2C system provided the system conforms to the I2C  
specification defined by Philips. This specification can be  
ordered using the code 9398 393 40011.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
Contact information  
For additional information, please visit http://www.semiconductors.philips.com.  
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
71 of 72  
9397 750 14397  
Product data  
Rev. 04 — 17 December 2004  
P89LPC915/916/917  
8-bit microcontrollers with accelerated two-clock 80C51 core  
Philips Semiconductors  
Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Ordering options . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
9.16.1  
9.16.2  
9.16.3  
9.16.4  
9.16.5  
9.16.6  
9.17  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Mode 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Timer overflow toggle output. . . . . . . . . . . . . . . . . . . 43  
Real-Time clock/system timer. . . . . . . . . . . . . . . . . . 43  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Baud rate generator and selection . . . . . . . . . . . . . . 44  
Framing error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Break detect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Double buffering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
Transmit interrupts with double buffering  
enabled (Modes 1, 2 and 3). . . . . . . . . . . . . . . . . . . 45  
The 9th bit (bit 8) in double buffering (Modes 1, 2 and  
3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
I2C-bus serial interface . . . . . . . . . . . . . . . . . . . . . . . 46  
Serial Peripheral Interface (SPI - P89LPC916). . . . . 47  
Typical SPI configurations. . . . . . . . . . . . . . . . . . . . . 49  
Analog comparators . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Internal reference voltage . . . . . . . . . . . . . . . . . . . . . 51  
Comparator interrupt. . . . . . . . . . . . . . . . . . . . . . . . . 51  
Comparator and power reduction modes . . . . . . . . . 52  
Keypad interrupt (KBI) . . . . . . . . . . . . . . . . . . . . . . . 52  
Watchdog timer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Additional features . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Software reset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Dual data pointers. . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Flash program memory. . . . . . . . . . . . . . . . . . . . . . . 53  
General description. . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Flash organization . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Flash programming and erasing . . . . . . . . . . . . . . . . 54  
In-circuit programming (ICP). . . . . . . . . . . . . . . . . . . 54  
In-application programming (IAP-Lite) . . . . . . . . . . . 55  
Using flash as data storage . . . . . . . . . . . . . . . . . . . 55  
User configuration bytes . . . . . . . . . . . . . . . . . . . . . . 55  
User sector security bytes . . . . . . . . . . . . . . . . . . . . 55  
2
3
4
4.1  
5
9.18  
6
Pinning information. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
9.18.1  
9.18.2  
9.18.3  
9.18.4  
9.18.5  
9.18.6  
9.18.7  
9.18.8  
9.18.9  
6.1  
6.2  
7
Logic symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Product comparison. . . . . . . . . . . . . . . . . . . . . . . . . 16  
Special function registers. . . . . . . . . . . . . . . . . . . . . 16  
7.1  
8
9
Functional description . . . . . . . . . . . . . . . . . . . . . . . 29  
Enhanced CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Clock definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
CPU clock (OSCCLK) . . . . . . . . . . . . . . . . . . . . . . . 29  
Clock output (P89LPC917) . . . . . . . . . . . . . . . . . . . 29  
On-chip RC oscillator option . . . . . . . . . . . . . . . . . . 29  
Watchdog oscillator option. . . . . . . . . . . . . . . . . . . . 30  
External clock input option . . . . . . . . . . . . . . . . . . . . 30  
CPU Clock (CCLK) wake-up delay. . . . . . . . . . . . . . 30  
CPU Clock (CCLK) modification: DIVM register . . . 30  
Low power select . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
A/D converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
General description . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
A/D operating modes . . . . . . . . . . . . . . . . . . . . . . . . 33  
Conversion start modes . . . . . . . . . . . . . . . . . . . . . . 34  
Boundary limits interrupt . . . . . . . . . . . . . . . . . . . . . 35  
DAC output to a port pin with high output impedance 35  
Clock divider. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Power-down and Idle mode . . . . . . . . . . . . . . . . . . . 35  
Memory organization . . . . . . . . . . . . . . . . . . . . . . . . 35  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
External interrupt inputs. . . . . . . . . . . . . . . . . . . . . . 36  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Port configurations . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Quasi-bidirectional output configuration. . . . . . . . . . 38  
Open-drain output configuration. . . . . . . . . . . . . . . . 39  
Input-only configuration . . . . . . . . . . . . . . . . . . . . . . 39  
Push-pull output configuration . . . . . . . . . . . . . . . . . 39  
Port 0 analog functions . . . . . . . . . . . . . . . . . . . . . . 39  
Additional port features . . . . . . . . . . . . . . . . . . . . . . 40  
Power monitoring functions . . . . . . . . . . . . . . . . . . . 40  
Brownout detection . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power-on detection . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Power reduction modes . . . . . . . . . . . . . . . . . . . . . . 40  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Power-down mode . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Total Power-down mode. . . . . . . . . . . . . . . . . . . . . . 41  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Timers/counters 0 and 1 . . . . . . . . . . . . . . . . . . . . . 42  
9.1  
9.2  
9.2.1  
9.2.2  
9.2.3  
9.3  
9.4  
9.5  
9.6  
9.7  
9.18.10  
9.19  
9.20  
9.20.1  
9.21  
9.22  
9.23  
9.24  
9.25  
9.26  
9.8  
9.9  
9.9.1  
9.9.2  
9.9.3  
9.9.4  
9.9.5  
9.9.6  
9.9.7  
9.9.8  
9.10  
9.11  
9.11.1  
9.12  
9.12.1  
9.12.2  
9.12.3  
9.12.4  
9.12.5  
9.12.6  
9.12.7  
9.13  
9.13.1  
9.13.2  
9.14  
9.14.1  
9.14.2  
9.14.3  
9.15  
9.16  
9.27  
9.27.1  
9.27.2  
9.28  
9.28.1  
9.28.2  
9.28.3  
9.28.4  
9.28.5  
9.28.6  
9.28.7  
9.28.8  
9.28.9  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . 59  
Comparator electrical characteristics . . . . . . . . . . . 67  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68  
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Licenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
© Koninklijke Philips Electronics N.V. 2004.  
Printed in the U.S.A.  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 17 December 2004  
Document order number: 9397 750 14397  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY