P89LPC9171FDH,129 [NXP]

P89LPC9151/9161/9171 - 8-bit microcontroller with accelerated two-clock 80C51 core, 2 kB 3 V byte-erasable flash with 8-bit ADC TSSOP 16-Pin;
P89LPC9171FDH,129
型号: P89LPC9171FDH,129
厂家: NXP    NXP
描述:

P89LPC9151/9161/9171 - 8-bit microcontroller with accelerated two-clock 80C51 core, 2 kB 3 V byte-erasable flash with 8-bit ADC TSSOP 16-Pin

PC 微控制器 光电二极管
文件: 总91页 (文件大小:629K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P89LPC9151/9161/9171  
8-bit microcontroller with accelerated two-clock 80C51 core,  
2 kB 3 V byte-erasable flash with 8-bit ADC  
Rev. 02 — 9 February 2010  
Product data sheet  
1. General description  
The P89LPC9151/9161/9171 is a single-chip microcontroller, available in low cost  
packages, based on a high performance processor architecture that executes instructions  
in two to four clocks, six times the rate of standard 80C51 devices. Many system-level  
functions have been incorporated into the device in order to reduce component count,  
board space, and system cost.  
2. Features  
2.1 Principal features  
„ 2 kB byte-erasable flash code memory organized into 256-byte sectors and 16-byte  
pages. Single-byte erasing allows any byte(s) to be used as non-volatile data storage.  
„ 256-byte RAM data memory.  
„ 4-input multiplexed 8-bit ADC/single DAC output. Two analog comparators with  
selectable inputs and reference source.  
„ Two 16-bit counter/timers. Timer 0 (and Timer 1 - P89LPC9171) may be configured to  
toggle a port output upon timer overflow or to become a PWM output.  
„ A 23-bit system timer that can also be used as real-time clock consisting of a 7-bit  
prescaler and a programmable and readable 16-bit timer.  
„ Enhanced UART with a fractional baud rate generator, break detect, framing error  
detection, and automatic address detection; 400 kHz byte-wide I2C-bus  
communication port.  
„ SPI communication port (P89LPC9161).  
„ 2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
„ Enhanced low voltage (brownout) detect allows a graceful system shutdown when  
power fails.  
„ 16-pin TSSOP with 12 I/O pins minimum and up to 14 I/O pins while using on-chip  
oscillator and reset options (P89LPC9161/9171), and 14-pin TSSOP packages with 10  
I/O pins minimum and up to 12 I/O pins while using on-chip oscillator and reset options  
(P89LPC9151).  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
2.2 Additional features  
„ A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns  
for all instructions except multiply and divide when executing at 18 MHz. This is six  
times the performance of the standard 80C51 running at the same clock frequency. A  
lower clock frequency for the same performance results in power savings and reduced  
EMI.  
„ In-Application Programming (IAP-Lite) and byte erase allows code memory to be used  
for non-volatile data storage.  
„ Serial flash In-Circuit Programming (ICP) allows simple production coding with  
commercial EPROM programmers. Flash security bits prevent reading of sensitive  
application programs.  
„ Watchdog timer with separate on-chip oscillator, nominal 400 kHz, calibrated to ±5 %,  
requiring no external components. The watchdog prescaler is selectable from  
eight values.  
„ High-accuracy internal RC oscillator option, with clock doubler option, allows operation  
without external oscillator components. The RC oscillator option is selectable and fine  
tunable.  
„ Clock switching on the fly among internal RC oscillator, watchdog oscillator, external  
clock input provides optimal support of minimal power active mode with fast switching  
to maximum performance.  
„ Idle and two different power-down reduced power modes. Improved wake-up from  
Power-down mode (a LOW interrupt input starts execution). Typical power-down  
current is 1 μA (total power-down with voltage comparators disabled).  
„ Active-LOW reset. On-chip power-on reset allows operation without external reset  
components. A software reset function is also available.  
„ Configurable on-chip oscillator with frequency range options selected by user  
programmed flash configuration bits. Oscillator options support frequencies from  
20 kHz to the maximum operating frequency of 18 MHz.  
„ Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator  
allowing it to perform an oscillator fail detect function.  
„ Programmable port output configuration options: quasi-bidirectional, open drain,  
push-pull, input-only.  
„ High current sourcing/sinking (20 mA) at 4 I/O pins on the P89LPC9151, 3 I/O pins on  
the P89LPC9161 and 5 I/O pins on the P89LPC9171. All other port pins have high  
sinking capability (20 mA). A maximum limit is specified for the entire chip.  
„ Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value of  
the pins match or do not match a programmable pattern.  
„ Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns  
minimum ramp times.  
„ Only power and ground connections are required to operate the  
P89LPC9151/9161/9171 when internal reset option is selected.  
„ Four interrupt priority levels.  
„ Five/six keypad interrupt inputs, plus two additional external interrupt inputs.  
„ Schmitt trigger port inputs.  
„ Second data pointer.  
„ Emulation support.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
2 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
3. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
P89LPC9151FDH  
P89LPC9161FDH  
P89LPC9171FDH  
TSSOP14 plastic thin shrink small outline package; 14  
leads; body width 4.4 mm  
SOT402-1  
TSSOP16 plastic thin shrink small outline package; 16  
leads; body width 4.4 mm  
SOT403-1  
SOT403-1  
TSSOP16 plastic thin shrink small outline package; 16  
leads; body width 4.4 mm  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
P89LPC9151FDH  
P89LPC9161FDH  
P89LPC9171FDH  
Flash memory  
2 kB  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
40 °C to +85 °C  
Frequency  
0 MHz to 18 MHz  
0 MHz to 18 MHz  
0 MHz to 18 MHz  
2 kB  
2 kB  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
3 of 91  
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
4. Block diagram  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC9151  
TXD  
RXD  
2 kB CODE FLASH  
UART  
internal bus  
SCL  
SDA  
2
256 BYTE DATA RAM  
I C  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 1  
CONFIGURABLE I/O  
P1[5:0]  
P0[5:0]  
ADC1/DAC1  
PORT 0  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
TIMER 0  
TIMER 1  
T0  
KEYPAD INTERRUPT  
CMP2  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC  
OSCILLATOR  
ON-CHIP RC OSCILLATOR  
WITH CLOCK DOUBLER  
002aae564  
Fig 1. Block diagram (P89LPC9151)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
4 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC9161  
TXD  
RXD  
2 kB CODE FLASH  
UART  
internal bus  
SCL  
SDA  
2
256 BYTE DATA RAM  
I C  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 2  
CONFIGURABLE I/O  
ADC1/DAC1  
SPI  
P2[5:2]  
P1.5, P1[3:0]  
P0[5:1]  
SPICLK  
MOSI  
MISO  
SS  
PORT 1  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
PORT 0  
CONFIGURABLE I/O  
TIMER 0  
TIMER 1  
T0  
KEYPAD INTERRUPT  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC  
OSCILLATOR  
ON-CHIP RC OSCILLATOR  
WITH CLOCK DOUBLER  
002aae565  
Fig 2. Block diagram (P89LPC9161)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
5 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
HIGH PERFORMANCE  
ACCELERATED 2-CLOCK 80C51 CPU  
P89LPC9171  
TXD  
RXD  
2 kB CODE FLASH  
UART  
internal bus  
SCL  
SDA  
2
256 BYTE DATA RAM  
I C  
AD10  
AD11  
AD12  
AD13  
DAC1  
PORT 2  
CONFIGURABLE I/O  
P2.2  
P1[5:0]  
ADC1/DAC1  
PORT 1  
CONFIGURABLE I/O  
REAL TIME CLOCK/  
SYSTEM TIMER  
T0  
T1  
PORT 0  
CONFIGURABLE I/O  
TIMER 0  
TIMER 1  
P0.7, P[5:0]  
CMP2  
CIN2B  
CIN2A  
CIN1A  
CIN1B  
CMPREF  
ANALOG  
COMPARATORS  
KEYPAD INTERRUPT  
WATCHDOG TIMER  
AND OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU clock  
external clock  
input  
ON-CHIP RC OSCILLATOR  
WITH CLOCK DOUBLER  
ON-CHIP RC  
OSCILLATOR  
clkout  
002aae566  
Fig 3. Block diagram (P89LPC9171)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
6 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
5. Functional diagram  
V
DD  
V
SS  
KBI0  
CMP2  
CIN2B  
TXD  
RXD  
T0  
AD10  
AD11  
AD12  
AD13  
CLKIN  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
CIN2A  
SCL  
SDA  
PORT 0  
PORT 1  
CIN1B  
INT0  
INT1  
RST  
P89LPC9151  
DAC1  
CIN1A  
CMPREF  
002aae567  
Fig 4. Functional diagram (P89LPC9151)  
V
DD  
V
SS  
TXD  
RXD  
T0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
CIN2B  
CIN2A  
AD10  
AD11  
AD12  
AD13  
CLKIN  
SCL  
SDA  
PORT 1  
CIN1B  
INT0  
PORT 0  
DAC1  
CIN1A  
P89LPC9161  
CMPREF  
RST  
MOSI  
MIS0  
SS  
PORT 2  
SPICLK  
002aae568  
Fig 5. Functional diagram (P89LPC9161)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
7 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
V
DD  
V
SS  
KBI0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
KBI7  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
T1  
TXD  
RXD  
T0  
AD10  
AD11  
AD12  
SCL  
SDA  
PORT 1  
PORT 2  
INT0  
INT1  
RST  
PORT 0  
P89LPC9171  
AD13  
DAC1  
CLKIN  
CLKOUT  
002aae569  
Fig 6. Functional diagram (P89LPC9171)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
8 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
6. Pinning information  
6.1 Pinning  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P0.0/CMP2/KBI0  
P1.5/RST  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC9151  
P1.4/INT1  
P1.3/INT0/SDA  
P1.2/T0/SCL  
V
DD  
P1.0/TXD  
P1.1/RXD  
8
002aae570  
Fig 7. P89LPC9151 TSSOP14 pin configuration  
1
2
3
4
5
6
7
8
16  
P0.2/CIN2A/KBI2/AD11  
P0.1/CIN2B/KBI1/AD10  
P2.4/SS  
15  
14  
13  
12  
11  
10  
9
P0.3/CIN1B/KBI3/AD12  
P1.5/RST  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC9161  
P2.3/MISO  
P2.2/MOSI  
V
DD  
P2.5/SPICLK  
P1.0/TXD  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P1.1/RXD  
002aae571  
Fig 8.  
P89LPC9161 TSSOP16 pin configuration  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
P0.1/CIN2B/KBI1/AD10  
P0.0/CMP2/KBI0  
P1.5/RST  
P0.2/CIN2A/KBI2/AD11  
P0.3/CIN1B/KBI3/AD12  
P0.4/CIN1A/KBI4/AD13/DAC1  
P0.5/CMPREF/KBI5/CLKIN  
V
SS  
P89LPC9171  
P2.2  
P1.4/INT1  
V
DD  
P0.7/T1/KBI7/CLKOUT  
P1.0/TXD  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P1.1/RXD  
002aae572  
Fig 9.  
P89LPC9171 TSSOP16 pin configuration  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
9 of 91  
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
6.2 Pin description  
Table 3.  
Symbol  
P89LPC9151 Pin description  
Pin  
Type Description  
TSSOP14  
P0.0 to P0.5  
I/O  
Port 0: Port 0 is an 6-bit I/O port with a user-configurable output type. During  
reset Port 0 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 0 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt trigger inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/  
KBI0  
2
1
I/O  
O
CMP2 — Comparator 2 output  
I
KBI0 — Keyboard input 0.  
P0.1/CIN2B/  
KBI1/AD10  
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/  
KBI2/AD11  
14  
13  
12  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3. High current source.  
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
P0.3/CIN1B/  
KBI3/AD12  
I/O  
I
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4. High current source.  
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
P0.4/CIN1A/  
KBI4/DAC1/AD13  
I/O  
I
I
O
DAC1 — Digital-to-analog converter output 1.  
AD13 — ADC1 channel 3 analog input.  
P0.5 — Port 0 bit 5. High current source.  
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
I
P0.5/CMPREF/  
KBI5  
11  
I/O  
I
I
I
CLKIN — External clock input.  
P1.0 to P1.5  
I/O, I Port 1: Port 1 is an 6-bit I/O port with a user-configurable output type, except for  
[1]  
three pins as noted below. During reset Port 1 latches are configured in the input  
only mode with the internal pull-up disabled. The operation of the configurable  
Port 1 pins as inputs and outputs depends upon the port configuration selected.  
Each of the configurable port pins are programmed independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details. P1.2 to P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt trigger inputs.  
Port 1 also provides various special functions as described below:  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
10 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 3.  
Symbol  
P89LPC9151 Pin description  
Pin  
Type Description  
TSSOP14  
P1.0/TXD  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1/RXD  
P1.2/T0/SCL  
8
7
I/O  
I
P1.1 — Port 1 bit 1.  
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain when  
used as output).  
I/O  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
P1.3/INT0/SDA  
6
I/O  
I
I/O  
SDA — I2C-bus serial data input/output.  
P1.4 — Port 1 bit 4. High current source.  
INT1 — External interrupt 1 input.  
P1.4/INT1  
P1.5/RST  
5
3
I/O  
I
I
I
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input, a LOW on this pin resets the microcontroller, causing  
I/O ports and peripherals to take on their default states, and the processor begins  
execution at address 0. Also used during a power-on sequence to force ISP  
mode.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
10  
Power supply: This is the power supply voltage for normal operation as well as  
Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4. Input for P1.5.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
11 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 4.  
Symbol  
P89LPC9161 Pin description  
Pin  
Type Description  
TSSOP16  
P0.1 to P0.5  
I/O  
Port 0: Port 0 is an 5-bit I/O port with a user-configurable output type. During  
reset Port 0 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 0 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt trigger inputs.  
Port 0 also provides various special functions as described below:  
P0.1 — Port 0 bit 1.  
P0.1/CIN2B/  
KBI1/AD10  
1
I/O  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/  
KBI2/AD11  
16  
15  
14  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3. High current source.  
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
P0.3/CIN1B/  
KBI3/AD12  
I/O  
I
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4. High current source.  
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
P0.4/CIN1A/  
KBI4/DAC1/AD13  
I/O  
I
I
O
DAC1 — Digital-to-analog converter output 1.  
AD13 — ADC1 channel 3 analog input.  
P0.5 — Port 0 bit 5. High current source.  
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
I
P0.5/CMPREF/  
KBI5  
13  
I/O  
I
I
I
CLKIN — External clock input.  
P1.0 to P1.3, P1.5  
I/O, I Port 1: Port 1 is an 5-bit I/O port with a user-configurable output type, except for  
[1]  
three pins as noted below. During reset Port 1 latches are configured in the input  
only mode with the internal pull-up disabled. The operation of the configurable  
Port 1 pins as inputs and outputs depends upon the port configuration selected.  
Each of the configurable port pins are programmed independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details. P1.2 to P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt trigger inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD  
P1.1/RXD  
10  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
I/O  
I
RXD — Receiver input for serial port.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
12 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 4.  
Symbol  
P89LPC9161 Pin description  
Pin  
Type Description  
TSSOP16  
P1.2/T0/SCL  
8
I/O  
I/O  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
T0 — Timer/counter 0 external count input or overflow output (open-drain when  
used as output).  
I/O  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
P1.3/INT0/SDA  
P1.5/RST  
7
3
I/O  
I
I/O  
SDA — I2C-bus serial data input/output.  
I
I
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input, a LOW on this pin resets the microcontroller, causing  
I/O ports and peripherals to take on their default states, and the processor begins  
execution at address 0. Also used during a power-on sequence to force ISP  
mode.  
P2.2 to P2.5  
I/O  
Port 2: Port 2 is an 4-bit I/O port with a user-configurable output type. During  
reset Port 2 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 2 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.15 “I/O ports” for details.  
All pins have Schmitt trigger inputs.  
Port 2 also provides various special functions as described below:  
P2.2 — Port 2 bit 2.  
P2.2/MOSI  
P2.3/MISO  
6
5
I/O  
I/O  
MOSI — SPI master out slave in. When configured as master, this pin is output;  
when configured as slave, this pin is input.  
I/O  
I/O  
P2.3 — Port 2 bit 3.  
MISO — When configured as master, this pin is input, when configured as slave,  
this pin is output.  
P2.4/SS  
2
I/O  
I
P2.4 — Port 2 bit 4.  
SS — SPI Slave select.  
P2.5 — Port 2 bit 5.  
P2.5/SPICLK  
11  
I/O  
I/O  
SPICLK — SPI clock. When configured as master, this pin is output; when  
configured as slave, this pin is input.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power supply: This is the power supply voltage for normal operation as well as  
Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.3. Input for P1.5.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
13 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 5.  
Symbol  
P89LPC9171 Pin description  
Pin  
Type Description  
TSSOP16  
P0.0 to P0.5, P0.7  
I/O  
Port 0: Port 0 is an 6-bit I/O port with a user-configurable output type. During  
reset Port 0 latches are configured in the input only mode with the internal pull-up  
disabled. The operation of Port 0 pins as inputs and outputs depends upon the  
port configuration selected. Each port pin is configured independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt trigger inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/  
KBI0  
2
1
I/O  
O
CMP2 — Comparator 2 output  
I
KBI0 — Keyboard input 0.  
P0.1/CIN2B/  
KBI1/AD10  
I/O  
P0.1 — Port 0 bit 1.  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD10 — ADC1 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/  
KBI2/AD11  
16  
15  
14  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD11 — ADC1 channel 1 analog input.  
P0.3 — Port 0 bit 3. High current source.  
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
P0.3/CIN1B/  
KBI3/AD12  
I/O  
I
I
I
AD12 — ADC1 channel 2 analog input.  
P0.4 — Port 0 bit 4. High current source.  
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
P0.4/CIN1A/  
KBI4/DAC1/AD13  
I/O  
I
I
O
DAC1 — Digital-to-analog converter output 1.  
AD13 — ADC1 channel 3 analog input.  
P0.5 — Port 0 bit 5. High current source.  
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
I
P0.5/CMPREF/  
KBI5/CLKIN  
13  
I/O  
I
I
I
CLKIN — External clock input.  
P0.7/T1/KBI7/CLK 11  
OUT  
I/O  
I/O  
I
P0.7 — Port 0 bit 7. High current source.  
T1 — Timer/counter 1 external count input or overflow output.  
KBI7 — Keyboard input 7.  
O
CLKOUT — Clock output.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
14 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 5.  
Symbol  
P89LPC9171 Pin description  
Pin  
Type Description  
TSSOP16  
P1.0 to P1.5  
I/O, I Port 1: Port 1 is an 6-bit I/O port with a user-configurable output type, except for  
[1]  
three pins as noted below. During reset Port 1 latches are configured in the input  
only mode with the internal pull-up disabled. The operation of the configurable  
Port 1 pins as inputs and outputs depends upon the port configuration selected.  
Each of the configurable port pins are programmed independently. Refer to  
Section 7.15.1 “Port configurations” and Table 16 “Static characteristics” for  
details. P1.2 to P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt trigger inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD  
10  
9
I/O  
O
P1.0 — Port 1 bit 0.  
TXD — Transmitter output for serial port.  
P1.1 — Port 1 bit 1.  
P1.1/RXD  
P1.2/T0/SCL  
I/O  
I
RXD — Receiver input for serial port.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
8
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain when  
used as output).  
I/O  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
P1.3/INT0/SDA  
7
I/O  
I
I/O  
SDA — I2C-bus serial data input/output.  
P1.4 — Port 1 bit 4. High current source.  
INT1 — External interrupt 1 input.  
P1.4/INT1  
P1.5/RST  
6
3
I/O  
I
I
I
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1. When  
functioning as a reset input, a LOW on this pin resets the microcontroller, causing  
I/O ports and peripherals to take on their default states, and the processor begins  
execution at address 0. Also used during a power-on sequence to force ISP  
mode.  
P2.2  
5
I/O  
Port 2: P2.2 is a single-bit I/O port with a user-configurable output type. During  
reset P2.2 latch is configured in the input only mode with the internal pull-up  
disabled. The operation of the output depends upon the port configuration  
selected. Refer to Section 7.15 “I/O ports” for details.  
This pin has Schmitt trigger inputs.  
VSS  
VDD  
4
I
I
Ground: 0 V reference.  
12  
Power supply: This is the power supply voltage for normal operation as well as  
Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4. Input for P1.5.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
15 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7. Functional description  
Remark: Please refer to the P89LPC9151/9161/9171 User manual for a more detailed  
functional description.  
7.1 Special function registers  
Remark: SFR accesses are restricted in the following ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the SFRs.  
SFR bits labeled ‘-’, ‘0’ or ‘1’ can only be written and read as follows:  
‘-’ Unless otherwise specified, must be written with ‘0’, but can return any value  
when read (even if it was written with ‘0’). It is a reserved bit and may be used in  
future derivatives.  
‘0’ must be written with ‘0’, and will return a ‘0’ when read.  
‘1’ must be written with ‘1’, and will return a ‘1’ when read.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
16 of 91  
 
 
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 6.  
Special function registers - P89LPC9151  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
E0H  
97H  
00  
0000 0000  
0000 0000  
ADCON1  
A/D control  
register 1  
ENBI1  
AIN13  
BNDI1  
CLK2  
ENADCI1  
AIN12  
TMM1  
AIN11  
SCC1  
CLK0  
EDGE1  
AIN10  
ADCI1  
ENADC1  
ADCS11  
ADCS10 00  
ADINS  
A/D input  
select  
A3H  
C0H  
A1H  
C4H  
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
ADMODA  
ADMODB  
AD1BH  
A/D mode  
register A  
BURST1  
CLK1  
SCAN1  
INBND0  
-
A/D mode  
register B  
ENDAC1  
BSA1  
A/D_0  
boundary high  
register  
AD1BL  
A/D_0  
BCH  
00  
0000 0000  
boundary low  
register  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_0 data  
register 0  
D5H  
D6H  
D7H  
F5H  
A2H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
A/D_0 data  
register 1  
A/D_0 data  
register 2  
A/D_0 data  
register 3  
Auxiliary  
function  
register  
CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
Baud rate  
00  
00  
0000 0000  
0000 0000  
BRGR0[2]  
BEH  
generator 0  
rate low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9151  
Table 6.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
BRGR1[2]  
Baud rate  
generator 0  
rate high  
BFH  
00  
0000 0000  
BRGCON  
Baud rate  
generator 0  
control  
BDH  
-
-
-
-
-
-
SBRGS  
BRGEN 00[2]  
xxxx xx00  
CMP1  
CMP2  
DIVM  
Comparator 1  
control register  
ACH  
ADH  
95H  
-
-
-
-
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
-
CO1  
CO2  
CMF1  
CMF2  
00[1]  
00[1]  
00  
xx00 0000  
xx00 0000  
0000 0000  
Comparator 2  
control register  
OE2  
CPU clock  
divide-by-M  
control  
DPTR  
Data pointer  
(2 bytes)  
DPH  
Data pointer  
high  
83H  
82H  
E7H  
E6H  
E4H  
00  
00  
00  
00  
70  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 0000  
DPL  
Data pointer  
low  
FMADRH  
FMADRL  
FMCON  
Program flash  
address high  
Program flash  
address low  
Program flash  
control (Read)  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
Program flash  
control (Write)  
E4H FMCMD.7 FMCMD.6 FMCMD.5 FMCMD.4 FMCMD.3 FMCMD.2 FMCMD.1 FMCMD.0  
E5H  
FMDATA  
I2ADR  
Program flash  
data  
00  
00  
0000 0000  
0000 0000  
I2C-bus slave  
address  
DBH  
I2ADR.6  
I2ADR.5  
I2ADR.4  
I2ADR.3  
I2ADR.2  
I2ADR.1  
I2ADR.0  
GC  
register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9151  
Table 6.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
D8  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
I2CON*  
I2DAT  
I2C-bus control D8H  
register  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2C-bus data  
register  
DAH  
I2SCLH  
Serial clock  
generator/SCL  
duty cycle  
DDH  
00  
00  
0000 0000  
0000 0000  
register high  
I2SCLL  
Serial clock  
generator/SCL  
duty cycle  
register low  
I2C-bus status  
register  
DCH  
D9H  
I2STAT  
IEN0*  
IEN1*  
STA.4  
STA.3  
STA.2  
STA.1  
STA.0  
0
0
0
F8  
1111 1000  
0000 0000  
00x0 0000  
Bit address  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
Interrupt  
enable 0  
A8H  
EA  
EWDRT  
EBO  
ES/ESR  
ET1  
EX1  
ET0  
EX0  
00  
Bit address  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
Interrupt  
enable 1  
E8H  
EAD  
EST  
-
-
-
EC  
EKBI  
EI2C  
00[1]  
Bit address  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
IP0*  
Interrupt  
priority 0  
B8H  
-
PWDRT  
PBO  
PS/PSR  
PT1  
PX1  
PT0  
PX0  
00[1]  
00[1]  
x000 0000  
x000 0000  
IP0H  
Interrupt  
B7H  
-
PWDRTH  
PBOH  
PSH/  
PT1H  
PX1H  
PT0H  
PX0H  
priority 0 high  
PSRH  
Bit address  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
IP1*  
Interrupt  
priority 1  
F8H  
F7H  
PAD  
PST  
-
-
-
PC  
PKBI  
PI2C  
00[1]  
00[1]  
00[1]  
00x0 0000  
00x0 0000  
xxxx xx00  
IP1H  
Interrupt  
priority 1 high  
PADH  
-
PSTH  
-
-
-
-
-
-
-
PCH  
-
PKBIH  
PI2CH  
KBIF  
KBCON  
Keypad control 94H  
register  
PATN  
_SEL  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9151  
Table 6.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
KBMASK  
Keypad  
86H  
00  
0000 0000  
interrupt mask  
register  
KBPATN  
P0*  
Keypad pattern 93H  
register  
FF  
1111 1111  
Bit address  
87  
86  
85  
84  
83  
82  
81  
80  
[1]  
Port 0  
80H  
-
-
CMPREF  
/KB5  
CIN1A  
/KB4  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KB0  
/CLKIN  
Bit address  
90H  
97  
-
96  
-
95  
RST  
94  
INT1  
93  
92  
T0/SCL  
B2  
91  
RXD  
90  
TXD  
B0  
[1]  
P1*  
Port 1  
INT0/SDA  
B3  
Bit address  
B7  
-
B6  
-
B5  
B4  
B1  
P0M1  
P0M2  
P1M1  
P1M2  
PCON  
PCONA  
Port 0 output  
mode 1  
84H  
85H  
91H  
92H  
87H  
B5H  
(P0M1.5)  
(P0M1.4)  
(P0M1.3)  
(P0M1.2)  
(P0M1.1)  
(P0M1.0) FF[1]  
(P0M2.0) 00[1]  
(P1M1.0) D3[1]  
(P1M2.0) 00[1]  
PMOD0 00  
1111 1111  
0000 0000  
11x1 xx11  
00x0 xx00  
0000 0000  
0000 0000  
Port 0 output  
mode 2  
-
-
(P0M2.5)  
(P0M2.4)  
(P1M1.4)  
(P1M2.4)  
BOI  
(P0M2.3)  
(P1M1.3)  
(P1M2.3)  
GF1  
(P0M2.2)  
(P1M1.2)  
(P1M2.2)  
GF0  
(P0M2.1)  
(P1M1.1)  
(P1M2.1)  
PMOD1  
SPD  
Port 1 output  
mode 1  
-
-
-
Port 1 output  
mode 2  
-
-
-
-
Power control  
register  
SMOD1  
RTCPD  
SMOD0  
-
Power control  
register A  
VCPD  
ADPD  
I2PD  
-
-
00[1]  
Bit address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PSW*  
Program status D0H  
word  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00  
0000 0000  
xx00 000x  
PT0AD  
Port 0 digital  
input disable  
F6H  
DFH  
D1H  
-
-
-
PT0AD.5  
BOF  
PT0AD.4  
PT0AD.3  
PT0AD.2  
R_WD  
-
PT0AD.1  
R_SF  
-
00  
[3]  
RSTSRC  
RTCCON  
Reset source  
register  
BOIF  
RTCS1  
POF  
-
R_BK  
-
R_EX  
RTC control  
RTCF  
RTCS0  
ERTC  
RTCEN 60[1][6] 011x xx00  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9151  
Table 6.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
RTCH  
RTCL  
RTC register  
high  
D2H  
D3H  
A9H  
00[6]  
0000 0000  
0000 0000  
0000 0000  
RTC register  
low  
00[6]  
00  
SADDR  
Serial port  
address  
register  
SADEN  
SBUF  
Serial port  
address enable  
B9H  
00  
xx  
0000 0000  
xxxx xxxx  
Serial Port data 99H  
buffer register  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
SCON*  
SSTAT  
Serial port  
control  
98H  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
00  
00  
0000 0000  
0000 0000  
Serial port  
extended  
status register  
BAH  
DBMOD  
INTLO  
CIDIS  
DBISEL  
FE  
-
BR  
-
OE  
STINT  
T0M2  
SP  
Stack pointer  
81H  
8FH  
07  
00  
0000 0111  
xxx0 xxx0  
TAMOD  
Timer 0 and 1  
auxiliary mode  
-
-
-
-
-
Bit address  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer 0 and 1  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00  
0000 0000  
control  
TH0  
TH1  
TL0  
Timer 0 high  
Timer 1 high  
Timer 0 low  
Timer 1 low  
8CH  
8DH  
8AH  
8BH  
89H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TL1  
TMOD  
Timer 0 and 1  
mode  
T1GATE  
RCCLK  
T1C/T  
-
T1M1  
T1M0  
T0GATE  
TRIM.3  
T0C/T  
T0M1  
T0M0  
[5][6]  
TRIM  
Internal  
96H  
TRIM.5  
TRIM.4  
TRIM.2  
TRIM.1  
TRIM.0  
oscillator trim  
register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9151  
Table 6.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
[4][6]  
WDCON  
Watchdog  
A7H  
PRE2  
PRE1  
PRE0  
-
-
WDRUN  
WDTOF  
WDCLK  
control register  
WDL  
Watchdog load C1H  
FF  
1111 1111  
WFEED1  
Watchdog  
feed 1  
C2H  
WFEED2  
Watchdog  
feed 2  
C3H  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC9151 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on  
reset value is x011 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 7.  
Name  
Extended special function registers - P89LPC9151[1]  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset value  
addr.  
LSB  
Hex Binary  
[2]  
BODCFG  
BOD  
configuration  
register  
FFC8H  
-
-
-
-
-
-
-
BOICFG1 BOICFG0  
[3]  
CLKCON  
CLOCK Control FFDEH CLKOK  
register  
-
-
CLKDBL FOSC2  
FOSC1  
FOSC0  
RTCDATH  
Real-time clock FFBFH  
data register  
high  
00  
00  
0000 0000  
RTCDATL  
Real-time clock FFBEH  
data register low  
0000 0000  
[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A,@DPTR and MOVX @DPTR,A instructions are  
used to access these extended SFRs.  
[2] The BOICFG1/0 will be copied from UCFG1.5 and UCFG1.3 when power-on reset.  
[3] CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit  
comes from UCFG2.7.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 8.  
Special function registers - P89LPC9161  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
E0H  
97H  
00  
0000 0000  
0000 0000  
ADCON1  
A/D control  
register 1  
ENBI1  
AIN13  
BNDI1  
CLK2  
ENADCI1  
AIN12  
TMM1  
AIN11  
SCC1  
CLK0  
EDGE1  
AIN10  
ADCI1  
ENADC1  
ADCS11  
ADCS10 00  
ADINS  
A/D input  
select  
A3H  
C0H  
A1H  
C4H  
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
ADMODA  
ADMODB  
AD1BH  
A/D mode  
register A  
BURST1  
CLK1  
SCAN1  
INBND0  
-
A/D mode  
register B  
ENDAC1  
BSA1  
A/D_0  
boundary high  
register  
AD1BL  
A/D_0  
BCH  
00  
0000 0000  
boundary low  
register  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_0 data  
register 0  
D5H  
D6H  
D7H  
F5H  
A2H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
A/D_0 data  
register 1  
A/D_0 data  
register 2  
A/D_0 data  
register 3  
Auxiliary  
function  
register  
CLKLP  
EBRR  
-
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
Baud rate  
00  
00  
0000 0000  
0000 0000  
BRGR0[2]  
BEH  
generator 0  
rate low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9161  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
BRGR1[2]  
Baud rate  
generator 0  
rate high  
BFH  
00  
0000 0000  
BRGCON  
Baud rate  
generator 0  
control  
BDH  
-
-
-
-
-
-
SBRGS  
BRGEN 00[2]  
xxxx xx00  
CMP1  
CMP2  
DIVM  
Comparator 1  
control register  
ACH  
ADH  
95H  
-
-
-
-
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
-
-
CO1  
CO2  
CMF1  
CMF2  
00[1]  
00[1]  
00  
xx00 0000  
xx00 0000  
0000 0000  
Comparator 2  
control register  
CPU clock  
divide-by-M  
control  
DPTR  
Data pointer  
(2 bytes)  
DPH  
Data pointer  
high  
83H  
82H  
E7H  
E6H  
E4H  
00  
00  
00  
00  
70  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 0000  
DPL  
Data pointer  
low  
FMADRH  
FMADRL  
FMCON  
Program flash  
address high  
Program flash  
address low  
Program flash  
control (Read)  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
Program flash  
control (Write)  
E4H FMCMD.7 FMCMD.6 FMCMD.5 FMCMD.4 FMCMD.3 FMCMD.2 FMCMD.1 FMCMD.0  
E5H  
FMDATA  
I2ADR  
Program flash  
data  
00  
00  
0000 0000  
0000 0000  
I2C-bus slave  
address  
DBH  
I2ADR.6  
I2ADR.5  
I2ADR.4  
I2ADR.3  
I2ADR.2  
I2ADR.1  
I2ADR.0  
GC  
register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9161  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
D8  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
I2CON*  
I2DAT  
I2C-bus control D8H  
register  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2C-bus data  
register  
DAH  
I2SCLH  
Serial clock  
generator/SCL  
duty cycle  
DDH  
00  
00  
0000 0000  
0000 0000  
register high  
I2SCLL  
Serial clock  
generator/SCL  
duty cycle  
register low  
I2C-bus status  
register  
DCH  
D9H  
I2STAT  
IEN0*  
IEN1*  
STA.4  
STA.3  
STA.2  
STA.1  
STA.0  
0
0
0
F8  
1111 1000  
0000 0000  
00x0 0000  
Bit address  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
Interrupt  
enable 0  
A8H  
EA  
EWDRT  
EBO  
ES/ESR  
ET1  
-
ET0  
EX0  
00  
Bit address  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
Interrupt  
enable 1  
E8H  
EAD  
EST  
-
-
ESPI  
EC  
EKBI  
EI2C  
00[1]  
Bit address  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
IP0*  
Interrupt  
priority 0  
B8H  
-
PWDRT  
PBO  
PS/PSR  
PT1  
-
PT0  
PX0  
00[1]  
00[1]  
x000 0000  
x000 0000  
IP0H  
Interrupt  
B7H  
-
PWDRTH  
PBOH  
PSH/  
PT1H  
-
PT0H  
PX0H  
priority 0 high  
PSRH  
Bit address  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
IP1*  
Interrupt  
priority 1  
F8H  
F7H  
PAD  
PST  
-
-
PSPI  
PC  
PKBI  
PI2C  
00[1]  
00[1]  
00[1]  
00x0 0000  
00x0 0000  
xxxx xx00  
IP1H  
Interrupt  
priority 1 high  
PADH  
-
PSTH  
-
-
-
-
-
PSPIH  
-
PCH  
-
PKBIH  
PI2CH  
KBIF  
KBCON  
Keypad control 94H  
register  
PATN  
_SEL  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9161  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
KBMASK  
Keypad  
86H  
00  
0000 0000  
interrupt mask  
register  
KBPATN  
P0*  
Keypad pattern 93H  
register  
FF  
1111 1111  
Bit address  
87  
86  
85  
84  
83  
82  
81  
80  
[1]  
Port 0  
80H  
-
-
CMPREF  
/KB5  
CIN1A  
/KB4  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
-
/CLKIN  
Bit address  
90H  
97  
-
96  
-
95  
RST  
94  
93  
INT0/SDA  
A3  
92  
T0/SCL  
A2  
91  
RXD  
A1  
90  
TXD  
A0  
-
[1]  
P1*  
Port 1  
Port 2  
-
A4  
Bit address  
A0H  
A7  
-
A6  
-
A5  
[1]  
P2*  
SPICLK  
(P0M1.5)  
SS  
MISO  
MOSI  
(P0M1.2)  
-
P0M1  
Port 0 output  
mode 1  
84H  
85H  
91H  
92H  
A4H  
A5H  
87H  
B5H  
-
-
(P0M1.4)  
(P0M1.3)  
(P0M1.1)  
-
FF[1]  
1111 1111  
0000 0000  
11x1 xx11  
00x0 xx00  
xxxx xx11  
xxxx xx00  
0000 0000  
0000 0000  
P0M2  
P1M1  
P1M2  
P2M1  
P2M2  
PCON  
PCONA  
Port 0 output  
mode 2  
-
-
(P0M2.5)  
(P0M2.4)  
-
(P0M2.3)  
(P1M1.3)  
(P1M2.3)  
(P2M1.3)  
(P2M2.3)  
GF1  
(P0M2.2)  
(P1M1.2)  
(P1M2.2)  
(P2M1.2)  
(P2M2.2)  
GF0  
(P0M2.1)  
(P1M1.1)  
(P1M2.1)  
-
-
00[1]  
Port 1 output  
mode 1  
-
-
-
(P1M1.0) D3[1]  
(P1M2.0) 00[1]  
Port 1 output  
mode 2  
-
-
-
-
Port 2 output  
mode 1  
-
-
(P2M1.5)  
(P2M2.5)  
-
(P2M1.4)  
(P2M2.4)  
BOI  
-
-
03[1]  
00[1]  
Port 2 output  
mode 2  
-
-
-
Power control  
register  
SMOD1  
RTCPD  
SMOD0  
-
PMOD1  
SPD  
PMOD0 00  
Power control  
register A  
VCPD  
ADPD  
I2PD  
SPPD  
-
00[1]  
Bit address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PSW*  
Program status D0H  
word  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00  
0000 0000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9161  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
xx00 000x  
PT0AD  
Port 0 digital  
input disable  
F6H  
DFH  
-
-
-
PT0AD.5  
BOF  
PT0AD.4  
PT0AD.3  
PT0AD.2  
R_WD  
-
PT0AD.1  
R_SF  
-
00  
[3]  
RSTSRC  
Reset source  
register  
BOIF  
RTCS1  
POF  
-
R_BK  
-
R_EX  
RTCCON  
RTCH  
RTC control  
D1H  
D2H  
RTCF  
RTCS0  
ERTC  
RTCEN 60[1][6] 011x xx00  
RTC register  
high  
00[6]  
00[6]  
00  
0000 0000  
0000 0000  
0000 0000  
RTCL  
RTC register  
low  
D3H  
A9H  
SADDR  
Serial port  
address  
register  
SADEN  
SBUF  
Serial port  
address enable  
B9H  
00  
xx  
0000 0000  
xxxx xxxx  
Serial Port data 99H  
buffer register  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
SCON*  
SSTAT  
Serial port  
control  
98H  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
00  
00  
0000 0000  
0000 0000  
Serial port  
extended  
BAH  
DBMOD  
INTLO  
CIDIS  
DBISEL  
FE  
BR  
OE  
STINT  
status register  
SP  
Stack pointer  
81H  
E2H  
07  
04  
0000 0111  
0000 0100  
SPCTL  
SPI control  
register  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
CPHA  
-
SPR1  
-
SPR0  
-
SPSTAT  
SPDAT  
TAMOD  
SPI status  
register  
E1H  
E3H  
8FH  
WCOL  
00  
00  
00  
00xx xxxx  
0000 0000  
xxx0 xxx0  
SPI data  
register  
Timer 0 and 1  
auxiliary mode  
-
-
-
-
-
-
-
T0M2  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers - P89LPC9161  
Table 8.  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
88  
Hex  
Binary  
Bit address  
8F  
8E  
8D  
8C  
8B  
8A  
89  
TCON*  
Timer 0 and 1  
control  
88H  
TF1  
TR1  
TF0  
TR0  
-
-
IE0  
IT0  
00  
0000 0000  
TH0  
TH1  
TL0  
Timer 0 high  
Timer 1 high  
Timer 0 low  
Timer 1 low  
8CH  
8DH  
8AH  
8BH  
89H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TL1  
TMOD  
Timer 0 and 1  
mode  
T1GATE  
RCCLK  
T1C/T  
-
T1M1  
T1M0  
T0GATE  
TRIM.3  
T0C/T  
T0M1  
T0M0  
[5][6]  
TRIM  
Internal  
oscillator trim  
register  
96H  
A7H  
TRIM.5  
TRIM.4  
TRIM.2  
TRIM.1  
TRIM.0  
[4][6]  
WDCON  
Watchdog  
PRE2  
PRE1  
PRE0  
-
-
WDRUN  
WDTOF  
WDCLK  
control register  
WDL  
Watchdog load C1H  
FF  
1111 1111  
WFEED1  
Watchdog  
feed 1  
C2H  
WFEED2  
Watchdog  
feed 2  
C3H  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC9161 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on  
reset value is x011 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 9.  
Name  
Extended special function registers - P89LPC9161[1]  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset value  
addr.  
LSB  
Hex Binary  
[2]  
BODCFG  
BOD  
configuration  
register  
FFC8H  
-
-
-
-
-
-
-
BOICFG1 BOICFG0  
[3]  
CLKCON  
CLOCK Control FFDEH CLKOK  
register  
-
-
CLKDBL FOSC2  
FOSC1  
FOSC0  
RTCDATH  
Real-time clock FFBFH  
data register  
high  
00  
00  
0000 0000  
RTCDATL  
Real-time clock FFBEH  
data register low  
0000 0000  
[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A,@DPTR and MOVX @DPTR,A instructions are  
used to access these extended SFRs.  
[2] The BOICFG1/0 will be copied from UCFG1.5 and UCFG1.3 when power-on reset.  
[3] CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit  
comes from UCFG2.7.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex  
Binary  
Bit address  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
E0H  
97H  
00  
0000 0000  
0000 0000  
ADCON1  
A/D control  
register 1  
ENBI1  
AIN13  
BNDI1  
CLK2  
ENADCI1  
AIN12  
TMM1  
AIN11  
SCC1  
CLK0  
EDGE1  
AIN10  
ADCI1  
ENADC1  
ADCS11  
ADCS10 00  
ADINS  
A/D input  
select  
A3H  
C0H  
A1H  
C4H  
-
-
-
-
-
-
-
-
-
00  
00  
00  
FF  
0000 0000  
0000 0000  
000x 0000  
1111 1111  
ADMODA  
ADMODB  
AD1BH  
A/D mode  
register A  
BURST1  
CLK1  
SCAN1  
INBND0  
-
A/D mode  
register B  
ENDAC1  
BSA1  
A/D_0  
boundary high  
register  
AD1BL  
A/D_0  
BCH  
00  
0000 0000  
boundary low  
register  
AD1DAT0  
AD1DAT1  
AD1DAT2  
AD1DAT3  
AUXR1  
A/D_0 data  
register 0  
D5H  
D6H  
D7H  
F5H  
A2H  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 00x0  
A/D_0 data  
register 1  
A/D_0 data  
register 2  
A/D_0 data  
register 3  
Auxiliary  
function  
register  
CLKLP  
EBRR  
ENT1  
ENT0  
SRST  
0
-
DPS  
Bit address  
F0H  
F7  
F6  
F5  
F4  
F3  
F2  
F1  
F0  
B*  
B register  
Baud rate  
00  
00  
0000 0000  
0000 0000  
BRGR0[2]  
BEH  
generator 0  
rate low  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
BRGR1[2]  
Baud rate  
generator 0  
rate high  
BFH  
00  
0000 0000  
BRGCON  
Baud rate  
generator 0  
control  
BDH  
-
-
-
-
-
-
SBRGS  
BRGEN 00[2]  
xxxx xx00  
CMP1  
CMP2  
DIVM  
Comparator 1  
control register  
ACH  
ADH  
95H  
-
-
-
-
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
-
CO1  
CO2  
CMF1  
CMF2  
00[1]  
00[1]  
00  
xx00 0000  
xx00 0000  
0000 0000  
Comparator 2  
control register  
OE2  
CPU clock  
divide-by-M  
control  
DPTR  
Data pointer  
(2 bytes)  
DPH  
Data pointer  
high  
83H  
82H  
E7H  
E6H  
E4H  
00  
00  
00  
00  
70  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 0000  
DPL  
Data pointer  
low  
FMADRH  
FMADRL  
FMCON  
Program flash  
address high  
Program flash  
address low  
Program flash  
control (Read)  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
Program flash  
control (Write)  
E4H FMCMD.7 FMCMD.6 FMCMD.5 FMCMD.4 FMCMD.3 FMCMD.2 FMCMD.1 FMCMD.0  
E5H  
FMDATA  
I2ADR  
Program flash  
data  
00  
00  
0000 0000  
0000 0000  
I2C-bus slave  
address  
DBH  
I2ADR.6  
I2ADR.5  
I2ADR.4  
I2ADR.3  
I2ADR.2  
I2ADR.1  
I2ADR.0  
GC  
register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
Hex Binary  
addr.  
MSB  
LSB  
D8  
Bit address  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
I2CON*  
I2DAT  
I2C-bus control D8H  
register  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
I2C-bus data  
register  
DAH  
I2SCLH  
Serial clock  
generator/SCL  
duty cycle  
DDH  
00  
00  
0000 0000  
0000 0000  
register high  
I2SCLL  
Serial clock  
generator/SCL  
duty cycle  
register low  
I2C-bus status  
register  
DCH  
D9H  
I2STAT  
IEN0*  
IEN1*  
STA.4  
STA.3  
STA.2  
STA.1  
STA.0  
0
0
0
F8  
1111 1000  
0000 0000  
00x0 0000  
Bit address  
AF  
AE  
AD  
AC  
AB  
AA  
A9  
A8  
Interrupt  
enable 0  
A8H  
EA  
EWDRT  
EBO  
ES/ESR  
ET1  
EX1  
ET0  
EX0  
00  
Bit address  
EF  
EE  
ED  
EC  
EB  
EA  
E9  
E8  
Interrupt  
enable 1  
E8H  
EAD  
EST  
-
-
-
EC  
EKBI  
EI2C  
00[1]  
Bit address  
BF  
BE  
BD  
BC  
BB  
BA  
B9  
B8  
IP0*  
Interrupt  
priority 0  
B8H  
-
PWDRT  
PBO  
PS/PSR  
PT1  
PX1  
PT0  
PX0  
00[1]  
00[1]  
x000 0000  
x000 0000  
IP0H  
Interrupt  
B7H  
-
PWDRTH  
PBOH  
PSH/  
PT1H  
PX1H  
PT0H  
PX0H  
priority 0 high  
PSRH  
Bit address  
FF  
FE  
FD  
FC  
FB  
FA  
F9  
F8  
IP1*  
Interrupt  
priority 1  
F8H  
F7H  
PAD  
PST  
-
-
-
PC  
PKBI  
PI2C  
00[1]  
00[1]  
00[1]  
00x0 0000  
00x0 0000  
xxxx xx00  
IP1H  
Interrupt  
priority 1 high  
PADH  
-
PSTH  
-
-
-
-
-
-
-
PCH  
-
PKBIH  
PI2CH  
KBIF  
KBCON  
Keypad control 94H  
register  
PATN  
_SEL  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
KBMASK  
Keypad  
86H  
00  
0000 0000  
interrupt mask  
register  
KBPATN  
P0*  
Keypad pattern 93H  
register  
FF  
1111 1111  
Bit address  
87  
86  
85  
84  
83  
82  
81  
80  
Port 0  
80H  
T1/KB7  
/CLKOUT  
-
CMPREF  
/KB5  
CIN1A  
/KB4  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KBI0  
00[1]  
/CLKIN  
Bit address  
90H  
97  
96  
-
95  
RST  
A5  
94  
INT1  
A4  
93  
INT0/SDA  
A3  
92  
T0/SCL  
A2  
91  
RXD  
A1  
90  
TXD  
A0  
-
[1]  
[1]  
P1*  
Port 1  
Port 2  
-
Bit address  
A0H  
A7  
A6  
-
P2*  
-
-
-
-
-
-
P0M1  
Port 0 output  
mode 1  
84H  
85H  
91H  
92H  
A4H  
A5H  
87H  
B5H  
(P0M1.7)  
-
(P0M1.5)  
(P0M1.4)  
(P0M1.3)  
(P0M1.2)  
(P0M1.1)  
(P0M1.0) FF[1]  
(P0M2.0) 00[1]  
(P1M1.0) D3[1]  
(P1M2.0) 00[1]  
1111 1111  
0000 0000  
11x1 xx11  
00x0 xx00  
1111 1111  
0000 0000  
0000 0000  
0000 0000  
P0M2  
P1M1  
P1M2  
P2M1  
P2M2  
PCON  
PCONA  
Port 0 output  
mode 2  
(P0M2.7)  
-
(P0M2.5)  
(P0M2.4)  
(P0M2.3)  
(P1M1.3)  
(P1M2.3)  
-
(P0M2.2)  
(P1M1.2)  
(P1M2.2)  
(P2M1.2)  
(P2M2.2)  
GF0  
(P0M2.1)  
(P1M1.1)  
(P1M2.1)  
-
Port 1 output  
mode 1  
-
-
-
-
Port 1 output  
mode 2  
-
-
-
-
Port 2 output  
mode 1  
-
-
-
-
-
-
-
FF[1]  
00[1]  
Port 2 output  
mode 2  
-
-
-
-
-
-
Power control  
register  
SMOD1  
RTCPD  
SMOD0  
-
BOI  
ADPD  
GF1  
PMOD1  
SPD  
PMOD0 00  
Power control  
register A  
VCPD  
I2PD  
-
-
00[1]  
Bit address  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
PSW*  
Program status D0H  
word  
CY  
AC  
F0  
RS1  
RS0  
OV  
F1  
P
00  
0000 0000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
xx00 000x  
PT0AD  
Port 0 digital  
input disable  
F6H  
DFH  
-
-
-
PT0AD.5  
BOF  
PT0AD.4  
PT0AD.3  
PT0AD.2  
R_WD  
-
PT0AD.1  
R_SF  
-
00  
[3]  
RSTSRC  
Reset source  
register  
BOIF  
RTCS1  
POF  
-
R_BK  
-
R_EX  
RTCCON  
RTCH  
RTC control  
D1H  
D2H  
RTCF  
RTCS0  
ERTC  
RTCEN 60[1][6] 011x xx00  
RTC register  
high  
00[6]  
00[6]  
00  
0000 0000  
0000 0000  
0000 0000  
RTCL  
RTC register  
low  
D3H  
A9H  
SADDR  
Serial port  
address  
register  
SADEN  
SBUF  
Serial port  
address enable  
B9H  
00  
xx  
0000 0000  
xxxx xxxx  
Serial Port data 99H  
buffer register  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
SCON*  
SSTAT  
Serial port  
control  
98H  
SM0/FE  
SM1  
SM2  
REN  
TB8  
RB8  
TI  
RI  
00  
00  
0000 0000  
0000 0000  
Serial port  
extended  
status register  
BAH  
DBMOD  
INTLO  
CIDIS  
DBISEL  
T1M2  
FE  
-
BR  
-
OE  
STINT  
T0M2  
SP  
Stack pointer  
81H  
8FH  
07  
00  
0000 0111  
xxx0 xxx0  
TAMOD  
Timer 0 and 1  
auxiliary mode  
-
-
-
-
Bit address  
8F  
8E  
8D  
8C  
8B  
8A  
89  
88  
TCON*  
Timer 0 and 1  
88H  
TF1  
TR1  
TF0  
TR0  
IE1  
IT1  
IE0  
IT0  
00  
0000 0000  
control  
TH0  
TH1  
TL0  
TL1  
Timer 0 high  
Timer 1 high  
Timer 0 low  
Timer 1 low  
8CH  
8DH  
8AH  
8BH  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 10. Special function registers - P89LPC9171  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex  
Binary  
0000 0000  
TMOD  
TRIM  
Timer 0 and 1  
mode  
89H  
96H  
T1GATE  
RCCLK  
T1C/T  
T1M1  
T1M0  
T0GATE  
TRIM.3  
T0C/T  
T0M1  
T0M0  
00  
[5][6]  
Internal  
ENCLK  
TRIM.5  
TRIM.4  
TRIM.2  
TRIM.1  
TRIM.0  
oscillator trim  
register  
[4][6]  
WDCON  
Watchdog  
A7H  
PRE2  
PRE1  
PRE0  
-
-
WDRUN  
WDTOF  
WDCLK  
control register  
WDL  
Watchdog load C1H  
FF  
1111 1111  
WFEED1  
Watchdog  
feed 1  
C2H  
WFEED2  
Watchdog  
feed 2  
C3H  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1 and BRGR0 must only be written if BRGEN in BRGCON SFR is logic 0. If any are written while BRGEN = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC9171 reset except BOIF bit. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on  
reset value is x011 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset and watchdog reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset sources that affect these SFRs are power-on reset and watchdog reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 11. Extended special function registers - P89LPC9171[1]  
Name  
Description  
SFR  
addr.  
Bit functions and addresses  
MSB  
Reset value  
LSB  
Hex Binary  
[2]  
BODCFG  
BOD  
configuration  
register  
FFC8H  
-
-
-
-
-
-
-
BOICFG1 BOICFG0  
[3]  
CLKCON  
CLOCK Control FFDEH CLKOK  
register  
-
-
CLKDBL FOSC2  
FOSC1  
FOSC0  
RTCDATH  
Real-time clock FFBFH  
data register  
high  
00  
00  
0000 0000  
RTCDATL  
Real-time clock FFBEH  
data register low  
0000 0000  
[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A,@DPTR and MOVX @DPTR,A instructions are  
used to access these extended SFRs.  
[2] The BOICFG1/0 will be copied from UCFG1.5 and UCFG1.3 when power-on reset.  
[3] CLKCON register reset value comes from UCFG1 and UCFG2. The reset value of CLKCON.2 to CLKCON.0 come from UCFG1.2 to UCFG1.0 and reset value of CLKDBL bit  
comes from UCFG2.7.  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.2 Enhanced CPU  
The P89LPC9151/9161/9171 uses an enhanced 80C51 CPU which runs at six times the  
speed of standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and  
most instructions execute in one or two machine cycles.  
7.3 Clocks  
7.3.1 Clock definitions  
The P89LPC9151/9161/9171 device has several internal clocks as defined below:  
OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of four clock  
sources (see Figure 10) and can also be optionally divided to a slower frequency (see  
Section 7.10 “CCLK modification: DIVM register”).  
Remark: fosc is defined as the OSCCLK frequency.  
CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per machine  
cycle, and most instructions are executed in one to two machine cycles (two or four CCLK  
cycles).  
RCCLK — The internal 7.373 MHz RC oscillator output. The clock doubler option, when  
enabled, provides an output frequency of 14.746 MHz.  
PCLK — Clock for the various peripheral devices and is CCLK2.  
7.3.2 CPU clock (OSCCLK)  
The P89LPC9151/9161/9171 provides several user-selectable oscillator options in  
generating the CPU clock. This allows optimization for a range of needs from high  
precision to lowest possible cost. These options are configured when the flash is  
programmed and include an on-chip watchdog oscillator, an on-chip RC oscillator, or an  
external clock source.  
7.4 Clock output (P89LPC9171)  
The P89LPC9171 supports a user-selectable clock output function on the P0.7/CLKOUT  
pin. This allows external devices to synchronize to the P89LPC9171. This output is  
enabled by the ENCLK bit in the TRIM register.  
The frequency of this clock output is 12 that of the CCLK. If the clock output is not needed  
in Idle mode, it may be turned off prior to entering Idle, saving additional power.  
7.5 On-chip RC oscillator option  
The P89LPC9151/9161/9171 has a 6-bit TRIM register that can be used to tune the  
frequency of the RC oscillator. During reset, the TRIM value is initialized to a factory  
preprogrammed value to adjust the oscillator frequency to 7.373 MHz ± 1 % at room  
temperature. End-user applications can write to the TRIM register to adjust the on-chip  
RC oscillator to other frequencies. When the clock doubler option is enabled (UCFG2.7 =  
1), the output frequency is 14.746 MHz. If CCLK is 8 MHz or slower, the CLKLP SFR bit  
(AUXR1.7) can be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0  
allowing highest performance access. This bit can then be set in software if CCLK is  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
38 of 91  
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
running at 8 MHz or slower. When clock doubler option is enabled, BOE1 bit (UCFG1.5)  
and BOE0 bit (UCFG1.3) are required to hold the device in reset at power-up until VDD  
has reached its specified level.  
7.6 Watchdog oscillator option  
The watchdog has a separate oscillator which has a frequency of 400 kHz, calibrated to  
±5 % at room temperature. This oscillator can be used to save power when a high clock  
frequency is not needed.  
7.7 External clock input option  
In this configuration, the processor clock is derived from an external source driving the  
P0.5/CLKIN pin. The rate may be from 0 Hz up to 18 MHz. When the frequency above  
12 MHz, BOE1 bit (UCFG1.5) and BOE0 bit (UCFG1.3) are required to hold the device in  
reset at power-up until VDD has reached its specified level.  
Remark: When using P0.5 as a clock input option, please make sure that P0.5 is  
configured as input only mode.  
7.8 Clock sources switch on the fly  
P89LPC9151/9161/9171 can implement clock source switch in any sources of watchdog  
oscillator, 7 MHz/14 MHz IRC oscillator, or external clock input during code is running.  
CLKOK bit in CLKCON register is used to indicate the clock switch status. CLKOK is  
cleared when starting clock source switch and set when completed. Notice that when  
CLKOK is ‘0’, writing to CLKCON register is not allowed.  
RTCS1:0  
XCLK  
RTC  
CLKOUT  
RCCLK  
OSCCLK  
CLKIN  
CCLK  
DIVM  
CPU  
RCCLK  
RC  
OSCILLATOR  
ADC1/DAC1  
(7.3728 MHz/14.7456 MHz ± ±1 %)  
÷2  
PCLK  
WDT  
WATCHDOG  
OSCILLATOR  
(400 kHz ± ±5 %)  
PCLK  
TIMER 0 AND  
TIMER 1  
SPI  
2
I C-BUS  
UART  
(P89LPC9161)  
002aae574  
Fig 10. Block diagram of oscillator control  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
39 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.9 CCLK wake-up delay  
The P89LPC9151/9161/9171 has an internal wake-up timer that delays the clock until it  
stabilizes depending on the clock source used. If the clock source is any of the three  
crystal selections (low, medium and high frequencies) the delay is 1024 OSCCLK cycles  
plus 60 μs to 100 μs. If the clock source is the internal RC oscillator, the delay is 200 μs to  
300 μs. If the clock source is watchdog oscillator or external clock, the delay is  
32 OSCCLK cycles.  
7.10 CCLK modification: DIVM register  
The OSCCLK frequency can be divided down up to 510 times by configuring a dividing  
register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the  
CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can  
retain the ability to respond to events that would not exit Idle mode by executing its normal  
program at a lower rate. This can also allow bypassing the oscillator start-up time in cases  
where Power-down mode would otherwise be used. The value of DIVM may be changed  
by the program at any time without interrupting code execution.  
7.11 Low power select  
The P89LPC9151/9161/9171 is designed to run at 18 MHz (CCLK) maximum. However, if  
CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to logic 1 to lower the  
power consumption further. On any reset, CLKLP is logic 0 allowing highest performance  
access. This bit can then be set in software if CCLK is running at 8 MHz or slower.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
40 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.12 Memory organization  
The various P89LPC9151/9161/9171 memory spaces are as follows:  
DATA  
128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect  
addressing, using instructions other than MOVX and MOVC. All or part of the Stack  
may be in this area.  
IDATA  
Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via  
indirect addressing using instructions other than MOVX and MOVC. All or part of the  
Stack may be in this area. This area includes the DATA area and the 128 bytes  
immediately above it.  
SFR  
Special Function Registers. Selected CPU registers and peripheral control and status  
registers, accessible only via direct addressing.  
XDATA  
‘External’ Data or Auxiliary RAM. Duplicates the classic 80C51 64 kB memory space  
addressed via the MOVX instruction using the DPTR, R0, or R1. All or part of this  
space could be implemented on-chip. Extended SFRs located in XDATA.  
CODE  
64 kB of Code memory space, accessed as part of program execution and via the  
MOVC instruction. The P89LPC9151/9161/9171 has 2 kB on-chip Code memory.  
7.13 Data RAM arrangement  
The 256 bytes of on-chip RAM are organized as shown in Table 12.  
Table 12. On-chip data memory usages  
Type  
Data RAM  
Size (bytes)  
128  
DATA  
IDATA  
Memory that can be addressed directly and indirectly  
Memory that can be addressed indirectly  
256  
7.14 Interrupts  
The P89LPC9151/9161/9171 uses a four priority level interrupt structure. This allows  
great flexibility in controlling the handling of the many interrupt sources.  
The P89LPC9151/9171 supports 13 interrupt sources: external interrupts 0 and 1, timers  
0 and 1, serial port TX, serial port RX, combined serial port RX/TX, brownout detect,  
watchdog/RTC, I2C-bus, keyboard, comparators 1 and 2, A/D completion.  
The P89LPC9161 supports 13 interrupt sources: external interrupts 0, timers 0 and 1,  
serial port TX, serial port RX, combined serial port RX/TX, brownout detect,  
watchdog/RTC, I2C-bus, keyboard, comparators 1 and 2, SPI, ADC completion.  
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in  
the interrupt enable registers IEN0 or IEN1. The IEN0 register also contains a global  
disable bit, EA, which disables all interrupts.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
41 of 91  
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Each interrupt source can be individually programmed to one of four priority levels by  
setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1 and IP1H. An  
interrupt service routine in progress can be interrupted by a higher priority interrupt, but  
not by another interrupt of the same or lower priority. The highest priority interrupt service  
cannot be interrupted by any other interrupt source. If two requests of different priority  
levels are pending at the start of an instruction, the request of higher priority level is  
serviced.  
If requests of the same priority level are pending at the start of an instruction, an internal  
polling sequence determines which request is serviced. This is called the arbitration  
ranking. Note that the arbitration ranking is only used to resolve pending requests of the  
same priority level.  
7.14.1 External interrupt inputs  
The P89LPC9151 and P89LPC9171 have two external interrupt inputs as well as the  
Keypad Interrupt function. The P89LPC9161 has one external interrupt input as well as  
the Keypad Interrupt function These external interrupt inputs are identical to those present  
on the standard 80C51 microcontrollers.  
These external interrupts can be programmed to be level-triggered or edge-triggered by  
setting or clearing bit IT1 or IT0 in Register TCON.  
In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one cycle  
and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an  
interrupt request.  
If an external interrupt is enabled when the P89LPC9151/9161/9171 is put into  
Power-down or Idle mode, the interrupt will cause the processor to wake-up and resume  
operation. Refer to Section 7.17 “Power reduction modes” for details.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
42 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
IE0  
EX0  
IE1  
EX1  
BOIF  
EBO  
wake-up  
(if in power-down)  
RTCF  
ERTC  
(RTCCON.1)  
KBIF  
EKBI  
WDOVF  
EWDRT  
CMF2  
CMF1  
EC  
EA (IE0.7)  
TF0  
ET0  
TF1  
ET1  
TI and RI/RI  
ES/ESR  
interrupt  
to CPU  
TI  
EST  
SI  
EI2C  
SPIF  
ESPI  
(P89LPC9161)  
ENADCI1  
ADCI1  
EAD  
ENBI1  
BNDI1  
002aae575  
Fig 11. Interrupt sources, interrupt enables, and power-down wake-up sources  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
43 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.15 I/O ports  
The P89LPC9151 has two I/O ports: Port 0 and Port 1. Ports 0 and 1 are both 6-bit ports.  
The P89LPC9161/9171 has three I/O ports: Port 0, Port 1 and Port 2. Ports 0 is 5-bit ports  
in the P89LPC9161 and 7-bit ports in the P89LPC9171, Port 1 is 5-bit ports in the  
P89LPC9161 and 6-bit ports in the P89LPC9171, Port 2 is 4-bit ports in the P89LPC9161  
and 1-bit port in the P89LPC9171. The exact number of I/O pins available depends upon  
the clock and reset options chosen, as shown in Table 13 and Table 14  
Table 13. Number of I/O pins available (P89LPC9151)  
Clock source  
Reset option  
Number of I/O  
pins (14-pin  
package)  
RC oscillator or watchdog  
oscillator  
No external reset (except during  
power-up)  
12  
External RST pin supported  
11  
11  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
10  
[1] Required for operation above 12 MHz.  
Table 14. Number of I/O pins available (P89LPC9161 and P89LPC9171)  
Clock source  
Reset option  
Number of I/O  
pins (16-pin  
package)  
RC oscillator or watchdog  
oscillator  
No external reset (except during  
power-up)  
14  
External RST pin supported  
13  
13  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
12  
[1] Required for operation above 12 MHz.  
7.15.1 Port configurations  
All but three I/O port pins on the P89LPC9151/9161/9171 may be configured by software  
to one of four types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51  
port outputs), push-pull, open drain, and input-only. Two configuration registers for each  
port select the output type for each port pin.  
1. P1.5 (RST) can only be an input and cannot be configured.  
2. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or  
open-drain.  
7.15.1.1 Quasi-bidirectional output configuration  
Quasi-bidirectional output type can be used as both an input and output without the need  
to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is  
weakly driven, allowing an external device to pull the pin LOW. When the pin is driven  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
44 of 91  
 
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
LOW, it is driven strongly and able to sink a fairly large current. These features are  
somewhat similar to an open-drain output except that there are three pull-up transistors in  
the quasi-bidirectional output that serve different purposes.  
The P89LPC9151/9161/9171 is a 3 V device, but the pins are 5 V tolerant. In  
quasi-bidirectional mode, if a user applies 5 V on the pin, there will be a current flowing  
from the pin to VDD, causing extra power consumption. Therefore, applying 5 V in  
quasi-bidirectional mode is discouraged.  
A quasi-bidirectional port pin has a Schmitt trigger input that also has a glitch suppression  
circuit.  
7.15.1.2 Open-drain output configuration  
The open-drain output configuration turns off all pull-ups and only drives the pull-down  
transistor of the port driver when the port latch contains a logic 0. To be used as a logic  
output, a port configured in this manner must have an external pull-up, typically a resistor  
tied to VDD  
.
An open-drain port pin has a Schmitt trigger input that also has a glitch suppression  
circuit.  
7.15.1.3 Input-only configuration  
The input-only port configuration has no output drivers. It is a Schmitt trigger input that  
also has a glitch suppression circuit.  
7.15.1.4 Push-pull output configuration  
The push-pull output configuration has the same pull-down structure as both the  
open-drain and the quasi-bidirectional output modes, but provides a continuous strong  
pull-up when the port latch contains a logic 1. The push-pull mode may be used when  
more source current is needed from a port output. A push-pull port pin has a  
Schmitt triggered input that also has a glitch suppression circuit. The  
P89LPC9151/9161/9171 device has high current source on eight pins in push-pull mode.  
See Table 15 “Limiting values”.  
7.15.2 Port 0 analog functions  
The P89LPC9151/9161/9171 incorporates two Analog Comparators. In order to give the  
best analog function performance and to minimize power consumption, pins that are being  
used for analog functions must have the digital outputs and digital inputs disabled.  
Digital outputs are disabled by putting the port output into the Input-Only  
(high-impedance) mode.  
Digital inputs on Port 0 may be disabled through the use of the PT0AD register, bits 1:5.  
On any reset, PT0AD[1:5] defaults to logic 0s to enable digital functions.  
7.15.3 Additional port features  
After power-up, all pins are in Input-Only mode. Please note that this is different from  
the LPC76x series of devices.  
After power-up, all I/O pins except P1.5, may be configured by software.  
Pin P1.5 is input only. Pins P1.2 and P1.3 are configurable for either input-only or  
open-drain.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
45 of 91  
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Every output on the P89LPC9151/9161/9171 has been designed to sink typical LED drive  
current. However, there is a maximum total output current for all ports which must not be  
exceeded. Please refer to Table 16 “Static characteristics” for detailed specifications.  
All ports pins that can function as an output have slew rate controlled outputs to limit noise  
generated by quickly switching output signals. The slew rate is factory-set to  
approximately 10 ns rise and fall times.  
7.16 Power monitoring functions  
The P89LPC9151/9161/9171 incorporates power monitoring functions designed to  
prevent incorrect operation during initial power-up and power loss or reduction during  
operation. This is accomplished with two hardware functions: Power-on detect and  
brownout detect.  
7.16.1 Brownout detection  
The brownout detect function determines if the power supply voltage drops below a  
certain level. Enhanced brownout detection has 3 independent functions: BOD reset,  
BOD interrupt and BOD FLASH.  
BOD reset is always on except in total Power-down mode. It could not be disabled in  
software. BOD interrupt may be enabled or disabled in software. BOD FLASH is always  
on, except in Power-down modes and could not be disabled in software.  
BOD reset and BOD interrupt, each has four trip voltage levels. BOE1 bit (UCFG1.5) and  
BOE0 bit (UCFG1.3) are used as trip point configuration bits of BOD reset. BOICFG1 bit  
and BOICFG0 bit in register BODCFG are used as trip point configuration bits of BOD  
interrupt. BOD reset voltage should be lower than BOD interrupt trip point. BOD FLASH is  
used for flash programming/erase protection and has only 1 trip voltage of 2.4 V. Please  
refer to P89LPC9151/9161/9171 User manual for detail configurations.  
If brownout detection is enabled the brownout condition occurs when VDD falls below the  
brownout trip voltage and is negated when VDD rises above the brownout trip voltage.  
For correct activation of brownout detect, the VDD rise and fall times must be observed.  
Please see Table 16 “Static characteristics” for specifications.  
7.16.2 Power-on detection  
The Power-on detect has a function similar to the brownout detect, but is designed to work  
as power comes up initially, before the power supply voltage reaches a level where  
brownout detect can work. The POF flag in the RSTSRC register is set to indicate an  
initial power-up condition. The POF flag will remain set until cleared by software.  
7.17 Power reduction modes  
The P89LPC9151/9161/9171 supports three different power reduction modes. These  
modes are Idle mode, Power-down mode, and total Power-down mode.  
7.17.1 Idle mode  
Idle mode leaves peripherals running in order to allow them to activate the processor  
when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle  
mode.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
46 of 91  
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.17.2 Power-down mode  
The Power-down mode stops the oscillator in order to minimize power consumption. The  
P89LPC9151/9161/9171 exits Power-down mode via any reset, or certain interrupts. In  
Power-down mode, the power supply voltage may be reduced to the data retention supply  
voltage VDDR. This retains the RAM contents at the point where Power-down mode was  
entered. SFR contents are not guaranteed after VDD has been lowered to VDDR, therefore  
it is highly recommended to wake-up the processor via reset in this case. VDD must be  
raised to within the operating range before the Power-down mode is exited.  
Some chip functions continue to operate and draw power during Power-down mode,  
increasing the total power used during power-down. These include: Brownout detect,  
watchdog timer, comparators (note that comparators can be powered down separately),  
and RTC/system timer. The internal RC oscillator is disabled unless both the RC oscillator  
has been selected as the system clock and the RTC is enabled.  
7.17.3 Total Power-down mode  
This is the same as Power-down mode except that the brownout detection circuitry and  
the voltage comparators are also disabled to conserve additional power. The internal RC  
oscillator is disabled unless both the RC oscillator has been selected as the system clock  
and the RTC is enabled. If the internal RC oscillator is used to clock the RTC during  
power-down, there will be high power consumption. Please use an external low frequency  
clock to achieve low power with the RTC running during power-down.  
7.18 Reset  
The P1.5/RST pin can function as either a LOW-active reset input or as a digital input,  
P1.5. The Reset Pin Enable (RPE) bit in UCFG1, when set to logic 1, enables the external  
reset input function on P1.5. When cleared, P1.5 may be used as an input pin.  
Remark: During a power-up sequence, the RPE selection is overridden and this pin  
always functions as a reset input. An external circuit connected to this pin should not  
hold this pin LOW during a power-on sequence as this will keep the device in reset.  
After power-up this pin will function as defined by the RPE bit. Only a power-up reset will  
temporarily override the selection defined by RPE bit. Other sources of reset will not  
override the RPE bit.  
Note: During a power cycle, VDD must fall below VPOR before power is reapplied, in order  
to ensure a power-on reset (see Table 16 “Static characteristics”).  
Reset can be triggered from the following sources:  
External reset pin (during power-up or if user configured via UCFG1)  
Power-on detect  
Brownout detect  
Watchdog timer  
Software reset  
UART break character detect reset  
For every reset source, there is a flag in the Reset Register, RSTSRC. The user can read  
this register to determine the most recent reset source. These flag bits can be cleared in  
software by writing a logic 0 to the corresponding bit. More than one flag bit may be set:  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
47 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
During a power-on reset, both POF and BOF are set but the other flag bits are  
cleared.  
A Watchdog reset is similar to a power-on reset, both POF and BOF are set but the  
other flag bits are cleared.  
For any other reset, previously set flag bits that have not been cleared will remain set.  
7.18.1 Reset vector  
Following reset, the P89LPC9151/9161/9171 will fetch instructions from either address  
0000H or the Boot address. The Boot address is formed by using the boot vector as the  
high byte of the address and the low byte of the address = 00H.  
The boot address will be used if a UART break reset occurs, or the non-volatile boot  
status bit (BOOTSTAT.0) = 1.  
7.19 Timers/counters 0 and 1  
The P89LPC9151/9161/9171 devices have two general purpose counter/timers which are  
upward compatible with the standard 80C51 Timer 0 and Timer 1. An option to  
automatically toggle the T0 pin upon timer overflow has been added. In addition an option  
to toggle the T1 pin upon overflow has been added on the P89LPC9171. In the ‘Timer’  
function, the register is incremented every machine cycle. In the ‘Counter’ function, the  
register of Timer 0 is incremented in response to a 1-to-0 transition at its external input  
pin. This external input is sampled once every machine cycle.  
Timer 0 has five operating modes (Modes 0, 1, 2, 3 and 6).  
Timer 1 has four operating modes (Modes 0, 1, 2, and 3), except on the P89LPC9171  
where Timer 1 also has Mode 6. Modes 0, 1, 2 and 6 are the same for both  
Timers/Counters. Mode 3 is different.  
7.19.1 Mode 0  
Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit  
Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a  
13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.  
7.19.2 Mode 1  
Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.  
7.19.3 Mode 2  
Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2  
operation is the same for Timer 0 and Timer 1.  
7.19.4 Mode 3  
When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit  
counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is  
in Mode 3 it can still be used by the serial port as a baud rate generator.  
7.19.5 Mode 6  
In this mode, the corresponding timer can be changed to a PWM with a full period of  
256 timer clocks.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
48 of 91  
 
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.19.6 Timer overflow toggle output  
Timer 0 (and Timer 1 on the P89LPC9171) can be configured to automatically toggle a  
port output whenever a timer overflow occurs. The same device pins that are used for the  
T0 and T1 count inputs are also used for the timer toggle outputs. The port outputs will be  
a logic 1 prior to the first timer overflow when this mode is turned on.  
7.20 RTC/system timer  
The P89LPC9151/9161/9171 has a simple RTC that allows a user to continue running an  
accurate timer while the rest of the device is powered down. The RTC can be a wake-up  
or an interrupt source. The RTC is a 23-bit down counter comprised of a 7-bit prescaler  
and a 16-bit loadable down counter. When it reaches all logic 0s, the counter will be  
reloaded again and the RTCF flag will be set.  
The clock source for this counter can be either the CPU clock (CCLK) or the external clock  
input, provided that the external clock input is not being used as the CPU clock. If the  
external clock input is used as the CPU clock, then the RTC will use CCLK as its clock  
source. Only power-on reset will reset the RTC and its associated SFRs to the default  
state.  
The 16-bit loadable counter portion of the RTC is readable by reading the RTCDATL and  
RTCDATH registers.  
7.21 UART  
The P89LPC9151/9161/9171 has an enhanced UART that is compatible with the  
conventional 80C51 UART except that Timer 2 overflow cannot be used as a baud rate  
source. The P89LPC9151/9161/9171 does include an independent baud rate generator.  
The baud rate can be selected from the oscillator (divided by a constant), Timer 1  
overflow, or the independent baud rate generator. In addition to the baud rate generation,  
enhancements over the standard 80C51 UART include Framing Error detection,  
automatic address recognition, selectable double buffering and several interrupt options.  
The UART can be operated in four modes: shift register, 8-bit UART, 9-bit UART, and CPU  
clock/32 or CPU clock/16.  
7.21.1 Mode 0  
Serial data enters and exits through RXD. TXD outputs the shift clock. 8 bits are  
transmitted or received, LSB first. The baud rate is fixed at 116 of the CPU clock  
frequency.  
7.21.2 Mode 1  
10 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0),  
8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored  
in RB8 in special function register SCON. The baud rate is variable and is determined by  
the Timer 1 overflow rate or the baud rate generator (described in Section 7.21.5 “Baud  
rate generator and selection”).  
7.21.3 Mode 2  
11 bits are transmitted (through TXD) or received (through RXD): start bit (logic 0), 8 data  
bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is  
transmitted, the 9th data bit (TB8 in SCON) can be assigned the value of logic 0 or logic 1.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
49 of 91  
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Or, for example, the parity bit (P, in the PSW) could be moved into TB8. When data is  
received, the 9th data bit goes into RB8 in special function register SCON, while the stop  
bit is not saved. The baud rate is programmable to either 116 or 132 of the CPU clock  
frequency, as determined by the SMOD1 bit in PCON.  
7.21.4 Mode 3  
11 bits are transmitted (through TXD) or received (through RXD): a start bit (logic 0), 8  
data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3 is  
the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is variable  
and is determined by the Timer 1 overflow rate or the baud rate generator (described in  
Section 7.21.5 “Baud rate generator and selection”).  
7.21.5 Baud rate generator and selection  
The P89LPC9151/9161/9171 enhanced UART has an independent baud rate generator.  
The baud rate is determined by a baud-rate preprogrammed into the BRGR1 and BRGR0  
SFRs which together form a 16-bit baud rate divisor value that works in a similar manner  
as Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be  
used for other timing functions.  
The UART can use either Timer 1 or the baud rate generator output (see Figure 12). Note  
that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared. The  
independent baud rate generators use OSCCLK.  
timer 1 overflow  
SMOD1 = 1  
(PCLK-based)  
SBRGS = 0  
SBRGS = 1  
÷2  
baud rate modes 1 and 3  
SMOD1 = 0  
baud rate generator  
(CCLK-based)  
002aaa897  
Fig 12. Baud rate sources for UART (Modes 1, 3)  
7.21.6 Framing error  
Framing error is reported in the status register (SSTAT). In addition, if SMOD0 (PCON.6)  
is logic 1, framing errors can be made available in SCON.7 respectively. If SMOD0 is  
logic 0, SCON.7 is SM0. It is recommended that SM0 and SM1 (SCON.7:6) are set up  
when SMOD0 is logic 0.  
7.21.7 Break detect  
Break detect is reported in the status register (SSTAT). A break is detected when  
11 consecutive bits are sensed LOW. The break detect can be used to reset the device  
and force the device into ISP mode.  
7.21.8 Double buffering  
The UART has a transmit double buffer that allows buffering of the next character to be  
written to SBUF while the first character is being transmitted. Double buffering allows  
transmission of a string of characters with only one stop bit between any two characters,  
as long as the next character is written between the start bit and the stop bit of the  
previous character.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
50 of 91  
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Double buffering can be disabled. If disabled (DBMOD, i.e., SSTAT.7 = 0), the UART is  
compatible with the conventional 80C51 UART. If enabled, the UART allows writing to  
SBUF while the previous data is being shifted out. Double buffering is only allowed in  
Modes 1, 2 and 3. When operated in Mode 0, double buffering must be disabled  
(DBMOD = 0).  
7.21.9 Transmit interrupts with double buffering enabled (modes 1, 2 and 3)  
Unlike the conventional UART, in double buffering mode, the TI interrupt is generated  
when the double buffer is ready to receive new data.  
7.21.10 The 9th bit (bit 8) in double buffering (modes 1, 2 and 3)  
If double buffering is disabled TB8 can be written before or after SBUF is written, as long  
as TB8 is updated some time before that bit is shifted out. TB8 must not be changed until  
the bit is shifted out, as indicated by the TI interrupt.  
If double buffering is enabled, TB must be updated before SBUF is written, as TB8 will be  
double-buffered together with SBUF data.  
7.22 I2C-bus serial interface  
The I2C-bus uses two wires (SDA and SCL) to transfer information between devices  
connected to the bus, and it has the following features:  
Bidirectional data transfer between masters and slaves  
Multi master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
The I2C-bus may be used for test and diagnostic purposes.  
A typical I2C-bus configuration is shown in Figure 13. The P89LPC9151/9161/9171  
device provides a byte-oriented I2C-bus interface that supports data transfers up to  
400 kHz.  
R
R
P
P
SDA  
SCL  
2
I C-bus  
P1.3/SDA  
P89LPC9151/9161/  
9171  
P1.2/SCL  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
2
2
002aae576  
Fig 13. I2C-bus configuration  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
51 of 91  
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
8
I2ADR  
ADDRESS REGISTER  
COMPARATOR  
P1.3  
INPUT  
FILTER  
P1.3/SDA  
SHIFT REGISTER  
8
ACK  
I2DAT  
OUTPUT  
STAGE  
BIT COUNTER /  
ARBITRATION  
AND SYNC LOGIC  
CCLK  
INPUT  
FILTER  
TIMING  
AND  
CONTROL  
LOGIC  
P1.2/SCL  
SERIAL CLOCK  
GENERATOR  
OUTPUT  
STAGE  
interrupt  
timer 1  
overflow  
P1.2  
I2CON  
I2SCLH  
I2SCLL  
CONTROL REGISTERS AND  
SCL DUTY CYCLE REGISTERS  
8
STATUS  
DECODER  
status bus  
I2STAT  
STATUS REGISTER  
8
002aaa899  
Fig 14. I2C-bus serial interface block diagram  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
52 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.23 SPI (P89LPC9161)  
The P89LPC9161 provides another high-speed serial communication interface: the SPI  
interface. SPI is a full-duplex, high-speed, synchronous communication bus with two  
operation modes: Master mode and Slave mode. Up to 3 Mbit/s can be supported in either  
Master mode or Slave mode. It has a Transfer Completion Flag and Write Collision Flag  
Protection.  
S
M
MISO  
P2.3  
M
S
CPU clock  
8-BIT SHIFT REGISTER  
READ DATA BUFFER  
MOSI  
P2.2  
PIN  
CONTROL  
LOGIC  
DIVIDER  
BY 4, 16, 64, 128  
SPICLK  
P2.5  
clock  
SPI clock (master)  
S
M
SELECT  
SS  
P2.4  
CLOCK LOGIC  
MSTR  
SPEN  
SPI CONTROL  
SPI CONTROL REGISTER  
SPI STATUS REGISTER  
SPI  
interrupt  
request  
internal  
data  
bus  
002aaa900  
Fig 15. SPI block diagram  
The SPI interface has four pins: SPICLK, MOSI, MISO and SS:  
SPICLK, MOSI and MISO are typically tied together between two or more SPI  
devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and flows  
from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal is output  
in the Master mode and is input in the Slave mode. If the SPI system is disabled, i.e.,  
SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port functions.  
SS is the optional slave select pin. In a typical configuration, an SPI master asserts  
one of its port pins to select one SPI device as the current slave. An SPI slave device  
uses its SS pin to determine whether it is selected.  
Typical connections are shown in Figure 16 through Figure 18.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
53 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
7.23.1 Typical SPI configurations  
master  
slave  
MISO  
MOSI  
MISO  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
PORT  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
002aaa901  
Fig 16. SPI single master single slave configuration  
master  
slave  
MISO  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
SS  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
SPI CLOCK  
GENERATOR  
002aaa902  
Fig 17. SPI dual device configuration, where either can be a master or a slave  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
54 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
master  
slave  
MISO  
MOSI  
MISO  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
port  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
slave  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
port  
002aaa903  
Fig 18. SPI single master multiple slaves configuration  
7.24 Analog comparators  
Two analog comparators are provided on the P89LPC9151/9161/9171. Input and output  
options allow use of the comparators in a number of different configurations. Comparator  
operation is such that the output is a logical one (which may be read in a register and/or  
routed to a pin) when the positive input (one of two selectable inputs) is greater than the  
negative input (selectable from a pin or an internal reference voltage). Otherwise the  
output is a zero. Each comparator may be configured to cause an interrupt when the  
output value changes. Comparator 1 may be output to a port pin.  
The overall connections to both comparators are shown in Figure 19. The comparators  
function to VDD = 2.4 V.  
When each comparator is first enabled, the comparator output and interrupt flag are not  
guaranteed to be stable for 10 μs. The corresponding comparator interrupt should not be  
enabled during that time, and the comparator interrupt flag must be cleared before the  
interrupt is enabled in order to prevent an immediate interrupt service.  
When a comparator is disabled the comparator’s output, COn, goes HIGH. If the  
comparator output was LOW and then is disabled, the resulting transition of the  
comparator output from a LOW to HIGH state will set the comparator flag, CMFn. This will  
cause an interrupt if the comparator interrupt is enabled. The user should therefore  
disable the comparator interrupt prior to disabling the comparator. Additionally, the user  
should clear the comparator flag, CMFn, after disabling the comparator.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
55 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
CP1  
OE1  
comparator 1  
CO1  
(P0.4) CIN1A  
(P0.3) CIN1B  
CMP1 (P0.6)  
(P0.5) CMPREF  
change detect  
V
ref(bg)  
CMF1  
CN1  
CP2  
interrupt  
change detect  
EC  
CMF2  
comparator 2  
(P0.2) CIN2A  
(P0.1) CIN2B  
CMP2 (P0.0)  
CO2  
OE2  
CN2  
002aae433  
Fig 19. Comparator input and output connections  
7.24.1 Internal reference voltage  
An internal reference voltage generator may supply a default reference when a single  
comparator input pin is used. The value of the internal reference voltage, referred to as  
V
ref(bg), is 1.23 V ± 10 %.  
7.24.2 Comparator interrupt  
Each comparator has an interrupt flag contained in its configuration register. This flag is  
set whenever the comparator output changes state. The flag may be polled by software or  
may be used to generate an interrupt. The two comparators use one common interrupt  
vector. If both comparators enable interrupts, after entering the interrupt service routine,  
the user needs to read the flags to determine which comparator caused the interrupt.  
7.24.3 Comparators and power reduction modes  
Either or both comparators may remain enabled when Power-down or Idle mode is  
activated, but both comparators are disabled automatically in Total Power-down mode.  
If a comparator interrupt is enabled (except in Total Power-down mode), a change of the  
comparator output state will generate an interrupt and wake-up the processor. If the  
comparator output to a pin is enabled, the pin should be configured in the push-pull mode  
in order to obtain fast switching times while in Power-down mode. The reason is that with  
the oscillator stopped, the temporary strong pull-up that normally occurs during switching  
on a quasi-bidirectional port pin does not take place.  
Comparators consume power in Power-down and Idle modes, as well as in the normal  
operating mode. This fact should be taken into account when system power consumption  
is an issue. To minimize power consumption, the user can disable the comparators via  
PCONA.5, or put the device in Total Power-down mode.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
56 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
7.25 KBI  
8-bit microcontroller with 8-bit ADC  
The Keypad Interrupt function (KBI) is intended primarily to allow a single interrupt to be  
generated when Port 0 is equal to or not equal to a certain pattern. This function can be  
used for bus address recognition or keypad recognition. The user can configure the port  
via SFRs for different tasks.  
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins  
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is  
used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag  
(KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is  
matched while the Keypad Interrupt function is active. An interrupt will be generated if  
enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to  
define equal or not-equal for the comparison.  
In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series,  
the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key  
connected to Port 0 which is enabled by the KBMASK register will cause the hardware to  
set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to  
wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in  
handheld, battery-powered systems that need to carefully manage power consumption  
yet also need to be convenient to use.  
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer  
than six CCLKs.  
7.26 Watchdog timer  
The watchdog timer causes a system reset when it underflows as a result of a failure to  
feed the timer prior to the timer reaching its terminal count. It consists of a programmable  
12-bit prescaler, and an 8-bit down counter. The down counter is decremented by a tap  
taken from the prescaler. The clock source for the prescaler can be the PCLK, or the  
nominal 400 kHz watchdog oscillator. The watchdog timer can only be reset by a  
power-on reset. When the watchdog feature is disabled, it can be used as an interval  
timer and may generate an interrupt. Figure 20 shows the watchdog timer in Watchdog  
mode. Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the  
watchdog clock and the CPU is powered down, the watchdog is disabled. The watchdog  
timer has a time-out period that ranges from a few μs to a few seconds. Please refer to the  
P89LPC9151/9161/9171 User manual for more details.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
57 of 91  
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
WDL (C1H)  
MOV WFEED1, #0A5H  
MOV WFEED2, #05AH  
Watchdog  
oscillator  
8-BIT DOWN  
COUNTER  
(1)  
reset  
PRESCALER  
÷32  
PCLK  
SHADOW  
REGISTER  
FOR WDCON  
CONTROL REGISTER  
PRE2  
PRE1  
PRE0  
WDRUN WDTOF WDCLK  
WDCON (A7H)  
002aae577  
(1) Watchdog reset can also be caused by an invalid feed sequence, or by writing to WDCON not immediately followed by a feed  
sequence.  
Fig 20. Watchdog timer in Watchdog mode (WDTE = 1)  
7.27 Additional features  
7.27.1 Software reset  
The SRST bit in AUXR1 gives software the opportunity to reset the processor completely,  
as if an external reset or watchdog reset had occurred. Care should be taken when writing  
to AUXR1 to avoid accidental software resets.  
7.27.2 Dual data pointers  
The dual Data Pointers (DPTR) provides two different Data Pointers to specify the  
address used with certain instructions. The DPS bit in the AUXR1 register selects one of  
the two Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS  
bit may be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1  
register, without the possibility of inadvertently altering other bits in the register.  
7.28 Flash program memory  
7.28.1 General description  
The P89LPC9151/9161/9171 flash memory provides in-circuit electrical erasure and  
programming. The flash can be erased, read, and written as bytes. The Sector and Page  
Erase functions can erase any flash sector (256 bytes) or page (16 bytes). The Chip  
Erase operation will erase the entire program memory. ICP using standard commercial  
programmers is available. In addition, IAP (IAP-Lite) and byte-erase allows code memory  
to be used for non-volatile data storage. On-chip erase and write timing generation  
contribute to a user-friendly programming interface. The P89LPC9151/9161/9171 flash  
reliably stores memory contents even after 100,000 erase and program cycles. The cell is  
designed to optimize the erase and programming mechanisms. The  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
58 of 91  
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
P89LPC9151/9161/9171 uses VDD as the supply voltage to perform the Program/Erase  
algorithms. When voltage supply is lower than 2.4 V, the BOD FLASH is tripped and flash  
erase/program is blocked.  
7.28.2 Features  
Programming and erase over the full operating voltage range.  
Byte erase allows code memory to be used for data storage.  
Read/Programming/Erase using ICP.  
Any flash program/erase operation in 2 ms.  
Programming with industry-standard commercial programmers.  
Programmable security for the code in the flash for each sector.  
100,000 typical erase/program cycles for each byte.  
10 year minimum data retention.  
7.28.3 Flash organization  
The program memory consists of eight 256-byte sectors on the P89LPC9151/9161/9171  
devices. Each sector can be further divided into 16-byte pages. In addition to sector  
erase, page erase, and byte erase, a 16-byte page register is included which allows from  
1 byte to 16 bytes of a given page to be programmed at the same time, substantially  
reducing overall programming time. In addition, erasing and reprogramming of  
user-programmable configuration bytes including UCFG1, the Boot Status Bit, and the  
Boot Vector is supported.  
7.28.4 Using flash as data storage  
The flash code memory array of this device supports individual byte erasing and  
programming. Any byte in the code memory array may be read using the MOVC  
instruction, provided that the sector containing the byte has not been secured (a MOVC  
instruction is not allowed to read code memory contents of a secured sector). Thus any  
byte in a non-secured sector may be used for non-volatile data storage.  
7.28.5 Flash programming and erasing  
Two different methods of erasing or programming of the flash are available. The flash may  
be programmed or erased in the end-user application (IA-Lite) under control of the  
application’s firmware. Another option is to use the ICP mechanism. This ICP system  
provides for programming through a serial clock/serial data interface. This device does not  
provide for direct verification of code memory contents. Instead, this device provides a  
32-bit CRC result on either a sector or the entire user code space.  
Remark: When voltage supply is lower than 2.4 V, the BOD FLASH is tripped and flash  
erase/program is blocked.  
7.28.6 ICP  
ICP is performed without removing the microcontroller from the system. The ICP facility  
consists of internal hardware resources to facilitate remote programming of the  
P89LPC9151/9161/9171 through a two-wire serial interface. The NXP ICP facility has  
made in-circuit programming in an embedded application - using commercially available  
programmers - possible with a minimum of additional expense in components and circuit  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
59 of 91  
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
board area. The ICP function uses five pins. Only a small connector needs to be available  
to interface your application to a commercial programmer in order to use this feature.  
Additional details may be found in the P89LPC9151/9161/9171 User manual.  
7.28.7 IAP-Lite  
IAP-Lite is performed in the application under the control of the microcontroller’s firmware.  
The IAP facility consists of internal hardware resources to facilitate programming and  
erasing. The IAP-Lite operations are accomplished through the use of four SFRs  
consisting of a control/status register, a data register, and two address registers.  
Additional details may be found in the P89LPC9151/9161/9171 User’s Manual.  
7.29 User configuration bytes  
Some user-configurable features of the P89LPC9151/9161/9171 must be defined at  
power-up and therefore cannot be set by the program after start of execution. These  
features are configured through the use of the flash byte UCFG1 and UCFG2. Please see  
the P89LPC9151/9161/9171 User’s Manual for additional details.  
7.30 User sector security bytes  
There are 8 User Sector Security Bytes on the P89LPC9151/9161/9171. Each byte  
corresponds to one sector. Please see the P89LPC9151/9161/9171 User manual for  
additional details.  
8. ADC  
8.1 General description  
The P89LPC9151/9161/9171 devices have a single 8-bit, 4-channel multiplexed  
analog-to-digital converter. A block diagram of the A/D converter is shown in Figure 21.  
The A/D consists of a 4-input multiplexer which feeds a sample-and-hold circuit providing  
an input signal to one of two comparator inputs. The control logic in combination with the  
SAR drives a digital-to-analog converter which provides the other input to the comparator.  
The output of the comparator is fed to the SAR.  
8.2 Features  
„ 8-bit, 4-channel multiplexed input, successive approximation ADC.  
„ Four A/D result registers.  
„ Six operating modes:  
‹ Fixed channel, single conversion mode.  
‹ Fixed channel, continuous conversion mode.  
‹ Auto scan, single conversion mode.  
‹ Auto scan, continuous conversion mode.  
‹ Dual channel, continuous conversion mode.  
‹ Single step mode.  
„ Three conversion start modes:  
‹ Timer triggered start.  
‹ Start immediately.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
60 of 91  
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
‹ Edge triggered.  
„ 8-bit conversion time of 1.61 μs at an A/D clock of 8.0 MHz.  
„ Interrupt or polled operation.  
„ Boundary limits interrupt.  
„ DAC output to a port pin with high output impedance.  
„ Clock divider.  
„ Power-down mode.  
8.3 Block diagram  
comp  
INPUT  
SAR  
MUX  
8
DAC1  
cclk  
002aaa783  
Fig 21. ADC block diagram  
8.4 ADC operating modes  
8.4.1 Fixed channel, single conversion mode  
A single input channel can be selected for conversion. A single conversion will be  
performed and the result placed in the result register which corresponds to the selected  
input channel. An interrupt, if enabled, will be generated after the conversion completes.  
8.4.2 Fixed channel, continuous conversion mode  
A single input channel can be selected for continuous conversion. The results of the  
conversions will be sequentially placed in the four result register. The user may select  
whether an interrupt can be generated after every four conversions. Additional conversion  
results will again cycle through the four result register, overwriting the previous results.  
Continuous conversions continue until terminated by the user.  
8.4.3 Auto scan, single conversion mode  
Any combination of the four input channels can be selected for conversion. A single  
conversion of each selected input will be performed and the result placed in the result  
register which corresponds to the selected input channel. An interrupt, if enabled, will be  
generated after all selected channels have been converted. If only a single channel is  
selected this is equivalent to single channel, single conversion mode.  
8.4.4 Auto scan, continuous conversion mode  
Any combination of the four input channels can be selected for conversion. A conversion  
of each selected input will be performed and the result placed in the result register which  
corresponds to the selected input channel. An interrupt, if enabled, will be generated after  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
61 of 91  
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
all selected channels have been converted. The process will repeat starting with the first  
selected channel. Additional conversion results will again cycle through the four result  
register pairs, overwriting the previous results. Continuous conversions continue until  
terminated by the user.  
8.4.5 Dual channel, continuous conversion mode  
This is a variation of the auto scan continuous conversion mode where conversion occurs  
on two user-selectable inputs. The result of the conversion of the first channel is placed in  
the result register, AD1DAT0. The result of the conversion of the second channel is placed  
in result register, AD1DAT1. The first channel is again converted and its result stored in  
AD1DAT2. The second channel is again converted and its result placed in AD1DAT3. An  
interrupt is generated, if enabled, after every set of four conversions (two conversions per  
channel).  
8.4.6 Single step mode  
This special mode allows ‘single-stepping’ in an auto scan conversion mode. Any  
combination of the four input channels can be selected for conversion. After each channel  
is converted, an interrupt is generated, if enabled, and the A/D waits for the next start  
condition. May be used with any of the start modes.  
8.5 Conversion start modes  
8.5.1 Timer triggered start  
An A/D conversion is started by the overflow of Timer 0. Once a conversion has started,  
additional Timer 0 triggers are ignored until the conversion has completed. The Timer  
triggered start mode is available in all ADC operating modes.  
8.5.2 Start immediately  
Programming this mode immediately starts a conversion. This start mode is available in all  
ADC operating modes.  
8.5.3 Edge triggered  
An A/D conversion is started by rising or falling edge of P1.4. Once a conversion has  
started, additional edge triggers are ignored until the conversion has completed. The edge  
triggered start mode is available in all ADC operating modes.  
8.6 Boundary limits interrupt  
Each of the A/D converters has both a high and low boundary limit register. The user may  
select whether an interrupt is generated when the conversion result is within (or equal to)  
the high and low boundary limits or when the conversion result is outside the boundary  
limits. An interrupt will be generated, if enabled, if the result meets the selected interrupt  
criteria. The boundary limit may be disabled by clearing the boundary limit interrupt  
enable.  
An early detection mechanism exists when the interrupt criteria has been selected to be  
outside the boundary limits. In this case, after the four MSBs have been converted, these  
four bits are compared with the four MSBs of the boundary high and low registers. If the  
four MSBs of the conversion meet the interrupt criteria (i.e., outside the boundary limits)  
an interrupt will be generated, if enabled. If the four MSBs do not meet the interrupt  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
62 of 91  
 
 
 
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
criteria, the boundary limits will again be compared after all 8 bits have been converted.  
The boundary status register (BNDSTA0) flags the channels which caused a boundary  
interrupt.  
8.7 DAC output to a port pin with high output impedance  
The DAC block of ADC1 can be output to a port pin. In this mode, the AD1DAT3 register is  
used to hold the value fed to the DAC. After a value has been written to the DAC (written  
to AD1DAT3), the DAC output will appear on the channel 3 pin.  
8.8 Clock divider  
The ADC requires that its internal clock source be in the range of 320 kHz to 8 MHz to  
maintain accuracy. A programmable clock divider that divides the clock from 1 to 8 is  
provided for this purpose.  
8.9 Power-down and Idle mode  
In Idle mode the A/C converter, if enabled, will continue to function and can cause the  
device to exit Idle mode when the conversion is completed if the A/D interrupt is enabled.  
In Power-down mode or Total Power-down mode, the A/D does not function. If the A/D is  
enabled, it will consume power. Power can be reduced by disabling the A/D.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
63 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
9. Limiting values  
Table 15. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
Tamb(bias)  
Tstg  
Parameter  
Conditions  
Min  
55  
65  
-
Max  
+125  
+150  
20  
Unit  
°C  
bias ambient temperature  
storage temperature  
°C  
IOH(I/O)  
HIGH-level output current per  
input/output pin  
mA  
IOL(I/O)  
LOW-level output current per  
input/output pin  
-
20  
mA  
II/Otot(max)  
Vxtal  
maximum total input/output current  
crystal voltage  
-
100  
mA  
V
on XTAL1, XTAL2; pin to VSS  
-
VDD + 0.5  
+5.5  
Vn  
voltage on any other pin  
except XTAL1, XTAL2; pin to  
VSS  
0.5  
V
Ptot(pack)  
total power dissipation (per package) based on package heat  
transfer, not device power  
-
1.5  
W
consumption  
[2]  
VESD  
electrostatic discharge voltage  
human body model; all pins  
3000  
700  
+3000  
+700  
charged device model; all  
pins  
[1] The following applies to Table 15:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated  
maximum.  
b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
[2] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kΩ series resistor.  
system frequency  
(MHz)  
18  
12  
2.4  
2.7  
3.0  
(V)  
3.3  
3.6  
V
002aae351  
DD  
Fig 22. Frequency versus supply voltage  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
64 of 91  
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
10. Static characteristics  
Table 16. Static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
10  
Max  
15  
23  
5
Unit  
mA  
mA  
mA  
mA  
μA  
[2]  
[2]  
[3]  
[3]  
[4]  
IDD(oper)  
operating supply current  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
VDD = 3.6 V; fosc = 12 MHz  
VDD = 3.6 V; fosc = 18 MHz  
-
-
-
-
-
14  
IDD(idle)  
Idle mode supply current  
3.25  
5
7
IDD(pd)  
IDD(tpd)  
Power-down mode supply  
current  
VDD = 3.6 V; voltage  
comparators powered down  
20  
40  
[5]  
total Power-down mode  
supply current  
VDD = 3.6 V  
-
1
5
μA  
(dV/dt)r  
VDDR  
rise rate  
of VDD; to ensure POR signal  
5
-
-
5000  
-
V/S  
V
data retention supply  
voltage  
1.5  
Vth(HL)  
HIGH-LOW threshold  
voltage  
except SCL, SDA  
0.22VDD  
0.4VDD  
-
V
VIL  
LOW-level input voltage  
SCL, SDA only  
0.5  
-
0.3VDD  
0.7VDD  
V
V
Vth(LH)  
LOW-HIGH threshold  
voltage  
except SCL, SDA  
-
0.6VDD  
VIH  
HIGH-level input voltage  
hysteresis voltage  
SCL, SDA only  
port 1  
0.7VDD  
-
5.5  
-
V
V
V
Vhys  
VOL  
-
-
0.2VDD  
0.6  
[6]  
[6]  
LOW-level output voltage  
IOL = 20 mA; VDD = 2.4 V to  
3.6 V all ports, all modes  
except high-Z  
1.0  
IOL = 3.2 mA; VDD = 2.4 V to  
3.6 V all ports, all modes  
except high-Z  
-
0.2  
0.3  
V
V
V
V
V
VOH  
HIGH-level output voltage  
IOH = 20 μA;  
VDD = 2.4 V to 3.6 V; all ports,  
quasi-bidirectional mode  
VDD 0.3  
VDD 0.7  
-
VDD 0.2  
-
IOH = 3.2 mA;  
VDD = 2.4 V to 3.6 V; all ports,  
push-pull mode  
VDD 0.4  
-
IOH = 10 mA;  
VDD = 2.4 V to 3.6 V; all ports,  
push-pull mode  
3.2  
-
-
[7]  
Vn  
voltage on any other pin  
except VDD; with respect to  
VSS  
0.5  
+5.5  
[8]  
[9]  
Ciss  
IIL  
input capacitance  
-
-
-
-
-
15  
pF  
μA  
μA  
μA  
LOW-level input current  
input leakage current  
VI = 0.4 V  
-
80  
±1  
[10]  
[11]  
ILI  
VI = VIL, VIH, or Vth(HL)  
-
ITHL  
HIGH-LOW transition  
current  
all ports; VI = 1.5 V at  
VDD = 3.6 V  
30  
450  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
65 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 16. Static characteristics …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
RRST_N(int) internal pull-up resistance  
on pin RST  
pin RST  
10  
-
30  
kΩ  
Vref(bg)  
TCbg  
band gap reference voltage  
1.11  
-
1.23  
10  
1.34  
20  
V
band gap temperature  
coefficient  
ppm/  
°C  
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
[2] The IDD(oper) specification is measured using an external clock with code while(1) {} executed from on-chip flash.  
[3] The IDD(idle) specification is measured using an external clock with no active peripherals, with the following functions disabled: real-time  
clock and watchdog timer.  
[4] The IDD(pd) specification is measured using internal RC oscillator with the following functions disabled: comparators, real-time clock, and  
watchdog timer.  
[5] The IDD(tpd) specification is measured using an external clock with the following functions disabled: comparators, real-time clock,  
brownout detect, and watchdog timer.  
[6] See Section 9 “Limiting values” for steady state (non-transient) limits on IOL or IOH. If IOL/IOH exceeds the test condition, VOL/VOH may  
exceed the related specification.  
[7] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for  
those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with  
respect to VSS  
.
[8] Pin capacitance is characterized but not tested.  
[9] Measured with port in quasi-bidirectional mode.  
[10] Measured with port in high-impedance mode.  
[11] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is  
highest when VI is approximately 2 V.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
66 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
10.1 Current characteristics  
Note: The graphs provided are a statistical summary based on a limited number of  
samples and only for information purposes. The performance characteristics listed are not  
tested or guaranteed.  
002aae363  
16  
18 MHz  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 23. IDD(oper) versus frequency at +25 °C  
002aae364  
16  
18 MHz  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 24. IDD(oper) versus frequency at 40 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
67 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
002aae365  
16  
18 MHz  
I
DD  
(mA)  
12  
12 MHz  
8
4
0
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: normal mode, code while(1) {} executed from on-chip flash; using an external  
clock.  
Fig 25. IDD(oper) versus frequency at +85 °C  
002aae366  
5.0  
18 MHz  
12 MHz  
I
DD  
(mA)  
4.0  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 26. IDD(idle) versus frequency at +25 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
68 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
002aae367  
5.0  
18 MHz  
I
DD  
(mA)  
4.0  
12 MHz  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 27. IDD(idle) versus frequency at 40 °C  
002aae368  
5.0  
18 MHz  
12 MHz  
I
DD  
(mA)  
4.0  
3.0  
2.0  
1.0  
0.0  
8 MHz  
6 MHz  
4 MHz  
2 MHz  
1 MHz  
32 kHz  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: idle mode entered executing code from on-chip flash; using an external clock with  
no active peripherals, with the following functions disabled: real-time clock and watchdog timer.  
Fig 28. IDD(idle) versus frequency at +85 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
69 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
002aae369  
20.0  
DD  
(μA)  
I
(1)  
18.0  
16.0  
14.0  
12.0  
10.0  
(2)  
(3)  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: power-down mode, using internal RC oscillator with the following functions  
disabled: comparators, real-time clock, and watchdog timer.  
(1) +85 °C  
(2) +25 °C  
(3) 40 °C  
Fig 29. IDD(pd) versus VDD  
002aae370  
1.2  
(1)  
I
DD  
(μA)  
0.8  
0.4  
0.0  
(2)  
(3)  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Test conditions: Total power-down mode, using internal RC oscillator with the following functions  
disabled: comparators, brownout detect, real-time clock, and watchdog timer.  
(1) +85 °C  
(2) 40 °C  
(3) +25 °C  
Fig 30. IDD(tpd) versus VDD  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
70 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
10.2 Internal RC/watchdog oscillator characteristics  
Note: The graphs provided are a statistical summary based on a limited number of  
samples and only for information purposes. The performance characteristics listed are not  
tested or guaranteed.  
002aae344  
0.2  
frequency  
deviation  
(%)  
0.1  
0
0.1  
0.2  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 31. Average internal RC oscillator frequency versus VDD at +25 °C  
002aae346  
0.2  
frequency  
deviation  
(%)  
0.1  
0
0.1  
0.2  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Note: Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 32. Average internal RC oscillator frequency versus VDD at 40 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
71 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
002aae347  
0.2  
frequency  
deviation  
(%)  
0
0.2  
0.4  
0.6  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of internal RC oscillator = 7.3728 MHz  
Fig 33. Average internal RC oscillator frequency versus VDD at +85 °C  
002aae348  
2.5  
frequency  
deviation  
(%)  
1.5  
0.5  
0.5  
1.5  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of watchdog oscillator = 400 kHz  
Fig 34. Average watchdog oscillator frequency versus VDD at +25 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
72 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
002aae349  
0.5  
frequency  
deviation  
(%)  
0.5  
1.5  
2.5  
3.5  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of watchdog oscillator = 400 kHz  
Fig 35. Average watchdog oscillator frequency versus VDD at 40 °C  
002aae350  
1.5  
frequency  
deviation  
(%)  
0.5  
0.5  
1.5  
2.5  
2.4  
2.8  
3.2  
3.6  
V
DD  
(V)  
Central frequency of watchdog oscillator = 400 kHz  
Fig 36. Average watchdog oscillator frequency versus VDD at +85 °C  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
73 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
10.3 BOD characteristics  
Table 17. BOD static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ[1]  
Max  
Unit  
BOD interrupt  
Vtrip  
trip voltage  
falling stage  
BOICFG1, BOICFG0 = 01  
BOICFG1, BOICFG0 = 10  
BOICFG1, BOICFG0 = 11  
rising stage  
2.25  
2.60  
3.10  
-
-
-
2.55  
2.80  
3.40  
V
V
V
BOICFG1, BOICFG0 = 01  
BOICFG1, BOICFG0 = 10  
BOICFG1, BOICFG0 = 11  
2.30  
2.70  
3.15  
-
-
-
2.60  
2.90  
3.45  
V
V
V
BOD reset  
Vtrip  
trip voltage  
falling stage  
BOE1, BOE0 = 01  
BOE1, BOE0 = 10  
BOE1, BOE0 = 11  
rising stage  
2.10  
2.25  
2.80  
-
-
-
2.30  
2.55  
3.20  
V
V
V
BOE1, BOE0 = 01  
BOE1, BOE0 = 10  
BOE1, BOE0 = 11  
2.20  
2.30  
2.90  
-
-
-
2.40  
2.60  
3.30  
V
V
V
BOD EEPROM/FLASH  
Vtrip trip voltage  
falling stage  
rising stage  
2.25  
2.30  
-
-
2.55  
2.60  
V
V
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
V
V
DD  
trip  
(BOF/BOIF  
set by hardware)  
(BOF/BOIF can be  
cleared in software)  
BOF/BOIF  
002aae352  
Fig 37. BOD interrupt/reset characteristics  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
74 of 91  
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
11. Dynamic characteristics  
Table 18. Dynamic characteristics (12 MHz)  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ±1 % at  
7.189  
7.557  
7.189 7.557 MHz  
T
amb = 25 °C; clock  
doubler option = OFF  
(default)  
nominal f = 14.7456 MHz;  
clock doubler option = ON,  
VDD = 2.7 V to 3.6 V  
14.378  
380  
15.114  
420  
14.378 15.114 MHz  
fosc(WD)  
internal watchdog  
oscillator frequency  
Tamb = 25 °C  
380  
420 kHz  
fosc  
oscillator frequency  
clock cycle time  
0
83  
0
12  
-
-
-
-
-
-
-
MHz  
ns  
Tcy(clk)  
fCLKLP  
see Figure 38  
low-power select clock  
frequency  
8
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
tsa  
signal acceptance time P1.5/RST pin  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 38  
see Figure 38  
see Figure 38  
see Figure 38  
33  
33  
-
Tcy(clk) tCLCX  
33  
33  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
Tcy(clk) tCHCX  
8
8
8
8
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 39  
see Figure 39  
see Figure 39  
see Figure 39  
16Tcy(clk)  
-
1333  
1083  
-
-
-
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(clk)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(clk) + 20  
103 ns  
input data hold after  
clock rising edge time  
0
-
-
0
-
ns  
ns  
input data valid to clock see Figure 39  
rising edge time  
150  
150  
SPI interface  
fSPI  
SPI operating frequency  
CCLK  
slave  
0
-
0
-
2.0  
3.0  
MHz  
MHz  
6
CCLK  
master  
4
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
75 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 18. Dynamic characteristics (12 MHz) …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min  
Max  
Min  
Max  
TSPICYC  
SPI cycle time  
slave  
see Figure 40, 41, 42, 43  
6
4
-
-
500  
333  
-
-
ns  
ns  
CCLK  
master  
CCLK  
tSPILEAD  
SPI enable lead time  
slave  
see Figure 42, 43  
250  
250  
-
-
250  
250  
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
see Figure 42, 43  
tSPICLKH  
SPICLK HIGH time  
master  
see Figure 40, 41, 42, 43  
2
3
-
-
165  
250  
-
-
ns  
ns  
CCLK  
slave  
CCLK  
tSPICLKL  
SPICLK LOW time  
master  
see Figure 40, 41, 42, 43  
2
3
-
-
-
165  
250  
100  
-
-
-
ns  
ns  
ns  
CCLK  
slave  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 40, 41, 42, 43  
see Figure 40, 41, 42, 43  
see Figure 42, 43  
100  
100  
-
100  
-
ns  
0
0
120  
240  
0
-
120 ns  
240 ns  
tSPIDIS  
SPI disable time  
slave  
see Figure 42, 43  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 40, 41, 42, 43  
slave  
-
-
240  
167  
-
-
-
240 ns  
167 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 40, 41, 42, 43  
see Figure 40, 41, 42, 43  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 40, 41, 42, 43  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
76 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 19. Dynamic characteristics (18 MHz)  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ±1 % at  
Tamb = 25 °C; clock  
doubler option = OFF  
(default)  
7.189  
7.557  
7.189 7.557 MHz  
nominal f = 14.7456 MHz;  
clock doubler option = ON  
14.378  
380  
15.114  
420  
14.378 15.114 MHz  
fosc(WD) internal watchdog  
oscillator frequency  
Tamb = 25 °C  
380  
420 kHz  
fosc  
oscillator frequency  
clock cycle time  
0
55  
0
18  
-
-
-
-
-
-
-
MHz  
ns  
Tcy(clk)  
fCLKLP  
see Figure 38  
low-power select clock  
frequency  
8
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
P1.5/RST pin  
tsa  
signal acceptance time  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 38  
see Figure 38  
see Figure 38  
see Figure 38  
22  
22  
-
Tcy(clk) tCLCX  
22  
22  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
Tcy(clk) tCHCX  
5
5
5
5
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 39  
see Figure 39  
see Figure 39  
see Figure 39  
16Tcy(clk)  
-
888  
722  
-
-
-
ns  
ns  
ns  
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(clk)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(clk) + 20  
75  
0
-
input data hold after  
clock rising edge time  
0
-
-
input data valid to clock see Figure 39  
rising edge time  
150  
150  
SPI interface  
fSPI SPI operating frequency  
CCLK  
slave  
0
-
0
-
3.0  
4.5  
MHz  
MHz  
6
CCLK  
master  
4
TSPICYC SPI cycle time  
see Figure 40, 41, 42, 43  
6
slave  
-
-
333  
222  
-
-
ns  
ns  
CCLK  
4
master  
CCLK  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
77 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
Table 19. Dynamic characteristics (18 MHz) …continued  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.[1][2]  
Symbol Parameter  
Conditions  
Variable clock  
Min Max  
fosc = 18 MHz Unit  
Min  
250  
250  
Max  
tSPILEAD SPI enable lead time  
slave  
see Figure 42, 43  
see Figure 42, 43  
see Figure 40, 41, 42, 43  
250  
250  
-
-
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
tSPICLKH SPICLK HIGH time  
3
2
slave  
-
-
167  
111  
-
-
ns  
ns  
CCLK  
master  
tSPICLKL SPICLK LOW time  
slave  
CCLK  
see Figure 40, 41, 42, 43  
3
2
-
-
167  
111  
-
-
ns  
ns  
CCLK  
CCLK  
master  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 40, 41, 42, 43  
see Figure 40, 41, 42, 43  
see Figure 42, 43  
100  
100  
0
-
-
100  
100  
0
-
-
ns  
ns  
ns  
80  
160  
80  
tSPIDIS  
SPI disable time  
slave  
see Figure 42, 43  
0
-
160 ns  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 40, 41, 42, 43  
slave  
-
-
160  
111  
-
-
-
160 ns  
111 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 40, 41, 42, 43  
see Figure 40, 41, 42, 43  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 40, 41, 42, 43  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
78 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
11.1 Waveforms  
t
CHCX  
t
t
t
CHCL  
CLCX  
CLCH  
T
cy(clk)  
002aaa907  
Fig 38. External clock timing (with an amplitude of at least Vi(RMS) = 200 mV)  
T
XLXL  
clock  
t
XHQX  
1
t
QVXH  
output data  
write to SBUF  
input data  
0
2
3
4
5
6
7
t
XHDX  
set TI  
valid  
t
XHDV  
valid  
valid  
valid  
valid  
valid  
valid  
valid  
clear RI  
set RI  
002aaa906  
Fig 39. Shift register mode timing  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
SPIDV  
SPIDV  
SPIOH  
t
t
SPIR  
MOSI  
SPIF  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa908  
Fig 40. SPI master timing (CPHA = 0)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
79 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(output)  
SPICLKH  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
SPIDV  
SPIDV  
SPIOH  
t
t
SPIR  
SPIF  
MOSI  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa909  
Fig 41. SPI master timing (CPHA = 1)  
SS  
t
t
SPIR  
SPIF  
T
SPICYC  
t
t
SPIR  
t
SPIF  
t
SPILAG  
SPILEAD  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(input)  
SPICLKH  
t
t
SPIOH  
t
t
SPIDIS  
t
SPIOH  
SPIOH  
SPIA  
t
t
SPIDV  
SPIDV  
MISO  
(output)  
slave MSB/LSB out  
slave LSB/MSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa910  
Fig 42. SPI slave timing (CPHA = 0)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
80 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
SS  
t
t
SPIF  
SPIR  
T
SPICYC  
t
t
SPIR  
SPIF  
t
t
SPILAG  
t
SPILEAD  
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
SPICLK  
(CPOL = 1)  
(input)  
t
SPICLKH  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDIS  
SPIDV  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
slave LSB/MSB out  
slave MSB/LSB out  
not defined  
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa911  
Fig 43. SPI slave timing (CPHA = 1)  
12. Other characteristics  
12.1 Comparator electrical characteristics  
Table 20. Comparator electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
VIO  
Parameter  
Conditions  
Min  
Typ  
Max  
±20  
Unit  
mV  
V
input offset voltage  
-
-
VIC  
common-mode input voltage  
common-mode rejection ratio  
total response time  
0
-
-
VDD 0.3  
50  
[1]  
CMRR  
tres(tot)  
t(CE-OV)  
ILI  
-
dB  
ns  
-
250  
500  
chip enable to output valid time  
input leakage current  
-
-
-
10  
μs  
0 V < VI < VDD  
-
±1  
μA  
[1] This parameter is characterized, but not tested in production.  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
81 of 91  
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
12.2 ADC electrical characteristics  
Table 21. ADC/temperature sensor electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
Tamb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
All limits valid for an external source impedance of less than 10 kΩ.  
Symbol  
VDDA(ADC)  
VSSA  
VIA  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ADC analog supply voltage  
analog ground voltage  
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
VSS 0.2  
-
-
-
-
-
-
-
-
-
-
-
-
VDD + 0.2  
V
Cia  
-
15  
pF  
ED  
-
±1  
LSB  
LSB  
LSB  
%
EL(adj)  
EO  
-
±1  
-
±2  
EG  
gain error  
-
±1  
Eu(tot)  
MCTC  
αct(port)  
SRin  
total unadjusted error  
channel-to-channel matching  
crosstalk between port inputs  
input slew rate  
-
±2  
LSB  
LSB  
dB  
-
±1  
0 kHz to 100 kHz  
ADC enabled  
-
60  
100  
2000  
13Tcy(ADC)  
-
V/ms  
ns  
Tcy(ADC)  
tADC  
ADC clock cycle time  
ADC conversion time  
111  
-
μs  
start trigger  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
adc_clk  
clk  
serial_data_out  
D0  
D1  
D2  
D3  
D4  
D7  
D6  
D5  
ADCDATA_REG  
ADCDATA  
002aae371  
Fig 44. ADC conversion timing  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
82 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
offset  
error  
gain  
error  
E
E
O
G
255  
254  
253  
252  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
1 LSB  
(ideal)  
253  
254  
255  
256  
1
2
3
4
5
6
7
V
(LSB  
)
ideal  
IA  
offset error  
E
O
V
DDA  
V  
SSA  
1 LSB =  
256  
002aae372  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
Fig 45. ADC characteristics  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
83 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
13. Package outline  
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm  
SOT402-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
7
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.72  
0.38  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT402-1  
MO-153  
Fig 46. TSSOP14 package outline (SOT402-1)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
84 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm  
SOT403-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.40  
0.06  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT403-1  
MO-153  
Fig 47. TSSOP16 package outline (SOT403-1)  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
85 of 91  
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
14. Abbreviations  
Table 22. Abbreviations  
Acronym  
ADC  
BOD  
CPU  
DAC  
EEPROM  
EPROM  
EMI  
Description  
Analog to Digital Converter  
Brownout Detection  
Central Processing Unit  
Digital to Analog Converter  
Electrically Erasable Programmable Read-Only Memory  
Erasable Programmable Read-Only Memory  
ElectroMagnetic Interference  
Internal RC  
IRC  
LSB  
Least Significant Bit  
MSB  
PLL  
Most Significant Bit  
Phase-Locked Loop  
PWM  
RAM  
RC  
Pulse Width Modulator  
Random Access Memory  
Resistance-Capacitance  
Real-Time Clock  
RTC  
SAR  
Successive Approximation Register  
Serial Clock Line  
SCL  
SDA  
Serial DAta line  
SFR  
Special Function Register  
Serial Peripheral Interface  
Universal Asynchronous Receiver/Transmitter  
SPI  
UART  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
86 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
15. Revision history  
Table 23. Revision history  
Document ID  
Release date  
20100209  
Data sheet status  
Change notice  
Supersedes  
P89LPC9151_61_71_2  
Modifications:  
Product data sheet  
-
P89LPC9151_61_71_1  
Changed data sheet status to "Product data sheet".  
P89LPC9151_61_71_1  
20091209  
Preliminary data sheet  
-
-
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
87 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
16. Legal information  
16.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
malfunction of an NXP Semiconductors product can reasonably be expected  
16.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on a weakness or default in the  
customer application/use or the application/use of customer’s third party  
customer(s) (hereinafter both referred to as “Application”). It is customer’s  
sole responsibility to check whether the NXP Semiconductors product is  
suitable and fit for the Application planned. Customer has to do all necessary  
testing for the Application in order to avoid a default of the Application and the  
product. NXP Semiconductors does not accept any liability in this respect.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
16.3 Disclaimers  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
Non-automotive qualified products — Unless the data sheet of an NXP  
Semiconductors product expressly states that the product is automotive  
qualified, the product is not suitable for automotive use. It is neither qualified  
nor tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of  
non-automotive qualified products in automotive equipment or applications.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
88 of 91  
 
 
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
16.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
17. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
continued >>  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
89 of 91  
 
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
18. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.19.1  
Mode 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Mode 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Mode 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Timer overflow toggle output . . . . . . . . . . . . . 49  
RTC/system timer . . . . . . . . . . . . . . . . . . . . . 49  
UART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Mode 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Mode 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Mode 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
Mode 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Baud rate generator and selection. . . . . . . . . 50  
Framing error . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Break detect. . . . . . . . . . . . . . . . . . . . . . . . . . 50  
Double buffering. . . . . . . . . . . . . . . . . . . . . . . 50  
Transmit interrupts with double buffering enabled  
(modes 1, 2 and 3). . . . . . . . . . . . . . . . . . . . . 51  
7.19.2  
7.19.3  
7.19.4  
7.19.5  
7.19.6  
7.20  
2
2.1  
2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Principal features . . . . . . . . . . . . . . . . . . . . . . . 1  
Additional features . . . . . . . . . . . . . . . . . . . . . . 2  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 7  
7.21  
5
7.21.1  
7.21.2  
7.21.3  
7.21.4  
7.21.5  
7.21.6  
7.21.7  
7.21.8  
7.21.9  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 9  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.4  
7.5  
7.6  
Functional description . . . . . . . . . . . . . . . . . . 16  
Special function registers . . . . . . . . . . . . . . . . 16  
Enhanced CPU. . . . . . . . . . . . . . . . . . . . . . . . 38  
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Clock definitions . . . . . . . . . . . . . . . . . . . . . . . 38  
CPU clock (OSCCLK). . . . . . . . . . . . . . . . . . . 38  
Clock output (P89LPC9171). . . . . . . . . . . . . . 38  
On-chip RC oscillator option. . . . . . . . . . . . . . 38  
Watchdog oscillator option . . . . . . . . . . . . . . . 39  
External clock input option . . . . . . . . . . . . . . . 39  
Clock sources switch on the fly. . . . . . . . . . . . 39  
CCLK wake-up delay . . . . . . . . . . . . . . . . . . . 40  
CCLK modification: DIVM register . . . . . . . . . 40  
Low power select . . . . . . . . . . . . . . . . . . . . . . 40  
Memory organization . . . . . . . . . . . . . . . . . . . 41  
Data RAM arrangement . . . . . . . . . . . . . . . . . 41  
Interrupts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
External interrupt inputs . . . . . . . . . . . . . . . . . 42  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Port configurations . . . . . . . . . . . . . . . . . . . . . 44  
7.21.10 The 9th bit (bit 8) in double buffering (modes 1, 2  
and 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
7.22  
7.23  
7.23.1  
7.24  
7.24.1  
7.24.2  
7.24.3  
7.25  
7.26  
7.27  
I2C-bus serial interface. . . . . . . . . . . . . . . . . . 51  
SPI (P89LPC9161) . . . . . . . . . . . . . . . . . . . . 53  
Typical SPI configurations . . . . . . . . . . . . . . . 54  
Analog comparators. . . . . . . . . . . . . . . . . . . . 55  
Internal reference voltage . . . . . . . . . . . . . . . 56  
Comparator interrupt . . . . . . . . . . . . . . . . . . . 56  
Comparators and power reduction modes. . . 56  
KBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 57  
Additional features . . . . . . . . . . . . . . . . . . . . . 58  
Software reset . . . . . . . . . . . . . . . . . . . . . . . . 58  
Dual data pointers . . . . . . . . . . . . . . . . . . . . . 58  
Flash program memory . . . . . . . . . . . . . . . . . 58  
General description . . . . . . . . . . . . . . . . . . . . 58  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Flash organization . . . . . . . . . . . . . . . . . . . . . 59  
Using flash as data storage . . . . . . . . . . . . . . 59  
Flash programming and erasing . . . . . . . . . . 59  
ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
IAP-Lite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
User configuration bytes . . . . . . . . . . . . . . . . 60  
User sector security bytes . . . . . . . . . . . . . . . 60  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.13  
7.14  
7.14.1  
7.15  
7.15.1  
7.27.1  
7.27.2  
7.28  
7.15.1.1 Quasi-bidirectional output configuration . . . . . 44  
7.15.1.2 Open-drain output configuration. . . . . . . . . . . 45  
7.15.1.3 Input-only configuration . . . . . . . . . . . . . . . . . 45  
7.15.1.4 Push-pull output configuration . . . . . . . . . . . . 45  
7.15.2  
7.15.3  
7.16  
7.16.1  
7.16.2  
7.17  
7.17.1  
7.17.2  
7.17.3  
7.18  
7.28.1  
7.28.2  
7.28.3  
7.28.4  
7.28.5  
7.28.6  
7.28.7  
7.29  
Port 0 analog functions. . . . . . . . . . . . . . . . . . 45  
Additional port features. . . . . . . . . . . . . . . . . . 45  
Power monitoring functions . . . . . . . . . . . . . . 46  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 46  
Power-on detection. . . . . . . . . . . . . . . . . . . . . 46  
Power reduction modes . . . . . . . . . . . . . . . . . 46  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 47  
Total Power-down mode . . . . . . . . . . . . . . . . . 47  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Reset vector . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
Timers/counters 0 and 1. . . . . . . . . . . . . . . . . 48  
7.30  
8
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
General description . . . . . . . . . . . . . . . . . . . . 60  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . 61  
ADC operating modes . . . . . . . . . . . . . . . . . . 61  
Fixed channel, single conversion mode. . . . . 61  
8.1  
8.2  
8.3  
8.4  
8.4.1  
7.18.1  
7.19  
continued >>  
P89LPC9151_61_71_2  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 9 February 2010  
90 of 91  
 
P89LPC9151/9161/9171  
NXP Semiconductors  
8-bit microcontroller with 8-bit ADC  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.6  
Fixed channel, continuous conversion mode . 61  
Auto scan, single conversion mode . . . . . . . . 61  
Auto scan, continuous conversion mode . . . . 61  
Dual channel, continuous conversion mode. . 62  
Single step mode . . . . . . . . . . . . . . . . . . . . . . 62  
Conversion start modes . . . . . . . . . . . . . . . . . 62  
Timer triggered start . . . . . . . . . . . . . . . . . . . . 62  
Start immediately . . . . . . . . . . . . . . . . . . . . . . 62  
Edge triggered . . . . . . . . . . . . . . . . . . . . . . . . 62  
Boundary limits interrupt. . . . . . . . . . . . . . . . . 62  
DAC output to a port pin with high output  
8.7  
impedance . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Clock divider. . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Power-down and Idle mode . . . . . . . . . . . . . . 63  
8.8  
8.9  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 64  
10  
Static characteristics. . . . . . . . . . . . . . . . . . . . 65  
Current characteristics . . . . . . . . . . . . . . . . . . 67  
Internal RC/watchdog oscillator characteristics 71  
BOD characteristics . . . . . . . . . . . . . . . . . . . . 74  
10.1  
10.2  
10.3  
11  
Dynamic characteristics . . . . . . . . . . . . . . . . . 75  
11.1  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 79  
12  
12.1  
12.2  
Other characteristics. . . . . . . . . . . . . . . . . . . . 81  
Comparator electrical characteristics . . . . . . . 81  
ADC electrical characteristics. . . . . . . . . . . . . 82  
13  
14  
15  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 84  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 86  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 87  
16  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 88  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 88  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 88  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
16.1  
16.2  
16.3  
16.4  
17  
18  
Contact information. . . . . . . . . . . . . . . . . . . . . 89  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 9 February 2010  
Document identifier: P89LPC9151_61_71_2  

相关型号:

P89LPC917FDH

8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V Flash with 8-bit A/D converter
NXP

P89LPC917FDH,118

P89LPC915/916/917 - 8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V flash with 8-bit A/D converter TSSOP 16-Pin
NXP

P89LPC917FDH,129

P89LPC915/916/917 - 8-bit microcontrollers with accelerated two-clock 80C51 core 2 kB 3 V flash with 8-bit A/D converter TSSOP 16-Pin
NXP

P89LPC920

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC9201

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC9201FDH

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP

P89LPC920FDH

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC920FDH,129

P89LPC920/921/922/9221 - 8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM TSSOP2 20-Pin
NXP

P89LPC920FDH,529

P89LPC920/921/922/9221 - 8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM TSSOP2 20-Pin
NXP
NXP

P89LPC921

8-bit microcontrollers with two-clock 80C51 core 2 kB/4 kB/8 kB 3 V low-power Flash with 256-byte data RAM
NXP

P89LPC9211

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB 3 V byte-erasable flash with 8-bit ADC
NXP