P89LPC952 [NXP]

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB 3 V byte-erasable flash with 10-bit ADC; 8位微控制器,带有加速双时钟80C51核心8 KB的3伏字节可擦除闪存, 10位ADC
P89LPC952
型号: P89LPC952
厂家: NXP    NXP
描述:

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB 3 V byte-erasable flash with 10-bit ADC
8位微控制器,带有加速双时钟80C51核心8 KB的3伏字节可擦除闪存, 10位ADC

闪存 微控制器 时钟
文件: 总66页 (文件大小:308K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
P89LPC952  
8-bit microcontroller with accelerated two-clock 80C51 core  
8 kB 3 V byte-erasable flash with 10-bit ADC  
Rev. 01 — 16 September 2005  
Preliminary data sheet  
1. General description  
The P89LPC952 is a single-chip microcontroller, available in low cost packages, based on  
a high performance processor architecture that executes instructions in two to four clocks,  
six times the rate of standard 80C51 devices. Many system-level functions have been  
incorporated into the P89LPC952 in order to reduce component count, board space, and  
system cost.  
2. Features  
2.1 Principal features  
8 kB byte-erasable flash code memory organized into 1 kB sectors and 64-byte pages.  
Single-byte erasing allows any byte(s) to be used as non-volatile data storage.  
256-byte RAM data memory and a 256-byte auxiliary on-chip RAM.  
8-input multiplexed 10-bit ADC with window comparator that can generate an interrupt  
for in or out of range results. Two analog comparators with selectable inputs and  
reference source.  
Two 16-bit counter/timers (each may be configured to toggle a port output upon timer  
overflow or to become a PWM output) and a 23-bit system timer that can also be used  
as a RTC.  
Two enhanced UARTs with a fractional baud rate generator, break detect, framing  
error detection, and automatic address detection; 400 kHz byte-wide I2C-bus  
communication port and SPI communication port.  
High-accuracy internal RC oscillator option, with clock doubler option, allows operation  
without external oscillator components. The RC oscillator option is selectable and fine  
tunable. Fast switching between the internal RC oscillator and any oscillator source  
provides optimal support of minimal power active mode with fast switching to  
maximum performance.  
2.4 V to 3.6 V VDD operating range. I/O pins are 5 V tolerant (may be pulled up or  
driven to 5.5 V).  
44-pin packages with 40 I/O pins minimum while using on-chip oscillator and reset  
options.  
Port 5 has high current sourcing/sinking (20 mA) for all Port 5 pins. All other port pins  
have high sinking capability (20 mA). A maximum limit is specified for the entire chip.  
Watchdog timer with separate on-chip oscillator, requiring no external components.  
The watchdog prescaler is selectable from eight values.  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
2.2 Additional features  
A high performance 80C51 CPU provides instruction cycle times of 111 ns to 222 ns  
for all instructions except multiply and divide when executing at 18 MHz. This is six  
times the performance of the standard 80C51 running at the same clock frequency. A  
lower clock frequency for the same performance results in power savings and reduced  
EMI.  
Serial flash In-Circuit Programming (ICP) allows simple production coding with  
commercial EPROM programmers. Flash security bits prevent reading of sensitive  
application programs.  
Serial flash In-System Programming (ISP) allows coding while the device is mounted  
in the end application.  
In-Application Programming (IAP) of the flash code memory. This allows changing the  
code in a running application.  
Low voltage (brownout) detect allows a graceful system shutdown when power fails.  
May optionally be configured as an interrupt.  
Idle and two different power-down reduced power modes. Improved wake-up from  
Power-down mode (a LOW interrupt input starts execution). Typical power-down  
current is 1 µA (total power-down with voltage comparators disabled).  
Active-LOW reset input can be driven by any internal reset. On-chip power-on reset  
allows operation without external reset components. A reset counter and reset glitch  
suppression circuitry prevent spurious and incomplete resets. A software reset  
function is also available.  
Only power and ground connections are required to operate the P89LPC952 when  
internal reset option is selected.  
Configurable on-chip oscillator with frequency range options selected by user  
programmed flash configuration bits. Oscillator options support frequencies from  
20 kHz to the maximum operating frequency of 18 MHz.  
Oscillator fail detect. The watchdog timer has a separate fully on-chip oscillator  
allowing it to perform an oscillator fail detect function.  
Programmable port output configuration options: quasi-bidirectional, open drain,  
push-pull, input-only.  
Port ‘input pattern match’ detect. Port 0 may generate an interrupt when the value of  
the pins match or do not match a programmable pattern.  
Controlled slew rate port outputs to reduce EMI. Outputs have approximately 10 ns  
minimum ramp times.  
Four interrupt priority levels.  
Eight keypad interrupt inputs, plus two additional external interrupt inputs.  
Schmitt trigger port inputs.  
Second data pointer.  
Extended temperature range.  
Emulation support.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
2 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
3. Ordering information  
Table 1:  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
P89LPC952FA  
PLCC44  
LQFP44  
plastic leaded chip carrier; 44 leads  
SOT187-2  
SOT389-1  
P89LPC952FBD  
plastic low profile quad flat package; 44 leads;  
body 10 × 10 × 1.4 mm  
3.1 Ordering options  
Table 2:  
Ordering options  
Type number  
P89LPC952FA  
P89LPC952FBD  
Flash memory  
Temperature range  
40 °C to +85 °C  
40 °C to +85 °C  
Frequency  
0 MHz to 18 MHz  
0 MHz to 18 MHz  
8 kB  
8 kB  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
3 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
4. Block diagram  
P89LPC952  
ACCELERATED 2-CLOCK 80C51 CPU  
TXD0  
8 kB  
CODE FLASH  
UART0  
RXD0  
internal  
bus  
256-BYTE  
DATA RAM  
TXD1  
UART1  
RXD1  
256-BYTE  
AUXILIARY RAM  
SCL  
SDA  
2
I C-BUS  
AD00  
AD01  
AD02  
PORT 5  
CONFIGURABLE I/Os  
P5[7:0]  
P4[7:0]  
P3[1:0]  
P2[5:0]  
AD03  
ADC1  
AD04  
AD05  
AD06  
AD07  
PORT 4  
CONFIGURABLE I/Os  
SPICLK  
MOSI  
MISO  
SS  
PORT 3  
CONFIGURABLE I/Os  
SPI  
PORT 2  
CONFIGURABLE I/Os  
REAL-TIME CLOCK/  
SYSTEM TIMER  
PORT 1  
CONFIGURABLE I/Os  
T0  
T1  
TIMER 0  
TIMER 1  
P1[7:0]  
P0[7:0]  
CMP2  
CIN2A  
CIN1A  
PORT 0  
CONFIGURABLE I/Os  
CIN2B  
CMP1  
CIN1B  
ANALOG  
COMPARATORS  
KEYPAD  
INTERRUPT  
TRIG  
SCLK  
SDAT  
JTAG  
INTERFACE  
WATCHDOG TIMER  
AND OSCILLATOR  
PROGRAMMABLE  
OSCILLATOR DIVIDER  
CPU  
clock  
X1  
X2  
CRYSTAL  
OR  
RESONATOR  
ON-CHIP  
RC  
OSCILLATOR  
POWER MONITOR  
(POWER-ON RESET,  
BROWNOUT RESET)  
CONFIGURABLE  
OSCILLATOR  
002aab305  
Fig 1. Block diagram  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
4 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
5. Functional diagram  
V
V
SS  
DD  
TXD0  
RXD0  
T0  
INT0  
INT1  
RST  
KBI0  
KBI1  
KBI2  
KBI3  
KBI4  
KBI5  
KBI6  
KBI7  
CMP2  
CIN2B  
CIN2A  
CIN1B  
CIN1A  
CMPREF  
CMP1  
T1  
AD05  
AD00  
AD01  
AD02  
AD03  
SCL  
SDA  
PORT 0  
PORT 3  
PORT 1  
AD04  
AD07  
AD06  
MOSI  
MISO  
SS  
CLKOUT  
XTAL2  
XTAL1  
PORT 2  
P89LPC952  
SPICLK  
PORT 5  
TRIG  
TXD1  
RXD1  
PORT 4  
SDAT  
SCLK  
002aab358  
Fig 2. Functional diagram  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
5 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
6. Pinning information  
6.1 Pinning  
7
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
P1.3/INT0/SDA  
P0.4/CIN1A/KBI4/AD03  
P0.5/CMPREF/KBI5  
P0.6/CMP1/KBI6  
8
P1.2/T0/SCL  
P1.1/RXD0  
9
10  
11  
12  
13  
14  
15  
16  
17  
P1.0/TXD0  
V
DDA  
P3.1/XTAL1  
P0.7/T1/KBI7  
P2.2/MOSI  
P2.3/MISO  
P2.4/SS  
P3.0/XTAL2/CLKOUT  
P89LPC952FA  
V
DD  
P5.7  
P5.6  
P5.5  
P5.4  
P2.5/SPICLK  
P4.0  
P4.1/TRIG  
002aab307  
Fig 3. PLCC44 pin configuration  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
6 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
1
2
33  
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
P1.3/INT0/SDA  
P1.2/T0/SCL  
P0.4/CIN1A/KBI4/AD03  
P0.5/CMPREF/KBI5  
P0.6/CMP1/KBI6  
3
P1.1/RXD0  
4
P1.0/TXD0  
V
DDA  
5
P3.1/XTAL1  
P0.7/T1/KBI7  
P2.2/MOSI  
P2.3/MISO  
P2.4/SS  
6
P3.0/XTAL2/CLKOUT  
P89LPC952FBD  
7
V
DD  
8
P5.7  
P5.6  
P5.5  
P5.4  
9
P2.5/SPICLK  
P4.0  
10  
11  
P4.1/TRIG  
002aab306  
Fig 4. LQFP44 pin configuration  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
7 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
6.2 Pin description  
Table 3:  
Symbol  
Pin description  
Pin  
Type Description  
PLCC44  
LQFP44  
P0.0 to P0.7  
I/O  
Port 0: Port 0 is an 8-bit I/O port with a user-configurable output type.  
During reset Port 0 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 0 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 7.13.1 “Port configurations”  
and Table 10 “Static characteristics” for details.  
The Keypad Interrupt feature operates with Port 0 pins.  
All pins have Schmitt triggered inputs.  
Port 0 also provides various special functions as described below:  
P0.0 — Port 0 bit 0.  
P0.0/CMP2/  
KBI0/AD05  
43  
42  
41  
40  
39  
37  
36  
35  
34  
33  
32  
I/O  
O
CMP2 — Comparator 2 output.  
KBI0 — Keyboard input 0.  
I
I
AD05 — ADC0 channel 5 analog input.  
P0.1 — Port 0 bit 1.  
P0.1/CIN2B/  
KBI1/AD00  
I/O  
I
CIN2B — Comparator 2 positive input B.  
KBI1 — Keyboard input 1.  
I
I
AD00 — ADC0 channel 0 analog input.  
P0.2 — Port 0 bit 2.  
P0.2/CIN2A/  
KBI2/AD01  
I/O  
I
CIN2A — Comparator 2 positive input A.  
KBI2 — Keyboard input 2.  
I
I
AD01 — ADC0 channel 1 analog input.  
P0.3 — Port 0 bit 3.  
P0.3/CIN1B/  
KBI3/AD02  
I/O  
I
CIN1B — Comparator 1 positive input B.  
KBI3 — Keyboard input 3.  
I
I
AD02 — ADC0 channel 2 analog input.  
P0.4 — Port 0 bit 4.  
P0.4/CIN1A/  
KBI4/AD03  
I/O  
I
CIN1A — Comparator 1 positive input A.  
KBI4 — Keyboard input 4.  
I
I
AD03 — ADC0 channel 3 analog input.  
P0.5 — Port 0 bit 5.  
P0.5/CMPREF/ 38  
KBI5  
I/O  
I
I
CMPREF — Comparator reference (negative) input.  
KBI5 — Keyboard input 5.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
8 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type Description  
PLCC44  
LQFP44  
P0.6/CMP1/  
KBI6  
37  
31  
I/O  
O
P0.6 — Port 0 bit 6.  
CMP1 — Comparator 1 output.  
KBI6 — Keyboard input 6.  
P0.7 — Port 0 bit 7.  
I
P0.7/T1/KBI7  
P1.0 to P1.7  
35  
29  
I/O  
I/O  
I
T1 — Timer/counter 1 external count input or overflow output.  
KBI7 — Keyboard input 7.  
I/O, I Port 1: Port 1 is an 8-bit I/O port with a user-configurable output type,  
[1]  
except for three pins as noted below. During reset Port 1 latches are  
configured in the input only mode with the internal pull-up disabled. The  
operation of the configurable Port 1 pins as inputs and outputs depends  
upon the port configuration selected. Each of the configurable port pins  
are programmed independently. Refer to Section 7.13.1 “Port  
configurations” and Table 10 “Static characteristics” for details. P1.2 to  
P1.3 are open drain when used as outputs. P1.5 is input only.  
All pins have Schmitt triggered inputs.  
Port 1 also provides various special functions as described below:  
P1.0/TXD0  
P1.1/RXD0  
P1.2/T0/SCL  
10  
9
4
3
2
I/O  
O
P1.0 — Port 1 bit 0.  
TXD0 — Transmitter output for serial port 0.  
P1.1 — Port 1 bit 1.  
I/O  
I
RXD0 — Receiver input for serial port 0.  
P1.2 — Port 1 bit 2 (open-drain when used as output).  
8
I/O  
I/O  
T0 — Timer/counter 0 external count input or overflow output (open-drain  
when used as output).  
I/O  
SCL — I2C-bus serial clock input/output.  
P1.3 — Port 1 bit 3 (open-drain when used as output).  
INT0 — External interrupt 0 input.  
SDA — I2C-bus serial data input/output.  
P1.4 — Port 1 bit 4.  
P1.3/INT0/ SDA 7  
1
I/O  
I
I/O  
P1.4/INT1  
P1.5/RST  
6
5
44  
43  
I
I
I
I
INT1 — External interrupt 1 input.  
P1.5 — Port 1 bit 5 (input only).  
RST — External Reset input during power-on or if selected via UCFG1.  
When functioning as a reset input, a LOW on this pin resets the  
microcontroller, causing I/O ports and peripherals to take on their default  
states, and the processor begins execution at address 0. Also used  
during a power-on sequence to force ISP mode. When using an  
oscillator frequency above 12 MHz, the reset input function of P1.5  
must be enabled. An external circuit is required to hold the device in  
reset at power-up until VDD has reached its specified level. When  
system power is removed VDD will fall below the minimum specified  
operating voltage. When using an oscillator frequency above  
12 MHz, in some applications, an external brownout detect circuit  
may be required to hold the device in reset when VDD falls below the  
minimum specified operating voltage.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
9 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type Description  
PLCC44  
LQFP44  
42  
P1.6  
4
2
I/O  
I/O  
I
P1.6 — Port 1 bit 6.  
P1.7 — Port 1 bit 7.  
P1.7/AD04  
40  
AD04 — ADC0 channel 4 analog input.  
P2.0 to P2.5  
I/O  
Port 2: Port 2 is an 8-bit I/O port with a user-configurable output type.  
During reset Port 2 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 2 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 7.13.1 “Port configurations”  
and Table 10 “Static characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 2 also provides various special functions as described below:  
P2.0 — Port 2 bit 0.  
P2.0/AD07  
P2.1/AD06  
P2.2/MOSI  
1
39  
38  
28  
I/O  
I
AD07 — ADC0 channel 7 analog input.  
P2.1 — Port 2 bit 1.  
44  
34  
I/O  
I
AD06 — ADC0 channel 6 analog input.  
P2.2 — Port 2 bit 2.  
I/O  
I/O  
MOSI — SPI master out slave in. When configured as master, this pin is  
output; when configured as slave, this pin is input.  
P2.3/MISO  
33  
27  
I/O  
I/O  
P2.3 — Port 2 bit 3.  
MISO — When configured as master, this pin is input, when configured  
as slave, this pin is output.  
P2.4/SS  
32  
31  
26  
25  
I/O  
I/O  
I/O  
I/O  
P2.4 — Port 2 bit 4.  
SS — SPI Slave select.  
P2.5 — Port 2 bit 5.  
P2.5/SPICLK  
SPICLK — SPI clock. When configured as master, this pin is output;  
when configured as slave, this pin is input.  
P3.0 to P3.1  
I/O  
Port 3: Port 3 is a 2-bit I/O port with a user-configurable output type.  
During reset Port 3 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 3 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 7.13.1 “Port configurations”  
and Table 10 “Static characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 3 also provides various special functions as described below:  
P3.0 — Port 3 bit 0.  
P3.0/XTAL2/  
CLKOUT  
12  
6
I/O  
O
XTAL2 — Output from the oscillator amplifier (when a crystal oscillator  
option is selected via the flash configuration.  
O
CLKOUT — CPU clock divided by 2 when enabled via SFR bit (ENCLK  
-TRIM.6). It can be used if the CPU clock is the internal RC oscillator,  
watchdog oscillator or external clock input, except when XTAL1/XTAL2  
are used to generate clock source for the RTC/system timer.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
10 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type Description  
PLCC44  
LQFP44  
P3.1/XTAL1  
11  
5
I/O  
I
P3.1 — Port 3 bit 1.  
XTAL1 — Input to the oscillator circuit and internal clock generator  
circuits (when selected via the flash configuration). It can be a port pin if  
internal RC oscillator or watchdog oscillator is used as the CPU clock  
source, and if XTAL1/XTAL2 are not used to generate the clock for the  
RTC/system timer.  
P4.0 to P4.7  
I/O  
Port 4: Port 4 is an 8-bit I/O port with a user-configurable output type.  
During reset Port 4 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 4 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 7.13.1 “Port configurations”  
and Table 10 “Static characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 4 also provides various special functions as described below:  
P4.0 — Port 4 bit 0.  
P4.0  
30  
29  
24  
23  
I/O  
I/O  
O
P4.1/TRIG  
P4.1 — Port 4 bit 1.  
TRIG — JTAG trigger output.  
P4.2 — Port 4 bit 2.  
P4.2/TXD1  
P4.3/RXD1  
28  
27  
22  
21  
I/O  
O
TXD1 — Transmitter output for serial port 1.  
P4.3 — Port 4 bit 3.  
I/O  
I
RXD1 — Receiver input for serial port 1.  
P4.4 — Port 4 bit 4.  
P4.4  
26  
25  
20  
19  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P4.5/SDAT  
P4.5 — Port 4 bit 5.  
SDAT — Serial data input/output for JTAG interface.  
P4.6 — Port 4 bit 6.  
P4.6  
24  
23  
18  
17  
P4.7/SCLK  
P4.7 — Port 4 bit 7.  
SCLK — Serial clock input for JTAG interface.  
P5.0 to P5.7  
I/O  
Port 5: Port 5 is an 8-bit I/O port with a user-configurable output type.  
During reset Port 5 latches are configured in the input only mode with the  
internal pull-up disabled. The operation of Port 5 pins as inputs and  
outputs depends upon the port configuration selected. Each port pin is  
configured independently. Refer to Section 7.13.1 “Port configurations”  
and Table 10 “Static characteristics” for details.  
All pins have Schmitt triggered inputs.  
Port 5 also provides various special functions as described below:  
P5.0 — Port 5 bit 0.  
P5.0  
P5.1  
P5.2  
P5.3  
P5.4  
P5.5  
P5.6  
P5.7  
VSS  
21  
20  
19  
18  
17  
16  
15  
14  
22  
15  
14  
13  
12  
11  
10  
9
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I
P5.1 — Port 5 bit 1.  
P5.2 — Port 5 bit 2.  
P5.3 — Port 5 bit 3.  
P5.4 — Port 5 bit 4.  
P5.5 — Port 5 bit 5.  
P5.6 — Port 5 bit 6.  
8
P5.7 — Port 5 bit 7.  
16  
Ground: 0 V reference.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
11 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 3:  
Symbol  
Pin description …continued  
Pin  
Type Description  
PLCC44  
LQFP44  
VSSA  
VDD  
3
41  
7
I
I
Analog ground: 0 V analog reference.  
13  
Power supply: This is the power supply voltage for normal operation as  
well as Idle and Power-down modes.  
VDDA  
36  
30  
I
Analog power supply: This is the analog power supply voltage for  
normal operation as well as Idle and Power-down modes.  
[1] Input/output for P1.0 to P1.4, P1.6, P1.7. Input for P1.5.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
12 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7. Functional description  
Remark: Please refer to the P89LPC952 User’s Manual for a more detailed functional  
description.  
7.1 Special function registers  
Remark: SFR accesses are restricted in the following ways:  
User must not attempt to access any SFR locations not defined.  
Accesses to any defined SFR locations must be strictly for the functions for the SFRs.  
SFR bits labeled ‘-’, ‘0’ or ‘1’ can only be written and read as follows:  
‘-’ Unless otherwise specified, must be written with ‘0’, but can return any value  
when read (even if it was written with ‘0’). It is a reserved bit and may be used in  
future derivatives.  
‘0’ must be written with ‘0’, and will return a ‘0’ when read.  
‘1’ must be written with ‘1’, and will return a ‘1’ when read.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
13 of 66  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 4:  
Special function registers  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
E0  
Hex Binary  
Bit address  
E0H  
E7  
E6  
E5  
E4  
E3  
E2  
E1  
ACC*  
Accumulator  
00  
ADCI0 ENADC0 ADCS01 ADCS00 00  
0000 0000  
AD0CON  
ADC0 control register  
97H  
ENBI0  
ENADCI  
0
TMM0  
EDGE0  
0000 0000  
AD0INS  
ADC0 input select  
A3H  
C0H  
A1H  
ADI07  
BNDI0  
CLK2  
ADI06  
BURST0  
CLK1  
EBRR  
F6  
ADI05  
SCC0  
CLK0  
ENT1  
F5  
ADI04  
SCAN0  
-
ADI03  
ADI02  
ADI01  
ADI00 00  
0000 0000  
0000 0000  
000x 0000  
0000 00x0  
AD0MODA ADC0 mode register A  
AD0MODB ADC0 mode register B  
-
-
-
-
-
-
-
-
00  
00  
00  
AUXR1  
Auxiliary function register  
A2H CLKLP  
ENT0  
F4  
SRST  
F3  
0
-
DPS  
F0  
Bit address  
F7  
F2  
F1  
B*  
B register  
F0H  
BEH  
00  
00  
0000 0000  
0000 0000  
BRGR0_0  
Baud rate generator 0 rate  
low  
BRGR1_0  
Baud rate generator 0 rate  
high  
BFH  
00  
0000 0000  
BRGCON_0 Baud rate generator 0 control BDH  
-
-
-
-
-
-
SBRGS_ BRGEN_ 00[2] xxxx xx00  
0
0
CMP1  
CMP2  
DIVM  
Comparator 1 control register ACH  
Comparator 2 control register ADH  
CPU clock divide-by-M control 95H  
Data pointer (2 bytes)  
-
-
-
-
CE1  
CE2  
CP1  
CP2  
CN1  
CN2  
OE1  
OE2  
CO1  
CO2  
CMF1 00[1] xx00 0000  
CMF2 00[1] xx00 0000  
00  
0000 0000  
DPTR  
DPH  
Data pointer high  
83H  
82H  
E7H  
E6H  
00  
00  
00  
00  
70  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0111 0000  
DPL  
Data pointer low  
FMADRH  
FMADRL  
FMCON  
Program flash address high  
Program flash address low  
Program flash control (Read) E4H  
BUSY  
-
-
-
HVA  
HVE  
SV  
OI  
Program flash control (Write) E4H FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD. FMCMD.  
7
6
5
4
3
2
1
0
FMDATA  
I2ADR  
Program flash data  
E5H  
00  
00  
0000 0000  
0000 0000  
I2C-bus slave address register DBH I2ADR.6 I2ADR.5 I2ADR.4 I2ADR.3 I2ADR.2 I2ADR.1 I2ADR.0  
GC  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
D8  
Hex Binary  
Bit address  
D8H  
DF  
DE  
DD  
DC  
DB  
DA  
D9  
I2CON*  
I2DAT  
I2C-bus control register  
I2C-bus data register  
-
I2EN  
STA  
STO  
SI  
AA  
-
CRSEL 00  
x000 00x0  
DAH  
I2SCLH  
Serial clock generator/SCL  
duty cycle register high  
DDH  
DCH  
D9H  
00  
00  
0000 0000  
0000 0000  
1111 1000  
I2SCLL  
I2STAT  
Serial clock generator/SCL  
duty cycle register low  
I2C-bus status register  
STA.4  
AF  
EA  
EF  
-
STA.3  
AE  
STA.2  
AD  
EBO  
ED  
-
STA.1  
STA.0  
AB  
0
0
0
A8  
EX0  
E8  
F8  
00  
Bit address  
A8H  
AC  
AA  
EX1  
EA  
EC  
A9  
IEN0*  
Interrupt enable 0  
EWDRT  
EE  
ES/ESR  
ET1  
ET0  
E9  
0000 0000  
Bit address  
E8H  
EC  
EB  
IEN1*  
IEN2  
Interrupt enable 1  
Interrupt enable 2  
EST  
-
-
-
ESPI  
EST1  
EKBI  
EI2C  
-
00[1] 00x0 0000  
00[1] 00x0 0000  
D5H  
-
-
ES1/ESR EADC  
1
Bit address  
B8H  
BF  
BE  
BD  
BC  
BB  
PT1  
BA  
PX1  
B9  
PT0  
B8  
IP0*  
Interrupt priority 0  
-
-
PWDRT  
PBO  
PS/PSR  
PX0  
00[1] x000 0000  
00[1] x000 0000  
IP0H  
Interrupt priority 0 high  
B7H  
PWDRT  
H
PBOH  
PSH/  
PSRH  
PT1H  
PX1H  
PT0H  
PX0H  
Bit address  
F8H  
FF  
FE  
PST  
PSTH  
-
FD  
FC  
FB  
FA  
PC  
F9  
F8  
IP1*  
IP1H  
IP2  
Interrupt priority 1  
Interrupt priority 1 high  
Interrupt priority 2  
-
-
-
-
-
-
-
-
-
PSPI  
PSPIH  
PKBI  
PKBIH  
PADC  
PI2C  
00[1] 00x0 0000  
F7H  
PCH  
PI2CH 00[1] 00x0 0000  
D6H  
PEST1 PES1/PE  
SR1  
-
00[1] 00x0 0000  
00[1] 00x0 0000  
00[1] xxxx xx00  
IP2H  
Interrupt priority 2 high  
Keypad control register  
D7H  
94H  
86H  
-
-
-
-
-
-
-
-
PEST1H PES1H/P PADCH  
ESR1H  
-
KBCON  
KBMASK  
KBPATN  
-
-
PATN  
_SEL  
KBIF  
Keypad interrupt mask  
register  
00  
FF  
0000 0000  
1111 1111  
Keypad pattern register  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
80  
Hex Binary  
Bit address  
87  
86  
85  
84  
83  
82  
81  
[1]  
[1]  
[1]  
P0*  
P1*  
P2*  
Port 0  
Port 1  
Port 2  
80H T1/KB7  
CMP1 CMPREF CIN1A  
CIN1B  
/KB3  
CIN2A  
/KB2  
CIN2B  
/KB1  
CMP2  
/KB0  
/KB6  
96  
-
/KB5  
95  
/KB4  
94  
Bit address  
97  
93  
92  
91  
90  
90H  
-
RST  
INT1  
INT0/  
SDA  
T0/SCL  
RXD0  
TXD0  
Bit address  
A0H  
97  
-
96  
95  
94  
SS  
B4  
-
93  
MISO  
B3  
92  
MOSI  
B2  
91  
-
90  
-
-
B6  
-
SPICLK  
Bit address  
B0H  
B7  
-
B5  
B1  
B0  
[1]  
[1]  
[1]  
P3*  
Port 3  
-
-
-
-
-
XTAL1  
TRIG  
-
XTAL2  
T3EX  
-
P4  
Port 4  
B3H  
-
TMS  
-
RXD1  
TXD1  
P5  
Port 5  
B4H  
T3  
-
-
-
-
P0M1  
P0M2  
P1M1  
P1M2  
P2M1  
P2M2  
P3M1  
P3M2  
PCON  
PCONA  
Port 0 output mode 1  
Port 0 output mode 2  
Port 1 output mode 1  
Port 1 output mode 2  
Port 2 output mode 1  
Port 2 output mode 2  
Port 3 output mode 1  
Port 3 output mode 2  
Power control register  
Power control register A  
84H (P0M1.7) (P0M1.6) (P0M1.5) (P0M1.4) (P0M1.3) (P0M1.2) (P0M1.1) (P0M1.0) FF[1] 1111 1111  
85H (P0M2.7) (P0M2.6) (P0M2.5) (P0M2.4) (P0M2.3) (P0M2.2) (P0M2.1) (P0M2.0) 00[1] 0000 0000  
91H (P1M1.7) (P1M1.6)  
92H (P1M2.7) (P1M2.6)  
-
(P1M1.4) (P1M1.3) (P1M1.2) (P1M1.1) (P1M1.0) D3[1] 11x1 xx11  
(P1M2.4) (P1M2.3) (P1M2.2) (P1M2.1) (P1M2.0) 00[1] 00x0 xx00  
-
A4H  
A5H  
B1H  
B2H  
-
-
-
-
-
-
-
-
(P2M1.5) (P2M1.4) (P2M1.3) (P2M1.2) (P2M1.1) (P2M1.0) FF[1] 1111 1111  
(P2M2.5) (P2M2.4) (P2M2.3) (P2M2.2) (P2M2.1) (P2M2.0) 00[1] 0000 0000  
-
-
-
-
-
-
-
(P3M1.1) (P3M1.0) 03[1] xxxx xx11  
(P3M2.1) (P3M2.0) 00[1] xxxx xx00  
-
87H SMOD1 SMOD0  
BOPD  
VCPD  
D5  
BOI  
ADPD  
D4  
GF1  
I2PD  
D3  
GF0  
SPPD  
D2  
PMOD1 PMOD0 00  
0000 0000  
B5H RTCPD  
-
D6  
AC  
-
SPD  
D1  
-
D0  
P
00[1] 0000 0000  
Bit address  
D7  
CY  
-
PSW*  
Program status word  
Port 0 digital input disable  
Reset source register  
D0H  
F6H  
DFH  
F0  
RS1  
RS0  
OV  
F1  
00  
0000 0000  
xx00 000x  
PT0AD  
RSTSRC  
PT0AD.5 PT0AD.4 PT0AD.3 PT0AD.2 PT0AD.1  
BOF POF R_BK R_WD R_SF  
-
00  
[3]  
-
-
R_EX  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
RTCCON  
RTC control  
D1H  
RTCF  
RTCS1  
RTCS0  
-
-
-
ERTC  
RTCEN 60[1] 011x xx00  
[6]  
RTCH  
RTC register high  
D2H  
D3H  
A9H  
B9H  
00[6] 0000 0000  
00[6] 0000 0000  
RTCL  
RTC register low  
S0ADDR  
S0ADEN  
S0BUF  
Serial port address register  
Serial port address enable  
00  
00  
xx  
0000 0000  
0000 0000  
xxxx xxxx  
Serial Port data buffer register 99H  
Bit address  
9F  
9E  
9D  
9C  
9B  
9A  
99  
98  
S0CON*  
S0STAT  
Serial port control  
98H SM0_0/F SM1_00  
E_0  
SM2_0  
REN_0  
TB8_0  
RB8_0  
TI_0  
RI_0  
00  
0000 0000  
0000 0000  
Serial port extended status  
register  
BAH DBMOD_ INTLO_0 CIDIS_0 DBISEL_  
FE_0  
BR_0  
OE_0  
STINT_0 00  
0
0
SP  
Stack pointer  
81H  
E2H  
E1H  
E3H  
07  
0000 0111  
0000 0100  
00xx xxxx  
0000 0000  
0000 0000  
SPCTL  
SPSTAT  
SPDAT  
S1CON  
SPI control register  
SPI status register  
SPI data register  
Serial port 1 control  
SSIG  
SPIF  
SPEN  
DORD  
-
MSTR  
-
CPOL  
-
CPHA  
-
SPR1  
-
SPR0  
-
04  
00  
00  
00  
WCOL  
B5H SM0_1/F SM1_1  
E_1  
SM2_1  
REN_1  
TB8_1  
FE_1  
RB8_1  
BR_1  
TI_1  
RI_1  
S1STAT  
TAMOD  
Serial port 1 extended status D4H DBMOD_ INTLO_1 CIDIS_1 DBISEL_  
register  
OE_1  
STINT_1 00  
0000 0000  
xxx0 xxx0  
1
1
Timer 0 and 1 auxiliary mode 8FH  
-
-
-
T1M2  
8C  
-
-
-
T0M2  
88  
00  
Bit address  
8F  
TF1  
8E  
8D  
TF0  
8B  
IE1  
8A  
IT1  
89  
IE0  
TCON*  
TH0  
Timer 0 and 1 control  
Timer 0 high  
88H  
8CH  
8DH  
8AH  
8BH  
TR1  
TR0  
IT0  
00  
00  
00  
00  
00  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
TH1  
Timer 1 high  
TL0  
Timer 0 low  
TL1  
Timer 1 low  
TMOD  
TRIM  
WDCON  
Timer 0 and 1 mode  
89H T1GATE  
T1C/T  
ENCLK  
PRE1  
T1M1  
TRIM.5  
PRE0  
T1M0  
TRIM.4  
-
T0GATE  
TRIM.3  
-
T0C/T  
T0M1  
T0M0  
00  
[5] [6]  
Internal oscillator trim register 96H RCCLK  
Watchdog control register A7H PRE2  
TRIM.2  
TRIM.1  
TRIM.0  
[4] [6]  
WDRUN WDTOF WDCLK  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Special function registers …continued  
Table 4:  
* indicates SFRs that are bit addressable.  
Name  
Description  
SFR Bit functions and addresses  
Reset value  
addr.  
MSB  
LSB  
Hex Binary  
WDL  
Watchdog load  
Watchdog feed 1  
Watchdog feed 2  
C1H  
C2H  
C3H  
FF  
1111 1111  
WFEED1  
WFEED2  
[1] All ports are in input only (high-impedance) state after power-up.  
[2] BRGR1_0 and BRGR0_0 must only be written if BRGEN_0 in BRGCON_0 SFR is logic 0. If any are written while BRGEN_0 = 1, the result is unpredictable.  
[3] The RSTSRC register reflects the cause of the P89LPC952 reset. Upon a power-up reset, all reset source flags are cleared except POF and BOF; the power-on reset value is  
xx11 0000.  
[4] After reset, the value is 1110 01x1, i.e., PRE2 to PRE0 are all logic 1, WDRUN = 1 and WDCLK = 1. WDTOF bit is logic 1 after watchdog reset and is logic 0 after power-on reset.  
Other resets will not affect WDTOF.  
[5] On power-on reset, the TRIM SFR is initialized with a factory preprogrammed value. Other resets will not cause initialization of the TRIM register.  
[6] The only reset source that affects these SFRs is power-on reset.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 5:  
Name  
Extended special function registers  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset value  
Hex Binary  
addr.  
LSB  
ADC0HBND ADC0 high_boundary register, FFEFH  
left (MSB)  
FF  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
00  
1111 1111  
ADC0LBND ADC0 low_boundary register  
(MSB)  
FFEEH  
FFFEH  
FFFFH  
FFFCH  
FFFDH  
FFFAH  
FFFBH  
FFF8H  
FFF9H  
FFF6H  
FFF7H  
FFF4H  
FFF5H  
FFF2H  
FFF3H  
FFF0H  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
AD0DAT0R ADC0 data register 0, right  
(LSB)  
AD0DAT0[7:0]  
AD0DAT0[9:2]  
AD0DAT1[7:0]  
AD0DAT1[9:2]  
AD0DAT2[7:0]  
AD0DAT2[9:2]  
AD0DAT3[7:0]  
AD0DAT3[9:2]  
AD0DAT4[7:0]  
AD0DAT4[9:2]  
AD0DAT5[7:0]  
AD0DAT5[9:2]  
AD0DAT6[7:0]  
AD0DAT6[9:2]  
AD0DAT7[7:0]  
AD0DAT0L  
ADC0 data register 0, left  
(MSB)  
AD0DAT1R ADC0 data register 1, right  
(LSB)  
AD0DAT1L  
ADC0 data register 1, left  
(MSB)  
AD0DAT2R ADC0 data register 2, right  
(LSB)  
AD0DAT2L  
ADC0 data register 2, left  
(MSB)  
AD0DAT3R ADC0 data register 3, right  
(LSB)  
AD0DAT3L  
ADC0 data register 3, left  
(MSB)  
AD0DAT4R ADC0 data register 4, right  
(LSB)  
AD0DAT4L  
ADC0 data register 4, left  
(MSB)  
AD0DAT5R ADC0 data register 5, right  
(LSB)  
AD0DAT5L  
ADC0 data register 5, left  
(MSB)  
AD0DAT6R ADC0 data register 6, right  
(LSB)  
AD0DAT6L  
ADC0 data register 6, left  
(MSB)  
AD0DAT7R ADC0 data register 7, right  
(LSB)  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 5:  
Name  
Extended special function registers …continued  
Description  
SFR  
Bit functions and addresses  
MSB  
Reset value  
Hex Binary  
addr.  
LSB  
AD0DAT7L  
BNDSTA0  
ADC0 data register 7, left  
(MSB)  
FFF1H  
AD0DAT7[9:2]  
ADC0 boundary status register FFEDH  
FFB3H  
BRGCON_1 Baud rate generator 1 control  
-
-
-
-
-
-
SBRGS_ BRGEN_ 00[2] xxxx xx00  
1
1
BRG0_1  
BRG1_1  
P4M1  
Baud rate generator 1 rate low FFB4H  
Baud rate generator 1 rate high FFB5H  
Port 4 output mode 1  
FFB8H (P4M1.7) (P4M1.6) (P4M1.5) (P4M1.4) (P4M1.3) (P4M1.2) (P4M1.1) (P4M1.0) FF [1] 1111 1111  
FFB9H (P4M2.7) (P4M2.6) (P4M2.5) (P4M2.4) (P4M2.3) (P4M2.2) (P4M2.1) (P4M2.0) 00[1] 0000 0000  
FFBAH (P5M1.7) (P5M1.6) (P5M1.5) (P5M1.4) (P5M1.3) (P5M1.2) (P5M1.1) (P5M1.0) FF[1] 1111 1111  
FFBBH (P5M2.7) (P5M2.6) (P5M2.5) (P5M2.4) (P5M2.3) (P5M2.2) (P5M2.1) (P5M2.0) 00[1] 0000 0000  
P4M2  
Port 4 output mode 2  
P5M1  
Port 5 output mode 1  
P5M2  
Port 5 output mode 3  
S1ADDR  
S1ADEN  
S1BUF  
Serial port 1 address register  
Serial port 1 address enable  
FFB2H  
FFB1H  
FFB0H  
00  
00  
xx  
0000 0000  
0000 0000  
xxxx xxxx  
Serial port 1 data buffer  
register  
[1] Extended SFRs are physically located on-chip but logically located in external data memory address space (XDATA). The MOVX A,@DPTR and MOVX @DPTR,A instructions are  
used to access these extended SFRs.  
[2] BRGR1_1 and BRGR0_1 must only be written if BRGEN_1 in BRGCON_1 SFR is logic 0. If any are written while BRGEN_1 = 1, the result is unpredictable.  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.2 Enhanced CPU  
The P89LPC952 uses an enhanced 80C51 CPU which runs at six times the speed of  
standard 80C51 devices. A machine cycle consists of two CPU clock cycles, and most  
instructions execute in one or two machine cycles.  
7.3 Clocks  
7.3.1 Clock definitions  
The P89LPC952 device has several internal clocks as defined below:  
OSCCLK — Input to the DIVM clock divider. OSCCLK is selected from one of four clock  
sources (see Figure 5) and can also be optionally divided to a slower frequency (see  
Section 7.8 “CCLK modification: DIVM register”).  
Note: fosc is defined as the OSCCLK frequency.  
CCLK — CPU clock; output of the clock divider. There are two CCLK cycles per machine  
cycle, and most instructions are executed in one to two machine cycles (two or four CCLK  
cycles).  
RCCLK — The internal 7.373 MHz RC oscillator output. The clock doubler option, when  
enabled, provides an output frequency of 14.746 MHz.  
PCLK — Clock for the various peripheral devices and is CCLK2.  
7.3.2 CPU clock (OSCCLK)  
The P89LPC952 provides several user-selectable oscillator options in generating the CPU  
clock. This allows optimization for a range of needs from high precision to lowest possible  
cost. These options are configured when the flash is programmed and include an on-chip  
watchdog oscillator, an on-chip RC oscillator, an oscillator using an external crystal, or an  
external clock source. The crystal oscillator can be optimized for low, medium, or high  
frequency crystals covering a range from 20 kHz to 18 MHz.  
7.3.3 Low speed oscillator option  
This option supports an external crystal in the range of 20 kHz to 100 kHz. Ceramic  
resonators are also supported in this configuration.  
7.3.4 Medium speed oscillator option  
This option supports an external crystal in the range of 100 kHz to 4 MHz. Ceramic  
resonators are also supported in this configuration.  
7.3.5 High speed oscillator option  
This option supports an external crystal in the range of 4 MHz to 18 MHz. Ceramic  
resonators are also supported in this configuration. When using a clock frequency  
above 12 MHz, the reset input function of P1.5 must be enabled. An external circuit  
is required to hold the device in reset at power-up until VDD has reached its  
specified level. When system power is removed VDD will fall below the minimum  
specified operating voltage. When using a clock frequency above 12 MHz, in some  
applications, an external brownout detect circuit may be required to hold the device  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
21 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
in reset when VDD falls below the minimum specified operating voltage. These  
requirements for clock frequencies above 12 MHz do not apply when using the  
internal RC oscillator in clock doubler mode.  
7.3.6 Clock output  
The P89LPC952 supports a user-selectable clock output function on the XTAL2/CLKOUT  
pin when crystal oscillator is not being used. This condition occurs if another clock source  
has been selected (on-chip RC oscillator, watchdog oscillator, external clock input on X1)  
and if the RTC is not using the crystal oscillator as its clock source. This allows external  
devices to synchronize to the P89LPC952. This output is enabled by the ENCLK bit in the  
TRIM register.  
The frequency of this clock output is 12 that of the CCLK. If the clock output is not needed  
in Idle mode, it may be turned off prior to entering Idle, saving additional power.  
7.4 On-chip RC oscillator option  
The P89LPC952 has a 6-bit TRIM register that can be used to tune the frequency of the  
RC oscillator. During reset, the TRIM value is initialized to a factory pre-programmed  
value to adjust the oscillator frequency to 7.373 MHz ± 1 % at room temperature.  
End-user applications can write to the TRIM register to adjust the on-chip RC oscillator to  
other frequencies. When the clock doubler option is enabled (UCFG1.3 = 1), the output  
frequency is 14.746 MHz. If CCLK is 8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can  
be set to logic 1 to reduce power consumption. On reset, CLKLP is logic 0 allowing  
highest performance access. This bit can then be set in software if CCLK is running at  
8 MHz or slower.  
The requirements in Section 7.3.5 “High speed oscillator option” for configuring P1.5 as  
an external reset input and using an external reset circuit when the clock frequency is  
greater than 12 MHz do not apply when using the internal RC oscillator’s clock doubler  
option.  
7.5 Watchdog oscillator option  
The watchdog has a separate oscillator which has a frequency of 400 kHz. This oscillator  
can be used to save power when a high clock frequency is not needed.  
7.6 External clock input option  
In this configuration, the processor clock is derived from an external source driving the  
P3.1/XTAL1 pin. The rate may be from 0 Hz up to 18 MHz. The P3.0/XTAL2 pin may be  
used as a standard port pin or a clock output.  
When using an external clock input frequency above 12 MHz, the reset input  
function of P1.5 must be enabled. An external circuit is required to hold the device  
in reset at power-up until VDD has reached its specified level. When system power is  
removed VDD will fall below the minimum specified operating voltage. When using  
an external clock input frequency above 12 MHz, in some applications, an external  
brownout detect circuit may be required to hold the device in reset when VDD falls  
below the minimum specified operating voltage. These requirements for clock  
frequencies above 12 MHz do not apply when using the internal RC oscillator in  
clock doubler mode.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
22 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
HIGH FREQUENCY  
MEDIUM FREQUENCY  
LOW FREQUENCY  
XTAL1  
XTAL2  
RTC  
ADC0  
OSCCLK  
CCLK  
DIVM  
CPU  
WDT  
RCCLK  
RC  
OSCILLATOR  
÷2  
PCLK  
(7.3728 MHz ± 1 %)  
WATCHDOG  
OSCILLATOR  
PCLK  
(400 kHz +30 % 20 %)  
32 × PLL  
TIMER 0 AND  
TIMER 1  
CCU  
2
I C-BUS  
SPI  
UARTS  
002aab409  
Fig 5. Block diagram of oscillator control  
7.7 CCLK wake-up delay  
The P89LPC952 has an internal wake-up timer that delays the clock until it stabilizes  
depending on the clock source used. If the clock source is any of the three crystal  
selections (low, medium and high frequencies) the delay is 992 OSCCLK cycles plus  
60 µs to 100 µs. If the clock source is either the internal RC oscillator, watchdog oscillator,  
or external clock, the delay is 224 OSCCLK cycles plus 60 µs to 100 µs.  
7.8 CCLK modification: DIVM register  
The OSCCLK frequency can be divided down up to 510 times by configuring a dividing  
register, DIVM, to generate CCLK. This feature makes it possible to temporarily run the  
CPU at a lower rate, reducing power consumption. By dividing the clock, the CPU can  
retain the ability to respond to events that would not exit Idle mode by executing its normal  
program at a lower rate. This can also allow bypassing the oscillator start-up time in cases  
where Power-down mode would otherwise be used. The value of DIVM may be changed  
by the program at any time without interrupting code execution.  
7.9 Low power select  
The P89LPC952 is designed to run at 12 MHz (CCLK) maximum. However, if CCLK is  
8 MHz or slower, the CLKLP SFR bit (AUXR1.7) can be set to ‘1’ to lower the power  
consumption further. On any reset, CLKLP is ‘0’ allowing highest performance access.  
This bit can then be set in software if CCLK is running at 8 MHz or slower.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
23 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.10 Memory organization  
The various P89LPC952 memory spaces are as follows:  
DATA  
128 bytes of internal data memory space (00H:7FH) accessed via direct or indirect  
addressing, using instructions other than MOVX and MOVC. All or part of the Stack  
may be in this area.  
IDATA  
Indirect Data. 256 bytes of internal data memory space (00H:FFH) accessed via  
indirect addressing using instructions other than MOVX and MOVC. All or part of the  
Stack may be in this area. This area includes the DATA area and the 128 bytes  
immediately above it.  
SFR  
Special Function Registers. Selected CPU registers and peripheral control and status  
registers, accessible only via direct addressing.  
XDATA  
‘External’ Data or Auxiliary RAM. Duplicates the classic 80C51 64 kB memory space  
addressed via the MOVX instruction using the SPTR, R0, or R1. All or part of this  
space could be implemented on-chip. The P89LPC952 has 256 bytes of on-chip  
XDATA memory, plus extended SFRs located in XDATA.  
CODE  
64 kB of Code memory space, accessed as part of program execution and via the  
MOVC instruction. The P89LPC952 has 8 kB of on-chip Code memory.  
7.11 Data RAM arrangement  
The 768 bytes of on-chip RAM are organized as shown in Table 6.  
Table 6:  
Type  
On-chip data memory usages  
Data RAM  
Size (bytes)  
128  
DATA  
Memory that can be addressed directly and indirectly  
Memory that can be addressed indirectly  
IDATA  
XDATA  
256  
Auxiliary (‘External Data’) on-chip memory that is accessed  
using the MOVX instructions  
256  
7.12 Interrupts  
The P89LPC952 uses a four priority level interrupt structure. This allows great flexibility in  
controlling the handling of the many interrupt sources. The P89LPC952 supports  
17 interrupt sources: external interrupts 0 and 1, timers 0 and 1, serial port 0 TX, serial  
port 0 RX, combined serial port 0 RX/TX, serial port 1 TX, serial port 1 RX, combined  
serial port 1 RX/TX, brownout detect, watchdog/RTC, I2C-bus, keyboard, comparators 1  
and 2, SPI, and ADC completion.  
Each interrupt source can be individually enabled or disabled by setting or clearing a bit in  
the interrupt enable registers IEN0, IEN1 or IEN2. The IEN0 register also contains a  
global disable bit, EA, which disables all interrupts.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
24 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Each interrupt source can be individually programmed to one of four priority levels by  
setting or clearing bits in the interrupt priority registers IP0, IP0H, IP1, IP1H, IP2, and  
IP2H. An interrupt service routine in progress can be interrupted by a higher priority  
interrupt, but not by another interrupt of the same or lower priority. The highest priority  
interrupt service cannot be interrupted by any other interrupt source. If two requests of  
different priority levels are pending at the start of an instruction, the request of higher  
priority level is serviced.  
If requests of the same priority level are pending at the start of an instruction, an internal  
polling sequence determines which request is serviced. This is called the arbitration  
ranking. Note that the arbitration ranking is only used to resolve pending requests of the  
same priority level.  
7.12.1 External interrupt inputs  
The P89LPC952 has two external interrupt inputs as well as the Keypad Interrupt function.  
The two interrupt inputs are identical to those present on the standard 80C51  
microcontrollers.  
These external interrupts can be programmed to be level-triggered or edge-triggered by  
setting or clearing bit IT1 or IT0 in Register TCON.  
In edge-triggered mode, if successive samples of the INTn pin show a HIGH in one cycle  
and a LOW in the next cycle, the interrupt request flag IEn in TCON is set, causing an  
interrupt request.  
If an external interrupt is enabled when the P89LPC952 is put into Power-down or Idle  
mode, the interrupt will cause the processor to wake-up and resume operation. Refer to  
Section 7.15 “Power reduction modes” for details.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
25 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
IE0  
EX0  
IE1  
EX1  
BOF  
EBO  
wake-up  
(if in power-down)  
RTCF  
KBIF  
EKBI  
ERTC  
(RTCCON.1)  
WDOVF  
EWDRT  
CMF2  
CMF1  
EC  
EA (IE0.7)  
TF0  
ET0  
TF1  
ET1  
TI_0 and RI_0/RI_0  
ES/ESR  
TI_0  
EST  
interrupt  
to CPU  
SI  
EI2C  
SPIF  
ESPI  
(1)  
TI_0 and RI_0/RI_0  
ES1/ESR1  
TI_1  
EST1  
ENADCI0  
ADCI0  
ENBI0  
BNDI0  
EADC  
002aab408  
Fig 6. Interrupt sources, interrupt enables, and power-down wake-up sources  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
26 of 66  
P89LPC952  
Philips Semiconductors  
7.13 I/O ports  
8-bit microcontroller with 10-bit ADC  
The P89LPC952 has six I/O ports: Port 0, Port 1, Port 2, Port 3, Port 4, and Port 5.  
Ports 0, 1, 2, 4, and 5 are 8-bit ports, and Port 3 is a 2-bit port. The exact number of I/O  
pins available depends upon the clock and reset options chosen, as shown in Table 7.  
Table 7:  
Number of I/O pins available  
Clock source  
Reset option  
Number of I/O Number of I/O  
pins (44-pin  
package)  
pins (48-pin  
package)  
On-chip oscillator or  
watchdog oscillator  
No external reset (except during  
power-up)  
40  
42  
External RST pin supported  
39  
39  
41  
41  
External clock input  
No external reset (except during  
power-up)  
External RST pin supported[1]  
38  
38  
40  
40  
Low/medium/high speed  
No external reset (except during  
oscillator (external crystal power-up)  
or resonator)  
External RST pin supported[1]  
37  
39  
[1] Required for operation above 12 MHz.  
7.13.1 Port configurations  
All but three I/O port pins on the P89LPC952 may be configured by software to one of four  
types on a bit-by-bit basis. These are: quasi-bidirectional (standard 80C51 port outputs),  
push-pull, open drain, and input-only. Two configuration registers for each port select the  
output type for each port pin.  
1. P1.5 (RST) can only be an input and cannot be configured.  
2. P1.2 (SCL/T0) and P1.3 (SDA/INT0) may only be configured to be either input-only or  
open-drain.  
7.13.1.1 Quasi-bidirectional output configuration  
Quasi-bidirectional output type can be used as both an input and output without the need  
to reconfigure the port. This is possible because when the port outputs a logic HIGH, it is  
weakly driven, allowing an external device to pull the pin LOW. When the pin is driven  
LOW, it is driven strongly and able to sink a fairly large current. These features are  
somewhat similar to an open-drain output except that there are three pull-up transistors in  
the quasi-bidirectional output that serve different purposes.  
The P89LPC952 is a 3 V device, but the pins are 5 V-tolerant. In quasi-bidirectional mode,  
if a user applies 5 V on the pin, there will be a current flowing from the pin to VDD, causing  
extra power consumption. Therefore, applying 5 V in quasi-bidirectional mode is  
discouraged.  
A quasi-bidirectional port pin has a Schmitt triggered input that also has a glitch  
suppression circuit.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
27 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.13.1.2 Open-drain output configuration  
The open-drain output configuration turns off all pull-ups and only drives the pull-down  
transistor of the port driver when the port latch contains a logic 0. To be used as a logic  
output, a port configured in this manner must have an external pull-up, typically a resistor  
tied to VDD  
.
An open-drain port pin has a Schmitt triggered input that also has a glitch suppression  
circuit.  
7.13.1.3 Input-only configuration  
The input-only port configuration has no output drivers. It is a Schmitt triggered input that  
also has a glitch suppression circuit.  
7.13.1.4 Push-pull output configuration  
The push-pull output configuration has the same pull-down structure as both the  
open-drain and the quasi-bidirectional output modes, but provides a continuous strong  
pull-up when the port latch contains a logic 1. The push-pull mode may be used when  
more source current is needed from a port output. A push-pull port pin has a  
Schmitt triggered input that also has a glitch suppression circuit.  
7.13.2 Port 0 analog functions  
The P89LPC952 incorporates two Analog Comparators. In order to give the best analog  
function performance and to minimize power consumption, pins that are being used for  
analog functions must have the digital outputs and digital inputs disabled.  
Digital outputs are disabled by putting the port output into the Input-Only  
(high-impedance) mode.  
Digital inputs on Port 0 may be disabled through the use of the PT0AD register, bits 1:5.  
On any reset, PT0AD[1:5] defaults to ‘0’s to enable digital functions.  
7.13.3 Additional port features  
After power-up, all pins are in Input-Only mode. Please note that this is different from  
the LPC76x series of devices.  
After power-up, all I/O pins except P1.5, may be configured by software.  
Pin P1.5 is input only. Pins P1.2 and P1.3 are configurable for either input-only or  
open-drain.  
Every output on the P89LPC952 has been designed to sink typical LED drive current.  
However, there is a maximum total output current for all ports which must not be  
exceeded. Please refer to Table 10 “Static characteristics” for detailed specifications.  
All ports pins that can function as an output have slew rate controlled outputs to limit noise  
generated by quickly switching output signals. The slew rate is factory-set to  
approximately 10 ns rise and fall times.  
7.14 Power monitoring functions  
The P89LPC952 incorporates power monitoring functions designed to prevent incorrect  
operation during initial power-up and power loss or reduction during operation. This is  
accomplished with two hardware functions: Power-on detect and brownout detect.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
28 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.14.1 Brownout detection  
The brownout detect function determines if the power supply voltage drops below a  
certain level. The default operation is for a brownout detection to cause a processor reset,  
however it may alternatively be configured to generate an interrupt.  
Brownout detection may be enabled or disabled in software.  
If brownout detection is enabled the brownout condition occurs when VDD falls below the  
brownout trip voltage, Vbo (see Table 10 “Static characteristics”), and is negated when VDD  
rises above Vbo. If the P89LPC952 device is to operate with a power supply that can be  
below 2.7 V, BOE should be left in the unprogrammed state so that the device can operate  
at 2.4 V, otherwise continuous brownout reset may prevent the device from operating.  
For correct activation of brownout detect, the VDD rise and fall times must be observed.  
Please see Table 10 “Static characteristics” for specifications.  
7.14.2 Power-on detection  
The Power-on detect has a function similar to the brownout detect, but is designed to work  
as power comes up initially, before the power supply voltage reaches a level where  
brownout detect can work. The POF flag in the RSTSRC register is set to indicate an  
initial power-up condition. The POF flag will remain set until cleared by software.  
7.15 Power reduction modes  
The P89LPC952 supports three different power reduction modes. These modes are Idle  
mode, Power-down mode, and total Power-down mode.  
7.15.1 Idle mode  
Idle mode leaves peripherals running in order to allow them to activate the processor  
when an interrupt is generated. Any enabled interrupt source or reset may terminate Idle  
mode.  
7.15.2 Power-down mode  
The Power-down mode stops the oscillator in order to minimize power consumption. The  
P89LPC952 exits Power-down mode via any reset, or certain interrupts. In Power-down  
mode, the power supply voltage may be reduced to the data retention voltage VDDR. This  
retains the RAM contents at the point where Power-down mode was entered. SFR  
contents are not guaranteed after VDD has been lowered to VDDR, therefore it is highly  
recommended to wake-up the processor via reset in this case. VDD must be raised to  
within the operating range before the Power-down mode is exited.  
Some chip functions continue to operate and draw power during Power-down mode,  
increasing the total power used during power-down. These include: Brownout detect,  
watchdog timer, comparators (note that comparators can be powered down separately),  
and RTC/system timer. The internal RC oscillator is disabled unless both the RC oscillator  
has been selected as the system clock and the RTC is enabled.  
7.15.3 Total Power-down mode  
This is the same as Power-down mode except that the brownout detection circuitry and  
the voltage comparators are also disabled to conserve additional power. The internal RC  
oscillator is disabled unless both the RC oscillator has been selected as the system clock  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
29 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
and the RTC is enabled. If the internal RC oscillator is used to clock the RTC during  
power-down, there will be high power consumption. Please use an external low frequency  
clock to achieve low power with the RTC running during power-down.  
7.16 Reset  
The P1.5/RST pin can function as either an active-LOW reset input or as a digital input,  
P1.5. The RPE (Reset Pin Enable) bit in UCFG1, when set to ‘1’, enables the external  
reset input function on P1.5. When cleared, P1.5 may be used as an input pin.  
Remark: During a power-up sequence, The RPE selection is overridden and this pin  
always functions as a reset input. An external circuit connected to this pin should not  
hold this pin LOW during a power-on sequence as this will keep the device in reset.  
After power-up this input will function either as an external reset input or as a digital input  
as defined by the RPE bit. Only a power-up reset will temporarily override the selection  
defined by RPE bit. Other sources of reset will not override the RPE bit.  
Reset can be triggered from the following sources:  
External reset pin (during power-up or if user configured via UCFG1);  
Power-on detect;  
Brownout detect;  
Watchdog timer;  
Software reset;  
UART break character detect reset.  
For every reset source, there is a flag in the Reset Register, RSTSRC. The user can read  
this register to determine the most recent reset source. These flag bits can be cleared in  
software by writing a ‘0’ to the corresponding bit. More than one flag bit may be set:  
During a power-on reset, both POF and BOF are set but the other flag bits are  
cleared.  
For any other reset, previously set flag bits that have not been cleared will remain set.  
7.16.1 Reset vector  
Following reset, the P89LPC952 will fetch instructions from either address 0000H or the  
Boot address. The Boot address is formed by using the boot vector as the high byte of the  
address and the low byte of the address = 00H.  
The Boot address will be used if a UART break reset occurs, or the non-volatile Boot  
Status bit (BOOTSTAT.0) = 1, or the device is forced into ISP mode during power-on (see  
P89LPC952 User’s Manual). Otherwise, instructions will be fetched from address 0000H.  
7.17 Timers/counters 0 and 1  
The P89LPC952 has two general purpose counter/timers which are upward compatible  
with the standard 80C51 Timer 0 and Timer 1. Both can be configured to operate either as  
timers or event counters. An option to automatically toggle the T0 and/or T1 pins upon  
timer overflow has been added.  
In the ‘Timer’ function, the register is incremented every machine cycle.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
30 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
In the ‘Counter’ function, the register is incremented in response to a 1-to-0 transition at its  
corresponding external input pin, T0 or T1. In this function, the external input is sampled  
once during every machine cycle.  
Timer 0 and Timer 1 have five operating modes (Modes 0, 1, 2, 3 and 6). Modes 0, 1, 2  
and 6 are the same for both Timers/Counters. Mode 3 is different.  
7.17.1 Mode 0  
Putting either Timer into Mode 0 makes it look like an 8048 Timer, which is an 8-bit  
Counter with a divide-by-32 prescaler. In this mode, the Timer register is configured as a  
13-bit register. Mode 0 operation is the same for Timer 0 and Timer 1.  
7.17.2 Mode 1  
Mode 1 is the same as Mode 0, except that all 16 bits of the timer register are used.  
7.17.3 Mode 2  
Mode 2 configures the Timer register as an 8-bit Counter with automatic reload. Mode 2  
operation is the same for Timer 0 and Timer 1.  
7.17.4 Mode 3  
When Timer 1 is in Mode 3 it is stopped. Timer 0 in Mode 3 forms two separate 8-bit  
counters and is provided for applications that require an extra 8-bit timer. When Timer 1 is  
in Mode 3 it can still be used by the serial port as a baud rate generator.  
7.17.5 Mode 6  
In this mode, the corresponding timer can be changed to a PWM with a full period of  
256 timer clocks.  
7.17.6 Timer overflow toggle output  
Timers 0 and 1 can be configured to automatically toggle a port output whenever a timer  
overflow occurs. The same device pins that are used for the T0 and T1 count inputs are  
also used for the timer toggle outputs. The port outputs will be a logic 1 prior to the first  
timer overflow when this mode is turned on.  
7.18 RTC/system timer  
The P89LPC952 has a simple RTC that allows a user to continue running an accurate  
timer while the rest of the device is powered down. The RTC can be a wake-up or an  
interrupt source. The RTC is a 23-bit down-counter comprised of a 7-bit prescaler and a  
16-bit loadable down-counter. When it reaches all ‘0’s, the counter will be reloaded again  
and the RTCF flag will be set. The clock source for this counter can be either the CPU  
clock (CCLK) or the XTAL oscillator, provided that the XTAL oscillator is not being used as  
the CPU clock. If the XTAL oscillator is used as the CPU clock, then the RTC will use  
CCLK as its clock source. Only power-on reset will reset the RTC and its associated SFRs  
to the default state.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
31 of 66  
P89LPC952  
Philips Semiconductors  
7.19 UARTs  
8-bit microcontroller with 10-bit ADC  
The P89LPC952 has two enhanced UARTs that are compatible with the conventional  
80C51 UART except that Timer 2 overflow cannot be used as a baud rate source. The  
P89LPC952 does include an independent Baud Rate Generator for each UART (BRG0 for  
UART 0 and BRG1 for UART 1). The baud rate can be selected from the oscillator  
(divided by a constant), Timer 1 overflow, or the independent Baud Rate Generator  
associated with the specific UART. In addition to the baud rate generation, enhancements  
over the standard 80C51 UART include Framing Error detection, automatic address  
recognition, selectable double buffering and several interrupt options. The UARTs can be  
operated in 4 modes: shift register, 8-bit UART, 9-bit UART, and CPU clock/32 or CPU  
clock/16.  
7.19.1 Mode 0  
Serial data enters and exits through RXD_n. TXD_n outputs the shift clock. 8 bits are  
transmitted or received, LSB first. The baud rate is fixed at 116 of the CPU clock  
frequency.  
7.19.2 Mode 1  
10 bits are transmitted (through TXD_n) or received (through RXD_n): a start bit (logic 0),  
8 data bits (LSB first), and a stop bit (logic 1). When data is received, the stop bit is stored  
in RB8_n in Special Function Register SnCON. The baud rate is variable and is  
determined by the Timer 1 overflow rate or the Baud Rate Generator (described in Section  
7.19.5 “Baud rate generator and selection”).  
7.19.3 Mode 2  
11 bits are transmitted (through TXD_n) or received (through RXD_n): start bit (logic 0),  
8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). When data is  
transmitted, the 9th data bit (TB8_n in SnCON) can be assigned the value of ‘0’ or ‘1’. Or,  
for example, the parity bit (P, in the PSW) could be moved into TB8_n. When data is  
received, the 9th data bit goes into RB8_n in Special Function Register SnCON, while the  
stop bit is not saved. The baud rate is programmable to either 116 or 132 of the CPU clock  
frequency, as determined by the SMOD1 bit in PCON. The SMOD1 bit controls the Timer  
1 output rate available to both UARTS.  
7.19.4 Mode 3  
11 bits are transmitted (through TXD_n) or received (through RXD_n): a start bit (logic 0),  
8 data bits (LSB first), a programmable 9th data bit, and a stop bit (logic 1). In fact, Mode 3  
is the same as Mode 2 in all respects except baud rate. The baud rate in Mode 3 is  
variable and is determined by the Timer 1 overflow rate or the Baud Rate Generator  
(described in Section 7.19.5 “Baud rate generator and selection”).  
7.19.5 Baud rate generator and selection  
Each enhanced UART has an independent Baud Rate Generator. The baud rate is  
determined by a baud-rate preprogrammed into the BRGR1_n and BRGR0_n SFRs  
which together form a 16-bit baud rate divisor value that works in a similar manner as  
Timer 1 but is much more accurate. If the baud rate generator is used, Timer 1 can be  
used for other timing functions.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
32 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
The UARTs can use either Timer 1 or their respective baud rate generator output (see  
Figure 7). Note that Timer T1 is further divided by 2 if the SMOD1 bit (PCON.7) is cleared.  
The independent Baud Rate Generators use OSCCLK.  
timer 1 overflow  
SMOD1 = 1  
(PCLK-based)  
SBRGS = 0  
SBRGS = 1  
÷2  
baud rate modes 1 and 3  
002aaa897  
SMOD1 = 0  
baud rate generator  
(CCLK-based)  
Fig 7. Baud rate sources for UART (Modes 1, 3)  
7.19.6 Framing error  
Framing error is reported in the status register (SnSTAT). In addition, if SMOD0 (PCON.6)  
is ‘1’, framing errors can be made available in SnCON.7 respectively. If SMOD0 is ‘0’,  
SnCON.7 is SM0_n. It is recommended that SM0_n and SM1_n (SnCON.7:6) are set up  
when SMOD0 is ‘0’.  
7.19.7 Break detect  
Break detect is reported in the status register (SnSTAT). A break is detected when  
11 consecutive bits are sensed LOW. The break detect can be used to reset the device  
and force the device into ISP mode.  
7.19.8 Double buffering  
The UART has a transmit double buffer that allows buffering of the next character to be  
written to SnBUF while the first character is being transmitted. Double buffering allows  
transmission of a string of characters with only one stop bit between any two characters,  
as long as the next character is written between the start bit and the stop bit of the  
previous character.  
Double buffering can be disabled. If disabled (DBMOD_n, i.e., SnSTAT.7 = 0), the UART is  
compatible with the conventional 80C51 UART. If enabled, the UART allows writing to  
SnBUF while the previous data is being shifted out. Double buffering is only allowed in  
Modes 1, 2 and 3. When operated in Mode 0, double buffering must be disabled  
(DBMOD_n = 0).  
7.19.9 Transmit interrupts with double buffering enabled (Modes 1, 2 and 3)  
Unlike the conventional UART, in double buffering mode, the TI_n interrupt is generated  
when the double buffer is ready to receive new data.  
7.19.10 The 9th bit (bit 8) in double buffering (Modes 1, 2 and 3)  
If double buffering is disabled TB8_n can be written before or after SnBUF is written, as  
long as TB8_n is updated some time before that bit is shifted out. TB8_n must not be  
changed until the bit is shifted out, as indicated by the TI_n interrupt.  
If double buffering is enabled, TB_n must be updated before SnBUF is written, as TB8_n  
will be double-buffered together with SnBUF data.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
33 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.20 I2C-bus serial interface  
I2C-bus uses two wires (SDA and SCL) to transfer information between devices connected  
to the bus, and it has the following features:  
Bidirectional data transfer between masters and slaves  
Multi master bus (no central master)  
Arbitration between simultaneously transmitting masters without corruption of serial  
data on the bus  
Serial clock synchronization allows devices with different bit rates to communicate via  
one serial bus  
Serial clock synchronization can be used as a handshake mechanism to suspend and  
resume serial transfer  
The I2C-bus may be used for test and diagnostic purposes.  
A typical I2C-bus configuration is shown in Figure 8. The P89LPC952 device provides a  
byte-oriented I2C-bus interface that supports data transfers up to 400 kHz.  
R
P
R
P
SDA  
SCL  
2
I C-bus  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
OTHER DEVICE  
WITH I C-BUS  
INTERFACE  
P1.3/SDA  
P1.2/SCL  
2
2
P89LPC952  
002aab410  
Fig 8. I2C-bus configuration  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
34 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
8
I2ADR  
ADDRESS REGISTER  
COMPARATOR  
P1.3  
INPUT  
FILTER  
P1.3/SDA  
SHIFT REGISTER  
8
ACK  
I2DAT  
OUTPUT  
STAGE  
BIT COUNTER /  
ARBITRATION &  
SYNC LOGIC  
CCLK  
INPUT  
FILTER  
TIMING  
AND  
CONTROL  
LOGIC  
P1.2/SCL  
SERIAL CLOCK  
GENERATOR  
OUTPUT  
STAGE  
interrupt  
timer 1  
overflow  
I2CON  
I2SCLH  
I2SCLL  
P1.2  
CONTROL REGISTERS &  
SCL DUTY CYCLE REGISTERS  
8
STATUS  
DECODER  
status bus  
I2STAT  
STATUS REGISTER  
8
002aaa899  
Fig 9. I2C-bus serial interface block diagram  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
35 of 66  
P89LPC952  
Philips Semiconductors  
7.21 SPI  
8-bit microcontroller with 10-bit ADC  
The P89LPC952 provides another high-speed serial communication interface—the SPI  
interface. SPI is a full-duplex, high-speed, synchronous communication bus with two  
operation modes: Master mode and Slave mode. Up to 3 Mbit/s can be supported in either  
Master or Slave mode. It has a Transfer Completion Flag and Write Collision Flag  
Protection.  
S
M
MISO  
P2.3  
CPU clock  
M
S
8-BIT SHIFT REGISTER  
READ DATA BUFFER  
MOSI  
P2.2  
PIN  
CONTROL  
LOGIC  
DIVIDER  
BY 4, 16, 64, 128  
SPICLK  
P2.5  
clock  
SPI clock (master)  
S
M
SELECT  
SS  
P2.4  
CLOCK LOGIC  
MSTR  
SPEN  
SPI CONTROL  
SPI CONTROL REGISTER  
SPI STATUS REGISTER  
SPI  
interrupt  
request  
internal  
data  
bus  
002aaa900  
Fig 10. SPI block diagram  
The SPI interface has four pins: SPICLK, MOSI, MISO and SS:  
SPICLK, MOSI and MISO are typically tied together between two or more SPI  
devices. Data flows from master to slave on MOSI (Master Out Slave In) pin and flows  
from slave to master on MISO (Master In Slave Out) pin. The SPICLK signal is output  
in the Master mode and is input in the Slave mode. If the SPI system is disabled, i.e.,  
SPEN (SPCTL.6) = 0 (reset value), these pins are configured for port functions.  
SS is the optional slave select pin. In a typical configuration, an SPI master asserts  
one of its port pins to select one SPI device as the current slave. An SPI slave device  
uses its SS pin to determine whether it is selected.  
Typical connections are shown in Figure 11 through Figure 13.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
36 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
7.21.1 Typical SPI configurations  
master  
slave  
MISO  
MOSI  
MISO  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
PORT  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
002aaa901  
Fig 11. SPI single master single slave configuration  
master  
slave  
MISO  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
SS  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
SPI CLOCK  
GENERATOR  
002aaa902  
Fig 12. SPI dual device configuration, where either can be a master or a slave  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
37 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
master  
slave  
MISO  
MOSI  
MISO  
8-BIT SHIFT  
REGISTER  
8-BIT SHIFT  
REGISTER  
MOSI  
SPICLK  
port  
SPICLK  
SS  
SPI CLOCK  
GENERATOR  
slave  
MISO  
MOSI  
8-BIT SHIFT  
REGISTER  
SPICLK  
SS  
port  
002aaa903  
Fig 13. SPI single master multiple slaves configuration  
7.22 Analog comparators  
Two analog comparators are provided on the P89LPC952. Input and output options allow  
use of the comparators in a number of different configurations. Comparator operation is  
such that the output is a logical one (which may be read in a register and/or routed to a  
pin) when the positive input (one of two selectable pins) is greater than the negative input  
(selectable from a pin or an internal reference voltage). Otherwise the output is a zero.  
Each comparator may be configured to cause an interrupt when the output value changes.  
The overall connections to both comparators are shown in Figure 14. The comparators  
function to VDD = 2.4 V.  
When each comparator is first enabled, the comparator output and interrupt flag are not  
guaranteed to be stable for 10 µs. The corresponding comparator interrupt should not be  
enabled during that time, and the comparator interrupt flag must be cleared before the  
interrupt is enabled in order to prevent an immediate interrupt service.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
38 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
CP1  
OE1  
comparator 1  
CO1  
(P0.4) CIN1A  
(P0.3) CIN1B  
CMP1 (P0.6)  
(P0.5) CMPREF  
change detect  
V
ref(bg)  
CMF1  
CMF2  
CN1  
CP2  
interrupt  
change detect  
EC  
comparator 2  
(P0.2) CIN2A  
(P0.1) CIN2B  
CMP2 (P0.0)  
002aaa904  
CO2  
OE2  
CN2  
Fig 14. Comparator input and output connections  
7.22.1 Internal reference voltage  
An internal reference voltage generator may supply a default reference when a single  
comparator input pin is used. The value of the internal reference voltage, referred to as  
Vref(bg), is 1.23 V ± 10 %.  
7.22.2 Comparator interrupt  
Each comparator has an interrupt flag contained in its configuration register. This flag is  
set whenever the comparator output changes state. The flag may be polled by software or  
may be used to generate an interrupt. The two comparators use one common interrupt  
vector. If both comparators enable interrupts, after entering the interrupt service routine,  
the user needs to read the flags to determine which comparator caused the interrupt.  
7.22.3 Comparators and power reduction modes  
Either or both comparators may remain enabled when Power-down or Idle mode is  
activated, but both comparators are disabled automatically in Total Power-down mode.  
If a comparator interrupt is enabled (except in Total Power-down mode), a change of the  
comparator output state will generate an interrupt and wake-up the processor. If the  
comparator output to a pin is enabled, the pin should be configured in the push-pull mode  
in order to obtain fast switching times while in Power-down mode. The reason is that with  
the oscillator stopped, the temporary strong pull-up that normally occurs during switching  
on a quasi-bidirectional port pin does not take place.  
Comparators consume power in Power-down and Idle modes, as well as in the normal  
operating mode. This fact should be taken into account when system power consumption  
is an issue. To minimize power consumption, the user can disable the comparators via  
PCONA.5, or put the device in Total Power-down mode.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
39 of 66  
P89LPC952  
Philips Semiconductors  
7.23 KBI  
8-bit microcontroller with 10-bit ADC  
The Keypad Interrupt function is intended primarily to allow a single interrupt to be  
generated when Port 0 is equal to or not equal to a certain pattern. This function can be  
used for bus address recognition or keypad recognition. The user can configure the port  
via SFRs for different tasks.  
The Keypad Interrupt Mask Register (KBMASK) is used to define which input pins  
connected to Port 0 can trigger the interrupt. The Keypad Pattern Register (KBPATN) is  
used to define a pattern that is compared to the value of Port 0. The Keypad Interrupt Flag  
(KBIF) in the Keypad Interrupt Control Register (KBCON) is set when the condition is  
matched while the Keypad Interrupt function is active. An interrupt will be generated if  
enabled. The PATN_SEL bit in the Keypad Interrupt Control Register (KBCON) is used to  
define equal or not-equal for the comparison.  
In order to use the Keypad Interrupt as an original KBI function like in 87LPC76x series,  
the user needs to set KBPATN = 0FFH and PATN_SEL = 1 (not equal), then any key  
connected to Port 0 which is enabled by the KBMASK register will cause the hardware to  
set KBIF and generate an interrupt if it has been enabled. The interrupt may be used to  
wake-up the CPU from Idle or Power-down modes. This feature is particularly useful in  
handheld, battery-powered systems that need to carefully manage power consumption  
yet also need to be convenient to use.  
In order to set the flag and cause an interrupt, the pattern on Port 0 must be held longer  
than six CCLKs.  
7.24 Watchdog timer  
The watchdog timer causes a system reset when it underflows as a result of a failure to  
feed the timer prior to the timer reaching its terminal count. It consists of a programmable  
12-bit prescaler, and an 8-bit down-counter. The down-counter is decremented by a tap  
taken from the prescaler. The clock source for the prescaler is either the PCLK or the  
nominal 400 kHz watchdog oscillator. The watchdog timer can only be reset by a  
power-on reset. When the watchdog feature is disabled, it can be used as an interval timer  
and may generate an interrupt. Figure 15 shows the watchdog timer in Watchdog mode.  
Feeding the watchdog requires a two-byte sequence. If PCLK is selected as the watchdog  
clock and the CPU is powered down, the watchdog is disabled. The watchdog timer has a  
time-out period that ranges from a few µs to a few seconds. Please refer to the  
P89LPC952 User’s Manual for more details.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
40 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
WDL (C1H)  
MOV WFEED1, #0A5H  
MOV WFEED2, #05AH  
watchdog  
oscillator  
8-BIT DOWN  
COUNTER  
(1)  
PRESCALER  
reset  
÷32  
PCLK  
SHADOW REGISTER  
PRE2  
PRE1  
PRE0  
-
-
WDRUN WDTOF WDCLK  
WDCON (A7H)  
002aaa905  
(1) Watchdog reset can also be caused by an invalid feed sequence, or by writing to WDCON not immediately followed by a  
feed sequence.  
Fig 15. Watchdog timer in Watchdog mode (WDTE = 1)  
7.25 Additional features  
7.25.1 Software reset  
The SRST bit in AUXR1 gives software the opportunity to reset the processor completely,  
as if an external reset or watchdog reset had occurred. Care should be taken when writing  
to AUXR1 to avoid accidental software resets.  
7.25.2 Dual data pointers  
The dual Data Pointers (DPTR) provides two different Data Pointers to specify the address  
used with certain instructions. The DPS bit in the AUXR1 register selects one of the two  
Data Pointers. Bit 2 of AUXR1 is permanently wired as a logic 0 so that the DPS bit may  
be toggled (thereby switching Data Pointers) simply by incrementing the AUXR1 register,  
without the possibility of inadvertently altering other bits in the register.  
7.26 Flash program memory  
7.26.1 General description  
The P89LPC952 flash memory provides in-circuit electrical erasure and programming.  
The flash can be erased, read, and written as bytes. The Sector and Page Erase functions  
can erase any flash sector (1 kB) or page (64 bytes). The Chip Erase operation will erase  
the entire program memory. ICP using standard commercial programmers is available. In  
addition, IAP and byte-erase allows code memory to be used for non-volatile data storage.  
On-chip erase and write timing generation contribute to a user-friendly programming  
interface. The P89LPC952 flash reliably stores memory contents even after  
100,000 erase and program cycles. The cell is designed to optimize the erase and  
programming mechanisms. The P89LPC952 uses VDD as the supply voltage to perform  
the Program/Erase algorithms.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
41 of 66  
P89LPC952  
Philips Semiconductors  
7.26.2 Features  
8-bit microcontroller with 10-bit ADC  
Programming and erase over the full operating voltage range.  
Byte erase allows code memory to be used for data storage.  
Read/Programming/Erase using ISP/IAP/ICP.  
Internal fixed boot ROM, containing low-level IAP routines available to user code.  
Default loader providing ISP via the serial port, located in upper end of user program  
memory.  
Boot vector allows user-provided flash loader code to reside anywhere in the flash  
memory space, providing flexibility to the user.  
Any flash program/erase operation in 2 ms.  
Programming with industry-standard commercial programmers.  
Programmable security for the code in the flash for each sector.  
100,000 typical erase/program cycles for each byte.  
10 year minimum data retention.  
7.26.3 Flash organization  
The program memory consists of eight 1 kB sectors on the P89LPC952 devices. Each  
sector can be further divided into 64-byte pages. In addition to sector erase, page erase,  
and byte erase, a 64-byte page register is included which allows from 1 to 64 bytes of a  
given page to be programmed at the same time, substantially reducing overall  
programming time.  
7.26.4 Using flash as data storage  
The flash code memory array of this device supports individual byte erasing and  
programming. Any byte in the code memory array may be read using the MOVC  
instruction, provided that the sector containing the byte has not been secured (a MOVC  
instruction is not allowed to read code memory contents of a secured sector). Thus any  
byte in a non-secured sector may be used for non-volatile data storage.  
7.26.5 Flash programming and erasing  
Four different methods of erasing or programming of the flash are available. The flash may  
be programmed or erased in the end-user application (IAP) under control of the  
application’s firmware. Another option is to use the ICP mechanism. This ICP system  
provides for programming through a serial clock/serial data interface. As shipped from the  
factory, the upper 512 bytes of user code space contains a serial ISP routine allowing for  
the device to be programmed in circuit through the serial port. The flash may also be  
programmed or erased using a commercially available EPROM programmer which  
supports this device. This device does not provide for direct verification of code memory  
contents. Instead, this device provides a 32-bit CRC result on either a sector or the entire  
user code space.  
7.26.6 ICP  
ICP is performed without removing the microcontroller from the system. The ICP facility  
consists of internal hardware resources to facilitate remote programming of the  
P89LPC952 through a two-wire serial interface. The Philips ICP facility has made in-circuit  
programming in an embedded application—using commercially available  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
42 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
programmers—possible with a minimum of additional expense in components and circuit  
board area. The ICP function uses five pins. Only a small connector needs to be available  
to interface your application to a commercial programmer in order to use this feature.  
Additional details may be found in the P89LPC952 User’s Manual.  
7.26.7 IAP  
IAP is performed in the application under the control of the microcontroller’s firmware. The  
IAP facility consists of internal hardware resources to facilitate programming and erasing.  
The Philips IAP has made in-application programming in an embedded application  
possible without additional components. Two methods are available to accomplish IAP. A  
set of predefined IAP functions are provided in a Boot ROM and can be called through a  
common interface, PGM_MTP. Several IAP calls are available for use by an application  
program to permit selective erasing and programming of flash sectors, pages, security  
bits, configuration bytes, and device ID. These functions are selected by setting up the  
microcontroller’s registers before making a call to PGM_MTP at FF03H. The Boot ROM  
occupies the program memory space at the top of the address space from FF00H to  
FEFFH, thereby not conflicting with the user program memory space.  
In addition, IAP operations can be accomplished through the use of four SFRs consisting  
of a control/status register, a data register, and two address registers. Additional details  
may be found in the P89LPC952 User’s Manual.  
7.26.8 ISP  
ISP is performed without removing the microcontroller from the system. The ISP facility  
consists of a series of internal hardware resources coupled with internal firmware to  
facilitate remote programming of the P89LPC952 through the serial port. This firmware is  
provided by Philips and embedded within each P89LPC952 device. The Philips ISP facility  
has made in-system programming in an embedded application possible with a minimum  
of additional expense in components and circuit board area. The ISP function uses five  
pins (VDD, VSS, TXD, RXD, and RST). Only a small connector needs to be available to  
interface your application to an external circuit in order to use this feature.  
7.26.9 Power-on reset code execution  
The P89LPC952 contains two special flash elements: the Boot Vector and the Boot Status  
bit. Following reset, the P89LPC952 examines the contents of the Boot Status bit. If the  
Boot Status bit is set to zero, power-up execution starts at location 0000H, which is the  
normal start address of the user’s application code. When the Boot Status bit is set to a  
value other than zero, the contents of the Boot Vector are used as the high byte of the  
execution address and the low byte is set to 00H.  
Table 8 shows the factory default Boot Vector setting for this device. A factory-provided  
boot loader is pre-programmed into the address space indicated and uses the indicated  
boot loader entry point to perform ISP functions. This code can be erased by the user.  
Users who wish to use this loader should take precautions to avoid erasing the  
1 kB sector that contains this boot loader. Instead, the page erase function can be  
used to erase the first eight 64-byte pages located in this sector. A custom boot  
loader can be written with the Boot Vector set to the custom boot loader, if desired.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
43 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 8:  
Device  
Default boot vector values and ISP entry points  
Default  
Default  
Defaultboot loader 1 kB sector  
boot vector  
boot loader  
entry point  
code range  
range  
P89LPC952  
1FH  
1F00H  
1E00H to 1FFFH  
1C00H to 1FFFH  
7.26.10 Hardware activation of the boot loader  
The boot loader can also be executed by forcing the device into ISP mode during a  
power-on sequence (see the P89LPC952 User’s Manual for specific information). This  
has the same effect as having a non-zero status byte. This allows an application to be built  
that will normally execute user code but can be manually forced into ISP operation. If the  
factory default setting for the boot vector (1FH) is changed, it will no longer point to the  
factory pre-programmed ISP boot loader code. After programming the flash, the status  
byte should be programmed to zero in order to allow execution of the user’s application  
code beginning at address 0000H.  
7.27 User configuration bytes  
Some user-configurable features of the P89LPC952 must be defined at power-up and  
therefore cannot be set by the program after start of execution. These features are  
configured through the use of the flash byte UCFG1. Please see the P89LPC952 User’s  
Manual for additional details.  
7.28 User sector security bytes  
There are eight User Sector Security Bytes on the P89LPC952. Each byte corresponds to  
one sector. Please see the P89LPC952 User’s Manual for additional details.  
8. ADC  
8.1 General description  
The P89LPC952 has a 10-bit, 8-channel multiplexed successive approximation  
analog-to-digital converter module. A block diagram of the ADC is shown in Figure 16.  
The ADC consists of an 8-input multiplexer which feeds a sample-and-hold circuit  
providing an input signal to one of two comparator inputs. The control logic in combination  
with the SAR drives a digital-to-analog converter which provides the other input to the  
comparator. The output of the comparator is fed to the SAR.  
8.2 Features  
10-bit, 8-channel multiplexed input, successive approximation ADC.  
Eight result register pairs.  
Six operating modes:  
Fixed channel, single conversion mode.  
Fixed channel, continuous conversion mode.  
Auto scan, single conversion mode.  
Auto scan, continuous conversion mode.  
Dual channel, continuous conversion mode.  
Single step mode.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
44 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Three conversion start modes:  
Timer triggered start.  
Start immediately.  
Edge triggered.  
10-bit conversion time of 4 µs at an A/D clock of 9 MHz.  
Interrupt or polled operation.  
High and low boundary limits interrupt; selectable in or out-of-range.  
Clock divider.  
Power-down mode.  
8.3 Block diagram  
comp  
+
INPUT  
MUX  
SAR  
CONTROL  
LOGIC  
8
DAC1  
CCLK  
002aab103  
Fig 16. ADC block diagram  
8.4 ADC operating modes  
8.4.1 Fixed channel, single conversion mode  
A single input channel can be selected for conversion. A single conversion will be  
performed and the result placed in the result register pair which corresponds to the  
selected input channel. An interrupt, if enabled, will be generated after the conversion  
completes.  
8.4.2 Fixed channel, continuous conversion mode  
A single input channel can be selected for continuous conversion. The results of the  
conversions will be sequentially placed in the eight result register pairs. The user may  
select whether an interrupt can be generated after every four or every eight conversions.  
Additional conversion results will again cycle through the result register pairs, overwriting  
the previous results. Continuous conversions continue until terminated by the user.  
8.4.3 Auto scan, single conversion mode  
Any combination of the eight input channels can be selected for conversion. A single  
conversion of each selected input will be performed and the result placed in the result  
register pair which corresponds to the selected input channel. The user may select  
whether an interrupt, if enabled, will be generated after either the first four conversions  
have occurred or all selected channels have been converted. If the user selects to  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
45 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
generate an interrupt after the four input channels have been converted, a second  
interrupt will be generated after the remaining input channels have been converted. If only  
a single channel is selected this is equivalent to single channel, single conversion mode.  
8.4.4 Auto scan, continuous conversion mode  
Any combination of the eight input channels can be selected for conversion. A conversion  
of each selected input will be performed and the result placed in the result register pair  
which corresponds to the selected input channel. The user may select whether an  
interrupt, if enabled, will be generated after either the first four conversions have occurred  
or all selected channels have been converted. If the user selects to generate an interrupt  
after the four input channels have been converted, a second interrupt will be generated  
after the remaining input channels have been converted. After all selected channels have  
been converted, the process will repeat starting with the first selected channel. Additional  
conversion results will again cycle through the eight result register pairs, overwriting the  
previous results. Continuous conversions continue until terminated by the user.  
8.4.5 Dual channel, continuous conversion mode  
This is a variation of the auto scan continuous conversion mode where conversion occurs  
on two user-selectable inputs. The result of the conversion of the first channel is placed in  
the result register pair, AD0DAT0R and AD0DAT0L. The result of the conversion of the  
second channel is placed in result register pair, AD0DAT1R and AD0DAT1L. The first  
channel is again converted and its result stored in AD0DAT2R and AD0DAT2L. The  
second channel is again converted and its result placed in AD0DAT3R and AD0DAT3L,  
etc. An interrupt is generated, if enabled, after every set of four or eight conversions (user  
selectable).  
8.4.6 Single step mode  
This special mode allows ‘single-stepping’ in an auto scan conversion mode. Any  
combination of the eight input channels can be selected for conversion. After each  
channel is converted, an interrupt is generated, if enabled, and the ADC waits for the next  
start condition. May be used with any of the start modes.  
8.5 Conversion start modes  
8.5.1 Timer triggered start  
An A/D conversion is started by the overflow of Timer 0. Once a conversion has started,  
additional Timer 0 triggers are ignored until the conversion has completed. The Timer  
triggered start mode is available in all ADC operating modes.  
8.5.2 Start immediately  
Programming this mode immediately starts a conversion. This start mode is available in all  
ADC operating modes.  
8.5.3 Edge triggered  
An A/D conversion is started by rising or falling edge of P1.4. Once a conversion has  
started, additional edge triggers are ignored until the conversion has completed. The edge  
triggered start mode is available in all ADC operating modes.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
46 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
8.6 Boundary limits interrupt  
The ADC has both a high and low boundary limit register. The user may select whether an  
interrupt is generated when the conversion result is within (or equal to) the high and low  
boundary limits or when the conversion result is outside the boundary limits. An interrupt  
will be generated, if enabled, if the result meets the selected interrupt criteria. The  
boundary limit may be disabled by clearing the boundary limit interrupt enable.  
An early detection mechanism exists when the interrupt criteria has been selected to be  
outside the boundary limits. In this case, after the four MSBs have been converted, these  
four bits are compared with the four MSBs of the boundary high and low registers. If the  
four MSBs of the conversion meet the interrupt criteria (i.e., outside the boundary limits)  
an interrupt will be generated, if enabled. If the four MSBs do not meet the interrupt  
criteria, the boundary limits will again be compared after all 8 MSBs have been converted.  
A boundary status register (BNDSTA0) flags the channels which caused a boundary  
interrupt.  
8.7 Clock divider  
The ADC requires that its internal clock source be in the range of 500 kHz to 9 MHz to  
maintain accuracy. A programmable clock divider that divides the clock from 1 to 8 is  
provided for this purpose.  
8.8 Power-down and Idle mode  
In Idle mode the ADC, if enabled, will continue to function and can cause the device to exit  
Idle mode when the conversion is completed if the A/D interrupt is enabled. In  
Power-down mode or Total Power-down mode, the ADC does not function. If the ADC is  
enabled, it will consume power. Power can be reduced by disabling the ADC.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
47 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
9. Limiting values  
Table 9:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). [1]  
Symbol  
Tamb(bias)  
Tstg  
Parameter  
Conditions  
Min  
Max  
+125  
+150  
20  
Unit  
°C  
bias ambient temperature  
storage temperature  
55  
65  
°C  
IOH(I/O)  
IOL(I/O)  
HIGH-state output current per I/O pin  
LOW-state output current per I/O pin  
-
-
-
-
mA  
mA  
mA  
V
20  
II/O(tot)(max) maximum total I/O current  
100  
3.5  
Vn  
voltage on any other pin  
except VSS, with respect to  
VDD  
Ptot(pack)  
package total power dissipation  
based on package heat  
transfer, not device power  
consumption  
-
1.5  
W
[1] The following applies to Table 9:  
a) This product includes circuitry specifically designed for the protection of its internal devices from the damaging effects of excessive  
static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid applying greater than the rated maximum.  
b) Parameters are valid over ambient temperature range unless otherwise specified. All voltages are with respect to VSS unless  
otherwise noted.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
48 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
10. Static characteristics  
Table 10: Static characteristics  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
IDD(oper)  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
Unit  
[2]  
[2]  
[2]  
[2]  
[2]  
operating supply current  
VDD = 3.6 V;  
-
11  
18  
mA  
f
osc = 12 MHz  
VDD = 3.6 V;  
osc = 18 MHz  
VDD = 3.6 V;  
osc = 12 MHz  
VDD = 3.6 V;  
osc = 18 MHz  
-
-
-
-
14  
3.25  
5
23  
5
mA  
mA  
mA  
µA  
f
IDD(idle)  
Idle mode supply current  
f
7
f
IDD(pd)  
Power-down mode supply  
current  
VDD = 3.6 V; voltage  
comparators powered  
down  
55  
80  
[3]  
IDD(tpd)  
total Power-down mode supply VDD = 3.6 V  
current  
-
1
5
µA  
(dV/dt)r  
(dV/dt)f  
VDDR  
Vth(HL)  
VIL  
rise rate  
of VDD  
of VDD  
-
-
2
mV/µs  
fall rate  
-
-
50  
mV/µs  
data retention voltage  
HIGH-LOW threshold voltage  
LOW-state input voltage  
LOW-HIGH threshold voltage  
HIGH-state input voltage  
hysteresis voltage  
1.5  
-
-
V
V
V
V
V
V
V
except SCL, SDA  
SCL, SDA only  
except SCL, SDA  
SCL, SDA only  
port 1  
0.22VDD  
0.4VDD  
-
0.5  
-
0.3VDD  
0.7VDD  
5.5  
Vth(LH)  
VIH  
-
0.6VDD  
-
0.7VDD  
Vhys  
-
-
0.2VDD  
0.6  
-
[4]  
[4]  
VOL  
LOW-state output voltage  
IOL = 20 mA;  
1.0  
VDD = 2.4 V to 3.6 V  
all ports, all modes except  
high-Z  
IOL = 3.2 mA; VDD = 2.4 V  
-
0.2  
0.3  
-
V
V
to 3.6 V all ports, all  
modes except high-Z  
VOH  
HIGH-state output voltage  
IOH = 20 µA;  
V
DD 0.3  
V
DD 0.2  
VDD = 2.4 V to 3.6 V;  
all ports,  
quasi-bidirectional mode  
I
V
OH = 3.2 mA;  
DD = 2.4 V to 3.6 V;  
all ports, push-pull mode  
V
DD 0.7  
V
DD 0.4  
-
-
V
V
IOH = 20 mA;  
0.8VDD  
-
VDD = 2.4 V to 3.6 V;  
Port 5, push-pull mode  
Vxtal  
Vn  
crystal voltage  
on XTAL1, XTAL2 pins;  
with respect to VSS  
0.5  
0.5  
-
-
-
-
+4.0  
+5.5  
15  
V
[5]  
[6]  
voltage on any other pin  
input capacitance  
except XTAL1, XTAL2,  
V
VDD; with respect to VSS  
Ciss  
pF  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
49 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 10: Static characteristics …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ [1]  
Max  
80  
Unit  
µA  
[7]  
[8]  
[9]  
IIL  
LOW-state input current  
input leakage current  
HIGH-LOW transition current  
VI = 0.4 V  
-
-
-
-
ILI  
VI = VIL, VIH, or Vth(HL)  
-
±10  
µA  
ITHL  
all ports; VI = 1.5 V at  
30  
450  
µA  
VDD = 3.6 V  
RRST_N(int) internal pull-up resistance on  
pin RST_N  
pin RST  
10  
-
-
30  
kΩ  
V
Vbo  
brownout trip voltage  
2.4 V < VDD < 3.6 V; with  
BOV = 1, BOPD = 0  
2.40  
2.70  
Vref(bg)  
TCbg  
band gap reference voltage  
1.11  
-
1.23  
10  
1.34  
20  
V
band gap temperature  
coefficient  
ppm/  
°C  
[1] Typical ratings are not guaranteed. The values listed are at room temperature, 3 V.  
[2] The IDD(oper), IDD(idle), and IDD(pd) specifications are measured using an external clock with the following functions disabled: comparators,  
real-time clock, and watchdog timer.  
[3] The IDD(tpd) specification is measured using an external clock with the following functions disabled: comparators, real-time clock,  
brownout detect, and watchdog timer.  
[4] See Section 9 “Limiting values” for steady state (non-transient) limits on IOL or IOH. If IOL/IOH exceeds the test condition, VOL/VOH may  
exceed the related specification.  
[5] This specification can be applied to pins which have A/D input or analog comparator input functions when the pin is not being used for  
those analog functions. When the pin is being used as an analog input pin, the maximum voltage on the pin must be limited to 4.0 V with  
respect to VSS  
.
[6] Pin capacitance is characterized but not tested.  
[7] Measured with port in quasi-bidirectional mode.  
[8] Measured with port in high-impedance mode.  
[9] Port pins source a transition current when used in quasi-bidirectional mode and externally driven from logic 1 to logic 0. This current is  
highest when VI is approximately 2 V.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
50 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
11. Dynamic characteristics  
Table 11: Dynamic characteristics (12 MHz)  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified. [1] [2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ± 1 % at  
7.189  
7.557  
7.189 7.557 MHz  
T
amb = 25 °C; clock  
doubler option = OFF  
(default)  
nominal f = 14.7456 MHz;  
clock doubler option = ON,  
14.378  
320  
15.114  
520  
14.378 15.114 MHz  
VDD = 2.7 V to 3.6 V  
fosc(WD)  
internal watchdog  
oscillator frequency  
320  
520 kHz  
fosc  
oscillator frequency  
clock cycle time  
0
83  
0
12  
-
-
-
-
-
-
-
MHz  
ns  
Tcy(CLK)  
fCLKLP  
see Figure 18  
active frequency on pin  
CLKLP  
8
MHz  
Glitch filter  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
tsa  
signal acceptance time P1.5/RST pin  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 18  
see Figure 18  
see Figure 18  
see Figure 18  
33  
33  
-
T
cy(CLK) tCLCX  
33  
33  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
Tcy(CLK) tCHCX  
8
8
8
8
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 17  
see Figure 17  
see Figure 17  
see Figure 17  
16Tcy(CLK)  
-
1333  
1083  
-
-
-
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(CLK)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(CLK) + 20  
103 ns  
input data hold after  
clock rising edge time  
0
-
-
0
-
ns  
ns  
input data valid to clock see Figure 17  
rising edge time  
150  
150  
SPI interface  
fSPI  
SPI operating frequency  
CCLK  
slave  
0
-
0
-
2.0  
3.0  
MHz  
MHz  
6
CCLK  
master  
4
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
51 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 11: Dynamic characteristics (12 MHz) …continued  
VDD = 2.4 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified. [1] [2]  
Symbol  
Parameter  
Conditions  
Variable clock  
fosc = 12 MHz Unit  
Min  
Max  
Min  
Max  
TSPICYC  
SPI cycle time  
slave  
see Figure 19, 20, 21, 22  
6
4
-
-
500  
333  
-
-
ns  
ns  
CCLK  
master  
CCLK  
tSPILEAD  
SPI enable lead time  
slave  
see Figure 21, 22  
250  
250  
-
-
250  
250  
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
see Figure 21, 22  
tSPICLKH  
SPICLK HIGH time  
master  
see Figure 19, 20, 21, 22  
2
3
-
-
165  
250  
-
-
ns  
ns  
CCLK  
slave  
CCLK  
tSPICLKL  
SPICLK LOW time  
master  
see Figure 19, 20, 21, 22  
2
3
-
-
-
165  
250  
100  
-
-
-
ns  
ns  
ns  
CCLK  
slave  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 19, 20, 21, 22  
see Figure 19, 20, 21, 22  
see Figure 21, 22  
100  
100  
-
100  
-
ns  
0
0
120  
240  
0
-
120 ns  
240 ns  
tSPIDIS  
SPI disable time  
slave  
see Figure 21, 22  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 19, 20, 21, 22  
slave  
-
-
240  
167  
-
-
-
240 ns  
167 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 19, 20, 21, 22  
see Figure 19, 20, 21, 22  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 19, 20, 21, 22  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
52 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 12: Dynamic characteristics (18 MHz)  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified. [1] [2]  
Symbol Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min Max  
Min  
Max  
fosc(RC)  
internal RC oscillator  
frequency  
nominal f = 7.3728 MHz  
trimmed to ± 1 % at  
7.189  
7.557  
7.189 7.557 MHz  
T
amb = 25 °C; clock  
doubler option = OFF  
(default)  
nominal f = 14.7456 MHz;  
clock doubler option = ON  
14.378  
320  
15.114  
520  
14.378 15.114 MHz  
fosc(WD) internal watchdog  
oscillator frequency  
320  
520 kHz  
fosc  
Tcy(CLK) clock cycle time  
fCLKLP active frequency on pin  
CLKLP  
Glitch filter  
oscillator frequency  
0
55  
0
18  
-
-
-
-
-
-
-
MHz  
ns  
see Figure 18  
8
MHz  
tgr  
glitch rejection time  
P1.5/RST pin  
-
-
50  
15  
-
-
-
50  
15  
-
ns  
ns  
ns  
ns  
any pin except P1.5/RST  
tsa  
signal acceptance time P1.5/RST pin  
125  
50  
125  
50  
any pin except P1.5/RST  
-
-
External clock  
tCHCX  
tCLCX  
tCLCH  
tCHCL  
clock HIGH time  
see Figure 18  
see Figure 18  
see Figure 18  
see Figure 18  
22  
22  
-
T
cy(CLK) tCLCX  
22  
22  
-
-
-
ns  
ns  
ns  
ns  
clock LOW time  
clock rise time  
clock fall time  
T
cy(CLK) tCHCX  
5
5
5
5
-
-
Shift register (UART mode 0)  
TXLXL  
tQVXH  
tXHQX  
tXHDX  
tXHDV  
serial port clock cycle  
time  
see Figure 17  
see Figure 17  
see Figure 17  
see Figure 17  
16Tcy(CLK)  
-
888  
722  
-
-
-
ns  
ns  
ns  
ns  
ns  
output data set-up to  
clock rising edge time  
13Tcy(CLK)  
-
output data hold after  
clock rising edge time  
-
-
Tcy(CLK) + 20  
75  
0
-
input data hold after  
clock rising edge time  
0
-
-
input data valid to clock see Figure 17  
rising edge time  
150  
150  
SPI interface  
fSPI SPI operating frequency  
CCLK  
slave  
0
-
0
-
3.0  
4.5  
MHz  
MHz  
6
CCLK  
master  
4
TSPICYC SPI cycle time  
see Figure 19, 20, 21, 22  
6
slave  
-
-
333  
222  
-
-
ns  
ns  
CCLK  
4
master  
CCLK  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
53 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
Table 12: Dynamic characteristics (18 MHz) …continued  
VDD = 3.0 V to 3.6 V unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified. [1] [2]  
Symbol Parameter  
Conditions  
Variable clock  
fosc = 18 MHz Unit  
Min  
250  
250  
Max  
Min  
250  
250  
Max  
tSPILEAD SPI enable lead time  
slave  
see Figure 21, 22  
see Figure 21, 22  
see Figure 19, 20, 21, 22  
-
-
-
-
ns  
ns  
tSPILAG  
SPI enable lag time  
slave  
tSPICLKH SPICLK HIGH time  
3
2
slave  
-
-
167  
111  
-
-
ns  
ns  
CCLK  
master  
tSPICLKL SPICLK LOW time  
slave  
CCLK  
see Figure 19, 20, 21, 22  
3
2
-
-
167  
111  
-
-
ns  
ns  
CCLK  
master  
CCLK  
tSPIDSU  
tSPIDH  
tSPIA  
SPI data set-up time  
master or slave  
SPI data hold time  
master or slave  
SPI access time  
slave  
see Figure 19, 20, 21, 22  
see Figure 19, 20, 21, 22  
see Figure 21, 22  
100  
100  
0
-
-
100  
100  
0
-
-
ns  
ns  
ns  
80  
160  
80  
tSPIDIS  
SPI disable time  
slave  
see Figure 21, 22  
0
-
160 ns  
tSPIDV  
SPI enable to output  
data valid time  
see Figure 19, 20, 21, 22  
slave  
-
-
160  
111  
-
-
-
160 ns  
111 ns  
master  
tSPIOH  
tSPIR  
SPI output data hold  
time  
see Figure 19, 20, 21, 22  
see Figure 19, 20, 21, 22  
0
0
-
ns  
SPI rise time  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
tSPIF  
SPI fall time  
see Figure 19, 20, 21, 22  
SPI outputs (SPICLK,  
MOSI, MISO)  
-
-
100  
-
-
100 ns  
2000 ns  
SPI inputs (SPICLK,  
MOSI, MISO, SS)  
2000  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Parts are tested to 2 MHz, but are guaranteed to operate down to 0 Hz.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
54 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
11.1 Waveforms  
T
XLXL  
clock  
t
XHQX  
1
t
QVXH  
output data  
write to SBUF  
input data  
0
2
3
4
5
6
7
t
XHDX  
set TI  
valid  
t
XHDV  
valid  
valid  
valid  
valid  
valid  
valid  
valid  
clear RI  
set RI  
002aaa906  
Fig 17. Shift register mode timing  
V
0.5 V  
DD  
0.2V  
+ 0.9 V  
DD  
0.2V  
0.1 V  
DD  
0.45 V  
t
CHCX  
t
t
CLCX  
t
CHCL  
CLCH  
T
cy(CLK)  
002aaa907  
Fig 18. External clock timing  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
55 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIF  
SPIR  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 1)  
(output)  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
t
SPIR  
SPIDV  
SPIOH  
SPIDV  
t
MOSI  
SPIF  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa908  
Fig 19. SPI master timing (CPHA = 0)  
SS  
T
SPICYC  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(output)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(output)  
SPICLKH  
t
t
SPIDH  
SPIDSU  
MISO  
(input)  
LSB/MSB in  
MSB/LSB in  
t
t
t
t
SPIDV  
SPIOH  
SPIDV  
SPIDV  
t
t
SPIF  
SPIR  
MOSI  
(output)  
master MSB/LSB out  
master LSB/MSB out  
002aaa909  
Fig 20. SPI master timing (CPHA = 1)  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
56 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
SS  
t
t
SPIR  
SPIR  
T
SPICYC  
t
t
SPIR  
t
SPIF  
t
SPILEAD  
SPILAG  
t
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
t
SPICLK  
(CPOL = 1)  
(input)  
SPICLKH  
t
t
SPIOH  
t
t
SPIDIS  
t
SPIOH  
SPIOH  
SPIA  
t
t
SPIDV  
SPIDV  
MISO  
(output)  
slave MSB/LSB out  
slave LSB/MSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa910  
Fig 21. SPI slave timing (CPHA = 0)  
SS  
t
t
SPIR  
SPIR  
T
SPICYC  
t
t
t
SPIR  
SPIF  
t
t
SPILAG  
SPILEAD  
SPICLKL  
t
SPICLKH  
SPICLK  
(CPOL = 0)  
(input)  
t
t
SPIR  
SPIF  
t
SPICLKL  
SPICLK  
(CPOL = 1)  
(input)  
t
SPICLKH  
t
t
t
SPIOH  
SPIOH  
SPIOH  
t
t
t
t
SPIDIS  
SPIDV  
SPIDV  
SPIDV  
t
SPIA  
MISO  
(output)  
slave LSB/MSB out  
slave MSB/LSB out  
not defined  
t
t
t
t
t
SPIDH  
SPIDSU  
SPIDH  
SPIDSU  
SPIDSU  
MOSI  
(input)  
MSB/LSB in  
LSB/MSB in  
002aaa911  
Fig 22. SPI slave timing (CPHA = 1)  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
57 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
11.2 ISP entry mode  
Table 13: Dynamic characteristics, ISP entry mode  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
Symbol Parameter Conditions  
Min  
Typ  
Max  
Unit  
tVR  
VDD active to RST_N active delay pin RST  
time  
50  
-
-
µs  
tRH  
tRL  
RST_N HIGH time  
RST_N LOW time  
pin RST  
pin RST  
1
1
-
-
32  
-
µs  
µs  
V
DD  
t
VR  
t
RH  
RST  
t
RL  
002aaa912  
Fig 23. ISP entry waveform  
12. Other characteristics  
12.1 Comparator electrical characteristics  
Table 14: Comparator electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
T
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
mV  
V
VIO  
input offset voltage  
-
-
±20  
VIC  
common-mode input voltage  
common-mode rejection ratio  
total response time  
0
-
-
VDD 0.3  
[1]  
CMRR  
tres(tot)  
t(CE-OV)  
ILI  
-
50  
500  
10  
dB  
ns  
-
250  
chip enable to output valid time  
input leakage current  
-
-
-
µs  
0 V < VI < VDD  
-
±10  
µA  
[1] This parameter is characterized, but not tested in production.  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
58 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
12.2 ADC electrical characteristics  
Table 15: ADC electrical characteristics  
VDD = 2.4 V to 3.6 V, unless otherwise specified.  
T
amb = 40 °C to +85 °C for industrial applications, unless otherwise specified.  
All limits valid for an external source impedance of less than 10 k.  
Symbol  
Via  
Parameter  
Conditions  
Min  
Typ  
Max  
VDD + 0.4  
15  
Unit  
V
analog input voltage  
analog input capacitance  
differential linearity error  
integral non-linearity  
offset error  
V
SS 0.4 -  
Cia  
-
-
-
-
-
-
-
-
-
-
-
-
pF  
ED  
-
±1  
LSB  
LSB  
LSB  
%
INL  
-
±2  
Eoffset  
EG  
-
±2  
gain error  
-
±2  
Eu(tot)  
MCTC  
αct(port)  
SRin  
Tcy(ADC)  
tADC  
total unadjusted error  
channel-to-channel matching  
crosstalk between port inputs  
input slew rate  
-
±3  
LSB  
LSB  
dB  
-
±1  
0 kHz to 100 kHz  
ADC enabled  
-
60  
-
100  
V/ms  
ns  
ADC clock cycle  
111  
-
3125  
36Tcy(ADC)  
ADC conversion time  
µs  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
59 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
13. Package outline  
PLCC44: plastic leaded chip carrier; 44 leads  
SOT187-2  
e
e
D
E
y
X
A
39  
29  
b
p
Z
E
28  
40  
b
1
w
M
44  
1
H
E
E
pin 1 index  
A
A
1
A
4
e
(A )  
3
6
18  
β
L
p
k
detail X  
7
17  
v
M
A
e
Z
D
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm dimensions are derived from the original inch dimensions)  
(1)  
(1)  
A
A
Z
Z
E
4
1
(1)  
(1)  
D
UNIT  
mm  
A
A
b
D
E
e
e
e
H
H
k
L
p
v
w
y
β
b
3
1
D
E
D
E
p
max.  
min.  
max. max.  
4.57  
4.19  
0.81 16.66 16.66  
0.66 16.51 16.51  
16.00 16.00 17.65 17.65 1.22 1.44  
14.99 14.99 17.40 17.40 1.07 1.02  
0.53  
0.33  
0.51 0.25 3.05  
0.02 0.01 0.12  
1.27  
0.05  
0.18 0.18  
0.1  
2.16 2.16  
o
45  
0.180  
0.165  
0.032 0.656 0.656  
0.026 0.650 0.650  
0.63 0.63 0.695 0.695 0.048 0.057  
0.59 0.59 0.685 0.685 0.042 0.040  
0.021  
0.013  
inches  
0.007 0.007 0.004 0.085 0.085  
Note  
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
01-11-14  
SOT187-2  
112E10  
MS-018  
EDR-7319  
Fig 24. Package outline SOT187-2 (PLCC44)  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
60 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
LQFP44: plastic low profile quad flat package; 44 leads; body 10 x 10 x 1.4 mm  
SOT389-1  
c
y
X
A
33  
23  
34  
22  
Z
E
e
H
E
E
A
2
A
(A )  
3
A
1
w M  
p
pin 1 index  
θ
b
L
p
44  
12  
L
detail X  
1
11  
w M  
Z
D
v M  
A
b
e
p
D
B
H
v
M
B
D
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.45  
0.05 1.35  
0.45 0.20 10.1 10.1  
0.30 0.12 9.9 9.9  
12.15 12.15  
11.85 11.85  
0.75  
0.45  
1.14 1.14  
0.85 0.85  
mm  
1.6  
0.25  
0.8  
1
0.2  
0.2  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
00-01-19  
02-06-07  
SOT389-1  
136E08  
MS-026  
Fig 25. Package outline SOT389-1 (LQFP44)  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
61 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
14. Abbreviations  
Table 16: Acronym list  
Acronym  
ADC  
Description  
Analog to Digital Converter  
Central Processing Unit  
Capture/Compare Unit  
Digital to Analog Converter  
CPU  
CCU  
DAC  
EPROM  
EEPROM  
EMI  
Erasable Programmable Read-Only Memory  
Electrically Erasable Programmable Read-Only Memory  
Electro-Magnetic Interference  
Phase-Locked Loop  
PLL  
PWM  
RAM  
RC  
Pulse Width Modulator  
Random Access Memory  
Resistance-Capacitance  
RTC  
Real-Time Clock  
SAR  
Successive Approximation Register  
Special Function Register  
SFR  
SPI  
Serial Peripheral Interface  
UART  
Universal Asynchronous Receiver/Transmitter  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
62 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
15. Revision history  
Table 17: Revision history  
Document ID  
Release date Data sheet status  
20050916 Preliminary data sheet  
Change notice Doc. number  
9397 750 14716  
Supersedes  
P89LPC952_1  
-
-
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
63 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
16. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
17. Definitions  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
19. Trademarks  
Notice — All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — wordmark and logo are trademarks of Koninklijke Philips  
Electronics N.V.  
18. Disclaimers  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
20. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
64 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
21. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.16.1  
7.17  
Reset vector . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Timers/counters 0 and 1 . . . . . . . . . . . . . . . . 30  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Mode 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Timer overflow toggle output . . . . . . . . . . . . . 31  
RTC/system timer. . . . . . . . . . . . . . . . . . . . . . 31  
UARTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Mode 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Mode 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Mode 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Mode 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Baud rate generator and selection. . . . . . . . . 32  
Framing error . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Break detect. . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Double buffering. . . . . . . . . . . . . . . . . . . . . . . 33  
Transmit interrupts with double buffering  
2
2.1  
2.2  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Principal features . . . . . . . . . . . . . . . . . . . . . . . 1  
Additional features . . . . . . . . . . . . . . . . . . . . . . 2  
7.17.1  
7.17.2  
7.17.3  
7.17.4  
7.17.5  
7.17.6  
7.18  
3
3.1  
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Functional diagram . . . . . . . . . . . . . . . . . . . . . . 5  
5
7.19  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 6  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 8  
7.19.1  
7.19.2  
7.19.3  
7.19.4  
7.19.5  
7.19.6  
7.19.7  
7.19.8  
7.19.9  
7
7.1  
7.2  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
Functional description . . . . . . . . . . . . . . . . . . 13  
Special function registers . . . . . . . . . . . . . . . . 13  
Enhanced CPU. . . . . . . . . . . . . . . . . . . . . . . . 21  
Clocks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Clock definitions . . . . . . . . . . . . . . . . . . . . . . . 21  
CPU clock (OSCCLK). . . . . . . . . . . . . . . . . . . 21  
Low speed oscillator option . . . . . . . . . . . . . . 21  
Medium speed oscillator option . . . . . . . . . . . 21  
High speed oscillator option . . . . . . . . . . . . . . 21  
Clock output . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
On-chip RC oscillator option. . . . . . . . . . . . . . 22  
Watchdog oscillator option . . . . . . . . . . . . . . . 22  
External clock input option . . . . . . . . . . . . . . . 22  
CCLK wake-up delay . . . . . . . . . . . . . . . . . . . 23  
CCLK modification: DIVM register . . . . . . . . . 23  
Low power select . . . . . . . . . . . . . . . . . . . . . . 23  
Memory organization . . . . . . . . . . . . . . . . . . . 24  
Data RAM arrangement . . . . . . . . . . . . . . . . . 24  
Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
External interrupt inputs . . . . . . . . . . . . . . . . . 25  
I/O ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Port configurations . . . . . . . . . . . . . . . . . . . . . 27  
enabled (Modes 1, 2 and 3) . . . . . . . . . . . . . . 33  
7.19.10 The 9th bit (bit 8) in double buffering  
(Modes 1, 2 and 3). . . . . . . . . . . . . . . . . . . . . 33  
7.20  
7.21  
7.21.1  
7.22  
7.22.1  
7.22.2  
7.22.3  
7.23  
7.24  
7.25  
I2C-bus serial interface. . . . . . . . . . . . . . . . . . 34  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Typical SPI configurations . . . . . . . . . . . . . . . 37  
Analog comparators. . . . . . . . . . . . . . . . . . . . 38  
Internal reference voltage. . . . . . . . . . . . . . . . 39  
Comparator interrupt . . . . . . . . . . . . . . . . . . . 39  
Comparators and power reduction modes . . . 39  
KBI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Watchdog timer . . . . . . . . . . . . . . . . . . . . . . . 40  
Additional features . . . . . . . . . . . . . . . . . . . . . 41  
Software reset . . . . . . . . . . . . . . . . . . . . . . . . 41  
Dual data pointers . . . . . . . . . . . . . . . . . . . . . 41  
Flash program memory . . . . . . . . . . . . . . . . . 41  
General description . . . . . . . . . . . . . . . . . . . . 41  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Flash organization . . . . . . . . . . . . . . . . . . . . . 42  
Using flash as data storage . . . . . . . . . . . . . . 42  
Flash programming and erasing. . . . . . . . . . . 42  
ICP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
IAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
ISP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Power-on reset code execution . . . . . . . . . . . 43  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
7.12  
7.12.1  
7.13  
7.13.1  
7.25.1  
7.25.2  
7.26  
7.13.1.1 Quasi-bidirectional output configuration . . . . . 27  
7.13.1.2 Open-drain output configuration . . . . . . . . . . . 28  
7.13.1.3 Input-only configuration . . . . . . . . . . . . . . . . . 28  
7.13.1.4 Push-pull output configuration . . . . . . . . . . . . 28  
7.13.2  
7.13.3  
7.14  
7.14.1  
7.14.2  
7.15  
7.15.1  
7.15.2  
7.15.3  
7.16  
7.26.1  
7.26.2  
7.26.3  
7.26.4  
7.26.5  
7.26.6  
7.26.7  
7.26.8  
7.26.9  
Port 0 analog functions. . . . . . . . . . . . . . . . . . 28  
Additional port features. . . . . . . . . . . . . . . . . . 28  
Power monitoring functions. . . . . . . . . . . . . . . 28  
Brownout detection. . . . . . . . . . . . . . . . . . . . . 29  
Power-on detection. . . . . . . . . . . . . . . . . . . . . 29  
Power reduction modes . . . . . . . . . . . . . . . . . 29  
Idle mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 29  
Total Power-down mode . . . . . . . . . . . . . . . . . 29  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
7.26.10 Hardware activation of the boot loader. . . . . . 44  
7.27  
7.28  
User configuration bytes. . . . . . . . . . . . . . . . . 44  
User sector security bytes . . . . . . . . . . . . . . . 44  
8
ADC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
continued >>  
9397 750 14716  
© Koninklijke Philips Electronics N.V. 2005. All rights reserved.  
Preliminary data sheet  
Rev. 01— 16 September 2005  
65 of 66  
P89LPC952  
Philips Semiconductors  
8-bit microcontroller with 10-bit ADC  
8.1  
General description. . . . . . . . . . . . . . . . . . . . . 44  
8.2  
8.3  
8.4  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . 45  
ADC operating modes . . . . . . . . . . . . . . . . . . 45  
Fixed channel, single conversion mode . . . . . 45  
Fixed channel, continuous conversion mode . 45  
Auto scan, single conversion mode . . . . . . . . 45  
Auto scan, continuous conversion mode . . . . 46  
Dual channel, continuous conversion mode . . 46  
Single step mode . . . . . . . . . . . . . . . . . . . . . . 46  
Conversion start modes . . . . . . . . . . . . . . . . . 46  
Timer triggered start . . . . . . . . . . . . . . . . . . . . 46  
Start immediately . . . . . . . . . . . . . . . . . . . . . . 46  
Edge triggered . . . . . . . . . . . . . . . . . . . . . . . . 46  
Boundary limits interrupt. . . . . . . . . . . . . . . . . 47  
Clock divider . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Power-down and Idle mode . . . . . . . . . . . . . . 47  
8.4.1  
8.4.2  
8.4.3  
8.4.4  
8.4.5  
8.4.6  
8.5  
8.5.1  
8.5.2  
8.5.3  
8.6  
8.7  
8.8  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 48  
Static characteristics. . . . . . . . . . . . . . . . . . . . 49  
10  
11  
11.1  
11.2  
Dynamic characteristics . . . . . . . . . . . . . . . . . 51  
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
ISP entry mode. . . . . . . . . . . . . . . . . . . . . . . . 58  
12  
12.1  
12.2  
Other characteristics. . . . . . . . . . . . . . . . . . . . 58  
Comparator electrical characteristics . . . . . . . 58  
ADC electrical characteristics. . . . . . . . . . . . . 59  
13  
14  
15  
16  
17  
18  
19  
20  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 60  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 63  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 64  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
Contact information . . . . . . . . . . . . . . . . . . . . 64  
© Koninklijke Philips Electronics N.V. 2005  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 16 September 2005  
Document number: 9397 750 14716  
Published in the Netherlands  

相关型号:

P89LPC952FA

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC952FA,512

P89LPC952/954 - 8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC LCC 44-Pin
NXP

P89LPC952FA,518

P89LPC952/954 - 8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC LCC 44-Pin
NXP

P89LPC952FBD

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC952FBD,157

P89LPC952/954 - 8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC QFP 44-Pin
NXP

P89LPC954

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC954FA

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC954FBD44

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC954FBD44,151

P89LPC952/954 - 8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC QFP 44-Pin
NXP

P89LPC954FBD48

8-bit microcontroller with accelerated two-clock 80C51 core 8 kB/16 kB 3 V byte-erasable flash with 10-bit ADC
NXP

P89LPC970

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB wide-voltage byte-erasable flash
NXP

P89LPC970FDH

8-bit microcontroller with accelerated two-clock 80C51 core 2 kB/4 kB/8 kB wide-voltage byte-erasable flash
NXP