PCA2129 [NXP]

Nano-power highly accurate RTC with integrated quartz crystal for automotive applications;
PCA2129
型号: PCA2129
厂家: NXP    NXP
描述:

Nano-power highly accurate RTC with integrated quartz crystal for automotive applications

文件: 总86页 (文件大小:1031K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA2131  
Nano-power highly accurate RTC with integrated quartz  
crystal for automotive applications  
Rev. 1.0 — 26 July 2021  
Product data sheet  
1 General description  
The PCA2131 is a CMOS Real Time Clock (RTC) and calendar with an integrated  
Temperature Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz  
crystal optimized for very high accuracy and ultra low power consumption. The  
PCA2131 has a selectable I2C-bus or SPI-bus, a backup battery switch-over circuit, a  
programmable watchdog function, four timestamps function, and many other features.  
For a selection of NXP Real-Time Clocks, see Section 15.1.  
2 Features and benefits  
AEC-Q100 compliant version: PCA2131TF/Q900 for automotive applications  
Operating temperature range from -40 °C to +105 °C  
Temperature Compensated Crystal Oscillator (TCXO) with trimmed integrated  
capacitors  
Clock operational up to 125 °C  
Ultra low supply current: typical 106 nA at VDD = 3.3 V  
Temperature compensated RTC, typical accuracy ±3 ppm from -40 °C to +85 °C;  
±8 ppm from +85 °C to +105 °C  
Integration of a 32.768 kHz quartz crystal and oscillator in the same package  
Provides year, month, day, weekday, hours, minutes, seconds and 1/100 seconds  
Provides leap year correction  
Timestamp function  
with interrupt capability  
detection of four different events on four input pins (for example, for tamper detection)  
2-line bidirectional 400 kHz Fast-mode I2C-bus interface  
4-line SPI-bus with separate data input and output (maximum speed 6.5 Mbit/s)  
Battery backup input pin and switch-over circuitry  
Battery backed output voltage  
Battery low detection function  
Power-On Reset (POR)  
Power-On Reset Override (PORO) function  
Software reset function  
Two interrupt outputs (open-drain)  
Programmable 1 second or 1 minute interrupt  
Programmable watchdog timer with interrupt  
Programmable alarm function with interrupt capability  
Programmable square output  
Clock operating voltage: 1.2 V to 5.5 V  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
3 Applications  
Electronic metering for electricity, water, and gas  
Precision timekeeping  
Access to accurate time of the day  
GPS equipment to reduce time to first fix  
Applications that require an accurate process timing  
Products with long automated unattended operation time  
4 Ordering information  
Table 1.ꢀOrdering information  
Type number  
Topside  
marking  
Package  
Name  
Description  
Version  
PCA2131TF/Q900 A31  
HLSON16  
thermal enhanced low profile small outline; no leads, 16 SOT1992-1  
terminals, 0.125 dimple wettable flank, 0.5 mm pitch,  
4.5 mm x 3.5 mm x 1.45 mm body  
4.1 Ordering options  
Table 2.ꢀOrdering options  
Product type  
number  
Orderable part  
number  
Package  
Packing method  
Minimum  
Order  
Temperature  
Quantity  
PCA2131TF/Q900  
PCA2131TF/Q900Y HLSON16  
REEL 13" Q1 DP  
4000  
Tamb = -40 °C to +105 °C  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
2 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
5 Block diagram  
INTA / INTB  
TEMP  
OSCO  
32.768 kHz  
Control_1  
Control_2  
Control_3  
00h  
DIVIDER  
AND  
TIMER  
01h  
OSCI  
02h  
TCXO  
03h  
Control_4  
Control_5  
04h  
05h  
Sofware Reset  
100 Hz  
th  
06h  
1/100 Seconds  
CLKOUT  
DIVIDER  
07h  
Seconds  
Minutes  
Hours  
LOGIC  
CONTROL  
08h  
V
DD  
BATTERY BACK UP  
SWITCH-OVER  
CIRCUITRY  
09h  
V
BAT  
internal operating  
Days  
0Ah  
V
SS  
voltage V  
oper(int)  
Weekdays  
Months  
Years  
0Bh  
BBS  
0Ch  
0Dh  
ADDRESS  
REGISTER  
OSCILLATOR  
MONITOR  
RESET  
0Eh  
Second_alarm  
Minute_alarm  
Hour_alarm  
0Fh  
10h  
SPI-BUS  
INTERFACE  
Day_alarm  
11h  
Weekday_alarm  
CLKOUT_ctl  
12h  
13h  
SDA/CE  
SDO  
SERIAL BUS  
INTERFACE  
SELECTOR  
Timestp_ctl 1/2/3/4  
14h/1Bh/22h/29h  
15h/1Ch/23h/2Ah  
16h/1Dh/24h/2Bh  
17h/1Eh/25h/2Ch  
18h/1Fh/26h/2Dh  
19h/20h/27h/2Eh  
1Ah/21h/28h/2Fh  
30h  
Sec_timestp 1/2/3/4  
Min_timestp 1/2/3/4  
Hour_timestp 1/2/3/4  
Day_timestp 1/2/3/4  
SDI  
SCL  
IFS  
PCA2131  
2
I C-BUS  
INTERFACE  
R
Mon_timestp 1/2/3/4  
Year_timestp 1/2/3/4  
Aging_offset  
PU 1/2/3/4  
TS1  
TS2  
TS3  
TS4  
INT_A_MASK 1/2  
INT_B_MASK 1/2  
31h/32h  
TEMPERATURE  
SENSOR  
TEMP  
33h/34h  
35h  
Watchdg_tim_ctl  
Watchdg_tim_val  
36h  
aaa-041562  
Figure 1.ꢀBlock diagram of PCA2131  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
3 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
6 Pinning information  
6.1 Pinning  
IFS  
SCL  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
BAT  
DD  
SDI  
BBS  
INTA  
INTB  
TS4  
TS3  
TS2  
SDO  
PCA2131  
SDA/CE  
CLKOUT  
V
SS  
TS1  
aaa-041563  
Figure 2.ꢀPin configuration for PCA2131 (transparent top view)  
6.2 Pin description  
Table 3.ꢀPin description  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
SCL  
Pin  
2
Description  
combined serial clock input for both I2C-bus and SPI-bus  
SDI  
3
serial data input for SPI-bus  
connect to pin VSS if I2C-bus is selected  
SDO  
4
serial data output for SPI-bus, push-pull  
leave open or connect to pin VSS if I2C-bus is selected  
SDA/CE  
IFS  
5
1
combined serial data input and output for the I2C-bus and chip enable  
input (active LOW) for the SPI-bus  
interface selector input  
connect to pin VSS to select the SPI-bus  
connect to pin VDD to select the I2C-bus  
TS1,TS2,TS3,TS4,  
8,9,10,11  
timestamp input (active LOW) with 500 kΩ internal pull-up resistor (RPU  
)
CLKOUT  
VSS  
6
clock output (push-pull)  
7
ground supply voltage  
INTB  
INTA  
12  
13  
14  
interrupt B output (open-drain; active LOW)  
interrupt A output (open-drain; active LOW)  
output voltage (battery backed)  
BBS  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
4 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 3.ꢀPin description...continued  
Input or input/output pins must always be at a defined level (VSS or VDD) unless otherwise specified.  
Symbol  
Pin  
Description  
VBAT  
16  
battery supply voltage (backup)  
connect to VSS if battery switch-over is not used  
VDD  
15  
supply voltage  
Exposed Pad  
Tie to VSS (preferred)[1] or leave floating  
[1] This protects against signal feedback to the oscillator if routed close to the part.  
7 Functional description  
The PCA2131 is a Real Time Clock (RTC) and calendar with an on-chip Temperature  
Compensated Crystal (Xtal) Oscillator (TCXO) and a 32.768 kHz quartz crystal integrated  
into the same package.  
Address and data are transferred by a selectable 400 kHz Fast-mode I2C-bus or a 4-line  
SPI-bus with separate data input and output (see Section 7.16). The maximum speed of  
the SPI-bus is 6.5 Mbit/s.  
The PCA2131 has a backup battery input pin and backup battery switch-over circuit  
which monitors the main power supply. The backup battery switch-over circuit  
automatically switches to the backup battery when a power failure condition is detected  
(see Section 7.5.1). Accurate timekeeping is maintained even when the main power  
supply is interrupted.  
A battery low detection circuit monitors the status of the battery (see Section 7.5.2).  
When the battery voltage drops below a certain threshold value, a flag is set to indicate  
that the battery must be replaced soon. This ensures the integrity of the data during  
periods of battery backup.  
7.1 Register overview  
The PCA2131 contains an auto-incrementing address register: the built-in address  
register will increment automatically after each read or write of a data byte up to the  
register 36h. After register 36h, the auto-incrementing will wrap around to address 00h  
(see Figure 3).  
address register  
00h  
01h  
02h  
03h  
...  
auto-increment  
34h  
35h  
36h  
wrap around  
aaa-041564  
Figure 3.ꢀHandling address registers  
The first five registers (memory address 00h, 01h, 02h, 03h and 04h) are used as  
control registers (see Section 7.2).  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
5 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
The register at address 05h is for software reset.  
The memory addresses 06h through to 0Dh are used as counters for the clock function  
(1/100 seconds up to years). The date is automatically adjusted for months with fewer  
than 31 days, including corrections for leap years. The clock can operate in 12-hour  
mode with an AM/PM indication or in 24-hour mode (see Section 7.9).  
The registers at addresses 0Eh through 12h define the alarm function. It can be  
selected that an interrupt is generated when an alarm event occurs (see Section 7.10).  
The register at address 13h defines the temperature measurement period and the  
clock out mode. The temperature measurement can be selected from every 32 minutes  
(default) down to every 4minutes (see Table 17). CLKOUT frequencies of 32.768 kHz  
(default) down to 1 Hz for use as system clock, microcontroller clock, and so on, can be  
chosen (see Table 18).  
The registers at addresses 14h to 2Fh are used for the timestamp function. When  
the trigger event happens, the actual time is saved in the timestamp registers (see  
Section 7.12).  
The register at address 30h is used for the correction of the crystal aging effect (see  
Section 7.4.1).  
The registers at addresses 31h to 34h are used for interrupt configration.  
The registers at addresses 35h and 36h are used for the watchdog timer functions. The  
watchdog timer has four selectable source clocks allowing for timer periods from less  
than 20 ms to greater than 4 hours (see Table 59). An interrupt is generated when the  
watchdog times out.  
The registers 100th Seconds, Seconds, Minutes, Hours, Days, Months, and Years  
are all coded in Binary Coded Decimal (BCD) format to simplify application use. Other  
registers are either bit-wise or standard binary.  
When one of the RTC registers is written or read, the content of all counters is  
temporarily frozen, all registers hold their state during SPI or I2C transactions. The  
time stamp registers would update as soon as the bus transaction completes. This  
prevents a faulty writing or reading of the clock and calendar during a carry condition  
(see Section 7.9.9).  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
6 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 4.ꢀRegister overview  
Bit positions labeled as T are unused and return 0 when read. Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Address  
Register name  
Bit  
7
Reset value  
Reference  
6
5
4
3
2
1
0
Control registers  
00h  
Control_1  
EXT_  
TEST  
TC_DIS  
WDTF  
STOP  
T
100TH_  
S_DIS  
POR_  
OVRD  
12_24  
MI  
SI  
0000 1000  
Table 5  
01h  
02h  
03h  
04h  
Control_2  
Control_3  
Control_4  
Control_5  
MSF  
AF  
T
BF  
T
T
BLF  
T
AIE  
BIE  
T
T
BLIE  
T
0000 0000  
1110 0000  
0000 0000  
0000 0000  
Table 7  
Table 9  
Table 11  
Table 13  
PWRMNG[2:0]  
TSF2  
BTSE  
TSF4  
TSIE4  
TSF1  
TSF3  
TSIE1  
TSIE2  
TSIE3  
T
T
T
T
Software Reset  
05h  
SR_Reset  
CPR  
T
T
T
SR  
T
T
CTS  
0010 0100  
Table 24  
Time and date registers  
06h  
07h  
08h  
09h  
100th_Seconds  
100TH_SECONDS(0 to 99)  
0000 0000  
1000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0001  
0000 0001  
0000 0001  
0000 0001  
Table 25  
Table 28  
Table 31  
Table 33  
Seconds  
Minutes  
Hours  
OSF  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
-
-
-
AMPM  
HOURS (1 to 12) in 12-hour mode  
HOURS (0 to 23) in 24-hour mode  
DAYS (1 to 31)  
0Ah  
0Bh  
0Ch  
0Dh  
Days  
-
-
-
-
-
-
Table 35  
Table 37  
Table 40  
Table 43  
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
0Eh  
0Fh  
10h  
Second_alarm  
AE_S  
AE_M  
AE_H  
SECOND_ALARM (0 to 59)  
MINUTE_ALARM (0 to 59)  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
1000 0000  
Table 45  
Table 47  
Table 49  
Minute_alarm  
Hour_alarm  
-
AMPM  
HOUR_ALARM (1 to 12) in 12-hour mode  
HOUR_ALARM (0 to 23) in 24-hour mode  
DAY_ALARM (1 to 31)  
11h  
12h  
Day_alarm  
AE_D  
AE_W  
-
-
Table 51  
Table 53  
Weekday_alarm  
-
-
-
WEEKDAY_ALARM (0 to 6)  
CLKOUT control register  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
7 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 4.ꢀRegister overview...continued  
Bit positions labeled as T are unused and return 0 when read. Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Address  
Register name  
Bit  
7
Reset value  
Reference  
6
5
4
3
2
1
0
13h  
CLKOUT_ctl  
TCR[1:0]  
OTPR  
-
-
-
COF[2:0]  
00X0 0000  
Table 15  
Timestamp1 registers  
14h  
15h  
16h  
17h  
Timestp_ctl1  
TSM  
TSOFF  
SUBSEC_TIMESTP[4:0]  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Table 64  
Table 66  
Table 68  
Table 70  
Sec_timestp1  
Min_timestp1  
Hour_timestp1  
-
-
-
SECOND_TIMESTP (0 to 59)  
MINUTE_TIMESTP (0 to 59)  
-
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
DAY_TIMESTP (1 to 31)  
18h  
19h  
1Ah  
Day_timestp1  
Mon_timestp1  
Year_timestp1  
-
-
-
-
Table 72  
Table 74  
Table 76  
-
MONTH_TIMESTP (1 to 12)  
YEAR_TIMESTP (0 to 99)  
Timestamp2 registers  
1Bh  
1Ch  
1Dh  
1Eh  
Timestp_ctl2  
TSM  
TSOFF  
-
SUBSEC_TIMESTP[4:0]  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Table 64  
Table 66  
Table 68  
Table 70  
Sec_timestp2  
Min_timestp2  
Hour_timestp2  
-
-
-
SECOND_TIMESTP (0 to 59)  
MINUTE_TIMESTP (0 to 59)  
-
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
DAY_TIMESTP (1 to 31)  
1Fh  
20h  
21h  
Day_timestp2  
Mon_timestp2  
Year_timestp2  
-
-
-
-
Table 72  
Table 74  
Table 76  
-
MONTH_TIMESTP (1 to 12)  
YEAR_TIMESTP (0 to 99)  
Timestamp3 registers  
22h  
23h  
24h  
25h  
Timestp_ctl3  
TSM  
TSOFF  
-
SUBSEC_TIMESTP[4:0]  
SECOND_TIMESTP (0 to 59)  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Table 64  
Table 66  
Table 68  
Table 70  
Sec_timestp3  
Min_timestp3  
Hour_timestp3  
-
-
-
MINUTE_TIMESTP (0 to 59)  
-
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
DAY_TIMESTP (1 to 31)  
26h  
27h  
Day_timestp3  
Mon_timestp3  
-
-
-
-
Table 72  
Table 74  
-
MONTH_TIMESTP (1 to 12)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
8 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 4.ꢀRegister overview...continued  
Bit positions labeled as T are unused and return 0 when read. Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Address  
Register name  
Bit  
7
Reset value  
Reference  
6
5
4
3
2
1
0
28h  
Year_timestp3  
YEAR_TIMESTP (0 to 99)  
0000 0000  
Table 76  
Timestamp4 registers  
29h  
2Ah  
2Bh  
2Ch  
Timestp_ctl4  
TSM  
TSOFF  
-
SUBSEC_TIMESTP[4:0]  
SECOND_TIMESTP (0 to 59)  
MINUTE_TIMESTP (0 to 59)  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
0000 0000  
Table 64  
Table 66  
Table 68  
Table 70  
Sec_timestp4  
Min_timestp4  
Hour_timestp4  
-
-
-
-
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
DAY_TIMESTP (1 to 31)  
2Dh  
2Eh  
2Fh  
Day_timestp4  
Mon_timestp4  
Year_timestp4  
-
-
-
-
Table 72  
Table 74  
Table 76  
-
-
MONTH_TIMESTP (1 to 12)  
YEAR_TIMESTP (0 to 99)  
Aging offset register  
30h  
Aging_offset  
-
-
-
AO[3:0]  
0000 1000  
Table 19  
Interrupt mask registers  
31h  
32h  
33h  
34h  
INT_A_MASK1  
-
-
-
-
-
-
-
-
MIA  
SIA  
WD_CDA  
TSIE1A  
AIEA  
BIEA  
TSIE3A  
BIEB  
BLIEA  
TSIE4A  
BLIEB  
0011 1111  
0000 1111  
0011 1111  
0000 1111  
Table 80  
Table 80  
Table 82  
Table 82  
INT_A_MASK2  
INT_B_MASK1  
INT_B_MASK2  
-
MIB  
-
-
SIB  
-
TSIE2A  
AIEB  
WD_CDB  
TSIE1B  
TSIE2B  
TSIE3B  
TSIE4B  
Watchdog registers  
35h  
36h  
Watchdg_tim_ctl  
Watchdg_tim_val  
WD_CD  
T
TI_TP  
-
-
-
TF[1:0]  
0000 0011  
0000 0000  
Table 55  
Table 57  
WATCHDG_TIM_VAL[7:0]  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
9 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.2 Control registers  
The first five registers of the PCA2131, with the addresses 00h, 01h, 02h, 03h and 04h,  
are used as control registers.  
7.2.1 Register Control_1  
Table 5.ꢀControl_1 - control and status register 1 (address 00h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
EXT_  
TEST  
TC_DIS  
STOP  
100TH_  
S_DIS  
POR_  
OVRD  
12_24  
MI  
SI  
Reset  
value  
0
0
0
0
1
0
0
0
Table 6.ꢀControl_1 - control and status register 1 (address 00h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
Description  
Reference  
7
EXT_TEST  
0
1
0
1
0
1
normal mode  
Section 7.14  
external clock test mode  
6
5
TC_DIS  
STOP  
Temperature compensation enabled  
Temperature compensation disabled  
RTC source clock runs  
Section 7.3.1  
Section 7.15  
RTC clock is stopped;  
RTC divider chain flip-flops are asynchronously  
set logic 0;  
CLKOUT output frequencies are still available  
4
3
100TH_S_DIS  
POR_OVRD  
0
1
100th seconds counter enabled  
-
-
100th seconds counter Disabled, register 06h reset  
to 00h.  
0
1
Power-On Reset Override (PORO) facility disabled; Section 7.7.2  
set logic 0 for normal operation  
Power-On Reset Override (PORO) sequence  
reception enabled  
2
12_24  
0
1
24-hour mode selected  
12-hour mode selected  
Table 34,  
Table 50,  
Table 71  
1
0
MI  
SI  
0
1
0
1
minute interrupt disabled  
minute interrupt enabled  
second interrupt disabled  
second interrupt enabled  
Section 7.13.1  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
10 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.2.2 Register Control_2  
Table 7.ꢀControl_2 - control and status register 2 (address 01h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
MSF  
0
6
WDTF  
0
5
T
0
4
AF  
0
3
T
0
2
T
0
1
AIE  
0
0
T
0
Symbol  
Reset  
value  
Table 8.ꢀControl_2 - control and status register 2 (address 01h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
Description  
Reference  
7
MSF  
0
1
no minute or second interrupt generated  
Section 7.13  
flag set when minute or second interrupt  
generated;  
flag must be cleared to clear interrupt  
6
WDTF  
0
1
no watchdog timer interrupt generated  
Section 7.13.3  
flag set when watchdog timer interrupt generated;  
flag cannot be cleared by command (read-only)  
5
4
T
0
0
1
unused  
-
AF  
no alarm interrupt triggered  
Section 7.10.6  
flag set when alarm triggered;  
flag must be cleared to clear interrupt  
3:2  
1
T
0
0
1
0
unused  
-
AIE  
no interrupt generated from the alarm flag  
interrupt generated when alarm flag set  
unused  
Section 7.13.4  
0
T
-
7.2.3 Register Control_3  
Table 9.ꢀControl_3 - control and status register 3 (address 02h) bit allocation  
Bit  
7
6
5
4
BTSE  
0
3
BF  
0
2
BLF  
0
1
BIE  
0
0
BLIE  
0
Symbol  
PWRMNG[2:0]  
1
Reset  
value  
1
1
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
11 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 10.ꢀControl_3 - control and status register 3 (address 02h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7 to 5  
PWRMNG[2:0]  
see  
control of the battery switch-over, battery low  
Section 7.5  
Table 22  
detection, and extra power fail detection functions  
4
3
BTSE  
BF  
0
1
0
1
no timestamp when battery switch-over occurs  
time-stamped when battery switch-over occurs  
no battery switch-over interrupt occurred  
Section 7.12.4  
Section 7.5.1  
and  
Section 7.12.4  
flag set when battery switch-over occurs;  
flag must be cleared to clear interrupt  
2
BLF  
0
1
battery status ok;  
Section 7.5.2  
no battery low interrupt generated  
battery status low;  
flag cannot be cleared by command, flag is  
automatically cleared when battery is replaced.  
1
0
BIE  
0
1
0
1
no interrupt generated from the battery flag (BF)  
interrupt generated when BF is set  
Section 7.13.6  
BLIE  
no interrupt generated from battery low flag (BLF) Section 7.13.7  
interrupt generated when BLF is set  
7.2.4 Register Control_4  
Table 11.ꢀControl_4 - control and status register 4 (address 03h) bit allocation  
Bit  
7
TSF1  
0
6
TSF2  
0
5
TSF3  
0
4
TSF4  
0
3
T
0
2
T
0
1
T
0
0
T
0
Symbol  
Reset  
value  
Table 12.ꢀControl_4 - control and status register 4 (address 03h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
TSF1  
0
1
no timestamp interrupt generated for pin TS1  
Section 7.12.1  
flag set when TS1 input is driven to ground;  
flag must be cleared to clear interrupt  
6
5
4
TSF2  
TSF3  
TSF4  
T
0
1
no timestamp interrupt generated when pin TS2  
Section 7.12.1  
Section 7.12.1  
Section 7.12.1  
flag set when TS2 input is driven to ground;  
flag must be cleared to clear interrupt  
0
1
no timestamp interrupt generated for pin TS3  
flag set when TS3 input is driven to ground;  
flag must be cleared to clear interrupt  
0
1
no timestamp interrupt generated when pin TS4  
flag set when TS4 input is driven to ground;  
flag must be cleared to clear interrupt  
3
0
Unused  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
12 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 12.ꢀControl_4 - control and status register 4 (address 03h) bit description...continued  
Bit  
2
Symbol  
Value  
Description  
Unused  
Reference  
T
T
T
0
0
0
1
Unused  
0
Unused  
7.2.5 Register Control_5  
Table 13.ꢀControl_5 - control and status register 5 (address 04h) bit allocation  
Bit  
7
TSIE1  
0
6
TSIE2  
0
5
TSIE3  
0
4
TSIE4  
0
3
T
0
2
T
0
1
T
0
0
T
0
Symbol  
Reset  
value  
Table 14.ꢀControl_5 - control and status register 5 (address 04h) bit description  
Bit  
Symbol  
Value  
Description  
Reference  
7
TSIE1  
0
1
0
1
0
1
0
1
0
no interrupt generated from timestamp flag of TS1 Section 7.13.5  
interrupt generated when timestamp flag set of TS1  
6
TSIE2  
TSIE3  
TSIE4  
T
no interrupt generated from timestamp flag of TS2 Section 7.13.5  
interrupt generated when timestamp flag set of TS2  
5
no interrupt generated from timestamp flag of TS3 Section 7.13.5  
interrupt generated when timestamp flag set of TS3  
4
no interrupt generated from timestamp flag of TS4 Section 7.13.5  
interrupt generated when timestamp flag set of TS4  
3 to 0  
unused  
-
7.3 Register CLKOUT_ctl  
Table 15.ꢀCLKOUT_ctl - CLKOUT control register (address 13h) bit allocation  
Bits labeled as T are unused and return 0 when read. Bits labeled as X are undefined at power-on and unchanged by  
subsequent resets.  
Bit  
7
6
5
OTPR  
X
4
T
0
3
T
0
2
1
COF[2:0]  
0
0
Symbol  
TCR[1:0]  
Reset  
value  
0
0
0
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
13 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 16.ꢀCLKOUT_ctl - CLKOUT control register (address 13h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
7 to 6  
5
Symbol  
TCR[1:0]  
OTPR  
Value  
Description  
Reference  
see Table 17  
temperature measurement period  
no OTP refresh  
0
Section 7.3.2  
1
OTP refresh performed  
unused [1]  
4
T
0
3
T
0
unused  
2 to 0  
COF[2:0]  
see Table 18  
CLKOUT frequency selection  
Section 7.3.3  
[1] programming this bit to 1 may lead to a decrease of timing accuracy.  
7.3.1 Temperature compensated Real Time Clock  
The frequency of tuning fork quartz crystal oscillators is temperature-dependent. In the  
PCA2131, the frequency deviation caused by temperature variation is corrected by  
adjusting the RTC frequency divider with digital method.  
The load capacitance is trimmed to the required value at 25 °C in order to compensate  
the frequency deviation over process variation.  
The frequency accuracy at 25 °C can be evaluated by measuring the frequency of  
the square wave signal available at the output pin CLKOUT. However, the selection of  
fCLKOUT = 32.768 kHz (default value) can lead to inaccurate measurements. Accurate  
frequency measurement occurs when fCLKOUT = 16.384 kHz or lower is selected (see  
Table 18).  
The temperature compensated frequency input for the Real Time Clock cannot be  
observed at the CLKOUT pin but can be evaluated by following these steps.  
Set Second Interrupt, bit SI in register Control_1 to 1  
Set bit TI_TP in register Watchdg_tim_ctl to 1 for a pulsed interrupt signal  
Set bit SIA in register INTA_MASK_1 to 0 to direct the Second Interrupt to pin INTA for  
a 1 Hz pulse output.  
The RTC temperature compensation works by adding or deleting pulses at the 32.768  
kHz level. These correction pulses are spaced evenly over a sufficiently long period  
of time to reach the required resolution and accuracy. Every second corrections  
with a resolution of about 30.5 ppm (1/32768) can be generated by the temperature  
compensation engine. If for instance a 10 ppm correction is called for, the correction  
pulses will be generated approximately once every 3 seconds, for a 50 ppm correction  
every 0.6 s and so on.  
The 1 Hz interrupt output signal can be measured with a counter and by selecting an  
appropriate gating time the measurement resolution can be set to the desired level. A  
gating time of 100 s for instance will determine the averaged 1 second period with a  
resolution of 0.3 ppm.  
The feature of temperature compensation can be turned off for ultra low power  
consumption by first performing a software reset (SR) followed by setting TC_DIS to ‘1’  
within 5 seconds.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
14 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.3.1.1 Temperature measurement  
The PCA2131 has a temperature sensor circuit used to perform temperature  
compensation of the clock input to the RTC. The temperature is measured immediately  
after power-on and then periodically with a period set by the temperature conversion  
rate TCR[1:0] in the register CLKOUT_ctl. During the first approximately 60 s after start-  
up the compensation will be inactive, after this period the temperature compensation is  
active.  
Table 17.ꢀTemperature measurement period  
TCR[1:0]  
Temperature measurement period  
[1]  
00  
01  
10  
11  
32 min  
16 min  
8 min  
4 min  
[1] Default value.  
7.3.2 OTP refresh  
Each IC is calibrated during production and testing of the device. The calibration  
parameters are stored on EPROM cells called One Time Programmable (OTP) cells. It is  
recommended to process an OTP refresh once after the power is up and the oscillator is  
operating stable. The OTP refresh takes less than 100 ms to complete.  
To perform an OTP refresh, bit OTPR has to be cleared (set to logic 0) and then set to  
logic 1 again.  
When read OTPR bit, its state is:  
"0" until the OTP read state machine completes copying of the eFuse data into the  
shadow registers. This could be due to a POR event or to writing a 0 > 1 to the OTPR  
register bit.  
"1" when the OTP read state machine completes copying to the shadow registers from  
the eFuse instances. During normal operation OTPR must be kept at 1 to prevent higher  
power usage.  
The OTP logic is not reset nor affected by the Software Reset. The OTPR functionality is  
only reset by the initial digital POR.  
During OTP refresh, VDD has to be above 1.8 V, the rising speed to 1.8 V needs to be  
faster than 2 V/100 ms. After OTP refresh has finished, PCA2131 can operate with VDD  
as low as 1.2 V.  
7.3.3 Clock output  
A programmable square wave is available at pin CLKOUT. Operation is controlled by the  
COF[2:0] control bits in register CLKOUT_ctl. Frequencies of 32.768 kHz (default) down  
to 1 Hz can be generated for use as system clock, microcontroller clock, charge pump  
input, or for calibrating the oscillator at 25 °C to determine aging offset. The CLKOUT  
output is not temperature compensated to prevent jitter due to digital compensation  
method.  
CLKOUT is a push-pull output and is enabled at power-on. When disabled, the output is  
high-impedance.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
15 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 18.ꢀCLKOUT frequency selection  
COF[2:0]  
000  
CLKOUT frequency (Hz)  
Typical duty cycle [1]  
[2]  
32ꢀ768  
60 : 40 to 40 : 60  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
50 : 50  
-
001  
16ꢀ384  
010  
8ꢀ192  
011  
4ꢀ096  
100  
2ꢀ048  
101  
1ꢀ024  
110  
1
111  
CLKOUT = high-Z  
[1] Duty cycle definition: % HIGH-level time: % LOW-level time.  
[2] Default value.  
The duty cycle of the selected clock is not controlled, however, due to the nature of the  
clock generation all but the 32.768 kHz frequencies are 50 : 50.  
7.4 Register Aging_offset  
Table 19.ꢀAging_offset - crystal aging offset register (address 30h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
T
0
6
T
0
5
T
0
4
T
0
3
2
1
0
Symbol  
AO[3:0]  
Reset  
value  
1
0
0
0
Table 20.ꢀAging_offset - crystal aging offset register (address 30h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
T
Value  
Description  
unused  
7 to 4  
3 to 0  
0000  
AO[3:0]  
see Table 21  
aging offset value  
7.4.1 Crystal aging correction  
The PCA2131 has an offset register Aging_offset to correct the crystal aging effects 1 .  
The accuracy of the frequency of a quartz crystal depends on its aging. The aging offset  
adds an adjustment, positive or negative, in the temperature compensation circuit which  
allows correcting the aging effect.  
The aging offset bits allow a frequency correction of typically 2 ppm per AO[3:0] value,  
from -14 ppm to +16 ppm.  
1 For further information, refer to the application note [1].  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
16 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 21.ꢀFrequency correction at 25 °C, typical  
AO[3:0]  
ppm  
Decimal  
Binary  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
0
+16  
+14  
+12  
+10  
+8  
+6  
+4  
+2  
0
1
2
3
4
5
6
7
[1]  
8
9
-2  
10  
11  
12  
13  
14  
15  
-4  
-6  
-8  
-10  
-12  
-14  
[1] Default value.  
7.5 Power management functions  
The PCA2131 has two power supplies:  
VDD - the main power supply  
VBAT - the battery backup supply  
Internally, PCA2131 operates with the internal operating voltage Voper(int) which is also  
available as VBBS on the battery backed output voltage pin, BBS. Depending on the  
condition of the main power supply and the selected power management function,  
Voper(int) is either on the potential of VDD or VBAT  
.
Two power management functions are implemented:  
Battery switch-over function - monitors the main power supply VDD and switching to  
VBAT in case a power fail condition is detected (see Section 7.5.1).  
Battery low detection function - monitors the status of the battery, VBAT (see  
Section 7.5.2).  
The power management functions are controlled by the control bits PWRMNG[2:0] (see  
Table 22) in register Control_3 (see Table 10):  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
17 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 22.ꢀPower management control bit description  
PWRMNG[2:0]  
Function  
000  
battery switch-over function is enabled in standard mode;  
battery low detection function is enabled  
001,010  
011  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is enabled  
100,101  
110,111  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled  
[1] [2]  
battery switch-over function is disabled, only one power supply  
(VDD);  
battery low detection function is disabled  
[1] Default value.  
[2] When the battery switch-over function is disabled, the device works only with the power supply VDD. VBAT must be put to  
ground and the battery low detection function is disabled.  
7.5.1 Battery switch-over function  
PCA2131 has a backup battery switch-over circuit which monitors the main power supply  
VDD. When a power failure condition is detected, it automatically switches to the backup  
battery.  
One of two operation modes can be selected:  
Standard mode - the power failure condition happens when:  
VDD < VBAT AND VDD < Vth(sw)bat  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. The battery  
switch-over in standard mode works only for VDD > 2.5 V. Applying back-up battery  
voltage to VBAT without applying VDD supply will not power on the device; only when VDD  
main power is supplied the device will start operating.  
Direct switching mode - the power failure condition happens when VDD < VBAT. Direct  
switching from VDD to VBAT without requiring VDD to drop below Vth(sw)bat  
When a power failure condition occurs and the power supply switches to the battery, the  
following sequence occurs:  
1. The battery switch flag BF (register Control_3) is set to logic 1.  
2. An interrupt is generated if the control bit BIE (register Control_3) is enabled (see  
Section 7.13.6).  
3. If the control bit BTSE (register Control_3) is logic 1, the timestamp 4 registers store  
the time and date when the battery switch occurred (see Section 7.12.4).  
4. The battery switch flag BF is cleared by command; it must be cleared to clear the  
interrupt.  
The interface and CLKOUT output are disabled in battery backup operation:  
Interface inputs are not recognized, preventing extraneous data being written to the  
device  
Interface outputs are high-impedance  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
18 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
For further information about I2C-bus communication and battery backup operation, see  
Section 7.16.3.  
7.5.1.1 Standard mode  
If VDD > VBAT OR VDD > Vth(sw)bat: Voper(int) is at VDD potential.  
If VDD < VBAT AND VDD < Vth(sw)bat: Voper(int) is at VBAT potential.  
backup battery operation  
V
DD  
V
V
oper(int)  
oper(int)  
V
BAT  
internal operating voltage (V  
)
oper(int)  
V
th(sw)bat  
(= 2.5 V)  
V
DD  
(= 0 V)  
BF  
INT  
cleared via interface  
001aaj311  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V. In standard mode, the  
battery switch-over works only for VDD > 2.5 V.  
VDD may be lower than VBAT (for example VDD = 3 V, VBAT = 4.1 V).  
Figure 4.ꢀBattery switch-over behavior in standard mode with bit BIE set logic 1 (enabled)  
7.5.1.2 Direct switching mode  
If VDD > VBAT: Voper(int) is at VDD potential.  
If VDD < VBAT: Voper(int) is at VBAT potential.  
The direct switching mode is useful in systems where VDD is always higher than VBAT  
.
This mode is not recommended if the VDD and VBAT values are similar (for example,  
VDD = 3.3 V, VBAT ≥ 3.0 V). In direct switching mode, the power consumption is reduced  
compared to the standard mode because the monitoring of VDD and Vth(sw)bat is not  
performed.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
19 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
backup battery operation  
V
DD  
V
V
oper(int)  
oper(int)  
V
BAT  
internal operating voltage (V  
)
oper(int)  
V
th(sw)bat  
(= 2.5 V)  
V
DD  
(= 0 V)  
BF  
INT  
cleared via interface  
001aaj312  
Figure 5.ꢀBattery switch-over behavior in direct switching mode with bit BIE set logic 1  
(enabled)  
7.5.1.3 Battery switch-over disabled: only one power supply (VDD  
)
When the battery switch-over function is disabled:  
The power supply is applied on the VDD pin  
The VBAT pin must be connected to ground  
Voper(int) is at VDD potential  
The battery flag (BF) is always logic 0  
7.5.1.4 Battery switch-over architecture  
The architecture of the battery switch-over circuit is shown in Figure 6.  
comparators  
logic  
switches  
V
DD  
V
th(sw)bat  
V
DD  
V
LOGIC  
oper(int)  
V
th(sw)bat  
V
BAT  
V
BAT  
001aag061  
Figure 6.ꢀBattery switch-over circuit, simplified block diagram  
Voper(int) is at VDD or VBAT potential.  
Remark: It has to be assured that there are decoupling capacitors on the pins VDD, VBAT  
,
and BBS.  
7.5.2 Battery low detection function  
The PCA2131 has a battery low detection circuit which monitors the status of the battery  
VBAT  
.
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
20 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
When VBAT drops below the threshold value Vth(bat)low (typical 2.5 V), the BLF flag  
(register Control_3) is set to indicate that the battery is low and that it must be replaced.  
Monitoring of the battery voltage also occurs during battery operation.  
An unreliable battery cannot prevent the supply voltage from dropping below Vlow (typical  
1.2 V) and with that the data integrity gets lost. (For further information about Vlow see  
Section 7.6.)  
When VBAT drops below the threshold value Vth(bat)low, the following sequence occurs  
(see Figure 7):  
1. The battery low flag BLF is set logic 1.  
2. An interrupt is generated if the control bit BLIE (register Control_3) is enabled (see  
Section 7.13.7).  
3. The flag BLF remains logic 1 until the battery is replaced. BLF cannot be cleared by  
command. It is automatically cleared by the battery low detection circuit when the  
battery is replaced or when the voltage rises again above the threshold value. This  
could happen if a super capacitor is used as a backup source and the main power is  
applied again.  
V
DD  
= V  
oper(int)  
internal operating voltage (V  
)
oper(int)  
V
BAT  
V
th(bat)low  
(= 2.5 V)  
V
BAT  
BLF  
INT  
001aaj322  
Figure 7.ꢀBattery low detection behavior with bit BLIE set logic 1 (enabled)  
7.5.3 Battery backup supply  
The VBBS voltage on the output pin BBS is at the same potential as the internal operating  
voltage Voper(int), depending on the selected battery switch-over function mode:  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
21 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 23.ꢀOutput pin BBS  
Battery switch-over function Conditions  
mode  
Potential of  
Voper(int) and  
VBBS  
standard  
VDD > VBAT OR VDD > Vth(sw)bat  
VDD  
VBAT  
VDD  
VBAT  
VDD  
VDD < VBAT AND VDD < Vth(sw)bat  
VDD > VBAT  
direct switching  
disabled  
VDD < VBAT  
only VDD available,  
VBAT must be put to ground  
The output pin BBS can be used as a supply for external devices with battery backup  
needs, such as SRAM (see [1]).  
7.6 Oscillator stop detection function  
The PCA2131 has an on-chip oscillator detection circuit which indicates the status of  
the oscillation by monitoring the supply of oscillator: whenever the supply is out of the  
expected range, a reset occurs and the oscillator stop flag OSF (in register Seconds) is  
set logic 1.  
• Power-on:  
1. The oscillator is not running, the chip is in reset (OSF is logic 1).  
2. When the oscillator starts running and supply is OK after power-on, the chip exits  
from reset.  
3. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
• Power supply failure:  
1. When the power supply of the chip drops below a certain value (Vlow), typically  
1.2 V, the oscillator supply also fails and a reset occurs.  
2. When the power supply returns to normal operation, the oscillator supply is OK  
again, the chip exits from reset.  
3. The flag OSF is still logic 1 and can be cleared (OSF set logic 0) by command.  
4. When OSF flag is cleared an OTP refresh should be performed (see Section 7.3.2).  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
22 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
V
DD  
V
DD  
V
V
oper(int)  
oper(int)  
V
BAT  
V
BAT  
V
DD  
V
th(sw)bat  
(= 2.5 V)  
V
DD  
battery discharge  
V
low  
(= 1.2 V)  
V
oper(int)  
V
BAT  
V
SS  
V
SS  
(1)  
(2)  
OSF  
001aaj409  
1. Theoretical state of the signals since there is no power.  
2. The oscillator stop flag (OSF), set logic 1, indicates that the oscillation has stopped and a  
reset has occurred since the flag was last cleared (OSF set logic 0). In this case, the integrity  
of the clock information is not guaranteed. The OSF flag is cleared by command.  
Figure 8.ꢀPower failure event due to battery discharge: reset occurs  
7.7 Power-On Reset function  
The PCA2131 has a Power-On Reset (POR) and a Power-On Reset Override (PORO)  
function implemented.  
7.7.1 Power-On Reset (POR)  
The POR is active whenever the oscillator is stopped. The oscillator is considered to be  
stopped during the time between power-on and stable crystal resonance (see Figure 9).  
This time may be in the range of 200 ms to 2 s depending on temperature and supply  
voltage. Whenever an internal reset occurs, the oscillator stop flag is set (OSF set logic  
1).  
The OTP refresh (see Section 7.3.2) should ideally be executed as the first instruction  
after start-up and also after a reset due to an oscillator stop.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
23 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
chip in reset  
chip not in reset  
chip fully operative  
CLKOUT  
available  
V
DD  
oscillation  
internal  
reset  
OTPR  
t
aaa-015298  
Figure 9.ꢀDependency between POR and oscillator  
After POR, the following mode is entered:  
32.768 kHz CLKOUT active  
Power-On Reset Override (PORO) available to be set  
24-hour mode is selected  
Battery switch-over function disabled, only one power supply (VDD  
Temperature compensation enabled  
100th second enabled  
)
Time 00:00:00.00  
Date 2001.01.01  
Weekday Monday  
The register values after power-on are shown in Table 4.  
7.7.2 Power-On Reset Override (PORO)  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a mechanism has been built in to  
disable the POR and therefore speed up the on-board test of the device.  
osc stopped  
OSCILLATOR  
0 = stopped, 1 = running  
reset  
SCL  
RESET  
OVERRIDE  
0 = override inactive  
1 = override active  
SDA/CE  
CLEAR  
0 = clear override mode  
1 = override possible  
POR_OVRD  
001aaj324  
Figure 10.ꢀPower-On Reset (POR) system  
The setting of the PORO mode requires that POR_OVRD in register Control_1 is  
set logic 1 and that the signals at the interface pins SDA/CE and SCL are toggled as  
illustrated in Figure 11. All timings shown are required minimum.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
24 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
power up  
8 ms  
minimum 500 ns  
minimum 2000 ns  
SDA/CE  
SCL  
reset override  
001aaj326  
Figure 11.ꢀPower-On Reset Override (PORO) sequence, valid for both I2C-bus and SPI-bus  
Once the override mode is entered, the device is immediately released from the reset  
state and the set-up operation can commence.  
The PORO mode is cleared by writing logic 0 to POR_OVRD. POR_OVRD must be logic  
1 before a re-entry into the override mode is possible. Setting POR_OVRD logic 0 during  
normal operation has no effect except to prevent accidental entry into the PORO mode.  
7.8 Software Reset register  
Table 24.ꢀReset - software reset control (address 05h) bit description  
Bit  
7
6
5
4
3
SR  
2
1
0
Symbol  
Section  
CPR  
0
1
0
1
0
CTS  
Section 7.8.2  
Section 7.8.1  
Section 7.8.3  
To  
trigger a software reset (SR), 0010ꢀ1100 (2Ch) must be sent to register Reset (address  
05h). A software reset also triggers CPR and CTS  
clear prescaler (CPR), 1010ꢀ0100 (A4h) must be sent to register Reset (address 05h)  
clear timestamp (CTS), 0010ꢀ0101 (25h) must be sent to register Reset (address 05h)  
It is possible to combine CPR and CTS by sending 1010ꢀ0101 (A5h).  
Read of the SR_RESET register will return a fixed pattern of 00100100;  
Remark: Any other value sent to this register is ignored.  
7.8.1 SR - Software reset  
A reset is automatically generated at power-on as Power-On Reset as described in  
Section 7.7. A reset can also be initiated with the software reset command.  
After software reset, the following mode is entered:  
32.768 kHz CLKOUT active  
Power-On Reset Override (PORO) unchanged  
OTP not reloaded, OTPR unchanged.  
24-hour mode is selected  
Battery switch-over function disabled, only one power supply (VDD  
Temperature compensation enabled  
100th second enabled  
)
Time 00:00:00.00  
Date 2001.01.01  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
25 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Weekday Monday  
slave address  
address 05h  
software reset 2Ch  
R/W  
0
s
1
0
1
0
0
1
1
A
0
0
0
0
0
1
0
1
A
0
0
1
0
1
1
0
0
A P/S  
SDA  
SCL  
internal  
reset signal  
aaa-042191  
Figure 12.ꢀSoftware reset command  
7.8.2 CPR: clear prescaler  
To set the time for RTC mode, the clear prescaler instruction is needed.  
Before sending this instruction, it is mandatory to first set stop by the STOP bit.  
See STOP definition for an explanation on using this instruction.  
7.8.3 CTS: clear timestamp  
The timestamp registers (address 14h to 2Fh) can be set to all 0 with this instruction.  
7.9 Time and date function  
Most of these registers are coded in the Binary Coded Decimal (BCD) format.  
7.9.1 Register 100th Seconds  
Table 25.ꢀ100th Seconds - 100th seconds (address 06h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
100TH SECONDS (0 to 99)  
Reset  
value  
0
0
0
0
0
0
0
0
Table 26.ꢀ100th Seconds - 100th seconds register (address 06h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4  
3 to 0  
100TH SECONDS  
ten’s place actual seconds coded in BCD format  
unit place  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
26 / 86  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 27.ꢀ100th Seconds coded in BCD format  
Seconds Upper-digit (ten’s place)  
value in  
decimal  
Digit (unit place)  
Bit 6  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
:
0
0
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
98  
99  
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
7.9.2 Register Seconds  
Table 28.ꢀSeconds - seconds and clock integrity register (address 07h) bit allocation  
Bit  
7
OSF  
1
6
5
4
3
2
1
0
Symbol  
SECONDS (0 to 59)  
0
Reset  
value  
0
0
0
0
0
0
Table 29.ꢀSeconds - seconds and clock integrity register (address 07h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
OSF  
0
1
-
-
clock integrity is guaranteed  
clock integrity is not guaranteed:  
oscillator has stopped and chip reset has  
occurred since flag was last cleared  
6 to 4  
3 to 0  
SECONDS  
0 to 5  
0 to 9  
ten’s place actual seconds coded in BCD format  
unit place  
Table 30.ꢀSeconds coded in BCD format  
Seconds Upper-digit (ten’s place)  
value in  
decimal  
Digit (unit place)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
00  
01  
02  
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
0
:
0
0
1
:
0
1
0
:
09  
10  
0
0
0
0
0
1
1
0
0
0
0
0
1
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
27 / 86  
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 30.ꢀSeconds coded in BCD format...continued  
Seconds Upper-digit (ten’s place)  
value in  
decimal  
Digit (unit place)  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
:
:
:
:
:
:
:
:
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
7.9.3 Register Minutes  
Table 31.ꢀMinutes - minutes register (address 08h) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
T
0
6
5
4
3
2
1
0
Symbol  
MINUTES (0 to 59)  
0
Reset  
value  
0
0
0
0
0
0
Table 32.ꢀMinutes - minutes register (address 08h) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
T
Value  
0
Place value Description  
- unused  
7
6 to 4  
3 to 0  
MINUTES  
0 to 5  
0 to 9  
ten’s place actual minutes coded in BCD format  
unit place  
7.9.4 Register Hours  
Table 33.ꢀHours - hours register (address 09h) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T
T
AMPM  
HOURS (1 to 12) in 12-hour mode  
HOURS (0 0to 23) in 24-hour mode  
Reset  
value  
0
0
0
0
0
0
0
0
Table 34.ꢀHours - hours register (address 09h) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
T
00  
-
unused  
12-hour mode[1]  
5
AMPM  
0
1
-
-
indicates AM  
indicates PM  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
28 / 86  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 34.ꢀHours - hours register (address 09h) bit description...continued  
Bits labeled as T are unused and return 0 when read  
Bit  
4
Symbol  
Value  
0 to 1  
0 to 9  
Place value Description  
HOURS  
ten’s place actual hours coded in BCD format when in 12-hour  
mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOURS  
0 to 2  
0 to 9  
ten’s place actual hours coded in BCD format when in 24-hour  
mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1 (see Table 6).  
7.9.5 Register Days  
Table 35.ꢀDays - days register (address 0Ah) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
T
0
6
T
0
5
4
3
2
1
0
Symbol  
DAYS (1 to 31)  
Reset  
value  
0
0
0
0
0
0
Table 36.ꢀDays - days register (address 0Ah) bit description  
Bit  
Symbol  
Value  
00  
Place value Description  
- unused  
7 to 6  
5 to 4  
3 to 0  
T
DAYS[1]  
0 to 3  
0 to 9  
ten’s place actual day coded in BCD format  
unit place  
[1] If the year counter contains a value which is exactly divisible by 4, excluding the year 00, the RTC compensates for leap years by adding a 29th day to  
February. Note that next time the year will roll over to 00 will be year 2100, which is not going to be leap year.  
7.9.6 Register Weekdays  
Table 37.ꢀWeekdays - weekdays register (address 0Bh) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
T
0
6
T
0
5
T
0
4
T
0
3
T
0
2
1
0
Symbol  
WEEKDAYS (0 to 6)  
0
Reset  
value  
0
1
Table 38.ꢀWeekdays - weekdays register (address 0Bh) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
T
Value  
000  
Description  
7 to 3  
2 to 0  
unused  
WEEKDAYS  
0 to 6  
actual weekday value, see Table 39  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
29 / 86  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Although the association of the weekdays counter to the actual weekday is arbitrary, the  
PCA2131 assumes that Sunday is 000 and Monday is 001 for the purpose of determining  
the increment for calendar weeks.  
Table 39.ꢀWeekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be reassigned by the user.  
7.9.7 Register Months  
Table 40.ꢀMonths - months register (address 0Ch) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
T
0
6
T
0
5
T
0
4
3
2
1
0
Symbol  
MONTHS (1 to 12)  
0
Reset  
value  
0
0
0
1
Table 41.ꢀMonths - months register (address 0Ch) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
T
Value  
000  
Place value Description  
- unused  
7 to 5  
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD format, see Table 42  
unit place  
3 to 0  
Table 42.ꢀMonth assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
January  
February  
March  
0
0
0
0
0
0
0
0
0
0
0
1
0
1
1
0
1
0
1
0
April  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
30 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 42.ꢀMonth assignments in BCD format...continued  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
May  
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
0
1
1
1
0
0
0
0
0
0
1
1
0
0
0
0
1
1
0
1
0
1
0
1
0
June  
July  
August  
September  
October  
November  
December  
7.9.8 Register Years  
Table 43.ꢀYears - years register (address 0Dh) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
6
5
4
3
2
1
0
Symbol  
YEARS (0 to 99)  
Reset  
value  
0
0
0
0
0
0
0
1
Table 44.ꢀYears - years register (address 0Dh) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4  
3 to 0  
YEARS  
ten’s place actual year coded in BCD format  
unit place  
7.9.9 Setting and reading the time  
Figure 13 shows the data flow and data dependencies starting from the 100 Hz/1 Hz  
clock tick.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
31 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
100 Hz tick  
100TH_SECOND  
1 Hz tick  
100TH  
SECONDS  
MINUTES  
12_24  
HOURS  
DAYS  
LEAP YEAR  
CALCULATION  
WEEKDAY  
MONTHS  
YEARS  
aaa-009580  
Figure 13.ꢀData flow for the time function  
Write access requires setting the STOP bit. The flow for accurately setting the time in  
RTC mode is:  
start an I2C access at register control_1  
set STOP bit  
set CPR (register SR_RESET, CPR is logic 1)  
address counter rolls over to address 06h  
set time (100th seconds, seconds to years)  
end I2C access  
wait for external time reference to indicate that time counting should start  
start an I2C access at register control_1  
clear STOP bit (time starts counting from now)  
end I2C access  
The first increment of the time circuits is between 0 s and 122 ms after STOP is released.  
See description for STOP bit in Section 7.15  
During read operations, the time counting circuits (memory locations 06h through 0Dh)  
are blocked. This prevents  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
After this read access is completed, the time circuit is released again. Any pending  
request to increment the time counters that occurred during the read access is serviced.  
As a consequence of this method, it is very important to make a read access in one go.  
That is, reading seconds through to years should be made in one single access. Failing  
to comply with this method could result in the time becoming corrupted.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
32 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
As an example, a roll-over may occur between reads thus giving the minutes from one  
moment and the hours from the next. Therefore it is advised to read all time and date  
registers in one access.  
7.10 Alarm function  
When one or more of the alarm bit fields are loaded with a valid second, minute, hour,  
day, or weekday and its corresponding alarm enable bit (AE_x) is logic 0, then that  
information is compared with the actual second, minute, hour, day, and weekday (see  
Figure 14).  
example  
check now signal  
AE_S  
AE_S = 1  
SECOND ALARM  
=
1
0
SECOND TIME  
AE_M  
AE_H  
AE_D  
AE_W  
MINUTE ALARM  
MINUTE TIME  
=
=
=
=
HOUR ALARM  
HOUR TIME  
(1)  
set alarm flag AF  
DAY ALARM  
DAY TIME  
WEEKDAY ALARM  
WEEKDAY TIME  
013aaa236  
1. Only when all enabled alarm settings are matching.  
Figure 14.ꢀAlarm function block diagram  
The generation of interrupts from the alarm function is described in Section 7.13.4.  
7.10.1 Register Second_alarm  
Table 45.ꢀSecond_alarm - second alarm register (address 0Eh) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
AE_S  
1
6
5
4
3
2
1
0
Symbol  
SECOND_ALARM (0 to 59)  
Reset  
value  
0
0
0
0
0
0
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
33 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 46.ꢀSecond_alarm - second alarm register (address 0Eh) bit description  
Bit  
Symbol  
Value  
0
Place value Description  
7
AE_S  
-
-
second alarm is enabled  
second alarm is disabled  
1
6 to 4  
3 to 0  
SECOND_ALARM  
0 to 5  
0 to 9  
ten’s place second alarm information coded in BCD format  
unit place  
7.10.2 Register Minute_alarm  
Table 47.ꢀMinute_alarm - minute alarm register (address 0Fh) bit allocation  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
7
AE_M  
1
6
5
4
3
2
1
0
Symbol  
MINUTE_ALARM (0 to 59)  
Reset  
value  
0
0
0
0
0
0
0
Table 48.ꢀMinute_alarm - minute alarm register (address 0Fh) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
0
Place value Description  
7
AE_M  
-
-
minute alarm is enabled  
minute alarm is disabled  
1
6 to 4  
3 to 0  
MINUTE_ALARM  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in BCD format  
unit place  
7.10.3 Register Hour_alarm  
Table 49.ꢀHour_alarm - hour alarm register (address 10h) bit allocation  
Bits labeled as T are unused and return 0 when read. Bits labeled as X are undefined at power-on and unchanged by  
subsequent resets.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
AE_H  
T
AMPM  
HOUR_ALARM (1 to 12) in 12-hour mode  
HOUR_ALARM (0 to 23) in 24-hour mode  
Reset  
value  
1
0
0
0
0
0
0
0
Table 50.ꢀHour_alarm - hour alarm register (address 10h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1
-
-
hour alarm is enabled  
hour alarm is disabled  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
34 / 86  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 50.ꢀHour_alarm - hour alarm register (address 10h) bit description...continued  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Place value Description  
6
T
0
-
unused  
12-hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_ALARM  
0 to 1  
0 to 9  
ten’s place hour alarm information coded in BCD format when in  
12-hour mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOUR_ALARM  
0 to 2  
0 to 9  
ten’s place hour alarm information coded in BCD format when in  
24-hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
7.10.4 Register Day_alarm  
Table 51.ꢀDay_alarm - day alarm register (address 11h) bit allocation  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
7
AE_D  
1
6
T
0
5
4
3
2
1
0
Symbol  
DAY_ALARM (1 to 31)  
Reset  
value  
0
0
0
0
0
0
Table 52.ꢀDay_alarm - day alarm register (address 11h) bit description  
Bits labeled as T are unused and return 0 when readBits labeled as X are undefined at power-on and unchanged by  
subsequent resets.  
Bit  
Symbol  
Value  
0
Place value Description  
7
AE_D  
-
-
-
day alarm is enabled  
1
day alarm is disabled  
unused  
6
T
0
5 to 4  
3 to 0  
DAY_ALARM  
0 to 3  
0 to 9  
ten’s place day alarm information coded in BCD format  
unit place  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
35 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.10.5 Register Weekday_alarm  
Table 53.ꢀWeekday_alarm - weekday alarm register (address 12h) bit allocation  
Bits labeled as T are unused and return 0 when read.Bits labeled as X are undefined at power-on and unchanged by  
subsequent resets.  
Bit  
7
AE_W  
1
6
T
0
5
T
0
4
T
0
3
T
0
2
1
0
Symbol  
WEEKDAY_ALARM (0 to 6)  
Reset  
value  
0
0
0
Table 54.ꢀWeekday_alarm - weekday alarm register (address 12h) bit description  
Bit positions labeled as - are not implemented and return 0 when read. Bits labeled as X are undefined at power-on and  
unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
weekday alarm is enabled  
weekday alarm is disabled  
unused  
1
6 to 3  
2 to 0  
T
0
WEEKDAY_ALARM  
0 to 6  
weekday alarm information  
7.10.6 Alarm flag  
When all enabled comparisons first match, the alarm flag AF (register Control_2) is set.  
AF remains set until cleared by command. Once AF has been cleared, it will only be set  
again when the time increments to match the alarm condition once more. For clearing the  
flags, see Section 7.11.5  
Alarm registers which have their alarm enable bit AE_x at logic 1 are ignored.  
minutes counter  
minute alarm  
AF  
44  
45  
45  
46  
INT when AIE = 1  
001aaf903  
Example where only the minute alarm is used and no other interrupts are enabled.  
Figure 15.ꢀAlarm flag timing diagram  
7.11 Watchdog timer functions  
The PCA2131 has a watchdog timer function. The timer can be switched on and off by  
using the control bit WD_CD in the register Watchdg_tim_ctl.  
The watchdog timer has four selectable source clocks. It can, for example, be used to  
detect a micro-controller with interrupt and reset capability which is out of control (see  
Section 7.11.3)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
36 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
To control the timer function and timer output, the registers Control_2, Watchdg_tim_ctl,  
and Watchdg_tim_val are used.  
7.11.1 Register Watchdg_tim_ctl  
Table 55.ꢀWatchdg_tim_ctl - watchdog timer control register (address 35h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
WD_CD  
0
6
T
0
5
TI_TP  
0
4
T
0
3
T
0
2
T
0
1
0
Symbol  
TF[1:0]  
Reset  
value  
1
1
Table 56.ꢀWatchdg_tim_ctl - watchdog timer control register (address 35h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
Description  
7
WD_CD  
0
1
watchdog timer interrupt disabled  
watchdog timer interrupt enabled;  
the interrupt pin INTA/B is activated when timed  
out  
6
5
T
0
0
unused  
TI_TP  
the interrupt pin INTA/B is configured to generate a  
permanent active signal when MSF is set  
1
the interrupt pin INTA/B is configured to generate a  
pulsed signal when MSF flag is set (see Figure 17)  
4 to 2  
1 to 0  
T
000  
unused  
TF[1:0]  
timer source clock for watchdog timer  
00  
01  
10  
11  
64 Hz  
4 Hz  
14 Hz  
1
64 Hz  
7.11.2 Register Watchdg_tim_val  
Table 57.ꢀWatchdg_tim_val - watchdog timer value register (address 36h) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
WATCHDG_TIM_VAL[7:0]  
Reset  
value  
0
0
0
0
0
0
0
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
37 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 58.ꢀWatchdg_tim_val - watchdog timer value register (address 36h) bit description  
Bits labeled as X are undefined at power-on and unchanged by subsequent resets.  
Bit  
Symbol  
Value  
Description  
7 to 0  
WATCHDG_TIM_  
VAL[7:0]  
00 to FF  
timer period in seconds:  
where n is the timer value (n > 1)  
Write Only  
Table 59.ꢀProgrammable watchdog timer  
TF[1:0] Timer source  
clock frequency  
Units  
Minimum timer  
period (n = 2)  
Units  
Maximum timer  
period (n = 255)  
Units  
00  
01  
10  
11  
64  
Hz  
Hz  
Hz  
Hz  
15.625  
250  
4
ms  
ms  
s
3.984  
s
s
s
s
4
63.744  
1
4
1020  
1
64  
s
16320  
64  
7.11.3 Watchdog timer function  
The watchdog timer interrupt function is enabled or disabled by the WD_CD bit of the  
register Watchdg_tim_ctl (see Table 56).  
The 2 bits TF[1:0] in register Watchdg_tim_ctl determine one of the four source clock  
frequencies for the watchdog timer: 64 Hz, 4 Hz, 14 Hz or 164 Hz (see Table 59).  
When the watchdog timer function is enabled, the 8-bit timer in register Watchdg_tim_val  
determines the watchdog timer period (see Table 59).  
The watchdog timer counts down from the software programmed 8-bit binary value n in  
register Watchdg_tim_val. When the counter reaches 1, the watchdog timer flag WDTF  
(register Control_2) is set logic 1 and an interrupt is generated. The period accuracy  
corresponds to n +/- 0.5.  
The register Watchdg_tim_val is write only and not readable after set.  
The counter does not automatically reload.  
When WD_CD is logic 1/0 (watchdog timer interrupt enabled/disabled) and the Micro-  
controller Unit (MCU) loads a watchdog timer value n:  
the flag WDTF is reset  
INTA/B is cleared  
the watchdog timer starts again  
Loading the counter with 0 or 1 will:  
reset the flag WDTF  
clear INTA/B  
stop the watchdog timer  
Remark: WDTF can be cleared by:  
loading a value in register Watchdg_tim_val  
writing a logic 0 to WDTF  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
38 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Writing a logic 1 to WDTF has no effect.  
MCU  
watchdog  
timer value  
n = 1  
n
WDTF  
INT  
001aag062  
Counter reached 1, WDTF is logic 1, and an interrupt is generated.  
Figure 16.ꢀWD_CD set logic 1: watchdog activates an interrupt when timed out  
When the watchdog timer counter reaches 1, the watchdog timer flag WDTF is set logic  
1
When a minute or second interrupt occurs, the minute/second flag MSF is set logic 1  
(see Section 7.13.1).  
7.11.4 Pre-defined timers: second and minute interrupt  
PCA2131 has two pre-defined timers which are used to generate an interrupt either  
once per second or once per minute (see Section 7.13.1). The pulse generator for the  
minute or second interrupt operates from an internal 64 Hz clock. It is independent of the  
watchdog timer. Each of these timers can be enabled by the bits SI (second interrupt)  
and MI (minute interrupt) in register Control_1.  
7.11.5 Clearing flags  
The flags MSF and AF can be cleared by command. To prevent one flag being  
overwritten while clearing another, a logic AND is performed during the write access. A  
flag is cleared by writing logic 0 while a flag is not cleared by writing logic 1. Writing logic  
1 results in the flag value remaining unchanged.  
Two examples are given for clearing the flags. Clearing a flag is made by a write  
command:  
Bits labeled with - must be written with their previous values  
Bits labeled with T have to be written with logic 0  
WDTF is read only and has to be written with logic 0  
Repeatedly rewriting these bits has no influence on the functional behavior.  
Table 60.ꢀFlag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
MSF  
WDTF  
T
AF  
T
-
-
T
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
39 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 61.ꢀExample values in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
1
0
0
0
0
The following tables show what instruction must be sent to clear the appropriate flag.  
Table 62.ꢀExample to clear only AF (bit 4)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
1
0
1
0
0
0[1]  
0[1]  
0
[1] The bits labeled as - have to be rewritten with the previous values.  
Table 63.ꢀExample to clear only MSF (bit 7)  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
0
0
1
1
0
0[1]  
0[1]  
0
[1] The bits labeled as - have to be rewritten with the previous values.  
7.12 Timestamp function  
The PCA2131 has four active LOW timestamp input pins TS1, TS2, TS3 and TS4,  
internally pulled with on-chip pull-up resistors to Voper(int). It also has a timestamp  
detection circuit which can detect the event when inputs on pin TS1/2/3/4 are driven to  
ground.  
The timestamp function is enabled by default after power-on and it can be switched off by  
setting the control bit TSOFF (register Timestp_ctl1/2/3/4).  
The time recorded in the time stamps, when in 100 Hz disable mode (1 Hz mode), will be  
at least two 16 Hz clocks behind the timestamp event and no more than 3 clocks behind.  
If the exact time of the timestamp event is required then subtract 2 subseconds from the  
timestamp value and the result will have -0 subseconds to +1 subseconds of uncertainty.  
A most common application of the timestamp function is described in [1].  
See Section 7.13.5 for a description of interrupt generation from the timestamp function.  
7.12.1 Timestamp flag  
1. When the TS1/2/3/4 input pin are driven to ground, the following sequence occurs:  
a. The actual date and time are stored in the timestamp registers.  
b. The timestamp flag TSF1/2/3/4 flag is set.  
c. If the TSIE1/2/3/4 bit is active, and corresponding interrupt mask is disabled, an  
interrupt on the INTA/B pin is generated.  
The TSF1/2/3/4 and TSF1/2/3/4_2 flags can be cleared by command; clearing the flag  
clears the interrupt. Once TSF1/2/3/4 is cleared, it will only be set again when TS1/2/3/4  
pin is driven to ground once again.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
40 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.12.2 Timestamp mode  
The timestamp function has two different modes selected by the control bit TSM  
(timestamp mode) in register Timestp_ctl:  
If TSM is logic 0 (default): in subsequent trigger events without clearing the timestamp  
flags, the last timestamp event is stored  
If TSM is logic 1: in subsequent trigger events without clearing the timestamp flags, the  
first timestamp event is stored  
The timestamp function also depends on the control bit BTSE in register Control_3, see  
Section 7.12.4.  
7.12.3 Timestamp registers  
7.12.3.1 Register Timestp_ctl1/2/3/4  
Table 64.ꢀTimestp_ctl1/2/3/4 - timestamp control register (address 14h/1Bh/22h/29h) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
TSM  
0
6
TSOFF  
0
5
T
0
4
3
2
1
0
Symbol  
SUBSEC_TIMESTP[4:0]  
0
Reset  
value  
0
0
0
0
Table 65.ꢀTimestp_ctl1/2/3/4 - timestamp control register (address 14h/1Bh/22h/29h) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
Value  
Description  
7
TSM  
0
in subsequent events without clearing the timestamp  
flags, the last event is stored  
1
in subsequent events without clearing the timestamp  
flags, the first event is stored  
6
TSOFF  
0
1
-
timestamp function active  
timestamp function disabled  
5
-
unused  
1
4 to 0  
SUBSEC_TIMESTP[4:0]  
16 second timestamp information coded in BCD  
format when 100TH_S_DIS = ‘1’[1], 120 second  
timestamp information coded in BCD format when  
100TH_S_DIS = ‘0’;  
[1] The time recorded in the time stamps, when in 100 Hz disable mode (1 Hz mode), will be at least two 16 Hz clocks behind the timestamp event and no  
more than 3 clocks behind. If the exact time of the timestamp event is required then subtract 2 subseconds from the timestamp value and the result will  
have -0 subseconds to +1 subseconds of uncertainty.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
41 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.12.3.2 Register Sec_timestp  
Table 66.ꢀSec_timestp1/2/3/4 - second timestamp register (address 15h/1Ch/23h/2Ah) bit allocation  
Bits labeled as T are unused and return 0 when read  
Bit  
7
T
0
6
5
4
3
2
1
0
Symbol  
SECOND_TIMESTP (0 to 59)  
Reset  
value  
0
0
0
0
0
0
0
Table 67.ꢀSec_timestp1/2/3/4 - second timestamp register (address 15h/1Ch/23h/2Ah) bit description  
Bits labeled as T are unused and return 0 when read  
Bit  
Symbol  
Value  
0
Place value Description  
- unused  
7
T
6 to 4  
3 to 0  
SECOND_TIMESTP  
0 to 5  
0 to 9  
ten’s place second timestamp information coded in BCD format  
unit place  
7.12.3.3 Register Min_timestp  
Table 68.ꢀMin_timestp1/2/3/4 - minute timestamp register (address 16h/1Dh/24h/2Bh) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
T
0
6
5
4
3
2
1
0
Symbol  
MINUTE_TIMESTP (0 to 59)  
Reset  
value  
0
0
0
0
0
0
0
Table 69.ꢀMin_timestp1/2/3/4 - minute timestamp register (address 16h/1Dh/24h/2Bh) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
0
Place value Description  
- unused  
7
T
6 to 4  
3 to 0  
MINUTE_TIMESTP  
0 to 5  
0 to 9  
ten’s place minute timestamp information coded in BCD format  
unit place  
7.12.3.4 Register Hour_timestp  
Table 70.ꢀHour_timestp1/2/3/4 - hour timestamp register (address 17h/1Eh/25h/2Ch) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
T
T
AMPM  
HOUR_TIMESTP (1 to 12) in 12-hour mode  
HOUR_TIMESTP (0 to 23) in 24-hour mode  
Reset  
value  
0
0
0
0
0
0
0
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
42 / 86  
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 71.ꢀHour_timestp1/2/3/4 - hour timestamp register (address 17h/1Eh/25h/2Ch) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
-
-
unused  
12-hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_TIMESTP  
0 to 1  
0 to 9  
ten’s place hour timestamp information coded in BCD format  
when in 12-hour mode  
3 to 0  
unit place  
24-hour mode[1]  
5 to 4  
3 to 0  
HOUR_TIMESTP  
0 to 2  
0 to 9  
ten’s place hour timestamp information coded in BCD format  
when in 24-hour mode  
unit place  
[1] Hour mode is set by the bit 12_24 in register Control_1.  
7.12.3.5 Register Day_timestp  
Table 72.ꢀDay_timestp1/2/3/4 - day timestamp register (address 18h/1Fh/26h/2Dh) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
T
0
6
T
0
5
4
3
2
1
0
Symbol  
DAY_TIMESTP (1 to 31)  
Reset  
value  
0
0
0
0
0
0
Table 73.ꢀDay_timestp1/2/3/4 - day timestamp register (address 18h/1Fh/26h/2Dh) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
00  
Place value Description  
- unused  
7 to 6  
5 to 4  
3 to 0  
T
DAY_TIMESTP  
0 to 3  
0 to 9  
ten’s place day timestamp information coded in BCD format  
unit place  
7.12.3.6 Register Mon_timestp  
Table 74.ꢀMon_timestp1/2/3/4 - month timestamp register (address 19h/20h/27h/2Eh) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
T
0
6
T
0
5
T
0
4
3
2
1
0
Symbol  
MONTH_TIMESTP (1 to 12)  
Reset  
value  
0
0
0
0
0
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
43 / 86  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 75.ꢀMon_timestp1/2/3/4 - month timestamp register (address 19h/20h/27h/2Eh) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
Value  
000  
Place value Description  
- unused  
7 to 5  
4
T
MONTH_TIMESTP  
0 to 1  
0 to 9  
ten’s place month timestamp information coded in BCD format  
unit place  
3 to 0  
7.12.3.7 Register Year_timestp  
Table 76.ꢀYear_timestp1/2/3/4 - year timestamp register (address 1Ah/21h/28h/2Fh) bit allocation  
Bit  
7
6
5
4
3
2
1
0
Symbol  
YEAR_TIMESTP (0 to 99)  
Reset  
value  
0
0
0
0
0
0
0
1
Table 77.ꢀYear_timestp1/2/3/4 - year timestamp register (address 1Ah/21h/28h/2Fh) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
7 to 4  
3 to 0  
YEAR_TIMESTP  
ten’s place year timestamp information coded in BCD format  
unit place  
7.12.4 Dependency between Battery switch-over and timestamp  
The timestamp function depends on the control bit BTSE in register Control_3:  
Table 78.ꢀBattery switch-over and timestamp  
BTSE  
BF  
Description  
[1]  
0
-
the battery switch-over does not affect the  
timestamp registers  
1
If a battery switch-over event occurs:  
[1]  
0
1
the timestamp 4 group registers store the  
time and date when the switch-over occurs;  
after this event occurred BF is set logic 1  
the timestamp 4 group registers are not  
modified;  
in this condition subsequent battery switch-  
over events or falling edges on pin TS4 are  
not registered  
[1] Default value.  
7.13 Interrupt output, INTA/INTB  
PCA2131 has two interrupt output pins INTA and INTB which are open-drain, active LOW  
(requiring a pull-up resistor if used). Interrupts may be sourced from different places:  
second or minute timer  
watchdog timer  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
44 / 86  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
alarm  
timestamp1/2/3/4  
battery switch-over  
battery low detection  
The control bit TI_TP (register Watchdg_tim_ctl) is used to configure whether the  
interrupts generated from the second/minute timer (flag MSF in register Control_2) are  
pulsed signals or a permanently active signal. All the other interrupt sources generate a  
permanently active interrupt signal which follows the status of the corresponding flags.  
When the interrupt sources are all disabled, INTA/B remains high-impedance.  
The flags MSF, AF, TSFx, and BF can be cleared by command.  
The flag WDTF is read only. How it can be cleared is explained in Section 7.11.5.  
The flag BLF is read only. It is cleared automatically from the battery low detection  
circuit when the battery is replaced.  
SI  
MSF:  
MINUTE  
SECOND FLAG  
SIA/MIA  
to interface:  
read MSF  
SECONDS COUNTER  
MINUTES COUNTER  
SI/MI  
0
1
MI  
SIB/MIB  
SET  
CLEAR  
PULSE  
GENERATOR 1  
TRIGGER  
CLEAR  
INTA pin  
INTB pin  
TI_TP  
from interface:  
clear MSF  
WD_CDA  
WDTF:  
WATCHDOG  
TIMER FLAG  
to interface:  
read WD_CD  
WD_CD  
WD_CDB  
WATCHDOG  
COUNTER  
SET  
CLEAR  
MCU loading  
watchdog counter  
AIEA  
to interface:  
read AF  
AIE  
AF: ALARM  
FLAG  
AIEB  
set alarm  
flag, AF  
SET  
CLEAR  
from interface:  
clear AF  
TSIE1/2/3/4A  
to interface:  
read TSF1/2/3/4_x  
TSIE1/2/3/4  
TSF1/2/3/4:  
TIMESTAMP FLAGS  
TSIE1/2/3/4B  
set timestamp  
flag, TSF1/2/3/4  
SET  
CLEAR  
from interface:  
clear TSF  
BIEA  
to interface:  
read BF  
BIE  
BF: BATTERY  
FLAG  
BIEB  
set battery  
flag, BF  
SET  
CLEAR  
from interface:  
clear BF  
BLIEA  
to interface:  
read BLF  
BLIE  
BLF: BATTERY  
LOW FLAG  
BLIEB  
set battery  
low flag, BLF  
SET  
CLEAR  
from battery  
low detection  
circuit: clear BF  
aaa-041571  
When SI, MI, WD_CD, AIE, TSIE1/2/3/4, BIE, BLIE are all disabled, INTA/INTB remains high-impedance.  
Figure 17.ꢀInterrupt block diagram  
7.13.1 Minute and second interrupts  
Minute and second interrupts are generated by predefined timers. The timers  
can be enabled independently from one another by the bits MI and SI in register  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
45 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Control_1. However, a minute interrupt enabled on top of a second interrupt cannot be  
distinguishable since it occurs at the same time.  
The minute/second flag MSF (register Control_2) is set logic 1 when either the seconds  
or the minutes counter increments according to the enabled interrupt (see Table 79). The  
MSF flag can be cleared by command.  
Table 79.ꢀEffect of bits MI and SI on pin INTA/B and bit MSF  
MI  
0
SI  
0
Result on INTA/B  
Result on MSF  
no interrupt generated  
an interrupt once per minute  
MSF never set  
1
0
MSF set when minutes  
counter increments  
0
1
1
1
an interrupt once per second  
an interrupt once per second  
MSF set when seconds  
counter increments  
MSF set when seconds  
counter increments  
When MSF is set logic 1:  
If TI_TP is logic 1, the interrupt is generated as a pulsed signal if not masked.  
If TI_TP is logic 0, the interrupt is permanently active signal that remains until MSF is  
cleared.  
seconds counter  
minutes counter  
58  
59  
59  
11  
00  
12  
00  
01  
INTA/B when SI enabled  
MSF when SI enabled  
INTA/B when only MI enabled  
MSF when only MI enabled  
aaa-041610  
In this example, bit TI_TP is logic 1 and the MSF flag is not cleared after an interrupt.  
Figure 18.ꢀINTA/B example for SI and MI when TI_TP is logic 1  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
46 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
seconds counter  
minutes counter  
58 59  
59 00  
11 12  
00 01  
INTA/B when SI enable  
MSF when SI enable  
INTA/B when only MI enabled  
MSF when only MI enabled  
aaa-041572  
In this example, bit TI_TP is logic 0 and the MSF flag is cleared after an interrupt.  
Figure 19.ꢀINTA/B example for SI and MI when TI_TP is logic 0  
The pulse generator for the minute/second interrupt operates from an internal 64 Hz  
clock and generates a pulse of 164 seconds in duration.  
7.13.2 INTA/B pulse shortening  
If the MSF flag (register Control_2) is cleared before the end of the INTA/B pulse,  
then the INTA/B pulse is shortened. This allows the source of a system interrupt to be  
cleared immediately when it is serviced, that is, the system does not have to wait for the  
completion of the pulse before continuing; see Figure 20. Instructions for clearing the bit  
MSF can be found in Section 7.11.5.  
seconds counter  
MSF  
58  
59  
INTA/B  
(1)  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
aaa-041573  
1. Indicates normal duration of INTA/B pulse.  
The timing shown for clearing bit MSF is also valid for the non-pulsed interrupt mode, that is,  
when TI_TP is logic 0, where the INTA/B pulse may be shortened by setting both bits MI and SI  
logic 0.  
Figure 20.ꢀExample of shortening the INTA/B pulse by clearing the MSF flag  
7.13.3 Watchdog timer interrupts  
The generation of interrupts from the watchdog timer is controlled using the WD_CD bit  
(register Watchdg_tim_ctl). The interrupt is generated as an active signal which follows  
the status of the watchdog timer flag WDTF (register Control_2) if not masked. No pulse  
generation is possible for watchdog timer interrupts.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
47 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
The interrupt is cleared when the flag WDTF is reset. Instructions for clearing it can be  
found in Section 7.11.5.  
7.13.4 Alarm interrupts  
Generation of interrupts from the alarm function is controlled by the bit AIE (register  
Control_2). If AIE is enabled, the INTA/B pin follows the status of bit AF (register  
Control_2) if not masked. Clearing AF immediately clears INTA/B. No pulse generation is  
possible for alarm interrupts.  
minute counter  
minute alarm  
AF  
44  
45  
45  
INTA/B  
SCL  
8th clock  
instruction  
CLEAR INSTRUCTION  
aaa-041574  
Example where only the minute alarm is used and no other interrupts are enabled.  
Figure 21.ꢀAF timing diagram  
7.13.5 Timestamp interrupts  
Interrupt generation from the timestamp function is controlled using the TSIE1-4 bit  
(register Control_5). If TSIE1-4 is enabled, the INTA/B pin follows the status of the flags  
TSF1/2/3/4, if not masked. Clearing the flags TSFx immediately clears INTA/B. No pulse  
generation is possible for timestamp interrupts.  
7.13.6 Battery switch-over interrupts  
Generation of interrupts from the battery switch-over is controlled by the BIE bit (register  
Control_3). If BIE is enabled, the INTA/B pin follows the status of bit BF in register  
Control_3 if not masked(see Table 78). Clearing BF immediately clears INTA/B. No pulse  
generation is possible for battery switch-over interrupts.  
7.13.7 Battery low detection interrupts  
Generation of interrupts from the battery low detection is controlled by the BLIE bit  
(register Control_3). If BLIE is enabled, the INTA/B pin follows the status of bit BLF  
(register Control_3) if not masked. The interrupt is cleared when the battery is replaced  
(BLF is logic 0) or when bit BLIE is disabled (BLIE is logic 0). BLF is read only and  
therefore cannot be cleared by command.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
48 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.13.8 Interrupt masks  
Table 80.ꢀINT_A/B_MASK1 - interrupt mask 1 register (address 31h/33h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
INT_A/B_MASK1  
Reset  
value  
-
-
1
1
1
1
1
1
Table 81.ꢀINT_A/B_MASK1 - interrupt mask 1 register (address 31h/33h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
T
Value  
Description  
7 to 6  
00  
1
unused  
5
4
3
2
1
0
MIA/B  
minute interrupt mask  
second interrupt mask  
watchdog interrupt mask  
alarm interrupt mask  
battery flag interrupt mask  
battery low flag interrupt mask  
SIA/B  
1
WD_CDA/B  
AIEA/B  
BIEA/B  
BLIEA/B  
1
1
1
1
Table 82.ꢀINT_A/B_MASK2 - interrupt mask 2 register (address 32h/34h) bit allocation  
Bits labeled as T are unused and return 0 when read.  
Bit  
7
6
5
4
3
2
1
0
Symbol  
INT_A/B_MASK2  
Reset  
value  
T
T
T
T
1
1
1
1
Table 83.ꢀINT_A/B_MASK2 - interrupt mask 2 register (address 32h/34h) bit description  
Bits labeled as T are unused and return 0 when read.  
Bit  
Symbol  
T
Value  
Description  
7 to 4  
0000  
unused  
3
2
1
0
TSIE1A/B  
TSIE2A/B  
TSIE3A/B  
TSIE4A/B  
1
1
1
1
time stamp 1 interrupt mask  
time stamp 2 interrupt mask  
time stamp 3 interrupt mask  
time stamp 4 interrupt mask  
The registers at addresses 31h to 32h are used to configure interrupt source for INTA  
pin, and the registers at addresses 33h to 34h are for INTB pin.  
All of above interrupts could be masked from either INTA or INTB, with corresponding bit  
set to ‘1’, as shown in Figure 17.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
49 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.14 External clock test mode  
A test mode is available which allows on-board testing. In this mode, it is possible to set  
up test conditions and control the operation of the RTC.  
The test mode is entered by setting bits COF[2:0] logic 111 (register CLKOUT_ctl) and bit  
EXT_TEST logic 1 (register Control_1). Then pin CLKOUT becomes an input. The test  
mode replaces the internal clock signal (8192 Hz) with the signal applied to pin CLKOUT.  
Every 8192 positive edges applied to pin CLKOUT generate an increment of one second.  
The signal applied to pin CLKOUT should have a minimum pulse width of 300 ns and a  
minimum period of 1ꢀ000 ns. The internal clock, now sourced from CLKOUT, is divided  
down by a divider chain called prescaler. The prescaler can be set into a known state by  
using bit STOP and CPR. When bit STOP and CPR are logic 1, the prescaler is reset to  
0. STOP and CPR must be cleared before the prescaler can operate again.  
From a stop condition, the first 1 second increment will take place after 8192 positive  
edges on pin CLKOUT. Thereafter, every 8192 positive edges cause a 1 second  
increment. In 100 Hz mode, the first 100th of a second increment will take place after  
80 pulses on pin CLKOUT, and the first 1 second increment will take place after 8176  
pulses on pin CLKOUT. Thereafter, every 8192 pulses cause a 1 second increment. The  
100 Hz clock is generated from a dithered state machine which runs on the 256 Hz clock,  
so the number of pulses for each subsequent 100ths change is not constant. After the  
first 1 second increment the 25-bit dither pattern proceeds as follows from left to right:  
1101010101101010110101010  
Where 1 == 96 CLKOUT pulses, and 0 == 64 CLKOUT pulses. This pattern repeats  
4 times every second.In the first second, after 80 clock pulses trigger the first  
100th,the left pattern is 101010101101010110101010, 1101010101101010110101010,  
1101010101101010110101010, 1101010101101010110101010, which means 96 pulses  
for 100ths == 2, then 64 pulses for 100ths == 3, 96 for 100ths == 4, and so on.  
Remark: Entry into test mode is not synchronized to the internal 8192 Hz clock. When  
entering the test mode, no assumption as to the state of the prescaler can be made.  
Operating example:  
1. Set CLKOUT = high-Z (register CLKOUT_ctl, COF[2:0] = 111).  
2. Set EXT_TEST test mode (register Control_1, EXT_TEST is logic 1).  
3. Set bit STOP (register Control_1, STOP is logic 1).  
4. Set bit CPR (register SR_RESET, CPR is logic 1).  
5. Set time registers to desired value.  
6. Clear STOP (register Control_1, STOP is logic 0).  
7. Apply 8192 clock pulses to CLKOUT.  
8. Read time registers to see the first change.  
9. Apply 8192 clock pulses to CLKOUT.  
10.Read time registers to see the second change.  
Repeat 7 and 8 for additional increments.  
Operating example (100 Hz mode):  
1. Set CLKOUT = high-Z (register CLKOUT_ctl, COF[2:0] = 111.  
2. Set EXT_TEST test mode (register Control_1, EXT_TEST is logic 1).  
3. Set bit STOP (register Control_1, STOP is logic 1).  
4. Set bit CPR (register SR_RESET, CPR is logic 1).  
5. Set time registers to desired value.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
50 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
6. Clear STOP (register Control_1, STOP is logic 0).  
7. Apply 80 clock pulses to CLKOUT.  
8. Read hundredths registers to see the first change.  
9. Apply 8096 clock pulses to CLKOUT (8096 + 80 = 8176 total pulses).  
10.Read seconds registers to see the first change.  
11.Apply the number of pulses needed for the current dither value.  
12.Read the hundredths register to see subsequent changes.  
13.Read the seconds register every 8192 pulses to see subsequent changes.  
7.15 STOP bit function  
The STOP bit stops the time from counting in both RTC mode and external clock test  
mode. STOP must be set to unlock the time and date registers to set the time.  
OSCILLATOR STOP  
setting the OS flag  
DETECTOR  
100 Hz tick  
1 Hz tick  
0
1
32768 Hz  
8192 Hz  
PRESCALER  
RESET  
div 4  
OSCILLATOR  
CPR  
stop  
aaa-041575  
Figure 22.ꢀCPR and STOP bit functional diagram  
The stop signal blocks the 8.192 kHz clock from generating system clocks and freezes  
the time. In this state, the prescaler can be cleared with the CPR command in the Resets  
register.  
Remark: The CLKOUT output of clock frequencies is not affected.  
The time circuits can then be set and do not increment until the STOP bit is released.  
There is a slight chance that STOP is set during a carry over of multiple time registers,  
which may have been executed incomplete. Therefore time must be set before clearing  
STOP to maintain time integrity.  
The stop acts on the 8.192 kHz signal. Because the I2C-bus or TS pin input is  
asynchronous to the crystal oscillator, the accuracy of restarting the time circuits is  
between zero and one 8.192 kHz cycle (see Figure 23).  
8192 Hz  
stop released  
0 µs to 122 µs  
aaa-004417  
Figure 23.ꢀSTOP release timing  
The first increment of the time circuits is between 0 s and 122 µs after STOP is released.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
51 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.16 Interfaces  
The PCA2131 has an I2C-bus or SPI-bus interface using the same pins. The selection is  
done using the interface selection pin IFS (see Table 84).  
Table 84.ꢀInterface selection input pin IFS  
Pin  
Connection  
VSS  
Bus interface  
SPI-bus  
I2C-bus  
Reference  
IFS  
Section 7.16.1  
Section 7.16.2  
VDD  
V
V
DD  
DD  
SCL  
SDI  
R
PU  
R
PU  
SCL  
SDA  
SDO  
CE  
V
SCL  
DD  
V
DD  
SCL  
SDI  
SDI  
SDO  
BBS  
SDO  
BBS  
SDA/CE  
IFS  
SDA/CE  
IFS  
PCA2131  
PCA2131  
V
SS  
V
SS  
V
V
SS  
SS  
aaa-041576  
aaa-041577  
To select the SPI-bus interface, pin IFS has to be connected To select the I2C-bus interface, pin IFS has to be connected  
to pin VSS to pin VDD  
b. I2C-bus interface selection  
.
.
a. SPI-bus interface selection  
Figure 24.ꢀInterface selection  
7.16.1 SPI-bus interface  
Data transfer to and from the device is made by a 4-line SPI-bus (see Table 85). The  
data lines for input and output are split. The SPI-bus is initialized whenever the chip  
enable line pin SDA/CE is inactive.  
SDI  
SDO  
two-wire mode  
aaa-041578  
Figure 25.ꢀSDI, SDO configurations  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
52 / 86  
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 85.ꢀSerial interface  
Symbol  
Function  
Description  
[1]  
SDA/CE chip enable input;  
active LOW  
when HIGH, the interface is reset;  
input may be higher than VDD  
SCL  
serial clock input  
when SDA/CE is HIGH, input may float;  
input may be higher than VDD  
SDI  
serial data input  
when SDA/CE is HIGH, input may float;  
input may be higher than VDD  
;
input data is sampled on the rising edge of  
SCL  
SDO  
serial data output  
push-pull output;  
drives from VSS to Voper(int) (VBBS);  
output data is changed on the falling edge of  
SCL  
[1] The chip enable must not be wired permanently LOW.  
7.16.1.1 Data transmission  
The chip enable signal is used to identify the transmitted data. Each data transfer is a  
whole byte, with the Most Significant Bit (MSB) sent first.  
The transmission is controlled by the active LOW chip enable signal SDA/CE. The first  
byte transmitted is the command byte. Subsequent bytes are either data to be written or  
data to be read (see Figure 26).  
SDI  
SDO  
COMMAND  
DATA  
DATA  
DATA  
DATA  
DATA  
DATA  
SDA/CE  
aaa-041579  
Figure 26.ꢀData transfer overview  
The command byte defines the address of the first register to be accessed and the read/  
write mode. The address counter will auto increment after every access and will reset to  
zero after the last valid register is accessed. The R/W bit defines if the following bytes are  
read or write information.  
Table 86.ꢀCommand byte definition  
Bit  
Symbol  
Value  
Description  
7
R/W  
data read or write selection  
write data  
0
1
read data  
6 to 0  
RA  
00h to 36h  
register address  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
53 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
R/W  
addr 07h  
seconds data 45  
BCD  
minutes data 10  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
0
0
0
0
0
1
1
1
0
1
0
0
0
1
0
1
0
0
0
1
0
0
0
0
SCL  
SDI  
SDA/CE  
address  
counter  
xx  
07  
08  
09  
aaa-041580  
In this example, the Seconds register is set to 45 seconds and the Minutes register to 10 minutes.  
Figure 27.ꢀSPI-bus write example  
R/W  
addr 0Ch  
months data 11  
BCD  
years data 06  
BCD  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
1
0
0
0
1
1
0
0
0
0
0
1
0
0
0
1
0
0
0
0
0
1
1
0
SCL  
SDI  
SDO  
SDA/CE  
address  
counter  
xx  
0C  
0D  
0E  
aaa-041581  
In this example, the registers Months and Years are read. The pins SDI and SDO are not connected together. For this  
configuration, it is important that pin SDI is never left floating. It must always be driven either HIGH or LOW. If pin SDI is  
left open, high IDD currents may result.  
Figure 28.ꢀSPI-bus read example  
7.16.2 I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or  
modules. The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both  
lines are connected to a positive supply by a pull-up resistor. Data transfer is initiated  
only when the bus is not busy.  
7.16.2.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line remains  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
are interpreted as control signals (see Figure 29).  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
54 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Figure 29.ꢀBit transfer  
7.16.2.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH, is defined as the START condition S. A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition P (see Figure 30).  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Figure 30.ꢀDefinition of START and STOP conditions  
7.16.2.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is the  
receiver. The device that controls the message is the master; and the devices which are  
controlled by the master are the slaves.  
The PCA2131 can act as a slave transmitter and a slave receiver.  
SDA  
SCL  
MASTER  
TRANSMITTER  
RECEIVER  
SLAVE  
TRANSMITTER  
RECEIVER  
MASTER  
TRANSMITTER  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
mba605  
Figure 31.ꢀSystem configuration  
7.16.2.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the reception  
of each byte.  
Also a master receiver must generate an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
55 / 86  
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgment on the I2C-bus is illustrated in Figure 32.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Figure 32.ꢀAcknowledgment on the I2C-bus  
7.16.2.5 I2C-bus protocol  
After a start condition, a valid hardware address has to be sent to a PCA2131 device.  
The appropriate I2C-bus slave address is 1010ꢀ011. The entire I2C-bus slave address  
byte is shown in Table 87.  
Table 87.ꢀI2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
0
1
0
0
1
1
The R/W bit defines the direction of the following single or multiple byte data transfer  
(read is logic 1, write is logic 0).  
For the format and the timing of the START condition (S), the STOP condition (P), and  
the acknowledge (A) refer to the I2C-bus specification [3] and the characteristics table  
(Table 92). In the write mode, a data transfer is terminated by sending a STOP condition.  
acknowledge  
acknowledge  
acknowledge  
from PCA2131  
from PCA2131  
from PCA2131  
S
1
0
1
0
0
1
1
0
A
A
A
P
S
slave address  
register address  
00h to 36h  
0 to n (data bytes  
plus ACK)  
write bit  
STOP  
START  
aaa-041582  
Figure 33.ꢀBus protocol, writing to registers  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
56 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
acknowledge  
acknowledge  
from PCA2131  
from PCA2131  
set register  
address  
S
1
0
1
0
0
1
1
0
A
A
P
slave address  
register address  
00h to 36h  
write bit  
STOP  
acknowledge  
from PCA2131  
acknowledge  
from master  
no acknowledge  
LAST DATA BYTE  
read register  
data  
S
1
0
1
0
0
1
1
1
A
DATA BYTE  
A
A
P
slave address  
0 to n (data bytes  
plus ACK)  
read bit  
aaa-041583  
Figure 34.ꢀBus protocol, reading from registers  
7.16.3 Bus communication and battery backup operation  
To save power during battery backup operation (see Section 7.5.1), the bus interfaces  
are inactive. Therefore the communication via I2C- or SPI-bus should be terminated  
before the supply of the PCA2131 is switched from VDD to VBAT  
.
With I2C interface, PCA2131 will terminate transaction before switching from VDD to  
VBAT, with SPI interface, PCA2131 will corrupt SPI write and read data when battery  
switchover occurs.  
Remark: If the I2C-bus communication was terminated uncontrolled, the I2C-bus has to  
be reinitialized by sending a STOP followed by a START after the device switched back  
from battery backup operation to VDD supply operation.  
7.17 Internal circuitry  
PCA2131  
IFS  
SCL  
VBAT  
VDD  
BBS  
SDI  
SDO  
SDA/CE  
CLKOUT  
INTA/B  
VSS  
TS1/2/3/4  
aaa-041584  
Figure 35.ꢀDevice diode protection diagram of PCA2131  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
57 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
7.18 Safety notes  
CAUTION  
This device is sensitive to ElectroStatic Discharge (ESD). Observe  
precautions for handling electrostatic sensitive devices.  
Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5,  
JESD625-A or equivalent standards.  
8 Limiting values  
Table 88.ꢀLimiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
-0.5  
-50  
-0.5  
-10  
-0.5  
-10  
-10  
-0.5  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
Vi  
supply voltage  
supply current  
input voltage  
input current  
output voltage  
output current  
mA  
V
+6.5  
+10  
II  
mA  
V
VO  
IO  
+6.5  
+10  
mA  
mA  
V
at pin SDA/CE  
+20  
VBAT  
Ptot  
battery supply voltage  
total power dissipation  
+6.5  
300  
mW  
V
[1]  
[2]  
[3]  
[4]  
VESD  
electrostatic discharge  
voltage  
HBM  
CDM  
-
±2ꢀ000  
±500  
1ꢀ00  
+125  
+125  
-
V
Ilu  
latch-up current  
-
mA  
°C  
°C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
-55  
-40  
operating device  
[1] Pass level; Human Body Model (HBM) according to AEC Q100-002.  
[2] Pass level (750 V for corner pins); Charged-Device Model (CDM), according to AEC Q100-011.  
[3] Pass level; latch-up testing according to AEC Q100-004 at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see [4]) the devices have to be stored at a temperature of +8 °C to +45 °C and a humidity of 25 % to  
75 %.  
Note: The PCA2131 part is not guaranteed (nor characterized) above the operating  
range as denoted in the data sheet. NXP recommends not to bias the PCA2131 device  
during reflow (e.g. if utilizing a 'coin' type battery in the assembly). If customer so  
chooses to use this assembly method, there must be the allowance for a full \Q0 V' level  
Power supply \Qreset' to re-enable the device. Without a proper POR, the device may  
remain in an indeterminate state.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
58 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
9 Static characteristics  
Table 89.ꢀStatic characteristics  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Max  
Unit  
85 °C 105 °C  
Supplies  
[1]  
VDD  
supply voltage  
1.2  
1.2  
-
-
5.5  
5.5  
V
V
VBAT  
battery supply  
voltage  
Vlow  
IDD  
low voltage  
-
1.15  
-
-
V
interface active; supplied by VDD  
supply current [2]  
SPI-bus (fSCL = 6.5  
MHz)  
I2C-bus (fSCL = 400  
kHz)  
-
-
-
800  
200  
800  
200  
µA  
µA  
-
interface inactive (fSCL = 0 Hz) [3] ; TCR[1:0] = 00 (see Table 16)  
PWRMNG[2:0] = 111 (see Table 22);  
COF[2:0] = 111 (see Table 18)  
TC_DIS = 1 (see Table 5); 100TH_S_DIS = 1 (see Table 5)  
VDD = 1.2 V  
VDD = 3.3 V  
VDD = 5.5 V  
-
-
-
93  
420  
365 [4] 655  
465 850  
735  
nA  
nA  
nA  
106  
137  
PWRMNG[2:0] = 111 (see Table 22);  
COF[2:0] = 111 (see Table 18)  
TC_DIS = 0 (see Table 5); 100TH_S_DIS = 1 (see Table 5)  
VDD = 1.2 V  
VDD = 3.3 V  
VDD = 5.5 V  
-
-
-
98  
520  
500  
600  
925  
nA  
nA  
nA  
112  
141  
855  
1080  
PWRMNG[2:0] = 111 (see Table 22);  
COF[2:0] = 000 (see Table 18)  
TC_DIS = 0 (see Table 5); 100TH_S_DIS = 0 (see Table 5);  
[5]  
460  
770  
1325  
1925  
2835  
VDD = 1.2 V  
VDD = 3.3 V  
VDD = 5.5 V  
-
-
-
nA  
nA  
nA  
[6]  
[6]  
1075  
1735  
1435  
2210  
PWRMNG[2:0] = 000 (see Table 22);  
COF[2:0] = 111 (see Table 18)  
TC_DIS = 0 (see Table 5); 100TH_S_DIS = 0 (see Table 5)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
59 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 89.ꢀStatic characteristics...continued  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
85 °C 105 °C  
Max  
Unit  
nA  
113  
550  
550  
650  
1220  
920  
VDD = 1.8 V, VBAT  
1.5 V  
=
=
=
-
-
-
133  
169  
VDD = 3.3 V, VBAT  
3.3 V  
nA  
1290  
VDD = 5.5 V, VBAT  
3.3 V  
nA  
[7]  
[7]  
[7]  
112  
125  
154  
580  
530  
680  
970  
830  
1130  
VBAT = 1.2 V, IBAT  
-
-
-
nA  
nA  
nA  
VBAT = 3.3 V, IBAT  
:
VBAT = 5.5 V, IBAT  
:
IDD  
PWRMNG[2:0] = 000 (see Table 22);  
COF[2:0] = 000 (see Table 18)  
supply current [2]  
TC_DIS = 0 (see Table 5); 100TH_S_DIS = 0  
(see Table 5)  
[5]  
650  
965  
1495  
1970  
2890  
VDD = 1.8 V, VBAT  
1.5 V  
=
=
=
-
-
-
nA  
nA  
nA  
[5]  
[5]  
1100  
1770  
1450  
2260  
VDD = 3.3 V, VBAT  
3.3 V  
VDD = 5.5 V, VBAT  
3.3 V  
[7]  
[7]  
[7]  
130  
185  
280  
395  
435  
580  
905  
880  
1135  
VBAT = 1.2 V, IBAT  
VBAT = 3.3 V, IBAT  
VBAT = 5.5 V, IBAT  
-
-
-
-
nA  
nA  
nA  
nA  
IL(bat)  
battery leakage  
current  
VDD is active supply;  
VBAT = 3.0 V  
0.1  
-
-
Power management  
Vth(sw)bat battery switch  
threshold voltage  
2.3  
2.3  
2.5  
2.5  
2.7  
2.7  
V
V
Vth(bat)low low battery threshold  
voltage  
Inputs [8]  
VI  
input voltage  
-0.5  
-
-
VDD  
0.5  
+
V
VIL  
LOW-level input  
voltage  
-
-
-
-
-
-
0.25VDD  
0.3VDD  
V
V
Tamb = -40 °C to +85 °C;  
VDD > 2.0 V  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
60 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 89.ꢀStatic characteristics...continued  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified.  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Max  
Unit  
85 °C 105 °C  
VIH  
ILI  
HIGH-level input  
voltage  
0.7VDD  
-
-
-
V
input leakage current VI = VDD or VSS  
post ESD event  
-
0
-
-
-
-
-
µA  
µA  
pF  
-1  
-
+1  
7
[9]  
Ci  
input capacitance  
-
Outputs  
VO  
output voltage  
on pins INTA/B, referring  
to external pull-up  
-0.5  
-
-
5.5  
V
[10]  
on pin BBS  
1.2  
-
-
-
-
5.5  
V
V
VOH  
VOL  
HIGH output voltage on pin SDO, CLKOUT at  
1 mA source current  
0.8VDD  
VDD  
LOW output voltage on pins CLKOUT, INTA/  
B and SDO at 1 mA sink  
current  
VSS  
-
-
-
-
-
-
0.2VDD  
0.4  
V
V
V
on pin SDA, VDD  
> 2.0 V, 3 mA sink  
current  
-
-
on pin SDA, VDD  
< 2.0 V, 2 mA sink  
current  
0.2VDD  
IOL  
LOW-level output  
current  
output sink current;  
VOL = 0.4 V  
[11]  
on pin SDA/CE  
3
-
-
-
-
-
-
-
-
-
mA  
mA  
mA  
on all other outputs  
1.0  
1.0  
IOH  
HIGH-level output  
current  
output source current; on  
pin SDO, CLKOUT; VOH  
= 0.8 * VDD  
ILO  
output leakage  
current  
VO = VDD or VSS  
post ESD event  
-
0
-
-
-
-
µA  
µA  
-1  
+1  
[1] For reliable oscillator start-up and OTP refresh at power-on: VDD needs to be above 1.8 V.  
[2] MAX IDD and IBAT determined by characterization.  
[3] Timer source clock = 1  
60 Hz, level of pins SDA/CE, SDI, and SCL is VDD or VSS  
.
[4] Production tested IDDparameter.  
[5] Any load in the application driven by CLKOUT adds to this value, e.g. 10 pF, Vdd = 3v3 will add 32768 Hz * 10 pF * 3.3 V = 1.1 µA.  
[6] Any load in the application driven by CLKOUT adds to this value, e.g. 10 pF, Vdd = 3v3 will add 32768 Hz * 10 pF * 3.3 V = 1.1 µA.  
[7] When the device is supplied by the VBAT pin instead of the VDD pin, VDD = 0 V. The device can only start up from VDD  
[8] The I2C-bus and SPI-bus interfaces of PCA2131 are 5 V tolerant.  
[9] Tested on sample basis.  
.
[10] Pin BBS is internally connected to either VDD or VBAT, see section Section 7.5.3.  
[11] For further information, see Figure 36.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
61 / 86  
 
 
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
9.1 Current consumption characteristics, typical  
aaa-041586  
60  
I
DD  
(mA)  
50  
40  
30  
20  
10  
0
1
2
3
4
5
6
V
DD  
(V)  
Typical value; VOL = 0.4 V.  
Figure 36.ꢀIOL on pin SDA/CE  
aaa-043184  
1200  
Current  
(nA)  
1000  
800  
VDD = 1.8 V  
VDD = 3.3 V  
600  
400  
200  
0
(1)  
-40  
0
40  
80  
105 120  
Temperature (C)  
160  
CLKOUT disabled; PWRMNG[2:0] = 111; TSOFF = 1; TS input floating.  
1. Above maximum guaranteed operating temperature of +105 °C, the typical IDD is based on  
the bench result.  
Figure 37.ꢀIDD as a function of temperature  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
62 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
aaa-042113  
2000  
I
DD  
(nA)  
1600  
1200  
800  
400  
0
CLKOUT enabled at 32 kHz  
CLKOUT enabled at 32 kHz  
CLKOUT off  
CLKOUT off  
1
2
3
4
5
6
V
DD  
(V)  
a. PWRMNG[2:0] = 111; TSOFF = 1; Tamb = 25 °C; TS input floating  
aaa-042114  
2000  
I
DD  
(nA)  
1600  
1200  
800  
400  
0
CLKOUT enabled at 32 kHz  
CLKOUT enabled at 32 kHz  
CLKOUT off  
CLKOUT off  
1
2
3
4
5
6
V
DD  
(V)  
b. PWRMNG[2:0] = 000; TSOFF = 0; Tamb = 25 °C; TS input floating  
Figure 38.ꢀIDD as a function of VDD  
9.2 Frequency characteristics  
Table 90.ꢀFrequency characteristics  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = +25 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fo  
output frequency  
on pin CLKOUT;  
VDD = 3.3 V;  
-
32.768  
-
kHz  
COF[2:0] = 000;  
AO[3:0] = 1000  
Δf/f  
time accuracy  
VDD or VBAT = 3.3 V, Tamb  
-40 °C to +85 °C  
=
[1] [2]  
[1] [2]  
TC_DIS = 0  
TC_DIS = 1  
-8  
±3  
+8  
+4  
ppm  
ppm  
-200  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
63 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 90.ꢀFrequency characteristics...continued  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = +25 °C, unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDD or VBAT = 3.3 V, Tamb  
+85 °C to +105 °C  
=
[1] [2]  
[1] [2]  
[1] [2]  
TC_DIS = 0  
TC_DIS = 1  
-15  
-320  
-3  
±8  
+15  
-50  
+3  
ppm  
ppm  
ppm  
TC_DIS = 1, Tamb = 25 °C  
crystal aging  
Δfxtal/fxtal  
relative crystal  
frequency variation  
PCA2131  
[3]  
first year;  
-3  
-
+3  
ppm  
VDD or VBAT = 3.3 V  
Δf/ΔV  
Jitter  
frequency variation  
with voltage  
on pin CLKOUT  
-
-
±1  
50  
-
-
ppm/V  
ns  
Output clock peak to on pin CLKOUT  
peak jitter  
[1] ±1 ppm corresponds to a time deviation of ±0.0864 seconds per day.  
[2] Only valid if CLKOUT frequencies are not equal to 32.768 kHz or if CLKOUT is disabled.  
[3] Not production tested. Effects of reflow soldering are included (see application note AN13202).  
aaa-042794  
50  
± 3 ppm  
± 8 ppm  
Frequency  
stability  
(ppm)  
(1)  
(2)  
(3)  
-50  
-150  
-250  
-350  
120 125  
100 105  
Temperature (°C)  
-40  
-20  
0
20  
40  
60  
80  
1. Typical temperature compensated RTC time accuracy response (TC_DIS = 0).  
2. Typical CLKOUT frequency Y [ppm] = -0.035*(T-25C)2 (TC_DIS = 0 or 1).  
3. Above maximum guaranteed operating temperature of +105 °C, the typical time accuracy is  
based on the bench result.  
Figure 39.ꢀTypical characteristic of frequency with respect to temperature of PCA2131  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
64 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
10 Dynamic characteristics  
10.1 SPI-bus timing characteristics  
Table 91.ꢀSPI-bus characteristics  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = -40 °C to +105 °C, unless otherwise specified. All timing values are valid within the  
operating supply voltage at ambient temperature and referenced to VIL and VIH with an input voltage swing of VSS to VDD  
(see Figure 40).  
Symbol  
Parameter  
Conditions  
VDD = 1.2 V to 3.3 V  
VDD = 3.3 V to  
5.5 V  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
fclk(SCL)  
tclk(H)  
tclk(L)  
tr  
SCL clock frequency  
clock HIGH time  
clock LOW time  
rise time  
-
0.5  
-
-
6.5  
-
MHz  
ns  
1000  
70  
70  
-
1000  
-
-
ns  
for SCL signal  
for SCL signal  
-
-
100  
100  
100  
100  
ns  
tf  
fall time  
-
ns  
Pin SDA/CE  
tsu(CE_N) CE_N set-up time  
th(CE_N) CE_N hold time  
trec(CE_N) CE_N recovery time  
300  
325  
1500  
-
-
30  
25  
1500  
-
-
ns  
ns  
ns  
s
-
-
-
-
tw(CE_N)  
Pin SDI  
tsu  
CE_N pulse width  
0.99  
0.99  
set-up time  
hold time  
set-up time for SDI data  
hold time for SDI data  
250  
250  
-
-
20  
20  
-
-
ns  
ns  
th  
Pin SDO  
td(R)SDO  
tdis(SDO)  
SDO read delay time CL = 50 pF  
SDO disable time  
-
-
550  
150  
-
-
55  
25  
ns  
ns  
[1]  
[1] No load value; bus is held up by bus capacitance; use RC time constant with application values.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
65 / 86  
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
t
w(CE_N)  
CE  
t
rec(CE_N)  
t
t
r
su(CE_N)  
t
t
t
h(CE_N)  
f
clk(SCL)  
80%  
SCL  
20%  
t
clk(L)  
t
clk(H)  
WRITE  
t
su  
t
h
SDI  
R/W  
SA2  
RA0  
b7  
b6  
b0  
high-Z  
SDO  
READ  
SDI  
b7  
b6  
b0  
t(SDI-SDO)  
t
t
d(R)SDO  
t
dis(SDO)  
high-Z  
SDO  
b7  
b6  
b0  
013aaa152  
Figure 40.ꢀSPI-bus timing  
10.2 I2C-bus timing characteristics  
Table 92.ꢀI2C-bus characteristics  
All timing characteristics are valid within the operating supply voltage and ambient temperature range and reference to 30 %  
and 70 % with an input voltage swing of VSS to VDD (see Figure 41).  
Symbol  
Parameter  
Standard mode  
Fast-mode (Fm)  
Unit  
Min  
Max  
Min  
Max  
Pin SCL  
fSCL  
[1]  
SCL clock frequency  
10  
100  
10  
400  
kHz  
µs  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
4.7  
4.0  
-
-
1.3  
0.6  
-
-
tHIGH  
µs  
Pin SDA/CE  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
250  
0
-
-
100  
0
-
-
ns  
ns  
Pins SCL and SDA/CE  
tBUF  
bus free time between a STOP  
and START condition  
4.7  
-
1.5  
-
µs  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
66 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 92.ꢀI2C-bus characteristics...continued  
All timing characteristics are valid within the operating supply voltage and ambient temperature range and reference to 30 %  
and 70 % with an input voltage swing of VSS to VDD (see Figure 41).  
Symbol  
Parameter  
Standard mode  
Fast-mode (Fm)  
Unit  
Min  
4.0  
4.0  
Max  
Min  
0.6  
0.6  
Max  
tSU;STO  
tHD;STA  
set-up time for STOP condition  
-
-
-
-
µs  
µs  
hold time (repeated) START  
condition  
tSU;STA  
set-up time for a repeated START  
condition  
4.7  
-
0.6  
-
µs  
ns  
ns  
[2][3][4]  
[2][3][4]  
tr  
tf  
rise time of both SDA and SCL  
signals  
-
-
1ꢀ000  
300  
20 + 0.1Cb  
20 + 0.1Cb  
300  
300  
fall time of both SDA and SCL  
signals  
[5]  
[6]  
[7]  
tVD;ACK  
tVD;DAT  
tSP  
data valid acknowledge time  
data valid time  
-
-
-
3.45  
3.45  
50  
-
-
-
0.9  
0.9  
50  
µs  
ns  
ns  
pulse width of spikes that must  
be suppressed by the input filter  
[1] The minimum SCL clock frequency is limited by the bus time-out feature which resets the serial bus interface if either the SDA or SCL is held LOW for a  
minimum of 25 ms. The bus time-out feature must be disabled for DC operation.  
[2] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to bridge the  
undefined region of the falling edge of SCL.  
[3] Cb is the total capacitance of one bus line in pF.  
[4] The maximum tf for the SDA and SCL bus lines is 300 ns. The maximum fall time for the SDA output stage, tf is 250 ns. This allows series protection  
resistors to be connected between the SDA/CE pin, the SCL pin, and the SDA/SCL bus lines without exceeding the maximum tf.  
[5] tVD;ACK is the time of the acknowledgment signal from SCL LOW to SDA (out) LOW.  
[6] tVD;DAT is the minimum time for valid SDA (out) data following SCL LOW.  
[7] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 6  
(A6)  
BIT 0  
LSB  
(R/W)  
ACKNOWLEDGE  
(A)  
STOP  
CONDITION  
(P)  
PROTOCOL  
t
t
t
SU;STA  
LOW  
HIGH  
1 / f  
SCL  
SCL  
SDA  
t
t
t
BUF  
r
f
t
t
t
t
t
HD;STA  
SU;DAT  
HD;DAT  
VD;DAT  
SU;STO  
mbd820  
Figure 41.ꢀI2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
67 / 86  
 
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
11 Application information  
The PCA2131TF/Q900 is AEC-Q100 compliant for automotive applications. The  
operating temperature range is from -40 °C to +105 °C and the time accuracy with  
temperature compensation is:  
±3 ppm typical with ±8 ppm min/max from -40 °C to +85 °C  
±8 ppm typical with ±15 ppm min/max from +85 °C to +105 °C  
Above the maximum guaranteed operating temperature of +105 °C to the maximum  
ambient temperature of +125 °C the PCA2131TF/Q900 TCXO, RTC and digital  
interfaces (I2C and SPI) functions continue to be operational with the supply current  
increasing proportionally to temperature (see Figure 37 for the trend). The temperature  
compensation circuity also continues to function and typical time accuracy of ±8 ppm has  
been measured on the bench.  
The general application diagram is shown in Figure 42.  
100 nF  
Csup  
V
SCL  
SDI  
DD  
Rsup  
V
DD(in)  
Interface  
SDO  
100 nF  
V
BAT  
SDA/CE  
V
2
DD  
BBS  
IFS  
I C  
BBS  
INTA  
SPI  
1 to 100 nF  
PCA2131  
TS1  
TS2  
TS3  
TS4  
INTA  
INTB  
R
PU  
V
DD  
INTB  
R
PU  
V
DD  
CLKOUT  
V
SS  
CLKOUT  
aaa-041588  
RPU: 10 kΩ is recommended.  
RSUP and CSUP: An appropriate RC filter needs to be added to guarantee the chip will only see  
<0.35 V/ms ramp down rate on supply, even if Vdd_in ramp rate is very high.  
Figure 42.ꢀGeneral application diagram  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
68 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
12 Package outline  
Figure 43.ꢀPackage outline SOT1992-1 (HLSON16)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
69 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Figure 44.ꢀPackage outline SOT1992-1 (HLSON16); detail G  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
70 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Figure 45.ꢀPackage outline SOT1992-1 (HLSON16); notes  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
71 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
13 Packing information  
13.1 Tape and reel information  
For tape and reel packing information, see [2]  
14 Soldering  
For information about soldering, see [1].  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
72 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
14.1 Footprint information  
Figure 46.ꢀFootprint information part 1 for reflow soldering of SOT1992-1 (HLSON16)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
73 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Figure 47.ꢀFootprint information part 2 for reflow soldering of SOT1992-1 (HLSON16)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
74 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Figure 48.ꢀFootprint information part 3 for reflow soldering of SOT1992-1 (HLSON16)  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
75 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
15 Appendix  
15.1 Real-time clock selection  
Table 93.ꢀSelection of Real-Time Clocks  
Type name  
Alarm, Timer,  
Watchdog  
Interrupt Interface  
output  
IDD  
,
Battery Timestamp,  
backup tamper input  
AEC-Q100  
compliant  
Special features  
Packages  
typical (nA)  
PCF8563  
X
1
I2C  
250  
-
-
-
-
SO8, TSSOP8,  
HVSON10  
PCF8564A  
PCA8565  
X
X
1
1
I2C  
I2C  
250  
600  
-
-
-
-
-
integrated oscillator caps  
WLCSP  
segment B,  
grade 1  
high robustness,  
TSSOP8, HVSON10  
Tamb= -40 °C to 125 °C  
PCA8565A  
X
1
I2C  
600  
-
-
-
integrated oscillator caps,  
Tamb= -40 °C to 125 °C  
WLCSP  
PCF85063  
-
1
1
I2C  
I2C  
220  
220  
-
-
-
-
-
-
basic functions only, no alarm HXSON8  
PCF85063A  
X
tiny package  
SO8, DFN2626-10,  
TSSOP8  
PCF85063B  
PCA85073A  
X
X
1
1
SPI  
I2C  
220  
220  
-
-
-
-
-
tiny package  
tiny package  
DFN2626-10  
TSSOP8  
segment B,  
grade 2  
PCF85263A  
PCF85363A  
X
X
2
2
I2C  
I2C  
230  
230  
X
X
1
1
-
time stamp, battery backup,  
SO8, TSSOP10,  
WLCSP12, TSSOP8,  
DFN2626-10  
stopwatch 1100  
s
-
time stamp, battery backup,  
stopwatch 1100s, 64 Byte  
RAM  
TSSOP10, DFN2626-10,  
TSSOP8  
PCF8523  
PCF2123  
PCF2127  
X
X
X
2
1
1
I2C  
150  
100  
500  
X
-
-
-
-
-
lowest power 150 nA in  
operation, FM+ 1 MHz  
SO8, HVSON8,  
TSSOP14, WLCSP  
SPI  
-
lowest power 100 nA in  
operation  
TSSOP14, HVQFN16,  
WLCSP12  
I2C and  
SPI  
X
1 (3-level)  
temperature compensated,  
quartz built in, calibrated, 512  
Byte RAM  
SO16  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
76 / 86  
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Table 93.ꢀSelection of Real-Time Clocks...continued  
Type name  
Alarm, Timer,  
Watchdog  
Interrupt Interface  
output  
IDD  
,
Battery Timestamp,  
backup tamper input  
AEC-Q100  
compliant  
Special features  
Packages  
typical (nA)  
PCF2127A  
X
1
I2C and  
SPI  
500  
X
1 (3-level)  
-
temperature compensated,  
quartz built in, calibrated, 512  
Byte RAM  
SO20  
PCF2129  
PCF2129A  
PCA2129  
PCA21125  
X
X
X
X
1
1
1
1
I2C and  
SPI  
I2C and  
SPI  
I2C and  
SPI  
500  
500  
500  
820  
X
X
X
-
1 (3-level)  
1 (3-level)  
1 (3-level)  
-
-
-
temperature compensated,  
quartz built in, calibrated  
SO16  
temperature compensated,  
quartz built in, calibrated  
SO20  
segment B,  
grade 3  
temperature compensated,  
quartz built in, calibrated  
SO16  
SPI  
segment B,  
grade 1  
high robustness,  
TSSOP14  
Tamb= -40 °C to 125 °C  
PCF2131  
PCA2131  
X
X
2
2
I2C and  
SPI  
I2C and  
SPI  
60  
X
X
4
4
-
temperature compensated,  
quartz built in, calibrated  
HLSON16 with wettable  
flanks  
106  
segment B,  
grade 3  
temperature compensated,  
quartz built in, calibrated  
HLSON16 with wettable  
flanks  
Tamb= -40 °C to 105 °C  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
77 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
16 Abbreviations  
Table 94.ꢀAbbreviations  
Acronym  
AM  
Description  
Ante Meridiem  
BCD  
CDM  
CMOS  
DC  
Binary Coded Decimal  
Charged Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
GPS  
HBM  
I2C  
Global Positioning System  
Human Body Model  
Inter-Integrated Circuit  
Integrated Circuit  
IC  
LSB  
Least Significant Bit  
Microcontroller Unit  
Machine Model  
MCU  
MM  
MSB  
PM  
Most Significant Bit  
Post Meridiem  
POR  
PORO  
PPM  
RC  
Power-On Reset  
Power-On Reset Override  
Parts Per Million  
Resistance-Capacitance  
Real-Time Clock  
RTC  
SCL  
SDA  
SPI  
Serial CLock line  
Serial DAta line  
Serial Peripheral Interface  
Static Random Access Memory  
Temperature Compensated Xtal Oscillator  
crystal  
SRAM  
TCXO  
Xtal  
17 References  
[1] AN13203 Application and soldering information for the PCF2131 and PCA2131  
RTC  
[2] SOT1992-1_518 HLSON16; Reel pack; SMD, 13", packing information  
[3] UM10204 I2C-bus specification and user manual  
[4] UM10569 Store and transport requirements  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
78 / 86  
 
 
 
 
 
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
18 Revision history  
Table 95.ꢀRevision history  
Document ID  
Release date  
Data sheet status  
Change  
notice  
Supersedes  
PCA2131 v.1.0  
20210726  
Product data sheet  
-
-
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
79 / 86  
 
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
19 Legal information  
19.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
19.2 Definitions  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes  
no representation or warranty that such applications will be suitable  
for the specified use without further testing or modification. Customers  
are responsible for the design and operation of their applications and  
products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
and products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with  
their applications and products. NXP Semiconductors does not accept any  
liability related to any default, damage, costs or problem which is based  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
Draft — A draft status on a document indicates that the content is still  
under internal review and subject to formal approval, which may result  
in modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included in a draft version of a document and shall have no  
liability for the consequences of use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is  
intended for quick reference only and should not be relied upon to contain  
detailed and full information. For detailed and full information see the  
relevant full data sheet, which is available on request via the local NXP  
Semiconductors sales office. In case of any inconsistency or conflict with the  
short data sheet, the full data sheet shall prevail.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those  
given in the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
19.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
to be accurate and reliable. However, NXP Semiconductors does not  
give any representations or warranties, expressed or implied, as to the  
accuracy or completeness of such information and shall have no liability  
for the consequences of use of such information. NXP Semiconductors  
takes no responsibility for the content in this document if provided by an  
information source outside of NXP Semiconductors. In no event shall NXP  
Semiconductors be liable for any indirect, incidental, punitive, special or  
consequential damages (including - without limitation - lost profits, lost  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
legal theory. Notwithstanding any damages that customer might incur for  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
the grant, conveyance or implication of any license under any copyrights,  
patents or other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
80 / 86  
 
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
to result in personal injury, death or severe property or environmental  
open and/or proprietary technologies supported by NXP products for use  
in customer’s applications. NXP accepts no liability for any vulnerability.  
Customer should regularly check security updates from NXP and follow up  
appropriately. Customer shall select products with security features that best  
meet rules, regulations, and standards of the intended application and make  
the ultimate design decisions regarding its products and is solely responsible  
for compliance with all legal, regulatory, and security related requirements  
concerning its products, regardless of any information or support that may  
be provided by NXP. NXP has a Product Security Incident Response Team  
(PSIRT) (reachable at PSIRT@nxp.com) that manages the investigation,  
reporting, and solution release to security vulnerabilities of NXP products.  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
19.4 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
Security — Customer understands that all NXP products may be subject  
to unidentified or documented vulnerabilities. Customer is responsible  
for the design and operation of its applications and products throughout  
their lifecycles to reduce the effect of these vulnerabilities on customer’s  
applications and products. Customer’s responsibility also extends to other  
I2C-bus — logo is a trademark of NXP B.V.  
NXP — wordmark and logo are trademarks of NXP B.V.  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
81 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Ordering information ..........................................2  
Ordering options ................................................2  
Pin description ...................................................4  
Register overview ..............................................7  
Control_1 - control and status register 1  
(address 00h) bit allocation .............................10  
Control_1 - control and status register 1  
(address 00h) bit description ...........................10  
Control_2 - control and status register 2  
(address 01h) bit allocation .............................11  
Control_2 - control and status register 2  
(address 01h) bit description ...........................11  
Control_3 - control and status register 3  
Tab. 34. Hours - hours register (address 09h) bit  
description ....................................................... 28  
Tab. 35. Days - days register (address 0Ah) bit  
allocation ......................................................... 29  
Tab. 36. Days - days register (address 0Ah) bit  
description ....................................................... 29  
Tab. 37. Weekdays - weekdays register (address  
0Bh) bit allocation ........................................... 29  
Tab. 38. Weekdays - weekdays register (address  
0Bh) bit description ......................................... 29  
Tab. 39. Weekday assignments .................................... 30  
Tab. 40. Months - months register (address 0Ch) bit  
allocation ......................................................... 30  
Tab. 41. Months - months register (address 0Ch) bit  
description ....................................................... 30  
Tab. 42. Month assignments in BCD format ..................30  
Tab. 43. Years - years register (address 0Dh) bit  
allocation ......................................................... 31  
Tab. 44. Years - years register (address 0Dh) bit  
description ....................................................... 31  
Tab. 45. Second_alarm - second alarm register  
(address 0Eh) bit allocation .............................33  
Tab. 46. Second_alarm - second alarm register  
(address 0Eh) bit description .......................... 34  
Tab. 47. Minute_alarm - minute alarm register  
(address 0Fh) bit allocation .............................34  
Tab. 48. Minute_alarm - minute alarm register  
(address 0Fh) bit description ...........................34  
Tab. 49. Hour_alarm - hour alarm register (address  
10h) bit allocation ............................................34  
Tab. 50. Hour_alarm - hour alarm register (address  
10h) bit description ..........................................34  
Tab. 51. Day_alarm - day alarm register (address  
11h) bit allocation ............................................35  
Tab. 52. Day_alarm - day alarm register (address  
11h) bit description ..........................................35  
Tab. 53. Weekday_alarm - weekday alarm register  
(address 12h) bit allocation .............................36  
Tab. 54. Weekday_alarm - weekday alarm register  
(address 12h) bit description ...........................36  
Tab. 55. Watchdg_tim_ctl - watchdog timer control  
register (address 35h) bit allocation ................ 37  
Tab. 56. Watchdg_tim_ctl - watchdog timer control  
register (address 35h) bit description ..............37  
Tab. 57. Watchdg_tim_val - watchdog timer value  
register (address 36h) bit allocation ................ 37  
Tab. 58. Watchdg_tim_val - watchdog timer value  
register (address 36h) bit description ..............38  
Tab. 59. Programmable watchdog timer ....................... 38  
Tab. 60. Flag location in register Control_2 .................. 39  
Tab. 61. Example values in register Control_2 ..............40  
Tab. 62. Example to clear only AF (bit 4) ......................40  
Tab. 63. Example to clear only MSF (bit 7) ...................40  
Tab. 64. Timestp_ctl1/2/3/4 - timestamp control  
register (address 14h/1Bh/22h/29h) bit  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
(address 02h) bit allocation .............................11  
Tab. 10. Control_3 - control and status register 3  
(address 02h) bit description ...........................12  
Tab. 11. Control_4 - control and status register 4  
(address 03h) bit allocation .............................12  
Tab. 12. Control_4 - control and status register 4  
(address 03h) bit description ...........................12  
Tab. 13. Control_5 - control and status register 5  
(address 04h) bit allocation .............................13  
Tab. 14. Control_5 - control and status register 5  
(address 04h) bit description ...........................13  
Tab. 15. CLKOUT_ctl - CLKOUT control register  
(address 13h) bit allocation .............................13  
Tab. 16. CLKOUT_ctl - CLKOUT control register  
(address 13h) bit description ...........................14  
Tab. 17. Temperature measurement period .................. 15  
Tab. 18. CLKOUT frequency selection ..........................16  
Tab. 19. Aging_offset - crystal aging offset register  
(address 30h) bit allocation .............................16  
Tab. 20. Aging_offset - crystal aging offset register  
(address 30h) bit description ...........................16  
Tab. 21. Frequency correction at 25 °C, typical ............ 17  
Tab. 22. Power management control bit description ......18  
Tab. 23. Output pin BBS ............................................... 22  
Tab. 24. Reset - software reset control (address  
05h) bit description ..........................................25  
Tab. 25. 100th Seconds - 100th seconds (address  
06h) bit allocation ............................................26  
Tab. 26. 100th Seconds - 100th seconds register  
(address 06h) bit description ...........................26  
Tab. 27. 100th Seconds coded in BCD format ..............27  
Tab. 28. Seconds - seconds and clock integrity  
register (address 07h) bit allocation ................ 27  
Tab. 29. Seconds - seconds and clock integrity  
register (address 07h) bit description ..............27  
Tab. 30. Seconds coded in BCD format ........................27  
Tab. 31. Minutes - minutes register (address 08h) bit  
allocation ......................................................... 28  
Tab. 32. Minutes - minutes register (address 08h) bit  
description ....................................................... 28  
Tab. 33. Hours - hours register (address 09h) bit  
allocation ......................................................... 28  
allocation ......................................................... 41  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
82 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Tab. 65. Timestp_ctl1/2/3/4 - timestamp control  
Tab. 75. Mon_timestp1/2/3/4 - month timestamp  
register (address 19h/20h/27h/2Eh) bit  
description ....................................................... 44  
Tab. 76. Year_timestp1/2/3/4 - year timestamp  
register (address 1Ah/21h/28h/2Fh) bit  
register (address 14h/1Bh/22h/29h) bit  
description ....................................................... 41  
Tab. 66. Sec_timestp1/2/3/4 - second timestamp  
register (address 15h/1Ch/23h/2Ah) bit  
allocation ......................................................... 42  
Tab. 67. Sec_timestp1/2/3/4 - second timestamp  
register (address 15h/1Ch/23h/2Ah) bit  
allocation ......................................................... 44  
Tab. 77. Year_timestp1/2/3/4 - year timestamp  
register (address 1Ah/21h/28h/2Fh) bit  
description ....................................................... 42  
Tab. 68. Min_timestp1/2/3/4 - minute timestamp  
register (address 16h/1Dh/24h/2Bh) bit  
allocation ......................................................... 42  
Tab. 69. Min_timestp1/2/3/4 - minute timestamp  
register (address 16h/1Dh/24h/2Bh) bit  
description ....................................................... 42  
Tab. 70. Hour_timestp1/2/3/4 - hour timestamp  
register (address 17h/1Eh/25h/2Ch) bit  
description ....................................................... 44  
Tab. 78. Battery switch-over and timestamp ................. 44  
Tab. 79. Effect of bits MI and SI on pin INTA/B and  
bit MSF ............................................................46  
Tab. 80. INT_A/B_MASK1 - interrupt mask 1  
register (address 31h/33h) bit allocation ......... 49  
Tab. 81. INT_A/B_MASK1 - interrupt mask 1  
register (address 31h/33h) bit description ....... 49  
Tab. 82. INT_A/B_MASK2 - interrupt mask 2  
allocation ......................................................... 42  
Tab. 71. Hour_timestp1/2/3/4 - hour timestamp  
register (address 17h/1Eh/25h/2Ch) bit  
description ....................................................... 43  
Tab. 72. Day_timestp1/2/3/4 - day timestamp  
register (address 18h/1Fh/26h/2Dh) bit  
allocation ......................................................... 43  
Tab. 73. Day_timestp1/2/3/4 - day timestamp  
register (address 18h/1Fh/26h/2Dh) bit  
description ....................................................... 43  
Tab. 74. Mon_timestp1/2/3/4 - month timestamp  
register (address 19h/20h/27h/2Eh) bit  
register (address 32h/34h) bit allocation ......... 49  
Tab. 83. INT_A/B_MASK2 - interrupt mask 2  
register (address 32h/34h) bit description ....... 49  
Tab. 84. Interface selection input pin IFS ......................52  
Tab. 85. Serial interface ................................................ 53  
Tab. 86. Command byte definition ................................ 53  
Tab. 87. I2C slave address byte ................................... 56  
Tab. 88. Limiting values ................................................ 58  
Tab. 89. Static characteristics ....................................... 59  
Tab. 90. Frequency characteristics ............................... 63  
Tab. 91. SPI-bus characteristics ....................................65  
Tab. 92. I2C-bus characteristics ....................................66  
Tab. 93. Selection of Real-Time Clocks ........................ 76  
Tab. 94. Abbreviations ...................................................78  
Tab. 95. Revision history ...............................................79  
allocation ......................................................... 43  
Figures  
Fig. 1.  
Fig. 2.  
Block diagram of PCA2131 ...............................3  
Pin configuration for PCA2131 (transparent  
top view) ............................................................4  
Handling address registers ............................... 5  
Battery switch-over behavior in standard  
mode with bit BIE set logic 1 (enabled) ...........19  
Battery switch-over behavior in direct  
switching mode with bit BIE set logic 1  
Fig. 15. Alarm flag timing diagram ............................... 36  
Fig. 16. WD_CD set logic 1: watchdog activates an  
interrupt when timed out ................................. 39  
Fig. 17. Interrupt block diagram ................................... 45  
Fig. 18. INTA/B example for SI and MI when TI_TP  
is logic 1 ..........................................................46  
Fig. 3.  
Fig. 4.  
Fig. 5.  
Fig. 19. INTA/B example for SI and MI when TI_TP  
is logic 0 ..........................................................47  
(enabled) ......................................................... 20  
Battery switch-over circuit, simplified block  
diagram ............................................................20  
Battery low detection behavior with bit BLIE  
set logic 1 (enabled) ....................................... 21  
Power failure event due to battery  
Fig. 20. Example of shortening the INTA/B pulse by  
clearing the MSF flag ......................................47  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Fig. 21. AF timing diagram ...........................................48  
Fig. 22. CPR and STOP bit functional diagram ............51  
Fig. 23. STOP release timing .......................................51  
Fig. 24. Interface selection ........................................... 52  
Fig. 25. SDI, SDO configurations .................................52  
Fig. 26. Data transfer overview .................................... 53  
Fig. 27. SPI-bus write example .................................... 54  
Fig. 28. SPI-bus read example .....................................54  
Fig. 29. Bit transfer .......................................................55  
Fig. 30. Definition of START and STOP conditions ...... 55  
Fig. 31. System configuration .......................................55  
Fig. 32. Acknowledgment on the I2C-bus .................... 56  
Fig. 33. Bus protocol, writing to registers .....................56  
discharge: reset occurs ...................................23  
Dependency between POR and oscillator .......24  
Fig. 10. Power-On Reset (POR) system ...................... 24  
Fig. 11.  
Power-On Reset Override (PORO)  
sequence, valid for both I2C-bus and SPI-  
bus ...................................................................25  
Fig. 12. Software reset command ................................ 26  
Fig. 13. Data flow for the time function ........................ 32  
Fig. 14. Alarm function block diagram ..........................33  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
83 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Fig. 34. Bus protocol, reading from registers ............... 57  
Fig. 35. Device diode protection diagram of  
Fig. 43. Package outline SOT1992-1 (HLSON16) ........69  
Fig. 44. Package outline SOT1992-1 (HLSON16);  
detail G ............................................................70  
Fig. 45. Package outline SOT1992-1 (HLSON16);  
notes ................................................................71  
Fig. 46. Footprint information part 1 for reflow  
soldering of SOT1992-1 (HLSON16) ...............73  
Fig. 47. Footprint information part 2 for reflow  
soldering of SOT1992-1 (HLSON16) ...............74  
Fig. 48. Footprint information part 3 for reflow  
soldering of SOT1992-1 (HLSON16) ...............75  
PCA2131 ......................................................... 57  
Fig. 36. IOL on pin SDA/CE .........................................62  
Fig. 37. IDD as a function of temperature .................... 62  
Fig. 38. IDD as a function of VDD ............................... 63  
Fig. 39. Typical characteristic of frequency with  
respect to temperature of PCA2131 ................64  
Fig. 40. SPI-bus timing .................................................66  
Fig. 41. I2C-bus timing diagram; rise and fall times  
refer to 30 % and 70 % .................................. 67  
Fig. 42. General application diagram ........................... 68  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
84 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
Contents  
1
2
3
4
4.1  
5
6
6.1  
6.2  
7
7.1  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
7.3.1  
General description ............................................ 1  
7.10.4  
7.10.5  
7.10.6  
7.11  
7.11.1  
7.11.2  
7.11.3  
7.11.4  
Register Day_alarm .........................................35  
Register Weekday_alarm .................................36  
Alarm flag ........................................................ 36  
Watchdog timer functions ................................ 36  
Register Watchdg_tim_ctl ................................37  
Register Watchdg_tim_val ...............................37  
Watchdog timer function ..................................38  
Pre-defined timers: second and minute  
interrupt ............................................................39  
Clearing flags ...................................................39  
Timestamp function ......................................... 40  
Timestamp flag ................................................ 40  
Timestamp mode .............................................41  
Timestamp registers ........................................ 41  
Features and benefits .........................................1  
Applications .........................................................2  
Ordering information .......................................... 2  
Ordering options ................................................ 2  
Block diagram ..................................................... 3  
Pinning information ............................................ 4  
Pinning ...............................................................4  
Pin description ...................................................4  
Functional description ........................................5  
Register overview .............................................. 5  
Control registers .............................................. 10  
Register Control_1 ...........................................10  
Register Control_2 ...........................................11  
Register Control_3 ...........................................11  
Register Control_4 ...........................................12  
Register Control_5 ...........................................13  
Register CLKOUT_ctl ...................................... 13  
Temperature compensated Real Time  
Clock ................................................................14  
Temperature measurement ..............................15  
OTP refresh .....................................................15  
Clock output .....................................................15  
Register Aging_offset ...................................... 16  
Crystal aging correction ...................................16  
Power management functions ......................... 17  
Battery switch-over function .............................18  
Standard mode ................................................ 19  
Direct switching mode ..................................... 19  
Battery switch-over disabled: only one  
power supply (VDD) ........................................ 20  
Battery switch-over architecture ...................... 20  
Battery low detection function ..........................20  
Battery backup supply ..................................... 21  
Oscillator stop detection function .....................22  
Power-On Reset function ................................ 23  
Power-On Reset (POR) ...................................23  
Power-On Reset Override (PORO) ................. 24  
Software Reset register ...................................25  
SR - Software reset .........................................25  
CPR: clear prescaler ....................................... 26  
CTS: clear timestamp ......................................26  
Time and date function ....................................26  
Register 100th Seconds .................................. 26  
Register Seconds ............................................ 27  
Register Minutes ..............................................28  
Register Hours .................................................28  
Register Days ..................................................29  
Register Weekdays ..........................................29  
Register Months .............................................. 30  
Register Years ................................................. 31  
Setting and reading the time ........................... 31  
Alarm function ..................................................33  
Register Second_alarm ................................... 33  
Register Minute_alarm .....................................34  
Register Hour_alarm ........................................34  
7.11.5  
7.12  
7.12.1  
7.12.2  
7.12.3  
7.12.3.1 Register Timestp_ctl1/2/3/4 ............................. 41  
7.12.3.2 Register Sec_timestp .......................................42  
7.12.3.3 Register Min_timestp .......................................42  
7.12.3.4 Register Hour_timestp .....................................42  
7.12.3.5 Register Day_timestp ...................................... 43  
7.12.3.6 Register Mon_timestp ......................................43  
7.12.3.7 Register Year_timestp ......................................44  
7.3.1.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.5  
7.5.1  
7.5.1.1  
7.5.1.2  
7.5.1.3  
7.12.4  
Dependency between Battery switch-over  
and timestamp .................................................44  
Interrupt output, INTA/INTB ............................. 44  
Minute and second interrupts .......................... 45  
INTA/B pulse shortening ..................................47  
Watchdog timer interrupts ................................47  
Alarm interrupts ............................................... 48  
Timestamp interrupts ....................................... 48  
Battery switch-over interrupts .......................... 48  
Battery low detection interrupts ....................... 48  
Interrupt masks ................................................49  
External clock test mode ................................. 50  
STOP bit function ............................................ 51  
Interfaces ......................................................... 52  
SPI-bus interface ............................................. 52  
7.13  
7.13.1  
7.13.2  
7.13.3  
7.13.4  
7.13.5  
7.13.6  
7.13.7  
7.13.8  
7.14  
7.5.1.4  
7.5.2  
7.5.3  
7.6  
7.15  
7.16  
7.16.1  
7.7  
7.7.1  
7.7.2  
7.8  
7.8.1  
7.8.2  
7.8.3  
7.9  
7.9.1  
7.9.2  
7.9.3  
7.9.4  
7.9.5  
7.9.6  
7.9.7  
7.9.8  
7.9.9  
7.10  
7.16.1.1 Data transmission ............................................53  
7.16.2 I2C-bus interface ............................................. 54  
7.16.2.1 Bit transfer ....................................................... 54  
7.16.2.2 START and STOP conditions .......................... 55  
7.16.2.3 System configuration ....................................... 55  
7.16.2.4 Acknowledge ....................................................55  
7.16.2.5 I2C-bus protocol .............................................. 56  
7.16.3  
Bus communication and battery backup  
operation ..........................................................57  
Internal circuitry ............................................... 57  
Safety notes .....................................................58  
Limiting values ..................................................58  
Static characteristics ........................................59  
Current consumption characteristics, typical ....62  
Frequency characteristics ................................63  
Dynamic characteristics ...................................65  
SPI-bus timing characteristics ......................... 65  
I2C-bus timing characteristics ..........................66  
Application information ....................................68  
Package outline .................................................69  
7.17  
7.18  
8
9
9.1  
9.2  
10  
10.1  
10.2  
11  
7.10.1  
7.10.2  
7.10.3  
12  
PCA2131  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2021. All rights reserved.  
Product data sheet  
Rev. 1.0 — 26 July 2021  
85 / 86  
NXP Semiconductors  
PCA2131  
Nano-power highly accurate RTC with integrated quartz crystal for automotive applications  
13  
13.1  
14  
14.1  
15  
15.1  
16  
17  
18  
19  
Packing information ..........................................72  
Tape and reel information ................................72  
Soldering ............................................................72  
Footprint information ........................................73  
Appendix ............................................................76  
Real-time clock selection .................................76  
Abbreviations .................................................... 78  
References .........................................................78  
Revision history ................................................ 79  
Legal information ..............................................80  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 26 July 2021  
Document identifier: PCA2131  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY