PCA9547D,118 [NXP]

PCA9547 - 8-channel I2C-bus multiplexer with reset SOP 24-Pin;
PCA9547D,118
型号: PCA9547D,118
厂家: NXP    NXP
描述:

PCA9547 - 8-channel I2C-bus multiplexer with reset SOP 24-Pin

PC
文件: 总30页 (文件大小:250K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCA9547  
8-channel I2C-bus multiplexer with reset  
Rev. 4 — 1 April 2014  
Product data sheet  
1. General description  
The PCA9547 is an octal bidirectional translating multiplexer controlled by the I2C-bus.  
The SCL/SDA upstream pair fans out to eight downstream pairs, or channels. Only one  
SCx/SDx channel can be selected at a time, determined by the contents of the  
programmable control register. The device powers up with Channel 0 connected, allowing  
immediate communication between the master and downstream devices on that channel.  
An active LOW reset input allows the PCA9547 to recover from a situation where one of  
the downstream I2C-buses is stuck in a LOW state. Pulling the RESET pin LOW resets  
the I2C-bus state machine causing all the channels to be deselected, except Channel 0 so  
that the master can regain control of the bus.  
The pass gates of the multiplexers are constructed such that the VDD pin can be used to  
limit the maximum high voltage which will be passed by the PCA9547. This allows the use  
of different bus voltages on each pair, so that 1.8 V, 2.5 V, or 3.3 V parts can communicate  
with 5 V parts without any additional protection. External pull-up resistors pull the bus up  
to the desired voltage level for each channel. All I/O pins are 5 V tolerant.  
2. Features and benefits  
1-of-8 bidirectional translating multiplexer  
I2C-bus interface logic; compatible with SMBus standards  
Active LOW RESET input  
3 address pins allowing up to 8 devices on the I2C-bus  
Channel selection via I2C-bus, one channel at a time  
Power-up with all channels deselected except Channel 0 which is connected  
Low Ron multiplexers  
Allows voltage level translation between 1.8 V, 2.5 V, 3.3 V and 5 V buses  
No glitch on power-up  
Supports hot insertion  
Low standby current  
Operating power supply voltage range of 2.3 V to 5.5 V  
5 V tolerant inputs  
0 Hz to 400 kHz clock frequency  
ESD protection exceeds 2000 V HBM per JESD22-A114 and 1000 V CDM per  
JESD22-C101  
Latch-up testing is done to JEDEC Standard JESD78 which exceeds 100 mA  
Packages offered: SO24, TSSOP24, HVQFN24  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
3. Ordering information  
Table 1.  
Ordering information  
Type number Topside  
marking  
Package  
Name  
Description  
plastic small outline package; 24 leads; body width 7.5 mm  
Version  
PCA9547D  
PCA9547D  
SO24  
SOT137-1  
PCA9547PW  
PCA9547PW  
TSSOP24 plastic thin shrink small outline package; 24 leads; body width SOT355-1  
4.4 mm  
PCA9547BS  
9547  
HVQFN24 plastic thermal enhanced very thin quad flat package; no leads; SOT616-1  
24 terminals; body 4 4 0.85 mm  
3.1 Ordering options  
Table 2.  
Ordering options  
Type number  
Orderable part  
number  
Package  
Packing method  
Minimum  
order  
Temperature range  
quantity  
PCA9547D  
PCA9547PW  
PCA9547BS  
PCA9547D,112  
PCA9547D,118  
PCA9547PW,112  
PCA9547PW,118  
PCA9547BS,118  
SO24  
Standard marking  
* IC’s tube - DSC bulk pack  
1200  
1000  
1575  
2500  
6000  
T
amb = 40 C to +85 C  
Tamb = 40 C to +85 C  
amb = 40 C to +85 C  
Tamb = 40 C to +85 C  
amb = 40 C to +85 C  
SO24  
Reel 13” Q1/T1  
*Standard mark SMD  
TSSOP24  
TSSOP24  
HVQFN24  
Standard marking  
* IC’s tube - DSC bulk pack  
T
Reel 13” Q1/T1  
*Standard mark SMD  
Reel 13” Q1/T1  
T
*Standard mark SMD  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
2 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
4. Block diagram  
PCA9547  
SC0  
SC1  
SC2  
SC3  
SC4  
SC5  
SC6  
SC7  
SD0  
SD1  
SD2  
SD3  
SD4  
SD5  
SD6  
SD7  
V
SS  
SWITCH CONTROL LOGIC  
V
DD  
RESET  
CIRCUIT  
RESET  
A0  
A1  
A2  
SCL  
SDA  
2
INPUT  
FILTER  
I C-BUS  
CONTROL  
002aaa961  
Fig 1. Block diagram of PCA9547  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
3 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
5. Pinning information  
5.1 Pinning  
1
2
3
4
5
6
7
8
9
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
1
2
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
A0  
A1  
V
A0  
A1  
V
DD  
DD  
SDA  
SCL  
A2  
SDA  
SCL  
A2  
3
RESET  
SD0  
RESET  
SD0  
SC0  
SD1  
SC1  
SD2  
SC2  
SD3  
SC3  
4
5
SC0  
SC7  
SD7  
SC6  
SD6  
SC5  
SD5  
SC4  
SD4  
SC7  
SD7  
SC6  
SD6  
SC5  
SD5  
SC4  
SD4  
6
SD1  
PCA9547D  
PCA9547PW  
7
SC1  
8
SD2  
9
SC2  
10  
11  
12  
10  
11  
12  
SD3  
SC3  
V
SS  
V
SS  
002aaa958  
002aaa959  
Fig 2. Pin configuration for SO24  
Fig 3. Pin configuration for TSSOP24  
terminal 1  
index area  
1
2
3
4
5
6
18  
17  
16  
15  
14  
13  
SD0  
SC0  
SD1  
SC1  
SD2  
SC2  
A2  
SC7  
SD7  
SC6  
SD6  
SC5  
PCA9547BS  
002aaa960  
Transparent top view  
Fig 4. Pin configuration for HVQFN24 (transparent top view)  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
4 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
5.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin  
Description  
SO24, TSSOP24 HVQFN24  
A0  
1
22  
23  
24  
1
address input 0  
A1  
2
address input 1  
RESET  
SD0  
SC0  
SD1  
SC1  
SD2  
SC2  
SD3  
SC3  
VSS  
3
active LOW reset input  
serial data output 0  
serial clock output 0  
serial data output 1  
serial clock output 1  
serial data output 2  
serial clock output 2  
serial data output 3  
serial clock output 3  
supply ground  
4
5
2
6
3
7
4
8
5
9
6
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
7
8
9[1]  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
SD4  
SC4  
SD5  
SC5  
SD6  
SC6  
SD7  
SC7  
A2  
serial data output 4  
serial clock output 4  
serial data output 5  
serial clock output 5  
serial data output 6  
serial clock output 6  
serial data output 7  
serial clock output 7  
address input 2  
SCL  
SDA  
VDD  
serial clock line  
serial data line  
supply voltage  
[1] HVQFN24 package die supply ground is connected to both the VSS pin and the exposed center pad. The  
VSS pin must be connected to supply ground for proper device operation. For enhanced thermal, electrical,  
and board-level performance, the exposed pad needs to be soldered to the board using a corresponding  
thermal pad on the board, and for proper heat conduction through the board thermal vias need to be  
incorporated in the PCB in the thermal pad region.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
5 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
6. Functional description  
6.1 Device addressing  
Following a START condition, the bus master must output the address of the slave it is  
accessing. The address of the PCA9547 is shown in Figure 5. To conserve power, no  
internal pull-up resistors are incorporated on the hardware selectable address pins and  
they must be pulled HIGH or LOW.  
1
1
1
0
A2 A1 A0 R/W  
fixed  
hardware  
selectable  
002aaa962  
Fig 5. Slave address  
The last bit of the slave address defines the operation to be performed. When set to  
logic 1 a read is selected, while a logic 0 selects a write operation.  
6.2 Control register  
Following the successful acknowledgement of the slave address, the bus master will send  
a byte to the PCA9547, which will be stored in the Control register. If multiple bytes are  
received by the PCA9547, it will save the last byte received. This register can be written  
and read via the I2C-bus.  
channel selection bits  
(read/write)  
7
6
5
4
3
2
1
0
X
X
X
X
B3 B2 B1 B0  
002aaa963  
enable bit  
Fig 6. Control register  
6.2.1 Control register definition  
A SCx/SDx downstream pair, or channel, is selected by the contents of the control  
register. This register is written after the PCA9547 has been addressed. The 4 LSBs of  
the control byte are used to determine which channel is to be selected. When a channel is  
selected, the channel will become active after a STOP condition has been placed on the  
I2C-bus. This ensures that all SCx/SDx lines will be in a HIGH state when the channel is  
made active, so that no false conditions are generated at the time of connection.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
6 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
Table 4.  
Control register  
Write = channel selection; Read = channel status  
D7  
X
X
X
X
X
X
X
X
X
0
D6  
X
X
X
X
X
X
X
X
X
0
D5  
X
X
X
X
X
X
X
X
X
0
D4  
X
X
X
X
X
X
X
X
X
0
B3  
0
B2  
X
0
B1  
X
0
B0  
X
0
Command  
no channel selected  
channel 0 enabled  
channel 1 enabled  
channel 2 enabled  
channel 3 enabled  
channel 4 enabled  
channel 5 enabled  
channel 6 enabled  
channel 7 enabled  
1
1
0
0
1
1
0
1
0
1
0
1
1
1
1
0
0
1
1
0
1
1
1
1
0
1
1
1
1
1
0
0
0
channel 0 enabled;  
power-up/reset default state  
6.3 RESET input  
The RESET input is an active LOW signal which may be used to recover from a bus fault  
condition. By asserting this signal LOW for a minimum of tw(rst)L, the PCA9547 will reset its  
register and I2C-bus state machine and will deselect all channels except channel 0. The  
RESET input must be connected to VDD through a pull-up resistor.  
6.4 Power-on reset  
When power is applied to VDD, an internal Power-On Reset (POR) holds the PCA9547 in  
a reset condition until VDD has reached VPOR. At this point, the reset condition is released  
and the PCA9547 register and I2C-bus state machine are initialized to their default states,  
causing all the channels to be deselected except channel 0. Thereafter, VDD must be  
lowered below 0.2 V for at least 5 s in order to reset the device.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
7 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
6.5 Voltage translation  
The pass gate transistors of the PCA9547 are constructed such that the VDD voltage can  
be used to limit the maximum voltage that will be passed from one I2C-bus to another.  
002aab802  
5.0  
V
o(mux)  
(V)  
4.0  
(1)  
(2)  
(3)  
3.0  
2.0  
1.0  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
DD  
5.5  
(V)  
V
(1) maximum  
(2) typical  
(3) minimum  
Fig 7. Pass gate voltage as a function of supply voltage  
Figure 7 shows the voltage characteristics of the pass gate transistors (note that the  
PCA9547 is only tested at the points specified in Section 11 “Static characteristics” of this  
data sheet). In order for the PCA9547 to act as a voltage translator, the Vo(mux) voltage  
should be equal to, or lower than the lowest bus voltage. For example, if the main bus was  
running at 5 V, and the downstream buses were 3.3 V and 2.7 V, then Vo(mux) should be  
equal to or below 2.7 V to effectively clamp the downstream bus voltages. Looking at  
Figure 7, we see that Vo(mux)(max) will be at 2.7 V when the PCA9547 supply voltage is  
3.5 V or lower so the PCA9547 supply voltage could be set to 3.3 V. Pull-up resistors can  
then be used to bring the bus voltages to their appropriate levels (see Figure 14).  
More information can be found in Application Note AN262, PCA954X family of I2C/SMBus  
multiplexers and switches.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
8 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
7. Characteristics of the I2C-bus  
The I2C-bus is for 2-way, 2-line communication between different ICs or modules. The two  
lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor when connected to the output stages  
of a device. Data transfer may be initiated only when the bus is not busy.  
7.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as control signals (see Figure 8).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 8. Bit transfer  
7.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line while the clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition (P) (seeFigure 9.)  
SDA  
SCL  
S
P
STOP condition  
START condition  
mba608  
Fig 9. Definition of START and STOP conditions  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
9 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
7.2 System configuration  
A device generating a message is a ‘transmitter’; a device receiving is the ‘receiver’. The  
device that controls the message is the ‘master’ and the devices which are controlled by  
the master are the ‘slaves’ (see Figure 10).  
SDA  
SCL  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
2
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
I C-BUS  
MULTIPLEXER  
SLAVE  
002aaa966  
Fig 10. System configuration  
7.3 Acknowledge  
The number of data bytes transferred between the START and the STOP conditions from  
transmitter to receiver is not limited. Each byte of eight bits is followed by one  
acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the transmitter,  
whereas the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the reception of  
each byte. Also a master must generate an acknowledge after the reception of each byte  
that has been clocked out of the slave transmitter. The device that acknowledges has to  
pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable  
LOW during the HIGH period of the acknowledge related clock pulse; set-up and hold  
times must be taken into account.  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from master  
1
2
8
9
S
clock pulse for  
START  
condition  
acknowledgement  
002aaa987  
Fig 11. Acknowledgement on the I2C-bus  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
10 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
7.4 Bus transactions  
Data is transmitted to the PCA9547 control register using the Write mode as shown in  
Figure 12.  
slave address  
control register  
SDA  
S
1
1
1
0
A2 A1 A0  
0
A
X
X
X
X
B3 B2 B1 B0  
A
P
START condition  
R/W acknowledge  
from slave  
acknowledge  
from slave  
STOP condition  
002aaa988  
Fig 12. Write control register  
Data is read from PCA9547 using the Read mode as shown in Figure 13.  
last byte  
slave address  
control register  
X
SDA  
S
1
1
1
0
A2 A1 A0  
1
A
X
X
X
B3 B2 B1 B0 NA  
P
START condition  
R/W acknowledge  
from slave  
no acknowledge  
from master  
STOP condition  
002aaa989  
Fig 13. Read control register  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
11 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
8. Application design-in information  
V
= 2.7 V to 5.5 V  
DD  
V
= 3.3 V  
DD  
V = 2.7 V to 5.5 V  
SDA  
SCL  
SDA  
SCL  
SD0  
SC0  
channel 0  
V = 2.7 V to 5.5 V  
RESET  
2
I C-bus/SMBus  
master  
SD1  
SC1  
channel 1  
V = 2.7 V to 5.5 V  
SD2  
SC2  
channel 2  
V = 2.7 V to 5.5 V  
SD3  
SC3  
channel 3  
V = 2.7 V to 5.5 V  
PCA9547  
SD4  
SC4  
channel 4  
V = 2.7 V to 5.5 V  
SD5  
SC5  
channel 5  
V = 2.7 V to 5.5 V  
SD6  
SC6  
channel 6  
V = 2.7 V to 5.5 V  
A2  
A1  
A0  
SD7  
SC7  
channel 7  
002aaa965  
V
SS  
Fig 14. Typical application  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
12 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
9. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).[1]  
Symbol  
VDD  
VI  
Parameter  
Conditions  
Min  
0.5  
0.5  
20  
25  
100  
100  
-
Max  
+7.0  
+7.0  
+20  
Unit  
V
supply voltage  
input voltage  
V
II  
input current  
mA  
mA  
mA  
mA  
mW  
C  
IO  
output current  
+25  
IDD  
supply current  
ground supply current  
total power dissipation  
+100  
+100  
400  
ISS  
Ptot  
Tj(max)  
[1]  
maximum junction  
temperature  
-
+125  
Tstg  
storage temperature  
ambient temperature  
60  
40  
+150  
+85  
C  
C  
Tamb  
[1] The performance capability of a high-performance integrated circuit in conjunction with its thermal  
environment can create junction temperatures which are detrimental to reliability. The maximum junction  
temperature of this integrated circuit should not exceed 125 C.  
10. Thermal characteristics  
Table 6.  
Thermal characteristics  
Parameter  
Symbol  
Conditions  
Typ  
40  
Unit  
Rth(j-a)  
thermal resistance from junction HVQFN24 package  
C/W  
C/W  
C/W  
to ambient  
SO24 package  
77  
TSSOP24 package  
128  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
13 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
11. Static characteristics  
Table 7.  
V
Static characteristics at VDD = 2.3 V to 3.6 V  
SS = 0 V; Tamb = 40 C to +85 C; unless otherwise specified. See Table 8 on page 15 for VDD = 4.5 V to 5.5 V.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply  
VDD  
supply voltage  
supply current  
2.3  
-
-
3.6  
50  
V
IDD  
operating mode; VDD = 3.6 V; no load;  
VI = VDD or VSS; fSCL = 100 kHz  
20  
A  
Istb  
standby current  
Standby mode; VDD = 3.6 V; no load;  
VI = VDD or VSS  
-
-
0.1  
1.6  
2
A  
[2]  
VPOR  
power-on reset voltage  
no load; VI = VDD or VSS  
2.1  
V
Input SCL; input/output SDA  
VIL  
VIH  
IOL  
LOW-level input voltage  
HIGH-level input voltage  
0.5  
-
+0.3VDD  
V
0.7VDD  
-
6
V
LOW-level output current VOL = 0.4 V  
VOL = 0.6 V  
3
-
-
mA  
mA  
A  
pF  
6
-
-
IL  
leakage current  
VI = VDD or VSS  
1  
-
-
+1  
19  
Ci  
input capacitance  
VI = VSS  
14  
Select inputs A0, A1, A2, RESET  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
0.5  
0.7VDD  
1  
-
+0.3VDD  
V
VIH  
-
6
V
ILI  
pin at VDD or VSS  
VI = VSS  
-
+1  
5
A  
pF  
Ci  
-
2
Pass gate  
Ron  
ON-state resistance  
multiplexer; VDD = 3.6 V; VO = 0.4 V;  
IO = 15 mA  
5
7
11  
16  
30  
55  
multiplexer; VDD = 2.3 V to 2.7 V;  
VO = 0.4 V; IO = 10 mA  
Vo(mux)  
multiplexer output voltage Vi(mux) = VDD = 3.3 V; Io(mux) = 100 A  
-
1.9  
-
-
V
V
Vi(mux) = VDD = 3.0 V to 3.6 V;  
1.6  
2.8  
I
o(mux) = 100 A  
Vo(mux) = VDD = 2.5 V;  
Io(mux) = 100 A  
-
1.5  
-
-
V
V
Vo(mux) = VDD = 2.3 V to 2.7 V;  
0.9  
2.0  
Io(mux) = 100 A  
IL  
leakage current  
VI = VDD or VSS  
1  
-
+1  
5
A  
Cio  
input/output capacitance VI = VSS  
-
3
pF  
[1] For operation between published voltage ranges, refer to the worst-case parameter in both ranges.  
[2] VDD must be lowered to 0.2 V for at least 5 s in order to reset part.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
14 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
Table 8.  
Static characteristics at VDD = 4.5 V to 5.5 V  
VSS = 0 V; Tamb = 40 C to +85 C; unless otherwise specified. See Table 7 on page 14 for VDD = 2.3 V to 3.6 V.[1]  
Symbol  
Supply  
VDD  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply voltage  
supply current  
4.5  
-
-
5.5  
V
IDD  
operating mode; VDD = 5.5 V;  
65  
100  
A  
no load; VI = VDD or VSS  
fSCL = 100 kHz  
;
Istb  
standby current  
Standby mode; VDD = 5.5 V;  
no load; VI = VDD or VSS  
-
-
0.6  
1.7  
2
A  
[2]  
VPOR  
power-on reset voltage  
no load; VI = VDD or VSS  
2.1  
V
Input SCL; input/output SDA  
VIL  
VIH  
IOL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output current  
0.5  
-
+0.3VDD  
V
0.7VDD  
-
6
V
VOL = 0.4 V  
VOL = 0.6 V  
VI = VSS  
3
-
-
mA  
mA  
A  
A  
pF  
6
-
-
IIL  
IIH  
Ci  
LOW-level input current  
HIGH-level input current  
input capacitance  
1  
1  
-
-
+1  
+1  
19  
VI = VSS  
-
VI = VSS  
14  
Select inputs A0, A1, A2, RESET  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
0.5  
0.7VDD  
1  
-
+0.3VDD  
V
VIH  
-
6
V
ILI  
pin at VDD or VSS  
VI = VSS  
-
+1  
5
A  
pF  
Ci  
-
2
Pass gate  
Ron  
ON-state resistance  
multiplexer; VDD = 4.5 V to 5.5 V;  
VO = 0.4 V; IO = 15 mA  
4
9
24  
-
V
V
Vo(mux)  
multiplexer output voltage Vi(mux) = VDD = 5.0 V;  
-
3.6  
-
Io(mux) = 100 A  
Vi(mux) = VDD = 4.5 V to 5.5 V;  
2.6  
4.5  
Io(mux) = 100 A  
VI = VDD or VSS  
VI = VSS  
IL  
leakage current  
1  
-
+1  
5
A  
Cio  
input/output capacitance  
-
3
pF  
[1] For operation between published voltage ranges, refer to the worst-case parameter in both ranges.  
[2] DD must be lowered to 0.2 V for at least 5 s in order to reset part.  
V
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
15 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
12. Dynamic characteristics  
Table 9.  
Symbol  
Dynamic characteristics  
Parameter  
Conditions  
Standard-mode Fast-mode I2C-bus Unit  
I2C-bus  
Min  
Max  
Min  
Max  
tPD  
propagation delay  
from SDA to SDx,  
or SCL to SCx  
-
0.3[1]  
-
0.3[1] ns  
fSCL  
tBUF  
SCL clock frequency  
0
100  
-
0
400 kHz  
bus free time between a STOP and  
START condition  
4.7  
1.3  
-
s  
[2]  
tHD;STA  
tLOW  
hold time (repeated) START condition  
LOW period of the SCL clock  
4.0  
4.7  
4.0  
4.7  
-
-
-
-
0.6  
1.3  
0.6  
0.6  
-
-
-
-
s  
s  
s  
s  
tHIGH  
HIGH period of the SCL clock  
tSU;STA  
set-up time for a repeated START  
condition  
tSU;STO  
tHD;DAT  
tSU;DAT  
tr  
set-up time for STOP condition  
data hold time  
4.0  
0[3]  
-
0.6  
0[3]  
-
s  
3.45  
-
0.9 s  
ns  
data set-up time  
250  
100  
-
[4]  
[4]  
rise time of both SDA and SCL signals  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
-
-
-
-
1000  
300  
400  
50  
20 + 0.1Cb  
300 ns  
300 ns  
400 pF  
tf  
20 + 0.1Cb  
Cb  
-
-
tSP  
pulse width of spikes that must be  
suppressed by the input filter  
50  
ns  
[5]  
[5]  
tVD;DAT  
data valid time  
HIGH-to-LOW  
LOW-to-HIGH  
-
-
-
1
0.6  
1
-
-
-
1
s  
0.6 s  
tVD;ACK  
RESET  
tw(rst)L  
trst  
data valid acknowledge time  
1
s  
LOW-level reset time  
reset time  
4
500  
0
-
-
-
4
500  
0
-
-
-
ns  
ns  
ns  
SDA clear  
trec(rst)  
reset recovery time  
[1] Pass gate propagation delay is calculated from the 20 typical Ron and the 15 pF load capacitance.  
[2] After this period, the first clock pulse is generated.  
[3] A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIH(min) of the SCL signal) in order to  
bridge the undefined region of the falling edge of SCL.  
[4] Cb = total capacitance of one bus line in pF.  
[5] Measurements taken with 1 kpull-up resistor and 50 pF load.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
16 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
0.7 × V  
0.3 × V  
DD  
SDA  
DD  
t
t
t
t
SP  
t
r
f
HD;STA  
BUF  
t
LOW  
0.7 × V  
0.3 × V  
DD  
SCL  
DD  
t
t
t
SU;STO  
HD;STA  
SU;STA  
t
t
t
SU;DAT  
HD;DAT  
HIGH  
P
S
Sr  
P
002aaa986  
Fig 15. Definition of timing on the I2C-bus  
ACK or read cycle  
START  
SCL  
70 %  
SDA  
t
rst  
RESET  
50 %  
50 %  
50 %  
t
rec(rst)  
t
w(rst)L  
002aac314  
Fig 16. Definition of RESET timing  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
17 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
13. Package outline  
SO24: plastic small outline package; 24 leads; body width 7.5 mm  
SOT137-1  
D
E
A
X
c
H
v
M
A
E
y
Z
24  
13  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
12  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
15.6  
15.2  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.61  
0.014 0.009 0.60  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT137-1  
075E05  
MS-013  
Fig 17. SO24 package outline (SOT137-1)  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
18 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
TSSOP24: plastic thin shrink small outline package; 24 leads; body width 4.4 mm  
SOT355-1  
D
E
A
X
c
H
v
M
A
y
E
Z
13  
24  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
1
12  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
7.9  
7.7  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.5  
0.2  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT355-1  
MO-153  
Fig 18. TSSOP24 package outline (SOT355-1)  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
19 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
HVQFN24: plastic thermal enhanced very thin quad flat package; no leads;  
24 terminals; body 4 x 4 x 0.85 mm  
SOT616-1  
B
A
D
terminal 1  
index area  
A
A
1
E
c
detail X  
e
1
C
1/2 e  
y
y
C
1
e
v
M
M
C
C
A
B
b
7
12  
w
L
13  
6
e
e
E
h
2
1/2 e  
1
18  
terminal 1  
index area  
24  
19  
X
D
h
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
UNIT  
mm  
A
b
c
E
e
e
e
y
D
D
E
L
v
w
y
1
1
h
1
2
h
0.05 0.30  
0.00 0.18  
4.1  
3.9  
2.25  
1.95  
4.1  
3.9  
2.25  
1.95  
0.5  
0.3  
0.05  
0.1  
1
0.2  
0.5  
2.5  
2.5  
0.1 0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
01-08-08  
02-10-22  
SOT616-1  
- - -  
MO-220  
- - -  
Fig 19. HVQFN24 package outline (SOT616-1)  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
20 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
14. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
14.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
14.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
14.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
21 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
14.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 20) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 10 and 11  
Table 10. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 11. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 20.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
22 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 20. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
23 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
15. Soldering: PCB footprints  
)RRWSULQWꢄLQIRUPDWLRQꢄIRUꢄUHIORZꢄVROGHULQJꢄRIꢄ62ꢅꢆꢄSDFNDJH  
627ꢀꢁꢂꢃꢀ  
+[  
*[  
3ꢂ  
ꢊꢄꢃꢁꢂꢉꢋ  
ꢊꢄꢃꢁꢂꢉꢋ  
+\ *\  
%\ $\  
&
'ꢂꢀꢊꢆ[ꢋ  
'ꢁ  
3ꢁ  
*HQHULFꢀIRRWSULQWꢀSDWWHUQꢀ  
5HIHUꢀWRꢀWKHꢀSDFNDJHꢀRXWOLQHꢀGUDZLQJꢀIRUꢀDFWXDOꢀOD\RXW  
VROGHUꢀODQG  
RFFXSLHGꢀDUHD  
',0(16,216ꢀLQꢀPP  
3ꢁ 3ꢂ $\  
%\  
&
'ꢁ  
'ꢂ  
*[  
*\  
+[  
+\  
ꢁꢃꢂꢇꢄ ꢁꢃꢌꢂꢄ ꢁꢁꢃꢂꢄꢄ ꢅꢃꢆꢄꢄ ꢂꢃꢆꢄꢄ ꢄꢃꢇꢄꢄ ꢄꢃꢈꢄꢄ ꢁꢉꢃꢁꢂꢄ ꢈꢃꢅꢄꢄ ꢁꢇꢃꢄꢄꢄ ꢁꢁꢃꢆꢉꢄ  
VRWꢀꢁꢂꢃꢀBIUꢄ  
Fig 21. PCB footprint for SOT137-1 (SO24); reflow soldering  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
24 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
)RRWSULQWꢄLQIRUPDWLRQꢄIRUꢄUHIORZꢄVROGHULQJꢄRIꢄ76623ꢅꢆꢄSDFNDJH  
627ꢁꢇꢇꢃꢀ  
+[  
*[  
3ꢂ  
ꢊꢄꢃꢁꢂꢉꢋ  
ꢊꢄꢃꢁꢂꢉꢋ  
+\ *\  
%\ $\  
&
'ꢂꢀꢊꢆ[ꢋ  
'ꢁ  
3ꢁ  
*HQHULFꢀIRRWSULQWꢀSDWWHUQꢀ  
5HIHUꢀWRꢀWKHꢀSDFNDJHꢀRXWOLQHꢀGUDZLQJꢀIRUꢀDFWXDOꢀOD\RXW  
VROGHUꢀODQG  
RFFXSLHGꢀDUHD  
',0(16,216ꢀLQꢀPP  
3ꢁ 3ꢂ $\  
%\  
&
'ꢁ  
'ꢂ  
*[  
*\  
+[  
+\  
ꢄꢃꢅꢉꢄ ꢄꢃꢇꢉꢄ ꢇꢃꢂꢄꢄ ꢆꢃꢉꢄꢄ ꢁꢃꢌꢉꢄ ꢄꢃꢆꢄꢄ ꢄꢃꢅꢄꢄ ꢈꢃꢂꢄꢄ ꢉꢃꢌꢄꢄ ꢈꢃꢅꢄꢄ ꢇꢃꢆꢉꢄ  
VRWꢁꢅꢅꢃꢀBIU  
Fig 22. PCB footprint for SOT355-1 (TSSOP24); reflow soldering  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
25 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
)RRWSULQWꢄLQIRUPDWLRQꢄIRUꢄUHIORZꢄVROGHULQJꢄRIꢄ+94)1ꢅꢆꢄSDFNDJH  
627ꢈꢀꢈꢃꢀ  
+[  
*[  
'
3
ꢄꢃꢄꢂꢉ  
ꢄꢃꢄꢂꢉ  
&
ꢊꢄꢃꢁꢄꢉꢋ  
63[  
Q63[  
63\  
+\ *\  
6/\ %\  
$\  
Q63\  
63[ꢀWRW  
6/[  
%[  
$[  
*HQHULFꢀIRRWSULQWꢀSDWWHUQꢀ  
5HIHUꢀWRꢀWKHꢀSDFNDJHꢀRXWOLQHꢀGUDZLQJꢀIRUꢀDFWXDOꢀOD\RXW  
VROGHUꢀODQG  
VROGHUꢀSDVWHꢀGHSRVLW  
VROGHUꢀODQGꢀSOXVꢀVROGHUꢀSDVWH  
RFFXSLHGꢀDUHD  
Q63[ Q63\  
'LPHQVLRQVꢀLQꢀPP  
$[  
3
$\  
%[  
%\  
&
'
6/[  
6/\  
63[ꢀWRW 63\ꢀWRW  
ꢁꢃꢂꢄꢄ ꢁꢃꢂꢄꢄ  
63[  
63\  
*[  
*\  
+[  
+\  
ꢄꢃꢉꢄꢄ ꢉꢃꢄꢄꢄ ꢉꢃꢄꢄꢄ ꢌꢃꢂꢄꢄ ꢌꢃꢂꢄꢄ ꢄꢃꢍꢄꢄ ꢄꢃꢂꢆꢄ ꢂꢃꢁꢄꢄ ꢂꢃꢁꢄꢄ  
ꢄꢃꢆꢉꢄ ꢄꢃꢆꢉꢄ ꢆꢃꢌꢄꢄ ꢆꢃꢌꢄꢄ ꢉꢃꢂꢉꢄ ꢉꢃꢂꢉꢄ  
ꢄꢇꢎꢄꢉꢎꢄꢇꢀ  
,VVXHꢀGDWH  
VRWꢆꢀꢆꢃꢀBIU  
ꢄꢍꢎꢄꢅꢎꢁꢉ  
Fig 23. PCB footprint for SOT616-1; reflow soldering  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
26 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
16. Abbreviations  
Table 12. Abbreviations  
Acronym  
CDM  
Description  
Charged Device Model  
ElectroStatic Discharge  
Human Body Model  
Inter-Integrated Circuit bus  
Input/Output  
ESD  
HBM  
I2C-bus  
I/O  
LSB  
Least Significant Bit  
Printed-Circuit Board  
System Management Bus  
PCB  
SMBus  
17. Revision history  
Table 13. Revision history  
Document ID Release date  
PCA9547 v.4 20140401  
Data sheet status  
Product data sheet  
Change notice  
Supersedes  
-
PCA9547 v.3  
Modifications:  
Section 2 “Features and benefits”, 15th bullet item: deleted phrase “200 V MM per JESD22-A115”  
Table 1 “Ordering information”:  
added column “Topside marking” (moved from Table 2)  
Type number PCA9547PW: Topside mark corrected from “PCA9547” to “PCA9547PW” (this is a  
correction to documentation only, no change to device)  
Table 2 “Ordering options”:  
added columns “Orderable part number”, “Package”, “Packing method”, “Minimum order quantity”  
deleted column “Topside mark” (moved to Table 1)  
Section 6.4 “Power-on reset”, first paragraph, third sentence: corrected from “VDD must be lowered  
below 0.2 V to reset the device” to “VDD must be lowered below 0.2 V for at least 5 s in order to reset  
the device”  
Table 5 “Limiting values”: added limiting value “Tj(max)  
Added Section 10 “Thermal characteristics”  
Table 7 “Static characteristics at VDD = 2.3 V to 3.6 V”:  
sub-section “Select inputs A0, A1, A2, RESET”: Max value for VIH corrected from “VDD + 0.5 V”  
to “6 V”  
Table note [2]: inserted phrase “for at least 5 s”  
Table 8 “Static characteristics at VDD = 4.5 V to 5.5 V”:  
sub-section “Select inputs A0, A1, A2, RESET”: Max value for VIH corrected from “VDD + 0.5 V”  
to “6 V”  
Table note [2]: inserted phrase “for at least 5 s”  
Added Section 15 “Soldering: PCB footprints”  
PCA9547 v.3 20090710  
PCA9547 v.2 20060912  
PCA9547 v.1 20051005  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
PCA9547 v.2  
PCA9547 v.1  
-
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
27 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
18.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
28 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP Semiconductors N.V.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCA9547  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2014. All rights reserved.  
Product data sheet  
Rev. 4 — 1 April 2014  
29 of 30  
PCA9547  
NXP Semiconductors  
8-channel I2C-bus multiplexer with reset  
20. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
3.1  
4
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
6
Functional description . . . . . . . . . . . . . . . . . . . 6  
Device addressing . . . . . . . . . . . . . . . . . . . . . . 6  
Control register. . . . . . . . . . . . . . . . . . . . . . . . . 6  
Control register definition . . . . . . . . . . . . . . . . . 6  
RESET input. . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage translation . . . . . . . . . . . . . . . . . . . . . . 8  
6.1  
6.2  
6.2.1  
6.3  
6.4  
6.5  
7
Characteristics of the I2C-bus . . . . . . . . . . . . . 9  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
START and STOP conditions . . . . . . . . . . . . . . 9  
System configuration . . . . . . . . . . . . . . . . . . . 10  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Bus transactions. . . . . . . . . . . . . . . . . . . . . . . 11  
7.1  
7.1.1  
7.2  
7.3  
7.4  
8
Application design-in information . . . . . . . . . 12  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Thermal characteristics . . . . . . . . . . . . . . . . . 13  
Static characteristics. . . . . . . . . . . . . . . . . . . . 14  
Dynamic characteristics . . . . . . . . . . . . . . . . . 16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 18  
9
10  
11  
12  
13  
14  
Soldering of SMD packages . . . . . . . . . . . . . . 21  
Introduction to soldering . . . . . . . . . . . . . . . . . 21  
Wave and reflow soldering . . . . . . . . . . . . . . . 21  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 21  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 22  
14.1  
14.2  
14.3  
14.4  
15  
16  
17  
Soldering: PCB footprints. . . . . . . . . . . . . . . . 24  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 27  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 28  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 28  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . . 29  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2014.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 1 April 2014  
Document identifier: PCA9547  

相关型号:

PCA9547PW

8-channel I2C-bus multiplexer with reset
TI

PCA9547PW

8-channel I2C-bus multiplexer with reset
NXP

PCA9547PW,112

PCA9547 - 8-channel I2C-bus multiplexer with reset TSSOP2 24-Pin
NXP

PCA9548

8-channel I2C switch with reset
NXP

PCA9548A

8-channel I2C switch with reset
NXP

PCA9548A

8-CHANNEL I2C SWITCH WITH RESET
TI

PCA9548ABS

8-channel I2C switch with reset
NXP

PCA9548ABS,118

PCA9548A - 8-channel I²C-bus switch with reset QFN 24-Pin
NXP

PCA9548AD

8-channel I2C switch with reset
NXP

PCA9548AD,112

PCA9548A - 8-channel I²C-bus switch with reset SOP 24-Pin
NXP

PCA9548AD,118

PCA9548A - 8-channel I²C-bus switch with reset SOP 24-Pin
NXP

PCA9548ADB

8-CHANNEL I2C SWITCH WITH RESET
TI