PCD3311 [NXP]

DTMF/modem/musical-tone generators; DTMF /调制解调器/音乐音发电机
PCD3311
型号: PCD3311
厂家: NXP    NXP
描述:

DTMF/modem/musical-tone generators
DTMF /调制解调器/音乐音发电机

调制解调器 电机
文件: 总28页 (文件大小:175K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCD3311C; PCD3312C  
DTMF/modem/musical-tone  
generators  
1996 Nov 21  
Product specification  
Supersedes data of May 1990  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
CONTENTS  
15  
16  
17  
DEFINITIONS  
LIFE SUPPORT APPLICATIONS  
PURCHASE OF PHILIPS I2C COMPONENTS  
1
2
3
4
5
6
FEATURES  
GENERAL DESCRIPTION  
QUICK REFERENCE DATA  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING INFORMATION  
6.1  
6.2  
6.3  
6.4  
6.5  
6.6  
Pinning PCD3311CP  
Pin description PCD3311CP  
Pinning PCD3311CT  
Pin description PCD3311CT  
Pinning PCD3312C  
Pin description PCD3312C  
7
FUNCTIONAL DESCRIPTION  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
7.11  
General  
Clock/oscillator connection  
Mode selection (PCD3311C)  
Data inputs (PCD3311C)  
Strobe input (PCD3311C )  
I2C-bus clock and data inputs  
Address input  
I2C-bus data configuration  
Tone output  
Power-on reset  
Tables of Input and output  
8
I2C-BUS INTERFACE  
8.1  
Bit transfer  
8.2  
8.3  
8.4  
Start and stop conditions  
System configuration  
Acknowledge  
8.5  
8.5.1  
8.5.2  
Timing specifications  
Standard mode  
Low-speed mode  
9
HANDLING  
10  
11  
12  
13  
14  
LIMITING VALUES  
CHARACTERISTICS  
APPLICATION INFORMATION  
PACKAGE OUTLINES  
SOLDERING  
14.1  
Introduction  
14.2  
DIP  
14.2.1  
14.2.2  
14.3  
Soldering by dipping or by wave  
Repairing soldered joints  
SO  
14.3.1  
14.3.2  
14.3.3  
Reflow soldering  
Wave soldering  
Repairing soldered joints  
1996 Nov 21  
2
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
used, and a separate microcontroller is required to control  
the devices.  
1
FEATURES  
DTMF, modem and musical tone generation  
Stabilized output voltage level  
Both the devices can interface to I2C-bus compatible  
microcontrollers for serial input. The PCD3311C can also  
interface directly to all standard microcontrollers,  
accepting a binary coded parallel input.  
Low output distortion with on-chip filtering conforming to  
CEPT recommendations  
Latched inputs for data bus applications  
I2C-bus compatible  
Selection of parallel or serial (I2C-bus) data input  
With their on-chip voltage reference the PCD3311C and  
PCD3312C provide constant output amplitudes which are  
independent of the operating supply voltage and ambient  
temperature.  
(PCD3311C).  
An on-chip filtering system assures a very low total  
harmonic distortion in accordance with CEPT  
recommendations.  
2
GENERAL DESCRIPTION  
The PCD3311C and PCD3312C are single-chip silicon  
gate CMOS integrated circuits. They are intended  
principally for use in telephone sets to provide the  
dual-tone multi-frequency (DTMF) combinations required  
for tone dialling systems. The various audio output  
frequencies are generated from an on-chip 3.58 MHz  
quartz crystal-controlled oscillator. A separate crystal is  
In addition to the standard DTMF frequencies the devices  
can also provide:  
Twelve standard frequencies used in simplex modem  
applications for data rates from 300 to 1200 bits per  
second  
Two octaves of musical scales in steps of semitones.  
3
QUICK REFERENCE DATA  
SYMBOL  
VDD  
IDD  
Istb  
PARAMETER  
MIN.  
2.5  
TYP.  
MAX.  
6.0  
UNIT  
operating supply voltage  
operating supply current  
standby current  
V
0.9  
3
mA  
µA  
mV  
mV  
dB  
dB  
°C  
VHG(RMS) DTMF HIGH group output voltage level (RMS value)  
VLG(RMS) DTMF LOW group output voltage level (RMS value)  
158  
125  
1.85  
192  
150  
2.10  
25  
205  
160  
2.35  
Gv  
pre-emphasis (voltage gain) of group  
total harmonic distortion  
THD  
Tamb  
operating ambient temperature  
25  
+70  
4
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCD3311CP  
PCD3311CT  
PCD3312CP  
PCD3312CT  
DIP14  
SO16  
DIP8  
SO8  
plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
SOT162-1  
SOT97-1  
SOT176-1  
plastic small outline package; 16 leads; body width 7.5 mm  
plastic dual in-line package; 8 leads (300 mil)  
plastic small outline package; 8 leads; body width 7.5 mm  
1996 Nov 21  
3
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
5
BLOCK DIAGRAM  
V
V
OSCI  
1(3)  
OSCO  
2(4)  
DD  
14(2)  
SS  
13(1)  
CLOCK  
GENERATOR  
OSCILLATOR  
3
MODE  
HIGH  
GROUP  
DIVIDER  
DAC  
HIGH  
4
D5  
D4  
12  
SWITCHED  
CAPACITOR  
BANDGAP  
VOLTAGE  
11  
INPUT  
CONTROL  
LOGIC  
DIVIDER  
SELECTION  
(ROM)  
D3  
(5)6  
TONE  
10  
D2  
ADDER  
9(8)  
8(7)  
REFERENCE  
SWITCHED RESISTOR  
CAPACITOR CAPACITOR  
D1/SDA  
D0/SCL  
DAC  
LOW  
LOW  
GROUP  
DIVIDER  
5
PCD3311C  
PCD3312C  
STROBE  
7(6)  
MGG543  
A
0
The un-parenthesised numbers are for the PCD3311CP, those in parenthesis for the PCD3312C.  
Fig.1 Block diagram.  
6
PINNING INFORMATION  
Pinning PCD3311CP  
6.2  
Pin description PCD3311CP  
6.1  
SYMBOL  
PIN  
1
TYPE  
DESCRIPTION  
oscillator input  
OSCI  
I
O
I
OSCO  
MODE  
2
oscillator output  
3
mode select input (selects  
I2C or parallel data input)  
handbook, halfpage  
OSCI  
OSCO  
MODE  
D5  
1
2
3
4
5
6
7
V
V
14  
13  
12  
11  
10  
9
DD  
SS  
D5  
4
5
I
I
parallel data input  
STROBE  
strobe input (for loading  
data in parallel mode)  
D4  
TONE  
A0  
6
7
8
9
O
I
frequency output (DTMF,  
modem, musical tones)  
D3  
PCD3311CP  
D2  
STROBE  
TONE  
A0  
slave address input (to be  
connected to VDD  
D1/SDA  
D0/SCL  
or VSS  
)
D0/SCL  
D1/SDA  
I
parallel data input or  
I2C-bus clock line  
8
MGG508  
I
parallel data input or  
I2C-bus data line  
D2 D4  
VSS  
10 12  
13  
I
parallel data inputs  
negative supply  
positive supply  
P
P
Fig.2 Pin configuration PCD3311CP.  
VDD  
14  
1996 Nov 21  
4
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
6.3  
Pinning PCD3311CT  
6.4  
Pin description PCD3311CT  
SYMBOL  
PIN TYPE  
DESCRIPTION  
oscillator input  
OSCI  
1
2
3
I
O
I
OSCO  
MODE  
oscillator output  
mode select input (selects  
I2C or parallel data input)  
handbook, halfpage  
OSCI  
OSCO  
MODE  
D5  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
V
V
DD  
SS  
D5  
4
5
6
I
I
parallel data input  
not connected  
n.c.  
D4  
STROBE  
strobe input (for loading  
data in parallel mode)  
n.c.  
PCD3311CT  
TONE  
A0  
7
8
O
I
frequency output (DTMF,  
modem, musical tones)  
D3  
n.c.  
D2  
STROBE  
TONE  
A0  
slave address input (to be  
connected to VDD or VSS  
D1/SDA  
D0/SCL  
)
D0/SCL  
D1/SDA  
9
I
parallel data input or  
I2C-bus clock line  
MGG509  
10  
I
parallel data input or  
I2C-bus data line  
D2, D3  
n.c.  
11, 12  
13  
I
parallel data inputs  
not connected  
I
D4  
14  
parallel data input  
negative supply  
positive supply  
VSS  
15  
P
P
Fig.3 Pin configuration PCD3311CT.  
VDD  
16  
6.5  
Pinning PCD3312C  
6.6  
Pin description PCD3312C  
SYMBOL  
VSS  
PIN TYPE  
DESCRIPTION  
negative supply  
1
2
3
4
5
P
P
I
VDD  
positive supply  
oscillator input  
oscillator output  
OSCI  
OSCO  
TONE  
O
O
handbook, halfpage  
V
V
1
2
3
4
8
7
6
5
SDA  
SS  
frequency output (DTMF,  
modem, musical tones)  
SCL  
A0  
DD  
PCD3312C  
A0  
6
I
slave address input (to be  
OSCI  
connected to VDD or VSS  
I2C-bus clock line  
I2C-bus data line  
)
TONE  
OSCO  
SCL  
SDA  
7
8
I
I
MGG510  
Fig.4 Pin configuration PCD3312C.  
1996 Nov 21  
5
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
7
FUNCTIONAL DESCRIPTION  
7.4  
Data inputs (PCD3311C)  
Inputs D0, D1, D2, D3, D4 and D5 are used in the parallel  
data input mode of the PCD3311C. Inputs D0 and D1 are  
also used in serial input mode when they act as the SCL  
and SDA inputs respectively. Inputs D0 and D1 have no  
internal pull-down or pull-up resistors and must not be left  
open in any application. Inputs D2, D3, D4 and D5 have  
internal pull-down.  
7.1  
General (see Fig.1)  
The Input Control Logic decodes the input data to  
determine whether DTMF, modem or musical tones are  
selected; and which particular tone or combination of  
tones is required.  
A code representing the required tones is sent to the  
Divider Selection ROM which selects the correct division  
ratio in both of the Frequency Dividers (or in one divider, if  
only a single tone is required).  
D4 and D5 are used to select between DTMF dual, DTMF  
single, modem and musical tones (see Table 1). D0, D1,  
D2 and D3 select the tone combination or single tone  
within the selected application. They also, in combination  
with D4, select the standby mode. See Tables 2, 3, 4  
and 5.  
The Oscillator circuit provides a square wave of frequency  
3.58 MHz. Each Frequency Divider divides the frequency  
of the Oscillator to give a serial digital square wave with a  
frequency simply related to that of the required tone.  
PCD 3312C has no parallel data pins as data input is via  
the I2C-bus.  
The output from each Frequency Divider goes to a DAC,  
which is also fed by a clock derived from the oscillator.  
Using these two signals, the DAC produces an  
Table 1 Use of D5 and D4 to select application  
approximate sine wave of the required frequency, with an  
amplitude derived from the Voltage Reference.  
D5  
D4  
APPLICATION  
LOW LOW DTMF single tones; musical tones;  
standby  
The output from the DAC goes to an Adder where, for  
DTMF, it is combined with the output from the other DAC.  
LOW HIGH DTMF dual tones (all 16 combinations)  
HIGH LOW modem tones  
The output from the Adder goes through two stages of Low  
Pass Filters to give a smoothed tone (single or dual), and  
finally to the TONE output.  
HIGH HIGH musical tones  
7.5  
Strobe input (PCD3311C )  
7.2  
Clock/oscillator connection  
The STROBE input (with internal pull-down) allows the  
loading of parallel data into D0 to D5 when MODE is HIGH.  
The timebase for the PCD3311C and PCD3312C is a  
crystal-controlled oscillator, requiring a 3.58 MHz quartz  
crystal to be connected between OSCI and OSCO.  
Alternatively, the OSCI input can be driven from an  
external clock of 3.58 MHz.  
The data inputs must be stable preceding the  
positive-going edge of the strobe pulse (active HIGH).  
Input data are loaded at the negative-going edge of the  
strobe pulse and then the corresponding tone (or standby  
mode) is provided at the TONE output. The output remains  
unchanged until the negative-going edge of the next  
STROBE pulse (for new data) is received. Figure 5 is an  
example of the timing relationship between STROBE and  
the data inputs.  
7.3  
Mode selection (PCD3311C)  
The MODE input selects the data input mode for the  
PCD3311C. When MODE is connected to VDD (HIGH),  
data can be received in the parallel mode. When  
connected to VSS (LOW) or left open, data can be received  
via the serial I2C-bus.  
When MODE is LOW, data is received serially via the  
I2C-bus.  
PCD 3312C has no MODE input as data input is via the  
I2C-bus only.  
1996 Nov 21  
6
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
t
SPW  
t
90%  
10%  
STROBE  
DH  
t
DS  
D0  
D1  
D2  
D3  
D4  
D5  
t
(ON)  
tone  
TONE  
oscillator OFF  
oscillator ON  
no output tone  
oscillator ON  
output tones  
MGG511  
Fig.5 Timing of STROBE, parallel data inputs and TONE output (770 Hz + 1477 Hz in example) in the parallel  
mode (MODE = HIGH).  
7.6  
I2C-bus clock and data inputs  
7.8  
I2C-bus data configuration (see Fig.6)  
SCL and SDA are the serial clock and serial data inputs  
according to the I2C-bus specification, see Chapter 8.  
The PCD3311C and PCD3312C are always slave  
receivers in the I2C-bus configuration. The R/W bit in is  
thus always LOW, indicating that the master  
(microcontroller) is writing.  
SCL and SDA must be pulled up externally to VDD  
.
For the PCD3311C, SCL and SDA are combined with  
parallel inputs D0 and D1 respectively - D0/SCL and  
D1/SDA operate serially only when MODE is LOW.  
The slave address in the serial mode consists of 7 bits: 6  
bits internally fixed, 1 externally set via A0. in the serial  
mode, the same input data codes are used as in the  
parallel mode. See Tables 2, 3, 4 and 5.  
7.7  
Address input  
Address input A0 defines the least significant bit of the  
I2C-bus address of the device (see Fig.6). The first 6 bits  
of the address are fixed internally. By tying the A0 of each  
device to VDD (HIGH) and VSS (LOW) respectively, two  
different PCD3311C or PCD3312C devices can be  
individually addressed on the bus.  
7.9  
Tone output  
The single and dual tones provided at the TONE output are  
first filtered by an on-chip switched-capacitor filter,  
followed by an active RC low-pass filter. The filtered tones  
fulfil the CEPT recommendations for total harmonic  
distortion of DTMF tones. An on-chip reference voltage  
provides output tone levels independent of the supply  
voltage. Tables 3, 4 and 5 give the frequency deviation of  
the output tones with respect to the standard DTMF,  
modem and music frequencies.  
Whether one or two devices are used, A0 must be  
connected to VDD or VSS  
.
1996 Nov 21  
7
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
acknowledge  
from slave  
acknowledge  
from slave  
MSB  
0
R/W  
0
S
1
0
0
1
0
A0  
A
X
X
D5 D4 D3 D2 D1 D0  
A
P
slave address  
data  
internal STROBE  
for data latching  
MGG512  
Fig.6 I2C-bus data format.  
7.10 Power-on reset  
In order to avoid an undefined state when the power is switched ON, the devices have an internal reset circuit which sets  
the standby mode (oscillator OFF).  
7.11 TABLES OF INPUT AND OUTPUT  
The specified output tones are obtained when a 3.579545 MHz crystal is used.  
In each table, the logical states for the input data lines are related to voltage levels as follows:  
1 = HIGH = VDD  
0 = LOW = VSS  
X = don’t care  
Table 2 Input data for no output tone, TONE in 3-state  
D5  
X
D4  
0
D3  
0
D2  
0
D1  
0
D0  
0
HEX(1)  
00 or 20  
01 or 21  
02 or 22  
03 or 23  
OSCILLATOR  
ON  
X
0
0
0
0
1
OFF  
OFF  
OFF  
X
0
0
0
1
0
X
0
0
0
1
1
Note  
1. The alternative HEX values depend on the value of D5.  
1996 Nov 21  
8
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
Table 3 Input data and output for DTMF tones  
TONE  
OUTPUT  
FREQ.  
STANDARD  
FREQUENCY  
FREQUENCY  
DEVIATION  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
SYMBOL  
Hz  
Hz  
%
Hz  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
08  
09  
0A  
0B  
0C  
0D  
0E  
0F  
10  
11  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
*
697  
697.90  
+0.13 +0.90  
+0.06 +0.46  
0.18 1.55  
+0.24 +2.23  
0.21 2.55  
+0.42 +5.66  
+0.35 +5.21  
+0.32 +5.24  
770  
770.46  
852  
850.45  
941  
943.23  
1209  
1206.45  
1336  
1341.66  
1477  
1482.21  
1633  
1638.24  
941+1336  
697+1209  
697+1336  
697+1477  
770+1209  
770+1336  
770+1477  
852+1209  
852+1336  
852+1477  
697+1633  
770+1633  
852+1633  
941+1633  
941+1209  
941+1477  
12  
13  
14  
15  
16  
17  
18  
19  
1A  
1B  
1C  
1D  
1E  
1F  
#
Table 4 Input data and output for modem tones  
TONE  
OUTPUT  
FREQ.  
STANDARD  
FREQUENCY  
FREQUENCY  
DEVIATION  
TELECOM.  
STANDARD  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
Hz  
Hz  
%
Hz  
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
0
0
0
1
0
1
0
1
24  
25  
26  
27  
28  
29  
1300  
2100  
1200  
2200  
980  
1296.94  
2103.14  
1197.17  
2192.01  
978.82  
0.24 3.06  
+0.15 +3.14  
0.24 2.83  
0.36 7.99  
0.12 1.18  
0.08 0.97  
V.23  
Bell 202  
V.21  
1180  
1179.03  
1996 Nov 21  
9
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
TONE  
OUTPUT  
FREQ.  
STANDARD  
FREQUENCY  
FREQUENCY  
DEVIATION  
TELECOM.  
STANDARD  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
Hz  
Hz  
%
Hz  
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
0
0
1
1
1
1
1
1
0
0
1
1
0
1
0
1
0
1
2A  
2B  
2C  
2D  
2E  
2F  
1070  
1270  
1650  
1850  
2 025  
2225  
1 073.33  
1265.30  
1655.66  
1852.77  
2021.20  
2223.32  
+0.31 +3.33  
0.37 4.70  
+0.34 +5.66  
+0.15 +2.77  
0.19 3.80  
0.08 1.68  
Bell 103  
V.21  
Bell 103  
Table 5 Input/output for musical tones  
STD. FREQ.  
BASED ON  
A4 = 440 Hz  
TONE  
OUTPUT  
FREQUENCY  
D5  
D4  
D3  
D2  
D1  
D0  
HEX  
NOTE  
Hz  
Hz  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
0
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
0
1
1
1
0
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
0
0
0
1
1
0
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
0
1
0
0
1
1
0
1
0
0
0
1
1
1
0
1
0
1
0
1
0
1
0
1
0
1
1
0
1
0
0
0
1
0
1
1
1
0
1
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
3A  
29  
3B  
3C  
3D  
0E  
3E  
2C  
3F  
04  
05  
25  
2F  
06  
07  
D#5  
622.3  
659.3  
622.5  
659.5  
E5  
F5  
698.5  
697.9  
F#5  
G5  
740.0  
741.1  
784.0  
782.1  
G#5  
A5  
830.6  
832.3  
880.0  
879.3  
A#5  
B5  
932.3  
931.9  
987.8  
985.0  
C6  
1046.5  
1108.7  
1174.7  
1244.5  
1318.5  
1396.9  
1480.0  
1568.0  
1661.2  
1760.0  
1864.7  
1975.5  
2093.0  
2217.5  
2349.3  
2489.0  
1044.5  
1111.7  
1179.0  
1245.1  
1318.9  
1402.1  
1482.2  
1572.0  
1655.7  
1768.5  
1875.1  
1970.0  
2103.1  
2223.3  
2358.1  
2470.4  
C#6  
D6  
D#6  
E6  
F6  
F#6  
G6  
G#6  
A6  
A#6  
B6  
C7  
C#7  
D7  
D#7  
1996 Nov 21  
10  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
8
I2C-BUS INTERFACE  
The I2C-bus is for two-way communication between different ICs or modules. It uses only two lines, a serial data line  
(SDA) and a serial clock line (SCL), both of which are bi-directional. Both lines must be connected to a positive supply  
via a pull-up resistor when connected to the output stages of a device. Data transfer may be initiated only when the bus  
is not busy.  
8.1  
Bit transfer (see Fig.7)  
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period  
of the clock pulse as changes in the data line at this time will be interpreted as control signals.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBC621  
Fig.7 Bit transfer.  
8.2  
Start and stop conditions (see Fig.8)  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is  
defined as the stop condition (P).  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.8 Start and stop conditions.  
1996 Nov 21  
11  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
8.3  
System configuration (see Fig.9)  
A device generating a message is a ‘transmitter’, a device receiving a message is the ‘receiver’. The device that controls  
message transfer is the ‘master’ and the devices that are controlled by the master are the ‘slaves’.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.9 System configuration.  
8.4  
Acknowledge  
The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited.  
Each byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by the  
transmitter whereas the master generates an extra acknowledge after the reception of each byte. Also a master must  
generate an acknowledge after reception of each byte that has been clocked out of the slave transmitter. The device that  
acknowledges has to pull down the SDA line during the acknowledge-related clock pulse. Set-up and hold times must  
be taken into account to ensure that the SDA line is stable LOW during the whole HIGH period of the  
acknowledge-related clock pulse. A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data  
line HIGH to enable the master to generate the stop condition.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
CONDITION  
MBC602  
Fig.10 Acknowledgment on the I2C-bus.  
1996 Nov 21  
12  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
8.5  
Timing specifications  
The PCD3311C and PCD3312C accept data input from a microcontroller and are ‘slave receivers’ when operating via  
the I2C-bus. They support the ‘standard’ and ‘low-speed’ modes of the I2C-bus, but not the ‘fast’ mode detailed in “The  
I2C-bus and how to use it” document order no. 9398 393 40011. The timing requirements for the devices are described  
in Sections 8.5.1 and 8.5.2.  
8.5.1  
STANDARD MODE  
Masters generate a bus clock with a maximum frequency of 100 kHz. Detailed timing is shown in Fig.11, where the two  
signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 12 shows a complete data transfer in standard  
mode. The time symbols are explained in Table 6.  
SDA  
t
t
f
t
BUF  
LOW  
SCL  
SDA  
t
HIGH  
t
t
HD;STA  
r
t
HD;DAT  
t
SU;DAT  
MBC764  
t
SU;STA  
t
SU;STO  
Fig.11 Standard mode timing.  
1996 Nov 21  
13  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
SDA  
SCL  
1 - 7  
8
9
1 - 7  
8
9
1 - 7  
8
9
ACK  
START ADDRESS R/W  
CONDITION  
ACK  
DATA  
START ADDRESS R/W  
CONDITION  
ACK  
STOP  
MBC765  
Clock LOW minimum = 4.7 µs; clock HIGH minimum = 4 µs.  
The dashed line is the acknowledgment of the receiver.  
Mark-to-space ratio = 1 : 1 (LOW-to-HIGH).  
Maximum number of bytes is unrestricted.  
Premature termination of transfer is allowed by generation of STOP condition.  
Acknowledge clock bit must be provided by master.  
Fig.12 Complete data transfer in standard mode.  
Table 6 Explanation of time symbols used in Fig.11  
SYMBOL  
fSCL  
PARAMETER  
SCL clock frequency  
tolerable pulse spike width  
bus free time  
REMARKS  
MIN. MAX. UNIT  
0
100  
100  
kHz  
ns  
tSW  
tBUF  
The time that the bus is free (SDA is HIGH)  
before a new transmission is initiated by SDA  
going LOW.  
4.7  
µs  
tSU;STA  
tHD;STA  
set-up time repeated START  
hold time START condition  
Only valid for repeated start code.  
4.7  
µs  
µs  
The time between SDA going LOW and the first 4.0  
valid negative-going transition of SCL.  
tLOW  
tHIGH  
tr  
SCL LOW time  
The LOW period of the SCL clock.  
The HIGH period of the SCL clock.  
4.7  
4.0  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
SCL HIGH time  
rise time SDA and SCL  
fall time SDA and SCL  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
set-up time STOP condition  
4.0  
8.5.2  
LOW-SPEED MODE  
Masters generate a bus clock with a maximum frequency of 2 kHz; a minimum LOW period of 105 µs and a minimum  
HIGH period of 365 µs. The mark-to-space ratio is 1 : 3 LOW-to-HIGH. Detailed timing is shown in Fig.13, where the two  
signal levels are LOW = VIL and HIGH = VIH, see Chapter 11. Figure 14 shows a complete data transfer in low-speed  
mode.The time symbols are explained in Table 7.  
1996 Nov 21  
14  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
SDA  
t
t
f
t
LOW  
BUF  
SCL  
SDA  
t
t
t
t
r
HIGH  
HD;STA  
SU;DAT  
t
HD;DAT  
t
SU;STA  
t
SU;STO  
MGG545  
Fig.13 Low-speed mode timing.  
SDA  
R/W  
SCL  
START  
CONDITION  
START BYTE  
DUMMY  
ACKNOWLEDGE START  
CONDITION  
REPEATED  
ADDRESS  
ACKNOWLEDGE STOP  
CONDITION  
MGG546  
Clock LOW minimum = 130 µs ±25 µs; clock HIGH minimum 390 µs ±25 µs.  
Mark-to-space ratio = 1 : 3 (LOW-to-HIGH).  
Start byte 0000 0001.  
Maximum number of bytes = 6.  
Premature termination of transfer not allowed.  
Acknowledge clock bit must be provided by master.  
Fig.14 Complete data transfer in low speed mode.  
15  
1996 Nov 21  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
Table 7 Explanation of time symbols used in Fig.13  
SYMBOL  
PARAMETER  
SCL clock frequency  
REMARKS  
MIN. MAX. UNIT  
fSCL  
tSW  
0
2
kHz  
ns  
tolerable pulse spike width  
bus free time  
100  
tBUF  
The time that the bus is free (SDA is  
HIGH) before a new transmission is  
initiated by SDA going LOW.  
105  
µs  
tSU;STA  
tHD;STA  
set-up time repeated START  
hold time START condition  
Only valid for repeated start code.  
105  
365  
155  
415  
µs  
µs  
The time between SDA going LOW and  
the first valid negative-going transition of  
SCL.  
tLOW  
tHIGH  
tr  
SCL LOW time  
The LOW period of the SCL clock.  
The HIGH period of the SCL clock.  
105  
365  
155  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
SCL HIGH time  
rise time SDA and SCL  
fall time SDA and SCL  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
set-up time STOP condition  
105  
155  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Handbook IC03, Section: General, Handling MOS  
devices”).  
1996 Nov 21  
16  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
10 LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
MIN.  
0.8  
MAX.  
+8.0  
UNIT  
VDD  
VI  
supply voltage  
V
V
all input voltages  
DC input current  
DC output current  
total power dissipation  
0.8  
10  
10  
VDD + 0.8  
+10  
II  
mA  
mA  
mW  
mW  
mA  
mA  
°C  
IO  
+10  
Ptot  
PO  
IDD  
ISS  
Tstg  
Tamb  
300  
power dissipation per output  
supply current through pin VDD  
supply current through pin VSS  
storage temperature  
50  
50  
50  
65  
25  
+50  
+50  
+150  
+70  
operating ambient temperature  
°C  
11 CHARACTERISTICS  
VDD = 2.5 to 6.0 V; VSS = 0 V; Tamb = 25 to +70 °C; all voltages with respect to VSS; fxtal = 3.58 MHz (gmL);  
maximum series resistance = 50 ; unless otherwise specified.  
SYMBOL  
PARAMETER  
operating supply voltage  
MIN.  
2.5  
TYP  
MAX.  
6.0  
UNIT  
VDD  
IDD  
V
operating supply current (note 1)  
no output tone  
50  
0.5  
0.6  
100  
0.8  
0.9  
3
µA  
single output tone  
mA  
mA  
µA  
dual output tone  
Istb  
static standby current (note 2)  
Inputs/outputs (SDA)  
D0 TO D5; MODE; STROBE  
VIL  
VIH  
LOW level input voltage  
HIGH level input voltage  
0
0.3VDD  
VDD  
V
V
0.7VDD  
D2 TO D5 MODE; STROBE; A0  
IIL  
pull-down input current; VI = VDD  
30  
150  
300  
nA  
SCL (D0); SDA (D1)  
IOL  
fSCL  
Ci  
LOW level output current (SDA); VOL = 0.4 V  
3
mA  
kHz  
pF  
SCL clock frequency  
100  
7
input capacitance; VI = VSS  
allowable input spike pulse width  
ti  
100  
ns  
1996 Nov 21  
17  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
SYMBOL  
PARAMETER  
MIN.  
TYP  
MAX.  
UNIT  
TONE output (see test circuit, Fig.15)  
VHG(RMS)  
VLG(RMS)  
VDC  
DTMF output voltage (RMS), HIGH group  
158  
192  
205  
mV  
DTMF output voltage (RMS), LOW group  
DC voltage level  
125  
150  
12 VDD  
160  
mV  
V
Gv  
voltage gain (pre-emphasis) of group  
Total Harmonic Distortion; Tamb = 25 °C  
dual tone (note 3)  
1.85  
2.10  
2.35  
dB  
THD  
25  
29  
0.1  
dB  
dB  
kΩ  
modem tone (note 4)  
Zo  
output impedance  
0.5  
OSCI input  
VOSC(p-p)  
maximum allowable amplitude at OSCI  
VDD VSS  
V
Timing (VDD = 3 V)  
tOSC(ON)  
tTONE(ON)  
tSPW  
oscillator start-up time  
3
ms  
ms  
ns  
TONE start-up time (note 5)  
STROBE pulse width (note 6)  
data set-up time (note 6)  
data hold time (note 6)  
0.5  
400  
150  
100  
tDS  
ns  
tDH  
ns  
Notes  
1. Oscillator ON; VDD = 3 V; crystal connected between OSCI and OSCO; D0/SCL and D1/SDA connected via  
resistance of 5.6 kto VDD; all other pins left open.  
2. As note 1, but with oscillator OFF.  
3. Related to the level of the LOW group frequency component, according to CEPT recommendations.  
4. Related to the level of the fundamental frequency.  
5. Oscillator must be running.  
6. Values are referenced to the 10% and 90% levels of the relevant pulse amplitudes, with a total voltage swing from  
VSS to VDD.  
handbook, halfpage  
1 µF  
V
DD  
TONE  
PCD3311C  
PCD3312C  
50 pF  
10 kΩ  
V
SS  
MGG513  
Fig.15 TONE output test circuit.  
18  
1996 Nov 21  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
MGG515  
MGG514  
300  
1.6  
handbook, halfpage  
handbook, halfpage  
T
=
amb  
I
stb  
I
DD  
25 ˚C  
(µA)  
T
=
(µA)  
amb  
25 ˚C  
1.2  
+25 ˚C  
+70 ˚C  
200  
+25 ˚C  
+70 ˚C  
0.8  
0.4  
0
100  
0
0
2
4
6
8
2
6
8
0
4
V
(V)  
DD  
V
(V)  
DD  
Fig.17 Operating supply current as a function of  
supply voltage; oscillator ON, no output at  
TONE.  
Fig.16 Standby supply current as a function of  
supply voltage; oscillator OFF.  
MGG517  
MGG516  
6
1.5  
handbook, halfpage  
handbook, halfpage  
T
=
amb  
T
= 25 ˚C  
amb  
25 ˚C  
I
I
I
DD  
+25 ˚C  
+70 ˚C  
(µA)  
(mA)  
+25 ˚C  
+70 ˚C  
4
1
2
0
0.5  
0
0
0
1
2
3
2
4
6
8
(V)  
V (V)  
V
I
DD  
Fig.18 Operating supply current as a function of  
supply voltage; oscillator ON, dual tone at  
TONE.  
Fig.19 Pull-down input current as a function of  
input voltage; VDD = 3 V.  
1996 Nov 21  
19  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
MGG518  
MGG519  
11  
0.4  
handbook, halfpage  
handbook, halfpage  
V
TONE  
V
T
=
TONE  
amb  
(dBm)  
(dB)  
25 ˚C  
+25 ˚C  
HIGH GROUP  
12  
T
=
amb  
0
+70 ˚C  
25 ˚C  
+25 ˚C  
13  
14  
15  
0.4  
0.8  
+70 ˚C  
25 ˚C  
+25 ˚C  
LOW GROUP  
+70 ˚C  
6
5
4
3
0
2
4
6
10  
10  
10  
10  
R
()  
V
(V)  
L
DD  
Fig.20 DTMF output voltage levels as a function of  
Fig.21 Dual tone output voltage level as a function  
of output load resistance.  
operating supply voltage; RL = 1 M.  
MGG520  
0
level  
(dBm)  
20  
CS203  
40  
60  
80  
100  
0
1
2
3
4
5
frequency (kHz)  
MGG521  
0
level  
(dBm)  
20  
40  
60  
80  
CS203  
100  
0
10  
20  
30  
40  
50  
frequency (kHz)  
Fig.22 Typical frequency spectrum of a dual tone signal after flat-band amplification of 6 dB.  
20  
1996 Nov 21  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
12 APPLICATION INFORMATION  
V
V
DD  
handbook, halfpage  
SS  
mute  
1
4
7
2
5
8
0
3
6
9
A
B
C
D
GENERAL  
PURPOSE  
MICROCONTROLLER  
(4 or 8-BIT)  
data bus  
OSCI OSCO STROBE  
D0  
PCD3311C  
TONE  
D5  
MODE  
V
V
SS  
DD  
MBH669  
Fig.23 PCD3311C driven by microcontroller with parallel data bus.  
V
V
DD  
handbook, halfpage  
SS  
mute  
1
4
7
2
5
8
0
3
6
9
A
B
C
D
TELEPHONY  
MICROCONTROLLER  
PCF84C21A  
OSCI OSCO  
3.58 MHz  
2
4 pF  
I C bus  
OSCI OSCO  
SCL  
SDA  
PCD3312C  
TONE  
A
V
V
DD  
0
SS  
MGG544  
Fig.24 PCD3312C driven by microcontroller PCF84C21A. The PCF84C21A is a single-chip 8-bit microcontroller  
with 2 kbytes ROM and I2C-bus. The same application is possible with the PCD3311C with MODE = VSS  
.
1996 Nov 21  
21  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
13 PACKAGE OUTLINES  
DIP14: plastic dual in-line package; 14 leads (300 mil)  
SOT27-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
M
H
14  
8
pin 1 index  
E
1
7
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
w
1
1
E
max.  
min.  
max.  
max.  
1.73  
1.13  
0.53  
0.38  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.068  
0.044  
0.021  
0.015  
0.014  
0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-03-11  
SOT27-1  
050G04  
MO-001AA  
1996 Nov 21  
22  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
1.27  
0.050  
1.4  
0.25  
0.01  
0.25  
0.1  
0.25  
0.01  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.42  
0.39  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-24  
SOT162-1  
075E03  
MS-013AA  
1996 Nov 21  
23  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-04  
SOT97-1  
050G01  
MO-001AN  
1996 Nov 21  
24  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
SO8: plastic small outline package; 8 leads; body width 7.5 mm  
SOT176-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
5
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
θ
1
2
3
p
E
Z
max.  
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
7.65  
7.45  
7.6  
7.4  
10.65  
10.00  
1.1  
0.45  
1.1  
1.0  
2.0  
1.8  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.45  
0.057  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.30  
0.014 0.009 0.29  
0.30  
0.29  
0.42  
0.39  
0.043 0.043  
0.018 0.039  
0.079  
0.071  
inches 0.10  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
91-08-13  
95-02-25  
SOT176-1  
1996 Nov 21  
25  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
14 SOLDERING  
14.1 Introduction  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
14.3.2 WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
14.2 DIP  
14.2.1 SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
14.2.2 REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
14.3.3 REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
14.3 SO  
14.3.1 REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1996 Nov 21  
26  
Philips Semiconductors  
Product specification  
DTMF/modem/musical-tone generators  
PCD3311C; PCD3312C  
15 DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
16 LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
17 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1996 Nov 21  
27  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 247 9145, Fax. +7 095 247 9144  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 1949  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580/xxx  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. +886 2 382 4443, Fax. +886 2 382 4444  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1996  
SCA52  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
417021/1200/02/pp28  
Date of release: 1996 Nov 21  
Document order number: 9397 750 01155  

相关型号:

PCD3311AT

Telephone Circuit, CMOS, PDSO16
PHILIPS

PCD3311C

DTMF/modem/musical-tone generators
NXP

PCD3311CP

DTMF/modem/musical-tone generators
NXP

PCD3311CPN

Tone Telephone Dialer
ETC

PCD3311CT

DTMF/modem/musical-tone generators
NXP

PCD3311CT-T

暂无描述
NXP

PCD3311CTD

Tone Telephone Dialer
ETC

PCD3311CTD-T

Tone Telephone Dialer
ETC

PCD3311P

Telephone Circuit, CMOS, PDIP14
PHILIPS

PCD3311T

Telephone Circuit, CMOS, PDSO16
PHILIPS

PCD3311TD-T

Tone Telephone Dialer
ETC

PCD3312

DTMF/modem/musical-tone generators
NXP