PCF8536AT/1,118 [NXP]

PCF8536 - Universal LCD driver for low multiplex rates including a 6 channel PWM generator TSSOP 56-Pin;
PCF8536AT/1,118
型号: PCF8536AT/1,118
厂家: NXP    NXP
描述:

PCF8536 - Universal LCD driver for low multiplex rates including a 6 channel PWM generator TSSOP 56-Pin

PC CD
文件: 总74页 (文件大小:2614K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8536  
Universal LCD driver for low multiplex rates including a 6  
channel PWM generator  
Rev. 2 — 21 February 2012  
Product data sheet  
1. General description  
The PCF8536 is a peripheral device which interfaces to almost any Liquid Crystal Display  
(LCD)1 with low multiplex rates. It generates the drive signals for any multiplexed LCD  
containing up to eight backplanes, up to 44 segments, and up to 320 elements. The  
PCF8536 is compatible with most microcontrollers and communicates via the two-line  
bidirectional I2C-bus (PCF8536AT) or a three line unidirectional SPI-bus (PCF8536BT).  
Communication overheads are minimized using a display RAM with auto-incremented  
addressing.  
The PCF8536 features an on-chip PWM controller for LED illumination. Up to six  
independent channels can be configured. Each channel has 128 levels allowing the  
possibility for two RGB controllers. Each of them provides over 2 million colors. Each  
channel can also be used for static drive.  
2. Features and benefits  
Single-chip 320 segment LCD controller and driver with 6 channel PWM generator  
6 channel PWM generator for backlight LED illumination  
Selectable display bias configuration  
Wide range for digital power supply: from 1.8 V to 5.5 V  
Wide LCD supply range: from 2.5 V for low threshold LCDs and up to 9.0 V for high  
threshold twisted nematic LCDs  
Low power consumption  
Selectable backplane drive configuration: 4, 6, or 8 backplane multiplexing  
LCD and logic supplies may be separated  
320-bit RAM for display data storage  
6 PWM outputs with a 7-bit resolution (128 steps) and drivers for external transistors  
Programmable PWM frame frequency to avoid LCD backlight flickering  
400 kHz I2C-bus interface (PCF8536AT)  
5 MHz SPI-bus interface (PCF8536BT)  
Programmable frame frequency in the range of 60 Hz to 300 Hz in steps of 10 Hz;  
factory calibrated  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 19.  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
320 segments driven allowing:  
up to 40 7-segment alphanumeric characters  
up to 20 14-segment alphanumeric characters  
any graphics of up to 320 elements  
Manufactured in silicon gate CMOS process  
3. Applications  
White goods and consumer products  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Interface Package  
type  
Name  
Description  
Version  
PCF8536AT/1  
PCF8536BT/1  
I2C-bus  
TSSOP56 plastic thin shrink small outline  
package; 56 leads; body width 6.1 mm  
SOT364-1  
SPI-bus  
TSSOP56 plastic thin shrink small outline  
package; 56 leads; body width 6.1 mm  
SOT364-1  
5. Marking  
Table 2.  
Marking codes  
Type number  
PCF8536AT/1  
PCF8536BT/1  
Marking code  
PCF8536AT  
PCF8536BT  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
2 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
6. Block diagram  
S0/GP0 to  
S5/GP5  
BP4 to BP7/  
S40 to S43  
V
BP0 to BP3  
S6 to S39  
DD  
V
LCD  
GPO/PWM  
GENERATOR  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT  
OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
DISPLAY REGISTER  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY RAM  
AND  
PWM REGISTERS  
OSCILLATOR  
AND CLOCK  
SELECTION  
PCF8536AT  
PRESCALER  
AND TIMING  
OSCCLK  
RESET  
DATA POINTER,  
AUTO INCREMENT  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
2
SCL  
SDA  
I C-BUS  
INPUT  
FILTERS  
CONTROLLER  
013aaa419  
A0  
Fig 1. Block diagram of PCF8536AT  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
3 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
S0/GP0 to  
S5/GP5  
BP4 to BP7/  
S40 to S43  
V
BP0 to BP3  
S6 to S39  
DD  
V
LCD  
GPO/PWM  
GENERATOR  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT  
OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
DISPLAY REGISTER  
LCD BIAS  
GENERATOR  
V
SS  
DISPLAY RAM  
AND  
PWM REGISTERS  
OSCILLATOR  
AND CLOCK  
SELECTION  
PCF8536BT  
PRESCALER  
AND TIMING  
OSCCLK  
RESET  
DATA POINTER,  
AUTO INCREMENT  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
POWER-ON  
RESET  
SCL  
SDI  
SPI-BUS  
CONTROLLER  
013aaa429  
CE  
Fig 2. Block diagram of PCF8536BT  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
4 of 74  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
7. Pinning information  
7.1 Pinning  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
S9  
S10  
S8  
S9  
S10  
S8  
2
S7  
S7  
3
3
S11  
S6  
S11  
S6  
4
4
S12  
S5/GP5  
S4/GP4  
S3/GP3  
S2/GP2  
S1/GP1  
S0/GP0  
S12  
S5/GP5  
S4/GP4  
S3/GP3  
S2/GP2  
S1/GP1  
S0/GP0  
5
5
S13  
S13  
6
6
S14  
S14  
7
7
S15  
S15  
8
8
S16  
S16  
9
9
S17  
S17  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
S18  
V
LCD  
S18  
V
LCD  
S19  
OSCCLK  
S19  
OSCCLK  
BP0/S32  
BP1/S33  
BP2/S34  
BP3/S35  
BP4/S43/S36  
BP5/S42/S37  
BP6/S41/S38  
BP7/S40/S39  
S20  
V
V
BP0/S32  
BP1/S33  
BP2/S34  
BP3/S35  
BP4/S43/S36  
BP5/S42/S37  
BP6/S41/S38  
BP7/S40/S39  
S20  
V
V
DD  
SS  
DD  
SS  
RESET  
SDA  
RESET  
SDI  
PCF8536AT  
PCF8536BT  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
SCL  
SCL  
A0  
CE  
S39/BP0  
S38/BP1  
S37/BP2  
S36/BP3  
S35/BP4/S43  
S34/BP5/S42  
S33/BP6/S41  
S32/BP7/S40  
S31  
S39/BP0  
S38/BP1  
S37/BP2  
S36/BP3  
S35/BP4/S43  
S34/BP5/S42  
S33/BP6/S41  
S32/BP7/S40  
S31  
S21  
S21  
S22  
S22  
S23  
S23  
S24  
S24  
S25  
S25  
S26  
S26  
S27  
S30  
S27  
S30  
S28  
S29  
S28  
S29  
013aaa430  
013aaa431  
Top view. For mechanical details, see Figure 51.  
Top view. For mechanical details, see Figure 51.  
Fig 3. Pin configuration for TSSOP56 (PCF8536AT)  
Fig 4. Pin configuration for TSSOP56 (PCF8536BT)  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
7.2 Pin description  
Table 3.  
Pin description of PCF8536AT and PCF8536BT  
Pin  
Symbol  
Type  
Description  
1 to 11  
S9 to S19  
output  
output  
input  
LCD segment  
20 to 31 S20 to S31  
LCD segment  
43  
44  
45  
46  
RESET  
VSS  
active LOW reset input  
ground supply voltage  
supply voltage  
supply  
supply  
VDD  
OSCCLK  
input/output external clock input/internal oscillator  
output  
[1]  
47  
VLCD  
supply  
output  
output  
LCD supply voltage  
48 to 53 S0/GP0 to S5/GP5  
LCD segment/GPO (PWM) output  
54 to 56 S6 to S8  
LCD segment  
Pin layout depending on backplane swap configuration[2]  
BPS = 0  
BP0  
BPS = 1[3]  
12  
13  
14  
15  
16  
17  
18  
19  
32  
33  
34  
35  
36  
37  
38  
39  
S32  
output  
LCD backplane/LCD segment  
BP1  
S33  
BP2  
S34  
BP3  
S35  
BP4/S43  
BP5/S42  
BP6/S41  
BP7/S40  
S32  
S36  
S37  
S38  
S39  
BP7/S40  
BP6/S41  
BP5/S42  
BP4/S43  
BP3  
S33  
S34  
S35  
S36  
S37  
BP2  
S38  
BP1  
S39  
BP0  
Pin layout depending on product and bus type  
PCF8536AT PCF8536BT  
40  
41  
42  
A0  
input  
input  
input  
input  
I2C-bus slave address selection  
SPI-bus chip enable - active LOW  
I2C-bus serial clock  
CE  
SCL  
SDA  
SCL  
SDI  
SPI-bus serial clock  
input/output I2C-bus serial data  
input  
.
SPI-bus data input  
[1] VLCD must be equal to or greater than VDD  
[2] Effect of backplane swapping is illustrated in Figure 5 on page 10.  
[3] Bit BPS is explained in Section 8.1.4 on page 9.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
6 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8. Functional description  
The PCF8536 is a versatile peripheral device designed to interface any microcontroller to  
a wide variety of LCDs and 6 backlight LEDs. It can directly drive any multiplexed LCD  
containing up to eight backplanes and up to 44 segments.  
8.1 Commands of PCF8536  
The PCF8536 is controlled by 15 commands, which are defined in Table 4. Any other  
combinations of operation code bits that are not mentioned in this document may lead to  
undesired operation modes of PCF8536.  
Table 4.  
Commands of PCF8536  
Command name  
Register  
selection  
RS[1:0][1]  
Bits  
7
Reference  
6
5
4
3
2
1
0
initialize  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
1
0
1
1
1
0
0
0
1
1
1
0
1
0
1
0
1
1
0
0
Section 8.1.1  
Section 8.1.2  
OTP-refresh  
1
1
1
0
0
0
PWM-inversion  
mode-settings  
oscillator-control  
GPO-output-config  
0
0
1
0
1
0
PWMI Section 8.1.3  
0
0
1
BPS  
1
INV  
EFR  
PD  
COE  
E
Section 8.1.4  
Section 8.1.5  
Section 8.1.6  
OSC  
0
0
1
1
0
0
GPM1[1:0]  
GPM3[1:0]  
GPM5[1:0]  
GPM0[1:0]  
GPM2[1:0]  
GPM4[1:0]  
M[1:0]  
1
0
1
1
1
0
set-MUX-mode  
0
0
0
0
0
0
1
Section 8.1.7  
Section 8.1.8  
Section 8.1.9  
Section 8.1.10  
set-bias-mode  
0
0
0
B[1:0]  
frame-frequency-LCD  
frame-frequency-PWM  
GPO-static-data  
0
1
FD[4:0]  
0
0
0
0
0
FP[3:0]  
0
1
0
1
GPO2 GPO1 GPO0 Section 8.1.11  
GPO5 GPO4 GPO3  
0
1
load-data-pointer-LCD  
load-data-pointer-PWM  
write-RAM-data  
1
DP[5:0]  
1
Section 8.1.12  
0
1
0
PP[2:0]  
Section 8.1.13  
Section 8.1.14  
Section 8.1.15  
D[7:0]  
0
write-PWM-data  
P[6:0]  
[1] Information about control byte and register selection see Section 9.1 on page 46.  
8.1.1 Command: initialize  
This command generates a chip-wide reset. It has the same function as the RESET pin.  
Reset takes 1 ms to complete.  
Table 5.  
Bit  
Initialize - initialize command bit description  
Symbol  
Value  
Description  
fixed value  
7 to 0  
-
00010110  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
7 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.1.2 Command: OTP-refresh  
During production and testing of the device, each IC is calibrated to achieve the specified  
accuracy of the frame frequency. This calibration is performed on EPROM cells called  
One Time Programmable (OTP) cells. The device reads these cells every time the  
OTP-refresh command is sent. This instruction has to be sent after a reset has been  
made and before the display is enabled.  
This command will be completed after a maximum of 30 ms and requires either the  
internal or external clock to run. If the internal oscillator is not used, then a clock must be  
supplied to the OSCCLK pin. If the OTP-refresh instruction is sent and no clock is present,  
then the request is stored until a clock is available.  
Remark: It is recommended not to enter power-down mode during the OTP refresh cycle.  
Table 6.  
Bit  
OTP-refresh - OTP-refresh command bit description  
Symbol  
Value  
Description  
7 to 0  
-
11110000  
fixed value  
8.1.3 Command: PWM-inversion  
It is possible to invert the output of the PWM generators. This function may be useful for  
counteracting EMC issues. The description of this mode can be found in Section 8.11.2 on  
page 45.  
Table 7.  
Bit  
PWM-inversion - PWM inversion command bit description  
Symbol  
-
Value  
Description  
7 to 1  
0
0001010  
fixed value  
PWMI  
PWM inversion mode  
PWM inversion mode on  
PWM inversion mode off  
1
0[1]  
[1] Default value.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
8 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.1.4 Command: mode-settings  
Table 8.  
Mode-settings - mode settings command bit description  
Bit  
7 to 4  
3
Symbol  
Value  
Description  
-
0101  
fixed value  
BPS  
backplane swapping  
0[1]  
1
backplane configuration 0  
backplane configuration 1  
set inversion mode  
2
1
INV  
PD  
0[1][2]  
1
Driving scheme A: LCD line inversion mode  
Driving scheme B: LCD frame inversion mode  
set power mode  
1
power-down mode; backplane and segment  
outputs are connected to VSS and the internal  
oscillator is switched off  
0[1]  
power-up mode  
0
E
display switch  
0[1]  
1
display disabled; backplane and segment  
outputs are connected to VSS  
display enabled  
[1] Default value.  
[2] See Section 8.1.4.2.  
8.1.4.1 Backplane swapping  
Backplane swapping can be configured with the BPS bit (see Table 8). It moves the  
location of the backplane and the associated segment outputs from one side of the  
PCF8536 to the other. Backplane swapping is sometimes desirable to aid with the routing  
of PCBs that do not use multiple layers.  
The BPS bit has to be set to the required value before enabling the display. Failure to do  
so does not damage the PCF8536 or the display, however unexpected display content  
may appear.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
9 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
BP0  
BP1  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
BP2  
BP3  
BP4/S43  
BP5/S42  
BP6/S41  
BP7/S40  
S20  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
BP0  
BP1  
BP2  
S21  
BP3  
S22  
BP4/S43  
BP5/S42  
BP6/S41  
BP7/S40  
S31  
S23  
S24  
S25  
S26  
S27  
S30  
S28  
S29  
BPS = 1  
BPS = 0  
013aaa432  
Fig 5. Effect of backplane swapping  
8.1.4.2 Line inversion (driving scheme A) and frame inversion (driving scheme B)  
The DC offset of the voltage across the LCD is compensated over a certain period:  
line-wise in line inversion mode (driving scheme A) or frame-wise in frame inversion mode  
(driving scheme B). With the INV bit (see Table 8), the compensation mode can be  
switched.  
In frame inversion mode, the DC value is compensated across two frames and not within  
one frame. Changing the inversion mode to frame inversion reduces the power  
consumption; therefore it is useful when power consumption is a key point in the  
application.  
Frame inversion may not be suitable for all applications. The RMS voltage across a  
segment is better defined; however, since the switching frequency is reduced, there is  
possibility for flicker to occur.  
The waveforms of Figure 15 on page 29 to Figure 18 on page 32 are showing line  
inversion mode. Figure 19 on page 33 shows an example of frame inversion.  
8.1.4.3 Power-down mode  
The power-down bit (PD) allows the PCF8536 to be put in a minimum power  
configuration. In order to avoid display artefacts, it is recommended to enter power-down  
only after the display has been switched off by setting bit E to logic 0.  
During power-down, the internal oscillator is switched off and any selected PWM output is  
revert to the static value stored in bits GPO0 to GPO5. These bits may be programmed to  
give a static logic 0 or static logic 1 on selected GP0 to GP5 pins.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
10 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 9.  
Effect of the power-down bit (PD)  
Effect on function  
Mode settings  
Effect of setting PD  
0
1
backplane output  
segment output  
internal oscillator  
OSCCLK pin  
E = 1  
normal function  
normal function  
on  
VSS  
VSS  
off  
E = 1  
OSC = 0, COE = 1  
OSC = 0, COE = 1  
output of internal  
VDD  
oscillator frequency  
OSCCLK pin  
OSC = 1  
input clock  
clock input, can be  
logic 0, logic 1, or left  
floating  
GPO  
GPO  
static drive  
PWM drive  
static drive  
PWM drive  
static drive  
static drive  
With the following sequence, the PCF8536 can be set to a state of minimum power  
consumption, called power-down mode.  
START  
Disable display  
by setting bit E  
logic 0  
External clock  
can be  
removed now  
Enable power-  
down mode  
with PD = 1  
STOP  
013aaa447  
Fig 6. Recommended power-down sequence  
Remarks:  
It is necessary to run the power-down sequence before removing the supplies.  
Depending on the application, care must be taken that no other signals are present at  
the chip input or output pins when removing the supplies (see Section 10). Otherwise  
it may cause unwanted display artifacts. In case of an uncontrolled removal of supply  
voltages, the PCF8536 will not be damaged.  
Static voltages across the liquid crystal display can build up when the external LCD  
supply voltage (VLCD) is on while the IC supply voltage is off, or vice versa. This may  
cause unwanted display artifacts. To avoid such artifacts, VLCD and VDD must be  
applied or removed together.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
11 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
A clock signal must always be supplied to the device when the display is active.  
Removing the clock may freeze the LCD in a DC state, which is not suitable for the  
liquid crystal. It is recommended to disable the display first and afterwards to remove  
the clock signal.  
8.1.4.4 Display enable  
The display enable bit (E) is used to enable and disable the display. When the display is  
disabled, all LCD outputs go to VSS. This function is implemented to ensure that no  
voltage can be induced on the LCD outputs as it may lead to unwanted displays of  
segments.  
Recommended start-up sequences are found in Section 8.2.3  
Remarks:  
The state of display enable has no effect on the GPO outputs.  
Display enable is not synchronized to an LCD frame boundary. Therefore using this  
function to flash a display for prolonged periods is not recommended due to the  
possible build-up of DC voltages on the display.  
8.1.5 Command: oscillator-control  
The oscillator-control command switches between internal and external oscillator and  
enables or disables the pin OSCCLK. It is also used to define what the external frequency  
will be.  
Table 10. Oscillator-control - oscillator control command bit description  
Bit  
7 to 3  
2
Symbol  
Value  
Description  
-
00011  
fixed value  
EFR  
external clock frequency applied on pin  
OSCCLK  
0[1]  
1
9.6 kHz  
230 kHz  
1
0
COE  
OSC  
clock output enable for pin OSCCLK  
0[1]  
1
clock signal not available on pin OSCCLK;  
pin OSCCLK is in 3-state  
clock signal available on pin OSCCLK  
oscillator source  
0[1]  
1
internal oscillator running  
external oscillator used;  
pin OSCCLK becomes an input;  
used in combination with EFR to determine  
input frequency  
[1] Default value.  
The bits OSC, COE, and EFR control the source and frequency of the clock used to  
generate the LCD and PWM signals (see Figure 7). Valid combinations are shown in  
Table 11.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
12 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
COE (1)  
EFR (2)  
0
OSCCLK  
pin  
LCD waveform  
generator  
1
Programmable  
divider  
1
Internal oscillator  
230 kHz  
0
9.6 kHz (3)  
LCD frame frequency  
selection, q  
OSC  
0
1
Programmable  
divider  
PWM waveform  
generator  
PWM frame frequency  
selection, p  
013aaa448  
(4)  
(1) Can only be used with the internal oscillator (OSC = 0).  
(2) Can only be used with an external oscillator (OSC = 1).  
(3) Nominal value for divide factor q is 24; source clock is 230 kHz (see Section 8.1.9).  
(4) PWM requires an external or internal 230 kHz clock.  
Fig 7. Oscillator selection  
Table 11. Valid combinations of bits OSC, EFR, and COE  
OSC  
COE  
EFR  
OSCCLK pin  
Clock source  
0
0
not used  
inactive;  
internal oscillator used  
may be left floating  
0
1
not used  
output of internal oscillator  
frequency (prescaler)  
internal oscillator used  
1
1
not used  
not used  
0
1
9.6 kHz input  
230 kHz input  
OSCCLK pin  
OSCCLK pin  
Table 12. Typical use of bits OSC, EFR, and COE  
Usage  
OSC  
CDE  
EFR  
LCD and/or PWM with internal oscillator  
LCD and PWM with external oscillator  
LCD with external oscillator  
0
1
1
0
not used  
not used  
not used  
1
0
8.1.5.1 Oscillator  
The internal logic and LCD drive signals of the PCF8536 are timed either by the built-in  
oscillator or from an external clock.  
Internal clock: When the internal oscillator is used, all LCD and PWM signals are  
generated from it. The oscillator runs at nominal 230 kHz. The relationship between this  
frequency and the LCD frame frequency is detailed in Section 8.1.9. The relationship  
between this frequency and the PWM frame frequency is detailed in Section 8.1.10.  
Control over the internal oscillator is made with the OSC bit (see Section 8.1.5). The  
internal oscillator is also switched on or off under certain combinations of modes which  
are described in Table 13.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
13 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 13. Internal oscillator on/off table  
PD  
OSC  
PWM  
EFR  
Internal  
oscillator state[1]  
power-down  
power-up  
n.a.  
n.a.  
n.a.  
off  
internal oscillator n.a.  
n.a.  
on  
external oscillator off  
n.a.  
off  
on  
on  
9.6 kHz  
230 kHz  
on[2]  
off  
[1] When RESET is active, the internal oscillator is off.  
[2] Special case. The PWM generator needs 230 kHz and must be enabled when PWM is enabled.  
It is possible to make the internal oscillator signal available on pin OSCCLK by using the  
oscillator-control command (see Table 10) and configuring the clock output enable (COE)  
bit. If not required, the pin OSCCLK should be left open or connected to VSS. At power-on  
the signal at pin OSCCLK is disabled and pin OSCCLK is in 3-state.  
Clock output is only valid when using the internal oscillator. The signal will appear on the  
OSCCLK pin.  
An intermediate clock frequency is available at the OSCCLK pin. The duty cycle of this  
clock varies with the chosen divide ratio.  
Table 14. OSCCLK table  
PD  
OSC  
n.a.  
COE  
off  
EFR  
OSCCLK pin[1]  
3-state[2]  
power-down  
power-down  
power-up  
n.a.  
n.a.  
on  
n.a.  
VDD  
internal oscillator off  
on  
n.a.  
3-state  
n.a.  
9.6 kHz output[3]  
9.6 kHz input  
230 kHz input  
external oscillator n.a.  
9.6 kHz  
230 kHz  
[1] When RESET is active, the pin OSCCLK is in 3-state.  
[2] In this state, an external clock may be applied, but it is not a requirement.  
[3] 9.6 kHz is the nominal frequency with q = 24, see Table 15.  
External clock: In applications where an external clock must be applied to the PCF8536,  
bit OSC (see Table 10) has to be set logic 1. In this case pin OSCCLK becomes an input.  
The OSCCLK signal must switch between the VSS and the VDD voltage supplied to the  
chip.  
The system is designed for a 230 kHz clock or alternatively for using a 9.6 kHz clock. The  
EFR bit determines the external clock frequency. The clock frequency (fclk(ext)) in turn  
determines the LCD frame frequency, see Table 15.  
The PWM generator requires a 230 kHz clock to operate. If PWM is enabled and an  
external clock of 9.6 kHz is selected, then the internal oscillator will automatically start and  
be used for the PWM signal generation.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
14 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Remark: If an external clock is used, then this clock signal must always be supplied to the  
device when the display is on. Removing the clock may freeze the LCD in a DC state  
which will damage the LCD material.  
8.1.5.2 Timing and frame frequency  
The timing of the PCF8536 organizes the internal data flow of the device. This includes  
the transfer of display data from the display RAM to the display segment outputs. The  
timing also generates the LCD frame frequency which it derives as an integer division of  
the clock frequency (see Table 15). The frame frequency is a fixed division of the internal  
clock or of the frequency applied to pin OSCCLK when an external clock is used.  
Table 15. LCD frame frequencies  
Frame frequency  
Typical external Nominal frame  
EFR bit  
Value of q[1]  
frequency (Hz)  
frequency (Hz)  
9600  
200  
0
-
fclkext  
48  
ffrLCD  
=
=
-----------------  
230000  
200  
1
24  
fclkext  
-----------------  
48 q  
ffrLCD  
[1] Other values of the frame frequency prescaler see Table 21.  
When the internal clock is used, or an external clock with EFR = 1, the LCD frame  
frequency can be programmed by software in steps of approximately 10 Hz in the range of  
60 Hz to 300 Hz (see Table 21). Furthermore the internal oscillator is factory calibrated,  
see Table 44 on page 59.  
8.1.6 Command: GPO-output-config  
The behavior of the combined LCD and GPO outputs S5/GP5 to S0/GP0 is configured  
with the bits described in Table 16.  
Table 16. GPO-output-config - output mode config command for S5/GP5 to S0/GP0  
Bit  
GPM0 and GPM1  
7 to 4  
Symbol  
Value  
Description  
-
1100  
fixed value  
3 to 2 GPM1[1:0]  
1 to 0 GPM0[1:0]  
GPM2 and GPM3  
see Table 17  
see Table 17  
output mode for S1/GP1  
output mode for S0/GP0  
7 to 4  
-
1101  
fixed value  
3 to 2 GPM3[1:0]  
1 to 0 GPM2[1:0]  
GPM4 and GPM5  
see Table 17  
see Table 17  
output mode for S3/GP3  
output mode for S2/GP2  
7 to 4  
-
1110  
fixed value  
3 to 2 GPM5[1:0]  
1 to 0 GPM4[1:0]  
see Table 17  
see Table 17  
output mode for S5/GP5  
output mode for S4/GP4  
Each output can be individually configured to be either an LCD segment output, a PWM  
output or a static general-purpose output (GPO), see Table 17.  
Remark: Even if using GPO only, VLCD must still be applied to the device.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
15 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 17. GPMO mode definition  
GPM0[1:0] to GPM5[1:0]  
00[1], 01  
Mode  
LCD  
Description  
output is an LCD segment  
output is static GPO  
output is PWM GPO  
10  
static  
PWM  
11  
[1] Default value.  
8.1.7 Command: set-MUX-mode  
The multiplex drive mode is configured with the bits described in Table 18.  
Table 18. Set-MUX-mode - set multiplex drive mode command bit description  
Bit  
Symbol  
Value  
000000  
00[1], 01  
10  
Description  
7 to 2  
-
fixed value  
1 to 0 M[1:0]  
1:8 multiplex drive mode; eight backplanes  
1:6 multiplex drive mode; 6 backplanes  
1:4 multiplex drive mode; 4 backplanes  
11  
[1] Default value.  
8.1.8 Command: set-bias-mode  
The set-bias-mode command allows setting the bias level.  
Table 19. Set-bias-mode - set bias mode command bit description  
Bit  
Symbol  
Value  
000001  
00[1]. 01  
11  
Description  
fixed value  
14 bias  
7 to 2  
-
1 to 0 B[1:0]  
13 bias  
10  
12 bias  
[1] Default value.  
8.1.9 Command: frame-frequency-LCD  
With the frame-frequency-LCD command, the frame frequency for the display can be  
configured. The clock frequency determines the frame frequency.  
Table 20. Frame-frequency-LCD - frame frequency and output clock frequency command  
bit description  
Bit  
Symbol  
Value  
Description  
7 to 5  
-
001  
fixed value  
4 to 0 FD[4:0]  
see Table 21  
frequency prescaler  
The system is designed for a 230 kHz clock. It is either internally generated or externally  
provided. Alternatively a 9.6 kHz clock signal can be provided as well. The EFR bit (see  
Table 10) has to be set according to the external clock frequency.  
When EFR is set to 9.6 kHz, then the LCD frame frequency is calculated with Equation 1:  
fclkext  
48  
ffrLCD  
=
(1)  
-----------------  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
16 of 74  
 
 
 
 
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
When EFR is set to 230 kHz, then the LCD frame frequency is calculated with Equation 2:  
fclkext  
48 q  
ffrLCD  
=
(2)  
-----------------  
where q is the frequency divide factor (see Table 21).  
Remark: fclk(ext) is the external input clock frequency to pin OSCCLK.  
When the internal oscillator is used, the intermediate frequency may be output on the  
OSCCLK pin. Its frequency is given in Table 21.  
Table 21. Frame frequency prescaler values for 230 kHz clock operation  
FD[4:0]  
Nominal LCD frame  
frequency (Hz)[1]  
Divide factor, q  
Intermediate clock  
frequency (Hz)  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
59.9  
80  
68  
60  
53  
48  
44  
40  
37  
34  
32  
30  
28  
27  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
2875  
3382  
3833  
4340  
4792  
5227  
5750  
6216  
6765  
7188  
7667  
8214  
8519  
9200  
9583  
10000  
10455  
10952  
11500  
12105  
12778  
13529  
14375  
70.5  
79.9  
90.4  
99.8  
108.9  
119.8  
129.5  
140.9  
149.7  
159.7  
171.1  
177.5  
191.7  
199.7  
208.3  
217.8  
228.3  
239.6  
252.2  
266.2  
281.9  
299.5  
not used  
01000  
01001  
01010  
01011  
01100  
01101  
01110[2]  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
10110  
10111 to 11111  
[1] Nominal frame frequency calculated for the default clock frequency of 230 kHz.  
[2] Default value.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
17 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.1.10 Command: frame-frequency-PWM  
With the frame-frequency-PWM command, the frame frequency for the PWM signal can  
be set.  
The PWM system requires a clock of 230 kHz either internally generated or externally  
supplied. Using a slower clock may result in visible flickering of LEDs driven with the PWM  
signal.  
When EFR is set to 230 kHz, then the PWM frame frequency will be calculated with  
Equation 3:  
fclkext  
128 p  
fPWM  
=
(3)  
-----------------  
where p is the frequency divide factor (see Table 23).  
Table 22. Frame-frequency-PWM - PWM frame frequency command bit description  
Bit  
Symbol  
Value  
Description  
7 to 4  
-
0100  
fixed value  
3 to 0 FP[3:0]  
see Table 23  
frequency prescaler  
Table 23. PWM frame frequency prescaler values for 230 kHz clock operation  
FP[3:0]  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111[2]  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
Nominal PWM frame frequency (Hz)[1]  
Divide factor, p  
59.9  
30  
26  
22  
20  
18  
16  
15  
14  
13  
12  
11  
10  
9
69.1  
81.7  
89.8  
99.8  
112.3  
119.8  
128.3  
138.2  
149.7  
163.4  
179.7  
199.7  
224.6  
256.7  
299.5  
8
7
1111  
6
[1] Nominal frame frequency calculated for the default clock frequency of 230 kHz.  
[2] Default value.  
In order to avoid flickering caused by the interaction of the backlight LED and the LCD  
frame frequency, the PWM frame frequency should be programmed to be more than  
50 Hz different from LCD frame frequency or multiples of the LCD frame frequency (see  
Figure 8 and Table 49 on page 68).  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
18 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
In general, the higher the PWM frame  
frequency, the less flickering will be visible  
Intensity of  
visible flickering  
Flickering is most  
visible when f  
PWM  
and f  
are within  
fr(LCD)  
10 Hz of each other  
Flickering is also visible at multiples  
of the fundamental frequency;  
however, the visibility is lower  
Flickering will not be  
visible when f  
PWM  
and f  
are more  
fr(LCD)  
than 50 Hz apart  
f
2f  
1
f
1
0
This will repeat for 3 , 4 , etc.  
f1 f1  
013aaa449  
Where f0 = fPWM and f1 = ffr(LCD) or f1 = fPWM and f0 = ffr(LCD)  
.
Fig 8. Flicker avoidance for LED backlighting  
8.1.11 Command: GPO-static-data  
When static GPOs are selected instead of PWM, then the value for the output is taken  
from these register bits. The output is a static level.  
Table 24. GPO-static-data - write GPO data for GP0 to GP5 command bit description  
Bit  
Symbol  
Value  
Description  
GPO0 to GPO2  
7 to 3  
2
-
01100  
0[1]  
1
fixed value  
GPO2  
0 level output on pin GP2  
1 level output on pin GP2  
0 level output on pin GP1  
1 level output on pin GP1  
0 level output on pin GP0  
1 level output on pin GP0  
1
0
GPO1  
GPO0  
0[1]  
1
0[1]  
1
GPO3 to GPO5  
7 to 3  
2
-
01101  
0[1]  
1
fixed value  
GPO5  
0 level output on pin GP5  
1 level output on pin GP5  
0 level output on pin GP4  
1 level output on pin GP4  
0 level output on pin GP3  
1 level output on pin GP3  
1
0
GPO4  
GPO3  
0[1]  
1
0[1]  
1
[1] Default value.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
19 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.1.12 Command: load-data-pointer-LCD  
The load-data-pointer-LCD command defines the start address of the display RAM. The  
data pointer is auto incremented after each RAM write. The size of the display RAM is  
dependent on the current multiplex drive mode setting, see Table 25.  
Table 25. Load-data-pointer-LCD - load data pointer command bit description  
Bit  
Symbol  
Value  
Description  
7 to 6  
-
10  
fixed value  
Multiplex drive mode 1:8  
5 to 0 DP[5:0]  
000000[1] to  
100111  
6-bit binary value of 0 to 39  
6-bit binary value of 0 to 41  
6-bit binary value of 0 to 43  
Multiplex drive mode 1:6  
5 to 0 DP[5:0]  
000000[1] to  
101001  
Multiplex drive mode 1:4  
5 to 0 DP[5:0]  
000000[1] to  
101011  
[1] Default value.  
Remark: Data pointer values outside of the valid range will be ignored and no RAM  
content will be transferred until a valid data pointer value is set.  
Filling of the display RAM is described in Section 8.9.  
8.1.13 Command: load-data-pointer-PWM  
The load-data-pointer-PWM command defines one of the 6 PWM addresses.  
Table 26. Load-data-pointer-PWM - load data pointer command bit description  
Bit  
Symbol  
Value  
Description  
7 to 3  
-
01110  
fixed value  
2 to 0 PP[2:0]  
[1] Default value.  
000[1] to 101  
3-bit binary value of 0 to 5  
Remark: Data pointer values outside of the valid range will be ignored and no PWM  
content will be transferred until a valid data pointer value is set.  
8.1.14 Command: write-RAM-data  
This command will initiate the transfer of data to the display RAM. Data will be written into  
the address defined by the load-data-pointer-LCD command. RAM filling is described in  
Section 8.9.  
Table 27. Write-RAM-data - write RAM data command bit description[1]  
Bit  
Symbol  
Value  
Description  
7 to 0 D[7:0]  
00000000 to  
11111111[2]  
writing data byte-wise to RAM  
[1] For this command to be effective bit RS[1:0] of the control byte has to be set logic 01, see Table 36 on  
page 46.  
[2] After Power-On Reset (POR), the RAM content is random and should be brought to a defined status by  
writing meaningful content otherwise unexpected display content may appear.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
20 of 74  
 
 
 
 
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.1.15 Command: write-PWM-data  
This command will initiate the transfer of data to the PWM registers. Data will be written  
into the address defined by the load-data-pointer-PWM command. PWM register filling is  
described in Section 8.10  
Table 28. Write-PWM-data - write PWM data command bit description[1]  
Bit  
Symbol  
Value  
Description  
7
-
0
fixed value  
6 to 0 P[6:0]  
0000000[2] to writing data byte-wise to PWM registers  
1111111  
[1] For this command to be effective bit RS[1:0] of the control byte has to be set logic 10, see Table 36 on  
page 46.  
[2] Default value. After Power-On Reset (POR) the PWM content is set to 0.  
8.2 Start-up and shut-down  
8.2.1 Reset and Power-On Reset (POR)  
After a reset and at power-on the PCF8536 resets to starting conditions as follows:  
1. The display is disabled.  
2. All backplane outputs are set to VSS  
.
3. All segment outputs are set to VSS  
.
4. All GPO outputs are disabled.  
5. Selected drive mode is: 1:8 with 14 bias.  
6. The data pointers are cleared (set logic 0).  
7. PWM values are all reset to zero.  
8. RAM data is not initialized. Its content can be considered to be random.  
9. The internal oscillator is running; no clock signal is available on pin OSCCLK; pin  
OSCCLK is in 3-state.  
The reset state is as shown in Table 29.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
21 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 29. Reset state  
Reset state of configurable bits shown in the command table format for clarity.  
Associated command Bits  
7
6
5
4
3
2
1
0
PWM-inversion  
mode-settings  
PWMI = 0  
E = 0  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
BPS = 0  
-
INV = 0  
EFR = 0  
PD = 0  
OSC = 0  
oscillator-control  
GPO-output-config  
COE = 0  
GPM1[1:0] = 00  
GPM3[1:0] = 00  
GPM5[1:0] = 00  
GPM0[1:0] = 00  
GPM2[1:0] = 00  
GPM4[1:0] = 00  
M[1:0] = 00  
set-MUX-mode  
-
-
-
-
set-bias-mode  
B[1:0] = 00  
frame-frequency-LCD  
frame-frequency-PWM  
GPO-static-data  
FD[4:0] = 01110  
-
-
-
FP[3:0] = 0111  
-
-
GPO2 = 0 GPO1 = 0 GPO0 = 0  
GPO5 = 0 GPO4 = 0 GPO3 = 0  
load-data-pointer-LCD  
load-data-pointer-PWM  
DP[5:0] = 000000  
-
-
-
PP[2:0] = 000  
The first command sent to the device after the power-on event must be the initialize  
command (see Section 8.1.1).  
After Power-On Reset (POR) and before enabling the display, the RAM content should be  
brought to a defined state by writing meaningful content (e.g. a graphic) otherwise  
unwanted display artifacts may appear on the display.  
8.2.2 RESET pin function  
The RESET pin of the PCF8536 will reset all the registers to their default state. The reset  
state is given in Table 29. The RAM contents will remain unchanged. After the reset signal  
is removed, the PCF8536 will behave in the same manner as after Power-On Reset  
(POR). See Section 8.2.1 for details.  
8.2.3 Recommended start-up sequences  
This chapter describes how to proceed with the initialization of the chip in different  
application modes.  
In general, the sequence should always be:  
1. Power-on the device,  
2. set the display and functional modes,  
3. fill the display memory and then  
4. turn on the display.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
22 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
START  
Power-on V  
DD  
LCD  
and V  
together  
If using GPO outputs, set  
- GPO data  
- PWM data  
- PWM frame frequency  
Toggle RESET  
pin  
(1)  
Send display  
content  
Wait minimum  
1 ms  
Enable  
the display  
Send  
OTP-refresh  
STOP  
Set:  
- mode settings: BPS and INV  
- LCD/GPO output mode  
- multiplex driver mode  
- bias mode  
013aaa452  
- LCD frame frequency  
(1) Alternatively, it is possible to send the initialize command.  
Fig 9. Recommended start-up sequence when using the internal oscillator  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
23 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
START  
Power-on V  
DD  
LCD  
and V  
together  
If using GPO outputs, set  
- GPO data  
- PWM data  
- PWM frame frequency  
Toggle RESET  
pin  
(1)  
Send display  
content  
Wait minimum  
1 ms  
External clock  
must be  
applied by now  
External clock  
can be applied  
now  
Enable  
the display  
Send  
OTP-refresh  
STOP  
Set:  
- Mode settings: BPS and INV  
- Select external clock  
- GPO output mode  
013aaa453  
- Multiplex driver mode  
- Bias mode  
- LCD frame frequency  
(1) Alternatively, it is possible to send the initialize command.  
Fig 10. Recommended start-up sequence when using an external clock signal  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
24 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.3 Possible display configurations  
The PCF8536 is a versatile peripheral device designed to interface between any  
microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 11). It  
can drive multiplexed LCD with 4, 6, or 8 backplanes and up to 44 segments.  
The display configurations possible with the PCF8536 depend on the number of active  
backplane outputs required. A selection of possible display configurations is given in  
Table 30.  
dot matrix  
7-segment with dot  
14-segment with dot and accent  
013aaa312  
Fig 11. Example of displays suitable for PCF8536  
Table 30. Selection of display configurations  
Number of  
Digits/Characters  
7 segment[1] 14 segment[2]  
Dot matrix/  
Elements  
Backplanes  
Segments  
Icons  
No GPO or PWM outputs enabled  
8
6
4
40  
42  
44  
320  
252  
176  
40  
31  
22  
20  
15  
11  
320  
252  
176  
With 6 GPO or PWM outputs enabled  
8
6
4
34  
36  
38  
272  
216  
152  
34  
27  
19  
17  
13  
9
272  
216  
152  
[1] 7 segment display has 8 elements including the decimal point.  
[2] 14 segment display has 16 elements including decimal point and accent dot.  
All of the display configurations in Table 30 can be implemented in the typical systems  
shown in Figure 12 and Figure 13.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
25 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
V
DD  
t
r
R=  
2C  
b
40 to 44 segment  
drives  
V
DD  
SDA  
SCL  
HOST  
PROCESSOR/  
MICRO-  
LCD PANEL  
(up to 320  
elements)  
PCF8536AT  
4 to 8 backplanes  
CONTROLLER  
A0  
V
SS  
013aaa450  
V
SS  
Fig 12. Typical system configuration for the I2C-bus  
V
DD  
40 to 44 segment  
drives  
V
DD  
SDI  
SCL  
CE  
HOST  
PROCESSOR/  
MICRO-  
LCD PANEL  
(up to 320  
elements)  
PCF8536BT  
4 to 8 backplanes  
CONTROLLER  
V
SS  
013aaa451  
V
SS  
Fig 13. Typical system configuration for the SPI-bus  
The host microcontroller maintains the two line I2C-bus or a three line SPI-bus  
communication channel with the PCF8536. The appropriate biasing voltages for the  
multiplexed LCD waveforms are generated internally. The only other connections required  
to complete the system are the power supplies (VDD, VSS, VLCD) and the LCD panel  
selected for the application.  
The minimum recommended values for external capacitors on VDD and VLCD are 100 nF  
respectively. Decoupling of VLCD will help to reduce display artifacts. The decoupling  
capacitors should be placed close to the IC with short connections to the respective  
supply pin and VSS  
.
8.4 LCD voltage selector  
The LCD voltage selector co-ordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
set-bias-mode command (see Table 19) and the set-MUX-mode command (see  
Table 18).  
Fractional LCD biasing voltages are obtained from an internal voltage divider. The biasing  
configurations that apply to the preferred modes of operation, together with the biasing  
characteristics as functions of VLCD and the resulting discrimination ratios (D), are given in  
Table 31.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
26 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Discrimination is a term which is defined as the ratio of the on and off RMS voltage across  
a segment. It can be thought of as a measurement of contrast.  
Table 31. Preferred LCD drive modes: summary of characteristics  
[2]  
LCD multiplex Number of:  
LCD bias  
configuration  
VLCD  
VoffRMS  
----------------------  
VLCD  
VonRMS  
----------------------  
VLCD  
VonRMS  
---------------------- [1]  
VoffRMS  
D =  
drive mode  
Backplanes  
Levels  
1
1:4 [3]  
1:4  
1:4 [3]  
1:6 [3]  
1:6  
4
4
4
6
6
6
8
8
8
3
4
5
3
4
5
3
4
5
0.433  
0.333  
0.331  
0.456  
0.333  
0.306  
0.467  
0.333  
0.293  
0.661  
0.577  
0.545  
0.612  
0.509  
0.467  
0.586  
0.471  
0.424  
1.527  
1.732  
1.646  
1.341  
1.527  
1.527  
1.254  
1.414  
1.447  
2.309Voff(RMS)  
3.0Voff(RMS)  
2
1
3
1
3.024Voff(RMS)  
2.191Voff(RMS)  
3.0Voff(RMS)  
4
1
2
1
3
1
1:6  
3.266Voff(RMS)  
2.138Voff(RMS)  
3.0Voff(RMS)  
4
1
1:8 [3]  
1:8 [3]  
1:8  
2
1
3
1
3.411Voff(RMS)  
4
[1] Determined from Equation 6.  
[2] Determined from Equation 5.  
[3] In these examples, the discrimination factor and hence the contrast ratios are smaller. The advantage of these LCD drive modes is a  
reduction of the LCD voltage VLCD  
.
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth(off)), typically when the LCD exhibits approximately 10 % contrast.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
a = 3 for 14 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 4  
a2 + 2a + n  
n  1 + a2  
VonRMS  
=
-----------------------------  
(4)  
V
LCD  
where VLCD is the resultant voltage at the LCD segment and where the values for n are  
n = 4 for 1:4 multiplex drive  
n = 6 for 1:6 multiplex drive  
n = 8 for 1:8 multiplex drive  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 5:  
a2 2a + n  
n  1 + a2  
VoffRMS  
=
-----------------------------  
(5)  
V
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 6:  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
27 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
a2 + 2a + n  
a2 2a + n  
VonRMS  
----------------------  
VoffRMS  
D =  
=
---------------------------  
(6)  
It should be noted that VLCD is sometimes referred to as the LCD operating voltage.  
8.4.1 Electro-optical performance  
Suitable values for Von(RMS) and Voff(RMS) are dependent on the LCD liquid used. The  
RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of  
the pixel.  
For any given liquid, there are two threshold values defined. One point is at 10 % relative  
transmission (at Vth(off)) and the other at 90 % relative transmission (at Vth(on)), see  
Figure 14. For a good contrast performance, the following rules should be followed:  
V
V
onRMSVthon  
offRMSVthoff  
(7)  
(8)  
V
on(RMS) and Voff(RMS) are properties of the display driver and are affected by the selection  
of a, n (see Equation 4 to Equation 6) and the VLCD voltage.  
Vth(off) and Vth(on) are properties of the LCD liquid and can be provided by the module  
manufacturer. Vth(off) is sometimes just named Vth. Vth(on) is sometimes named saturation  
voltage Vsat  
.
It is important to match the module properties to those of the driver in order to achieve  
optimum performance.  
100 %  
90 %  
10 %  
V
[V]  
RMS  
V
th(off)  
V
th(on)  
OFF  
SEGMENT  
GREY  
SEGMENT  
ON  
SEGMENT  
013aaa494  
Fig 14. Electro-optical characteristic: relative transmission curve of the liquid  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
28 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.5 LCD drive mode waveforms  
8.5.1 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies, as  
shown in Figure 15. This drawing is also showing the case of line inversion (see  
Section 8.1.4.2).  
T
fr  
V
LCD  
LCD segments  
2V  
/3  
LCD  
BP0  
BP1  
BP2  
V
V
/3  
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
LCD  
/3  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
BP3  
Sn  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+1  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
/3  
LCD  
Sn+2  
Sn+3  
V
V
/3  
LCD  
SS  
V
LCD  
2V  
LCD  
/3  
V
V
/3  
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
LCD  
/3  
V
/3  
LCD  
state 1  
0 V  
-V  
/3  
LCD  
-2V  
/3  
LCD  
-V  
LCD  
V
LCD  
2V  
LCD  
/3  
V
/3  
LCD  
0 V  
-V  
state 2  
/3  
LCD  
-2V  
/3  
LCD  
-V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
013aaa211  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn(t) VBP1(t).  
on(RMS)(t) = 0.577VLCD. Voff(RMS)(t) = 0.333VLCD  
V
.
Fig 15. Waveforms for the 1:4 multiplex drive mode with 13 bias and line inversion  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
29 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.5.2 1:6 Multiplex drive mode  
When six backplanes are provided in the LCD, the 1:6 multiplex drive mode applies. The  
PCF8536 allows use of 13 bias or 14 bias in this mode as shown in Figure 16 and  
Figure 17. These waveforms are drawn for the case of line inversion (see  
Section 8.1.4.2).  
T
fr  
LCD segments  
state 2  
V
LCD  
state 1  
2V  
V
/ 3  
/ 3  
LCD  
BP0  
BP1  
LCD  
V
SS  
V
LCD  
/ 3  
/ 3  
2V  
V
LCD  
LCD  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
BP2  
LCD  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
BP3  
LCD  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
LCD  
BP4  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
BP5  
LCD  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
Sn  
LCD  
V
SS  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
Sn + 1  
state 1  
LCD  
V
SS  
(a) Waveforms at driver  
V
LCD  
/ 3  
/ 3  
2V  
V
LCD  
LCD  
V
SS  
/ 3  
/ 3  
-V  
-2V  
LCD  
LCD  
-V  
LCD  
V
LCD  
2V  
V
/ 3  
/ 3  
LCD  
state 2  
LCD  
V
SS  
/ 3  
/ 3  
-V  
-2V  
LCD  
LCD  
(b) Resultant waveforms at LCD segment  
-V  
LCD  
001aal399  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn +1 (t) VBP0(t). Von(RMS)(t) = 0.509VLCD. Voff(RMS)(t) = 0.333VLCD  
.
Fig 16. Waveforms for 1:6 multiplex drive mode with bias 13 and line inversion  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
30 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
T
fr  
LCD segments  
state 2  
V
LCD  
/ 4  
3V  
V
LCD  
state 1  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
Sn  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
V
/ 2  
LCD  
V
SS  
V
LCD  
Sn + 1  
V
LCD  
/ 2  
V
SS  
(a) Waveforms at driver  
V
LCD  
3V  
V
/ 4  
LCD  
/ 4  
LCD  
state 1  
V
SS  
/ 4  
-V  
LCD  
-3V  
/ 4  
LCD  
-V  
V
LCD  
LCD  
3V  
V
V
/ 4  
/ 2  
/ 4  
LCD  
LCD  
LCD  
state 2  
V
SS  
/ 4  
/ 2  
/ 4  
-V  
-V  
-3V  
LCD  
LCD  
LCD  
(b) Resultant waveforms at LCD segment  
-V  
LCD  
001aal400  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn + 1(t) VBP0(t).  
on(RMS)(t) = 0.467VLCD. Voff(RMS)(t) = 0.306VLCD  
V
.
Fig 17. Waveforms for 1:6 multiplex drive mode with bias 14 and line inversion  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
31 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.5.3 1:8 Multiplex drive mode  
T
fr  
V
LCD segments  
state 2  
LCD  
/ 4  
3V  
V
LCD  
state 1  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
Sn  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
3
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
/ 4  
3V  
V
LCD  
/ 4  
SS  
LCD  
V
V
LCD  
V
V
/ 2  
LCD  
V
SS  
V
LCD  
Sn + 1  
/ 2  
LCD  
V
SS  
(a) Waveforms at driver  
V
LCD  
3V  
V
/ 4  
LCD  
/ 4  
LCD  
state 1  
V
SS  
/ 4  
-V  
LCD  
-3V  
/ 4  
LCD  
-V  
V
LCD  
LCD  
3V  
V
V
/ 4  
/ 2  
/ 4  
LCD  
LCD  
LCD  
state 2  
V
SS  
/ 4  
/ 2  
/ 4  
-V  
-V  
-3V  
LCD  
LCD  
LCD  
(b) Resultant waveforms at LCD segment  
-V  
LCD  
001aal398  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn + 1(t) VBP0(t). Von(RMS)(t) = 0.424VLCD. Voff(RMS)(t) = 0.293VLCD  
.
Fig 18. Waveforms for 1:8 multiplex drive mode with bias 14 and line inversion  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
32 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
T
T
fr  
frame n  
fr  
frame n+1  
V
3/4 V  
LCD  
LCD  
LCD segments  
state 2  
state 1  
BP0  
1/4 V  
LCD  
V
SS  
V
LCD  
3/4 V  
LCD  
BP1  
BP2  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
BP3  
BP4  
BP5  
BP6  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
1/4 V  
LCD  
V
SS  
V
3/4 V  
LCD  
LCD  
BP7  
Sn  
1/4 V  
LCD  
V
SS  
V
LCD  
LCD  
1/2 V  
V
SS  
V
LCD  
LCD  
Sn + 1  
1/2 V  
V
SS  
(a) Waveforms at driver  
V
LCD  
LCD  
LCD  
LCD  
3/4 V  
1/2 V  
1/4 V  
state 1  
V
SS  
1/4 V  
LCD  
LCD  
LCD  
LCD  
1/2 V  
3/4 V  
V
V
3/4 V  
1/2 V  
1/4 V  
LCD  
LCD  
LCD  
LCD  
V
state 2  
SS  
1/4 V  
LCD  
LCD  
LCD  
LCD  
1/2 V  
3/4 V  
V
001aam359  
(b) Resultant waveforms at LCD segment  
Vstate1(t) = VSn(t) VBP0(t). Vstate2(t) = VSn + 1(t) VBP0(t). Von(RMS)(t) = 0.424VLCD. Voff(RMS)(t) = 0.293VLCD  
.
Fig 19. Waveforms for 1:8 multiplex drive mode with bias 14 and frame inversion  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
33 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.6 Display register  
The display register holds the display data while the corresponding multiplex signals are  
generated.  
8.7 Backplane outputs  
The LCD drive section includes eight backplane outputs: BP0 to BP7. The backplane  
output signals are generated based on the selected LCD multiplex drive mode.  
In 1:8 multiplex drive mode: BP0 to BP7 must be connected directly to the LCD.  
In 1:6 multiplex drive mode: BP0 to BP5 must be connected directly to the LCD.  
In 1:4 multiplex drive mode: BP0 to BP3 must be connected directly to the LCD.  
8.8 Segment outputs  
The LCD drive section includes up to 44 segment outputs (S0 to S43) which must be  
connected directly to the LCD. The segment output signals are generated based on the  
multiplexed backplane signals and with data resident in the display register. When less  
segment outputs are required, the unused segment outputs must be left open-circuit.  
The number of available segments depends on the multiplex drive mode selected and the  
number of GPOs used. The table shows consecutive GPOs selected, but this is just for  
simplicity of explanation. Any combination of GPOs may be used.  
Table 32. Backplane and active segment combinations  
Basic examples. GPO pins may be configured in any combination. Other LCD segment and GPO combinations are possible.  
Multiplex  
drive mode  
Active BPs Active GPOs  
None  
GP0 only  
S1 to S39  
S1 to S41  
S1 to S43  
GP0 to GP1 GP0 to GP2 GP0 to GP3 GP0 to GP4 GP0 to GP5  
1:8  
1:6  
1:4  
BP0 to BP7 S0 to S39  
BP0 to BP5 S0 to S41  
BP0 to BP3 S0 to S43  
S2 to S39  
S2 to S41  
S2 to S43  
S3 to S39  
S3 to S41  
S3 to S43  
S4 to S39  
S4 to S41  
S4 to S43  
S5 to S39  
S5 to S41  
S5 to S43  
S6 to S39  
S6 to S41  
S6 to S43  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
34 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.9 Display RAM  
The display RAM stores the LCD data. Depending on the multiplex drive mode, the  
arrangement of the RAM is changed.  
multiplex drive 1:8: RAM is 40 8 bit  
multiplex drive 1:6: RAM is 42 6 bit  
multiplex drive 1:4: RAM is 44 4 bit  
Display RAM addresses (columns)/segment outputs (S)  
S35 S36 S37 S38 S39  
Multiplex 1:8 drive mode  
BP0  
S0 S1 S2 S3 S4  
BP1  
BP2  
BP3  
BP4  
BP5  
BP6  
BP7  
Multiplex 1:6 drive mode  
S35 S36 S37 S38 S39 S40 S41  
S0 S1 S2 S3 S4  
BP0  
BP1  
BP2  
BP3  
BP4  
BP5  
S35 S36 S37 S38 S39 S40 S41 S42 S43  
S0 S1 S2 S3 S4  
Multiplex 1:4 drive mode  
BP0  
BP1  
BP2  
BP3  
013aaa454  
The display RAM bitmap shows the direct relationship between the display RAM column and the  
segment outputs and between the bits in a RAM row and the backplane outputs.  
Fig 20. Display RAM bitmap  
Logic 1 in the RAM bit map indicates the on-state (Von(RMS)) of the corresponding LCD  
element; similarly, logic 0 indicates the off-state (Voff(RMS)). For more information on  
V
on(RMS) and Voff(RMS), see Section 8.4.  
There is a one-to-one correspondence between  
the bits in the RAM bitmap and the LCD elements,  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
35 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
the RAM columns and the segment outputs,  
the RAM rows and the backplane outputs.  
The display RAM bit map, Figure 20, shows row 0 to row 7 which correspond with the  
backplane outputs BP0 to BP7, and column 0 to column 43 which correspond with the  
segment outputs S0 to S43. In multiplexed LCD applications, the data of each row of the  
display RAM is time-multiplexed with the corresponding backplane (row 0 with BP0, row 1  
with BP1, and so on).  
When display data is transmitted to the PCF8536, the display bytes received are stored in  
the display RAM in accordance with the selected LCD multiplex drive mode. The data is  
stored as it arrives and depending on the current multiplex drive mode, data is stored in  
quadruples, sextuples or bytes.  
8.9.1 Data pointer (LCD part)  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load-data-pointer-LCD command (see Table 25).  
Following this command, an arriving data byte is stored starting at the display RAM  
address indicated by the data pointer.  
The data pointer is automatically incremented in accordance with the chosen LCD  
multiplex drive mode configuration. That is, after each byte is stored, the contents of the  
data pointer are incremented  
by two (1:4 multiplex drive mode),  
by one or two (1:6 multiplex drive mode),  
by one (1:8 multiplex drive mode).  
Multiplex drive 1:6 is a special case and is described later on.  
When the address counter reaches the end of the RAM, it stops incrementing after the last  
byte is transmitted. Redundant bits of the last byte and subsequent bytes transmitted are  
discarded until the pointer is reset. To send new RAM data, the data pointer must be reset.  
If an I2C-bus or SPI-bus data access is terminated early then the state of the data pointer  
is unknown. The data pointer must then be re-written prior to further RAM accesses.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
36 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.9.2 RAM filling in 1:4 multiplex drive mode  
In the 1:4 multiplex drive mode the RAM is organized in four rows and 44 columns. The  
eight transmitted data bits are placed in two successive display RAM columns of four rows  
(see Figure 21). In order to fill the whole four RAM rows, 22 bytes need to be sent to the  
PCF8536. After the last byte sent, the data pointer must be reset before the next RAM  
content update. Additional data bytes sent and any data bits that spill over the RAM will be  
discarded.  
Columns  
Display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
1
b7 b3  
b6 b2  
Rows  
b5  
b1  
2
3
Display RAM  
bits (rows)/  
b4 b0  
backplane outputs  
(BP)  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
Transmitted data byte  
013aaa455  
Fig 21. Display RAM filling order in 1:4 multiplex drive mode  
Depending on the start address of the data pointer, there is the possibility for a boundary  
condition. This will occur when more data bits are sent than fit into the remaining RAM.  
The additional data bits are discarded. See Figure 22.  
Columns  
Display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
5
6
7
39 40 41 42 43  
0
1
b7  
b6  
Rows  
b5  
b4  
2
3
Display RAM  
bits (rows)/  
backplane outputs  
(BP)  
Discarded  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB  
LSB  
Transmitted data byte  
013aaa456  
Fig 22. Boundary condition in 1:4 multiplex drive mode  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
37 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.9.3 RAM filling in 1:6 multiplex drive mode  
In the 1:6 multiplex drive mode the RAM is organized in six rows and 42 columns. The  
eight transmitted data bits are placed in such a way, that a column is filled up (see  
Figure 23).  
Columns  
Display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
5
6
7
37 38 39 40 41  
0
1
2
3
4
5
a7 a1 b3 c5  
a6 a0 b2 c4  
a5 b7 b1 c3  
a4 b6 b0 c2  
a3 b5 c7 c1  
a2 b4 c6 c0  
Rows  
Display RAM  
bits (rows)/  
backplane outputs  
(BP)  
MSB  
LSB  
a7 a6 a5 a4 a3 a2 a1 a0  
b7 b6 b5 b4 b3 b2 b1 b0  
c7 c6 c5 c4 c3 c2 c1 c0  
Transmitted data bytes  
013aaa457  
Fig 23. Display RAM filling order in 1:6 multiplex drive mode  
The remaining bits are wrapped over into the next column. In order to fill the whole RAM,  
31 and a half bytes need to be sent to the PCF8536. After the last byte sent, the data  
pointer must be reset before the next RAM content update. Additional data bytes sent and  
any data bits that spill over the RAM will be discarded. Depending on the start address of  
the data pointer, there are three possible boundary conditions. See Figure 24.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
38 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Columns  
Display RAM addresses (columns)/segment outputs (S)  
0
0
0
1
1
1
2
2
2
3
3
3
4
4
4
5
5
5
6
6
6
7
7
7
37 38 39 40 41  
0
1
2
3
4
5
b7  
b6  
b5  
b4  
b3  
b2  
Discarded  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB  
LSB  
Transmitted data byte  
37 38 39 40 41  
0
1
2
3
4
5
b7  
b6  
b5  
b4  
Discarded  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
Transmitted data byte  
37 38 39 40 41  
0
1
2
3
4
5
b7  
b6  
Discarded  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
Transmitted data byte  
013aaa458  
Fig 24. Boundary condition in 1:6 multiplex drive mode  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
39 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.9.4 RAM filling in 1:8 multiplex drive mode  
In the 1:8 multiplex drive mode the RAM is organized in eight rows and 40 columns. The  
eight transmitted data bits are placed into eight rows of one display RAM column (see  
Figure 25). In order to fill the whole RAM, 40 bytes need to be sent to the PCF8536. After  
the last byte sent, the data pointer must be reset before the next RAM content update.  
Additional data bytes sent will be discarded.  
Columns  
Display RAM columns/segment outputs (S)  
0
1
2
3
4
5
6
7
35 36 37 38 39  
0
b7  
1 b6  
2 b5  
3 b4  
4 b3  
5 b2  
6 b1  
7 b0  
Rows  
Display RAM rows/  
backplane outputs  
(BP)  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
Transmitted data byte  
013aaa459  
Fig 25. Display RAM filling order in 1:8 multiplex drive mode  
There are no boundary conditions in 1:8 multiplex drive mode.  
8.10 PWM registers and data pointer (PWM part)  
There are six PWM generators which can be independently configured. The values used  
to define the PWM output are stored here.  
The addressing mechanism for the PWM register is realized using the PWM data pointer.  
This allows the loading of an individual PWM data byte, or a series of data bytes, into any  
location of the PWM registers. The sequence commences with the initialization of the data  
pointer by the load-data-pointer-PWM command (see Table 26).  
Following this command, an arriving data byte is stored starting at the PWM register  
address indicated by the PWM data pointer. The data pointer is automatically  
incremented. That is, after each byte is stored, the contents of the data pointer are  
incremented. The data pointer will wrap around continuously as long as data is  
transmitted.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
40 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Columns  
Display RAM columns/segment outputs (S)  
0
1
2
3
4
5
6
7
35 36 37 38 39  
0
b7  
1 b6  
2 b5  
3 b4  
4 b3  
5 b2  
6 b1  
7 b0  
Rows  
Display RAM rows/  
backplane outputs  
(BP)  
b7 b6 b5 b4 b3 b2 b1 b0  
MSB LSB  
Transmitted data byte  
013aaa460  
Fig 26. PWM register filling  
8.11 GPO output  
The PCF8536 contains six independently configured GPO pins (GP0 to GP5). These  
outputs, when enabled, will replace the function of the corresponding LCD segment  
outputs.  
Each GPO output can supply either a logic 1, a logic 0, or a PWM signal. The PWM signal  
can be used to control the brightness of an LED.  
The PWM generator has 128 possible levels allowing for an output with a variable duty  
cycle between 0 % and 99.7 %. 100 % can only be achieved by a static 1 output.  
The period of the PWM frame frequency described in Section 8.1.10 is divided into  
128 time slots. The value in the PWM register determines for how many of these time  
slots the PWM output is at logic 1.  
Table 33. PWM generator  
PWM register value  
Percentage of  
ON time (%)  
Time slots at 1  
Time slots at 0  
0
0
0
128  
127  
126  
:
1
0.78  
1.56  
:
1
2
2
:
:
126  
127  
98.4  
99.2  
126  
127  
2
1
PWM duty cycle may be calculated by:  
PWMvalue  
----------------------------  
DutyCycle =  
100  
(9)  
128  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
41 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
PWMI  
PWM generator  
0
230 kHz  
230 kHz  
230 kHz  
230 kHz  
230 kHz  
230 kHz  
GP0  
1 0  
1 1  
0 1  
0 0  
channel 0  
S0/GP0  
S1/GP1  
S2/GP2  
S3/GP3  
S4/GP4  
1
segment 0  
LCD data  
PWM value 0  
GP0M[1:0]  
PWM generator  
channel 1  
0
1
GP1  
1 0  
1 1  
0 1  
0 0  
segment 1  
LCD data  
PWM value 1  
GP1M[1:0]  
PWM generator  
channel 2  
0
1
GP2  
1 0  
1 1  
0 1  
0 0  
segment 2  
LCD data  
PWM value 2  
GP2M[1:0]  
PWM generator  
channel 3  
0
1
GP3  
1 0  
1 1  
0 1  
0 0  
segment 3  
LCD data  
PWM value 3  
GP3M[1:0]  
PWM generator  
channel 4  
0
1
GP4  
1 0  
1 1  
0 1  
0 0  
segment 4  
LCD data  
PWM value 4  
GP4M[1:0]  
PWM generator  
channel 5  
0
1
GP5  
1 0  
1 1  
0 1  
0 0  
S5/GP5  
segment 5  
LCD data  
PWM value 5  
GP5M[1:0]  
001aan567  
There are six independently configured GPO outputs.  
Fig 27. General-purpose output block diagram  
An example of the PWM waveforms is given in Figure 28.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
42 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
f
PWM  
0.00 %  
0.78 %  
PWM register 0 = 0  
PWM register 1 = 1  
PWM register 2 = 32  
24.96 %  
PWM register 3 = 64  
PWM register 4 = 96  
49.92 %  
74.88 %  
PWM register 5 = 127  
99.20 %  
1
t =  
128 x f  
PWM  
001aan569  
Fig 28. PWM example waveforms for PWMI = 0  
8.11.1 RGB color driving  
There are six PWM channels that can be arranged as two RGB channels. There are no  
explicit settings for this feature, only ways of utilizing the PWM channels.  
Table 34 gives an example of how two RGB clusters can be configured.  
Table 34. Combining PWM channels for RGB  
RGB cluster  
PWM channel  
Component color  
0
0
1
2
3
4
5
red  
green  
blue  
red  
1
green  
blue  
Figure 29 gives an example of how two RGB clusters can be connected.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
43 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
LED supply voltage  
R
G
B
R
G
B
cluster 0  
cluster 1  
S0/GP0  
S1/GP1  
S2/GP2  
S3/GP3  
S4/GP4  
S5/GP5  
001aan568  
There are six independently configured GPO outputs.  
Fig 29. Configuration for two RGB clusters  
Table 35 gives some examples of programming values for the PWM channels in order to  
achieve the given colors. By using three PWM channels for one RGB cluster it is possible  
to generate two million colors.  
Table 35. Example PWM values  
PWM channel  
Component  
color  
PWM channel  
value  
Resultant color  
0
1
2
3
4
5
0
1
2
3
4
5
red  
127  
127  
0
yellow  
green  
blue  
red  
127  
82  
orange  
aqua  
gold  
green  
blue  
red  
0
0
green  
blue  
red  
127  
127  
127  
108  
0
green  
blue  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
44 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
8.11.2 PWM inversion mode  
The PWM inversion mode can be enabled by setting the PWMI bit to logic 1 (see Table 7  
on page 8). The PWMI mode will invert the PWM waveform.  
By default, all PWM outputs will switch HIGH at the same time. If the PWM output is used  
to drive external LEDs then this could cause a voltage dip on the power supply of the  
LEDs. With the PWMI mode, it is possible to prevent multiple outputs switching HIGH at  
the same time by ensuring that the PWM values are not identical.  
In the example in Figure 30, none of the six PWM outputs switch HIGH together. All PWM  
channels instead switch off together; however this will not cause any power supply  
disturbances.  
f
PWM  
100.00 %  
PWM register 0 = 0  
PWM register 1 = 1  
99.20 %  
75.00 %  
50.00 %  
25.00 %  
PWM register 2 = 32  
PWM register 3 = 64  
PWM register 4 = 96  
0.78 %  
PWM register 5 = 127  
1
t =  
128 x f  
PWM  
001aan570  
Fig 30. PWM example waveforms for PWMI = 1  
When PWM inversion mode is used, the PWM duty cycle can be calculated with:  
128 PWMvalue  
-------------------------------------------  
DutyCycle =  
100  
(10)  
128  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
45 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9. Bus interfaces  
9.1 Control byte and register selection  
After initiating the communication over the bus and sending the slave address (I2C-bus,  
see Section 9.2) or subaddress (SPI-bus, see Section 9.3), a control byte follows. The  
purpose of this byte is to indicate both, the content for the following data bytes (RAM,  
command, or PWM data) and to indicate that more control bytes will follow.  
Typical sequences could be:  
Slave address/subaddress - control byte - command byte - command byte - command  
byte - end  
Slave address/subaddress - control byte - RAM byte - RAM byte - RAM byte - end  
Slave address/subaddress - control byte - command byte - control byte - RAM byte -  
end  
In this way, it is possible to send a mixture of RAM, PWM and command data in one  
access or alternatively, to send just one type of data in one access.  
Table 36. Control byte description  
Bit  
Symbol  
Value  
Description  
continue bit  
last control byte  
control bytes continue  
register selection  
command register  
RAM data  
7
CO  
0
1
6 to 5 RS[1:0]  
00  
01  
10  
11  
-
PWM data  
unused  
4 to 0  
-
unused  
MSB  
LSB  
7
6
5
4
3
2
1
0
CO RS[1:0]  
not relevant  
013aaa461  
Fig 31. Control byte format  
9.2 I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
46 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9.2.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 32).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 32. Bit transfer  
9.2.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW change of the data line, while the clock is HIGH, is defined as the START  
condition (S).  
A LOW-to-HIGH change of the data line, while the clock is HIGH, is defined as the STOP  
condition (P).  
The START and STOP conditions are shown in Figure 33.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 33. Definition of START and STOP conditions  
9.2.3 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 34.  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 34. System configuration  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
47 of 74  
 
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9.2.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte.  
Also a master receiver must generate an acknowledge after the reception of each  
byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be considered).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is shown in Figure 35.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 35. Acknowledgement on the I2C-bus  
9.2.5 I2C-bus controller  
The PCF8536 acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. Device selection depends on the I2C-bus  
slave address.  
9.2.6 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
48 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9.2.7 I2C-bus slave address  
Device selection depends on the I2C-bus slave address. Two different I2C-bus slave  
addresses can be used to address the PCF8536 (see Table 37).  
Table 37. I2C slave address  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
0
1
1
1
0
0
A0  
The least significant bit of the slave address byte is bit R/W. Bit 1 of the slave address is  
defined by connecting the input A0 to either VSS (logic 0) or VDD (logic 1). Therefore, two  
instances of PCF8536 can be distinguished on the same I2C-bus.  
9.2.8 I2C-bus protocol  
The I2C-bus protocol is shown in Figure 36. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of the two PCF8536 slave  
addresses available. All PCF8536 with the corresponding A0 level acknowledge in  
parallel to the slave address, but any PCF8536 with the alternative A0 level ignore the  
whole I2C-bus transfer.  
After acknowledgement, a control byte follows (see Section 9.1 on page 46).  
The display bytes are stored in the display RAM at the address specified by the RAM data  
pointer and PWM data is stored at the address pointed to by the PWM data pointer.  
The acknowledgement after each byte is made only by the addressed PCF8536. After the  
last data byte, the I2C-bus master issues a STOP condition (P). Alternatively a START  
may be issued to RESTART an I2C-bus access.  
R/W = 0  
slave address  
control byte  
RAM/command byte  
M
A S  
B
L
S P  
B
R R  
S S  
1 0  
A
0
C
O
S 0 1 1 1 0 0  
0 A  
EXAMPLES  
a) transmit two byte of RAM data  
A
S 0 1 1 1 0 0  
0 A 0 0  
1
A
A
RAM DATA  
COMMAND  
A
A
A
RAM DATA  
A P  
0
b) transmit two command bytes  
A
0
S 0 1 1 1 0 0  
0 A 1 0 0  
0 0 0  
COMMAND  
RAM DATA  
A
A P  
c) transmit one command byte and two RAM date bytes  
A A  
S 0 1 1 1 0  
0 A 1 0 0  
A
COMMAND  
0 0 1  
RAM DATA  
A
A
A P  
1 0  
013aaa462  
Fig 36. I2C-bus protocol write mode  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
49 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9.2.8.1 Status read out  
Status read out for I2C-bus operation only. This command will initiate the read out of a  
fixed value plus the slave address bit A0 from the PCF8536. This read out function will  
allow the I2C master to confirm the existence of the device on the I2C-bus.  
Table 38. Status read out value  
Bit  
7 to 1  
0
Symbol  
Value  
Description  
-
0101010  
fixed value  
A0  
0
1
read back value is 01010100  
read back value is 01010101  
If a readout is made, the R/W bit must be logic 1 and then the next data byte following is  
provided by the PCF8536 as shown in Figure 37.  
R/W = 1  
readout byte  
slave address  
A
0
A
0
S
0
1
1
1
0
0
1
A
0
1
0
1
0
1
0
A
P
(1)  
acknowledge  
acknowledge  
from master  
013aaa463  
(1) From PCF8536.  
Fig 37. I2C-bus protocol read mode  
In the unlikely case that the chip has entered the internal test mode, detection of this state  
is possible by using the modified status read out detailed in Table 39. The read out value  
is modified to indicate that the chip has entered an internal test mode.  
Table 39. Modified status read out value  
Bit  
7 to 1  
0
Symbol  
Value  
Description  
-
1111000  
fixed value  
A0  
0
1
read back value is 1111 0000  
read back value is 1111 0001  
EMC detection: The PCF8536 is ruggedized against EMC susceptibility; however it is not  
possible to cover all cases. To detect if a severe EMC event has occurred, it is possible to  
check the responsiveness of the device by reading its register.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
50 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
9.3 SPI-bus interface  
Data transfer to the device is made via a 3 line SPI-bus (see Table 40). There is no output  
data line. The SPI-bus is initialized whenever the chip enable line pin CE is inactive.  
Table 40. Serial interface  
Symbol  
CE  
Function  
chip enable input[1]; active LOW  
Description  
when HIGH, the interface is reset  
input may be higher than VDD  
SCL  
serial clock input  
SDI  
serial data input  
input may be higher than VDD; input data is  
sampled on the rising edge of SCL  
[1] The chip enable must not be wired permanently LOW.  
9.3.1 Data transmission  
The chip enable signal is used to identify the transmitted data. Each data transfer is a byte  
with the Most Significant Bit (MSB) sent first.  
The transmission is controlled by the active LOW chip enable signal CE. The first byte  
transmitted is the subaddress byte.  
data bus  
CE  
SUBADDRESS  
DATA  
DATA  
DATA  
013aaa464  
Fig 38. Data transfer overview  
The subaddress byte opens the communication with a read/write bit and a subaddress.  
The subaddress is used to identify multiple devices on one SPI-BUS.  
Table 41. Subaddress byte definition  
Bit  
Symbol  
Value  
Description  
7
R/W  
data read or write selection  
write data  
0
1
read data  
6 to 5 SA  
4 to 0  
01  
subaddress; other codes will cause the device  
to ignore data transfer  
-
unused  
After the subaddress byte, a control byte follows (see Section 9.1 on page 46).  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
51 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
R/W = 0  
subaddress  
control byte  
RAM/command byte  
R R  
S S  
M
S
B
L
S
B
C
0 0 1  
O
1
0
EXAMPLES  
a) transmit two bytes of display RAM data  
0 0 1 0 0  
1
RAM DATA  
COMMAND  
RAM DATA  
b) transmit two command bytes  
0 0 1 1 0 0  
0 0 0  
COMMAND  
RAM DATA  
c) transmit one command byte and two display RAM date bytes  
COMMAND  
0 0 1 1 0 0 0 0 1  
RAM DATA  
013aaa465  
Data transfers are terminated by de-asserting CE (set CE to logic 1).  
Fig 39. SPI-bus write example  
R/W  
SA  
unused  
command byte  
Bias sytem = 1/3 B[1:0] = 11  
b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0 b7 b6 b5 b4 b3 b2 b1 b0  
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
SCL  
SDI  
CE  
013aaa466  
In this example, the bias system is set to 13. The transfer is terminated by CE returning to logic 1. After the last bit is  
transmitted, the state of the SDI line is not important.  
Fig 40. SPI-bus example  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
52 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
10. Internal circuitry  
V
DD  
A0, RESET,  
OSCCLK  
V , V ,  
LCD DD  
SCL, SDA  
V
V
SS  
LCD  
V
SS  
BP0 to BP7,  
S0/GP0 to S5/GP5  
S6 to S39  
V
SS  
013aaa472  
Fig 41. Device protection diagram for PCF8536AT  
V
DD  
CE, RESET,  
OSCCLK  
SDI, SCL  
V
,V  
LCD DD  
V
V
SS  
LCD  
V
SS  
BP0 to BP7,  
S0/GP0 to S5/GP5  
S6 to S39  
V
013aaa473  
SS  
Fig 42. Device protection diagram for PCF8536BT  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
53 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
11. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 42. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VDD  
Parameter  
Conditions  
Min  
0.5  
50  
0.5  
50  
Max  
+6.5  
+50  
+10  
+50  
Unit  
V
supply voltage  
supply current  
LCD supply voltage  
LCD supply current  
input voltage  
IDD  
mA  
V
VLCD  
IDD(LCD)  
VI  
mA  
PCF8536AT  
on pins SDA,  
OSCCLK, SCL, A0,  
RESET  
0.5  
+6.5  
V
V
PCF8536BT  
on pins CE,  
0.5  
+6.5  
OSCCLK, SCL,  
SDI, RESET  
II  
input current  
10  
+10  
+10  
mA  
V
VO  
output voltage  
on pins S0/GP0 to  
S5/GP5, S6 to S39,  
BP0 to BP7  
0.5  
on pin SDA  
0.5  
+6.5  
+10  
V
IO  
output current  
10  
mA  
mA  
mW  
mW  
V
ISS  
ground supply current  
total power dissipation  
power dissipation per output  
electrostatic discharge voltage  
50  
+50  
Ptot  
P/out  
VESD  
-
400  
-
100  
[1]  
[2]  
[3]  
[4]  
HBM  
CDM  
-
3500  
1250  
200  
-
V
Ilu  
latch-up current  
-
mA  
C  
C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
65  
40  
+150  
+85  
operating device  
[1] Pass level; Human Body Model (HBM), according to Ref. 5 “JESD22-A114”.  
[2] Pass level; Charge Device Model (CDM), according to Ref. 6 “JESD22-C101”.  
[3] Pass level; latch-up testing according to Ref. 7 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the NXP store and transport requirements (see Ref. 9 “NX3-00092”) the devices have to be stored at a temperature of  
+8 C to +45 C and a humidity of 25 % to 75 %. For long-term storage products deviant conditions are described in that document.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
54 of 74  
 
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
12. Static characteristics  
Table 43. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VDD  
supply voltage  
1.8  
2.5  
-
-
5.5  
9.0  
2
V
VLCD  
LCD supply voltage  
power-down mode supply current  
supply current  
VLCD VDD  
-
V
[1]  
IDD(pd)  
IDD  
0.5  
A  
see Figure 43  
[2]  
[3]  
external 9.6 kHz clock  
-
-
10  
20  
25  
40  
A  
A  
external 230 kHz  
clock with PWM  
[2]  
[3]  
internal oscillator  
-
-
30  
60  
60  
A  
A  
internal oscillator with  
PWM  
130  
IDD(LCD)  
LCD supply current  
[1][4]  
[5]  
power-down, see  
Figure 44  
-
-
7
15  
A  
A  
display active, see  
Figure 45  
55  
140  
Logic  
VI  
input voltage  
VSS 0.5  
-
-
VDD + 0.5  
0.3VDD  
V
V
VIL  
LOW-level input voltage  
on pins OSCCLK,  
A0 and RESET  
-
VIH  
HIGH-level input voltage  
on pins OSCCLK,  
A0 and RESET  
0.7VDD  
-
-
V
VO  
output voltage  
0.5  
-
-
VDD + 0.5  
-
V
V
VOH  
HIGH-level output voltage  
driving load of 50 A  
on pins OSCCLK and  
GP0 to GP5  
0.8VDD  
VOL  
LOW-level output voltage  
HIGH-level output current  
driving load of 50 A  
on pins OSCCLK and  
GP0 to GP5  
-
-
0.2VDD  
V
IOH  
output source current;  
V
OH = VDD 0.4 V  
on pin OSCCLK  
VDD = 1.8 V  
0.7  
1.5  
1.6  
4.0  
-
-
mA  
mA  
VDD 3.3 V  
on pins GP0 to GP5  
VDD = 1.8 V;  
VLCD = 2.5 V  
0.7  
1.5  
1.1  
2.8  
-
-
mA  
mA  
V
DD = 3.3 V;  
VLCD 5.5 V  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
55 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 43. Static characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOL  
LOW-level output current  
output sink current;  
VOL = 0.4 V  
on pin OSCCLK  
VDD = 1.8 V  
3
5
4
-
-
mA  
mA  
VDD 3.3 V  
10  
on pins GP0 to GP5  
VDD = 1.8 V;  
0.7  
1.5  
1  
1.1  
2.4  
-
-
mA  
mA  
A  
V
LCD = 2.5 V  
VDD = 3.3 V;  
VLCD 5.5 V  
-
IL  
leakage current  
Vi = VDD or VSS; on  
pin OSCCLK and GP0  
to GP5  
+1  
I2C-bus[6]  
On pins SCL and SDA  
VI  
input voltage  
VSS 0.5  
-
-
-
-
-
-
5.5  
V
VIL  
LOW-level input voltage  
HIGH-level input voltage  
output voltage  
0.3VDD  
-
V
VIH  
0.7VDD  
0.5  
V
VO  
+5.5  
+1  
V
IL  
leakage current  
VI = VDD or VSS  
1  
A  
On pin SDA  
IOL  
LOW-level output current  
input voltage  
output sink current  
VDD = 1.8 V  
3
5
5.5  
9
-
-
mA  
mA  
VDD = 3.3 V  
SPI-bus  
VI  
on pin SCL  
VSS 0.5  
VSS 0.5  
-
-
5.5  
V
V
on pins CE and SDI  
VDD + 0.5  
On pins SCL, CE and SDI  
VIL  
VIH  
IL  
LOW-level input voltage  
-
-
-
-
0.3VDD  
V
HIGH-level input voltage  
leakage current  
0.7VDD  
-
V
VI = VDD or VSS  
1  
+1  
A  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
56 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Table 43. Static characteristics …continued  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
LCD outputs  
VO  
output voltage variation  
[7]  
[8]  
on pins BP0 to BP7  
on pins S0 to S43  
-
-
2.5  
2.5  
+10  
+10  
mV  
mV  
RO  
output resistance  
[9]  
[9]  
VLCD = 7 V;  
on pins BP0 to BP7  
-
-
0.9  
1.5  
5.0  
6.0  
k  
k  
VLCD = 7 V;  
on pins S0 to S43  
[1] Power-down mode is enabled; I2C-bus or SPI-bus inactive.  
[2] 1:8 multiplex drive mode; 14 bias; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; inputs at VSS or VDD  
;
default display prescale factor; I2C-bus or SPI-bus inactive.  
[3] 1:8 multiplex drive mode; 14 bias; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; inputs at VSS or VDD  
;
default display prescale factor; I2C-bus or SPI-bus inactive; six PWM channels active at 50 % duty.  
[4] Strongly linked to VLCD voltage. See Figure 44.  
[5] 1:8 multiplex drive mode; 14 bias; display enabled; LCD outputs are open circuit; RAM is all written with logic 1; default display prescale  
factor.  
[6] The I2C-bus interface of PCF8536 is 5 V tolerant.  
[7] Variation between any two backplanes on a given voltage level; static measured.  
[8] Variation between any two segments on a given voltage level; static measured.  
[9] Outputs measured one at a time.  
013aaa503  
60  
I
DD  
(µA)  
40  
20  
0
-45  
-10  
25  
60  
95  
T
(ºC)  
amb  
1:8 multiplex drive mode; 14 bias; internal oscillator; display enabled; LCD outputs are open circuit;  
RAM is all written with logic 1; inputs at VSS or VDD; default display prescale factor; I2C-bus or  
SPI-bus inactive. Typical is defined at VDD = 3.3 V, 25 C.  
Fig 43. Typical IDD with respect to temperature  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
57 of 74  
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
013aaa505  
15  
I
DD(LCD)  
(µA)  
V
V
= 9.0 V  
= 5.5 V  
LCD  
LCD  
10  
5
0
-45  
-10  
25  
60  
95  
T
(ºC)  
amb  
Power-down mode is enabled; I2C-bus or SPI-bus inactive. Typical is defined at 25 C.  
Fig 44. Typical IDD(LCD) in power-down mode with respect to temperature  
013aaa507  
120  
I
DD(LCD)  
(µA)  
V
V
= 9.0 V  
LCD  
80  
40  
0
= 5.5 V  
LCD  
-45  
-10  
25  
60  
95  
T
(ºC)  
amb  
1:8 multiplex drive mode; 14 bias; display enabled; LCD outputs are open circuit; RAM is all written  
with logic 1; default display prescale factor. Typical is defined at 25 C.  
Fig 45. Typical IDD(LCD) when display is active with respect to temperature  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
58 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
13. Dynamic characteristics  
Table 44. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
fclk  
clock frequency  
output on pin  
7800  
9600  
11040  
Hz  
OSCCLK;VDD = 3.3 V  
fclk(ext)  
external clock frequency  
EFR = 0  
-
-
-
250000  
-
Hz  
ns  
t(RESET_N) RESET_N pulse width  
LOW time  
400  
External clock source used on pin OSCCLK  
tclk(H)  
tclk(L)  
clock HIGH time  
clock LOW time  
33  
33  
-
-
-
-
s  
s  
[1] Frequency present on OSCCLK with default display frequency division factor.  
013aaa501  
15  
f
clk  
(kHz)  
(3)  
(1)  
(2)  
10  
5
0
1
3
5
7
V
(V)  
DD  
(1) 40 C.  
(2) 25 C.  
(3) 85 C.  
Fig 46. Typical clock frequency with respect to VDD and temperature  
1/f  
clk(ext)  
t
t
clk(L)  
clk(H)  
0.7V  
DD  
DD  
OSCCLK  
0.3V  
013aaa474  
External clock source used on pin OSCCLK.  
Fig 47. Driver timing waveforms  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
59 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
t
RESET(L)  
RESET  
0.3V  
DD  
013aaa475  
Fig 48. RESET timing  
Table 45. Timing characteristics: I2C-bus  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 9.0 V; Tamb = 40 C to +85 C; unless otherwise specified. All timing values  
are valid within the operating supply voltage and temperature range and referenced to VIL and VIH with an input voltage swing  
of VSS to VDD. Timing waveforms see Figure 49.  
Symbol  
Pin SCL  
fSCL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
SCL clock frequency  
-
-
-
-
400  
kHz  
s  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
-
-
tHIGH  
s  
Pin SDA  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
100  
0
-
-
-
-
ns  
ns  
Pins SCL and SDA  
tBUF  
bus free time between a STOP  
1.3  
-
-
s  
and START condition  
tSU;STO  
tHD;STA  
set-up time for STOP condition  
0.6  
0.6  
-
-
-
-
s  
s  
hold time (repeated) START  
condition  
tSU;STA  
tr  
set-up time for a repeated START  
condition  
0.6  
-
-
s  
rise time of both SDA and SCL  
signals  
fSCL = 400 kHz  
fSCL = 100 kHz  
-
-
-
-
-
-
0.3  
1.0  
0.3  
s  
s  
s  
tf  
fall time of both SDA and SCL  
signals  
[2]  
[3]  
tVD;ACK  
tVD;DAT  
Cb  
data valid acknowledge time  
data valid time  
0.6  
0.6  
-
-
-
-
-
-
s  
s  
pF  
ns  
-
capacitive load for each bus line  
400  
50  
[4]  
tSP  
pulse width of spikes that must be  
suppressed by the input filter  
-
[1] The minimum SCL clock frequency is limited by the bus time-out feature, which resets the serial bus interface if either the SDA or SCL  
is held LOW for a minimum of 25 ms. The bus time-out feature must be disabled for DC operation.  
[2] tVD;ACK = time for acknowledgement signal from SCL LOW to SDA output LOW.  
[3]  
tVD;DAT = minimum time for valid SDA output following SCL LOW.  
[4] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
60 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
START  
condition  
(S)  
bit 7  
MSB  
(A7)  
STOP  
condition  
(P)  
bit 6  
(A6)  
bit 0 acknowledge  
(R/W) (A)  
protocol  
t
t
t
HIGH  
SU;STA  
LOW  
1
/f  
SCL  
SCL  
SDA  
t
t
BUF  
f
t
r
t
t
t
t
t
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;STO  
013aaa417  
HD;STA  
SU;DAT  
Fig 49. I2C-bus timing waveforms  
Table 46. Timing characteristics: SPI-bus  
VDD = 1.8 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C. All timing values are valid within the operating supply voltage and  
temperature range and referenced to VIL and VIH with an input voltage swing of VSS to VDD. Timing waveforms see Figure 50.  
Symbol  
Parameter  
Conditions  
VDD < 2.7 V  
VDD 2.7 V  
Unit  
Min  
-
Max  
Min  
-
Max  
fclk(SCL)  
tSCL  
SCL clock frequency  
SCL time  
2
5
MHz  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
500  
200  
200  
-
-
200  
80  
80  
-
-
tclk(H)  
tclk(L)  
tr  
clock HIGH time  
clock LOW time  
rise time  
-
-
-
-
for SCL signal  
for SCL signal  
100  
100  
tf  
fall time  
-
100  
-
100  
tsu(CE_N)  
th(CE_N)  
trec(CE_N)  
tsu  
CE_N set-up time  
CE_N hold time  
CE_N recovery time  
set-up time  
150  
0
-
-
-
-
80  
0
-
-
-
-
100  
10  
100  
5
set-up time for  
SDI data  
th  
hold time  
hold time for SDI  
data  
25  
-
10  
-
ns  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
61 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
CE  
t
SCL  
t
su(CE_N)  
t
rec(CE_N)  
t
r
t
clk(H)  
t
t
h(CE_N)  
f
70%  
SCL  
SDI  
30%  
t
clk(L)  
t
su  
t
h
b7  
b6  
b0  
013aaa476  
Fig 50. SPI-bus timing  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
62 of 74  
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
14. Package outline  
TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm  
SOT364-1  
E
D
A
X
c
H
v
M
A
y
E
Z
56  
29  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
detail X  
1
28  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
E
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
max.  
8o  
0o  
0.15  
0.05  
1.05  
0.85  
0.28  
0.17  
0.2  
0.1  
14.1  
13.9  
6.2  
6.0  
8.3  
7.9  
0.8  
0.4  
0.50  
0.35  
0.5  
0.1  
mm  
1.2  
0.5  
1
0.25  
0.25  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT364-1  
MO-153  
Fig 51. Package outline SOT364-1 (TSSOP56)  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
63 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
64 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 52) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 47 and 48  
Table 47. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 48. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 52.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
65 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 52. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Footprint information for reflow soldering  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
66 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Footprint information for reflow soldering of TSSOP56 package  
SOT364-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
Hy Gy  
By Ay  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.500 0.560 8.900 6.100 1.400 0.280 0.400 14.270 7.000 16.600 9.150  
sot364-1_fr  
Fig 53. Footprint information for reflow soldering of SOT364-1 (TSSOP56) package  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
67 of 74  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
18. Appendix: possible PWM and LCD frame frequency combinations to avoid flicker  
Table 49. LCD and PWM frame frequency combinations to avoid flicker [1]  
Experiments have shown that likely no flicker occurs when PWM frame frequency and LCD frame frequency are between 40 Hz and 50 Hz apart  
and no flicker occurs if they are more than 50 Hz apart.  
frame frequencies  
PWM (fPWM  
)
LCD (ffr(LCD)  
59.9  
)
59.9  
0.0  
69.1  
9.2  
81.7  
21.8  
11.2  
1.8  
89.8  
29.9  
19.4  
10.0  
0.6  
99.8  
20.0  
29.4  
20.0  
9.4  
112.3 119.8 128.3 138.2 149.7 163.4 179.7 199.7 224.6 256.7 299.5  
7.5  
0.0  
8.6  
18.4  
2.7  
29.9  
8.8  
16.3  
22.4  
3.6  
0.0  
20.0  
11.7  
39.9  
18.8  
0.0  
15.0  
13.2  
15.0  
43.8  
25.0  
6.8  
17.1  
25.2  
17.1  
14.5  
42.8  
38.9  
17.1  
2.3  
0.0  
70.5  
10.6  
20.0  
29.4  
20.0  
10.9  
0.0  
1.4  
28.6  
32.4  
21.9  
12.5  
3.4  
21.1  
39.9  
29.4  
20.0  
10.9  
0.0  
12.6  
31.4  
37.9  
28.5  
19.4  
8.6  
31.7  
20.0  
1.1  
17.6  
20.0  
28.3  
0.0  
79.9  
10.8  
21.3  
30.7  
29.3  
18.4  
8.7  
21.5  
42.6  
38.4  
29.3  
18.4  
8.7  
10.0  
31.1  
49.9  
40.8  
29.9  
20.2  
8.8  
90.4  
8.7  
17.5  
36.3  
54.5  
43.6  
33.8  
22.4  
13.6  
3.6  
99.8  
18.2  
27.2  
38.1  
33.8  
22.4  
13.6  
3.6  
10.0  
19.1  
29.9  
39.7  
38.8  
29.9  
20.0  
8.6  
0.0  
20.0  
38.1  
59.9  
50.2  
38.8  
29.9  
20.0  
8.6  
108.9  
119.8  
129.5  
140.9  
149.7  
159.7  
171.1  
177.5  
184.3  
191.7  
199.7  
208.3  
217.8  
228.2  
239.6  
252.2  
266.2  
281.9  
299.5  
9.1  
18.2  
39.9  
59.4  
58.7  
49.9  
39.9  
28.5  
22.2  
15.4  
8.0  
27.2  
59.9  
40.5  
17.6  
0.0  
20.0  
29.7  
41.1  
49.9  
39.9  
28.5  
22.2  
15.4  
8.0  
7.5  
15.0  
34.4  
57.3  
74.9  
64.9  
53.5  
47.1  
40.3  
32.9  
25.0  
16.3  
6.8  
9.7  
17.2  
28.6  
37.4  
47.4  
53.5  
47.1  
40.3  
32.9  
25.0  
16.3  
6.8  
9.7  
1.2  
21.1  
29.9  
20.0  
8.6  
2.7  
21.1  
29.9  
39.9  
51.3  
57.7  
55.3  
47.9  
39.9  
31.3  
21.8  
11.4  
0.0  
12.6  
21.4  
31.4  
42.8  
49.1  
55.9  
63.3  
57.0  
48.4  
38.9  
28.5  
17.1  
4.5  
2.7  
25.2  
42.8  
62.7  
85.6  
79.2  
72.4  
65.0  
57.0  
48.4  
38.9  
28.5  
17.1  
4.5  
11.5  
21.5  
32.9  
29.9  
23.0  
15.7  
7.7  
11.5  
21.5  
32.9  
39.2  
46.1  
53.4  
61.4  
68.1  
58.6  
48.3  
36.9  
24.2  
10.2  
5.4  
0.0  
10.0  
21.4  
27.7  
34.6  
41.9  
49.9  
58.6  
68.1  
71.3  
59.9  
47.3  
33.3  
17.6  
0.0  
20.0  
42.8  
55.5  
69.1  
83.9  
99.8  
91.1  
81.7  
71.3  
59.9  
47.3  
33.3  
17.6  
0.0  
7.8  
7.8  
2.2  
14.1  
20.9  
28.3  
36.3  
36.7  
27.2  
16.9  
5.4  
2.2  
14.1  
20.9  
28.3  
36.3  
45.0  
54.5  
64.8  
76.2  
74.5  
60.5  
44.8  
27.2  
2.2  
4.6  
4.6  
4.6  
12.0  
20.0  
28.6  
21.8  
11.4  
0.0  
12.0  
20.0  
28.6  
38.1  
41.4  
29.9  
17.3  
3.3  
12.0  
20.0  
28.6  
38.1  
48.5  
59.9  
72.5  
86.5  
77.5  
59.9  
0.0  
0.0  
1.0  
8.7  
8.7  
10.5  
20.8  
32.3  
24.2  
10.2  
5.4  
18.2  
28.5  
39.9  
47.3  
33.3  
17.6  
0.0  
18.2  
28.5  
39.9  
52.5  
66.6  
82.2  
99.8  
3.6  
3.6  
15.0  
27.6  
41.6  
55.1  
37.4  
15.0  
27.6  
41.6  
57.3  
74.9  
12.6  
26.6  
17.6  
0.0  
7.2  
12.6  
26.6  
42.3  
59.9  
21.2  
36.8  
27.2  
9.5  
9.5  
12.3  
29.9  
25.2  
42.8  
25.2  
42.8  
23.0  
23.0  
[1] The table shows the smallest distance (f) from one frequency to the next or multiples of the next. f = MIN(f1 n f2); the values for n are 1 to 6; f1 and f2 can be either fPWM or  
fr(LCD); both relationships have to be considered. A PWM frame frequency (fPWM) of less than 60 Hz may show flicker purely from the LCD.  
f
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
19. Abbreviations  
Table 50. Abbreviations  
Acronym  
Description  
CDM  
CMOS  
DC  
Charged-Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
EMC  
EPROM  
ESD  
HBM  
I2C  
ElectroMagnetic Compatibility  
Erasable Programmable Read-Only Memory  
ElectroStatic Discharge  
Human Body Model  
Inter-Integrated Circuit bus  
Integrated Circuit  
IC  
LCD  
LED  
LSB  
MSB  
MSL  
MUX  
OTP  
PCB  
POR  
PWM  
RC  
Liquid Crystal Display  
Light-Emitting Diode  
Least Significant Bit  
Most Significant Bit  
Moisture Sensitivity Level  
Multiplexer  
One Time Programmable  
Printed-Circuit Board  
Power-On Reset  
Pulse-Width Modulation  
Resistance-Capacitance  
Random Access Memory  
Red Green Blue  
RAM  
RGB  
RMS  
SCL  
SDA  
SPI  
Root Mean Square  
Serial CLock line  
Serial DAta line  
Serial Peripheral Interface  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
69 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
20. References  
[1] AN10365 Surface mount reflow soldering description  
[2] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[3] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[4] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface-Mount Devices  
[5] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[6] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[7] JESD78 IC Latch-Up Test  
[8] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[9] NX3-00092 NXP store and transport requirements  
[10] SNV-FA-01-02 Marking Formats Integrated Circuits  
[11] UM10204 I2C-bus specification and user manual  
21. Revision history  
Table 51. Revision history  
Document ID  
PCF8536 v.2  
Modifications:  
PCF8536 v.1  
Release date  
Data sheet status  
Change notice  
Supersedes  
20120221  
Product Data Sheet  
-
PCF8536 v.1  
Fixed typos  
20111006  
Product Data Sheet  
-
-
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
70 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
22. Legal information  
22.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
22.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
22.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
71 of 74  
 
 
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
22.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
I2C-bus — logo is a trademark of NXP B.V.  
23. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
72 of 74  
 
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
24. Contents  
1
2
3
4
5
6
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.9  
Display RAM . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Data pointer (LCD part) . . . . . . . . . . . . . . . . . 36  
RAM filling in 1:4 multiplex drive mode . . . . . 37  
RAM filling in 1:6 multiplex drive mode . . . . . 38  
RAM filling in 1:8 multiplex drive mode . . . . . 40  
PWM registers and data pointer (PWM part) . 40  
GPO output . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
RGB color driving. . . . . . . . . . . . . . . . . . . . . . 43  
PWM inversion mode. . . . . . . . . . . . . . . . . . . 45  
8.9.1  
8.9.2  
8.9.3  
8.9.4  
8.10  
8.11  
8.11.1  
8.11.2  
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
9
9.1  
9.2  
Bus interfaces . . . . . . . . . . . . . . . . . . . . . . . . . 46  
Control byte and register selection . . . . . . . . 46  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 46  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
START and STOP conditions. . . . . . . . . . . . . 47  
System configuration . . . . . . . . . . . . . . . . . . . 47  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 48  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 48  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
I2C-bus slave address . . . . . . . . . . . . . . . . . . 49  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 49  
Status read out. . . . . . . . . . . . . . . . . . . . . . . . 50  
SPI-bus interface . . . . . . . . . . . . . . . . . . . . . . 51  
Data transmission . . . . . . . . . . . . . . . . . . . . . 51  
8
8.1  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Commands of PCF8536. . . . . . . . . . . . . . . . . . 7  
Command: initialize . . . . . . . . . . . . . . . . . . . . . 7  
Command: OTP-refresh . . . . . . . . . . . . . . . . . . 8  
Command: PWM-inversion. . . . . . . . . . . . . . . . 8  
Command: mode-settings . . . . . . . . . . . . . . . . 9  
Backplane swapping. . . . . . . . . . . . . . . . . . . . . 9  
Line inversion (driving scheme A) and frame  
9.2.1  
9.2.2  
9.2.3  
9.2.4  
9.2.5  
9.2.6  
9.2.7  
9.2.8  
9.2.8.1  
9.3  
8.1.1  
8.1.2  
8.1.3  
8.1.4  
8.1.4.1  
8.1.4.2  
inversion (driving scheme B) . . . . . . . . . . . . . 10  
Power-down mode . . . . . . . . . . . . . . . . . . . . . 10  
Display enable . . . . . . . . . . . . . . . . . . . . . . . . 12  
Command: oscillator-control . . . . . . . . . . . . . 12  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Timing and frame frequency. . . . . . . . . . . . . . 15  
Command: GPO-output-config. . . . . . . . . . . . 15  
Command: set-MUX-mode. . . . . . . . . . . . . . . 16  
Command: set-bias-mode . . . . . . . . . . . . . . . 16  
Command: frame-frequency-LCD. . . . . . . . . . 16  
Command: frame-frequency-PWM. . . . . . . . . 18  
Command: GPO-static-data . . . . . . . . . . . . . . 19  
Command: load-data-pointer-LCD . . . . . . . . . 20  
Command: load-data-pointer-PWM . . . . . . . . 20  
Command: write-RAM-data . . . . . . . . . . . . . . 20  
Command: write-PWM-data . . . . . . . . . . . . . . 21  
Start-up and shut-down. . . . . . . . . . . . . . . . . . 21  
Reset and Power-On Reset (POR). . . . . . . . . 21  
RESET pin function . . . . . . . . . . . . . . . . . . . . 22  
Recommended start-up sequences . . . . . . . . 22  
Possible display configurations . . . . . . . . . . . 25  
LCD voltage selector . . . . . . . . . . . . . . . . . . . 26  
Electro-optical performance . . . . . . . . . . . . . . 28  
LCD drive mode waveforms . . . . . . . . . . . . . . 29  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 29  
1:6 Multiplex drive mode. . . . . . . . . . . . . . . . . 30  
1:8 Multiplex drive mode. . . . . . . . . . . . . . . . . 32  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 34  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 34  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 34  
8.1.4.3  
8.1.4.4  
8.1.5  
8.1.5.1  
8.1.5.2  
8.1.6  
8.1.7  
8.1.8  
8.1.9  
8.1.10  
8.1.11  
8.1.12  
8.1.13  
8.1.14  
8.1.15  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.3  
8.4  
8.4.1  
8.5  
9.3.1  
10  
11  
12  
13  
14  
15  
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 53  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 54  
Static characteristics . . . . . . . . . . . . . . . . . . . 55  
Dynamic characteristics. . . . . . . . . . . . . . . . . 59  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 63  
Handling information . . . . . . . . . . . . . . . . . . . 64  
16  
Soldering of SMD packages. . . . . . . . . . . . . . 64  
Introduction to soldering. . . . . . . . . . . . . . . . . 64  
Wave and reflow soldering. . . . . . . . . . . . . . . 64  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 65  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 65  
16.1  
16.2  
16.3  
16.4  
17  
18  
Footprint information for reflow soldering. . 66  
Appendix: possible PWM and LCD frame  
frequency combinations to avoid flicker . . . 68  
19  
20  
21  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 69  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 70  
8.5.1  
8.5.2  
8.5.3  
8.6  
8.7  
8.8  
22  
Legal information . . . . . . . . . . . . . . . . . . . . . . 71  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 71  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
22.1  
22.2  
22.3  
22.4  
continued >>  
PCF8536  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 2 — 21 February 2012  
73 of 74  
 
PCF8536  
NXP Semiconductors  
Universal LCD low multiplex driver with 6 channel PWM generator  
23  
24  
Contact information. . . . . . . . . . . . . . . . . . . . . 72  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 21 February 2012  
Document identifier: PCF8536  

相关型号:

PCF8536AT1

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536BT

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536BT/1,118

PCF8536 - Universal LCD driver for low multiplex rates including a 6 channel PWM generator TSSOP 56-Pin
NXP

PCF8536BT1

I2C/SPI LCD and PWM LED controller for industrial and automotive applications
NXP

PCF8536_11

Universal LCD driver for low multiplex rates including a 6 channel PWM generator
NXP

PCF8537

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537AH

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537AH1

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537BH

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8537BH1

Industrial LCD driver for multiplex rates up to 1:8
NXP

PCF8538UG

Universal 36 × 4 LCD segment driver
NXP

PCF8545ATT

Universal 36 × 4 LCD segment driver
NXP