PCF8576DU/5AA/2,01 [NXP]

PCF8576D - Universal LCD driver for low multiplex rates DIE 59-Pin;
PCF8576DU/5AA/2,01
型号: PCF8576DU/5AA/2,01
厂家: NXP    NXP
描述:

PCF8576D - Universal LCD driver for low multiplex rates DIE 59-Pin

PC CD
文件: 总57页 (文件大小:396K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8576D  
Universal LCD driver for low multiplex rates  
Rev. 14 — 10 June 2013  
Product data sheet  
1. General description  
The PCF8576D is a peripheral device which interfaces to almost any Liquid Crystal  
Display (LCD)1 with low multiplex rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up to 40 segments. It can be easily  
cascaded for larger LCD applications. The PCF8576D is compatible with most  
microcontrollers and communicates via the two-line bidirectional I2C-bus. Communication  
overheads are minimized by a display RAM with auto-incremented addressing, by  
hardware subaddressing and by display memory switching (static and duplex drive  
modes).  
PCF8576DT/2 should not be used for new design-ins. Replacement part is  
PCF85176T/1 for industrial applications  
PCF8576DT/S400/2 should not be used for new design-ins. Replacement part is  
PCA85176T/Q900/1 for automotive applications  
2. Features and benefits  
AEC-Q100 compliant (PCF8576DT/S400/2) for automotive applications  
Single chip LCD controller and driver  
Selectable backplane drive configuration: static or 2, 3, 4 backplane multiplexing  
Selectable display bias configuration: static, 12, or 13  
Internal LCD bias generation with voltage-follower buffers  
40 segment drives:  
Up to 20 7-segment numeric characters  
Up to 10 14-segment alphanumeric characters  
Any graphics of up to 160 elements  
40 4-bit RAM for display data storage  
Auto-incremented display data loading across device subaddress boundaries  
Display memory bank switching in static and duplex drive modes  
Versatile blinking modes  
Independent supplies possible for LCD and logic voltages  
Wide power supply range: from 1.8 V to 5.5 V  
Wide logic LCD supply range:  
From 2.5 V for low-threshold LCDs  
Up to 6.5 V for high-threshold twisted nematic LCDs  
Low power consumption  
400 kHz I2C-bus interface  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 20.  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
May be cascaded for large LCD applications (up to 2560 elements possible)  
No external components required  
Compatible with chip-on-glass and chip-on-board technology  
Manufactured in silicon gate CMOS process  
3. Ordering information  
Table 1.  
Ordering information  
Product type number  
Package  
Name  
Description  
Version  
PCF8576DT/2[1]  
TSSOP56  
plastic thin shrink small outline package, 56 leads; SOT364-1  
body width 6.1 mm  
PCF8576DT/S400/2[2]  
TSSOP56  
plastic thin shrink small outline package, 56 leads; SOT364-1  
body width 6.1 mm  
PCF8576DU/DA/2  
PCF8576DU/2DA/2  
wire bond die  
bare die  
59 bonding pads  
59 bumps  
PCF8576DU/DA  
PCF8576DU/2DA  
[1] Not to be used for new designs. Replacement part is PCF85176T/1 for industrial applications.  
[2] Not to be used for new designs. Replacement part is PCA85176T/Q900/1 for automotive applications.  
3.1 Ordering options  
Table 2.  
Ordering options  
Product type number  
Sales item (12NC)  
Orderable part number IC  
revision  
Delivery form  
PCF8576DT/2  
935276166118  
935287131118  
935276239026  
935276249026  
PCF8576DT/2,118  
2
tape and reel, 13 inch  
tape and reel, 13 inch  
chips in tray  
PCF8576DT/S400/2  
PCF8576DU/DA/2  
PCF8576DU/2DA/2  
PCF8576DT/S400/2,1  
PCF8576DU/DA/2,026  
PCF8576DU/2DA/2,02  
2
2
2
chips in tray  
4. Marking  
Table 3.  
Marking codes  
Product type number  
PCF8576DT/2  
Marking code  
PCF8576DT  
PCF8576DT/S400/2  
PCF8576DU/DA/2  
PCF8576DU/2DA/2  
PCF8576DT/S400  
PC8576D-2  
PC8576D-2  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
2 of 57  
 
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
5. Block diagram  
BP0 BP2 BP1 BP3  
S0 to S39  
40  
V
LCD  
BACKPLANE  
OUTPUTS  
DISPLAY SEGMENT  
OUTPUTS  
LCD  
VOLTAGE  
SELECTOR  
DISPLAY  
REGISTER  
DISPLAY  
CONTROLLER  
OUTPUT BANK SELECT  
AND BLINK CONTROL  
LCD BIAS  
GENERATOR  
V
SS  
CLK  
DISPLAY RAM  
40 × 4-BIT  
CLOCK SELECT  
AND TIMING  
BLINKER  
TIMEBASE  
PCF8576D  
SYNC  
POWER-ON  
RESET  
COMMAND  
DECODER  
WRITE DATA  
CONTROL  
DATA POINTER AND  
AUTO INCREMENT  
OSC  
OSCILLATOR  
V
DD  
SCL  
SDA  
2
INPUT  
FILTERS  
I C-BUS  
SUBADDRESS  
COUNTER  
CONTROLLER  
SA0  
A0  
A1  
A2  
001aai900  
Fig 1. Block diagram of PCF8576D  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
3 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6. Pinning information  
6.1 Pinning  
1
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
BP2  
BP1  
BP3  
S0  
BP0  
2
V
LCD  
V
SS  
3
4
SA0  
A2  
5
S1  
6
S2  
A1  
7
S3  
A0  
8
S4  
OSC  
9
S5  
V
DD  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
S6  
CLK  
SYNC  
SCL  
SDA  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S7  
S8  
S9  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
PCF8576DT  
001aaf646  
Top view. For mechanical details, see Figure 25.  
Fig 2. Pinning diagram for PCF8576DT (TSSOP56)  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
4 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
S3  
S2  
S1  
S0  
21  
20  
19  
18  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
BP3  
BP1  
BP2  
BP0  
17  
16  
15  
14  
PCF8576DU  
V
13  
LCD  
V
12  
11  
SS  
SA0  
A2  
A1  
10  
9
001aag424  
Viewed from active side. C1 and C2 are alignment marks. For mechanical details, see Figure 26  
and Figure 27.  
Fig 3. Pinning diagram for PCF8576DU (bare die)  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
5 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
6.2 Pin description  
Table 4.  
Symbol  
Pin description  
Pin  
Description  
PCF8576DT  
PCF8576DU  
SDA  
SCL  
44  
1, 58, 59  
I2C-bus serial data input and output  
I2C-bus serial clock input  
external clock input or output  
supply voltage  
45  
2, 3  
CLK  
47  
5
VDD  
48  
6
SYNC  
OSC  
A0 to A2  
SA0  
46  
4
cascade synchronization input or output  
internal oscillator enable input  
subaddress inputs  
49  
7
50 to 52  
53  
8 to 10  
11  
I2C-bus address input; bit 0  
VSS  
54  
12[1]  
13  
ground supply voltage  
VLCD  
55  
LCD supply voltage  
BP0, BP2,  
BP1, BP3  
56, 1, 2, 3  
14 to 17  
LCD backplane outputs  
S0 to S39  
n.c.  
4 to 43  
-
18 to 57  
-
LCD segment outputs  
not connected  
[1] The substrate (rear side of the die) is connected to VSS and should be electrically isolated.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
6 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7. Functional description  
The PCF8576D is a versatile peripheral device designed to interface between any  
microcontroller to a wide variety of LCD segment or dot matrix displays (see Figure 4). It  
can directly drive any static or multiplexed LCD containing up to four backplanes and up to  
40 segments.  
The possible display configurations of the PCF8576D depend on the number of active  
backplane outputs required. A selection of display configurations is shown in Table 5. All  
of these configurations can be implemented in the typical system shown in Figure 5.  
dot matrix  
7-segment with dot  
14-segment with dot and accent  
013aaa312  
Fig 4. Example of displays suitable for PCF8576D  
Table 5.  
Selection of possible display configurations  
Number of  
Backplanes  
Icons  
Digits/Characters  
7-segment[1]  
Dot matrix/  
Elements  
14-segment[2]  
4
3
2
1
160  
120  
80  
20  
15  
10  
5
10  
7
160 (4 40)  
120 (3 40)  
80 (2 40)  
40 (1 40)  
5
40  
2
[1] 7 segment display has 8 elements including the decimal point.  
[2] 14 segment display has 16 elements including decimal point and accent dot.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
7 of 57  
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
V
DD  
t
r
R ≤  
2C  
B
V
V
DD  
LCD  
SDA  
SCL  
OSC  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
40 segment drives  
4 backplanes  
LCD PANEL  
PCF8576D  
(up to 160  
elements)  
CONTROLLER  
A0 A1 A2 SA0  
V
SS  
V
SS  
mdb079  
The resistance of the power lines must be kept to a minimum.  
For chip-on-glass applications, due to the Indium Tin Oxide (ITO) track resistance, each supply line  
must be routed separately between the chip and the connector.  
Fig 5. Typical system configuration  
The host microcontroller maintains the 2-line I2C-bus communication channel with the  
PCF8576D. The internal oscillator is enabled by connecting pin OSC to pin VSS. The  
appropriate biasing voltages for the multiplexed LCD waveforms are generated internally.  
The only other connections required to complete the system are to the power supplies  
(VDD, VSS, and VLCD) and the LCD panel chosen for the application.  
7.1 Power-On Reset (POR)  
At power-on the PCF8576D resets to the following starting conditions:  
All backplane and segment outputs are set to VLCD  
The selected drive mode is: 1:4 multiplex with 13 bias  
Blinking is switched off  
Input and output bank selectors are reset  
The I2C-bus interface is initialized  
The data pointer and the subaddress counter are cleared (set to logic 0)  
The display is disabled (bit E = 0, see Table 12)  
Remark: Do not transfer data on the I2C-bus for at least 1 ms after a power-on to allow  
the reset action to complete.  
7.2 LCD bias generator  
Fractional LCD biasing voltages are obtained from an internal voltage divider of three  
impedances connected between pins VLCD and VSS. The center impedance is bypassed  
by switch if the 12 bias voltage level for the 1:2 multiplex drive mode configuration is  
selected. The LCD voltage can be temperature compensated externally using the supply  
to pin VLCD  
.
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
8 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.3 LCD voltage selector  
The LCD voltage selector coordinates the multiplexing of the LCD in accordance with the  
selected LCD drive configuration. The operation of the voltage selector is controlled by the  
mode-set command from the command decoder. The biasing configurations that apply to  
the preferred modes of operation, together with the biasing characteristics as functions of  
V
LCD and the resulting discrimination ratios (D) are given in Table 6.  
Discrimination is a term which is defined as the ratio of the on and off RMS voltage across  
a segment. It can be thought of as a measurement of contrast.  
Table 6.  
Biasing characteristics  
Number of:  
LCD drive  
mode  
LCD bias  
configuration  
VoffRMSVonRMS  
------------------------ ----------------------- D = ------------------------  
VLCD VLCD VoffRMS  
VonRMS  
Backplanes Levels  
static  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
1:2 multiplex  
1:2 multiplex  
1:3 multiplex  
1:4 multiplex  
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
2
1
3
1
3
1
3
A practical value for VLCD is determined by equating Voff(RMS) with a defined LCD  
threshold voltage (Vth(off)), typically when the LCD exhibits approximately 10 % contrast. In  
the static drive mode a suitable choice is VLCD > 3Vth(off)  
.
Multiplex drive modes of 1:3 and 1:4 with 12 bias are possible but the discrimination and  
hence the contrast ratios are smaller.  
1
Bias is calculated by ------------ , where the values for a are  
1 + a  
a = 1 for 12 bias  
a = 2 for 13 bias  
The RMS on-state voltage (Von(RMS)) for the LCD is calculated with Equation 1:  
a2 + 2a + n  
n  1 + a2  
VonRMS  
=
-----------------------------  
(1)  
V
LCD  
where the values for n are  
n = 1 for static drive mode  
n = 2 for 1:2 multiplex drive mode  
n = 3 for 1:3 multiplex drive mode  
n = 4 for 1:4 multiplex drive mode  
The RMS off-state voltage (Voff(RMS)) for the LCD is calculated with Equation 2:  
a2 2a + n  
n  1 + a2  
VoffRMS  
=
-----------------------------  
(2)  
V
LCD  
Discrimination is the ratio of Von(RMS) to Voff(RMS) and is determined from Equation 3:  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
9 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
a2 + 2a + n  
a2 2a + n  
VonRMS  
----------------------  
VoffRMS  
D =  
=
---------------------------  
(3)  
Using Equation 3, the discrimination for an LCD drive mode of 1:3 multiplex with  
12 bias is 3 = 1.732 and the discrimination for an LCD drive mode of 1:4 multiplex with  
21  
12 bias is ---------- = 1.528 .  
3
The advantage of these LCD drive modes is a reduction of the LCD full scale voltage VLCD  
as follows:  
1:3 multiplex (12 bias): VLCD  
1:4 multiplex (12 bias): VLCD  
=
=
6 VoffRMS= 2.449VoffRMS  
4 3  
---------------------  
= 2.309VoffRMS  
3
These compare with VLCD = 3VoffRMSwhen 13 bias is used.  
It should be noted that VLCD is sometimes referred as the LCD operating voltage.  
7.3.1 Electro-optical performance  
Suitable values for Von(RMS) and Voff(RMS) are dependent on the LCD liquid used. The  
RMS voltage, at which a pixel will be switched on or off, determine the transmissibility of  
the pixel.  
For any given liquid, there are two threshold values defined. One point is at 10 % relative  
transmission (at Vth(off)) and the other at 90 % relative transmission (at Vth(on)), see  
Figure 6. For a good contrast performance, the following rules should be followed:  
V
V
onRMSVthon  
offRMSVthoff  
(4)  
(5)  
V
on(RMS) and Voff(RMS) are properties of the display driver and are affected by the selection  
of a, n (see Equation 1 to Equation 3) and the VLCD voltage.  
Vth(off) and Vth(on) are properties of the LCD liquid and can be provided by the module  
manufacturer. Vth(off) is sometimes just named Vth. Vth(on) is sometimes named saturation  
voltage Vsat  
.
It is important to match the module properties to those of the driver in order to achieve  
optimum performance.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
10 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
100 %  
90 %  
10 %  
V
[V]  
RMS  
V
th(off)  
V
th(on)  
OFF  
SEGMENT  
GREY  
SEGMENT  
ON  
SEGMENT  
013aaa494  
Fig 6. Electro-optical characteristic: relative transmission curve of the liquid  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
11 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4 LCD drive mode waveforms  
7.4.1 Static drive mode  
The static LCD drive mode is used when a single backplane is provided in the LCD. The  
backplane (BPn) and segment drive (Sn) waveforms for this mode are shown in Figure 7.  
T
fr  
LCD segments  
V
LCD  
BP0  
Sn  
V
SS  
state 1  
(on)  
state 2  
(off)  
V
LCD  
V
SS  
V
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
LCD  
state 1  
0 V  
V  
LCD  
V
LCD  
state 2  
0 V  
V  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl745  
(1) Vstate1(t) = VSn(t) VBP0(t).  
(2) Von(RMS) = VLCD  
(3) state2(t) = VSn+1(t) VBP0(t).  
(4) Voff(RMS) = 0 V.  
.
V
Fig 7. Static drive mode waveforms  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
12 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.2 1:2 Multiplex drive mode  
The 1:2 multiplex drive mode is used when two backplanes are provided in the LCD. This  
mode allows fractional LCD bias voltages of 12 bias or 13 bias as shown in Figure 8 and  
Figure 9.  
T
fr  
V
LCD  
LCD segments  
V
V
/ 2  
/ 2  
BP0  
BP1  
Sn  
LCD  
SS  
state 1  
V
LCD  
state 2  
V
V
LCD  
SS  
V
LCD  
V
V
SS  
LCD  
Sn+1  
V
SS  
(a) Waveforms at driver.  
V
V
LCD  
LCD  
/ 2  
0 V  
V  
state 1  
/ 2  
LCD  
V  
LCD  
V
V
LCD  
/ 2  
LCD  
0 V  
state 2  
V  
/ 2  
LCD  
LCD  
V  
(b) Resultant waveforms  
at LCD segment.  
mgl746  
(1) Vstate1(t) = VSn(t) VBP0(t).  
(2) on(RMS) = 0.791VLCD  
(3) Vstate2(t) = VSn+1(t) VBP1(t).  
(4) Voff(RMS) = 0.354VLCD  
V
.
.
Fig 8. Waveforms for the 1:2 multiplex drive mode with 12 bias  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
13 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
Sn  
V
V
LCD  
SS  
state 1  
V
LCD  
state 2  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl747  
(1) Vstate1(t) = VSn(t) VBP0(t).  
(2) on(RMS) = 0.745VLCD  
(3) Vstate2(t) = VSn+1(t) VBP1(t).  
(4) Voff(RMS) = 0.333VLCD  
V
.
.
Fig 9. Waveforms for the 1:2 multiplex drive mode with 13 bias  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
14 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.3 1:3 Multiplex drive mode  
When three backplanes are provided in the LCD, the 1:3 multiplex drive mode applies  
(see Figure 10).  
T
fr  
V
LCD  
2V  
LCD segments  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
Sn  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl748  
(1) Vstate1(t) = VSn(t) VBP0(t).  
(2) on(RMS) = 0.638VLCD  
(3) Vstate2(t) = VSn+1(t) VBP1(t).  
(4) Voff(RMS) = 0.333VLCD  
V
.
.
Fig 10. Waveforms for the 1:3 multiplex drive mode with 13 bias  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
15 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.4.4 1:4 Multiplex drive mode  
When four backplanes are provided in the LCD, the 1:4 multiplex drive mode applies (see  
Figure 11).  
T
fr  
V
LCD segments  
LCD  
2V  
/ 3  
LCD  
/ 3  
BP0  
BP1  
BP2  
V
V
LCD  
SS  
state 1  
state 2  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
BP3  
Sn  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+1  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
Sn+2  
Sn+3  
V
V
LCD  
SS  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
V
LCD  
SS  
(a) Waveforms at driver.  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 1  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
V
LCD  
2V  
/ 3  
LCD  
/ 3  
V
LCD  
0 V  
V  
state 2  
/ 3  
LCD  
2V  
V  
/ 3  
LCD  
LCD  
(b) Resultant waveforms  
at LCD segment.  
mgl749  
(1) Vstate1(t) = VSn(t) VBP0(t).  
(2) Von(RMS) = 0.577VLCD  
(3) Vstate2(t) = VSn+1(t) VBP1(t).  
(4) off(RMS) = 0.333VLCD  
.
V
.
Fig 11. Waveforms for the 1:4 multiplex drive mode with 13 bias  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
16 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.5 Oscillator  
7.5.1 Internal clock  
The internal logic of the PCF8576D and its LCD drive signals are timed either by its  
internal oscillator or by an external clock. The internal oscillator is enabled by connecting  
pin OSC to pin VSS. If the internal oscillator is used, the output from pin CLK can be used  
as the clock signal for several PCF8576Ds in the system that are connected in cascade.  
7.5.2 External clock  
Pin CLK is enabled as an external clock input by connecting pin OSC to VDD. The LCD  
frame signal frequency is determined by the clock frequency (fclk).  
Remark: A clock signal must always be supplied to the device; removing the clock may  
freeze the LCD in a DC state, which is not suitable for the liquid crystal.  
7.6 Timing  
The PCF8576D timing controls the internal data flow of the device. This includes the  
transfer of display data from the display RAM to the display segment outputs. In cascaded  
applications, the correct timing relationship between each PCF8576D in the system is  
maintained by the synchronization signal at pin SYNC. The timing also generates the LCD  
frame signal whose frequency is derived from the clock frequency. The frame signal  
frequency is a fixed division of the clock frequency from either the internal or an external  
fclk  
-------  
.
clock: ffr  
=
24  
7.7 Display register  
The display latch holds the display data while the corresponding multiplex signals are  
generated.  
7.8 Segment outputs  
The LCD drive section includes 40 segment outputs S0 to S39 which should be  
connected directly to the LCD. The segment output signals are generated in accordance  
with the multiplexed backplane signals and with data residing in the display latch. When  
less than 40 segment outputs are required, the unused segment outputs should be left  
open-circuit.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
17 of 57  
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.9 Backplane outputs  
The LCD drive section includes four backplane outputs BP0 to BP3 which must be  
connected directly to the LCD. The backplane output signals are generated in accordance  
with the selected LCD drive mode. If less than four backplane outputs are required, the  
unused outputs can be left open-circuit.  
In 1:3 multiplex drive mode, BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be tied together to give enhanced drive capabilities.  
In 1:2 multiplex drive mode, BP0 and BP2, respectively, BP1 and BP3 all carry the  
same signals and may also be paired to increase the drive capabilities.  
In static drive mode the same signal is carried by all four backplane outputs and they  
can be connected in parallel for very high drive requirements.  
7.10 Display RAM  
The display RAM is a static 40 4-bit RAM which stores LCD data.  
There is a one-to-one correspondence between  
the bits in the RAM bitmap and the LCD elements  
the RAM columns and the segment outputs  
the RAM rows and the backplane outputs.  
A logic 1 in the RAM bitmap indicates the on-state of the corresponding LCD element;  
similarly, a logic 0 indicates the off-state.  
The display RAM bit map, Figure 12, shows the rows 0 to 3 which correspond with the  
backplane outputs BP0 to BP3, and the columns 0 to 39 which correspond with the  
segment outputs S0 to S39. In multiplexed LCD applications the segment data of the first,  
second, third and fourth row of the display RAM are time-multiplexed with BP0, BP1, BP2,  
and BP3 respectively.  
display RAM addresses (columns)/segment outputs (S)  
0
1
2
3
4
35 36 37 38 39  
0
1
2
3
display RAM bits  
(rows)/  
backplane outputs  
(BP)  
mbe525  
The display RAM bitmap shows the direct relationship between the display RAM column and the  
segment outputs; and between the bits in a RAM row and the backplane outputs.  
Fig 12. Display RAM bit map  
When display data is transmitted to the PCF8576D, the received display bytes are stored  
in the display RAM in accordance with the selected LCD drive mode. The data is stored as  
it arrives and depending on the current multiplex drive mode the bits are stored singularly,  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
18 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
in pairs, triples, or quadruples. To illustrate the filling order, an example of a 7-segment  
display showing all drive modes is given in Figure 13; the RAM filling organization  
depicted applies equally to other LCD types.  
The following applies to Figure 13:  
In static drive mode the eight transmitted data bits are placed into row 0 as one byte.  
In 1:2 multiplex drive mode the eight transmitted data bits are placed in pairs into  
row 0 and 1 as two successive 4-bit RAM words.  
In 1:3 multiplex drive mode the eight bits are placed in triples into row 0, 1, and 2 as  
three successive 3-bit RAM words, with bit 3 of the third address left unchanged. It is  
not recommended to use this bit in a display because of the difficult addressing. This  
last bit may, if necessary, be controlled by an additional transfer to this address, but  
care should be taken to avoid overwriting adjacent data because always full bytes are  
transmitted (see Section 7.10.3).  
In 1:4 multiplex drive mode, the eight transmitted data bits are placed in quadruples  
into row 0, 1, 2, and 3 as two successive 4-bit RAM words.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
19 of 57  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
columns  
display RAM address/segment outputs (s)  
byte1  
S
S
S
S
S
a
n+2  
n+3  
n+4  
n+5  
n+6  
b
BP0  
n
n + 1 n + 2 n + 3 n + 4 n + 5 n + 6 n + 7  
S
f
n+1  
rows  
static  
display RAM  
rows/backplane  
outputs (BP)  
MSB  
LSB  
g
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
x
S
S
n
x
x
x
e
n+7  
c
b
a
f
g
e
d
DP  
c
x
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte1 byte2  
BP0  
a
S
S
n
1:2  
b
n
n + 1 n + 2 n + 3  
f
n+1  
rows  
MSB  
LSB  
DP  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
b
x
x
f
e
c
x
x
d
DP  
x
multiplex  
g
x
x
BP1  
a
b
f
g
e c d  
e
S
S
n+2  
n+3  
c
d
DP  
x
columns  
display RAM address/segment outputs (s)  
BP0  
BP1  
byte1  
byte2  
byte3  
S
S
n+1  
n+2  
a
1:3  
b
n
n + 1 n + 2  
S
f
n
rows  
MSB  
LSB  
e
display RAM  
rows/backplane  
outputs (BP)  
0
1
2
3
b
DP  
c
a
d
g
x
f
g
multiplex  
b
DP  
c
a
d
g
f
e
x
x
BP2  
e
c
d
DP  
x
columns  
display RAM address/segment outputs (s)  
byte2 byte3 byte4  
byte1  
byte5  
a
S
S
n
1:4  
b
BP2  
BP3  
n
n + 1  
BP0  
BP1  
f
rows  
display RAM  
rows/backplane  
outputs (BP)  
g
0
1
2
3
a
c
f
MSB  
LSB  
d
multiplex  
e
g
d
e
c
b
a
c
b
DP  
f
e
g
d
DP  
DP  
n+1  
001aaj646  
x = data bit unchanged.  
Fig 13. Relationship between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.10.1 Data pointer  
The addressing mechanism for the display RAM is realized using the data pointer. This  
allows the loading of an individual display data byte, or a series of display data bytes, into  
any location of the display RAM. The sequence commences with the initialization of the  
data pointer by the load-data-pointer command (see Table 13). Following this command,  
an arriving data byte is stored at the display RAM address indicated by the data pointer.  
The filling order is shown in Figure 13. After each byte is stored, the content of the data  
pointer is automatically incremented by a value dependent on the selected LCD drive  
mode:  
In static drive mode by eight.  
In 1:2 multiplex drive mode by four.  
In 1:3 multiplex drive mode by three.  
In 1:4 multiplex drive mode by two.  
If an I2C-bus data access terminates early then the state of the data pointer is unknown.  
Consequently, the data pointer must be rewritten prior to further RAM accesses.  
7.10.2 Subaddress counter  
The storage of display data is determined by the contents of the subaddress counter.  
Storage is allowed only when the content of the subaddress counter match with the  
hardware subaddress applied to A0, A1, and A2. The subaddress counter value is defined  
by the device-select command (see Table 14). If the content of the subaddress counter  
and the hardware subaddress do not match then data storage is inhibited but the data  
pointer is incremented as if data storage had taken place. The subaddress counter is also  
incremented when the data pointer overflows.  
The storage arrangements described lead to extremely efficient data loading in cascaded  
applications. When a series of display bytes are sent to the display RAM, automatic  
wrap-over to the next PCF8576D occurs when the last RAM address is exceeded.  
Subaddressing across device boundaries is successful even if the change to the next  
device in the cascade occurs within a transmitted character.  
The hardware subaddress must not be changed while the device is being accessed on the  
I2C-bus interface.  
7.10.3 RAM writing in 1:3 multiplex drive mode  
In 1:3 multiplex drive mode, the RAM is written as shown in Table 7 (see Figure 13 as  
well).  
Table 7.  
Standard RAM filling in 1:3 multiplex drive mode  
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are not connected to any elements on the display.  
Display RAM  
bits (rows)/  
backplane  
Display RAM addresses (columns)/segment outputs (Sn)  
0
1
2
3
4
5
6
7
8
9
:
outputs (BPn)  
0
1
2
3
a7  
a6  
a5  
-
a4  
a3  
a2  
-
a1  
a0  
-
b7  
b6  
b5  
-
b4  
b3  
b2  
-
b1  
b0  
-
c7  
c6  
c5  
-
c4  
c3  
c2  
-
c1  
c0  
-
d7  
d6  
d5  
-
:
:
:
:
-
-
-
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
21 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
If the bit at position BP2/S2 would be written by a second byte transmitted, then the  
mapping of the segment bits would change as illustrated in Table 8.  
Table 8.  
Entire RAM filling by rewriting in 1:3 multiplex drive mode  
Assumption: BP2/S2, BP2/S5, BP2/S8 etc. are connected to elements on the display.  
Display RAM  
bits (rows)/  
backplane  
Display RAM addresses (columns)/segment outputs (Sn)  
0
1
2
3
4
5
6
7
8
9
:
outputs (BPn)  
0
1
2
3
a7  
a6  
a5  
-
a4  
a3  
a2  
-
a1/b7 b4  
a0/b6 b3  
b1/c7 c4  
b0/c6 c3  
c1/d7 d4  
c0/d6 d3  
d1/e7 e4  
d0/e6 e3  
:
:
:
:
b5  
-
b2  
-
c5  
-
c2  
-
d5  
-
d2  
-
e5  
-
e2  
-
In the case described in Table 8 the RAM has to be written entirely and BP2/S2, BP2/S5,  
BP2/S8 etc. have to be connected to elements on the display. This can be achieved by a  
combination of writing and rewriting the RAM like follows:  
In the first write to the RAM, bits a7 to a0 are written.  
In the second write, bits b7 to b0 are written, overwriting bits a1 and a0 with bits b7  
and b6.  
In the third write, bits c7 to c0 are written, overwriting bits b1 and b0 with bits c7 and  
c6.  
Depending on the method of writing to the RAM (standard or entire filling by rewriting),  
some elements remain unused or can be used, but it has to be considered in the module  
layout process as well as in the driver software design.  
7.10.4 Writing over the RAM address boundary  
In all multiplex drive modes, depending on the setting of the data pointer, it is possible to  
fill the RAM over the RAM address boundary. If the PCF8576D is part of a cascade the  
additional bits fall into the next device that also generates the acknowledge signal. If the  
PCF8576D is a single device or the last device in a cascade the additional bits will be  
discarded and no acknowledge signal will be generated.  
7.10.5 Output bank selector  
The output bank selector (see Table 15) selects one of the four rows per display RAM  
address for transfer to the display register. The actual row selected depends on the  
selected LCD drive mode in operation and on the instant in the multiplex sequence.  
In 1:4 multiplex mode, all RAM addresses of row 0 are selected, these are followed by  
the contents of row 1, 2, and then 3  
In 1:3 multiplex mode, rows 0, 1, and 2 are selected sequentially  
In 1:2 multiplex mode, rows 0 and 1 are selected  
In static mode, row 0 is selected  
The PCF8576D includes a RAM bank switching feature in the static and 1:2 multiplex  
drive modes. In the static drive mode, the bank-select command may request the contents  
of row 2 to be selected for display instead of the contents of row 0. In the 1:2 multiplex  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
22 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
mode, the contents of rows 2 and 3 may be selected instead of rows 0 and 1. This gives  
the provision for preparing display information in an alternative bank and to be able to  
switch to it once it is assembled.  
7.10.6 Input bank selector  
The input bank selector loads display data into the display RAM in accordance with the  
selected LCD drive configuration. Display data can be loaded in row 2 in static drive mode  
or in rows 2 and 3 in 1:2 multiplex drive mode by using the bank-select command (see  
Table 15). The input bank selector functions independently to the output bank selector.  
7.11 Blinking  
The display blinking capabilities of the PCF8576D are very versatile. The whole display  
can blink at frequencies selected by the blink-select command (see Table 16). The blink  
frequencies are derived from the clock frequency. The ratio between the clock and blink  
frequencies depends on the blink mode selected (see Table 16).  
An additional feature is for an arbitrary selection of LCD elements to blink. This applies to  
the static and 1:2 multiplex drive modes and can be implemented without any  
communication overheads. By means of the output bank selector, the displayed RAM  
banks are exchanged with alternate RAM banks at the blink frequency. This mode can  
also be specified by the blink-select command.  
In the 1:3 and 1:4 multiplex modes, where no alternative RAM bank is available, groups of  
LCD elements can blink by selectively changing the display RAM data at fixed time  
intervals.  
The entire display can blink at a frequency other than the nominal blink frequency. This  
can be effectively performed by resetting and setting the display enable bit E at the  
required rate using the mode-set command (see Table 12).  
Table 9.  
Blinking frequencies  
Blink mode  
Normal operating mode ratio  
Nominal blink frequency[1]  
off  
1
-
blinking off  
2 Hz  
fclk  
---------  
768  
2
3
1 Hz  
fclk  
------------  
1536  
0.5 Hz  
fclk  
------------  
3072  
[1] Blink modes 1, 2 and 3 and the nominal blink frequencies 0.5 Hz, 1 Hz and 2 Hz correspond to an oscillator  
frequency (fclk) of 1536 Hz (see Section 12).  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
23 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
7.12 Command decoder  
The command decoder identifies command bytes that arrive on the I2C-bus. The  
commands available to the PCF8576D are defined in Table 10.  
Table 10. Definition of PCF8576D commands  
Command  
Bit  
Operation code  
Reference  
7
6
1
0
1
1
1
5
4
3
2
1
0
[1]  
mode-set  
C
C
C
C
C
0
-
E
B
M[1:0]  
Table 12  
Table 13  
Table 14  
Table 15  
Table 16  
load-data-pointer  
device-select  
bank-select  
blink-select  
P[5:0]  
1
1
1
0
1
1
0
1
0
A[2:0]  
0
I
O
AB  
BF[1:0]  
[1] Not used.  
All available commands carry a continuation bit C in their most significant bit position as  
shown in Figure 19. When this bit is set logic 1, it indicates that the next byte of the  
transfer to arrive will also represent a command. If this bit is set logic 0, it indicates that  
the command byte is the last in the transfer. Further bytes will be regarded as display data  
(see Table 11).  
Table 11. C bit description  
Bit  
Symbol Value  
Description  
continue bit  
7
C
0
last control byte in the transfer; next byte will be regarded  
as display data  
1
control bytes continue; next byte will be a command too  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
24 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 12. Mode-set command bit description  
Bit  
7
Symbol Value  
Description  
C
-
0, 1  
10  
-
see Table 11  
6, 5  
4
fixed value  
-
unused  
3
E
display status[1]  
disabled (blank)[3]  
enabled  
0[2]  
1
2
B
LCD bias configuration[4]  
13 bias  
12 bias  
0[2]  
1
1 to 0  
M[1:0]  
LCD drive mode selection  
static; BP0  
01  
10  
1:2 multiplex; BP0, BP1  
1:3 multiplex; BP0, BP1, BP2  
1:4 multiplex; BP0, BP1, BP2, BP3  
11  
00[2]  
[1] The possibility to disable the display allows implementation of blinking under external control.  
[2] Default value.  
[3] The display is disabled by setting all backplane and segment outputs to VLCD  
.
[4] Not applicable for static drive mode.  
Table 13. Load-data-pointer command bit description  
See Section 7.10.1.  
Bit  
7
Symbol Value  
Description  
see Table 11  
fixed value  
C
0, 1  
0
6
-
5 to 0  
P[5:0]  
000000[1] to 6 bit binary value, 0 to 39; transferred to the data pointer to  
100111 define one of forty display RAM addresses  
[1] Default value.  
Table 14. Device-select command bit description  
See Section 7.10.2.  
Bit  
Symbol Value  
Description  
see Table 11  
fixed value  
7
C
0, 1  
6 to 3  
2 to 0  
-
1100  
A[2:0]  
000[1] to 111 3 bit binary value, 0 to 7; transferred to the subaddress  
counter to define one of eight hardware subaddresses  
[1] Default value.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
25 of 57  
 
 
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 15. Bank-select command bit description  
See Section 7.10.5 and Section 7.10.6.  
Bit  
Symbol Value  
Description  
Static  
1:2 multiplex[1]  
7
C
-
0, 1  
see Table 11  
fixed value  
6 to 2  
1
11110  
I
input bank selection; storage of arriving display data  
0[2]  
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
0
O
output bank selection; retrieval of LCD display data  
0[2]  
1
RAM row 0  
RAM row 2  
RAM rows 0 and 1  
RAM rows 2 and 3  
[1] The bank-select command has no effect in 1:3 and 1:4 multiplex drive modes.  
[2] Default value.  
Table 16. Blink-select command bit description  
See Section 7.11.  
Bit  
7
Symbol Value  
Description  
C
0, 1  
see Table 11  
6 to 3  
2
-
1110  
fixed value  
AB  
blink mode selection  
0[2]  
1
normal blinking[1]  
alternate RAM bank blinking[3]  
1 to 0  
BF[1:0]  
blink frequency selection  
00[2]  
01  
off  
1
10  
2
11  
3
[1] Normal blinking is assumed when the LCD multiplex drive modes 1:3 or 1:4 are selected.  
[2] Default value.  
[3] Alternate RAM bank blinking does not apply in 1:3 and 1:4 multiplex drive modes.  
7.13 Display controller  
The display controller executes the commands identified by the command decoder. It  
contains the device’s status registers and coordinates their effects. The display controller  
is also responsible for loading display data into the display RAM in the correct filling order.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
26 of 57  
 
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8. Characteristics of the I2C-bus  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines must  
be connected to a positive supply via a pull-up resistor when connected to the output  
stages of a device. Data transfer may be initiated only when the bus is not busy.  
8.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
will be interpreted as a control signal (see Figure 14).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mba607  
Fig 14. Bit transfer  
8.1.1 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy.  
A HIGH-to-LOW transition of the data line while the clock is HIGH is defined as the START  
condition - S.  
A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP  
condition - P.  
The START and STOP conditions are illustrated in Figure 15.  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 15. Definition of START and STOP conditions  
8.2 System configuration  
A device generating a message is a transmitter, a device receiving a message is the  
receiver. The device that controls the message is the master and the devices which are  
controlled by the master are the slaves. The system configuration is shown in Figure 16.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
27 of 57  
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
MASTER  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
mga807  
Fig 16. System configuration  
8.3 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge after the  
reception of each byte.  
A master receiver must generate an acknowledge after the reception of each byte that  
has been clocked out of the slave transmitter.  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the  
acknowledge related clock pulse (set-up and hold times must be taken into  
consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge on the last byte that has been clocked out of the slave. In this event, the  
transmitter must leave the data line HIGH to enable the master to generate a STOP  
condition.  
Acknowledgement on the I2C-bus is illustrated in Figure 17.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 17. Acknowledgement of the I2C-bus  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
28 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
8.4 I2C-bus controller  
The PCF8576D acts as an I2C-bus slave receiver. It does not initiate I2C-bus transfers or  
transmit data to an I2C-bus master receiver. The only data output from the PCF8576D are  
the acknowledge signals of the selected devices. Device selection depends on the  
I2C-bus slave address, on the transferred command data and on the hardware  
subaddress.  
In single device applications, the hardware subaddress inputs A0, A1, and A2 are  
normally tied to VSS which defines the hardware subaddress 0. In multiple device  
applications A0, A1, and A2 are tied to VSS or VDD using a binary coding scheme, so that  
no two devices with a common I2C-bus slave address have the same hardware  
subaddress.  
8.5 Input filters  
To enhance noise immunity in electrically adverse environments, RC low-pass filters are  
provided on the SDA and SCL lines.  
8.6 I2C-bus protocol  
Two I2C-bus slave addresses (0111 000 and 0111 001) are used to address the  
PCF8576D. The entire I2C-bus slave address byte is shown in Table 17.  
Table 17. I2C slave address byte  
Slave address  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
0
1
1
1
0
0
SA0  
The PCF8576D is a write-only device and will not respond to a read access, therefore bit  
0 should always be logic 0. Bit 1 of the slave address byte that a PCF8576D will respond  
to, is defined by the level tied to its SA0 input (VSS for logic 0 and VDD for logic 1).  
Having two reserved slave addresses allows the following on the same I2C-bus:  
Up to 16 PCF8576D for very large LCD applications  
The use of two types of LCD multiplex drive  
The I2C-bus protocol is shown in Figure 18. The sequence is initiated with a START  
condition (S) from the I2C-bus master which is followed by one of two possible PCF8576D  
slave addresses available. All PCF8576Ds whose SA0 inputs correspond to bit 0 of the  
slave address respond by asserting an acknowledge in parallel. This I2C-bus transfer is  
ignored by all PCF8576Ds whose SA0 inputs are set to the alternative level.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
29 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
acknowledge  
by A0, A1 and A2  
selected  
acknowledge by  
all addressed  
PCF8576Ds  
R/W  
0
PCF8576D only  
slave address  
S
A
0
0
1
1
1
0
0
A
C
COMMAND  
A
DISPLAY DATA  
A
P
S
1 byte  
n 1 byte(s)  
n 0 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
mdb078  
Fig 18. I2C-bus protocol  
After an acknowledgement, one or more command bytes follow, that define the status of  
each addressed PCF8576D.  
The last command byte sent is identified by resetting its most significant bit, continuation  
bit C, (see Figure 19). The command bytes are also acknowledged by all addressed  
PCF8576D on the bus.  
MSB  
LSB  
C
REST OF OPCODE  
msa833  
Fig 19. Format of command byte  
After the last command byte, one or more display data bytes may follow. Display data  
bytes are stored in the display RAM at the address specified by the data pointer and the  
subaddress counter. Both data pointer and subaddress counter are automatically updated  
and the data directed to the intended PCF8576D device.  
An acknowledgement after each byte is asserted only by the PCF8576Ds that are  
addressed via address lines A0, A1, and A2. After the last display byte, the I2C-bus  
master asserts a STOP condition (P). Alternately a START may be asserted to restart an  
I2C-bus access.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
30 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
9. Internal circuitry  
V
V
DD  
DD  
SA0  
CLK  
V
V
V
SS  
DD  
SS  
SCL  
V
V
SS  
DD  
V
SS  
OSC  
V
V
SS  
DD  
SDA  
SYNC  
V
V
V
SS  
SS  
DD  
A0, A1 A2  
V
V
SS  
LCD  
BP0, BP1,  
BP2, BP3  
V
V
SS  
V
LCD  
LCD  
S0 to S39  
V
V
SS  
SS  
mdb076  
Fig 20. Device protection circuits  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
31 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
10. Limiting values  
CAUTION  
Static voltages across the liquid crystal display can build up when the LCD supply voltage  
(VLCD) is on while the IC supply voltage (VDD) is off, or vice versa. This may cause unwanted  
display artifacts. To avoid such artifacts, VLCD and VDD must be applied or removed together.  
Table 18. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
+6.5  
+7.5  
+6.5  
Unit  
V
VDD  
VLCD  
VI  
supply voltage  
LCD supply voltage  
input voltage  
V
on each of the pins CLK,  
SDA, SCL, SYNC, SA0,  
OSC, A0 to A2  
V
VO  
output voltage  
on each of the pins S0 to  
S39, BP0 to BP3  
0.5  
+7.5  
V
II  
input current  
output current  
supply current  
10  
10  
50  
50  
50  
-
+10  
mA  
mA  
mA  
mA  
mA  
mW  
mW  
V
IO  
IDD  
+10  
+50  
IDD(LCD) LCD supply current  
+50  
ISS  
ground supply current  
total power dissipation  
output power  
+50  
Ptot  
Po  
400  
-
100  
[1]  
[2]  
[3]  
[4]  
[5]  
VESD  
electrostatic discharge  
voltage  
HBM  
MM  
-
5000  
200  
1500  
200  
-
V
CDM  
-
V
Ilu  
latch-up current  
-
mA  
C  
Tstg  
Tamb  
storage temperature  
ambient temperature  
65  
40  
+150  
+85  
operating device  
C  
[1] Pass level; Human Body Model (HBM) according to Ref. 8 “JESD22-A114”.  
[2] Pass level; Machine Model (MM), according to Ref. 9 “JESD22-A115”.  
[3] Pass level; Charged-Device Model (CDM), according to Ref. 10 “JESD22-C101”.  
[4] Pass level; latch-up testing according to Ref. 11 “JESD78” at maximum ambient temperature (Tamb(max)).  
[5] According to the store and transport requirements (see Ref. 14 “UM10569”) the devices have to be stored  
at a temperature of +8 C to +45 C and a humidity of 25 % to 75 %.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
32 of 57  
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
11. Static characteristics  
Table 19. Static characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
VDD  
supply voltage  
1.8  
2.5  
-
-
5.5  
6.5  
7
V
[1]  
[2]  
VLCD  
IDD  
LCD supply voltage  
supply current  
-
V
fclk(ext) = 1536 Hz  
3.5  
2.7  
A  
A  
VDD = 3.0 V;  
-
-
Tamb = 25 C  
[2]  
IDD(LCD)  
LCD supply current  
fclk(ext) = 1536 Hz  
-
-
18  
13  
25  
-
A  
A  
VDD(LCD) = 3.0 V;  
Tamb = 25 C  
Logic[3]  
VP(POR)  
VIL  
power-on reset supply voltage  
LOW-level input voltage  
1.0  
1.3  
-
1.6  
V
V
on pins CLK, SYNC,  
OSC, A0 to A2, SA0,  
SCL, SDA  
VSS  
0.3VDD  
[4][5]  
VIH  
HIGH-level input voltage  
LOW-level output current  
on pins CLK, SYNC,  
OSC, A0 to A2, SA0,  
SCL, SDA  
0.7VDD  
-
VDD  
V
IOL  
output sink current;  
VOL = 0.4 V; VDD = 5 V  
on pins CLK and SYNC  
on pin SDA  
1
3
1
-
-
-
-
-
-
mA  
mA  
mA  
IOH(CLK)  
IL  
HIGH-level output current on pin CLK output source current;  
VOH = 4.6 V; VDD = 5 V  
leakage current  
VI = VDD or VSS  
;
1  
-
+1  
A  
on pins CLK, SCL, SDA,  
A0 to A2 and SA0  
IL(OSC)  
leakage current on pin OSC  
input capacitance  
VI = VDD  
1  
-
-
+1  
7
A  
[6]  
[7]  
CI  
-
pF  
LCD outputs  
VO  
output voltage variation  
on pins BP0 to BP3 and  
S0 to S39  
100  
-
+100  
mV  
RO  
output resistance  
VLCD = 5 V  
on pins BP0 to BP3  
on pins S0 to S39  
-
-
1.5  
6.0  
-
-
k  
k  
[1] VLCD > 3 V for 13 bias.  
[2] LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50 % duty factor; I2C-bus inactive.  
[3] The I2C-bus interface of PCF8576D is 5 V tolerant.  
[4] When tested, I2C pins SCL and SDA have no diode to VDD and may be driven to the VI limiting values given in Table 18.  
[5] Propagation delay of driver between clock (CLK) and LCD driving signals.  
[6] Periodically sampled, not 100 % tested.  
[7] Outputs measured one at a time.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
33 of 57  
 
 
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
12. Dynamic characteristics  
Table 20. Dynamic characteristics  
VDD = 1.8 V to 5.5 V; VSS = 0 V; VLCD = 2.5 V to 6.5 V; Tamb = 40 C to +85 C; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock  
fclk(int)  
fclk(ext)  
tclk(H)  
tclk(L)  
[1]  
internal clock frequency  
external clock frequency  
HIGH-level clock time  
LOW-level clock time  
1440  
960  
60  
1850  
2640  
Hz  
Hz  
s  
s  
-
-
-
2640  
-
-
60  
Synchronization  
tPD(SYNC_N) SYNC propagation delay  
-
30  
-
-
ns  
s  
s  
tSYNC_NL  
tPD(drv)  
I2C-bus[3]  
Pin SCL  
fSCL  
SYNC LOW time  
1
-
-
[2]  
driver propagation delay  
VLCD = 5 V  
-
30  
SCL clock frequency  
-
-
-
-
400  
kHz  
s  
tLOW  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1.3  
0.6  
-
-
tHIGH  
s  
Pin SDA  
tSU;DAT  
tHD;DAT  
data set-up time  
data hold time  
100  
0
-
-
-
-
ns  
ns  
Pins SCL and SDA  
tBUF  
bus free time between a STOP and  
1.3  
-
-
s  
START condition  
tSU;STO  
tHD;STA  
tSU;STA  
set-up time for STOP condition  
hold time (repeated) START condition  
0.6  
0.6  
0.6  
-
-
-
-
-
-
s  
s  
s  
set-up time for a repeated START  
condition  
tr  
rise time of both SDA and SCL signals fSCL = 400 kHz  
fSCL < 125 kHz  
-
-
-
-
-
-
-
-
-
-
0.3  
1.0  
0.3  
400  
50  
s  
s  
s  
pF  
ns  
tf  
fall time of both SDA and SCL signals  
capacitive load for each bus line  
Cb  
tw(spike)  
spike pulse width  
on the I2C-bus  
[1] Typical output duty factor: 50 % measured at the CLK output pin.  
[2] Not tested in production.  
[3] All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an  
input voltage swing of VSS to VDD  
.
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
34 of 57  
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1 / f  
CLK  
t
t
clk(L)  
clk(H)  
0.7 V  
0.3 V  
DD  
DD  
CLK  
0.7 V  
0.3 V  
DD  
DD  
SYNC  
t
PD(SYNC_N)  
t
SYNC_NL  
0.5 V  
BP0 to BP3,  
and S0 to S39  
(V  
= 5 V)  
DD  
0.5 V  
t
001aai163  
PD(drv)  
Fig 21. Driver timing waveforms  
SDA  
t
t
t
f
BUF  
LOW  
SCL  
SDA  
t
HD;STA  
t
t
t
SU;DAT  
r
HD;DAT  
t
HIGH  
t
SU;STA  
t
SU;STO  
mga728  
Fig 22. I2C-bus timing waveforms  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
35 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
13. Application information  
13.1 Cascaded operation  
In large display configurations, up to 16 PCF8576Ds can be differentiated on the same  
I2C-bus by using the 3-bit hardware subaddresses (A0, A1 and A2) and the  
programmable I2C-bus slave address (SA0).  
Table 21. Addressing cascaded PCF8576D  
Cluster  
Bit SA0  
Pin A2  
Pin A1  
Pin A0  
Device  
1
0
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
2
3
4
5
6
7
2
1
8
9
10  
11  
12  
13  
14  
15  
PCF8576Ds connected in cascade are synchronized to allow the backplane signals from  
only one device in the cascade to be shared. This arrangement is cost-effective in large  
LCD applications since the backplane outputs of only one device need to be  
through-plated to the backplane electrodes of the display. The other cascaded  
PCF8576Ds contribute additional segment outputs but their backplane outputs are left  
open-circuit (see Figure 23).  
All PCF8576Ds connected in cascade are correctly synchronized by the SYNC signal.  
This synchronization is guaranteed after the power-on reset. The only time that SYNC is  
likely to be needed is if synchronization is lost accidentally, for example, by noise in  
adverse electrical environments, or if the LCD multiplex drive mode is changed in an  
application using several cascaded PCF8576Ds, as the drive mode cannot be changed  
on all of the cascaded devices simultaneously. SYNC can be either an input or an output  
signal; a SYNC output is implemented as an open-drain driver with an internal pull-up  
resistor. The PCF8576D asserts SYNC at the start of its last active backplane signal and  
monitors the SYNC line at all other times. If cascade synchronization is lost, it is restored  
by the first PCF8576D to assert SYNC. The timing relationship between the backplane  
waveforms and the SYNC signal for each LCD drive mode is shown in Figure 24.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
36 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
The contact resistance between the SYNC on each cascaded device must be controlled.  
If the resistance is too high, the device is not able to synchronize properly; this is  
particularly applicable to chip-on-glass applications. The maximum SYNC contact  
resistance allowed for the number of devices in cascade is given in Table 22.  
Table 22. SYNC contact resistance  
Number of devices  
Maximum contact resistance  
2
6 k  
3 to 5  
6 to 10  
10 to 16  
2.2 k  
1.2 k  
700   
The PCF8576D can be cascaded with the PCF8562. This allows optimal drive selection  
for a given number of pixels to display. Figure 21 and Figure 22 show the timing of the  
synchronization signals.  
V
V
LCD  
DD  
6
13  
SDA  
SCL  
1, 58, 59  
40 segment drives  
2, 3  
4
LCD PANEL  
SYNC  
CLK  
PCF8576DU  
(up to 2560  
elements)  
5
7
OSC  
BP0 to BP3  
8
9
10 11 12  
(open-circuit)  
A0 A1 A2 SA0 V  
SS  
V
V
LCD  
DD  
t
r
R ≤  
V
V
2C  
B
DD  
LCD  
6
13  
SDA  
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
1, 58, 59  
40 segment drives  
SCL  
SYNC  
CLK  
2, 3  
4
PCF8576DU  
4 backplanes  
BP0 to BP3  
CONTROLLER  
5
7
OSC  
mdb077  
8
9
10 11 12  
A0 A1 A2 SA0 V  
SS  
V
SS  
Fig 23. Cascaded PCF8576D configuration  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
37 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
1
T
=
fr  
f
fr  
BP0  
SYNC  
(a) static drive mode.  
BP0  
(1/2 bias)  
BP0  
(1/3 bias)  
SYNC  
(b) 1:2 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(c) 1:3 multiplex drive mode.  
BP0  
(1/3 bias)  
SYNC  
(d) 1:4 multiplex drive mode.  
mgl755  
Fig 24. Synchronization of the cascade for the various PCF8576D drive modes  
14. Test information  
The following quality information corresponds with the product type: PCF8576DT/S400/2  
14.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 - Failure mechanism based stress test qualification for integrated  
circuits, and is suitable for use in automotive applications.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
38 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
15. Package outline  
TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm  
SOT364-1  
E
D
A
X
c
H
v
M
A
y
E
Z
56  
29  
Q
A
2
(A )  
3
A
A
1
pin 1 index  
θ
L
p
L
detail X  
1
28  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
E
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
max.  
8o  
0o  
0.15  
0.05  
1.05  
0.85  
0.28  
0.17  
0.2  
0.1  
14.1  
13.9  
6.2  
6.0  
8.3  
7.9  
0.8  
0.4  
0.50  
0.35  
0.5  
0.1  
mm  
1.2  
0.5  
1
0.25  
0.25  
0.08  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT364-1  
MO-153  
Fig 25. Package outline SOT364-1 (TSSOP56)  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
39 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
16. Bare die outline  
Wire bond die; 59 bonding pads  
PCF8576DU/DA  
D
A
(1)  
35  
22  
21  
e
36  
x
E
0
0
y
X
9
51  
C2 52  
59 1  
8
C1  
P
P
3
4
P
P
2
1
detail X  
0
0.5  
1 mm  
scale  
Notes  
1. Marking code: PC8576D-2  
pcf8576du_da_do  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
08-12-10  
10-12-20  
PCF8576DU/DA  
Fig 26. Bare die outline PCF8576DU/DA (for dimensions see Table 23)  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
40 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Bare die; 59 bumps  
PCF8576DU/2DA  
D
(1)  
35  
22  
Y
21  
e
36  
x
E
0
0
y
51  
9
C2 52  
59 1  
8
C1  
X
L
A
A
b
2
detail X  
A
1
detail Y  
0
0.5  
1 mm  
scale  
Notes  
1. Marking code: PC8576D-2  
pcf8576du_2da_do  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
JEITA  
08-12-10  
10-12-20  
PCF8576DU/2DA  
Fig 27. Bare die outline PCF8576DU/2DA (for dimensions see Table 24)  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
41 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 23. Dimensions of PCF8576DU/DA  
Original dimensions are in mm.  
[2]  
[3]  
[2]  
[3]  
Unit (mm)  
max  
A
D
-
E
-
e[1]  
P1  
P2  
P3  
P4  
-
-
-
-
-
-
nom  
0.38  
-
2.2  
-
2.0  
-
-
0.09  
-
0.08  
-
0.066  
-
0.056  
-
min  
0.072  
[1] Dimension not drawn to scale.  
[2] Pad size.  
[3] Passivation opening.  
Table 24. Dimensions of PCF8576DU/2DA  
Original dimensions are in mm.  
Unit (mm)  
max  
A
A1  
A2  
b
D
-
E
-
e[1]  
L
-
0.012  
0.015  
0.018  
-
-
-
-
nom  
0.40  
-
0.381  
-
0.052  
-
2.2  
-
2.0  
-
-
0.077  
-
min  
0.072  
[1] Dimension not drawn to scale.  
Table 25. Bonding pad location for PCF8576DU/x  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip (see Figure 3, Figure 26 and Figure 27).  
Symbol  
SDA  
SCL  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
Pad  
1
X (m)  
Y (m)  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
630.9  
513.9  
396.9  
221.4  
10.71  
Description  
34.38  
I2C-bus serial data input/output  
I2C-bus serial clock input  
2
109.53  
3
181.53  
4
365.58  
cascade synchronization input/output  
external clock input/output  
supply voltage  
5
469.08  
6
577.08  
7
740.88  
internal oscillator enable input  
subaddress inputs  
8
835.83  
A1  
9
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
1005.48  
A2  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
I2C-bus address input; bit 0  
ground supply voltage  
LCD supply voltage  
156.51  
232.74  
308.97  
385.2  
LCD backplane outputs  
493.2  
LCD segment outputs  
S1  
565.2  
S2  
637.2  
S3  
709.2  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
42 of 57  
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 25. Bonding pad location for PCF8576DU/x …continued  
All x/y coordinates represent the position of the center of each pad with respect to the center  
(x/y = 0) of the chip (see Figure 3, Figure 26 and Figure 27).  
Symbol  
S4  
Pad  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
X (m)  
Y (m)  
876.6  
Description  
347.22  
LCD segment outputs  
S5  
263.97  
876.6  
S6  
180.72  
876.6  
S7  
97.47  
876.6  
S8  
14.22  
876.6  
S9  
69.03  
876.6  
S10  
S11  
S12  
S13  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
SDA  
SDA  
152.28  
235.53  
318.78  
402.03  
485.28  
568.53  
651.78  
735.03  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
1005.5  
735.03  
663.03  
591.03  
519.03  
447.03  
375.03  
196.38  
106.38  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
625.59  
541.62  
458.19  
374.76  
291.33  
207.9  
124.47  
41.04  
42.39  
125.8  
209.3  
292.7  
376.1  
459.5  
543  
625.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
876.6  
I2C-bus serial data input/output  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
43 of 57  
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 26. Alignment marks  
All x/y coordinates represent the position of the center of each alignment mark with respect to the  
center (x/y = 0) of the chip (see Figure 3, Figure 26 and Figure 27).  
Symbol  
Location  
X (m)  
Dimension  
Y (m)  
870.3  
870.3  
Diameter (m)  
C1  
C2  
930.42  
72  
72  
829.98  
17. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
44 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
18. Packing information  
18.1 Tray information  
&
$
-
+
ꢁꢂꢁ ꢃꢂꢁ ꢄꢂꢁ  
ꢁꢂꢃ ꢃꢂꢃ  
ꢁꢂꢄ  
[ꢂꢁ  
%
$
$
.
)
(
ꢁꢂ\  
'
\
*
)
[
(
&
1
/
0
6(&7,21ꢀ$ꢁ$  
;
GHWDLOꢀ;  
'LPHQVLRQVꢀLQꢀPP  
DDDꢀꢁꢁꢂꢂꢃꢃ  
Fig 28. Tray details  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
45 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 27. Description of tray details  
Tray details are shown in Figure 28.  
Tray details  
Dimensions  
A
B
C
D
E
F
G
H
J
K
L
M
N
Unit  
mm  
3.6  
3.6  
2.36  
2.11  
50.8  
45.72 39.6  
5.6  
5.6  
39.6  
3.96  
2.18  
2.49  
Number of pockets  
x direction  
12  
y direction  
12  
PDUNLQJꢀFRGH  
DDDꢀꢁꢁꢃꢄꢅꢄ  
Fig 29. Tray alignment  
18.2 Carrier tape information  
4
A0  
K0  
pin 1 index  
W
B0  
P1  
direction of feed  
001aaj314  
Fig 30. Tape details  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
46 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Table 28. Carrier tape dimensions  
Symbol  
Description  
Value  
8.6  
Unit  
mm  
mm  
mm  
mm  
mm  
A0  
B0  
K0  
P1  
W
pocket width in x direction  
pocket width in y direction  
pocket height  
14.5  
1.8  
sprocket hole pitch  
tape width in y direction  
12  
24  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
47 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
19. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
19.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
19.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
19.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
48 of 57  
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
19.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 31) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 29 and 30  
Table 29. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 30. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 31.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
49 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 31. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
20. Abbreviations  
Table 31. Abbreviations  
Acronym  
CDM  
CMOS  
HBM  
ITO  
Description  
Charged-Device Model  
Complementary Metal-Oxide Semiconductor  
Human Body Model  
Indium Tin Oxide  
LCD  
Liquid Crystal Display  
Least Significant Bit  
Machine Model  
LSB  
MM  
MSB  
MSL  
PCB  
RAM  
RMS  
SCL  
Most Significant Bit  
Moisture Sensitivity Level  
Printed Circuit Board  
Random Access Memory  
Root Mean Square  
Serial CLock line  
SDA  
SMD  
Serial DAta line  
Surface Mount Device  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
50 of 57  
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
21. References  
[1] AN10170 Design guidelines for COG modules with NXP monochrome LCD  
drivers  
[2] AN10365 Surface mount reflow soldering description  
[3] AN10706 Handling bare die  
[4] AN10853 ESD and EMC sensitivity of IC  
[5] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[6] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[7] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[8] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[9] JESD22-A115 Electrostatic Discharge (ESD) Sensitivity Testing Machine Model  
(MM)  
[10] JESD22-C101 — Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[11] JESD78 IC Latch-Up Test  
[12] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[13] UM10204 I2C-bus specification and user manual  
[14] UM10569 Store and transport requirements  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
51 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
22. Revision history  
Table 32. Revision history  
Document ID  
PCF8576D v.14  
Modifications:  
Release date  
20130610  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8576D v.13  
Added improved IDD and IDD(LCD) values (Table 19)  
Added bump height tolerance  
Changed tray information (Section 18.1)  
PCF8576D v.13  
PCF8576D v.12  
PCF8576D v.11  
PCF8576D v.10  
PCF8576D_9  
PCF8576D_8  
PCF8576D_7  
PCF8576D_6  
PCF8576D_5  
PCF8576D_4  
PCF8576D_3  
PCF8576D_2  
PCF8576D_1  
20120510  
20120413  
20110627  
20110214  
20090825  
20090319  
20081218  
20081202  
20041222  
20041008  
20040617  
20030623  
20030401  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product data sheet  
Product specification  
Product specification  
Product specification  
Product specification  
Objective specification  
-
-
PCF8576D v.12  
PCF8576D v.11  
PCF8576D v.10  
PCF8576D_9  
PCF8576D_8  
PCF8576D_7  
PCF8576D_6  
PCF8576D_5  
PCF8576D_4  
PCF8576D_3  
PCF8576D_2  
PCF8576D_1  
-
-
-
-
-
-
-
-
-
-
-
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
52 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
23. Legal information  
23.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
23.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
23.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
53 of 57  
 
 
 
 
 
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
23.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
I2C-bus — logo is a trademark of NXP B.V.  
24. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
54 of 57  
 
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
25. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 4. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .6  
Table 5. Selection of possible display configurations . . . .7  
Table 6. Biasing characteristics . . . . . . . . . . . . . . . . . . . .9  
Table 7. Standard RAM filling in 1:3 multiplex drive  
mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 8. Entire RAM filling by rewriting in 1:3 multiplex  
drive mode . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 9. Blinking frequencies . . . . . . . . . . . . . . . . . . . . .23  
Table 10. Definition of PCF8576D commands . . . . . . . .24  
Table 11. C bit description . . . . . . . . . . . . . . . . . . . . . . . .24  
Table 12. Mode-set command bit description . . . . . . . . .25  
Table 13. Load-data-pointer command bit description . . .25  
Table 14. Device-select command bit description . . . . . .25  
Table 15. Bank-select command bit description . . . . . . .26  
Table 16. Blink-select command bit description . . . . . . . .26  
Table 17. I2C slave address byte . . . . . . . . . . . . . . . . . . .29  
Table 18. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .32  
Table 19. Static characteristics . . . . . . . . . . . . . . . . . . . .33  
Table 20. Dynamic characteristics . . . . . . . . . . . . . . . . . .34  
Table 21. Addressing cascaded PCF8576D . . . . . . . . . .36  
Table 22. SYNC contact resistance . . . . . . . . . . . . . . . . .37  
Table 23. Dimensions of PCF8576DU/DA . . . . . . . . . . . .42  
Table 24. Dimensions of PCF8576DU/2DA . . . . . . . . . . .42  
Table 25. Bonding pad location for PCF8576DU/x . . . . .42  
Table 26. Alignment marks. . . . . . . . . . . . . . . . . . . . . . . .44  
Table 27. Description of tray details . . . . . . . . . . . . . . . . .46  
Table 28. Carrier tape dimensions . . . . . . . . . . . . . . . . . .47  
Table 29. SnPb eutectic process (from J-STD-020D) . . .49  
Table 30. Lead-free process (from J-STD-020D) . . . . . .49  
Table 31. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Table 32. Revision history . . . . . . . . . . . . . . . . . . . . . . . .52  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
55 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
26. Figures  
Fig 1. Block diagram of PCF8576D . . . . . . . . . . . . . . . . .3  
Fig 2. Pinning diagram for PCF8576DT (TSSOP56) . . . .4  
Fig 3. Pinning diagram for PCF8576DU (bare die) . . . . .5  
Fig 4. Example of displays suitable for PCF8576D . . . . .7  
Fig 5. Typical system configuration . . . . . . . . . . . . . . . . .8  
Fig 6. Electro-optical characteristic: relative  
transmission curve of the liquid . . . . . . . . . . . . . .11  
Fig 7. Static drive mode waveforms. . . . . . . . . . . . . . . .12  
Fig 8. Waveforms for the 1:2 multiplex drive mode  
with 12 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13  
Fig 9. Waveforms for the 1:2 multiplex drive mode  
with 13 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Fig 10. Waveforms for the 1:3 multiplex drive mode  
with 13 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Fig 11. Waveforms for the 1:4 multiplex drive mode  
with 13 bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 12. Display RAM bit map . . . . . . . . . . . . . . . . . . . . . .18  
Fig 13. Relationship between LCD layout, drive mode,  
display RAM filling order and display data  
transmitted over the I2C-bus . . . . . . . . . . . . . . . .20  
Fig 14. Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Fig 15. Definition of START and STOP conditions. . . . . .27  
Fig 16. System configuration . . . . . . . . . . . . . . . . . . . . . .28  
Fig 17. Acknowledgement of the I2C-bus . . . . . . . . . . . .28  
Fig 18. I2C-bus protocol. . . . . . . . . . . . . . . . . . . . . . . . . .30  
Fig 19. Format of command byte. . . . . . . . . . . . . . . . . . .30  
Fig 20. Device protection circuits. . . . . . . . . . . . . . . . . . .31  
Fig 21. Driver timing waveforms . . . . . . . . . . . . . . . . . . .35  
Fig 22. I2C-bus timing waveforms . . . . . . . . . . . . . . . . . .35  
Fig 23. Cascaded PCF8576D configuration . . . . . . . . . .37  
Fig 24. Synchronization of the cascade for the various  
PCF8576D drive modes . . . . . . . . . . . . . . . . . . .38  
Fig 25. Package outline SOT364-1 (TSSOP56) . . . . . . .39  
Fig 26. Bare die outline PCF8576DU/DA (for dimensions  
see Table 23) . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Fig 27. Bare die outline PCF8576DU/2DA (for dimensions  
see Table 24) . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Fig 28. Tray details . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 29. Tray alignment . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Fig 30. Tape details . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Fig 31. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
PCF8576D  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2013. All rights reserved.  
Product data sheet  
Rev. 14 — 10 June 2013  
56 of 57  
 
PCF8576D  
NXP Semiconductors  
Universal LCD driver for low multiplex rates  
27. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
11  
Static characteristics . . . . . . . . . . . . . . . . . . . 33  
Dynamic characteristics. . . . . . . . . . . . . . . . . 34  
Application information . . . . . . . . . . . . . . . . . 36  
Cascaded operation. . . . . . . . . . . . . . . . . . . . 36  
Test information . . . . . . . . . . . . . . . . . . . . . . . 38  
Quality information. . . . . . . . . . . . . . . . . . . . . 38  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 39  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 40  
Handling information . . . . . . . . . . . . . . . . . . . 44  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
12  
3
3.1  
4
13  
13.1  
14  
14.1  
15  
5
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6  
16  
17  
7
7.1  
7.2  
7.3  
7.3.1  
7.4  
7.4.1  
7.4.2  
7.4.3  
7.4.4  
7.5  
7.5.1  
7.5.2  
7.6  
Functional description . . . . . . . . . . . . . . . . . . . 7  
Power-On Reset (POR) . . . . . . . . . . . . . . . . . . 8  
LCD bias generator . . . . . . . . . . . . . . . . . . . . . 8  
LCD voltage selector . . . . . . . . . . . . . . . . . . . . 8  
Electro-optical performance . . . . . . . . . . . . . . 10  
LCD drive mode waveforms . . . . . . . . . . . . . . 12  
Static drive mode . . . . . . . . . . . . . . . . . . . . . . 12  
1:2 Multiplex drive mode. . . . . . . . . . . . . . . . . 13  
1:3 Multiplex drive mode. . . . . . . . . . . . . . . . . 15  
1:4 Multiplex drive mode. . . . . . . . . . . . . . . . . 16  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Internal clock . . . . . . . . . . . . . . . . . . . . . . . . . 17  
External clock . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Display register. . . . . . . . . . . . . . . . . . . . . . . . 17  
Segment outputs. . . . . . . . . . . . . . . . . . . . . . . 17  
Backplane outputs . . . . . . . . . . . . . . . . . . . . . 18  
Display RAM. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Data pointer . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Subaddress counter . . . . . . . . . . . . . . . . . . . . 21  
RAM writing in 1:3 multiplex drive mode. . . . . 21  
Writing over the RAM address boundary . . . . 22  
Output bank selector . . . . . . . . . . . . . . . . . . . 22  
Input bank selector . . . . . . . . . . . . . . . . . . . . . 23  
Blinking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Command decoder. . . . . . . . . . . . . . . . . . . . . 24  
Display controller . . . . . . . . . . . . . . . . . . . . . . 26  
18  
18.1  
18.2  
Packing information . . . . . . . . . . . . . . . . . . . . 45  
Tray information . . . . . . . . . . . . . . . . . . . . . . . 45  
Carrier tape information . . . . . . . . . . . . . . . . . 46  
19  
Soldering of SMD packages. . . . . . . . . . . . . . 48  
Introduction to soldering. . . . . . . . . . . . . . . . . 48  
Wave and reflow soldering. . . . . . . . . . . . . . . 48  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 48  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 49  
19.1  
19.2  
19.3  
19.4  
20  
21  
22  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 50  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 52  
23  
Legal information . . . . . . . . . . . . . . . . . . . . . . 53  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 53  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
23.1  
23.2  
23.3  
23.4  
7.7  
7.8  
7.9  
7.10  
7.10.1  
7.10.2  
7.10.3  
7.10.4  
7.10.5  
7.10.6  
7.11  
7.12  
7.13  
24  
25  
26  
27  
Contact information . . . . . . . . . . . . . . . . . . . . 54  
Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
8
Characteristics of the I2C-bus . . . . . . . . . . . . 27  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
START and STOP conditions . . . . . . . . . . . . . 27  
System configuration . . . . . . . . . . . . . . . . . . . 27  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 28  
I2C-bus controller . . . . . . . . . . . . . . . . . . . . . . 29  
Input filters . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 29  
8.1  
8.1.1  
8.2  
8.3  
8.4  
8.5  
8.6  
9
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 31  
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 32  
10  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2013.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 June 2013  
Document identifier: PCF8576D  
 

相关型号:

PCF8576DU/5DA/1,01

PCF8576D - Universal LCD driver for low multiplex rates DIE 59-Pin
NXP

PCF8576DU/DA

Universal LCD driver for low multiplex rates
NXP

PCF8576DU/DA/1,026

PCF8576D - Universal LCD driver for low multiplex rates DIE 59-Pin
NXP

PCF8576DU/DA/2

Universal LCD driver for low multiplex rates
NXP

PCF8576DU/DA/2,026

Universal LCD driver for low multiplex rates
NXP

PCF8576D_09

Universal LCD driver for low multiplex rates
NXP

PCF8576D_11

Universal LCD driver for low multiplex rates
NXP

PCF8576EUG

Universal 36 × 4 LCD segment driver
NXP

PCF8576T

Universal LCD driver for low multiplex rates
NXP

PCF8576T,118

PCF8576 - Universal LCD driver for low multiplex rates VSOP 56-Pin
NXP

PCF8576T-T

IC LIQUID CRYSTAL DISPLAY DRIVER, PDSO56, Display Driver
NXP

PCF8576T/1,118

PCF8576 - Universal LCD driver for low multiplex rates VSOP 56-Pin
NXP