PCF8576U-12 [NXP]

Universal LCD driver for low multiplex rates; 低复用率的通用LCD驱动器
PCF8576U-12
型号: PCF8576U-12
厂家: NXP    NXP
描述:

Universal LCD driver for low multiplex rates
低复用率的通用LCD驱动器

驱动器 CD
文件: 总44页 (文件大小:211K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8576  
Universal LCD driver for low  
multiplex rates  
Product specification  
2001 Oct 02  
Supersedes data of 1998 Feb 06  
File under Integrated Circuits, IC12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
CONTENTS  
8
LIMITING VALUES  
HANDLING  
9
1
2
3
4
5
6
FEATURES  
10  
11  
DC CHARACTERISTICS  
AC CHARACTERISTICS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
11.1  
11.2  
Typical supply current characteristics  
Typical characteristics of LCD outputs  
PINNING  
12  
APPLICATION INFORMATION  
Chip-on-glass cascadability in single plane  
BONDING PAD INFORMATION  
TRAY INFORMATION: PCF8576U  
TRAY INFORMATION: PCF8576U/2  
PACKAGE OUTLINES  
FUNCTIONAL DESCRIPTION  
12.1  
13  
6.1  
6.2  
6.3  
6.4  
Power-on reset  
LCD bias generator  
LCD voltage selector  
LCD drive mode waveforms  
Oscillator  
14  
15  
6.5  
16  
6.5.1  
6.5.2  
6.6  
Internal clock  
External clock  
Timing  
17  
SOLDERING  
17.1  
Introduction to soldering surface mount  
packages  
6.7  
Display latch  
6.8  
6.9  
Shift register  
17.2  
17.3  
17.4  
17.5  
Reflow soldering  
Wave soldering  
Manual soldering  
Suitability of surface mount IC packages for  
wave and reflow soldering methods  
Segment outputs  
Backplane outputs  
Display RAM  
6.10  
6.11  
6.12  
6.13  
6.14  
6.15  
6.16  
Data pointer  
Subaddress counter  
Output bank selector  
Input bank selector  
Blinker  
18  
19  
20  
21  
DATA SHEET STATUS  
DEFINITIONS  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
7
CHARACTERISTICS OF THE I2C-BUS  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
7.8  
7.9  
7.10  
Bit transfer (see Fig.12)  
START and STOP conditions (see Fig.13)  
System configuration (see Fig.14)  
Acknowledge (see Fig.15)  
PCF8576 I2C-bus controller  
Input filters  
I2C-bus protocol  
Command decoder  
Display controller  
Cascaded operation  
2001 Oct 02  
2
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
1
FEATURES  
Single-chip LCD controller/driver  
Selectable backplane drive configuration: static or 2/3/4  
backplane multiplexing  
Selectable display bias configuration: static, 12 or 13  
Internal LCD bias generation with voltage-follower  
buffers  
May be cascaded for large LCD applications (up to  
2560 segments possible)  
40 segment drives: up to twenty 8-segment numeric  
characters; up to ten 15-segment alphanumeric  
characters; or any graphics of up to 160 elements  
Cascadable with 24-segment LCD driver PCF8566  
Optimized pinning for plane wiring in both single and  
multiple PCF8576 applications  
40 × 4-bit RAM for display data storage  
Space-saving 56-lead plastic very small outline package  
(VSO56)  
Auto-incremented display data loading across device  
subaddress boundaries  
Very low external component count (at most one  
resistor, even in multiple device applications)  
Display memory bank switching in static and duplex  
drive modes  
Compatible with chip-on-glass technology  
Manufactured in silicon gate CMOS process.  
Versatile blinking modes  
LCD and logic supplies may be separated  
Wide power supply range: from 2 V for low-threshold  
LCDs and up to 9 V for guest-host LCDs and  
2
GENERAL DESCRIPTION  
The PCF8576 is a peripheral device which interfaces to  
almost any Liquid Crystal Display (LCD) with low multiplex  
rates. It generates the drive signals for any static or  
multiplexed LCD containing up to four backplanes and up  
to 40 segments and can easily be cascaded for larger LCD  
applications. The PCF8576 is compatible with most  
microprocessors/microcontrollers and communicates via a  
two-line bidirectional I2C-bus. Communication overheads  
are minimized by a display RAM with auto-incremented  
addressing, by hardware subaddressing and by display  
memory switching (static and duplex drive modes).  
high-threshold (automobile) twisted nematic LCDs  
Low power consumption  
Power-saving mode for extremely low power  
consumption in battery-operated and telephone  
applications  
I2C-bus interface  
TTL/CMOS compatible  
Compatible with any 4-bit, 8-bit or 16-bit  
microprocessors/microcontrollers  
3
ORDERING INFORMATION  
PACKAGE  
TYPE NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8576T  
VSO56  
plastic very small outline package; 56 leads  
chip in tray  
SOT190-1  
PCF8576U  
PCF8576U/2  
PCF8576U/5  
PCF8576U/10  
PCF8576U/12  
chip with bumps in tray  
unsawn wafer  
FFC  
FFC  
chip on film frame carrier (FFC)  
chip with bumps on film frame carrier (FFC)  
2001 Oct 02  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
BP0 BP2 BP1 BP3  
13 14 15 16  
S0 to S39  
40  
17 to 56  
5
V
BACKPLANE  
OUTPUTS  
DD  
DISPLAY SEGMENT OUTPUTS  
DISPLAY LATCH  
R
R
R
LCD  
VOLTAGE  
SELECTOR  
LCD BIAS  
GENERATOR  
SHIFT REGISTER  
12  
V
LCD  
PCF8576  
4
3
CLK  
INPUT  
BANK  
SELECTOR  
DISPLAY  
RAM  
40 x 4 BITS  
OUTPUT  
BANK  
SELECTOR  
TIMING  
BLINKER  
SYNC  
DISPLAY  
CONTROLLER  
6
OSC  
OSCILLATOR  
POWER-  
ON  
DATA  
POINTER  
RESET  
COMMAND  
DECODER  
11  
V
SS  
2
1
SUB-  
ADDRESS  
COUNTER  
SCL  
SDA  
2
INPUT  
FILTERS  
I C - BUS  
CONTROLLER  
10  
7
8
9
SA0  
A0 A1 A2  
MBK276  
Fig.1 Block diagram (for VSO56 package; SOT190-1).  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
5
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
I2C-bus serial data input/output  
SDA  
1
SCL  
SYNC  
CLK  
VDD  
2
I2C-bus serial clock input  
cascade synchronization input/output  
external clock input/output  
supply voltage  
3
4
5
OSC  
6
oscillator input  
A0 to A2  
7 to 9  
10  
I2C-bus subaddress inputs  
I2C-bus slave address input; bit 0  
logic ground  
SA0  
VSS  
11  
VLCD  
12  
LCD supply voltage  
BP0, BP2, BP1 and BP3  
S0 to S39  
13 to 16  
17 to 56  
LCD backplane outputs  
LCD segment outputs  
2001 Oct 02  
5
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
handbook, halfpage  
SDA  
SCL  
1
2
3
4
5
6
7
8
9
56 S39  
55 S38  
54 S37  
53 S36  
52 S35  
51 S34  
50 S33  
49 S32  
48 S31  
47 S30  
46 S29  
45 S28  
44 S27  
43 S26  
42 S25  
41 S24  
40 S23  
39 S22  
38 S21  
37 S20  
36 S19  
35 S18  
34 S17  
33 S16  
32 S15  
31 S14  
30 S13  
29 S12  
SYNC  
CLK  
V
DD  
OSC  
A0  
A1  
A2  
SA0 10  
V
11  
12  
SS  
V
LCD  
BP0 13  
BP2 14  
BP1 15  
BP3 16  
S0 17  
S1 18  
S2 19  
S3 20  
S4 21  
S5 22  
S6 23  
S7 24  
S8 25  
S9 26  
S10 27  
S11 28  
PCF8576T  
MBK278  
Fig.2 Pin configuration; SOT190-1.  
6
2001 Oct 02  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6
FUNCTIONAL DESCRIPTION  
The host microprocessor/microcontroller maintains the  
2-line I2C-bus communication channel with the PCF8576.  
The internal oscillator is selected by connecting pin OSC  
to pin VSS. The appropriate biasing voltages for the  
multiplexed LCD waveforms are generated internally. The  
only other connections required to complete the system  
are to the power supplies (VDD, VSS and VLCD) and the  
LCD panel chosen for the application.  
The PCF8576 is a versatile peripheral device designed to  
interface to any microprocessor/microcontroller to a wide  
variety of LCDs. It can directly drive any static or  
multiplexed LCD containing up to four backplanes and up  
to 40 segments. The display configurations possible with  
the PCF8576 depend on the number of active backplane  
outputs required; a selection of display configurations is  
given in Table .  
All of the display configurations given in Table can be  
implemented in the typical system shown in Fig.3.  
Selection of display configurations  
14-SEGMENTS  
ALPHANUMERIC  
NUMBER OF  
7-SEGMENTS NUMERIC  
DOT MATRIX  
INDICATOR  
SYMBOLS  
INDICATOR  
SYMBOLS  
BACKPLANES SEGMENTS  
DIGITS  
CHARACTERS  
4
160  
120  
80  
20  
15  
10  
5
20  
15  
10  
5
10  
8
20  
8
160 dots (4 × 40)  
120 dots (3 × 40)  
80 dots (2 × 40)  
40 dots (1 × 40)  
3
2
1
5
10  
12  
40  
2
V
DD  
t
r
R
2C  
B
V
V
DD  
LCD  
5
12  
SDA  
SCL  
OSC  
HOST  
1
2
6
17 to 56 40 segment drives  
LCD PANEL  
MICRO-  
PROCESSOR/  
MICRO-  
PCF8576  
(up to 160  
elements)  
4 backplanes  
CONTROLLER  
13 to 16  
10 11  
A0 A1 A2 SA0 V  
7
8
9
R
MBK277  
OSC  
SS  
V
SS  
Fig.3 Typical system configuration.  
2001 Oct 02  
7
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.1  
Power-on reset  
6.3  
LCD voltage selector  
At power-on the PCF8576 resets to a starting condition as  
follows:  
The LCD voltage selector co-ordinates the multiplexing of  
the LCD in accordance with the selected LCD drive  
configuration. The operation of the voltage selector is  
controlled by MODE SET commands from the command  
decoder. The biasing configurations that apply to the  
preferred modes of operation, together with the biasing  
characteristics as functions of Vop = VDD VLCD and the  
resulting discrimination ratios (D), are given in Table 1.  
1. All backplane outputs are set to VDD  
2. All segment outputs are set to VDD  
.
.
3. The drive mode ‘1 : 4 multiplex with 13bias’ is selected.  
4. Blinking is switched off.  
5. Input and output bank selectors are reset (as defined  
in Table 4).  
6. The I2C-bus interface is initialized.  
A practical value for Vop is determined by equating Voff(rms)  
with a defined LCD threshold voltage (Vth), typically when  
the LCD exhibits approximately 10% contrast. In the static  
drive mode a suitable choice is Vop > 3Vth approximately.  
7. The data pointer and the subaddress counter are  
cleared.  
Multiplex drive ratios of 1 : 3 and 1 : 4 with 12bias are  
possible but the discrimination and hence the contrast  
Data transfers on the I2C-bus should be avoided for 1 ms  
following power-on to allow completion of the reset action.  
ratios are smaller ( 3 = 1.732 for 1 : 3 multiplex or  
21  
6.2  
The full-scale LCD voltage (Vop) is obtained from  
DD VLCD. The LCD voltage may be temperature  
compensated externally through the VLCD supply to pin 12.  
Fractional LCD biasing voltages are obtained from an  
internal voltage divider of the three series resistors  
connected between VDD and VLCD. The centre resistor can  
be switched out of the circuit to provide a 12bias voltage  
level for the 1 : 2 multiplex configuration.  
LCD bias generator  
= 1.528 for 1 : 4 multiplex).  
----------  
3
V
The advantage of these modes is a reduction of the LCD  
full-scale voltage Vop as follows:  
1 : 3 multiplex (12bias):  
Vop  
=
6 × Voff rms = 2.449 Voff(rms)  
1 : 4 multiplex (12bias):  
(4 × 3)  
---------------------  
3
Vop  
=
= 2.309 Voff(rms)  
These compare with Vop = 3 Voff(rms) when 13bias is used.  
Table 1 Preferred LCD drive modes: summary of characteristics  
NUMBER OF  
Voff(rms) V on(rms)  
-------------------- --------------------  
Vop Vop  
V on(rms)  
LCD BIAS  
CONFIGURATION  
D =  
--------------------  
Voff(rms)  
LCD DRIVE MODE  
BACKPLANES  
LEVELS  
static  
1 : 2  
1 : 2  
1 : 3  
1 : 4  
1
2
2
3
4
2
3
4
4
4
static  
0
1
1
2
0.354  
0.333  
0.333  
0.333  
0.791  
0.745  
0.638  
0.577  
2.236  
2.236  
1.915  
1.732  
1
3
1
3
1
3
2001 Oct 02  
8
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.4  
LCD drive mode waveforms  
When three backplanes are provided in the LCD, the 1 : 3  
multiplex drive mode applies, as shown in Fig.7.  
The static LCD drive mode is used when a single  
backplane is provided in the LCD. Backplane and segment  
drive waveforms for this mode are shown in Fig.4.  
When four backplanes are provided in the LCD, the 1 : 4  
multiplex drive mode applies, as shown in Fig.8.  
When two backplanes are provided in the LCD, the 1 : 2  
multiplex mode applies. The PCF8576 allows use of  
12bias or 13bias in this mode as shown in Figs 5 and 6.  
T
frame  
LCD segments  
V
DD  
BP0  
V
LCD  
state 1  
(on)  
state 2  
(off)  
V
DD  
S
n
V
LCD  
V
DD  
S
n
1
V
LCD  
(a) waveforms at driver  
V
op  
0
state 1  
V
op  
V
op  
state 2  
0
V
op  
(b) resultant waveforms  
at LCD segment  
MBE539  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = Vop  
Vstate2(t) = VS (t) VBP0(t)  
n + 1  
Voff(rms) = 0 V  
Fig.4 Static drive mode waveforms (Vop = VDD VLCD).  
2001 Oct 02  
9
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
T
frame  
V
DD  
LCD segments  
(V  
DD  
V
V
)/2  
)/2  
BP0  
LCD  
LCD  
V
LCD  
DD  
state 1  
V
state 2  
BP1 (V  
V
DD  
LCD  
DD  
V
S
n
V
V
LCD  
DD  
S
n
1
V
V
LCD  
(a) waveforms at driver  
op  
V
/2  
/2  
op  
0
state 1  
V
V
op  
op  
V
op  
V
/2  
/2  
op  
0
state 2  
V
V
op  
op  
(b) resultant waveforms  
at LCD segment  
MBE540  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.791Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.354Vop  
Fig.5 Waveforms for the 1 : 2 multiplex drive mode with 12bias (Vop = VDD VLCD).  
2001 Oct 02  
10  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
T
frame  
V
DD  
LCD segments  
V
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
V
V
op  
DD  
LCD  
state 1  
V
V
DD  
state 2  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
1
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
V
op  
V
op  
2V /3  
op  
V
V
/3  
0
/3  
op  
state 2  
op  
2V /3  
op  
V
op  
(b) resultant waveforms  
at LCD segment  
MBE541  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.745Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.333Vop  
Fig.6 Waveforms for the 1 : 2 multiplex drive mode with 13bias (Vop = VDD VLCD).  
2001 Oct 02  
11  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
T
frame  
V
DD  
LCD segments  
V
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
V
V
op  
DD  
LCD  
state 1  
state 2  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
BP2/S23  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
n
1
2
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
V
op  
V
op  
2V /3  
op  
V
V
/3  
0
/3  
op  
state 2  
op  
2V /3  
op  
V
op  
(b) resultant waveforms  
at LCD segment  
MBE542  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.638Vop  
Vstate2(t) = VS (t) VBP1(t)  
n
Voff(rms) = 0.333Vop  
Fig.7 Waveforms for the 1 : 3 multiplex drive mode (Vop = VDD VLCD).  
2001 Oct 02  
12  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
T
frame  
V
LCD segments  
DD  
V
V
/3  
op  
2V /3  
DD  
BP0  
BP1  
BP2  
BP3  
V
V
op  
DD  
LCD  
state 1  
state 2  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
n
n
n
1
2
3
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
S
S
V
V
op  
DD  
LCD  
V
V
DD  
V
/3  
op  
2V /3  
DD  
V
V
op  
DD  
LCD  
(a) waveforms at driver  
V
op  
2V /3  
op  
V
/3  
0
op  
state 1  
V
/3  
op  
2V /3  
op  
V
op  
V
op  
2V /3  
op  
V
V
/3  
0
/3  
op  
op  
state 2  
Vstate1(t) = VS (t) VBP0(t)  
n
Von(rms) = 0.577Vop  
2V /3  
op  
V
op  
Vstate2(t) = VS (t) VBP1(t)  
(b) resultant waveforms  
at LCD segment  
n
MBE543  
Voff(rms) = 0.333Vop  
Fig.8 Waveforms for the 1 : 4 multiplex drive mode (Vop = VDD VLCD).  
2001 Oct 02  
13  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.5  
Oscillator  
6.6  
Timing  
6.5.1  
INTERNAL CLOCK  
The timing of the PCF8576 organizes the internal data flow  
of the device. This includes the transfer of display data  
from the display RAM to the display segment outputs. In  
cascaded applications, the synchronization signal SYNC  
maintains the correct timing relationship between the  
PCF8576s in the system. The timing also generates the  
LCD frame frequency which it derives as an integer  
multiple of the clock frequency (see Table 2). The frame  
frequency is set by the MODE SET commands when  
internal clock is used, or by the frequency applied to  
pin CLK when external clock is used.  
The internal logic and the LCD drive signals of the  
PCF8576 are timed either by the internal oscillator or from  
an external clock. When the internal oscillator is used,  
pin OSC should be connected to pin VSS. In this event, the  
output from pin CLK provides the clock signal for  
cascaded PCF8566s in the system.  
Where resistor Rosc to VSS is present, the internal oscillator  
is selected. The relationship between the oscillator  
frequency on pin CLK (fclk) and Rosc is shown in Fig.9.  
The ratio between the clock frequency and the LCD frame  
frequency depends on the mode in which the device is  
operating. In the power-saving mode the reduction ratio is  
six times smaller; this allows the clock frequency to be  
reduced by a factor of six. The reduced clock frequency  
results in a significant reduction in power dissipation. The  
lower clock frequency has the disadvantage of increasing  
the response time when large amounts of display data are  
transmitted on the I2C-bus.  
MBE531  
3
10  
f
clk  
(kHz)  
max  
When a device is unable to digest a display data byte  
before the next one arrives, it holds the SCL line LOW until  
the first display data byte is stored. This slows down the  
transmission rate of the I2C-bus but no data loss occurs.  
2
10  
min  
Table 2 LCD frame frequencies  
NOMINAL  
10  
10  
FRAME  
FREQUENCY  
FRAME  
FREQUENCY  
(Hz)  
2
3
4
10  
R
(kΩ)  
10  
PCF8576 MODE  
osc  
3.4 × 107  
-----------------------  
Rosc  
fclk  
fclk  
(kHz)  
Normal mode  
64  
64  
------------  
2880  
f clk  
Fig.9 Oscillator frequency as a function of Rosc  
.
Power-saving mode  
---------  
480  
6.5.2  
EXTERNAL CLOCK  
6.7  
Display latch  
The condition for external clock is made by connecting  
pin OSC to pin VDD; pin CLK then becomes the external  
clock input.  
The display latch holds the display data while the  
corresponding multiplex signals are generated. There is a  
one-to-one relationship between the data in the display  
latch, the LCD segment outputs and one column of the  
display RAM.  
The clock frequency (fclk) determines the LCD frame  
frequency and the maximum rate for data reception from  
the I2C-bus. To allow I2C-bus transmissions at their  
maximum data rate of 100 kHz, fclk should be chosen to be  
above 125 kHz.  
6.8  
Shift register  
The shift register serves to transfer display information  
from the display RAM to the display latch while previous  
data is displayed.  
A clock signal must always be supplied to the device;  
removing the clock may freeze the LCD in a DC state.  
2001 Oct 02  
14  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.9  
Segment outputs  
correspondence between the RAM addresses and the  
segment outputs, and between the individual bits of a RAM  
word and the backplane outputs. The first RAM column  
corresponds to the 40 segments operated with respect to  
backplane BP0 (see Fig.10). In multiplexed LCD  
applications the segment data of the second, third and  
fourth column of the display RAM are time-multiplexed  
with BP1, BP2 and BP3 respectively.  
The LCD drive section includes 40 segment outputs  
pins S0 to S39 which should be connected directly to the  
LCD. The segment output signals are generated in  
accordance with the multiplexed backplane signals and  
with data resident in the display latch. When less than  
40 segment outputs are required the unused segment  
outputs should be left open-circuit.  
When display data is transmitted to the PCF8576 the  
display bytes received are stored in the display RAM in  
accordance with the selected LCD drive mode. To  
illustrate the filling order, an example of a 7-segment  
numeric display showing all drive modes is given in Fig.11;  
the RAM filling organization depicted applies equally to  
other LCD types.  
6.10 Backplane outputs  
The LCD drive section includes four backplane outputs  
BP0 to BP3 which should be connected directly to the  
LCD. The backplane output signals are generated in  
accordance with the selected LCD drive mode. If less than  
four backplane outputs are required the unused outputs  
can be left open-circuit. In the 1 : 3 multiplex drive mode  
BP3 carries the same signal as BP1, therefore these two  
adjacent outputs can be connected together to give  
enhanced drive capabilities. In the 1 : 2 multiplex drive  
mode BP0 and BP2, BP1 and BP3 respectively carry the  
same signals and may also be paired to increase the drive  
capabilities. In the static drive mode the same signal is  
carried by all four backplane outputs and they can be  
connected in parallel for very high drive requirements.  
With reference to Fig.11, in the static drive mode the eight  
transmitted data bits are placed in bit 0 of eight successive  
display RAM addresses. In the 1 : 2 multiplex drive mode  
the eight transmitted data bits are placed in bits 0 and 1 of  
four successive display RAM addresses. In the 1 : 3  
multiplex drive mode these bits are placed in  
bits 0, 1 and 2 of three successive addresses, with bit 2 of  
the third address left unchanged. This last bit may, if  
necessary, be controlled by an additional transfer to this  
address but care should be taken to avoid overriding  
adjacent data because full bytes are always transmitted. In  
the 1 : 4 multiplex drive mode the eight transmitted data  
bits are placed in bits 0, 1, 2 and 3 of two successive  
display RAM addresses.  
6.11 Display RAM  
The display RAM is a static 40 × 4-bit RAM which stores  
LCD data. A logic 1 in the RAM bit-map indicates the on  
state of the corresponding LCD segment; similarly, a  
logic 0 indicates the off state. There is a one-to-one  
display RAM addresses (rows) / segment outputs (S)  
0
1
2
3
4
35 36 37 38 39  
0
1
2
3
display RAM bits  
(columns) /  
backplane outputs  
(BP)  
MBE525  
Fig.10 Display RAM bit-map showing direct relationship between display RAM addresses and segment outputs,  
and between bits in a RAM word and backplane outputs.  
2001 Oct 02  
15  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.12 Data pointer  
6.14 Output bank selector  
The addressing mechanism for the display RAM is  
realized using the data pointer. This allows the loading of  
an individual display data byte, or a series of display data  
bytes, into any location of the display RAM. The sequence  
commences with the initialization of the data pointer by the  
LOAD DATA POINTER command. Following this, an  
arriving data byte is stored starting at the display RAM  
address indicated by the data pointer thereby observing  
the filling order shown in Fig.11. The data pointer is  
automatically incremented in accordance with the chosen  
LCD configuration. That is, after each byte is stored, the  
contents of the data pointer are incremented by eight  
(static drive mode), by four (1 : 2 multiplex drive mode) or  
by two (1 : 4 multiplex drive mode).  
This selects one of the four bits per display RAM address  
for transfer to the display latch. The actual bit chosen  
depends on the particular LCD drive mode in operation  
and on the instant in the multiplex sequence. In 1 : 4  
multiplex, all RAM addresses of bit 0 are the first to be  
selected, these are followed by the contents of bit 1, bit 2  
and then bit 3. Similarly in 1 : 3 multiplex, bits 0, 1 and 2  
are selected sequentially. In 1 : 2 multiplex, bits 0 and 1  
are selected and, in the static mode, bit 0 is selected.  
The PCF8576 includes a RAM bank switching feature in  
the static and 1 : 2 multiplex drive modes. In the static  
drive mode, the BANK SELECT command may request  
the contents of bit 2 to be selected for display instead of  
bit 0 contents. In the 1 : 2 drive mode, the contents of  
bits 2 and 3 may be selected instead of bits 0 and 1. This  
gives the provision for preparing display information in an  
alternative bank and to be able to switch to it once it is  
assembled.  
6.13 Subaddress counter  
The storage of display data is conditioned by the contents  
of the subaddress counter. Storage is allowed to take  
place only when the contents of the subaddress counter  
agree with the hardware subaddress applied to A0, A1  
and A2. The subaddress counter value is defined by the  
DEVICE SELECT command. If the contents of the  
subaddress counter and the hardware subaddress do not  
agree then data storage is inhibited but the data pointer is  
incremented as if data storage had taken place. The  
subaddress counter is also incremented when the data  
pointer overflows.  
6.15 Input bank selector  
The input bank selector loads display data into the display  
RAM in accordance with the selected LCD drive  
configuration. Display data can be loaded in bit 2 in static  
drive mode or in bits 2 and 3 in 1 : 2 drive mode by using  
the BANK SELECT command. The input bank selector  
functions independent of the output bank selector.  
The storage arrangements described lead to extremely  
efficient data loading in cascaded applications. When a  
series of display bytes are sent to the display RAM,  
automatic wrap-over to the next PCF8576 occurs when  
the last RAM address is exceeded. Subaddressing across  
device boundaries is successful even if the change to the  
next device in the cascade occurs within a transmitted  
character (such as during the 14th display data byte  
transmitted in 1 : 3 multiplex mode).  
2001 Oct 02  
16  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
6.16 Blinker  
bank selector, the displayed RAM banks are exchanged  
with alternate RAM banks at the blinking frequency. This  
mode can also be specified by the BLINK command.  
The display blinking capabilities of the PCF8576 are very  
versatile. The whole display can be blinked at frequencies  
selected by the BLINK command. The blinking frequencies  
are integer multiples of the clock frequency; the ratios  
between the clock and blinking frequencies depend on the  
mode in which the device is operating, as shown in  
Table 3.  
In the 1 : 3 and 1 : 4 multiplex modes, where no alternate  
RAM bank is available, groups of LCD segments can be  
blinked by selectively changing the display RAM data at  
fixed time intervals.  
If the entire display is to be blinked at a frequency other  
than the nominal blinking frequency, this can be effectively  
performed by resetting and setting the display enable bit E  
at the required rate using the MODE SET command.  
An additional feature is for an arbitrary selection of LCD  
segments to be blinked. This applies to the static and  
1 : 2 LCD drive modes and can be implemented without  
any communication overheads. By means of the output  
Table 3 Blinking frequencies  
NORMAL OPERATING  
BLINKING MODE  
POWER-SAVING MODE  
RATIO  
NOMINAL BLINKING  
FREQUENCY  
MODE RATIO  
Off  
blinking off  
fclk  
f clk  
2 Hz  
2 Hz  
----------------  
92160  
----------------  
15360  
f clk  
f clk  
1 Hz  
1 Hz  
-------------------  
184320  
----------------  
30720  
f clk  
f clk  
0.5 Hz  
0.5 Hz  
-------------------  
368640  
----------------  
61440  
2001 Oct 02  
17  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
drive mode  
LCD segments  
LCD backplanes  
display RAM filling order  
transmitted display byte  
a
S
2
n
n
1
n
2
n
3
n
4
n
5
n
6
n 7  
n
n
b
BP0  
f
S
1
7
S
3
MSB  
LSB  
DP  
n
n
0
1
2
3
c
x
x
x
b
x
x
x
a
x
x
x
f
g
x
x
x
e
x
x
x
d
x
x
x
DP  
bit/  
BP  
g
4
S
S
S
n
n
x
x
x
x
x
x
c
b
a
f
g e d  
static  
e
S
5
6
c
n
d
DP  
S
n
BP0  
S
n
a
n
n
n
n
1
1
1
n
2
n 3  
b
b
b
1 : 2  
f
S
1
n
MSB  
LSB  
DP  
0
1
2
3
a
b
x
x
f
e
c
x
x
d
bit/  
BP  
g
g
x
x
DP  
x
x
a
b
f
g
e c d  
BP1  
S
S
e
2
3
multiplex  
n
n
c
c
c
d
d
d
DP  
BP0  
BP1  
S
1
a
n
n
n 2  
S
S
2
f
1 : 3  
n
n
MSB  
LSB  
e
0
1
2
3
b
DP  
c
a
d
g
x
f
bit/  
BP  
g
e
x
x
BP2  
b DP  
c
a
d
g
f
e
multiplex  
x
DP  
S
n
a
n
BP2  
BP3  
BP0  
BP1  
f
1 : 4  
0
1
2
3
a
c
f
bit/  
BP  
MSB  
LSB  
d
g
e
g
d
b
DP  
e
multiplex  
a
c
b
DP  
f
e
g
S
1
DP  
n
MBK389  
x = data bit unchanged.  
Fig.11 Relationships between LCD layout, drive mode, display RAM filling order and display data transmitted over the I2C-bus.  
ahdnbok,uflapegwidt  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
7
CHARACTERISTICS OF THE I2C-BUS  
7.5  
PCF8576 I2C-bus controller  
The I2C-bus is for bidirectional, two-line communication  
between different ICs or modules. The two lines are a  
serial data line (SDA) and a serial clock line (SCL). Both  
lines must be connected to a positive supply via a pull-up  
resistor when connected to the output stages of a device.  
Data transfer may be initiated only when the bus is not  
busy.  
The PCF8576 acts as an I2C-bus slave receiver. It does  
not initiate I2C-bus transfers or transmit data to an I2C-bus  
master receiver. The only data output from the PCF8576  
are the acknowledge signals of the selected devices.  
Device selection depends on the I2C-bus slave address,  
on the transferred command data and on the hardware  
subaddress.  
In single device application, the hardware subaddress  
inputs A0, A1 and A2 are normally connected to VSS which  
defines the hardware subaddress 0. In multiple device  
applications A0, A1 and A2 are connected to VSS or VDD in  
accordance with a binary coding scheme such that no two  
devices with a common I2C-bus slave address have the  
same hardware subaddress.  
7.1  
Bit transfer (see Fig.12)  
One data bit is transferred during each clock pulse. The  
data on the SDA line must remain stable during the HIGH  
period of the clock pulse as changes in the data line at this  
time will be interpreted as a control signal.  
7.2  
START and STOP conditions (see Fig.13)  
In the power-saving mode it is possible that the PCF8576  
is not able to keep up with the highest transmission rates  
when large amounts of display data are transmitted. If this  
situation occurs, the PCF8576 forces the SCL line to LOW  
until its internal operations are completed. This is known  
as the ‘clock synchronization feature’ of the I2C-bus and  
serves to slow down fast transmitters. Data loss does not  
occur.  
Both data and clock lines remain HIGH when the bus is not  
busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH is defined as the START condition (S). A  
LOW-to-HIGH transition of the data line while the clock is  
HIGH is defined as the STOP condition (P).  
7.3  
System configuration (see Fig.14)  
A device generating a message is a ‘transmitter’, a device  
receiving a message is the ‘receiver’. The device that  
controls the message is the ‘master’ and the devices which  
are controlled by the master are the ‘slaves’.  
7.6  
Input filters  
To enhance noise immunity in electrically adverse  
environments, RC low-pass filters are provided on the  
SDA and SCL lines.  
7.4  
Acknowledge (see Fig.15)  
7.7  
I2C-bus protocol  
The number of data bytes transferred between the START  
and STOP conditions from transmitter to receiver is  
unlimited. Each byte of eight bits is followed by an  
acknowledge bit. The acknowledge bit is a HIGH level  
signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock  
pulse. A slave receiver which is addressed must generate  
an acknowledge after the reception of each byte. Also a  
master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the  
slave transmitter. The device that acknowledges must  
pull-down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH  
period of the acknowledge related clock pulse (set-up and  
hold times must be taken into consideration). A master  
receiver must signal an end of data to the transmitter by  
not generating an acknowledge on the last byte that has  
been clocked out of the slave. In this event the transmitter  
must leave the data line HIGH to enable the master to  
generate a STOP condition.  
Two I2C-bus slave addresses (0111000 and 0111001) are  
reserved for the PCF8576. The least significant bit of the  
slave address that a PCF8576 will respond to is defined by  
the level connected at its input pin SA0. Therefore, two  
types of PCF8576 can be distinguished on the same  
I2C-bus which allows:  
Up to 16 PCF8576s on the same I2C-bus for very large  
LCD applications  
The use of two types of LCD multiplex on the same  
I2C-bus.  
The I2C-bus protocol is shown in Fig.16. The sequence is  
initiated with a START condition (S) from the I2C-bus  
master which is followed by one of the two PCF8576 slave  
addresses available. All PCF8576s with the corresponding  
SA0 level acknowledge in parallel with the slave address  
but all PCF8576s with the alternative SA0 level ignore the  
whole I2C-bus transfer.  
2001 Oct 02  
19  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
After acknowledgement, one or more command bytes (m)  
follow which define the status of the addressed PCF8576s.  
7.8  
Command decoder  
The command decoder identifies command bytes that  
arrive on the I2C-bus. All available commands carry a  
continuation bit C in their most significant bit position  
(Fig.17). When this bit is set, it indicates that the next byte  
of the transfer to arrive will also represent a command. If  
this bit is reset, it indicates the last command byte of the  
transfer. Further bytes will be regarded as display data.  
The last command byte is tagged with a cleared most  
significant bit, the continuation bit C. The command bytes  
are also acknowledged by all addressed PCF8576s on the  
bus.  
After the last command byte, a series of display data bytes  
(n) may follow. These display bytes are stored in the  
display RAM at the address specified by the data pointer  
and the subaddress counter. Both data pointer and  
subaddress counter are automatically updated and the  
data is directed to the intended PCF8576 device. The  
acknowledgement after each byte is made only by the (A0,  
A1 and A2) addressed PCF8576. After the last display  
byte, the I2C-bus master issues a STOP condition (P).  
The five commands available to the PCF8576 are defined  
in Table 4.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBA607  
Fig.12 Bit transfer.  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.13 Definition of START and STOP conditions.  
2001 Oct 02  
20  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
TRANSMITTER/  
RECEIVER  
MASTER  
TRANSMITTER/  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
SDA  
SCL  
MGA807  
Fig.14 System configuration.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
8
SCL FROM  
MASTER  
1
2
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.15 Acknowledgement on the I2C-bus.  
21  
2001 Oct 02  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
acknowledge  
by A0, A1 and A2  
selected  
acknowledge by  
all addressed  
PCF8576s  
R / W  
PCF8576 only  
slave address  
S
A
0
0
1
1
1
0
0
0
A C  
A
DISPLAY DATA  
A
P
COMMAND  
S
1 byte  
n
1 byte(s)  
n
0 byte(s)  
update data pointers  
and if necessary,  
subaddress counter  
MBK279  
Fig.16 I2C-bus protocol.  
MSB  
LSB  
C
REST OF OPCODE  
MSA833  
C = 0; last command.  
C = 1; commands continue.  
Fig.17 General format of command byte.  
2001 Oct 02  
22  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
Table 4 Definition of PCF8576 commands  
COMMAND  
OPCODE  
LP  
OPTIONS  
DESCRIPTION  
MODE SET C 1  
0
E
B
M1 M0  
Table 5 Defines LCD drive mode.  
Table 6 Defines LCD bias configuration.  
Table 7 Defines display status. The possibility to disable the  
display allows implementation of blinking under  
external control.  
Table 8 Defines power dissipation mode.  
LOAD DATA C 0 P5 P4 P3 P2 P1 P0  
POINTER  
Table 9 Six bits of immediate data, bits P5 to P0, are  
transferred to the data pointer to define one of forty  
display RAM addresses.  
DEVICE  
SELECT  
C 1  
C 1  
1
1
0
1
0
1
A2 A1 A0  
Table 10 Three bits of immediate data, bits A2 to A0, are  
transferred to the subaddress counter to define one of  
eight hardware subaddresses.  
BANK  
SELECT  
0
I
O
Table 11 Defines input bank selection (storage of arriving  
display data).  
Table 12 Defines output bank selection (retrieval of LCD display  
data). The BANK SELECT command has no effect in  
1 : 3 and 1 : 4 multiplex drive modes.  
BLINK  
C 1  
1
1
0
A
BF1 BF0 Table 13 Defines the blinking frequency.  
Table 14 Selects the blinking mode; normal operation with  
frequency set by BF1, BF0 or blinking by alternation of  
display RAM banks. Alternation blinking does not  
apply in 1 : 3 and 1 : 4 multiplex drive modes.  
Table 5 MODE SET option 1  
Table 8 MODE SET option 4  
LCD DRIVE MODE  
BITS  
MODE  
Normal mode  
Power-saving mode  
BIT LP  
0
1
DRIVE MODE  
BACKPLANE  
1 BP  
M1  
M0  
Static  
1 : 2  
1 : 3  
1 : 4  
0
1
1
0
1
0
1
0
MUX (2 BP)  
MUX (3 BP)  
MUX (4 BP)  
Table 9 LOAD DATA POINTER option 1  
DESCRIPTION  
BITS  
6-bit binary value of 0 to 39 P5 P4 P3 P2 P1 P0  
Table 6 MODE SET option 2  
Table 10 DEVICE SELECT option 1  
LCD BIAS  
13bias  
12bias  
BIT B  
DESCRIPTION  
BITS  
0
1
3-bit binary value of 0 to 7  
A2  
A1  
A0  
Table 11 BANK SELECT option 1  
Table 7 MODE SET option 3  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT I  
DISPLAY STATUS  
BIT E  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
Disabled (blank)  
Enabled  
0
1
2001 Oct 02  
23  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
Table 12 BANK SELECT option 2  
7.10 Cascaded operation  
In large display configurations, up to 16 PCF8576s can be  
distinguished on the same I2C-bus by using the 3-bit  
hardware subaddress (A0, A1 and A2) and the  
STATIC  
RAM bit 0  
RAM bit 2  
1 : 2 MUX  
BIT O  
RAM bits 0 and 1  
RAM bits 2 and 3  
0
1
programmable I2C-bus slave address (SA0). When  
cascaded PCF8576s are synchronized so that they can  
share the backplane signals from one of the devices in the  
cascade. Such an arrangement is cost-effective in large  
LCD applications since the backplane outputs of only one  
device need to be through-plated to the backplane  
electrodes of the display. The other PCF8576s of the  
cascade contribute additional segment outputs but their  
backplane outputs are left open-circuit (see Fig.18).  
Table 13 BLINK option 1  
BITS  
BLINK FREQUENCY  
BF1  
BF0  
Off  
0
0
1
1
0
1
0
1
2 Hz  
1 Hz  
0.5 Hz  
The SYNC line is provided to maintain the correct  
synchronization between all cascaded PCF8576s. This  
synchronization is guaranteed after the Power-on reset.  
The only time that SYNC is likely to be needed is if  
synchronization is accidentally lost (e.g. by noise in  
adverse electrical environments; or by the definition of a  
multiplex mode when PCF8576s with differing SA0 levels  
are cascaded). SYNC is organized as an input/output pin;  
the output selection being realized as an open-drain driver  
with an internal pull-up resistor. A PCF8576 asserts the  
SYNC line at the onset of its last active backplane signal  
and monitors the SYNC line at all other times. Should  
synchronization in the cascade be lost, it will be restored  
by the first PCF8576 to assert SYNC. The timing  
relationship between the backplane waveforms and the  
SYNC signal for the various drive modes of the PCF8576  
are shown in Fig.19.  
Table 14 BLINK option 2  
BLINK MODE  
Normal blinking  
BIT A  
0
1
Alternation blinking  
7.9  
Display controller  
The display controller executes the commands identified  
by the command decoder. It contains the status registers  
of the PCF8576 and co-ordinates their effects. The  
controller is also responsible for loading display data into  
the display RAM as required by the filling order.  
For single plane wiring of packaged PCF8576s and  
chip-on-glass cascading, see Chapter 12.  
2001 Oct 02  
24  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
V
V
LCD  
DD  
SDA  
SCL  
5
12  
1
2
40 segment drives  
17 to 56  
LCD PANEL  
SYNC  
CLK  
3
4
6
PCF8576  
(up to 2560  
elements)  
13, 15  
14, 16  
OSC  
BP0 to BP3  
(open-circuit)  
7
8
9
10 11  
A0 A1 A2 SA0 V  
SS  
V
V
LCD  
t
DD  
r
R
V
V
2C  
DD  
LCD  
B
5
12  
SDA  
1
HOST  
MICRO-  
PROCESSOR/  
MICRO-  
40 segment drives  
17 to 56  
SCL  
2
PCF8576  
SYNC  
3
4
6
13, 15  
14, 16  
4 backplanes  
BP0 to BP3  
CONTROLLER  
CLK  
OSC  
MBK280  
7
8
9
10 11  
A0 A1 A2 SA0 V  
V
SS  
SS  
Fig.18 Cascaded PCF8576 configuration.  
2001 Oct 02  
25  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
1
T
= f  
frame  
frame  
BP0  
SYNC  
(a) static drive mode.  
BP1  
(1/2 bias)  
BP1  
(1/3 bias)  
SYNC  
(b) 1 : 2 multiplex drive mode.  
BP2  
SYNC  
(c) 1 : 3 multiplex drive mode.  
BP3  
SYNC  
MBE535  
(d) 1 : 4 multiplex drive mode.  
Excessive capacitive coupling between SCL or CLK and SYNC may cause erroneous synchronization. If this proves to be a problem, the capacitance  
of the SYNC line should be increased (e.g. by an external capacitor between SYNC and VDD). Degradation of the positive edge of the SYNC pulse may  
be countered by an external pull-up resistor.  
Fig.19 Synchronization of the cascade for the various PCF8576 drive modes.  
2001 Oct 02  
26  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
8
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER  
VDD  
MIN.  
MAX.  
+11.0  
DD 11.0 VDD  
UNIT  
supply voltage  
0.5  
V
V
V
V
VLCD  
VI  
LCD supply voltage  
V
V
V
input voltage SDA, SCL, CLK, SYNC, SA0, OSC, A0 to A2  
output voltage S0 to S39, BP0 to BP3  
DC input current  
SS 0.5  
VDD + 0.5  
VO  
II  
LCD 0.5 VDD + 0.5  
20  
mA  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
25  
IDD, ISS, ILCD VDD, VSS or VLCD current  
50  
Ptot  
PO  
Tstg  
total power dissipation  
power dissipation per output  
storage temperature  
400  
100  
65  
+150  
9
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices).  
2001 Oct 02  
27  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
10 DC CHARACTERISTICS  
VDD = 2 to 9 V; VSS = 0 V; VLCD = VDD 2 V to VDD 9 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
Supplies  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
VLCD  
IDD  
supply voltage  
2
9
V
LCD supply voltage  
supply current  
note 1  
note 2  
V
DD 9  
V
DD 2  
V
normal mode  
f
clk = 200 kHz  
clk = 35 kHz; VDD = 3.5 V;  
180  
60  
µA  
µA  
power-saving mode  
f
VLCD = 0 V; A0, A1 and A2  
connected to VSS  
Logic  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level output voltage  
HIGH-level output voltage  
VSS  
0.7VDD  
0.3VDD  
VDD  
0.05  
V
VIH  
V
VOL  
VOH  
IOL1  
IOL = 0 mA  
V
IOH = 0 mA  
VDD 0.05 −  
V
LOW-level output current  
CLK, SYNC  
VOL = 1 V; VDD = 5 V  
1
mA  
IOH1  
IOL2  
HIGH-level output current CLK  
VOH = 4 V; VDD = 5 V  
VOL = 0.4 V; VDD = 5 V  
1
3
mA  
mA  
LOW-level output current  
SDA and SCL  
IL1  
leakage current SA0, A0 to A2,  
CLK, SDA and SCL  
VI = VDD or VSS  
1
µA  
IL2  
Ipd  
leakage current OSC  
VI = VDD  
1
µA  
µA  
A0, A1, A2 and OSC pull-down  
current  
VI = 1 V; VDD = 5 V  
20  
50  
150  
RSYNC  
VPOR  
CI  
pull-up resistor (SYNC)  
Power-on reset voltage level  
input capacitance  
20  
50  
1.0  
150  
1.6  
7
kΩ  
V
note 3  
note 4  
pF  
LCD outputs  
VBP  
VS  
DC voltage component BP0 to BP3 CBP = 35 nF  
20  
20  
mV  
mV  
kΩ  
kΩ  
DC voltage component S0 to S39  
output resistance BP0 to BP3  
output resistance S0 to S39  
CS = 5 nF  
RBP  
RS  
note 5; VLCD = VDD 5 V  
note 5; VLCD = VDD 5 V  
5
7.5  
Notes  
1. VLCD VDD 3 V for 13bias.  
2. LCD outputs are open-circuit; inputs at VSS or VDD; external clock with 50% duty factor; I2C-bus inactive.  
3. Resets all logic when VDD < VPOR  
.
4. Periodically sampled, not 100% tested.  
5. Outputs measured one at a time.  
2001 Oct 02  
28  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
11 AC CHARACTERISTICS  
VDD = 2 to 9 V; VSS = 0 V; VLCD = VDD 2 V to VDD 9 V; Tamb = 40 to +85 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX. UNIT  
fclk  
oscillator frequency on pin CLK  
normal mode  
V
DD = 5 V; note 1  
DD = 3.5 V  
125  
21  
1
200  
31  
288  
48  
kHz  
kHz  
µs  
power-saving mode  
CLK HIGH time  
V
tclkH  
see Fig.21  
tclkL  
CLK LOW time  
1
µs  
tPSYNC  
tSYNCL  
tPLCD  
SYNC propagation delay time  
SYNC LOW time  
400  
ns  
1
µs  
driver delays with test loads  
VLCD = VDD 5 V; see Fig.20  
30  
µs  
Timing characteristics: I2C-bus; note 2; see Fig.22  
tSW  
tolerable spike width on bus  
bus free time  
100  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
pF  
ns  
ns  
µs  
tBUF  
4.7  
4.0  
4.7  
4.7  
4.0  
tHD;STA  
tSU;STA  
tLOW  
tHIGH  
tr  
START condition hold time  
set-up time for a repeated START condition  
SCL LOW time  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
capacitive bus line load  
data set-up time  
1
tf  
0.3  
400  
CB  
tSU;DAT  
tHD;DAT  
tSU;STO  
250  
0
data hold time  
set-up time for STOP condition  
4.0  
Notes  
1. At fclk < 125 kHz, I2C-bus maximum transmission speed is derated.  
2. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to  
VIL and VIH with an input voltage swing of VSS to VDD  
.
6.8 Ω  
SYNC  
CLK  
V
DD  
(2%)  
3.3 kΩ  
1.5 kΩ  
SDA,  
SCL  
V
0.5V  
DD  
DD  
(2%)  
(2%)  
1 nF  
BP0 to BP3, and  
S0 to S39  
V
DD  
MBE544  
Fig.20 Test loads.  
29  
2001 Oct 02  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
1/ f  
clk  
t
t
clkL  
clkH  
0.7V  
0.3V  
DD  
CLK  
DD  
0.7V  
0.3V  
DD  
SYNC  
DD  
t
t
PSYNC  
PSYNC  
SYNCL  
t
0.5 V  
BP0 to BP3,  
and S0 to S39  
(V  
= 5 V)  
DD  
0.5 V  
t
PLCD  
MBE545  
Fig.21 Driver timing waveforms.  
SDA  
SCL  
SDA  
t
t
t
f
BUF  
LOW  
t
t
t
SU;DAT  
t
HD;STA  
r
t
HIGH  
HD;DAT  
t
SU;STA  
MGA728  
t
SU;STO  
Fig.22 I2C-bus timing waveforms.  
30  
2001 Oct 02  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
11.1 Typical supply current characteristics  
MBE529  
MBE530  
50  
50  
40  
I
I
SS  
(µA)  
LCD  
(µA)  
normal  
mode  
40  
30  
20  
30  
20  
power-saving  
mode  
10  
0
10  
0
0
100  
200  
f
(Hz)  
0
100  
200  
f
(Hz)  
frame  
frame  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C.  
VDD = 5 V; VLCD = 0 V; Tamb = 25 °C.  
Fig.23 ISS as a function of fframe  
.
Fig.24 ILCD as a function of fframe.  
MBE528 - 1  
MBE527 - 1  
50  
50  
handbook, halfpage  
handbook, halfpage  
I
I
LCD  
(µA)  
SS  
(µA)  
normal mode  
= 200 kHz  
40  
40  
85oC  
f
clk  
30  
20  
30  
20  
25oC  
40oC  
power-saving mode  
10  
f
= 35 kHz  
10  
clk  
0
0
0
0
5
10  
5
10  
V
(V)  
V
(V)  
DD  
DD  
VLCD = 0 V; external clock; Tamb = 25 °C.  
VLCD = 0 V; external clock; fclk = nominal frequency.  
Fig.25 ISS as a function of VDD  
.
Fig.26 ILCD as a function of VDD.  
2001 Oct 02  
31  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
11.2 Typical characteristics of LCD outputs  
MBE532 - 1  
MBE526  
2.5  
2.0  
10  
handbook, halfpage  
R
R
S
O(max)  
(kΩ)  
R
O(max)  
(kΩ)  
R
S
1.5  
1.0  
1
R
R
BP  
BP  
0.5  
0
-1  
10  
40  
0
40  
80  
120  
( C)  
amb  
0
3
6
o
V
(V)  
DD  
T
VLCD = 0 V; Tamb = 25 °C.  
VDD = 5 V; VLCD = 0 V.  
Fig.27 RO(max) as a function of VDD  
.
Fig.28 RO(max) as a function of Tamb  
.
2001 Oct 02  
32  
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
SDA  
SCL  
SYNC  
CLK  
V
DD  
V
SS  
V
LCD  
SDA  
SCL  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S39  
S38  
S37  
S36  
S35  
S34  
S33  
S32  
S31  
S30  
S29  
S28  
S27  
S26  
S25  
S24  
S23  
S22  
S21  
1
2
56  
55  
54  
53  
52  
51  
50  
49  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
S79  
S78  
S77  
S76  
S75  
S74  
S73  
S72  
S71  
S70  
S69  
S68  
S67  
S66  
S65  
S64  
S63  
S62  
S61  
SYNC  
CLK  
3
3
4
4
V
5
5
DD  
OSC  
A0  
6
6
7
7
A1  
8
8
A2  
9
9
SA0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
V
SS  
V
LCD  
BP0  
BP2  
BP1  
BP3  
S0  
BP0  
BP2  
BP1  
BP3  
S40  
S41  
S42  
S43  
open  
PCF8576T  
PCF8576T  
S1  
S2  
S3  
34  
33  
32  
31  
30  
29  
S17  
S16  
S15  
34  
33  
32  
31  
30  
29  
S57  
S56  
S55  
S7  
S8  
24  
25  
26  
27  
28  
S47  
S48  
S49  
S50  
S51  
24  
25  
26  
27  
28  
S9  
S14  
S13  
S12  
S54  
S53  
S52  
S10  
S11  
S0  
S10  
S11  
S12  
S13  
S39  
S40  
S50  
S51  
S52  
S53  
S79  
MBK281  
backplanes  
segments  
Fig.29 Single plane wiring of packaged PCF8576Ts.  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
12.1 Chip-on-glass cascadability in single plane  
and the backplane output pads. The only bus line that does  
not require a second opening to lead through to the next  
PCF8576 is VLCD, being the cascade centre. The placing  
of VLCD adjacent to VSS allows the two supplies to be  
connected together.  
In chip-on-glass technology, where driver devices are  
bonded directly onto glass of the LCD, it is important that  
the devices may be cascaded without the crossing of  
conductors, but the paths of conductors can be continued  
on the glass under the chip. All of this is facilitated by the  
PCF8576 bonding pad layout (see Fig.30). Pads needing  
bus interconnection between all PCF8576s of the cascade  
are VDD, VSS, VLCD, CLK, SCL, SDA and SYNC. These  
lines may be led to the corresponding pads of the next  
PCF8576 through the wide opening between VLCD pad  
When an external clocking source is to be used, OSC of all  
devices should be connected to VDD. The pads OSC,  
A0, A1, A2 and SA0 have been placed between  
VSS and VDD to facilitate wiring of oscillator, hardware  
subaddress and slave address.  
13 BONDING PAD INFORMATION  
34  
35  
36  
33 32 31 30 29 28 27 26 25 24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
S3  
S18  
S19  
S2  
S1  
37  
38  
39  
40  
41  
42  
S20  
S21  
S22  
S23  
S24  
S25  
S0  
BP3  
BP1  
BP2  
BP0  
x
4.12  
mm  
0
0
y
43  
44  
45  
46  
47  
48  
S26  
S27  
S28  
S29  
S30  
S31  
PCF8576  
cascade  
centre  
V
12  
11  
10  
9
LCD  
V
SS  
49  
50  
51  
S32  
S33  
SA0  
A2  
52 53 54 55 56  
1
2
3
4
5
6
7
8
3.07 mm  
MBK282  
Bonding pad dimensions: 120 × 120 µm.  
Gold bump dimensions: 94 × 94 × 25 µm.  
Fig.30 Bonding pad locations.  
34  
2001 Oct 02  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
Table 15 Bonding pad locations (dimensions in µm)  
COORDINATES  
All x and y coordinates are referenced to centre of chip  
(see Fig.30).  
SYMBOL  
S13  
PAD  
x
y
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
555  
755  
1900  
1900  
1900  
1900  
1900  
1660  
1420  
1200  
1000  
800  
COORDINATES  
SYMBOL  
SDA  
PAD  
S14  
S15  
S16  
S17  
S18  
S19  
S20  
S21  
S22  
S23  
S24  
S25  
S26  
S27  
S28  
S29  
S30  
S31  
S32  
S33  
S34  
S35  
S36  
S37  
S38  
S39  
x
y
955  
1
155  
45  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1700  
1500  
1300  
1100  
300  
1155  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1155  
955  
SCL  
SYNC  
CLK  
VDD  
OSC  
A0  
2
3
245  
4
445  
5
645  
6
865  
7
1105  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1375  
1105  
865  
A1  
8
600  
A2  
9
400  
SA0  
VSS  
VLCD  
BP0  
BP2  
BP1  
BP3  
S0  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
200  
200  
400  
600  
800  
1000  
1200  
1420  
1660  
1900  
1900  
1900  
1900  
1900  
900  
500  
700  
900  
1100  
1300  
1500  
1700  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
1900  
S1  
S2  
S3  
S4  
S5  
755  
S6  
555  
S7  
645  
355  
S8  
445  
S9  
245  
Table 16 Bonding pad dimensions  
S10  
S11  
S12  
45  
Pad pitch  
200 µm  
155  
355  
Pad size, aluminium  
Gold bump dimensions  
120 × 120 µm  
94 × 94 × 25 µm  
2001 Oct 02  
35  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
14 TRAY INFORMATION: PCF8576U  
x
G
A
C
H
y
1,1  
1,2  
2,1  
x,1  
D
B
F
x,y  
1,y  
A
A
E
M
J
MGU431  
SECTION A-A  
For dimensions see Table 18.  
Fig.31 Tray details.  
Table 17 Tray dimensions (see Fig.33)  
SYMBOL  
DESCRIPTION  
VALUE  
handbook, halfpage  
A
B
C
D
E
F
G
H
J
pocket pitch; x direction  
pocket pitch; y direction  
pocket width; x direction  
pocket width; y direction  
tray width; x direction  
6.32 mm  
6.32 mm  
4.55 mm  
4.55 mm  
50.67 mm  
50.67 mm  
6.32 mm  
6.32 mm  
3.94 mm  
0.61 mm  
7
tray width; y direction  
cut corner to pocket 1,1 centre  
cut corner to pocket 1,1 centre  
tray thickness  
PC8576U  
M
x
pocket depth  
number of pockets; x direction  
number of pockets; y direction  
MGU432  
y
7
The orientation of the IC in a pocket is indicated by the  
position of the IC type name on the die surface with respect to  
the chamfer on the upper left corner of the tray.  
Fig.32 Tray alignment.  
2001 Oct 02  
36  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
15 TRAY INFORMATION: PCF8576U/2  
x
G
A
C
y
H
1,1  
1,2  
2,1  
x,1  
D
B
F
x,y  
1,y  
A
K
A
E
M
L
J
MGW014  
SECTION A-A  
For dimensions see Table 17.  
Fig.33 Tray details.  
Table 18 Tray dimensions (see Fig.31)  
SYMBOL  
DESCRIPTION  
VALUE  
handbook, halfpage  
A
B
C
D
E
F
G
H
J
pocket pitch; x direction  
pocket pitch; y direction  
pocket width; x direction  
pocket width; y direction  
tray width; x direction  
tray width; y direction  
cut corner to pocket 1,1 centre  
cut corner to pocket 1,1 centre  
tray thickness  
5.33 mm  
7.11 mm  
3.43 mm  
4.67 mm  
50.67 mm  
50.67 mm  
6.67 mm  
7.56 mm  
3.94 mm  
1.76 mm  
2.46 mm  
0.89 mm  
8
PCF8576U/2  
K
L
tray cross section  
tray cross section  
MGW015  
M
x
pocket depth  
number of pockets; x direction  
number of pockets; y direction  
The orientation of the IC in a pocket is indicated by the  
position of the IC type name on the die surface with respect to  
the chamfer on the upper left corner of the tray.  
y
6
Fig.34 Tray alignment.  
2001 Oct 02  
37  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
16 PACKAGE OUTLINES  
VSO56: plastic very small outline package; 56 leads  
SOT190-1  
D
E
A
X
c
y
H
v
M
A
E
Z
56  
29  
Q
p
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
L
detail X  
1
28  
w
M
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(2)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
0.3  
0.1  
3.0  
2.8  
0.42  
0.30  
0.22 21.65 11.1  
0.14 21.35 11.0  
15.8  
15.2  
1.6  
1.4  
1.45  
1.30  
0.90  
0.55  
3.3  
0.25  
0.01  
0.75  
2.25  
0.2  
0.1  
0.1  
7o  
0o  
0.012 0.12  
0.004 0.11  
0.017 0.0087 0.85  
0.012 0.0055 0.84  
0.44  
0.43  
0.62  
0.60  
0.063 0.057  
0.055 0.051  
0.035  
0.022  
inches  
0.008 0.004 0.004  
0.0295  
0.089  
0.13  
Note  
1. Plastic or metal protrusions of 0.3 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
96-04-02  
97-08-11  
SOT190-1  
2001 Oct 02  
38  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
17 SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
17.1 Introduction to soldering surface mount  
packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is  
recommended.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The footprint must incorporate solder thieves at the  
downstream end.  
17.2 Reflow soldering  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 and 200 seconds depending  
on heating method.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 220 °C for  
thick/large packages, and below 235 °C for small/thin  
packages.  
17.4 Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
17.3 Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
2001 Oct 02  
39  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
17.5 Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
not suitable  
REFLOW(1)  
BGA, HBGA, LFBGA, SQFP, TFBGA  
HBCC, HLQFP, HSQFP, HSOP, HTQFP, HTSSOP, HVQFN, SMS  
PLCC(3), SO, SOJ  
suitable  
not suitable(2)  
suitable  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(3)(4) suitable  
not recommended(5)  
suitable  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2001 Oct 02  
40  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
18 DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS(1)  
STATUS(2)  
DEFINITIONS  
Objective specification  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
Preliminary specification Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
Product specification  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Changes will be  
communicated according to the Customer Product/Process Change  
Notification (CPCN) procedure SNW-SQ-650A.  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
19 DEFINITIONS  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Short-form specification  
The data in a short-form  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Bare die  
All die are tested and are guaranteed to  
Application information  
Applications that are  
comply with all data sheet limits up to the point of wafer  
sawing for a period of ninety (90) days from the date of  
Philips' delivery. If there are data sheet limits not  
guaranteed, these will be separately indicated in the data  
sheet. There are no post packing tests performed on  
individual die or wafer. Philips Semiconductors has no  
control of third party procedures in the sawing, handling,  
packing or assembly of the die. Accordingly, Philips  
Semiconductors assumes no liability for device  
functionality or performance of the die or systems after  
third party sawing, handling, packing or assembly of the  
die. It is the responsibility of the customer to test and  
qualify their application in which the die is used.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
20 DISCLAIMERS  
Life support applications  
These products are not  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
2001 Oct 02  
41  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
21 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2001 Oct 02  
42  
Philips Semiconductors  
Product specification  
Universal LCD driver for low multiplex rates  
PCF8576  
NOTES  
2001 Oct 02  
43  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2001  
SCA73  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403512/04/pp44  
Date of release: 2001 Oct 02  
Document order number: 9397 750 08044  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY