PCF8591T [NXP]

8-bit A/D and D/A converter; 8位A / D和D / A转换器
PCF8591T
型号: PCF8591T
厂家: NXP    NXP
描述:

8-bit A/D and D/A converter
8位A / D和D / A转换器

转换器 模拟IC 信号电路 光电二极管
文件: 总28页 (文件大小:140K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
PCF8591  
8-bit A/D and D/A converter  
Product specification  
2003 Jan 27  
Supersedes data of 2001 Dec 13  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
CONTENTS  
1
2
3
4
5
6
7
FEATURES  
APPLICATIONS  
GENERAL DESCRIPTION  
ORDERING INFORMATION  
BLOCK DIAGRAM  
PINNING  
FUNCTIONAL DESCRIPTION  
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
Addressing  
Control byte  
D/A conversion  
A/D conversion  
Reference voltage  
Oscillator  
8
CHARACTERISTICS OF THE I2C-BUS  
8.1  
8.2  
8.3  
8.4  
8.5  
Bit transfer  
Start and stop conditions  
System configuration  
Acknowledge  
I2C-bus protocol  
9
LIMITING VALUES  
10  
11  
12  
13  
14  
15  
16  
17  
17.1  
HANDLING  
DC CHARACTERISTICS  
D/A CHARACTERISTICS  
A/D CHARACTERISTICS  
AC CHARACTERISTICS  
APPLICATION INFORMATION  
PACKAGE OUTLINES  
SOLDERING  
Introduction to soldering through-hole mount  
packages  
17.2  
17.3  
17.4  
Soldering by dipping or by solder wave  
Manual soldering  
Suitability of through-hole mount IC packages  
for dipping and wave soldering methods  
18  
19  
20  
21  
DATA SHEET STATUS  
DEFINITIONS  
DISCLAIMERS  
PURCHASE OF PHILIPS I2C COMPONENTS  
2003 Jan 27  
2
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
1
FEATURES  
Single power supply  
Operating supply voltage 2.5 V to 6 V  
Low standby current  
Serial input/output via I2C-bus  
Address by 3 hardware address pins  
Sampling rate given by I2C-bus speed  
3
GENERAL DESCRIPTION  
The PCF8591 is a single-chip, single-supply low power  
8-bit CMOS data acquisition device with four analog  
inputs, one analog output and a serial I2C-bus interface.  
Three address pins A0, A1 and A2 are used for  
programming the hardware address, allowing the use of  
up to eight devices connected to the I2C-bus without  
additional hardware. Address, control and data to and from  
the device are transferred serially via the two-line  
bidirectional I2C-bus.  
4 analog inputs programmable as single-ended or  
differential inputs  
Auto-incremented channel selection  
Analog voltage range from VSS to VDD  
On-chip track and hold circuit  
8-bit successive approximation A/D conversion  
Multiplying DAC with one analog output.  
The functions of the device include analog input  
multiplexing, on-chip track and hold function, 8-bit  
analog-to-digital conversion and an 8-bit digital-to-analog  
conversion. The maximum conversion rate is given by the  
maximum speed of the I2C-bus.  
2
APPLICATIONS  
Closed loop control systems  
Low power converter for remote data acquisition  
Battery operated equipment  
Acquisition of analog values in automotive, audio and  
TV applications.  
4
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
PCF8591P  
DIP16  
SO16  
plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
PCF8591T  
plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
2003 Jan 27  
3
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
5
BLOCK DIAGRAM  
SCL  
SDA  
A0  
2
I C BUS  
INTERFACE  
A1  
STATUS  
REGISTER  
DAC DATA  
REGISTER  
ADC DATA  
REGISTER  
PCF8591  
A2  
EXT  
V
V
POWER ON  
RESET  
DD  
SS  
CONTROL  
LOGIC  
OSCILLATOR  
OSC  
AIN0  
AIN1  
AIN2  
AIN3  
SAMPLE  
AND  
HOLD  
ANALOGUE  
MULTIPLEXER  
SUCCESSIVE  
APPROXIMATION  
REGISTER/LOGIC  
COMPARATOR  
SAMPLE  
AND  
HOLD  
V
AOUT  
REF  
DAC  
AGND  
MBL821  
Fig.1 Block diagram.  
6
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
AINO  
1
2
3
4
5
6
7
8
9
analog inputs (A/D converter)  
AIN1  
AIN2  
AIN3  
A0  
handbook, halfpage  
AIN0  
1
2
3
4
5
6
7
8
16 V  
DD  
AIN1  
AIN2  
AIN3  
A0  
15 AOUT  
hardware address  
14  
V
REF  
A1  
13 AGND  
12 EXT  
11 OSC  
10 SCL  
PCF8591P  
A2  
VSS  
SDA  
SCL  
OSC  
EXT  
negative supply voltage  
I2C-bus data input/output  
A1  
A2  
10 I2C-bus clock input  
V
9
SDA  
11 oscillator input/output  
SS  
12 external/internal switch for  
oscillator input  
MBL822  
AGND  
VREF  
AOUT  
VDD  
13 analog ground  
14 voltage reference input  
15 analog output (D/A converter)  
16 positive supply voltage  
Fig.2 Pinning diagram (DIP16).  
2003 Jan 27  
4
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
handbook, halfpage  
msb  
lsb  
1
0
0
1
A2  
A1  
A0 R/W  
fixed part  
programmable part  
handbook, halfpage  
MBL824  
AIN0  
AIN1  
AIN2  
AIN3  
A0  
1
2
3
4
5
6
7
8
16  
V
DD  
15 AOUT  
Fig.4 Address byte.  
14  
13  
12  
11  
10  
9
V
REF  
AGND  
EXT  
PCF8591T  
7.2  
Control byte  
A1  
OSC  
SCL  
The second byte sent to a PCF8591 device will be stored  
in its control register and is required to control the device  
function. The upper nibble of the control register is used for  
enabling the analog output, and for programming the  
analog inputs as single-ended or differential inputs. The  
lower nibble selects one of the analog input channels  
defined by the upper nibble (see Fig.5). If the  
A2  
V
SDA  
SS  
MBL823  
auto-increment flag is set, the channel number is  
incremented automatically after each A/D conversion.  
If the auto-increment mode is desired in applications  
where the internal oscillator is used, the analog output  
enable flag in the control byte (bit 6) should be set. This  
allows the internal oscillator to run continuously, thereby  
preventing conversion errors resulting from oscillator  
start-up delay. The analog output enable flag may be reset  
at other times to reduce quiescent power consumption.  
Fig.3 Pinning diagram (SO16).  
7
FUNCTIONAL DESCRIPTION  
Addressing  
7.1  
The selection of a non-existing input channel results in the  
highest available channel number being allocated.  
Therefore, if the auto-increment flag is set, the next  
selected channel will be always channel 0. The most  
significant bits of both nibbles are reserved for future  
functions and have to be set to logic 0. After a Power-on  
reset condition all bits of the control register are reset to  
logic 0. The D/A converter and the oscillator are disabled  
for power saving. The analog output is switched to a  
high-impedance state.  
Each PCF8591 device in an I2C-bus system is activated by  
sending a valid address to the device. The address  
consists of a fixed part and a programmable part. The  
programmable part must be set according to the address  
pins A0, A1 and A2. The address always has to be sent as  
the first byte after the start condition in the I2C-bus  
protocol. The last bit of the address byte is the  
read/write-bit which sets the direction of the following data  
transfer (see Figs 4, 16 and 17).  
2003 Jan 27  
5
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
msb  
lsb  
0
X
X
X
0
X
X
X
CONTROL BYTE  
A/D CHANNEL NUMBER:  
00  
01  
10  
11  
channel 0  
channel 1  
channel 2  
channel 3  
AUTO-INCREMENT FLAG:  
(active if 1)  
ANALOGUE INPUT PROGRAMMING:  
00  
Four single-ended inputs  
AIN0  
AIN1  
AIN2  
AIN3  
channel 0  
channel 1  
channel 2  
channel 3  
01  
Three differential inputs  
AIN0  
channel 0  
channel 1  
channel 2  
AIN1  
AIN2  
AIN3  
10  
11  
Single-ended and differential mixed  
AIN0  
AIN1  
channel 0  
channel 1  
AIN2  
AIN3  
channel 2  
Two differential inputs  
AIN0  
channel 0  
channel 1  
AIN1  
AIN2  
AIN3  
ANALOGUE OUTPUT ENABLE FLAG:  
(analogue output active if 1)  
MBL825  
Fig.5 Control byte.  
6
2003 Jan 27  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
7.3  
D/A conversion  
control register. In the active state the output voltage is  
held until a further data byte is sent.  
The third byte sent to a PCF8591 device is stored in the  
DAC data register and is converted to the corresponding  
analog voltage using the on-chip D/A converter. This D/A  
converter consists of a resistor divider chain connected to  
the external reference voltage with 256 taps and selection  
switches. The tap-decoder switches one of these taps to  
the DAC output line (see Fig.6).  
The on-chip D/A converter is also used for successive  
approximation A/D conversion. In order to release the  
DAC for an A/D conversion cycle the unity gain amplifier is  
equipped with a track and hold circuit. This circuit holds the  
output voltage while executing the A/D conversion.  
The output voltage supplied to the analog output AOUT is  
given by the formula shown in Fig.7. The waveforms of a  
D/A conversion sequence are shown in Fig.8.  
The analog output voltage is buffered by an auto-zeroed  
unity gain amplifier. This buffer amplifier may be switched  
on or off by setting the analog output enable flag of the  
V
DAC out  
REF  
R256  
R255  
FF  
D7  
D6  
R3  
R2  
R1  
TAP  
DECODER  
02  
D0  
01  
AGND  
00  
MBL826  
Fig.6 DAC resistor divider chain.  
2003 Jan 27  
7
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
MBL827  
msb  
lsb  
DAC data  
register  
D7  
D6  
D5  
D4  
D3  
D2  
V
D1  
D0  
7
- V  
REF  
AGND  
i
Di × 2  
V
V
= V  
+
AOUT  
AOUT  
AGND  
256  
i = 0  
V
DD  
V
REF  
V
AGND  
V
SS  
00  
01  
02  
03  
04  
FE  
FF  
HEX code  
Fig.7 DAC data and DC conversion characteristics.  
MBL828  
PROTOCOL  
S
ADDRESS  
0
A
CONTROL BYTE  
A
DATA BYTE 1  
A
DATA BYTE 2  
A
SCL  
1
2
8
9
1
9
1
9
1
SDA  
V
AOUT  
high impedance state or  
previous value held in DAC register  
previous value held in  
DAC register  
value of data byte 1  
time  
Fig.8 D/A conversion sequence.  
8
2003 Jan 27  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
7.4  
A/D conversion  
converted to the corresponding 8-bit binary code. Samples  
picked up from differential inputs are converted to an 8-bit  
twos complement code (see Figs 10 and 11).  
The A/D converter makes use of the successive  
approximation conversion technique. The on-chip D/A  
converter and a high-gain comparator are used  
temporarily during an A/D conversion cycle.  
The conversion result is stored in the ADC data register  
and awaits transmission. If the auto-increment flag is set  
the next channel is selected.  
An A/D conversion cycle is always started after sending a  
valid read mode address to a PCF8591 device. The A/D  
conversion cycle is triggered at the trailing edge of the  
acknowledge clock pulse and is executed while  
transmitting the result of the previous conversion (see  
Fig.9).  
The first byte transmitted in a read cycle contains the  
conversion result code of the previous read cycle. After a  
Power-on reset condition the first byte read is a  
hexadecimal 80. The protocol of an I2C-bus read cycle is  
shown in Chapter 8, Figs 16 and 17.  
Once a conversion cycle is triggered an input voltage  
sample of the selected channel is stored on the chip and is  
The maximum A/D conversion rate is given by the actual  
speed of the I2C-bus.  
PROTOCOL  
S
ADDRESS  
1
A
DATA BYTE 0  
A
DATA BYTE 1  
A
DATA BYTE 2  
A
SCL  
1
2
8
9
1
9
1
9
1
SDA  
sampling byte 1  
sampling byte 2  
sampling byte 3  
conversion of byte 1  
conversion of byte 2  
conversion of byte 3  
transmission  
of previously  
converted byte  
transmission  
of byte 1  
transmission  
of byte 2  
MBL829  
Fig.9 A/D conversion sequence.  
2003 Jan 27  
9
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
MBL830  
HEX  
code  
FF  
FE  
V
V  
REF  
AGND  
V
=
lsb  
256  
04  
03  
02  
01  
00  
0
1
2
3
4
254 255  
V
V  
AGND  
AIN  
V
lsb  
Fig.10 A/D conversion characteristics of single-ended inputs.  
HEX  
CODE  
MBL831  
7F  
7E  
02  
01  
00  
128 127  
2  
1  
0
1
2
126  
127  
V
V  
AIN −  
AIN +  
FF  
V
lsb  
FE  
V
V  
REF  
AGND  
V
=
lsb  
256  
81  
80  
Fig.11 A/D conversion characteristics of differential inputs.  
10  
2003 Jan 27  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
7.5  
Reference voltage  
7.6  
Oscillator  
For the D/A and A/D conversion either a stable external  
voltage reference or the supply voltage has to be applied  
to the resistor divider chain (pins VREF and AGND).  
The AGND pin has to be connected to the system analog  
An on-chip oscillator generates the clock signal required  
for the A/D conversion cycle and for refreshing the  
auto-zeroed buffer amplifier. When using this oscillator the  
EXT pin has to be connected to VSS. At the OSC pin the  
oscillator frequency is available.  
ground and may have a DC off-set with reference to VSS  
.
A low frequency may be applied to the VREF and AGND  
pins. This allows the use of the D/A converter as a  
one-quadrant multiplier; see Chapter 15 and Fig.7.  
If the EXT pin is connected to VDD the oscillator output  
OSC is switched to a high-impedance state allowing the  
user to feed an external clock signal to OSC.  
The A/D converter may also be used as a one or two  
quadrant analog divider. The analog input voltage is  
divided by the reference voltage. The result is converted to  
a binary code. In this application the user has to keep the  
reference voltage stable during the conversion cycle.  
2003 Jan 27  
11  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
8
CHARACTERISTICS OF THE I2C-BUS  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules. The two lines are a serial data  
line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data  
transfer may be initiated only when the bus is not busy.  
8.1  
Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period  
of the clock pulse as changes in the data line at this time will be interpreted as a control signal.  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
MBC621  
Fig.12 Bit transfer.  
8.2  
Start and stop conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the  
clock is HIGH, is defined as the start condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH, is  
defined as the stop condition (P).  
SDA  
SCL  
SDA  
SCL  
S
P
STOP condition  
START condition  
MBC622  
Fig.13 Definition of START and STOP condition.  
2003 Jan 27  
12  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
8.3  
System configuration  
A device generating a message is a ‘transmitter’, a device receiving a message is the ‘receiver’. The device that controls  
the message is the ‘master’ and the devices which are controlled by the master are the ‘slaves’.  
SDA  
SCL  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
TRANSMITTER /  
RECEIVER  
MASTER  
TRANSMITTER /  
RECEIVER  
SLAVE  
RECEIVER  
MASTER  
TRANSMITTER  
MBA605  
Fig.14 System configuration.  
8.4  
Acknowledge  
The number of data bytes transferred between the start and stop conditions from transmitter to receiver is not limited.  
Each data byte of eight bits is followed by one acknowledge bit. The acknowledge bit is a HIGH level put on the bus by  
the transmitter whereas the master also generates an extra acknowledge related clock pulse. A slave receiver which is  
addressed must generate an acknowledge after the reception of each byte. Also a master must generate an  
acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that  
acknowledges has to pull down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW  
during the HIGH period of the acknowledge related clock pulse. A master receiver must signal an end of data to the  
transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a stop condition.  
DATA OUTPUT  
BY TRANSMITTER  
not acknowledge  
DATA OUTPUT  
BY RECEIVER  
acknowledge  
SCL FROM  
MASTER  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
MBC602  
Fig.15 Acknowledgement on the I2C-bus.  
2003 Jan 27  
13  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
8.5  
I2C-bus protocol  
After a start condition a valid hardware address has to be sent to a PCF8591 device. The read/write bit defines the  
direction of the following single or multiple byte data transfer. For the format and the timing of the start condition (S), the  
stop condition (P) and the acknowledge bit (A) refer to the I2C-bus characteristics. In the write mode a data transfer is  
terminated by sending either a stop condition or the start condition of the next data transfer.  
acknowledge  
from PCF8591  
acknowledge  
from PCF8591  
acknowledge  
from PCF8591  
S
ADDRESS  
0
A
CONTROL BYTE  
A
DATA BYTE  
A
P/S  
N = 0 to M  
data bytes  
MBL833  
Fig.16 Bus protocol for write mode, D/A conversion.  
acknowledge  
from PCF8591  
acknowledge  
from master  
no acknowledge  
S
ADDRESS  
1
A
DATA BYTE  
A
LAST DATA BYTE  
1
P
N = 0 to M  
data bytes  
MBL834  
Fig.17 Bus protocol for read mode, A/D conversion.  
2003 Jan 27  
14  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
9
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER  
VDD supply voltage (pin 16)  
MIN.  
MAX.  
UNIT  
0.5  
0.5  
+8.0  
VDD + 0.5  
±10  
V
VI  
II  
input voltage (any input)  
DC input current  
V
mA  
mA  
mA  
mW  
mW  
°C  
IO  
DC output current  
±20  
I
DD, ISS  
VDD or VSS current  
±50  
Ptot  
PO  
Tamb  
Tstg  
total power dissipation per package  
power dissipation per output  
operating ambient temperature  
storage temperature  
300  
100  
40  
65  
+85  
+150  
°C  
10 HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).  
2003 Jan 27  
15  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
11 DC CHARACTERISTICS  
VDD = 2.5 V to 6 V; VSS = 0 V; Tamb = 40 °C to +85 °C unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDD  
IDD  
supply voltage (operating)  
supply current  
2.5  
6.0  
V
standby  
VI = VSS or VDD; no load  
1
15  
µA  
µA  
mA  
V
operating, AOUT off  
operating, AOUT active  
Power-on reset level  
f
SCL = 100 kHz  
SCL = 100 kHz  
125  
0.45  
250  
1.0  
2.0  
f
VPOR  
note 1  
0.8  
Digital inputs/output: SCL, SDA, A0, A1, A2  
VIL  
VIH  
IL  
LOW level input voltage  
HIGH level input voltage  
leakage current  
A0, A1, A2  
0
0.3 × VDD  
V
V
0.7 × VDD  
VDD  
VI = VSS to VDD  
VI = VSS to VDD  
250  
1  
+250  
+1  
5
nA  
µA  
pF  
mA  
SCL, SDA  
Ci  
input capacitance  
IOL  
LOW level SDA output current VOL = 0.4 V  
3.0  
Reference voltage inputs  
VREF  
VAGND  
ILI  
reference voltage  
VREF > VAGND; note 2  
VREF > VAGND; note 2  
VSS + 1.6  
VSS  
VDD  
V
analog ground voltage  
input leakage current  
input resistance  
VDD 0.8 V  
250  
+250  
nA  
RREF  
pins VREF and AGND  
100  
kΩ  
Oscillator: OSC, EXT  
ILI  
input leakage current  
oscillator frequency  
250  
nA  
fOSC  
0.75  
1.25  
MHz  
Notes  
1. The power on reset circuit resets the I2C-bus logic when VDD is less than VPOR  
2. A further extension of the range is possible, if the following conditions are fulfilled:  
REF + V  
.
V
V
REF + V  
AGND 0.8V, V  
--------------------------------------  
AGND 0.4V  
--------------------------------------  
DD  
2
2
2003 Jan 27  
16  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
12 D/A CHARACTERISTICS  
VDD = 5.0 V; VSS = 0 V; VREF = 5.0 V; VAGND = 0 V; RL = 10 k; CL = 100 pF; Tamb = 40 °C to +85 °C unless otherwise  
specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Analog output  
VOA  
output voltage  
no resistive load  
RL = 10 kΩ  
VSS  
VDD  
V
V
VSS  
0.9 × VDD  
ILO  
output leakage current  
AOUT disabled  
250  
nA  
Accuracy  
OSe  
Le  
offset error  
Tamb = 25 °C  
50  
±1.5  
1
mV  
LSB  
%
linearity error  
Ge  
gain error  
no resistive load  
to 12 LSB full scale step  
tDAC  
fDAC  
SNRR  
settling time  
90  
11.1  
µs  
conversion rate  
supply noise rejection ratio  
kHz  
dB  
f = 100 Hz;  
40  
VDDN = 0.1 × VPP  
13 A/D CHARACTERISTICS  
DD = 5.0 V; VSS = 0 V; VREF = 5.0 V; VAGND = 0 V; RS = 10 k; Tamb = 40 °C to +85 °C unless otherwise specified.  
V
SYMBOL  
Analog inputs  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VIA  
ILIA  
CIA  
CID  
VIS  
VID  
analog input voltage  
VSS  
VDD  
V
analog input leakage current  
analog input capacitance  
differential input capacitance  
single-ended voltage  
100  
nA  
pF  
pF  
V
10  
10  
measuring range  
VAGND  
VREF  
differential voltage  
measuring range;  
VFS = VREF VAGND  
V
VFS  
+VFS  
------------  
2
-------------  
2
Accuracy  
OSe  
Le  
offset error  
Tamb = 25 °C  
20  
±1.5  
1
mV  
LSB  
%
linearity error  
Ge  
gain error  
GSe  
CMRR  
SNRR  
small-signal gain error  
common-mode rejection ratio  
supply noise rejection ratio  
Vi = 16 LSB  
5
%
60  
40  
dB  
dB  
f = 100 Hz;  
VDDN = 0.1 × VPP  
tADC  
fADC  
conversion time  
90  
µs  
sampling/conversion rate  
11.1  
kHz  
2003 Jan 27  
17  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
MBL836  
MBL835  
160  
200  
handbook, halfpage  
handbook, halfpage  
I
I
DD  
DD  
(µA)  
(µA)  
40 °c  
+27 °c  
120  
150  
80  
40  
100  
50  
0
+85 °c  
0
2
3
4
5
6
2
3
4
5
6
V
(V)  
V
(V)  
DD  
DD  
a. Internal oscillator; Tamb = +27° C.  
b. External oscillator.  
Fig.18 Operating supply current as a function of supply voltage (analog output disabled).  
MBL837  
MBL838  
500  
500  
handbook, halfpage  
D/A output  
impedance ()  
handbook, halfpage  
D/A output  
impedance ()  
400  
400  
300  
300  
200  
100  
0
200  
100  
0
00  
02  
04  
06  
08  
0A  
BO  
CO  
DO  
EO  
FO  
FF  
hex input code  
hex input code  
a. Output impedance near negative power rail;  
b. Output impedance near positive power rail;  
Tamb = +27 °C.  
Tamb = +27 °C.  
The x-axis represents the hex input-code equivalent of the output voltage.  
Fig.19 Output impedance of analog output buffer (near power rails).  
2003 Jan 27  
18  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
14 AC CHARACTERISTICS  
All timing values are valid within the operating supply voltage and ambient temperature range and reference to VIL and  
IH with an input voltage swing of VSS to VDD  
V
.
SYMBOL PARAMETER  
I2C-bus timing (see Fig.20; note 1)  
MIN.  
TYP.  
MAX.  
UNIT  
fSCL  
SCL clock frequency  
100  
kHz  
tSP  
tolerable spike width on bus  
bus free time  
100  
ns  
µs  
µs  
µs  
µs  
µs  
µs  
µs  
ns  
ns  
µs  
µs  
tBUF  
4.7  
4.7  
4.0  
4.7  
4.0  
tSU;STA  
tHD;STA  
tLOW  
tHIGH  
tr  
START condition set-up time  
START condition hold time  
SCL LOW time  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
data set-up time  
1.0  
0.3  
tf  
tSU;DAT  
tHD;DAT  
tVD;DAT  
tSU;STO  
250  
0
data hold time  
SCL LOW-to-data out valid  
STOP condition set-up time  
3.4  
4.0  
Note  
1. A detailed description of the I2C-bus specification, with applications, is given in brochure “The I2C-bus and how to  
use it”. This brochure may be ordered using the code 9398 393 40011.  
START  
CONDITION  
(S)  
BIT 7  
MSB  
(A7)  
BIT 6  
(A6)  
BIT 0  
LSB  
(R/W)  
ACKNOWLEDGE  
(A)  
STOP  
CONDITION  
(P)  
PROTOCOL  
t
t
t
HIGH  
SU;STA  
LOW  
1 / f  
SCL  
SCL  
SDA  
t
t
t
f
BUF  
r
t
t
t
t
t
HD;STA  
SU;DAT  
VD;DAT  
SU;STO  
HD;DAT  
MBD820  
Fig.20 I2C-bus timing diagram; rise and fall times refer to VIL and VIH.  
2003 Jan 27  
19  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
15 APPLICATION INFORMATION  
Inputs must be connected to VSS or VDD when not in use. Analog inputs may also be connected to AGND or VREF  
.
In order to prevent excessive ground and supply noise and to minimize cross-talk of the digital to analog signal paths the  
user has to design the printed-circuit board layout very carefully. Supply lines common to a PCF8591 device and noisy  
digital circuits and ground loops should be avoided. Decoupling capacitors (>10 µF) are recommended for power supply  
and reference voltage inputs.  
V
DD  
V
V
V
DD  
DD  
DD  
V
0
AIN0  
AIN1  
AIN2  
AIN3  
A0  
AOUT  
V
OUT  
V
REF  
AGND  
V
DD  
+θ  
EXT  
OSC  
PCF8591  
A1  
SCL  
SDA  
A2  
V
+θ  
SS  
V
DD  
V
AIN0  
AIN1  
AIN2  
AIN3  
A0  
AOUT  
V
DD  
OUT  
V
V
REF  
AGND  
EXT  
V
V
0
1
2
OSC  
V
DD  
PCF8591  
A1  
SCL  
SDA  
A2  
V
SS  
V
DD  
MASTER  
TRANSMITTER  
ANALOGUE GROUND  
DIGITAL GROUND  
2
I C bus  
MBL839  
Fig.21 Application diagram.  
20  
2003 Jan 27  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
16 PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil)  
SOT38-4  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
b
2
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.30  
0.53  
0.38  
1.25  
0.85  
0.36  
0.23  
19.50  
18.55  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
0.76  
0.068 0.021 0.049 0.014  
0.051 0.015 0.033 0.009  
0.77  
0.73  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.030  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-01-14  
SOT38-4  
2003 Jan 27  
21  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
SO16: plastic small outline package; 16 leads; body width 7.5 mm  
SOT162-1  
D
E
A
X
c
H
v
M
A
E
y
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
detail X  
e
w
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
10.5  
10.1  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.41  
0.014 0.009 0.40  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT162-1  
075E03  
MS-013  
2003 Jan 27  
22  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
17 SOLDERING  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
17.1 Introduction to soldering through-hole mount  
packages  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
This text gives a brief insight to wave, dip and manual  
soldering. A more in-depth account of soldering ICs can be  
found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of  
through-hole mount IC packages on a printed-circuit  
board.  
17.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
17.2 Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds.  
300 and 400 °C, contact may be up to 5 seconds.  
17.4 Suitability of through-hole mount IC packages for dipping and wave soldering methods  
SOLDERING METHOD  
PACKAGE  
DIPPING  
WAVE  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable(1)  
Note  
1. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
2003 Jan 27  
23  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
18 DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
19 DEFINITIONS  
20 DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2003 Jan 27  
24  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
21 PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
2003 Jan 27  
25  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
NOTES  
2003 Jan 27  
26  
Philips Semiconductors  
Product specification  
8-bit A/D and D/A converter  
PCF8591  
NOTES  
2003 Jan 27  
27  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2003  
SCA75  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403512/06/pp28  
Date of release: 2003 Jan 27  
Document order number: 9397 750 10464  

相关型号:

PCF8591T,112

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T,118

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T,512

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T,518

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591T-T

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591T/2

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, LEAD FREE, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591T/2,512

PCF8591 - 8-bit A/D and D/A converter SOP 16-Pin
NXP

PCF8591TD

IC SPECIALTY ANALOG CIRCUIT, PDSO16, 7.50 MM, LEAD FREE, PLASTIC, SOT162-1, SO-16, Analog IC:Other
NXP

PCF8591TD-T

CODEC, Single
ETC

PCF8591_03

8-bit A/D and D/A converter
NXP

PCF8593

Low power clock/calendar
NXP

PCF8593N

IC REAL TIME CLOCK, PDIP8, 0.300 INCH, PLASTIC, MO-001AN, SOT-97-1, DIP-8, Timer or RTC
NXP