PIMXRT595SFFOXCR [NXP]

i.MX RT500 Low-Power Crossover Processor Data Sheet with Addendum;
PIMXRT595SFFOXCR
型号: PIMXRT595SFFOXCR
厂家: NXP    NXP
描述:

i.MX RT500 Low-Power Crossover Processor Data Sheet with Addendum

文件: 总119页 (文件大小:1702K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: IMXRT500EC  
Rev. 0.1, 04/2021  
NXP Semiconductors  
Data Sheet  
i.MX RT500 Low-Power  
Crossover Processor Data Sheet with  
Addendum  
Rev. 0.1 of the i.MX RT500 Low-Power Crossover Processor Data Sheet with Addendum has two parts:  
Revision 0 of the data sheet, immediately following this cover page. The changes described in the  
addendum have not been implemented in the specified pages.  
The addendum to revision 0 of the data sheet.  
© 2021 NXP B.V.  
NXP Semiconductors  
IMXRT500EC  
Data Sheet: Technical Data  
Rev. 0, 02/2021  
i.MX RT500 Low-Power  
Crossover Processor  
MIMXRT5XXSFFOC  
MIMXRT5XXSFFOCR  
MIMXRT5XXSFAWCR  
The i.MX RT500 is a family of dual-core microcontrollers for  
embedded applications featuring an Arm Cortex-M33 CPU  
combined with a Cadence® Xtensa® Fusion F1 Audio Digital  
Signal Processor CPU. The Cortex-M33 includes two hardware  
coprocessors providing enhanced performance for an array of  
complex algorithms along with a 2D Vector GPU with LCD  
Interface and MIPI DSI PHY. The family offers a rich set of  
peripherals and very low power consumption. The device has up  
to 5 MB SRAM, two FlexSPIs (Octal/Quad SPI Interfaces) each  
with 32 KB cache, one with dynamic decryption, high-speed USB  
device/host + PHY, 12-bit 1 MS/s ADC, Analog Comparator,  
Audio subsystems supporting up to 8 DMIC channels, 2D GPU  
and LCD Controller with MIPI DSI PHY, SDIO/eMMC; FlexIO;  
AES/SHA/Crypto M33 coprocessor and PUF key generation  
249 FOWLP 7.0mm x 141 WLCSP 4.525mm  
7.0mm x 0.725mm, x 4.525mm x 0.49mm,  
0.4mm pitch  
0.35mm pitch  
Control processor core  
Communication interface  
• Arm Cortex-M33 processor, running at frequencies of  
up to 200 MHz  
• Arm TrustZone  
• Arm Cortex-M33 built-in Memory Protection Unit (MPU)  
supporting eight regions  
• Single-precision Hardware Floating Point Unit (FPU).  
• Arm Cortex-M33 built-in Nested Vectored Interrupt  
Controller (NVIC).  
• Non-maskable Interrupt (NMI) input.  
• Two coprocessors for the Cortex-M33: a hardware  
accelerator for fixed and floating point DSP functions  
(PowerQuad) and a Crypto/FFT engine (Casper). The  
DSP coprocessor uses a bank of four dedicated 2 KB  
SRAMs. The Crypto/FFT engine uses a bank of two 2  
KB SRAMs that are also AHB accessible by the CPU  
and the DMA engine.  
• Serial Wire Debug with eight break points, four watch  
points, and a debug timestamp counter. It includes  
Serial Wire Output (SWO) trace and ETM trace.  
• Cortex-M33 System tick timer  
• 9 configurable universal serial interface modules  
(Flexcomm Interfaces). Each module contains an  
integrated FIFO and DMA support. Each of the nine  
modules can be configured as:  
• A USART with dedicated fractional baud rate  
generation and flow-control handshaking  
signals. The USART can optionally be clocked  
at 32 kHz and operated when the chip is in  
reduced power mode, using either the 32 kHz  
clock or an externally supplied clock. The  
USART also provides partial support for  
LIN2.2.  
• An I2C-bus interface with multiple address  
recognition, and a monitor mode. It supports  
400 Kb/sec Fast-mode and 1 Mb/sec Fast-  
mode Plus. It also supports 3.4 Mb/sec high-  
speed when operating in slave mode.  
• An SPI interface.  
• An I2S (Inter-IC Sound) interface for digital  
audio input or output. Each I2S supports up to  
four channel-pairs.  
DSP processor core  
• Two additional high-speed SPI interfaces supporting  
50 MHz operation  
• One additional I2C interface with open-drain pads  
• Two I3C bus interfaces  
• Cadence Tensilica Fusion F1 DSP processor, running  
at frequencies of up to 200 MHz.  
• Hardware Floating Point Unit.  
• Serial Wire Debug (shared with Cortex-M33 Control  
Domain CPU).  
• A digital microphone interface supporting up to 8  
channels with associated decimators and Voice  
NXP reserves the right to change the production detail specifications as may be  
required to permit improvements in the design of its products.  
Five I/O Power Rails  
Activation Detect. One pair of channels can be  
streamed directly to I2S. The DMIC supports DMA.  
• Five independent supplies powering different clusters  
of pins to permit interfacing directly to off-chip  
peripherals operating at different supply levels.  
Timers  
• One 32-bit SCTimer/PWM module (SCT). Multi-  
purpose timer with extensive event-generation,  
match/compare, and complex PWM and output  
control features.  
On-chip memory  
• Up to 5 MB of system SRAM accessible by both CPUs,  
both DMA engines, the Graphics Subsystem and all  
other AHB masters.  
• Additional SRAMs for USB traffic (16 KB), Cortex-M33  
co-processors (4 x 2 KB), SDIO FIFOs (2 x 512 B dual-  
port), PUF secure key generation (2 KB), FlexSPI  
caches (32 KB each), SmartDMA commands (32 KB),  
and a variety of dual and single port RAMs for  
graphics.  
• 10 general-purpose/PWM outputs, 8 general-  
purpose inputs  
• It supports DMA and can trigger external DMA  
events  
• It supports fractional match values for high  
resolution  
• Five general purpose, 32-bit timer/counter modules  
with PWM capability  
• 16 kbits OTP fuses  
• Up to 192 KB ROM memory for factory-programmed  
drivers and APIs  
• 24-bit multi-rate timer module with 4 channels each  
capable of generating repetitive interrupts at  
different, programmable frequencies.  
• Two Windowed Watchdog Timers (WDT) with  
dedicated watchdog oscillator (1 MHz LPOSC)  
• Frequency measurement module to determine the  
frequency of a selection of on-chip or off-chip clock  
sources.  
• System boot from High-speed SPI, FlexSPI Flash, HS  
USB, I2C, UART or eMMC via on-chip bootloader  
software included in ROM. FlexSPI boot mode will  
include an option for Execute-in-place start-up for non-  
secure boot.  
Digital peripherals  
• Real-Time Clock (RTC) with independent power  
supply and dedicated oscillator. Integrated wake-up  
timer can be used to wake the device up from low-  
power modes. The RTC resides in the “always-on”  
voltage domain. RTC includes eight 32-bit general-  
purpose registers which can retain contents when  
power is removed from the rest of the chip.  
• Ultra-low power micro-tick Timer running from the  
Watchdog oscillator with capture capability for  
timestamping. Can be used to wake up the device  
from low-power modes.  
• Two general purpose DMA engines, each with 37  
channels and up to 27 programmable request/trigger  
sources.  
• Can be configured such that one DMA is secure  
and the other non-secure and/or one can be  
designated for use by the M33 CPU and the  
other by the DSP  
• Smart DMA Controller with dedicated 32KB code RAM  
• USB high-speed host/device controller with on-chip  
PHY and dedicated DMA controller.  
• Two FlexSPI (Octal/Quad) Interfaces up to 200 MHz  
DDR/SDR (target). 32 KB caches with selectable  
cache policies based on programmable address  
regions. One of the FlexSPI interface will include on-  
the-fly decryption for execute-in-place and address-  
remapping to support dual-image boot. DMA supported  
(both modules).  
• 64-bit OS/Event Timer common to both processors  
with individual match/capture and interrupt  
generation logic. Enabled on POR  
Clocks  
• Crystal oscillator with an operating range of 4 MHz  
to 26 MHz.  
• Two SD/eMMC memory card interfaces with dedicated  
DMA controllers. One supports eMMC 5.0 with  
HS400/DDR operation.  
• Dual trim option: Internal 192/96 MHz FRO  
oscillator. Trimmed to 1% accuracy.  
• FRO capable of being tuned using an accurate  
reference clock (eg. XTAL Osc) to 0.1% accuracy  
with 46% duty cycle to support MIPI PHY and  
FlexSPI.  
• Internal 1 MHz low-power oscillator with 5%  
accuracy. Serves as the watchdog oscillator and  
clock for the OS/Event Timer and the Systick among  
others. Also available as the system clock to both  
domains.  
Analog peripherals  
• One 12-bit ADC with sampling rates of 1 Msamples/sec  
and an enhanced ADC controller. It supports up to 10  
single-ended channels or 5 differential channels. The  
ADC supports DMA.  
• Temperature sensor.  
• Analog comparator  
• 32 kHz real-time clock (RTC) oscillator that can  
optionally be used as a system clock.  
• Main System PLL:  
• allows CPU operation up to the maximum rate  
without the need for a high-frequency crystal.  
2
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Graphics/Multimedia  
May be run from the FRO, the crystal  
oscillator or the CLKIN pin.  
• 2D Vector Graphics Processing Unit, running at  
frequencies of up to 200 MHz.  
• LCD Display Interface supporting smart LCD displays  
and video mode.  
• MIPI DSI Interface with on-chip PHY supporting  
transfer rates up to 895.1 Mbps.  
• a second, independent PLL output provides  
alternate high-frequency clock source for the  
DSP CPU if the required frequency is different  
from the main system clock. (Note: 2nd PFD  
output from Main System PLL)  
• FlexIO can be configured to provide a parallel interface  
to an LCD  
• two additional PLL outputs provide potential  
clock sources to various peripherals.  
• Audio PLL for the audio subsystem.  
I/O Peripherals  
• Up to 136 general purpose I/O (GPIO) pins with  
configurable pull-up/pull-down resistors. Ports can be  
written as words, half-words, bytes, or bits.  
• Mirrored, secure GPIO0.  
• Individual GPIO pins can be used as edge and level  
sensitive interrupt sources, each with its own interrupt  
vector.  
• All GPIO pins can contribute to one of two ganged  
(OR’d) interrupts from the GPIO_HS module.  
• A group of up to 7 GPIO pins (from Port0/1) can be  
selected for Boolean pattern matching which can  
generate interrupts and/or drive a “pattern-match”  
output.  
Power Control  
• Main external power supply: 1.8V 5%  
• Vddcore supply (from PMIC or internal PMU):  
adjustable from 0.6 V to 1.1 V (including retention  
mode)  
• Analog supply: 1.71-3.6 V  
• Five VDDIO supplies (can be shared or  
independent): 1.71 - 3.6 V  
• USB Supply: 3.0-3.6 V  
• Reduced power modes:  
• Sleep mode: CPU clock shut down (each CPU  
independently)  
• Deep_sleep mode: User-selectable  
configuration via PDSLEEPCFG  
• Deep_powerdown mode: Internal power  
removed from entire chip except “always-on”  
domain  
• Adjustable output driver slew rates.  
• JTAG boundary scan  
Security  
Secure Isolation: Protection from software and remote  
attacks using Trustzone for armV8M. Hardware  
isolation of AES keys  
• Each individual SRAM partition can be  
independently powered-off or put into a low-  
power retain mode  
Secure Boot: firmware in ROM providing immutable  
root of trust  
• DSP Domain can be powered-off  
independently from the rest of the system.  
• Ability to operate the synchronous serial  
interfaces in sleep or deep-sleep as a slave or  
USART clocked by the 32 kHz RTC oscillator  
• Wake-up from low-power modes via interrupts  
from various peripherals including the RTC  
and the OS/Event timer  
Secure Storage: Physically Unclonable Function  
(PUF) based key store, On-the-fly-AES decryption  
(OTFAD) of off-chip flash for code storage  
Secure Debug: Certificate based debug authentication  
mechanism  
Secure Loader: Supports firmware update mechanism  
with authenticity (RSA signed) and confidentiality  
(AES-CTR encrypted) protection  
• RBB/FBB to provide additional control over power/  
performance trade-offs  
Secure Identity: 128-bit Universal Unique Identifier  
(UUID), 256-bit Compound Device Identifier (CDI) per  
TCG DICE specification  
• Power-On Reset (POR).  
Operating characteristics  
• Temperature range (ambient): -20 °C to +70 °C  
• VDDCORE: 0.7 V - 1.155 V  
• VDDIO_0/1/2/4: 1.71 V - 1.89 V  
• VDDIO_3: 1.71 V - 3.6 V  
Cryptographic Accelerators  
• Symmetric cryptography (AES) with  
128/192/256-bit key strength and protection  
against Side-channel analysis (Differential Power  
Analysis and Template attacks)  
• Asymmetric cryptography acceleration using  
CASPER co-processor  
• NIST SP 800-90b compliant TRNG design with  
512-bit output per call  
• Hash engine with SHA-256 and SHA1  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
3
NXP Semiconductors  
Connectivity  
System Control  
CPU Platform  
10x Frac rate gen  
8-Ch DMIC  
2x PLL  
ARM® Cortex-® M33  
(up to 200 MHz)  
1x I2C  
FlexIO  
FRO/OSC  
PMC  
FPU  
DSP Accelerator  
Crypto Accelerators  
TrustZone® M  
2xMIPI-I3  
GPIOs  
MPU  
NVIC  
2x SDIO/  
eMMC/SD  
2x HS SPI  
Semaphore  
Up to 9x Flexcomm  
(UART/I C/SPI/I S)  
HS USB Host/Device  
+ DCD w/ PHY  
2
2
DSP Processor  
Message unit  
Timers  
Fusion F1 DSP  
(up to 200 MHz)  
2x DMA  
RTC  
OS/Event Timer  
2x Watch Dog  
FPU  
5x Counter Timers  
Multi-Rate Timer  
CRC engine  
Multimedia  
2D GPU (up to 200 MHz)  
32-bit SCTimer/PWM  
Frequency Measure  
JTAG/SWD  
System Tick Timers  
MIPI®-DSI  
(2 lane)  
Display LCD  
Controller  
Internal Memory  
Upto 5 MB shared  
low-leakage SRAM  
Analog  
External Memory  
Analog Comparator  
12-bit, 1MSPS ADC  
2x Temp Sensor  
FlexSPI(Quad/Octal) with  
On-The-Fly OTFAD Decryption  
192 KB ROM  
2x 32 KB FlexSPI Cache  
16 KB USB RAM  
FlexSPI (Quad/Octal)  
Security  
RNG  
SRAM PUF  
SHA-1/SHA-2  
AES-256  
Available on certain product families  
Figure 1. i.MX RT500 Block Diagram  
The following table provides examples of orderable sample part numbers covered by this data sheet.  
4
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Orderable part number table  
Orderable part  
number  
Part number1  
SRAM DSP Graphics Security  
(MB)  
USB I2S  
Package  
MIMXRT595SFFOC  
MIMXRT555SFFOC  
MIMXRT533SFFOC  
MRT595SFFOC  
MRT555SFFOC  
MRT533SFFOC  
5
5
3
5
5
3
3
5
5
Yes Yes  
SRAM PUF, AES256, HS  
HASH  
9
9
9
9
9
9
6
6
6
FOWLP2492  
FOWLP249  
FOWLP249  
FOWLP2492  
FOWLP249  
FOWLP249  
WLCSP141  
WLCSP141  
WLCSP141  
No  
No  
Yes  
No  
SRAM PUF, AES256, HS  
HASH  
SRAM PUF, AES256, HS  
HASH  
MIMXRT595SFFOCR MRT595SFFOC  
MIMXRT555SFFOCR MRT555SFFOC  
MIMXRT533SFFOCR MRT533SFFOC  
MIMXRT533SFAWCR MRT533SFAWC  
MIMXRT555SFAWCR MRT555SFAWC  
MIMXRT595SFAWCR MRT595SFAWC  
Yes Yes  
SRAM PUF, AES256, HS  
HASH  
No  
No  
No  
No  
Yes  
No  
SRAM PUF, AES256, HS  
HASH  
SRAM PUF, AES256, HS  
HASH  
No  
SRAM PUF, AES256, HS  
HASH  
Yes  
SRAM PUF, AES256, HS  
HASH  
Yes Yes  
SRAM PUF, AES256, HS  
HASH  
1. As marked on package  
2. 249-pin Fan-out wafer-level package  
Device revision number  
Device Mask Set Number  
SILICONREV_ID  
JTAG_ID[CHIPREV]  
2P43B  
0x000B0002  
0x2  
Package markings for i.MX RT devices consist of 4 sets of identifiers as shown below.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
5
NXP Semiconductors  
Figure 2. Package markings  
• The 1st identifier defines the Part Number and is composed of 11 characters.  
• The 2nd and 4th identifiers define the Traceability markings.  
• The 3rd identifier defines the Date Code for the week of manufacture is a subset of the standard 5  
character format.  
The standard date code format is “xYYWW”:  
• The leading digit represented by “x” can be ignored and “YYWW” indicate the Date Code.  
• “YY" represents an encoding of the calendar year (for example, 19 corresponds to year 2019).  
• “WW” represents an encoding of the work week within the calendar year (for example, 07 corresponds to  
work week 7).  
Please provide this information to your local NXP representative for further details.  
The following figure explains the part number for this device.  
6
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
M
IMXRT  
#
#
#
#
# A AA  
x
A
A
Packing Method  
R
Reel  
SiliconRevision  
QualificationLevel  
A
Rev A  
Rev B  
Rev C  
M
P
MassProduction  
Prototype  
B
C
Feature4 (Optional)  
Speed/Power  
IMXRT  
Family  
x
Package  
Series  
FO FOWLP 249  
AW WLCSP 141  
5
RT500 series  
TemperatureRange  
F
-20 – 70 C  
Feature1  
3
5
9
no DSP, no Graphic  
no DSP, w Graphic  
w DSP, w Graphic  
Reserved  
Reserved  
Feature2 (SRAM)  
Feature3  
3
5
3MB  
5MB  
S
Security  
Figure 3. Part number diagram  
Related Resources  
Description  
Type  
Selector Guide  
The Solution Advisor is a web-based tool that features interactive application wizards and a  
dynamic product selector.  
Product Brief  
The Product Brief contains concise overview/summary information to enable quick evaluation of a  
device for design suitability.  
Reference Manual The i.MX RT500 Low-Power Crossover MCU Reference Manual contains a comprehensive  
description of the structure and function (operation) of a device.  
Data Sheet  
Chip Errata  
Refers to this document which includes electrical characteristics and signal connections.  
The chip mask set Errata provides additional or corrective information for a particular device mask  
set.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
7
NXP Semiconductors  
8
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Table of Contents  
1 Electrical characteristics........................................................10  
1.1 Chip-level conditions......................................................10  
1.7.5  
High-Speed SPI interface (Flexcomm  
interface 14).....................................................51  
SD/MMC and SDIO......................................... 53  
DMIC subsystem............................................. 56  
USB interface characteristics.......................... 57  
USB DCD electrical specifications...................57  
1.1.1  
1.1.2  
1.1.3  
1.1.4  
Thermal handling ratings................................. 10  
Moisture handling ratings................................ 10  
ESD handling ratings.......................................11  
Absolute maximum voltage and current  
1.7.6  
1.7.7  
1.7.8  
1.7.9  
ratings..............................................................11  
Thermal specifications.....................................13  
General operating conditions...........................14  
I/O parameters.................................................17  
Power consumption operating behavior.......... 19  
CoreMark data.................................................23  
1.7.10 USB High Speed Transceiver and PHY  
specifications................................................... 58  
1.7.11 Improved Inter-Integrated Circuit Interface  
(MIPI-I3C) specifications................................. 58  
1.8 Timer modules............................................................... 60  
1.1.5  
1.1.6  
1.1.7  
1.1.8  
1.1.9  
1.8.1  
SCTimer/PWM output timing........................... 61  
1.2 System power and clocks.............................................. 24  
2 Architectural overview...........................................................61  
2.1 Detailed block diagram.................................................. 61  
2.2 Shared system SRAM................................................... 62  
2.3 RT500 modules list........................................................ 63  
3 Application information..........................................................72  
3.1 Current consumption vs. memory partitions.................. 72  
3.2 Standard I/O pin configuration....................................... 73  
3.3 I/O power consumption..................................................74  
3.4 RTC oscillator................................................................ 74  
1.2.1  
1.2.2  
Power sequence..............................................24  
Free-running oscillator FRO-192/96M  
specifications................................................... 27  
Crystal oscillator.............................................. 28  
RTC oscillator.................................................. 29  
External Clock Input (CLKIN) pin.....................29  
Internal low-power oscillator (1 MHz).............. 29  
1.2.3  
1.2.4  
1.2.5  
1.2.6  
1.3 System modules............................................................ 30  
1.3.1  
1.3.2  
Reset timing parameters................................. 30  
Serial Wire Debug (SWD) timing  
3.4.1  
RTC Printed Circuit Board (PCB) design  
guidelines........................................................ 76  
specifications .................................................. 30  
JTAG timing specifications.............................. 31  
Wake-up process.............................................34  
3.5 XTAL oscillator...............................................................76  
1.3.3  
1.3.4  
3.5.1  
XTAL Printed Circuit Board (PCB) design  
guidelines........................................................ 78  
Thermally compensated crystal oscillator  
(TCXO)............................................................ 79  
1.4 External memory interface.............................................35  
1.4.1 FlexSPI Flash interface................................... 35  
1.5 Display and graphics..................................................... 38  
3.5.2  
3.6 Suggested USB interface solutions............................... 79  
4 Abbreviations........................................................................ 81  
5 Pinouts.................................................................................. 81  
5.1 Signal multiplexing and pinouts..................................... 81  
5.2 i.MXRT500 Pinouts: 249 FOWLP package................... 82  
5.3 i.MX RT500 Pinouts: 141 CSP package........................97  
5.4 249-pin FOWLP and 141-pin WLCSP ballmaps............106  
5.5 Termination of unused pins........................................... 107  
5.6 Pin states in different power modes...............................108  
5.7 Obtaining package dimensions......................................108  
6 Power supply for pins............................................................108  
7 Revision history.....................................................................110  
1.5.1  
1.5.2  
1.5.3  
LCDIF.............................................................. 38  
MIPI DSI timing................................................38  
Flexible IO controller (FlexIO)..........................38  
1.6 Analog characteristics....................................................39  
1.6.1  
1.6.2  
1.6.3  
12-bit ADC characteristics............................... 39  
Temperature sensor........................................ 42  
Comparator characteristics..............................43  
1.7 Communication interfaces............................................. 45  
1.7.1  
1.7.2  
1.7.3  
1.7.4  
USART interface..............................................45  
I2C-bus............................................................ 46  
I2S-bus interface............................................. 47  
SPI interfaces (Flexcomm interfaces 0-8)....... 49  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
9
NXP Semiconductors  
Electrical characteristics  
1 Electrical characteristics  
1.1 Chip-level conditions  
This section provides the device-level electrical characteristics for the IC. See the  
following table for a quick reference to the individual tables and sections.  
Table 1. i.MX RT500 chip-level conditions  
For these charateristics  
Absolute maximum voltage and current ratings  
Thermal handling ratings  
Topic appears  
Absolute maximum voltage and current ratings  
Thermal handling ratings  
Moisture handling ratings  
Moisture handling ratings  
ESD handling ratings  
ESD handling ratings  
Thermal characteristics  
Thermal characteristics  
General operating conditions  
I/O parameters  
General operating conditions  
I/O parameters  
Power consumption operating behavior  
Power consumption operating behavior  
1.1.1 Thermal handling ratings  
Symbol  
TSTG  
Description  
Min.  
Max.  
150  
Unit  
°C  
Notes  
Storage temperature  
Solder temperature, lead-free  
1
2
TSDR  
260  
°C  
1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.  
2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
1.1.2 Moisture handling ratings  
Symbol  
MSL  
Description  
Min.  
Max.  
Unit  
Notes  
Moisture sensitivity level (FOWLP)  
Moisture sensitivity level (WLCSP)  
3
1
1
1
MSL  
1. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic  
Solid State Surface Mount Devices.  
10  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Electrical characteristics  
1.1.3 ESD handling ratings  
Symbol  
VHBM  
Description  
Min.  
-2000  
-500  
Max.  
2000  
500  
Unit  
V
Notes  
Electrostatic discharge voltage, human body model  
1
2
VCDM  
Electrostatic discharge voltage, charged-device  
model  
V
ILAT  
Latch-up current at ambient temperature of 70 °C  
-100  
100  
mA  
3
1. Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human  
Body Model (HBM).  
2. Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components.  
3. Determined according to JEDEC Standard JESD78, IC Latch-Up Test.  
1.1.4 Absolute maximum voltage and current ratings  
Caution  
Stress beyond those listed under the following table may  
cause permanent damage to the device. These are stress  
ratings only. Functional operation of the device at these or  
any other conditions beyond those indicated under  
“recommended operating conditions” is not implied.  
Exposure to absolute-maximum-rated conditions for  
extended periods may affect device reliability.  
Table 2. Absolute maximum ratings1  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Max.  
Unit  
VDD_AO1V8  
Supply 1.8 V  
supply for  
“always on”  
features  
-
2
-0.3  
1.98  
V
VDD1V8  
1.8 V supply  
voltage for on-  
chip analog  
functions  
other than the  
ADC and  
-
-
2
2
-0.3  
-0.3  
1.98  
1.98  
V
V
comparator.  
VDD1V8_1  
1.8 V supply  
voltage for on-  
chip digital  
logic  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
11  
NXP Semiconductors  
Electrical characteristics  
Table 2. Absolute maximum ratings1 (continued)  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Max.  
Unit  
VDDCORE  
1.1 V input  
supply for  
core logic  
On-chip regulator  
not used.  
LDO_ENABLE=0.  
Power supplied  
by an off-chip  
power  
2
-0.3  
1.155  
V
management IC  
(PMIC).  
VDDIO_0/1/2/4  
VDDIO_3  
Supply  
voltage for  
GPIO pins  
-
-
-
2
2
2
-0.3  
-0.3  
-0.3  
1.98  
3.96  
1.98  
V
V
V
Supply  
voltage for  
GPIO pins  
VDDA_ADC1V8  
1.8 V analog  
supply voltage  
for ADC and  
comparator  
VDDA_BIAS  
VREFP  
Bias voltage  
for ADC and  
comparator  
-
-
2
2
-0.3  
-0.3  
3.96  
1.98  
V
V
ADC positive  
reference  
voltage  
USB1_VDD3V3  
USB1_VBUS  
USB1 analog  
3.3 V supply  
-
-
-
2
-
-0.3  
-0.3  
-0.3  
3.96  
5.6  
V
V
V
USB1_VBUS  
detection  
MIPI_DSI_VDD11  
MIPI DSI 1.1  
V PHY input  
core voltage  
supply  
-
1.155  
MIPI_DSI_VDD18  
MIPI DSI 1.8  
V PHY IO  
input voltage  
supply  
-
-
-
-
-0.3  
-0.3  
1.98  
V
V
MIPI_DSI_VDDA_CAP MIPI DSI 1.1  
1.155  
V capacitor  
output voltage  
supply  
IDD  
supply current per supply pin,  
(FOWLP249)  
3
3
-
-
100  
100  
mA  
mA  
1.71 V ≤ VDD  
3.6 V  
<
supply current per supply pin,  
(WCLSP141)  
1.71 V ≤ VDD  
3.6 V  
<
Table continues on the next page...  
12  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
Thermal specifications  
Table 2. Absolute maximum ratings1 (continued)  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Max.  
Unit  
ISS  
ground current per ground pin,  
(FOWLP249)  
3
-
100  
mA  
1.71 V ≤ VDD  
3.6 V  
<
ground current per ground pin,  
(WLCSP141)  
3
4
-
-
-
100  
100  
1.86  
mA  
mA  
W
1.71 V ≤ VDD  
3.6 V  
<
Ilatch  
I/O latch-up  
current  
-(0.5VDD) < VI <  
(1.5VDD);  
Tj < 105 °C  
Ptot(pack)  
total power  
dissipation  
FOWLP 249,  
based on  
(per package) package heat  
transfer, not  
device power  
consumption  
total power  
dissipation  
WLCSP141  
-
1.42  
W
(per package)  
1. In accordance with the Absolute Maximum Rating System (IEC 60134). The following applies to the limiting values:  
• This product includes circuitry specifically designed for the protection of its internal devices from the damaging  
effects of excessive static charge. Nonetheless, it is suggested that conventional precautions be taken to avoid  
applying greater than the rated maximum.  
• Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect  
to VSS unless otherwise noted.  
• The limiting values are stress ratings only and operating the part at these values is not recommended and  
proper operation is not guaranteed. The conditions for functional operation are specified in Table 1.  
2. Maximum/minimum voltage above the maximum operating voltage (see Table 1) and below ground that can be  
applied for a short time (< 10 ms) to a device without leading to irrecoverable failure. Failure includes the loss of  
reliability and shorter lifetime of the device.  
3. The peak current should not exceed the total supply current.  
4. Determined in accordance to JEDEC JESD51-2A natural convection environment (still air).  
1.1.5 Thermal specifications  
1.1.5.1 Thermal operating requirements  
Table 3. Thermal operating requirements  
Symbol  
Description  
Min.  
Max.  
Unit  
Notes  
Tj  
Die junction  
temperature  
-20  
105  
°C  
1
TA  
Ambient  
-20  
70  
°C  
1
temperature  
1. Maximum TA can be exceeded only if the user ensures that TJ does not exceed maximum TJ. The simplest method to  
determine TJ is: TJ = TA + RΘJA × chip power dissipation.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
13  
NXP Semiconductors  
Thermal specifications  
1.1.5.2 Thermal characteristics  
The average chip junction temperature, Tj (°C), can be calculated using the following  
equation:  
(1)  
• Tamb = ambient temperature (°C),  
• Rth(j-a) = the package junction-to-ambient thermal resistance (°C/W)  
• PD = sum of internal and I/O power dissipation  
The internal power dissipation is the product of IDD and VDD. The I/O power dissipation  
of the I/O pins is often small and many times can be negligible. However it can be  
significant in some applications.  
Table 4. Thermal resistance1  
Symbol  
Parameter  
Conditions  
Max/Min  
Unit  
249 FOWLP Package  
Rth(j-a)  
RΨ(JT)  
thermal resistance from JESD51-9, 2s2p, still  
junction to ambient air  
29.6  
0.2  
°C/W  
°C/W  
thermal resistance from JESD51-9, 2s2p, still  
junction to package top air  
141 WCLSP Package  
Rth(j-a)  
RΨ(JT)  
thermal resistance from JESD51-9, 2s2p, still  
35.3  
0.1  
°C/W  
°C/W  
junction to ambient  
air  
thermal resistance from JESD51-9, 2s2p, still  
junction to package top air  
1. Determined in accordance to JEDEC JESD51-2A natural convection environment (still air). Thermal resistance data in  
this report is solely for a thermal performance comparison of one package to another in a standardized specified  
environment. It is not meant to predict the performance of a package in an application-specific environment  
1.1.6 General operating conditions  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 5. General operating conditions  
Symbol  
Parameter  
Conditions  
Min.  
Typ.1  
Max. Unit  
fclk  
CPU (Cortex-  
M33) clock  
frequency  
-
-
-
200 MHz  
Table continues on the next page...  
14  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
Thermal specifications  
Table 5. General operating conditions (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.1  
Max. Unit  
CPU (Cortex-  
M33) clock  
frequency  
For USB high-speed device  
and host operations  
90  
-
200 MHz  
For OTP programming only -  
-
-
120 MHz  
200 MHz  
fclk  
DSP clock  
frequency  
-
-
-
-
-
GPU clock  
frequency  
-
-
200 MHz  
VDD_AO1V8  
VDD1V8  
Supply 1.8 V  
supply for  
“always on”  
features.  
1.71  
1.89  
V
1.8 V supply  
voltage for on-  
chip analog  
functions other  
than the ADC  
and comparator  
-
1.71  
1.71  
-
-
1.89  
V
VDD1V8_12  
1.8 V supply  
voltage for on-  
chip digital  
logic  
-
1.89  
V
VDDCORE3, 4, 5, 6 1.1 V supply for  
core logic. On-  
chip regulator  
Retention mode  
0.6  
0.7  
-
-
1.155  
-
V
V
Active Mode (M33 Max  
Freq = 60 MHz, FBB)7  
not used.  
LDO_ENABLE  
=0. Power  
supplied by an  
off-chip power  
management  
Active Mode (M33 Max  
Freq = 100 MHz, FBB)  
0.8  
0.9  
1.0  
1.1  
V
V
V
V
Active Mode (M33 Max  
Freq = 192 MHz, FBB)  
-
-
-
-
-
-
Active Mode (M33 Max  
Freq = 230 MHz8, FBB)  
IC (PMIC).  
Active Mode (M33 Max  
Freq = 275 MHz8, FBB)  
VDDCORE3  
1.1 V supply for Retention mode  
0.6  
0.7  
-
-
1.155  
-
V
V
core logic. On-  
chip regulator  
not used.  
LDO_ENABLE  
=0. Power  
Active Mode (DSP Max  
Freq = 60 MHz, FBB)7  
Active Mode (DSP Max  
Freq = 100 MHz, FBB)  
0.8  
0.9  
V
V
V
V
V
supplied by an  
off-chip power  
management  
IC (PMIC).  
Active Mode (DSP Max  
Freq = 192 MHz, FBB)  
-
-
-
-
-
Active Mode (DSP Max  
Freq = 230 MHz8, FBB)  
1.0  
-
-
Active Mode (DSP Max  
Freq = 275 MHz8, FBB)  
1.1  
VDDIO_0/1/2/4  
supply voltage  
for GPIO rail  
-
1.71  
1.89  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
15  
NXP Semiconductors  
 
Thermal specifications  
Symbol  
Table 5. General operating conditions (continued)  
Parameter  
Conditions  
Min.  
Typ.1  
Max. Unit  
VDDIO_3  
supply voltage  
for GPIO rail  
-
1.71  
-
3.6  
V
VDDA_1V8  
1.8 V analog  
supply voltage  
for ADC and  
comparator  
-
1.71  
-
1.89  
V
VDDA_BIAS9  
VREFP  
Bias for ADC  
and comparator  
-
-
1.71  
1.71  
-
-
3.6  
V
V
ADC positive  
reference  
voltage  
1.89  
USB1_VDD3V3  
USB0_VBUS  
USB1 analog  
3.3 V supply  
-
-
-
3.0  
4.010 or 3.0, 11  
0.85  
-
5.0  
-
3.6  
5.5  
V
V
V
USB0_VBUS  
detection  
MIPI_DSI_VDD11 MIPI DSI 1.1V  
1.155  
digital core  
input voltage  
supply  
MIPI_DSI_VDD18 MIPI DSI 1.8V  
PHY IO input  
-
-
1.71  
-0.3  
-
-
1.89  
V
V
voltage supply  
MIPI_DSI_VDDA_C MIPI DSI 1.1V  
1.155  
AP  
digital core  
output voltage  
supply  
1. Typical ratings are not guaranteed. The values listed are for room temperature (25 °C), nominal supply voltages.  
2. 1.8 V supply voltage for on-chip digital logic during active mode. In deep-sleep mode, this pin can be powered off to  
conserve additional current (~20 uA).  
3. The maximum frequency for the specified VDDCORE voltage is the frequency of the main clock. This is before the CPU  
CLOCK Divider. The VDDCORE voltage has to be set according to the chosen main clock frequency.  
4. When LDO_ENABLE is externally tied low, the user must boot at VDDCORE = 1.0 V or higher (Low power/Normal clock  
mode - OTP setting - BOOT_CLK_SPEED) or VDDCORE = 1.13 V (High Speed clock - OTP setting -  
BOOT_CLK_SPEED). Thereafter, the VDDCORE can be adjusted to the desired level.  
5. When LDO_ENABLE is externally tied high, the on-chip regulator to the VDDCORE Core voltage in PMC is set to the  
default value 1.05 V (Low power/Normal clock mode - OTP setting - BOOT_CLK_SPEED) or 1.13 V (High Speed clock -  
OTP setting - BOOT_CLK_SPEED). Thereafter, the POWER_SetLdoVoltageForFreq API function can be used to  
internally configure the on-chip regulator voltage to the VDDCORE.  
6. When performing any OTP read/write function, the VDDCORE voltage must be set to 1.0 V or higher when  
LDO_ENABLE is externally tied high or low.  
7. GPU, SPI, and CTIMER are disabled.  
8. Although i.MX RT500 is targeted to operate up to 200 MHz for low power operation, it can operate up to 275 MHz;  
however, there will be an increase in current consumption.  
9. VDD_BIAS must be equal to maximum ADC input voltage or maximum comparator input voltage.  
10. The USB PHY provides two options for reporting VBUS valid back to the USB controller:  
• A programmable internal VBUS_VALID comparator (the default option), or  
• An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V  
16  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID comparator is  
used, USBPHY_USB1_VBUS_DETECTn[VBUSVALID_THRESH] determines the threshold voltage for a valid VBUS.  
The programmable range is 4.0V to 4.4V (default).  
11. The USB PHY provides two options for reporting VBUS valid back to the USB controller:  
• A programmable internal VBUS_VALID comparator (the default option), or  
• An alternate VBUS_VALID_3V detector that will report VBUS valid for voltages above 3 V  
USBPHY_USB1_VBUS_DETECTn[VBUSVALID_SEL] selects which option is used. If the VBUS_VALID_3V detector  
is used, the detector voltage is not programmable.  
1.1.7 I/O parameters  
1.1.7.1 I/O DC parameters  
Tamb = -20 °C to +70 °C, unless otherwise specified. Values tested in production unless otherwise specified.  
Table 6. I/O DC characteristics  
Sym  
bol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
RESET pin, LDO_ENABLE pin, PMIC_IRQ_N pin, PMIC_MODE pins  
VIH HIGH-level input  
voltage  
0.7 x VDD_AO1V8  
-0.3  
-
-
-
VDD_AO1V8  
V
V
V
VIL LOW-level input  
voltage  
0.3 x  
VDD_AO1V8  
VOH HIGH-level output IOL = -2.9 mA;  
voltage  
0.8 x VDD_AO1V8  
-
1.71 V ≤ VDD_AO1V8  
< 1.89 V  
VOL LOW-level output IOL = 2.9 mA;  
voltage  
-
-
-
0.2 x  
VDD_AO1V8  
V
V
1.71 V ≤ VDD_AO1V8  
< 1.89 V  
Vhys hysteresis voltage  
2
0.06 x  
-
VDD_AO1V8  
Standard I/O pins and PMIC I2C pins  
Input characteristics  
IIL  
LOW-level input  
current  
VI = 0 V; on-chip pull-  
up resistor disabled.  
-1  
-
-
1
1
μA  
μA  
1.71 V ≤ VDD < 1.98 V  
VI = 0 V; on-chip pull-  
up resistor disabled.  
-1  
3.0 V ≤ VDD < 3.6 V  
IIH HIGH-level input  
current  
VI = VDD; on-chip pull-  
down resistor disabled.  
1.71 V ≤ VDD < 1.98 V  
-1  
-1  
0.5  
0.5  
1
1
μA  
μA  
VI = VDD; on-chip pull-  
down resistor disabled.  
3.0 V ≤ VDD < 3.6 V  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
17  
NXP Semiconductors  
Thermal specifications  
Table 6. I/O DC characteristics (continued)  
Sym  
bol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
VI  
input voltage  
pin configured to  
provide a digital  
function, except the  
following pins:  
3
VDDIO = 0 V  
0
0.7 x VDDIO  
0.7 x VDDIO  
-0.3  
-
-
-
-
-
-
-
3.6  
V
V
V
V
V
V
V
VIH HIGH-level input  
voltage  
1.71 V ≤ VDD < 1.98 V  
3.0 V ≤ VDD ≤ 3.6 V  
1.71 V ≤ VDD < 1.98 V  
3.0 V ≤ VDD ≤ 3.6 V  
VDDIO  
VDDIO  
VIL LOW-level input  
voltage  
0.3 x VDDIO  
-0.3  
0.7  
Vhys hysteresis voltage 1.71 V ≤ VDD < 1.98 V  
3.0 V ≤ VDD ≤ 3.6 V  
2
2
0.15  
-
-
0.15  
Output characteristics  
VOH HIGH-level output IOH = -2.9 mA;  
voltage (Normal  
0.8 x VDDIO  
-
-
-
-
-
-
-
-
-
V
V
V
V
V
V
V
V
1.71 V ≤ VDD < 1.98 V  
IOH = -4 mA;  
drive)  
0.8 x VDDIO  
-
3.0 V ≤ VDD ≤ 3.6 V  
VOH HIGH-level output IOH = -5.8 mA;  
voltage (Full drive)  
0.8 x VDDIO  
-
1.71 V ≤ VDD < 1.98 V  
IOH = -8 mA;  
0.8 x VDDIO  
-
3.0 V ≤ VDD ≤ 3.6 V  
VOL LOW-level output IOL = 2.9 mA;  
-
-
-
-
0.2 x VDDIO  
0.2 x VDDIO  
0.2 x VDDIO  
0.2 x VDDIO  
voltage (Normal  
Drive)  
1.71 V ≤ VDD < 1.98 V  
IOL = 4 mA;  
3.0 V ≤ VDD ≤ 3.6 V  
LOW-level output IOL = 5.8 mA;  
voltage (Full Drive)  
1.71 V ≤ VDD < 1.98 V  
IOL = 8 mA;  
3.0 V ≤ VDD ≤ 3.6 V  
Weak input pull-up/pull-down characteristics  
Ipd pull-down current VI = VDD  
VI = 3.6 V  
34  
-
-
-
-
180  
180  
-180  
50  
μA  
μA  
μA  
kΩ  
4
72  
-34  
20  
Ipu pull-up current  
VI = 0 V  
Rpd pull-down  
resistance  
Rpu pull-up resistance  
20  
-
50  
kΩ  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltage.  
2. Guaranteed by design, not tested in production.  
18  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
3. All GPIO pins are fail safe up to 3.6 V when VDDIO supply = 0 V except following pins: PIO1_18 to PIO1_29, PIO1_30  
to PIO1_31, PIO2_0 to PIO2_8, PIO2_24 to PIO2_31, PIO3_8 to PIO3_18, PIO4_11 to PIO4_17, and PIO5_15 to  
PIO5_18.  
4. Based on characterization. Not tested in production.  
1.1.8 Power consumption operating behavior  
NOTE  
For the lowest power consumption, use the lowest SRAM  
partition number.  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 7. Power consumption in active mode  
Symbol  
Parameter  
Conditions  
Notes Min.  
Typ.1,  
,
Max.  
Unit  
2
3
Cortex M33 in Active mode, DSP no clock4  
enhanced while (1) code executed from SRAM partition 305; Internal LDO disabled  
IDDVDDCORE VDDCORE supply HCLK = 12 MHz  
6
6
6
6
6
6
6
-
-
-
-
-
-
-
1.62  
2.50  
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
current  
VDDCORE = 0.7 V  
HCLK = 24 MHz  
VDDCORE = 0.7 V  
HCLK = 48 MHz  
4.33  
VDDCORE = 0.7 V  
HCLK = 96 MHz  
9.35  
VDDCORE = 0.8 V  
HCLK = 192 MHz  
VDDCORE = 0.9 V  
HCLK = 192 MHz  
VDDCORE = 1.0 V  
HCLK = 192 MHz  
VDDCORE = 1.1 V  
20.73  
23.97  
28.01  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). VDD_AO1V8 = VDD1V8 =  
VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = 1.8 V. VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3  
2. Characterized through bench measurements using typical samples.  
3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40.1. High, Speed, No Size Constraints. The optimization level is  
Low, Balanced.  
4. Based on the power API library from the SDK software package available on nxp.com  
5. SRAM partition 30 represents the worst case partition.  
6. FRO clock source, FBB enabled  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
19  
NXP Semiconductors  
Thermal specifications  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 8. Power consumption in active mode  
Symbol  
Parameter  
Conditions  
Min  
Typ1, 2,  
Max  
Unit  
3
Cortex M33 in Active mode, DSP no clock4  
CoreMark code executed from SRAM partition 305  
IDDVDDCORE VDDCORE supply HCLK = 12 MHz  
-
1.61  
2.51  
-
-
-
-
-
-
-
mA  
mA  
mA  
mA  
mA  
mA  
mA  
current  
VDDCORE = 0.7 V  
HCLK = 24 MHz  
-
-
-
-
-
-
VDDCORE = 0.7 V  
HCLK = 48 MHz  
4.26  
VDDCORE = 0.7 V  
HCLK = 96 MHz  
9.28  
VDDCORE = 0.8 V  
HCLK = 192 MHz  
VDDCORE = 0.9 V  
HCLK = 192 MHz  
VDDCORE = 1.0 V  
HCLK = 192 MHz  
VDDCORE = 1.1 V  
20.44  
23.73  
27.87  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). VDD_AO1V8 = VDD1V8 =  
VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = 1.8 V. VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3 V  
2. Characterized through bench measurements using typical samples.  
3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40. High Speed, No Size constraints. The optimization level is  
Low, Balanced.  
4. Based on the power API library from the SDK software package available on nxp.com  
5. SRAM partition 30 represents the worst case partition.  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 9. Power consumption in active mode  
Symbol  
Parameter  
Conditions  
Notes Min  
Typ1, 2, 3  
Max  
Unit  
FFT code executed from SRAM partition 30 and 314; Internal LDO disabled  
DSP in Active mode, M33 in WFI5  
IDDVDDCORE VDDCORE  
supply current  
HCLK = 10 MHz  
VDDCORE = 0.7 V  
HCLK = 40 MHz  
6
-
1.80  
5.30  
-
mA  
mA  
6
Table continues on the next page...  
20  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
Table 9. Power consumption in active mode (continued)  
Symbol  
Parameter  
Conditions  
VDDCORE = 0.8 V  
Notes Min  
Typ1, 2, 3  
Max  
Unit  
HCLK = 100 MHz  
VDDCORE = 0.8 V  
HCLK = 150 MHz  
VDDCORE = 0.9 V  
HCLK = 200 MHz  
VDDCORE = 0.9 V  
6
-
-
-
10.74  
-
mA  
6
6
17.81  
22.94  
-
-
mA  
mA  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). VDD_AO1V8 = VDD1V8 =  
VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = 1.8 V. VDDA_BIAS = VREFP = 1.8 V. USB1_VDD3V3 = 3.3 V  
2. Characterized through bench measurements using typical samples.  
3. Compiler settings: IAR C/C++ Compiler for Arm ver 8.40. High Speed, No Size constraints. The optimization level is  
Low, Balanced.  
4. SRAM partitions 30 and 31 represent the worst case partitions. The Fusion F1 DSP requires DRAM and IRAM in  
different partitions. DSP_DRAM is in partition 30, DSP_IRAM is in partition 31.  
5. Based on the power API library from the SDK software package available on nxp.com  
6. PLL clock source, FBB enabled  
Table 10. Power consumption in sleep mode  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.  
Max.  
Unit  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
Cortex-M33 in Sleep mode, DSP no clock1  
IDDVDDCORE supply  
current  
HCLK=12 MHz  
2, 3, 4, 5  
-
-
-
-
-
-
-
1.8  
-
-
-
-
-
-
-
VDDCORE=0.7 V  
HCLK=12 MHz  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
2, 3, 4, 5  
4.27  
4.78  
5.78  
7.78  
9.66  
11.74  
VDDCORE=1.0 V  
HCLK=24 MHz  
VDDCORE=1.0 V  
HCLK=48 MHz  
VDDCORE=1.0 V  
HCLK=96 MHz  
VDDCORE=1.0 V  
HCLK=192 MHz  
VDDCORE=0.9 V  
HCLK=192 MHz  
VDDCORE=1.0 V  
1. 256 KB SRAM, internal LDO enabled  
2. All peripheral clocks gated  
3. PLL disabled  
4. FRO used as clock source  
5. IAR C/C++ Compiler for Arm ver 8.4.2.1.236  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
21  
NXP Semiconductors  
Thermal specifications  
Symbol Parameter  
Table 11. Power consumption in deep sleep mode  
Conditions  
Not Min Typ1, 2  
es  
Max3  
Unit  
μA  
IVDD1V8 supply  
current  
Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
4
-
8.5  
-
-
IVDDCORE supply  
current  
Deep-sleep mode; SRAM (32 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
4
-
40.7  
μA  
Tamb = 25 °C  
Deep-sleep mode; SRAM (32 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
4
4
4
4
4
-
-
-
-
-
200  
42.0  
210  
74  
μA  
μA  
μA  
μA  
μA  
Tamb = 70 °C  
IVDDCORE supply  
current  
Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
-
Tamb = 25 °C  
Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
-
120  
-
Tamb = 70 °C  
IVDDCORE supply  
current  
Deep-sleep mode; SRAM (5 MB) powered, Internal  
LDO disabled. Array On, Periphery Off  
Tamb = 25 °C  
Deep-sleep mode; SRAM (5 MB) powered, Internal  
LDO disabled. Array On, Periphery Off  
432  
Tamb =70 °C  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V,  
except USB1_VDD3V3=3.3 V  
2. Characterized through bench measurements using typical samples.  
3. Guaranteed by characterization, not tested in production.  
4. VDDCORE = 0.6 V, RBB Enabled  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 12. Power consumption in deep sleep mode  
Symbol  
Parameter  
Conditions  
Min Typ1, 2  
Max3  
Unit  
μA  
IVDD_AO1V supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
-
-
-
-
-
-
0.79  
-
-
-
-
-
-
LDO disabled. Array On, Periphery Off  
8
IVDDIO_0 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
2.4  
1.7  
μA  
μA  
μA  
μA  
μA  
IVDDIO_1 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
IVDDIO_2 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
0.35  
0.8  
IVDDIO_3 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
IVDDIO_4 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
0.36  
Table continues on the next page...  
22  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
Table 12. Power consumption in deep sleep mode (continued)  
Symbol  
Parameter  
Conditions  
Min Typ1, 2  
Max3  
Unit  
μA  
IVDDA_1V8 supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
-
-
-
11.8  
-
-
-
IVREFP  
supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
0.02  
1.10  
μA  
μA  
IUSB1_VDD supply current Deep-sleep mode; SRAM (128 KB) powered, Internal  
LDO disabled. Array On, Periphery Off  
3V3  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V,  
except USB1_VDD3V3=3.3 V  
2. Characterized through bench measurements using typical samples.  
3. Guaranteed by characterization, not tested in production.  
Tamb = -20 °C to +70 °C, unless otherwise specified.  
Table 13. Power consumption in deep power-down mode and full deep power-down modes  
Symbol  
Parameter  
Conditions  
Min Typ1, 2  
Max3  
Unit  
IVDD_AO1 supply current Full Deep power-down mode; Internal LDO disabled.  
-
0.51  
-
μA  
RTC Off  
V8  
Tamb= 25 °C  
Full Deep power-down mode; Internal LDO disabled.  
RTC Off  
-
1.79  
-
μA  
Tamb= 70 °C  
IVDDIO_0 supply curent Deep power-down mode; Internal LDO disabled. RTC  
Off  
-
-
-
-
-
-
-
-
2.4  
1.68  
0.45  
0.37  
0.44  
7.8  
-
-
-
-
-
-
-
-
μA  
μA  
μA  
μA  
μA  
μA  
μA  
μA  
IVDDIO_1 supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
IVDDIO_2 supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
IVDDIO_3 supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
IVDDIO_4 supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
IVDD1V8  
supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
IVREFP  
supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
0.01  
1.1  
IUSB1_VDD supply current Deep power-down mode; Internal LDO disabled. RTC  
Off  
3V3  
1. Typical ratings are not guaranteed. Typical values listed are at room temperature (25 °C). All power supplies = 1.8 V,  
except USB1_VDD3V3=3.3V  
2. Characterized through bench measurements using typical samples.  
3. Guaranteed by characterization, not tested in production.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
23  
NXP Semiconductors  
Thermal specifications  
1.1.9 CoreMark data  
Table 14. Coremark data  
Parameters  
Conditions  
Notes  
Typ.1, 2, 3  
Unit  
ARM Cortex-M33 in active mode  
CoreMark Score  
CoreMark code executed from  
4
3.85  
(Iterations/s) / MHz  
SRAM; HCLK = 12 MHz  
HCLK = 24 MHz  
4
4
5
5
3.85  
3.85  
3.85  
3.85  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
(Iterations/s) / MHz  
HCLK = 48 MHz  
HCLK = 96 MHz  
HCLK = 192 MHz  
1. Characterized through bench measurements using typical samples.  
2. Compiler settings: IAR C/C++ Compiler for Arm ver 8.22.2, optimization level 3, optimized for time on.  
3. VDD_AO1V8 = VDD1V8 = VDDIO_0/1/2/3/4 = VDDA_ADC1V8 = VREFP = 1.8 V. VDDA_BIAS = USB1_VDD3V3 = 3.3  
V
4. Clock source FRO. PLL disabled  
5. Clock source external clock to XTALIN (bypass mode). PLL enabled.  
1.2 System power and clocks  
1.2.1 Power sequence  
Following power-on sequence should be followed when using the internal LDO in i.MX  
RT500:  
1. VDD_AO1V8, VDD1V8, and VDD1V8_1 pins should be powered first. There is  
no power sequence requirement between powering the VDD_AO1V8 and  
VDD1V8 pins.  
2. VDDA_ADC1V8 and VREFP can be powered concurrently with VDD_AO1V8  
and VDD1V8 or later  
3. VDDIO_x and VDDA_BIAS pins can be powered concurrently with  
VDD_AO1V8 and VDD1V8 if these pins are 1.8 V range or later if these pins are  
3.3 V range. If the VDDIO_x is not powered concurrently with the VDD1V8, the  
delta voltage between VDDIO_x and VDD1V8 must be 1.89 V or less.  
The VDDCORE pin will be supplied from the internal LDO and the LDO is powered  
from the VDD1V8. An external capacitor (4.7 uF) must be connected on the  
VDDCORE pin. USB1_VDD3V3 can be powered at any time, independent of the other  
supplies.  
24  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
Following power-on sequence should be followed when using an external PMIC or  
external IC to drive the VDDCORE pin (internal LDO is disabled, see timing diagram  
below):  
1. VDD_AO1V8, VDD1V8, and VDD1V8_1 pins should be powered first. There is  
no power sequence requirement between powering the VDD_AO1V8 and  
VDD1V8 pins.  
2. VDDA_ADC1V8 and VREFP can be powered concurrently with VDD_AO1V8  
and VDD1V8 or later.  
3. VDDIO_x and VDDA_BIAS pins can be powered concurrently with VDD1V8 if  
these pins are 1.8 V range or later if these pins are 3.3 V range. If the VDDIO_x  
is not powered concurrently with the VDD1V8, the delta voltage between  
VDDIO_x and VDD1V8 must be 1.89 V or less.  
4. Power up the VDDCORE. The external RESETN should be held low until  
VDDCORE is valid in the timing diagram.VDDCORE should not be ramped up  
until after all the other supplies have completed ramp up.  
USB1_VDD3V3 can be powered at any time, independent of the other supplies.  
Sequence of operations is handled internally so there is no specific timing requirement  
between the supplies. The time delays caused by any of the bypass capacitors will  
have no effect on the operation of the part. The internal POR detectors on  
VDD_AO1V8, VDD1V8 pins, and the Low Voltage Detector on VDDCORE pin,  
require a fall time of at least 10us (preliminary) to trigger. There is no restriction on  
the rise time, except for the sequencing defined above.  
Table 15. Power-on characteristics  
Symbol  
Timing  
Description  
Min.  
Max.  
Unit  
Parameter  
A
VDDIO_x valid to  
VDDCORE valid  
The delay from  
when the IO pad  
voltages become  
valid to core  
10  
-
μs  
voltage valid  
B
VDDCORE valid to The delay from  
20  
-
μs  
μs  
De-assertion of  
RESETN  
when the VDD  
core is valid to  
when the RESETN  
can be released  
AA  
Mode pin valid  
When the mode  
pins becomes  
-
2
valid. On power-  
on, the mode pins  
are reset to 00 and  
are controlled via a  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
25  
NXP Semiconductors  
Thermal specifications  
Symbol  
Table 15. Power-on characteristics  
Timing  
Description  
Min.  
Max.  
Unit  
Parameter  
POR circuit in the  
always-on domain.  
The timing is from  
when the  
VDD_AO1V8 is  
valid to when the  
mode pins are  
reset to 00.  
26  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
A
B
VDD_AO_1V8  
(Always on voltage to RTC)  
VDD1V8  
(Chip PMC power)  
VDDIO_0  
(Pad group 0 power)  
VDDIO_1  
(Pad group 1 power)  
VDDIO_2  
(Pad group2 power)  
VDDIO_3  
(Pad group3 power)  
VDDIO_4  
(Pad group4 power)  
VDDA_BIAS  
(ADCcomparator bias)  
VREFP  
(ADC Ref voltage)  
VDDA_ADC1V8  
(ADC/Comp power 1.8 volts)  
VDDCORE  
(Core Power needs DVFS  
control)  
RESETN  
(External Chip reset)  
AA  
XXXXXXXXX  
00  
PMIC_MODE0/1  
(PMIC Mode pins (outputs))  
Figure 4. Power-up ramp  
1.2.2 Free-running oscillator FRO-192/96M specifications  
Table 16. FRO-192M specifications  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
ffro192m  
FRO-192M frequency (nominal)  
192  
MHz  
Δffro192m Frequency deviation  
1
%
%
• 1T trim (Open loop)  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
27  
NXP Semiconductors  
Thermal specifications  
Table 16. FRO-192M specifications (continued)  
Symbol  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
tstartup  
Start-up time  
75  
μs  
jitcyc  
Ifro192m  
Vmin  
Cycle to cycle jitter  
Current consumption  
Minimum voltage  
0.81  
105  
45  
111  
ps  
μA  
V
1. Vmin =0.8 V is derived from FRO192 MHz divided by 2/4/8.  
NOTE  
Any divided versions of the FRO that are not being used  
anywhere should be turned off to save power.  
Table 17. FRO-96M specifications  
Symbol  
ffro96m  
Characteristic  
Min.  
Typ.  
Max.  
Unit  
FRO-96M frequency (nominal)  
96  
MHz  
Δffro96m  
Frequency deviation  
• 1T trim (Open loop)  
1
%
%
tstartup  
Start-up time  
120  
μs  
jitcyc  
Ifro96m  
Vmin  
Cycle to cycle jitter  
Current consumption  
Minimum voltage  
0.71  
180  
23  
63  
ps  
μA  
V
1. Vmin =0.7 V is derived from FRO96 MHz divided by 2/4/8.  
1.2.3 Crystal oscillator  
Tamb = -20 °C to +70 °C; 1.71 V VDD 1.89 V.1, 2  
Table 18. Crystal oscillator characteristics  
Symbol  
Parameter  
Min.  
Typ.3  
Max.  
Unit  
frange  
oscillator frequency  
range  
4
-
32  
MHz  
Rf  
feedback resistor  
high gain mode  
only4  
-
-
1
-
-
MΩ  
ESR  
Equivalent series  
resistance  
80  
Ω
1. Parameters are valid over operating temperature range unless otherwise specified.  
2. See XTAL oscillator  
3. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
28  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Thermal specifications  
4. CLKCTL0_SYSOSCCTL0[LP_ENABLE] = 1 sets High Gain Mode, which requires a 1 MΩ feedback resistor.  
1.2.4 RTC oscillator  
See RTC oscillator for connecting the RTC oscillator to an external clock source.  
Tamb = -20 °C to +70 °C; 1.71 VDD 1.89  
Table 19. RTC oscillator characteristics  
Symbol  
f1  
Parameter  
Conditions  
Min.  
Typ.1  
32.768  
50  
Max.  
-
Unit  
kHz  
kΩ  
input frequency  
-
-
-
-
ESR  
Equivalent series  
resistance  
100K  
, 2  
tstart_xtal  
Crystal oscillator  
start-up time  
-
-
250  
-
ms  
ms  
V
tstart_bypass Bypass oscillator  
1
-
-
2
start-up time  
3
Vpp  
Peak-to-Peak  
amplitude of  
oscillation  
With oscillator  
bypass mode  
enabled  
0.7  
VDD_AO1V8  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
2. Proper PCB layout procedures must be followed to achieve specifications.  
3. In bypass mode, using an input square wave only on RTCXIN with RTXOUT floating.  
1.2.5 External Clock Input (CLKIN) pin  
Tamb = -20 °C to +70 °C; 1.71 V to 1.89 V  
Table 20. Dynamic characteristic: CLKIN  
Symbol  
Parameter  
Conditions  
Min.  
Typ.1  
Max  
Unit  
Fi  
input frequency  
-
-
-
50  
MHz  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages  
1.2.6 Internal low-power oscillator (1 MHz)  
The IRC is trimmed to 10% accuracy over the entire voltage and temperature range.  
Tamb = -20 °C to +70 °C; 1.71 VDD 1.89 V  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
29  
NXP Semiconductors  
Thermal specifications  
Table 21. LPOSC characteristics  
Symbol  
fosc (RC)  
Parameter  
Conditions  
Min  
Typ1  
Max  
Unit  
LPOSC clock  
frequency  
-
0.9  
1
1.1  
MHz  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
1.3 System modules  
1.3.1 Reset timing parameters  
The following figure shows the reset timing and Table 22 lists the timing parameters.  
RESETN  
(Input)  
CC1  
Figure 5. Reset timing diagram  
Table 22. Reset timing parameters  
ID  
Parameter  
Min  
Max  
Unit  
CC1  
Duration of POR_B to  
be qualified as valid  
40  
-
ns  
1.3.2 Serial Wire Debug (SWD) timing specifications  
Table 23. SWD timing specifications  
Symbol Description  
Min.  
Max.  
Min.—  
VLPR  
mode  
Max.—  
VLPR  
mode  
Unit  
J1  
SWD_CLK frequency of operation  
0
25  
0
10  
MHz  
ns  
J2  
J3  
SWD_CLK cycle period  
SWD_CLK clock pulse width  
• Serial wire debug  
1000/J1  
1000/J1  
20  
20  
ns  
J4  
SWD_CLK rise and fall times  
3
3
ns  
Table continues on the next page...  
30  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
Thermal specifications  
Table 23. SWD timing specifications (continued)  
Symbol Description  
Min.  
Max.  
Min.—  
VLPR  
mode  
Max.—  
VLPR  
mode  
Unit  
J9  
SWD_DIO input data setup time to SWD_CLK  
rise  
10  
0
19  
ns  
ns  
J10  
SWD_DIO input data hold time after SWD_CLK  
rise  
0
J11  
J12  
SWD_CLK high to SWD_DIO data valid  
SWD_CLK high to SWD_DIO high-Z  
2
37  
2
37  
ns  
ns  
J2  
J4  
J3  
J3  
SWD_CLK (input)  
J4  
Figure 6. Serial wire clock input timing  
SWD_CLK  
SWD_DIO  
SWD_DIO  
SWD_DIO  
SWD_DIO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
Output data valid  
Figure 7. Serial wire data timing  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
31  
NXP Semiconductors  
Thermal specifications  
1.3.3 JTAG timing specifications  
Table 24. JTAG timing specifications  
Symbol Parameter  
Min.  
Max.  
Min.—  
VLPR  
mode  
Max.—  
VLPR  
mode  
Unit  
J1  
TCLK frequency of operation  
• Boundary Scan  
• JTAG  
0
0
10  
25  
0
0
10  
10  
MHz  
MHz  
ns  
J2  
J3  
TCLK cycle period  
TCLK clock pulse width  
• Boundary Scan  
• JTAG  
1000/J1  
1000/J1  
50  
20  
20  
3
50  
20  
20  
3
ns  
ns  
ns  
ns  
J4  
J5  
TCLK rise and fall times  
Boundary scan input data setup time to TCLK  
rise  
J6  
Boundary scan input data hold time after TCLK  
rise  
5
5
ns  
J7  
J8  
TCLK low to boundary scan output data valid  
TCLK low to boundary scan output high-Z  
TMS, TDI input data setup time to TCLK rise  
TMS, TDI input data hold time after TCLK rise  
TCLK low to TDO data valid  
28  
25  
19  
19  
2
28  
25  
19  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
J9  
10.5  
2.5  
J10  
J11  
J12  
J13  
J14  
2
TCLK low to TDO high-Z  
2
TRST assert time  
100  
8
100  
8
TRST setup time (negation) to TCLK high  
J2  
J4  
J3  
J3  
TCLK (input)  
J4  
Figure 8. Test clock input timing  
32  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
Thermal specifications  
TCLK  
J5  
J6  
Input data valid  
Data inputs  
Data outputs  
Data outputs  
Data outputs  
J7  
Output data valid  
J8  
J7  
Output data valid  
Figure 9. Boundary scan (JTAG) timing  
TCLK  
TDI/TMS  
TDO  
J9  
J10  
Input data valid  
J11  
Output data valid  
J12  
J11  
TDO  
Output data valid  
TDO  
Figure 10. Test Access Port timing  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
33  
NXP Semiconductors  
Thermal specifications  
TCLK  
TRST  
J14  
J13  
Figure 11. TRST timing  
1.3.4 Wake-up process  
VDD = 3.3 V;Tamb = 25 °C; using FRO as the system clock.  
Table 25. Typical wake-up times from low power modes  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
twake  
wake-up time from sleep  
2, 3  
-
150  
-
μs  
mode, 200  
MHz  
twake  
wake-up time from deep-  
sleep mode,  
using  
4
4
-
-
120  
120  
-
-
μs  
μs  
RESETN.  
from deep-  
sleep mode,  
using  
PMIC_IRQ_N  
.
twake  
wake-up time from full deep  
power-down  
4
4
-
-
8.64  
8.64  
-
-
ms  
ms  
mode, using  
RESETN  
from full deep  
power-down  
mode, using  
PMIC_IRQ_N  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 C), nominal supply voltages.  
2. The wake-up time measured is the time between when a GPIO input pin is triggered to wake the device up from the low  
power modes and from when a GPIO output pin is set in the interrupt service routine (ISR) wake-up handler.  
3. FRO disbled, all peripherals off. PLL disabled.  
4. Wake up from deep power-down causes the part to go through entire reset process. The wake-up time measured is the  
time between when the Wake-Up pin is triggered to wake the device up and when a GPIO output pin is set in the reset  
handler.  
34  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
1.4 External memory interface  
1.4.1 FlexSPI Flash interface  
Tamb = -20 °C to +70 °C, VDDIO_x = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL =  
5 pF balanced loading on all pins; Full Drive Mode on all pins, Input slew = 1 ns,  
SLEW setting = standard mode for all pins; Parameters sampled at the 50 % level of  
the rising or falling edge.  
Table 26. Dynamic characteristics: FlexSPI flash interface1  
Symbol  
SDR mode  
fclk  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
clock frequency Transmit  
RX clock source = 0  
6
200  
60  
MHz  
MHz  
MHz  
MHz  
ns  
RX clock source = 1  
RX clock source = 3  
116  
200  
tDS  
data set-up time RX clock source = 0  
(internal dummy read  
strobe and loopbacked  
internally)  
RX clock source = 1  
(internal dummy read  
strobe and loopbacked  
from DQS pad)  
1
ns  
source = 3 (external  
DQS, Flash provides  
read strobe)  
0
1
0.6  
ns  
ns  
tDH  
data hold time  
RX clock source = 0  
(internal dummy read  
strobe and loopbacked  
internally)  
RX clock source = 1  
(internal dummy read  
strobe and loopbacked  
from DQS pad)  
0
ns  
source = 3 (external  
DQS, Flash provides  
read strobe)  
0
0
3
ns  
ns  
tV(Q)  
data output valid  
time  
DDR Mode (with and without DQS)  
fclk clock frequency  
Transmit  
200  
MHz  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
35  
NXP Semiconductors  
External memory interface  
Table 26. Dynamic characteristics: FlexSPI flash interface1 (continued)  
Symbol  
Parameter  
Conditions  
RX clock source = 0  
RX clock source = 1  
Min.  
Typ.  
Max.  
30  
Unit  
MHz  
MHz  
MHz  
58  
RX clock source = 3, with —  
external DQS.  
200  
tDS  
data set-up time RX clock source = 0  
(internal dummy read  
strobe and loopbacked  
internally)  
6
1
ns  
RX clock source = 1  
(internal dummy read  
strobe and loopbacked  
from DQS pad)  
ns  
source = 3 (external  
DQS, Flash provides  
read strobe)  
0
1
0.6  
ns  
ns  
tDH  
data hold time  
RX clock source = 0  
(internal dummy read  
strobe and loopbacked  
internally)  
RX clock source = 1  
(internal dummy read  
strobe and loopbacked  
from DQS pad)  
0
ns  
source = 3 (external  
DQS, Flash provides  
read strobe)  
0
0
ns  
ns  
tV(Q)  
data output valid  
time  
1. Based on simulation; not tested in production.  
Following are the FlexSPI timing diagrams for SDR and DDR input and output timing  
modes.  
fclk  
t
DS  
t
DH  
t
DS  
t
DH  
IO[0:7]  
Internal Sample Clock  
Figure 12. SDR mode (input timing, mode 0 and 1)  
36  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
External memory interface  
DQS  
t
DS  
t
DH  
t
DS  
t
DH  
IO[0:7]  
Internal Sample Clock  
Figure 13. SDR mode (input timing, mode 3)  
fclk  
T
CLK  
V(Q)max  
t
V(Q)max  
t
IO[0:7]  
V(Q)min  
t
t
V(Q)min  
Figure 14. SDR mode (output timing, mode 0 and 1)  
DQS  
T
CLK  
V(Q)max  
t
V(Q)max  
t
IO[0:7]  
V(Q)min  
t
t
V(Q)min  
Figure 15. SDR mode (output timing, mode 3)  
fclk  
t
DS  
t
DH  
t
DS  
t
DH  
IO[0:7]  
Internal Sample Clock  
Figure 16. DDR mode (input timing, mode 0 and 1)  
DQS  
t
DS  
t
DH  
t
DS  
t
DH  
IO[0:7]  
Internal sample clock  
Figure 17. DDR mode (input timing, mode 3)  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
37  
NXP Semiconductors  
External memory interface  
fclk  
T
CLK  
tV(Q)max  
t
V(Q)max  
IO[0:7]  
t
V(Q)min  
t
V(Q)min  
Figure 18. DDR mode (output timing, mode 0 and 1)  
DQS  
TCLK  
V(Q)max  
t
t
V(Q)max  
IO[0:7]  
t
V(Q)min  
t
V(Q)min  
Figure 19. DDR mode (output timing, mode 3)  
1.5 Display and graphics  
1.5.1 LCDIF  
Tamb = -20 °C to 70 °C; VDD = 2.7 V to 3.6 V; CL = 30 pF. Simulated values.  
Table 27. LCDIF characteristics  
Symbol  
fclk  
Parameter  
clock frequency  
data output valid time  
Conditions  
on pin LCD_DCLK  
on all LCD output pins  
Min.  
-
Typ.  
Max.  
60  
Unit  
MHz  
ns  
-
-
tv(Q)  
0.3  
4.5  
1.5.2 MIPI DSI timing  
The i.MX RT500 conforms to the MIPI D-PHY electrical specifications MIPI DSI  
Version 1.01 and D-PHY specification Rev. 1.0 (and also DPI version 2.0, DBI version  
2.0, DSC version 1.0a at protocol layer) for MIPI display port x2 lanes.  
38  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
1.5.3 Flexible IO controller (FlexIO)  
Table 28. FlexIO timing specifications  
Symbol  
Description  
Min  
Typ.  
Max.  
Unit  
Notes  
tODS  
Output delay skew between any  
two FlexIO_Dx pins configured  
as outputs that toggle on same  
internal clock cycle  
0
1.957  
ns  
1
tIDS  
Input delay skew between any  
two FlexIO_Dx pins configured  
as inputs that are sampled on  
the same internal clock cycle  
0
1.403  
ns  
1
1. Assumes pins muxed on same VDD_IO domain with same load  
1.6 Analog characteristics  
1.6.1 12-bit ADC characteristics  
Tamb = -20 °C to +70 °C; 1.71 V VDD3.6 V; VSSA = VREFN = GND. ADC calibrated at Tamb = 25 °C.  
Table 29. 12-bit ADC static characteristics  
Symb  
ol  
Parameter  
Conditions  
Notes  
Min  
Typ1  
Max  
Unit  
VADIN analog input voltage  
fclk(ADC) ADC clock frequency  
See Figure 21  
VREFN  
-
-
-
-
VREFP  
60  
V
MHz  
fs  
sampling frequency  
-
1
Msamples/s  
Csample Sample cycles  
3.5  
131.5  
s
Ccompar Fixed compare  
-
17.5  
-
cycles  
cycles  
pF  
cycles  
e
Cconvers Conversion cycles  
Cconversion = Csamples  
Ccompare  
+
-
ion  
CADIN Analog input  
capacitance  
2, See Figure  
21  
-
4.5  
RADIN Input resistance  
See Figure 21  
3
-
-
500  
-
-
Ω
RAS  
Analog source  
resistance  
5
kΩ  
ED  
differential linearity  
error  
4, 5  
4, 6  
-
-
< 1  
-
-
LSB  
LSB  
EL(adj) integral non-linearity fclk(ADC) = 22 MHz  
< 1.1  
Sample Time select  
(STS bit in CMDH  
register) = 0  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
39  
NXP Semiconductors  
External memory interface  
Table 29. 12-bit ADC static characteristics (continued)  
Symb  
ol  
Parameter  
Conditions  
Notes  
Min  
Typ1  
Max  
Unit  
EO  
offset error  
4, 7  
4, 8  
-
-
< 1  
0.3  
-
-
LSB  
%
Verr(FS) full-scale error  
voltage  
1. Typical ratings are not guaranteed. The values listed are at room temperature (25 °C), nominal supply voltages.  
2. CADIN represents the external capacitance on the analog input channel for sampling speeds of 1.0 Msamples/s. No  
parasitic capacitances included.  
3. This resistance is external to the MCU. To achieve the best results, the analog source resistance must be kept as low  
possible. The results in this data sheet were derived from a system that had less than 15 Ω analog source resistance.  
See Figure 1  
4. Based on characterization; not tested in production.  
5. The differential linearity error (ED) is the difference between the actual step width and the ideal step width. See Figure 1.  
6. The integral non-linearity (EL(adj)) is the peak difference between the center of the steps of the actual and the ideal  
transfer curve after appropriate adjustment of gain and offset errors. See Figure 1.  
7. The offset error (EO) is the absolute difference between the straight line which fits the actual curve and the straight line  
which fits the ideal curve. See Figure 1.  
8. The full-scale error voltage or gain error (EG) is the difference between the straight-line fitting the actual transfer curve  
after removing offset error, and the straight line which fits the ideal transfer curve. See Figure 1.  
40  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
offset  
error  
gain  
error  
E
O
E
G
4095  
4094  
4093  
4092  
4091  
4090  
(2)  
7
code  
out  
(1)  
6
5
4
3
2
1
0
(5)  
(4)  
(3)  
1 LSB  
(ideal)  
4090 4091 4092 4093 4094 4095 4096  
1
2
3
4
5
6
7
V
IA  
(LSB  
)
ideal  
offset error  
E
O
VREFP - VREFN  
1 LSB =  
4096  
(1) Example of an actual transfer curve.  
(2) The ideal transfer curve.  
(3) Differential linearity error (ED).  
(4) Integral non-linearity (EL(adj)).  
(5) Center of a step of the actual transfer curve.  
Figure 20. 12-bit ADC characteristics  
1.6.1.1 ADC input impedance  
The following figure shows the ADC input impedance for this device.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
41  
NXP Semiconductors  
External memory interface  
Figure 21. ADC input impedance  
1.6.2 Temperature sensor  
Table 30. Temperature sensor static and dynamic characteristics  
(VDDA_BIAS = 3.3 V, All other supplies = 1.8 V)  
Symbol  
DTsen  
Parameter  
Conditions  
Notes  
Min  
Typ  
Max  
Unit  
sensor  
Tamb = -20 °C 1  
-
-
2.77  
°C  
temperature to 70 °C  
accuracy  
EL  
linearity error Tamb = -20  
°C to 70 °C  
-
-
2.79  
°C  
1. Absolute temperature accuracy. Based on characterization. Not tested in production  
Table 31. Temperature sensor Linear-Least-Square (LLS) fit parameters  
(VDDA_BIAS = 3.3 V, All other supplies = 1.8 V)  
Fit parameter  
Conditions  
Notes  
Min  
Typ  
Max  
Unit  
LLS slope  
Tamb = -20 °C to 1, 2  
70 °C  
-
-1.5738  
-
mV/°C  
LLS intercept at Tamb = -20 °C 1, 2  
0° C to 70 °C  
-
-
809.55  
770.4  
-
-
mV  
LLS intercept at Tamb = -20 °C 1, 2  
25 °C to 70 °C  
mV  
1. Based on characterization, Not tested in production.  
2. Equation: Temp = 25 - ((Vtemp -Vtemp25)/m) Where: VTEMP is the voltage of the temperature sensor channel at the  
ambient temperature VTEMP is the voltage of the temperature sensor channel at 25°C and VDD = 1.8 V m is the voltage  
versus temperature slope in V/°C.  
42  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
Average Vo @1.8Vsupply  
900  
850  
800  
750  
700  
650  
600  
550  
500  
‐20  
0
20  
40  
60  
80  
Temperature(C)  
Fig 29. Average Vo @ 1.8V supply  
Figure 22. Average Vo @ 1.8V supply  
1.6.3 Comparator characteristics  
Tamb = -20 C to +70 C; VDD = 1.8 V to 3.6 V.  
Table 32. Comparator characteristics  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
Static characteristics  
Voffset  
offset voltage VIC = 0.1 V; VDD  
1.8 V  
=
=
=
6
7
9
mV  
mV  
mV  
VIC = 0.9 V; VDD  
1.8 V  
VIC = 1.7 V; VDD  
1.8 V  
Dynamic characteristics  
tPD  
propagation HIGH to LOW; VDD  
2
2
μs  
delay  
= 1.8 V; Tamb = 25  
°C VIC = 0.1 V; 100  
mV overdrive input  
VIC = 0.1 V; rail-to-  
rail input  
915  
525  
600  
ns  
ns  
ns  
VIC = 0.9 V; 100 mV 2  
overdrive input  
VIC = 0.9 V; rail-to-  
rail input  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
43  
NXP Semiconductors  
External memory interface  
Table 32. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
VIC = 1.7 V; 100 mV 2  
overdrive input  
500  
ns  
VIC = 1.7 V; rail-to-  
rail input  
350  
270  
ns  
ns  
tPD  
propagation HIGH to LOW; VDD 2  
delay  
= 1.8 V; Tamb = 25  
°C VIC = 0.1 V; 100  
mV overdrive input  
VIC = 0.1 V; rail-to-  
rail input  
310  
340  
210  
150  
125  
5.8  
ns  
ns  
ns  
ns  
ns  
μs  
VIC = 0.9 V; 100 mV 2  
overdrive input  
VIC = 0.9 V; rail-to-  
rail input  
VIC = 1.7 V; 100 mV 2  
overdrive input  
VIC = 1.7 V; rail-to-  
rail input  
tPD  
propagation LOW to HIGH;  
delay  
VVDD = 1.8 V; Tamb  
= 25 °C, VIC = 0.1  
V; 100 mV  
overdrive input  
VIC = 0.1 V; rail-to-  
rail input  
470  
750  
600  
5.5  
ns  
ns  
ns  
μs  
μs  
ns  
VIC = 0.9 V; 100 mV 2  
overdrive input  
VIC = 0.9 V; rail-to-  
rail input  
VIC = 1.7 V; 100 mV 2  
overdrive input  
VIC = 1.7 V; rail-to-  
rail input  
1.25  
105  
tPD  
propagation LOW to HIGH;  
delay  
VVDD = 1.8 V; Tamb  
= 25 °C, VIC = 0.1  
V; 100 mV  
overdrive input  
VIC = 0.1 V; rail-to-  
rail input  
115  
110  
120  
110  
ns  
ns  
ns  
ns  
VIC = 0.9 V; 100 mV 2  
overdrive input  
VIC = 0.9 V; rail-to-  
rail input  
VIC = 1.7 V; 100 mV 2  
overdrive input  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
44  
NXP Semiconductors  
External memory interface  
Table 32. Comparator characteristics (continued)  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.1  
Max.  
Unit  
VIC = 1.7 V; rail-to-  
rail input  
120  
ns  
Vhys  
hysteresis  
voltage3  
HYSTCRT[1:0] =  
01  
13  
27  
35  
mV  
mV  
mV  
HYSTCRT[1:0] =  
10  
HYSTCRT[1:0] =  
11  
1. Characterized on typical samples, not tested in production  
2. 100 mV overdrive corresponds to a square wave from 50 mV below the reference (VIC) to 50 mV above the reference.  
3. Input hysteresis is relative to the reference input channel and is software programmable.  
1.7 Communication interfaces  
1.7.1 USART interface  
Excluding delays introduced by external device and PCB, the maximum supported bit  
rate for USART master synchronous mode is 20 Mbit/s, and the maximum supported  
bit rate for USART slave synchronous mode is 20.0 Mbit/s.  
The actual USART bit rate depends on the delays introduced by the external trace, the  
external device, system clock (HCLK), and capacitive loading.  
Tamb = -20 °C to 70 °C; VDD = 1.71 V to 1.89 V; CL = 20 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting  
= standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.  
Table 33. USART interface characteristics1  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
USART master (in synchronous mode)  
tsu(D)  
th(D)  
tv(Q)  
data input set-  
up time  
-
-
-
0.087  
0.03  
-
-
-
-
ns  
ns  
ns  
data input hold  
time  
-
data output  
valid time  
14.058  
16.412  
USART slave (in synchronous mode)  
tsu(D)  
th(D)  
data input set-  
up time  
-
0.087  
-
-
-
ns  
ns  
data input hold  
time  
-
0.03  
-
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
45  
NXP Semiconductors  
External memory interface  
Table 33. USART interface characteristics1 (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
tv(Q)  
data output  
valid time  
-
0
-
3.684  
ns  
1. Based on simulation; not tested in production  
T
cy(clk)  
Un_SCLK (CLKPOL = 0)  
Un_SCLK (CLKPOL = 1)  
TXD  
t
t
vQ)  
v(Q)  
START  
BIT0  
BIT1  
t
t
su(D) h(D)  
BIT1  
START  
BIT0  
RXD  
aaa-015074  
Figure 23. USART timing  
1.7.2 I2C-bus  
Tamb = -20 °C to +70 °C; 1.71 V VDD 1.89 V.1  
Table 34. I2C-bus pins1  
Symbol  
Parameter  
Notes  
Conditions  
Standard-mode  
Fast-mode  
Min.  
Max.  
100  
400  
1
Unit  
fSCL  
SCL clock  
frequency  
0
0
0
-
kHz  
kHz  
Fast-mode Plus  
MHz  
ns  
tf  
fall time  
2, 3, 4, 5  
Both SDA and  
SCL signals  
300  
Standard-mode  
Fast-mode  
20x(VDD/3.6V)  
300  
ns  
ns  
Fast-mode Plus -  
Standard-mode  
Fast-mode  
120  
tLOW  
LOW period of  
the SCL clock  
6
6
4.7  
1.3  
0.5  
4
-
-
-
-
-
μs  
μs  
μs  
μs  
μs  
Fast-mode Plus  
Standard-mode  
Fast-mode  
tHIGH  
HIGH period of  
the SCL clock  
0.6  
Table continues on the next page...  
1. Parameters are valid over operating temperature range unless otherwise specified. See the I2C-bus specification  
UM10204 for details.  
46  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
Table 34. I2C-bus pins1 (continued)  
Symbol  
Parameter  
Notes  
Conditions  
Fast-mode Plus  
Standard-mode  
Fast-mode  
Min.  
0.26  
0
Max.  
Unit  
μs  
μs  
μs  
μs  
ns  
-
-
-
-
-
-
-
tHD;DAT  
data hold time  
7, 2, 8  
0
Fast-mode Plus  
Standard-mode  
Fast-mode  
0
tSU;DAT  
data set-up time  
9, 10  
4.7  
0.6  
0.26  
ns  
Fast-mode Plus  
ns  
1. Guaranteed by design. Not tested in production.  
2. A device must internally provide a hold time of at least 300 ns for the SDA signal (with respect to the VIH(min) of the  
SCL signal) to bridge the undefined region of the falling edge of SCL.  
3. Cb = total capacitance of one bus line in pF. If mixed with Hs-mode devices, faster fall times are allowed.  
4. The maximum tf for the SDA and SCL bus lines is specified at 300 ns. The maximum fall time for the SDA output  
stage tf is specified at 250 ns. This allows series protection resistors to be connected in between the SDA and the  
SCL pins and the SDA/SCL bus lines without exceeding the maximum specified tf.  
5. In Fast-mode Plus, fall time is specified the same for both output stage and bus timing. If series resistors are used,  
designers should allow for this when considering bus timing.  
6. The MSTTIME register allows programming of certain times for the clock (SCL) high and low times. Please see i.MX  
RT500 Low-Power Crossover MCU Reference Manual for further details.  
7. tHD;DAT is the data hold time that is measured from the falling edge of SCL; applies to data in transmission and the  
acknowledge.  
8. The maximum tHD;DAT could be 3.45 s and 0.9 s for Standard-mode and Fast-mode but must be less than the  
maximum of tVD;DAT or tVD;ACK by a transition time. This maximum must only be met if the device does not stretch the  
LOW period (tLOW) of the SCL signal. If the clock stretches the SCL, the data must be valid by the set-up time before it  
releases the clock.  
9. tSU;DAT is the data set-up time that is measured with respect to the rising edge of SCL; applies to data in transmission  
and the acknowledge.  
10. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system but the requirement tSU;DAT = 250 ns  
must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal.  
If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line  
tr(max) + tSU;DAT = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification) before the SCL line  
is released. Also the acknowledge timing must meet this set-up time.  
t
t
SU;DAT  
f
70 %  
30 %  
70 %  
30 %  
SDA  
SCL  
t
t
HD;DAT  
VD;DAT  
t
f
t
HIGH  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
70 %  
30 %  
t
LOW  
1 / f  
S
SCL  
Figure 24. I2C bus pins clock timing  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
47  
NXP Semiconductors  
External memory interface  
1.7.3 I2S-bus interface  
Tamb = -20 °C to 70 °C; VDD = 1.71 V to 1.89 V; CL = 30 pF balanced loading on all pins; Input slew = 1.0 ns, SLEW setting =  
standard mode for all pins; Parameters sampled at the 50 % level of the rising or falling edge.  
Table 35. I2S-bus interface pins1, 2  
Symbol  
Parameter  
Conditions  
Notes  
Min.  
Typ.3  
Max.  
Unit  
Common to master and slave  
tWH  
pulse width  
HIGH  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK4  
(Tcyc/2) -1  
-
-
(Tcyc/2) +1  
(Tcyc/2) +1  
ns  
ns  
tWL  
pulse width  
LOW  
on pins I2Sx_TX_SCK and I2Sx_RX_SCK4  
(Tcyc/2) -1  
Master  
tv(Q)  
data output  
valid time  
on pin  
I2Sx_TX_SD  
A
5
6.798  
-
17.505  
ns  
on pin I2Sx_WS  
5
-
-
16.055  
-
ns  
ns  
tsu(D)  
data input set- on pin  
5
5
1.3  
up time  
I2Sx_RX_SD  
A
th(D)  
data input  
hold time  
on pin  
I2Sx_RX_SD  
A
2.9  
-
-
ns  
Slave  
tv(Q)  
data output  
valid time  
on pin  
I2Sx_TX_SD  
A
5
5
13.8  
4.7  
23.6  
-
ns  
ns  
tsu(D)  
data input set- on pin  
-
up time  
I2Sx_RX_SD  
A
on pin  
I2Sx_WS  
0.9  
0
-
-
-
-
ns  
ns  
th(D)  
data input  
hold time  
on pin  
5
I2Sx_RX_SD  
A
on pin  
0
-
-
ns  
I2Sx_WS  
1. Based on simulation; not tested in production.  
2. The Flexcomm Interface function clock frequency should not be above 48 MHz. See the data rates section in the I2S  
chapter in the i.MX RT500 Low-Power Crossover MCU Reference Manual (IMXRT500RM) to calculate clock and sample  
rates.  
3. Typical ratings are not guaranteed.  
4. Based on simulation. Not tested in production.  
5. Clock Divider register (DIV) = 0x0.  
48  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
I2Sx_WS  
t
t
h(D)  
su(D)  
t
v(Q)  
Figure 25. I2S-bus timing (master)  
T
t
f
t
r
cy(clk)  
I2Sx_SCK  
t
t
WL  
WH  
I2Sx_TX_SDA  
t
v(Q)  
I2Sx_RX_SDA  
t
su(D)  
t
h(D)  
I2Sx_WS  
t
t
h(D)  
su(D)  
Figure 26. I2S-bus timing (slave)  
1.7.4 SPI interfaces (Flexcomm interfaces 0-8)  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (HCLK), and capacitive loading.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
49  
NXP Semiconductors  
External memory interface  
Excluding delays introduced by external device and PCB, the maximum supported bit  
rate for SPI master mode (transmit/receive) is 25 Mbit/s and the maximum supported  
bit rate for SPI slave mode (transmit/receive) is 25 Mbit/s.  
Tamb = -20 °C to 70 °C; 1.71 V VDD1.89 V; CL = 10 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.  
Table 36. SPI interfaces1  
Symbol  
Parameter  
Conditions  
SPI master  
Min.  
Typ.  
Max.  
Unit  
tDS  
tDH  
data set-up time  
data hold time  
-
-
-
5.0  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
data output valid time  
0
13.0  
SPI slave  
tDS  
tDH  
data set-up time  
data hold time  
-
-
-
5.0  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
data output valid time  
0
13  
1. Based on simulation; not tested in production  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
Figure 27. SPI master timing  
50  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
External memory interface  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
Figure 28. SPI slave timing  
1.7.5 High-Speed SPI interface (Flexcomm interface 14)  
The actual SPI bit rate depends on the delays introduced by the external trace, the  
external device, system clock (HCLK), and capacitive loading.  
Excluding delays introduced by external device and PCB, the maximum supported bit  
rate for SPI master mode (transmit/receive) is 50 Mbit/s.  
Excluding delays introduced by external device and PCB, the maximum supported bit  
rate for SPI slave mode (receive) is 50 Mbit/s and for SPI slave mode (transmit) is 35  
Mbit/s.  
Tamb = -20 °C to 70 °C; 1.71 V VDD1.89 V; CL = 10 pF balanced loading on all pins; Input slew = 1 ns, SLEW setting =  
standard mode for all pins;. Parameters sampled at the 50 % level of the rising or falling edge.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
51  
NXP Semiconductors  
External memory interface  
Table 37. High-Speed SPI interfaces1  
Symbol  
Parameter  
Conditions  
SPI master  
Min.  
Typ.  
Max.  
Unit  
tDS  
tDH  
data set-up time  
data hold time  
-
-
-
4.0  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
data output valid time  
0
6.0  
SPI slave  
tDS  
tDH  
data set-up time  
data hold time  
-
-
-
3.0  
0
-
-
-
-
-
ns  
ns  
ns  
tv(Q)  
data output valid time  
0
10.0  
1. Based on simulation; not tested in production  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MOSI (CPHA = 0)  
MISO (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MOSI (CPHA = 1)  
MISO (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
IDLE  
IDLE  
DATA VALID (LSB)  
DATA VALID  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
Figure 29. SPI master timing  
52  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
External memory interface  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
SSEL  
MISO (CPHA = 0)  
MOSI (CPHA = 0)  
t
t
v(Q)  
v(Q)  
IDLE  
IDLE  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID  
DATA VALID (LSB)  
MISO (CPHA = 1)  
MOSI (CPHA = 1)  
t
t
v(Q)  
v(Q)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
IDLE  
IDLE  
t
t
DH  
DS  
DATA VALID (MSB)  
DATA VALID (LSB)  
DATA VALID  
Figure 30. SPI slave timing  
1.7.6 SD/MMC and SDIO  
Tamb = -20 °C to +70 °C, VDD = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode  
on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the  
rising or falling edge. Based on simulation, not tested in production.  
Table 38. SD/MMC and SDIO characteristics (Default Speed (DS), High Speed (HS) SDR-12  
and SDR-25)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
12.5  
MHz  
mode. DS/  
SDR-12 (12.5  
MB/s)  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
25  
MHz  
mode, HS/  
SDR-25 (25  
MB/s)  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
53  
NXP Semiconductors  
External memory interface  
Table 38. SD/MMC and SDIO characteristics (Default Speed (DS), High Speed (HS) SDR-12  
and SDR-25) (continued)  
Symbol  
Parameter  
data input set- on pins  
up time SD_DATn as  
Conditions  
Min.  
Typ.  
Max.  
Unit  
tsu(D)  
7.5  
-
-
ns  
inputs  
on pins  
SD_CMD as  
inputs  
7.5  
1.0  
1.0  
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
th(D)  
data input hold on pins  
time  
SD_DATn as  
inputs  
on pins  
SD_CMD as  
inputs  
-
tv(Q)  
data output  
valid time  
on pins  
SD_DATn as  
outputs  
7.5  
7.5  
on pins  
-
SD_CMD as  
outputs  
Tamb = -20 °C to +70 °C, VDD = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on  
all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or  
falling edge. Based on simulation, not tested in production.  
Table 39. SD/MMC and SDIO characteristics ((SDR-50, SDR-104, HS-200 (MMC))  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
100  
MHz  
mode, SDR-50  
(50 MB/s)  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
-
-
200  
200  
MHz  
MHz  
mode, SDR-104  
(104 MB/s)  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
mode, HS-200  
(MMC) (200  
MB/s)  
tsu(D)  
data input set-  
up time  
on pins  
SD_DATn as  
inputs  
7.5  
7.5  
-
-
-
-
ns  
ns  
on pins  
SD_CMD as  
inputs  
Table continues on the next page...  
54  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
External memory interface  
Table 39. SD/MMC and SDIO characteristics ((SDR-50, SDR-104, HS-200 (MMC)) (continued)  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
th(D)  
data input hold  
time  
on pins  
SD_DATn as  
inputs  
0
-
-
ns  
on pins  
SD_CMD as  
inputs  
0
0
0
-
-
-
-
ns  
ns  
ns  
tv(Q)  
data output valid  
time  
on pins  
SD_DATn as  
outputs  
7.5  
7.5  
on pins  
SD_CMD as  
outputs  
Tamb = -20 °C to +70 °C, VDD = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode  
on all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the  
rising or falling edge. Based on simulation, not tested in production. HS-400 supported on SD port 0 only.  
Table 40. SD/MMC and SDIO characteristics ((DDR-50, HS DDR (MMC))  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
50  
MHz  
mode, DDR-50  
(50 MB/s)  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
52  
MHz  
mode, HS-DDR  
(104 MB/s)  
tsu(D)  
data input set-  
up time  
on pins  
SD_DATn as  
inputs  
4.8  
4.8  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
on pins  
SD_CMD as  
inputs  
th(D)  
data input hold  
time  
on pins  
SD_DATn as  
inputs  
-
on pins  
SD_CMD as  
inputs  
0
-
tv(Q)  
data output  
valid time  
on pins  
SD_DATn as  
outputs  
0
5.0  
5.0  
on pins  
0
SD_CMD as  
outputs  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
55  
NXP Semiconductors  
External memory interface  
Tamb = -20 °C to +70 °C, VDD = 1.71 V to 1.89 V; VDDCORE = 1.13 V; CL = 10 pF. DLL_CTRL = 0x200, Full Drive Mode on  
all pins, Input slew = 1 ns, SLEW setting = standard mode for all pins;. Parameters sampled at the 50 % level of the rising or  
falling edge. Based on simulation, not tested in production. HS-400 supported on SD port 0 only.  
Table 41. SD/MMC and SDIO characteristics (HS-400(MMC))  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
fclk  
clock frequency on pin SD_CLK;  
data transfer  
-
-
200  
MHz  
mode, HS-400  
(400 MB/s)  
tsu(D)  
th(D)  
tv(Q)  
data input set-  
up time  
on pins  
SD_DATn as  
inputs  
0.5  
0.5  
0
-
-
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
on pins  
SD_CMD as  
inputs  
data input hold  
time  
on pins  
SD_DATn as  
inputs  
-
on pins  
SD_CMD as  
inputs  
0
-
data output valid  
time  
on pins  
SD_DATn as  
outputs  
0
1.0  
1.0  
on pins  
0
SD_CMD as  
outputs  
T
cy(clk)  
SD_CLK  
t
t
h(Q)  
d(QV)  
SD_CMD (O)  
SD_DATn (O)  
t
t
su(D)  
h(D)  
SD_CMD (I)  
SD_DATn (I)  
Figure 31. SD/MMC and SDIO timing  
56  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
External memory interface  
1.7.7 DMIC subsystem  
Tamb = -20 °C to 70 °C; VDD = 2.7 V to 3.6 V; CL = 20 pF balanced loading on all pins; Input slew = 1 ns, SLEW set to  
standard mode for all pins; Bypass bit = 0; Parameters sampled at the 50% level of the rising or falling edge.  
Table 42. Dynamic characteristics1  
Symbol  
tDS  
Parameter  
data set-up time  
data hold time  
Conditions  
Min.  
13  
0
Typ.  
Max.  
Unit  
ns  
-
-
-
-
-
-
tDH  
ns  
1. Based on simulated values.  
CLOCK  
DATA  
t
DH  
t
SU  
Figure 32. DMIC timing diagram  
1.7.8 USB interface characteristics  
This section describes the USB1 port High Speed/Full Speed (HS/FS) transceiver. The  
USB HS/FS meets the electrical compliance requirements defined in the Universal  
Serial Bus Revision 2.0 Specification.  
1.7.9 USB DCD electrical specifications  
Table 43. USB DCD electrical specifications  
Symbol  
VDP_SRC  
Description  
Min.  
Typ.  
Max.  
Unit  
,
USB_DP and USB_DM source voltages (up to 250  
0.5  
0.7  
V
VDM_SRC μA)  
VLGC  
IDP_SRC  
IDM_SINK  
Threshold voltage for logic high  
0.8  
7
10  
2.0  
13  
V
USB_DP source current  
μA  
μA  
,
USB_DM and USB_DP sink currents  
50  
100  
150  
IDP_SINK  
RDM_DWN D- pulldown resistance for data pin contact detect  
VDAT_REF Data detect voltage  
14.25  
0.25  
24.8  
0.4  
kΩ  
V
0.33  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
57  
NXP Semiconductors  
External memory interface  
1.7.10 USB High Speed Transceiver and PHY specifications  
This section describes the High Speed USB PHY parameters. The high speed PHY is  
capable of full speed signaling as well.  
The USB PHY meets the electrical compliance requirements defined in the Universal  
Serial Bus Revision 2.0 Specification with the amendments below.  
• USB ENGINEERING CHANGE NOTICE  
• Title: 5V Short Circuit Withstand Requirement Change  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000  
• USB ENGINEERING CHANGE NOTICE  
• Title: Pull-up/Pull-down resistors  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• USB ENGINEERING CHANGE NOTICE  
• Title: Suspend Current Limit Changes  
• Applies to: Universal Serial Bus Specification, Revision 2.0  
• On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification  
• Revision 2.0 plus errata and ecn June 4, 2010  
• Battery Charging Specification (available from USB-IF)  
• Revision 1.2, December 7, 2010  
USB0_VBUS pin is a detector function which is 5v tolerant and complies with the  
above specifications without needing any external voltage division components.  
1.7.11 Improved Inter-Integrated Circuit Interface (MIPI-I3C)  
specifications  
Unless otherwise specified, MIPI-I3C specifications are timed to/from the VIH and/or  
VIL signal points.  
Table 44. MIPI-I3C specifications when communicating with legacy I2C devices  
Symbol Characteristic  
400 kHz/Fast mode  
1 MHz/ Fast+ mode  
Unit  
Min.  
0
Max.  
0.4  
Min.  
0
Max.  
1
fSCL  
SCL Clock Frequency  
MHz  
ns  
tSU_STA Set-up time for a repeated START condition  
600  
600  
260  
260  
Hold time tHD; STA  
(repeated)  
ns  
Table continues on the next page...  
58  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
External memory interface  
Table 44. MIPI-I3C specifications when communicating with legacy I2C devices (continued)  
Symbol Characteristic  
400 kHz/Fast mode  
1 MHz/ Fast+ mode  
Unit  
Min.  
Max.  
Min.  
Max.  
START  
condition  
tLOW  
tHIGH  
LOW period of the SCL clock  
HIGH period of the SCL clock  
1300  
600  
100  
500  
260  
50  
ns  
ns  
ns  
ns  
ns  
tSU_DAT Data set-up time  
tHD_DAT Data hold time for I2C bus devices  
tf  
Fall time of SDA and SCL signals  
20*(Vdd/5.5  
v)  
300  
20*(Vdd/5.  
5 v)  
120  
tr  
Rise time of SDA and SCL signals  
20  
600  
1.3  
300  
260  
0.5  
120  
ns  
ns  
µs  
tSU_STO Set-up time for STOP condition  
tBUF  
Bus free time between STOP and START  
condition  
tSP  
Pulse width of spikes that must be suppressed  
by the input filter  
0
50  
0
50  
ns  
Table 45. MIPI-I3C open drain mode specifications  
Symbol  
Characteristic  
Min.  
200  
Max.  
Unit  
Notes  
tLOW_OD LOW period of the SCL clock  
tDIG_OD_L tLOW_OD + tfDA_OD (min)  
ns  
ns  
tHIGH  
tfDA_OD  
tSU_OD  
tCAS  
HIGH period of the SCL clock  
Fall time of SDA signal  
41  
ns  
ns  
ns  
tCF  
3
12  
1
Data set-up time during open drain mode  
Clock after START (S) Condition  
• ENTAS0  
38.4 n  
1 μ  
100 μ  
2 m  
50 m  
s
s
• ENTAS1  
• ENTAS2  
• ENTAS3  
s
s
tCBP  
Clock before STOP (P) condition  
tCAS(min)/2  
tDIG_OD_L  
ns  
ns  
tMMOverlap Current master to secondary master overlap time  
during handoff  
tAVAL  
tIDLE  
Bus available condition  
1
1
μs  
ms  
μs  
Bus idle condition  
tMMLock  
Time internal where new master not driving SDA low  
tAVAL  
1. Cb = total capacitance of the one bus line in pF.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
59  
NXP Semiconductors  
External memory interface  
Table 46. MIPI-I3C push-pull specifications for SDR and HDR-DDR modes  
Symbol Characteristic  
Min.  
0.01  
24  
Typ.  
12.5  
Max.  
13  
Unit  
MHz  
ns  
Notes  
fSCL  
tLOW  
tDIG_L  
SCL Clock Frequency  
LOW period of the SCL clock  
32  
ns  
tHIGH_MIXED HIGH period of the SCL clock for a mixed bus  
24  
ns  
tDIG_H_MIXE  
32  
45  
ns  
1
D
tHIGH  
tDIG_H  
tSCO  
tCR  
HIGH period of the SCL clock  
24  
32  
12  
ns  
ns  
ns  
ns  
Clock in to data out for a slave  
SCL clock rise time  
150 * 1 /  
fSCL  
(capped at  
60)  
tCF  
SCL clock fall time  
150 * 1 /  
fSCL  
(capped at  
60)  
ns  
ns  
tHD_PP  
SDA signal data hold  
• Master mode  
• Slave mode  
tCR+3 and  
tCF+3  
0
3
tSU_PP  
tCASr  
SDA signal setup  
ns  
ns  
ns  
Clock after repeated START (Sr)  
Clock before repeated START (Sr)  
tCAS (min)  
tCBSr  
tCAS  
(min)/2  
Cb  
Capacitive load per bus line  
50  
pF  
1. When communicating with an I3C Device on a mixed Bus, the tDIG_H_MIXED period must be constrained in order to make  
sure that I2C devices do not interpret I3C signaling as valid I2C signaling.  
SDA  
tSU; DAT  
tf  
tr  
tBUF  
tf  
tr  
tHD; STA  
tSP  
tLOW  
SCL  
tSU; STA  
tSU; STO  
HD; STA  
S
SR  
P
S
tHD; DAT  
tHIGH  
Figure 33. Timing definition for devices on the I2C bus  
1.8 Timer modules  
60  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
1.8.1 SCTimer/PWM output timing  
Tamb = -20 °C to 70 °C; 1.71 V VDD1.89 V CL = 20 pF. Simulated skew (over process, voltage, and temperature) of  
any two SCT fixed-pin output signals; sampled at the 50% level of the rising or falling edge; values guaranteed by design.  
Table 47. SCTimer/PWM output dynamic characteristics  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
tsk(o)  
output skew  
time  
-
0
-
2.8  
ns  
2 Architectural overview  
The Arm Cortex-M33 includes two AHB-Lite buses: the code bus and the system bus.  
The i.MX RT500 uses a multi-layer AHB matrix to connect the Arm Cortex-M33  
buses and other bus masters to peripherals in a flexible manner that optimizes  
performance by allowing peripherals that are on different slave ports of the matrix to  
be accessed simultaneously by different bus masters.  
2.1 Detailed block diagram  
The following figure shows the detailed block diagram for i. MX RT500  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
61  
NXP Semiconductors  
Architectural overview  
DSI  
Host  
Interface  
MIPI  
PHY  
LCDIF  
GPU  
MIPI DSI Interface  
HS USB Bus  
ISP&Debug  
Access Ports  
ISP&Debug  
Access Ports  
HS USB  
PHY  
AXI Switch  
S0  
General  
General  
Purpose  
Smart  
DMA  
(PwrQuad  
&Casper  
/
SDIO  
eMMC eMMC  
-
SDIO  
/
HASH  
CRYPT  
Purpose  
S1-9  
)
AXI : AHB  
bridges  
To Shared SRAM partitions 0 - 31  
DMA  
0
1
DMA  
1-9  
PwrQuad  
rams  
:AHB  
AXI  
x
4
2kB  
bridge  
0
Inst  
Data  
TCM Bus  
I-ram  
0
M33with  
Tensilica  
co-  
-
To Shared SRAM partitions 0 - 27  
ram  
D
0
1
1
processors  
FPU/MPU  
Fusion  
DSP  
I-ram  
-
ram  
D
To Shared SRAM partitions 28 - 31  
Pwr  
System  
Code  
M0  
Quad  
M2  
M1  
M9  
M3  
M6 M7  
M8  
M10  
M11  
M4  
M5  
32  
KB  
P0  
P1  
Boot Rom  
192  
cache ram  
KB  
FlexSPI0  
Cache  
OTFAD  
Controller  
Flash Interface  
P2  
P3  
P4  
To Shared SRAM partitions 0,1 (32 KB each)  
To Shared SRAM partitions 2,3 (32 KB each)  
To Shared SRAM partitions 4-7 (32 KB each)  
P5  
P6  
P7  
P8  
P9  
P10  
To Shared SRAM partitions 8-11 (64 KB each)  
To Shared SRAM partitions 12-15 (128 KB each)  
To Shared SRAM partitions 16-19 (256 KB each)  
To Shared SRAM partitions 20-23 (256 KB each)  
To Shared SRAM partitions 24-27 (256 KB each)  
To Shared SRAM partitions 28-31 (256 KB each)  
32KB  
Smart DMA  
RAM 32KB  
P11  
P12  
cache ram  
FlexSPI1  
Flash I’face  
Cache  
Controller  
P14  
-
AIPS Lite  
bridge  
0
DMA  
DMA0  
1
HS  
GPIO  
0-7  
registers  
Flexcoms 0-3  
UARTs 0-3 - I2Cs 0-3  
-SPIs 0-3 - I2Cs 0-3  
registers  
OS  
Timer  
MU0  
SEMA  
-
P15  
Flexcom16  
-SPI15  
Flexcom15  
-I2C14  
CRC  
Engine  
Audio Subsys  
Flexcoms  
4
-
7
Flexcom 14  
-SPI14  
Multilayer  
AHB Matrix  
,
(8-ch D -Mic  
, etc)  
-
-
UARTs 4-7  
-
I2Cs 4-7  
Decimator  
SPIs 4-7 - I2Cs 4-7  
P16  
-Lite  
AIPS  
bridge  
1
0
FlexSPI  
SDIO0  
registers  
SDIO1  
OTP  
FlexSPI1  
registers  
ADC  
registers  
+
controller  
OTFAD  
registers  
ch  
12-  
16Kb OTP  
Array  
Temp  
Sensor  
Random  
USB PHY  
ACMP  
registers  
PMC  
registers  
Number Gen registers  
P17  
USB Ram  
Interface  
HS USB HS USB  
SCTimer  
PWM  
Secure  
Control  
registers  
/
SRAM  
16KB  
host  
device  
registers  
registers  
P18  
P13  
Flexcoms8-13  
-UARTs8-13  
-SPIs8-13  
-
CASPER  
registers  
AXI Switch  
registers  
PwrQuad  
registers  
HASH CRYPT  
LCDIF  
registers  
Secure  
GPIO0  
slave interface  
I2Cs8-13 - I2Ss8-13  
-
CASPER  
GPU  
registers  
rams  
x
2KB  
2
clock generation,  
PLLs, power  
clocks  
AHB to  
AHB to  
control, and  
APB slave group0  
(intended for M33 - only)  
and  
APB bridge  
APB bridge  
APB slave group1  
other  
system functions  
controls  
14  
0,1, 2  
3
WDT Osc  
RSTCTLa, CLKCTLa, SYSCTLa  
Windowed WDT1  
FreqMeasure  
I3C0,1  
0,1,2  
internal  
power  
voltage regulators  
RBB/FBB  
RSTCTLb, CLKCTLb, SYSCTLb  
GPIO interrupt Control  
Periph Input Mux Selects  
Smart DMA Controller  
5x32-bit Timers (T0 - 4)  
15  
PVT  
5
22-23  
4
6
6
7
I/O Configuration  
Always-on Power Domain  
PUF Ram  
2KB  
PUF  
16  
17  
RTC Alarm Match  
8-12  
13  
32kHz Osc  
&Dividers  
14  
15  
RTC Wake Counter  
RTC Alarm Counter  
WDT Osc  
Windowed WDT0  
MicroTick Timer  
-Rate Timer  
Multi  
RTC Count  
18  
FlexIO Regs  
RTC Subsec Counter  
19  
Cache Ctrl0 Regs  
Cache Ctrl1 Regs  
20  
DSI Phy/Host Controller  
Note:  
- Orange shaded blocks support General Purpose DMA.  
- Yellow shaded blocks include dedicated DMA Ctrl.  
Figure 34. i.MX RT500 detailed block diagram  
2.2 Shared system SRAM  
The entire system TCM SRAM space (accessed in single cycle) of up to 5 MB is  
divided into up to 32 separate partitions, which are accessible to both CPUs, both DMA  
engines, and all other AHB bus masters. The Fusion CPU TCMI (Instruction) & TCMD  
62  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
(Data) interfaces and the Graphics (GPU/LCD) subsystem each access the RAM via  
separate, dedicated 64-bit interfaces. All other masters, including the Cortex-M33  
processor and the DMA engines, access RAM via the main 32-bit AHB bus. All of  
these accesses are single-cycle with the exception of the GPU/LCD. Hardware  
interface modules arbitrate access to each RAM partition between the main AHB bus,  
the graphics AHB bus and the Fusion Tightly-Coupled-Memory buses.  
Under software control, each of the 32 individual SRAM partitions can be used  
exclusively as code or as data, dedicated either CPU, or shared among the various  
masters. Each partition can be independently placed in a low-power retention mode or  
powered off entirely.  
2.3 RT500 modules list  
The i.MX RT500 contains a variety of digital and analog modules. The following  
table describes briefly about these modules.  
Table 48. i.MX RT500 modules list  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
Arm core modules  
ARM Cortex M33 processor MCU  
Core module  
The Arm Cortex-M33 is a general  
purpose, 32-bit microprocessor, which  
offers high performance and very low  
power consumption. The Arm Cortex-  
M33 offers many new features, including  
a Thumb-2 instruction set, low interrupt  
latency, hardware multiply and divide,  
interruptable/continuable multiple load  
and store instructions, automatic state  
save and restore for interrupts, tightly  
integrated interrupt controller with wake-  
up interrupt controller, and multiple core  
buses capable of simultaneous  
accesses. M33 includes ARM’s  
TrustZone M for enhanced security as  
well as a co-processor interface. This  
interface is used on this device to provide  
hardware acceleration for DSP functions  
(Powerquad co-processor) and Security/  
cryptography operations (CASPER co-  
processor). A 3-stage pipeline is  
employed so that all parts of the  
processing and memory systems can  
operate continuously. Typically, while  
one instruction is being executed, its  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
63  
NXP Semiconductors  
Architectural overview  
Block Name  
Table 48. i.MX RT500 modules list (continued)  
Block  
Subsystem  
Brief description  
Mnemonic  
successor is being decoded, and a third  
instruction is being fetched from memory.  
Arm Cortex-M33 integrated FPU  
Floating Point Unit (FPU)  
Core modules  
The FPU fully supports single-precision  
add, subtract, multiply, divide, multiply  
and accumulate, and square root  
operations. It also provides conversions  
between fixed-point and floating-point  
data formats, and floating-point constant  
instructions. The FPU provides floating-  
point computation functionality that is  
compliant with the ANSI/IEEE Std  
754-2008, IEEE Standard for Binary  
Floating-Point Arithmetic, referred to as  
the IEEE 754 standard.  
Memory Protection Unit  
MPU  
Core module  
The Cortex-M33 includes a Memory  
Protection Unit (MPU) which can be used  
to improve the reliability of an embedded  
system by protecting critical data within  
the user application. The MPU allows  
separating processing tasks by  
disallowing access to each other's data,  
disabling access to memory regions,  
allowing memory regions to be defined  
as read-only and detecting unexpected  
memory accesses that could potentially  
break the system. The MPU separates  
the memory into distinct regions and  
implements protection by preventing  
disallowed accesses. The MPU supports  
up to eight regions each of which can be  
divided into eight subregions. Accesses  
to memory locations that are not defined  
in the MPU regions, or not permitted by  
the region setting, will cause the Memory  
Management Fault exception to take  
place.  
Nested Vectored Interrupt  
Controller (NVIC) for Cortex-  
M33  
NVIC  
Core modules  
Core modules  
The NVIC is an integral part of the  
Cortex-M33. The tight coupling to the  
CPU allows for low interrupt latency and  
efficient processing of late arriving  
interrupts.  
System Tick timer (SysTick) SysTick  
The Arm Cortex-M33 includes a system  
tick timer (SysTick) that is intended to  
generate a dedicated SYSTICK  
exception. The clock source for the  
SysTick can be the FRO or the Cortex-  
M33 core clock.  
Memories  
On-Chip static RAM  
SRAM  
Memories  
The i.MX RT500 supports up to 5 MB  
SRAM with separate bus master access  
Table continues on the next page...  
64  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
for higher throughput and individual  
power control for low-power operation.  
On-chip ROM  
ROM  
Memories  
The 192 KB on-chip ROM contains the  
boot loader and the following Application  
Programming Interfaces (API):  
• In-Application Programming (IAP)  
and In-System Programming (ISP).  
• ROM-based USB drivers (HID,  
CDC, MSC). Supports flash  
updates via USB.  
• Supports booting from valid Octal/  
Quad SPI, eMMC, USB, USART,  
SPI, and I2C. • Legacy, Single, and  
Dual image boot.  
• OTP API for programming OTP  
memory.  
• Random Number Generator (RNG)  
API.  
One-Time Programmable  
memory  
OTP  
FRO  
Memories  
The i.MX RT500 contains up to 16 kbits  
one-time-programmable memory used  
for part configuration, key storage (as an  
alternative to PUF) and other uses.  
Clock sources  
System control  
192 MHz Free Running  
Oscillator (FRO)  
The 192 MHz FRO oscillator provides a  
high-frequency clock source that can be  
used without the need for a high-power  
PLL for many applications. This oscillator  
is factory trimmed to 1% accuracy but  
can optionally be tuned to 0.1%  
accuracy using an accurate, known  
reference clock such as the crystal  
oscillator. The 192 MHz FRO, or a  
divided version of it, may be used as the  
main system clock and for many other  
purposes.  
1 MHz Low Power Oscillator LPO  
System Control  
The 1 MHz oscillator provides an ultra  
low-power, low-frequency clock source  
that can be used to clock a variety of  
functions including the Watchdog Timer  
(WWDT) and the OS/EVENT Timer. It  
can also be used as the main system  
clock for low-power operation. On Reset,  
the device boots using this 1 MHz  
oscillator.  
The 1 MHz Low Power oscillator is  
accurate to 5% over temperature.  
Crystal Oscillator  
-
System Control  
The main crystal oscillator on the i.MX  
RT500 can be used with crystal  
frequencies from 4 MHz to 26 MHz. The  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
65  
NXP Semiconductors  
Architectural overview  
Block Name  
Table 48. i.MX RT500 modules list (continued)  
Block  
Subsystem  
Brief description  
Mnemonic  
crystal oscillator may be used to drive a  
PLL to achieve higher clock rates.  
32 KHz Crystal Oscillator  
-
System Control  
The 32KHz oscillator resides in the  
"always-on" domain and is used to drive  
the Real Time Clock. It is also available  
for use for a variety of other purposes  
including low-power UART operation or  
as the main system clock for very low  
frequency operation  
System Control (PLLs)  
System PLL (PLL0)  
Audio PLL (PLL1)  
PLL0  
PLL1  
System Control  
The system PLL accepts an input clock  
frequency in the range of 32.768 kHz to  
25 MHz. The input frequency is multiplied  
up to a high frequency with a Current  
Controlled Oscillator (CCO). Generates  
four independent outputs (PFD0-3).  
System Control  
The audio PLL accepts an input clock  
frequency in the range of 1 MHz to 25  
MHz. The input frequency is multiplied up  
to a high frequency with a Current  
Controlled Oscillator (CCO). The PLL can  
be enabled or disabled by software.  
I/O Muxing  
General Purpose I/O (GPIO) GPIO  
Pin Muxing  
The i.MX RT500 provides up to six GPIO  
ports with a total of up to 136 GPIO pins.  
Device pins that are not connected to a  
specific peripheral function are controlled  
by the GPIO registers. Pins may be  
dynamically configured as inputs or  
outputs. Separate registers allow setting  
or clearing any number of outputs  
simultaneously. The current level of a  
port pin can be read back no matter what  
peripheral is selected for that pin. It can  
optionally contribute to one of two GPIO  
group interrupts, with selection of  
polarity, level or edge detection.  
Pin Interrupt and Pattern  
Match (PINT)  
-
I/O Mux  
The pin interrupt block configures up to  
eight pins from all digital pins for  
providing eight external interrupts  
connected to the NVIC. The pattern  
match engine can optionally be used in  
conjunction with software to create  
complex state machines based on pin  
inputs. Any digital pin, independent of the  
function selected through the switch  
matrix can be configured through the  
SYSCON block as an input to the pin  
interrupt or pattern match engine. The  
registers that control the pin interrupt or  
Table continues on the next page...  
66  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
pattern match engine are located on the  
I/O+ bus for fast single-cycle access.  
Communication peripherals  
High-speed USB Host/  
Device interface (USB1)  
USB1  
Communication interfaces  
The Universal Serial Bus (USB) is a 4-  
wire bus that supports communication  
between a host and one or more (up to  
127) peripherals. The host controller  
allocates the USB bandwidth to attached  
devices through a token-based protocol.  
The device controller enables 480 Mbit/s  
data exchange with a USB host  
controller. It consists of a register  
interface, serial interface engine,  
endpoint buffer memory. The bus  
supports hot plugging and dynamic  
configuration of the devices. All  
transactions are initiated by the host  
controller.  
Flex SPI Controller  
(FlexSPI)  
FlexSPI  
Communication interfaces  
Two FlexSPI Interface modules,  
supporting Octal and Quad SPI memory  
devices are provided. The first FlexSPI  
instance is primarily intended for code  
execution from off-chip SPI flash  
memory. The second instance is  
primarily intended to access data from  
RAMs like HyperRAM or pSRAM  
(particularly for graphics). The second  
instance is accessible by the DSP  
processor as well as the M33. Target will  
be for both interfaces to support up to  
200 MHz DDR/SDR The FlexSPI  
interfaces support HyperFlash,  
HyperRAM and Xccela memory types,  
among others. The first FlexSPI interface  
(FlexSPI0) supports execute-in-place and  
on-the-fly decryption using the latest  
OTFAD module. It also provides a  
mechanism to shift a designated range of  
addresses to a different region of off-chip  
memory to support dual-image boot. Both  
FlexSPI Interfaces include a 32 KB cache  
with an CACHE64 AHB-cache controller.  
Additional logic is provided at the  
CACHE64 interface to enable different  
caching policies for different address  
regions. These policies include:  
• Write-back  
• Write-through  
• Non-cached  
.
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
67  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
SD/eMMC interfaces  
uSDHC  
Communication interfaces  
Two uSDHC SDIO/MMC card interfaces  
are provided. One instance of this  
interface (SDIO0) supports the eMMC  
5.0 standard including HS400 DDR  
mode. The other instance supports 100  
MHz SDR, 50 MHz DDR.  
Flexcomm Interface  
FlexComm  
Communication interfaces  
Following are the features of FlexComm:  
• USART with asynchronous  
operation or synchronous master  
or slave operation.  
• SPI master or slave, with up to 4  
slave selects.  
• I2C, including separate master,  
slave, and monitor functions.  
• Two I2S functions using Flexcomm  
Interface 6 and Flexcomm Interface  
7.  
• Data for USART, SPI, and I2S  
traffic uses the Flexcomm Interface  
FIFO. The I2C function does not  
use the FIFO.  
I3C interface  
I3C  
-
Communication interface  
Two I3C master/slave interfaces are  
provided, both of which support DDR.  
Counter/Timer modules  
General-purpose 32-bit  
timers/external event  
counter  
Counter/Timers  
The i.MX RT500 includes five general-  
purpose 32-bit timer/counters. The timer/  
counter is designed to count cycles of the  
system derived clock or an externally-  
supplied clock. It can optionally generate  
interrupts, generate timed DMA requests,  
or perform other actions at specified  
timer values, based on four match  
registers. Each timer/counter also  
includes two capture inputs to trap the  
timer value when an input signal  
transitions, optionally generating an  
interrupt.  
SCTimer/PWM  
SCT/PWM  
Counters/Timers  
The SCTimer/PWM allows a wide variety  
of timing, counting, output modulation,  
and input capture operations. The inputs  
and outputs of the SCTimer/PWM are  
shared with the capture and match  
inputs/outputs of the 32-bit general-  
purpose counter/timers. The  
SCTimer/PWM can be configured as two  
16-bit counters or a unified 32-bit  
counter. In the two-counter case, in  
addition to the counter value the following  
operational elements are independent for  
each half:  
Table continues on the next page...  
68  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
• State variable  
• Limit, halt, stop, and start  
conditions.  
• Values of Match/Capture registers,  
plus reload or capture control  
values.  
In the two-counter case, the following  
operational elements are global to the  
SCTimer/PWM, but the last three can  
use match conditions from either counter:  
• Clock selection  
• Inputs  
• Events  
• Outputs  
• Interrupts  
Windowed Watchdog Timer WWDT  
(WWDT)  
Timers  
Timers  
Timers  
Timers  
The purpose of the watchdog is to reset  
the controller if software fails to  
periodically service it within a  
programmable time window. A separate  
Watchdog Timer is provided for each of  
the two CPUs.  
Real Time Clock Timer  
Multi-Rate Timer  
RTC Timer  
The RTC timer is a 32-bit timer which  
counts down from a preset value to zero.  
At zero, the preset value is reloaded and  
the counter continues. The RTC timer  
uses the 32.768 kHz clock input to create  
a 1 Hz or 1 kHz clock.  
MRT  
The Multi-Rate Timer (MRT) provides a  
repetitive interrupt timer with four  
channels. Each channel can be  
programmed with an independent time  
interval, and each channel operates  
independently from the other channels.  
OS/Event Timer  
-
An OS/EVENT Timer module provides a  
common timebase between the two  
CPUs for event synchronization and  
timestamping. The OS/EVENT Timer is  
comprised of a shared, free-running  
counter readable by each CPU and  
individual match and capture registers for  
each CPU. The shared and local  
counters in this module are implemented  
using Gray code. This will enable them to  
be read asynchronously by the  
processing domains. The main counter in  
the OS/EVENT Timer module begins  
counting immediately following power-up  
and continues counting through any  
subsequent system resets (except those  
caused by a new POR).  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
69  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
Micro-Tick Timer  
MTR  
Timers  
A 32-bit MicroTick timer that runs from  
the 1 MHz low-power oscillator. This  
timer can wake up the device from  
reduced power modes up to deep-sleep,  
with extremely low power consumption.  
The MicroTick timer has an added  
timestamp feature in the form of 4  
capture registers.  
Graphics Peripherals  
2D Graphics Processing  
Unit (GPU)  
GPU2D  
Graphics  
A 2D graphics engine is provided. The  
GPU is used to generate graphics data  
for display by the LCD Display Controller.  
The GPU supports displays up to  
640x480.  
MIPI DSI Controller with on- MIPI-DSI  
chip PHY  
Graphics  
LCD Display Controller, with on-chip MIPI  
DSI Phy provides transfer rates up to  
895.1 Mbps to support 1024x480  
displays with 24-bit color at 60 frames  
per second. A parallel DBI interface is  
also provided (alternative to the serial  
PHY).  
Flexio  
FlexIO  
DMA  
Graphics/Multimedia  
The Flexio module under "Others"  
category can be used to interface to an  
LCD with a parallel interface.  
Other Digital Peripherals  
DMA Controller  
Other  
The DMA controller allows peripheral-to  
memory, memory-to-peripheral, and  
memory-to-memory transactions. Each  
DMA stream provides unidirectional DMA  
transfers for a single source and  
destination. Two identical DMA  
controllers are provided on i.MX RT500.  
The user may elect to dedicate one of  
these to the Cortex M-33 CPU and the  
other for use by the DSP CPU and/or one  
may be used as a secure DMA the other  
non-secure.  
DMIC Subsystem  
DMIC  
Other  
DMIC subsystem includes:  
• Pulse-Density Modulation (PDM)  
data input for left and/or right  
channels on 1 or 2 buses.  
• Flexible decimation.  
• 16 entry FIFO for each channel.  
• DC blocking or unaltered DC bias  
can be selected.  
• Data can be transferred using DMA  
from deep-sleep mode without  
waking up the CPU, then  
Table continues on the next page...  
70  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Architectural overview  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
automatically returning to deep-  
sleep mode.  
• Data can be streamed directly to  
I2S on Flexcomm Interface 7.  
Smart DMA Engine  
Flexible Input/Output  
Smart DMA  
Controller  
Other  
Smart DMA Controller with dedicated 32  
KB code RAM  
FlexIO  
Others  
The Flexible Input/Output (FlexIO)  
module is capable of supporting a wide  
range of protocols including, but not  
limited to: UART, I2C, SPI, I2S, camera  
interface, display interface, PWM  
waveform generation, and so on  
Cyclic Redundancy  
Check(CRC) engine  
CRC  
Other  
The Cyclic Redundancy Check (CRC)  
generator with programmable polynomial  
settings supports several CRC standards  
commonly used. To save system power  
and bus bandwidth, the CRC engine  
supports DMA transfers.  
Analog Peripherals  
Analog  
12-bit Analog to Digital  
Converter  
ADC  
The ADC supports a resolution of 12-bit  
and fast conversion rates of up to 1  
Msamples/s. Sequences of analog-to-  
digital conversions can be triggered by  
multiple sources. Possible trigger  
sources are the SCTimer/PWM, external  
pins, and the Arm TXEV interrupt.  
Temperature Sensor  
-
Analog  
The temperature sensor transducer uses  
an intrinsic pn-junction diode reference  
and outputs a CTAT voltage  
(Complement To Absolute Temperature).  
The output voltage varies inversely with  
device temperature with an absolute  
accuracy of better than 5 °C over the  
full temperature range (-20 °C to +70 °C).  
The temperature sensor is only  
approximately linear with a slight  
curvature. The output voltage is  
measured over different ranges of  
temperatures and fit with linear-least-  
square lines. After power-up, the  
temperature sensor output must be  
allowed to settle to its stable value before  
it can be used as an accurate ADC input.  
For an accurate measurement of the  
temperature sensor by the ADC, the ADC  
must be configured in single-channel  
burst mode. The last value of a nine-  
conversion (or more) burst provides an  
accurate result.  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
71  
NXP Semiconductors  
Application information  
Table 48. i.MX RT500 modules list (continued)  
Block Name  
Block  
Subsystem  
Brief description  
Mnemonic  
Analog Comparator  
CMP  
Analog  
The Comparator (CMP) module provides  
a circuit for comparing two analog input  
voltages. The comparator circuit is  
designed to operate across the full range  
of the supply voltage (rail to rail  
operation).  
Security  
Security Subsystem  
-
Security  
Comprises of:  
• Trust Zone M  
• AES256 Decryption Engine.  
• SHA-1, SHA-2 HASH Engine.  
• Physical Unclonable Function  
(PUF) Key Generation  
• CASPAR security Cortex-M33 co-  
processor  
• OTP memory  
• Random number generator (RNG)  
• On-the-Fly Decryption on FlexSPI  
interface  
.
On-The-Fly AES Decryption OTFAD  
Security  
The On-The-Fly AES Decryption  
(OTFAD) module provides an advanced  
hardware implementation that minimizes  
any incremental cycles of latency  
introduced by the decryption in the  
overall external memory access time.  
The OTFAD engine also includes  
complete hardware support for a  
standard AES key unwrap mechanism to  
decrypt a key BLOB data instruction  
containing the parameters needed for up  
to 4 unique AES contexts.  
True Random Number  
Generator  
TRNG  
Security  
The True Random Number Generator  
(TRNG) module is used to generate high  
quality, cryptographically secure, random  
data. The TRNG module is capable of  
generating its own entropy using an  
integrated ring oscillator.  
3 Application information  
3.1 Current consumption vs. memory partitions  
The following figure shows the current consumption vs memory partitions:  
72  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Application information  
M33 active, running enhanced-while(1) code in different partitions.  
Typical silicon, VDDCore=1.1V, Temperature=25, FBB, HCLK=192MHz (FRO).  
All memories array/periphery ON (PDRUNCFG2/3) and only one partition clocked  
(AHB_SRAM_ACCESS_DISABLE register).  
Figure 35. Current consumption vs. memory partitions  
3.2 Standard I/O pin configuration  
The following figure shows the possible pin modes for standard I/O pins:  
The default configuration for standard I/O pins is Z mode. The weak MOS devices  
provide a drive capability equivalent to pull-up and pull-down resistors.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
73  
NXP Semiconductors  
Application information  
from selected  
pin function  
FULLDRIVE  
data out  
output  
driver  
device  
pin  
SLEWRATE  
driver  
configuration  
logic  
PUPDENA  
PUPDSEL  
ODENA  
PU/PD/keeper  
logic  
PUPDENA  
IBENA  
PU/PD keeper  
devices device  
input  
receiver  
data in  
IIENA  
analog in  
AMENA  
Figure 36. Pin configuration  
3.3 I/O power consumption  
I/O pins are contributing to the overall dynamic and static power consumption of the  
part. If pins are configured as digital inputs, a static current can flow depending on the  
voltage level at the pin and the setting of the internal pull-up and pull-down resistors.  
This current can be calculated using the parameters Rpu and Rpd given in Table 6 for a  
given input voltage VI. For pins set to output, the current drive strength is given by  
parameters IOH and IOL in Table 6, but for calculating the total static current, you also  
need to consider any external loads connected to the pin.  
I/O pins also contribute to the dynamic power consumption when the pins are switching  
because the VDD supply provides the current to charge and discharge all internal and  
external capacitive loads connected to the pin in addition to powering the I/O circuitry.  
The contribution from the I/O switching current Isw can be calculated as follows for any  
given switching frequency fsw if the external capacitive load (Cext) is known (see Table  
6 for the internal I/O capacitance):  
Isw = VDD x fsw x (Cio + Cext)  
74  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Application information  
3.4 RTC oscillator  
In the RTC oscillator circuit, only the crystal (XTAL) and the capacitances CX1 and  
CX2 need to be connected externally on RTCXIN and RTCXOUT. See the following  
figure.  
RTxxx  
L
RTCXIN  
RTCXOUT  
C
C
P
=
L
XTAL  
R
S
C
C
X2  
X1  
Figure 37. RTC oscillator components  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal,  
the external load capacitor CX1 and CX2 values can also be generally determined by  
the following expression:  
CX1 = CX2 = 2CL - CPad - 2CSTRAY  
Where:  
CL - Crystal load capacitance  
CPad - Pad capacitance of the RTCXIN and RTCXOUT pins (~3 pF, for each pad).  
CSTRAY – stray capacitance between RTCXIN and RTCXOUT pins.  
For example:  
CL = 9 pF  
CX1 = CX2 = 2CL - CPad - 2CSTRAY  
CX1 = CX2 = 2*9 - 3 - 0 = 15 pF  
Although CSTRAY can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors.  
Therefore, it is recommended to fine tune the values of external load capacitors on  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
75  
NXP Semiconductors  
Application information  
actual hardware board to get the accurate clock frequency. For fine tuning, output the  
RTC Clock to the CLOCKOUT pin and optimize the values of external load capacitors  
for minimum frequency deviation.  
To use bypass mode on RTC, remove the crystal, drive an external clock to RTCIN pin,  
and float the RTCOUT pin.  
3.4.1 RTC Printed Circuit Board (PCB) design guidelines  
• Connect the crystal and external load capacitors on the PCB as close as possible to  
the oscillator input and output pins of the chip.  
• The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
• Ensure that the load capacitors CX1, CX2, and CX3, in case of third overtone  
crystal usage, have a common ground plane.  
• Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
• Lay out the ground (GND) pattern under crystal unit.  
• Do not lay out other signal lines under crystal unit for multi-layered PCB.  
3.5 XTAL oscillator  
In the XTAL oscillator circuit, only the crystal (XTAL) and the capacitances CX and CY  
need to be connected externally on XTALIN and XTALOUT. See the figure below.  
76  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Application information  
OSC Module  
XTALIN  
XTALOUT  
V
ss  
R
s
C
y
C
x
Crystal  
Figure 38. XTAL oscillator connection - Low-Power Mode  
OOSSCC MMoodduule  
XTALIN  
XTALOUT  
V
ss  
R
s
C
y
C
x
R
f
Crystal  
Figure 39. XTAL oscillator connection - High Gain Mode  
For best results, it is very critical to select a matching crystal for the on-chip oscillator.  
Load capacitance (CL), series resistance (RS), and drive level (DL) are important  
parameters to consider while choosing the crystal. After selecting the proper crystal,  
the external load capacitor CX1 and CX2 values can also be generally determined by  
the following expression:  
Cx = Cy = 2CL - CPad - 2CSTRAY  
Where:  
CL - Crystal load capacitance  
CPad - Pad capacitance of the XTALIN and XTALOUT pins (~3 pF, for each pad).  
CSTRAY – stray capacitance between XTALIN and XTALOUT pins.  
For example:  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
77  
NXP Semiconductors  
Application information  
CL = 9 pF  
Cx = Cy = 2CL - CPad - 2CSTRAY  
Cx = Cy = 2*9 - 3 - 0 = 15 pF  
Although CSTRAY can be ignored in general, the actual board layout and placement of  
external components influences the optimal values of external load capacitors.  
Therefore, it is recommended to fine tune the values of external load capacitors on  
actual hardware board to get the accurate clock frequency. For fine tuning, measure the  
clock on the XTALOUT pin and optimize the values of external load capacitors for  
minimum frequency deviation.  
To use bypass mode on system oscillator, set bit 1 to "1" in the system oscillator control  
0 (CLKCTL0_SYSOSCCTL0), float the XTALIN pin, and drive XTALOUT with < 0.7  
V to 1.8 V.  
For oscillator high gain mode, a larger voltage swing is used at the crystal pin. This  
gives a higher noise immunity within the oscillator and less edge to edge jitter of the  
internal clock. When high gain mode is not required, power used by the crystal  
oscillator can be reduced by using low power mode.  
NOTE  
High gain mode requires a 1 megaohm resistor (RF) to be  
inserted.  
3.5.1 XTAL Printed Circuit Board (PCB) design guidelines  
• Connect the crystal and external load capacitors on the PCB as close as possible to  
the oscillator input and output pins of the chip.  
• The length of traces in the oscillation circuit should be as short as possible and must  
not cross other signal lines.  
• Ensure that the load capacitors CX, CY, and CX3, in case of third overtone crystal  
usage, have a common ground plane.  
• Loops must be made as small as possible to minimize the noise coupled in through  
the PCB and to keep the parasitics as small as possible.  
• Lay out the ground (GND) pattern under crystal unit.  
• Do not lay out other signal lines under crystal unit for multi-layered PCB.  
78  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Application information  
3.5.2 Thermally compensated crystal oscillator (TCXO)  
In the TXCO circuit, only the oscillator should be connected to the XTALIN pin while  
the XTALOUT pin remains floating when driving the device with a TXCO. See the  
following figure.  
i.MX RT500  
osc_clk  
crystal  
oscillator  
XTALOUT  
XTALIN  
TCXO  
Figure 40. Thermally compensated crystal oscillator  
Symbol  
Vmax  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Units  
Maximum XTAL -  
input voltage  
-
-
VDD1V8  
V
Vpp min  
Min voltage for  
XTALIN  
500  
800  
-
-
-
-
mV  
mV  
VPP nom  
Voltage where  
Jitter in = jitter  
out  
CXTALIN  
Fmax  
XTALIN input  
Impedance  
-
-
5
-
-
pF  
Maximum input  
frequency  
-
32  
MHz  
3.6 Suggested USB interface solutions  
The USB device can be connected to the USB as self-powered device (see Figure 41)  
or bus-powered device (see Figure 42).  
On the i.MX RT500, the USB_VBUS pin is 5 V tolerant pin regardless of whether  
USB1_VDD3V3 or VDD pins are present or not.  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
79  
NXP Semiconductors  
Application information  
RTxxx  
USB1_VDD3V3  
R1  
1.5 kΩ  
USB  
USB_VBUS  
D+  
D-  
USB-B  
connector  
USB_DP  
USB_DM  
V
SS  
Figure 41. USB interface on a self-powered device where USB_VBUS = 5 V  
The internal pull-up (1.5 kΩ) can be enabled by setting the DCON bit in the  
DEVCMDSTAT register to prevent the USB from timing out when there is a  
significant delay between power-up and handling USB traffic. External circuitry is not  
required.  
RTxxx  
USB1_VDD3V3  
REGULATOR  
(1)  
USB_VBUS  
USB  
R1  
1.5 kΩ  
(2)  
USB_VBUS  
USB_DP  
VBUS  
D+  
USB-B  
D-  
connector  
USB_DM  
V
SS  
Figure 42. USB interface on a bus-powered device  
In the figure above, two options exist for connecting VBUS to the USB_VBUS pin:  
1. Connect the regulator output to USB_VBUS. In this case, the USB_VBUS signal is  
HIGH whenever the part is powered.  
2. Connect the VBUS signal directly from the connector to the USB_VBUS pin. In  
this case, 5 V are applied to the USB_VBUS pin while the regulator is ramping up  
to to supply USB1_VDD3V3  
80  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Abbreviations  
4 Abbreviations  
Table 49. Abbreviations  
Acronym  
Description  
Advanced High-performance Bus  
AHB  
APB  
Advanced Peripheral Bus  
Application Programming Interface  
Direct Memory Access  
API  
DMA  
FRO oscillator  
Internal Free-Running Oscillator, tuned to the factory  
specified frequency  
GPIO  
FRO  
LSB  
General Purpose Input/Output  
Free Running Oscillator  
Least Significant Bit  
MCU  
PDM  
PLL  
MicroController Unit  
Pulse Density Modulation  
Phase-Locked Loop  
SPI  
Serial Peripheral Interface  
Transmission Control Protocol/Internet Protocol  
Transistor-Transistor Logic  
Universal Asynchronous Receiver/Transmitter  
TCP/IP  
TTL  
USART  
5 Pinouts  
5.1 Signal multiplexing and pinouts  
The table below shows the pin functions available on each pin, and for each package.  
These functions are selectable using IOCON control registers.  
Some functions, such as ADC or comparator inputs, are available only on specific  
pins when digital functions are disabled on those pins. By default, the GPIO function  
is selected except on pins PIO2_25 and PIO2_26, which are the serial wire debug  
pins. This allows debug to operate through reset.  
Most pins have all pull-ups, pull-downs, and inputs turned off at reset. This prevents  
power loss through pins prior to software configuration. Due to special pin functions,  
some pins have a different reset configuration: If the Boot ROM OTP is configured to  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
81  
NXP Semiconductors  
Pinouts  
use the ISP Select pins at boot, then these pins PIO1_15, PIO3_28, and PIO3_29 have  
pull-ups enabled by ROM; otherwise these pull-ups are not enabled at boot. The SWD  
pins PIO2_25 and PIO2_26 have the input buffers enabled at reset.  
The state of pins PIO1_15, PIO3_28, and PIO3_29 at Reset determine the boot source  
for the part (if configured in the Boot ROM OTP) or if the ISP handler is invoked.  
The JTAG functions TRST, TCK, TMS, TDI, and TDO, are selected on pins PIO0_7 to  
PIO0_11 by hardware when the part is in boundary scan mode.  
5.2 i.MXRT500 Pinouts: 249 FOWLP package  
82  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
PIO0_0  
PIO0_1  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
I2S_BRID  
GE_CLK_I  
N
CTIMER0_  
MAT0  
GPIO_INT  
_BMAT  
SEC_PIO0  
_0  
F14  
G16  
H16  
H15  
H14  
PIO0_0  
PIO0_1  
PIO0_2  
PIO0_3  
PIO0_4  
PIO0_0  
PIO0_1  
PIO0_2  
PIO0_3  
PIO0_4  
FC0_SCK  
FC0_TXD_  
SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_I  
N
CTIMER0_  
MAT1  
SEC_PIO0  
_1  
FC0_RXD  
I2S_BRID  
GE_DATA  
_IN  
CTIMER0_  
MAT2  
SEC_PIO0  
_2  
PIO0_2 _SDA_MO  
SI_DATA  
FC0_CTS_  
SDA_SSE  
L0  
CTIMER0_ FC1_SSEL  
MAT3  
SEC_PIO0  
_3  
PIO0_3  
PIO0_4  
2
FC0_RTS_  
SCL_SSE  
L1  
CTIMER_I FC1_SSEL  
CMP0_OU SEC_PIO0  
NP0  
3
T
_4  
PIO0_5 /  
ADC0_0  
FC0_SSEL SCT0_GPI SCT0_OU CTIMER_I  
T0 NP1  
SEC_PIO0  
_5  
F16  
F17  
PIO0_5  
PIO0_6  
PIO0_5  
PIO0_6  
2
0
PIO0_6 /  
ADC0_8  
FC0_SSEL SCT0_GPI SCT0_OU CTIMER0_  
SEC_PIO0  
_6  
3
1
T1  
MAT0  
I2S_BRID  
GE_CLK_  
OUT  
PIO0_7 /  
TRST  
SCT0_GPI SCT0_OU CTIMER1_  
SEC_PIO0  
_7  
J15  
H12  
H17  
K16  
K15  
PIO0_7  
PIO0_8  
PIO0_9  
PIO0_10  
PIO0_11  
PIO0_7  
PIO0_8  
FC1_SCK  
4
T4  
MAT0  
FC1_TXD_  
SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_O  
UT  
PIO0_8 /  
TCK  
SCT0_GPI SCT0_OU CTIMER1_  
T5 MAT1  
SEC_PIO0  
_8  
5
FC1_RXD  
I2S_BRID  
GE_DATA  
_OUT  
PIO0_9 /  
TMS  
SCT0_GPI SCT0_OU CTIMER1_  
SEC_PIO0  
_9  
PIO0_9 _SDA_MO  
SI_DATA  
6
T6  
MAT2  
FC1_CTS_  
PIO0_10 SDA_SSE  
L0  
PIO0_10 /  
TDI  
SCT0_GPI SCT0_OU CTIMER1_ FC0_SSEL  
T7 MAT3  
SEC_PIO0  
_10  
7
2
FC1_RTS_  
PIO0_11 SCL_SSE  
L1  
PIO0_11 /  
TDO  
SCT0_GPI SCT0_OU CTIMER_I FC0_SSEL  
T8 NP2  
SEC_PIO0  
_11  
0
3
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
PIO0_12 /  
ADC0_1  
FC1_SSEL SCT0_GPI SCT0_OU CTIMER_I  
T2 NP3  
SEC_PIO0  
_12  
E14  
F15  
PIO0_12  
PIO0_13  
PIO0_12  
PIO0_13  
2
2
PIO0_13 /  
ADC0_9  
FC1_SSEL SCT0_GPI SCT0_OU CTIMER0_  
T3 MAT1  
SEC_PIO0  
_13  
3
3
I2S_BRID  
GE_CLK_I  
N
SCT0_GPI SCT0_OU CTIMER2_  
SEC_PIO0  
_14  
B12  
B15  
A16  
B17  
B16  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
PIO0_18  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
PIO0_18  
PIO0_14 FC2_SCK  
0
T0  
MAT0  
FC2_TXD_  
PIO0_15 SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_I  
N
SCT0_GPI SCT0_OU CTIMER2_  
T1 MAT1  
SEC_PIO0  
_15  
1
FC2_RXD  
PIO0_16 _SDA_MO  
SI_DATA  
I2S_BRID  
GE_DATA  
_IN  
SCT0_GPI SCT0_OU CTIMER2_  
T2 MAT2  
SEC_PIO0  
_16  
2
FC2_CTS_  
PIO0_17 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER2_ FC5_SSEL  
T3 MAT3  
SEC_PIO0  
_17  
3
2
FC2_RTS_  
PIO0_18 SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC5_SSEL  
T6 NP4  
SEC_PIO0  
_18  
6
3
PIO0_19 /  
ADC0_2  
FC2_SSEL SCT0_GPI SCT0_OU CTIMER_I UTICK_CA  
T4 NP5 P0  
SEC_PIO0  
_19  
F13  
A14  
PIO0_19  
PIO0_21  
PIO0_19  
2
4
SCT0_GPI SCT0_OU CTIMER3_ CTIMER_I TRACECL  
SEC_PIO0  
_21  
PIO0_21  
PIO0_21 FC3_SCK  
5
T5  
MAT0  
NP11  
K
FC3_TXD_  
PIO0_22 SCL_MIS  
O_WS  
SCT0_GPI SCT0_OU CTIMER3_ CTIMER_I TRACEDA  
T6 MAT1 NP7 TA[0]  
SEC_PIO0  
_22  
B14  
C13  
D13  
PIO0_22  
PIO0_22  
PIO0_23  
PIO0_24  
6
FC3_RXD  
PIO0_23 _SDA_MO  
SI_DATA  
SCT0_GPI SCT0_OU CTIMER3_ CTIMER0_ TRACEDA  
T8 MAT2 MAT3 TA[1]  
SEC_PIO0  
_23  
PIO0_23  
PIO0_24  
7
FC3_CTS_  
PIO0_24 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER3_ FC2_SSEL TRACEDA  
T9 MAT3 TA[2]  
SEC_PIO0  
_24  
CLKOUT  
2
2
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC3_RTS_  
PIO0_25 SCL_SSE  
L1  
FREQME_ CTIMER_I FC2_SSEL TRACEDA  
SEC_PIO0  
_25  
C12  
A12  
B11  
D14  
D12  
PIO0_25  
PIO0_28  
PIO0_29  
PIO0_30  
PIO0_31  
PIO0_25  
PIO0_28  
PIO0_29  
PIO0_30  
PIO0_31  
CLKIN  
GPIO_CLK  
NP6  
3
TA[3]  
I2S_BRID  
GE_CLK_  
OUT  
CTIMER4_  
MAT0  
SEC_PIO0  
_28  
PIO0_28 FC4_SCK  
FC4_TXD_  
PIO0_29 SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_O  
UT  
CTIMER4_  
MAT1  
SEC_PIO0  
_29  
FC4_RXD  
PIO0_30 _SDA_MO  
SI_DATA  
I2S_BRID  
GE_DATA  
_OUT  
CTIMER4_  
MAT2  
SEC_PIO0  
_30  
FC4_CTS_  
PIO0_31 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER4_ FC3_SSEL  
T6 MAT3  
SEC_PIO0  
_31  
0
2
FC4_RTS_  
SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC3_SSEL  
A10  
K2  
PIO1_0  
PIO1_3  
PIO1_4  
PIO1_0  
PIO1_3  
PIO1_4  
PIO1_0  
PIO1_3  
PIO1_4  
1
T7  
NP8  
3
HS_SPI1_  
SCK  
FC5_SCK  
FC5_TXD_  
SCL_MIS  
O_WS  
HS_SPI1_  
MISO  
K1  
FC5_RXD  
PIO1_5 _SDA_MO  
SI_DATA  
HS_SPI1_  
MOSI  
L2  
PIO1_5  
PIO1_6  
PIO1_5  
PIO1_6  
FC5_CTS_  
SDA_SSE  
L0  
SCT0_GPI SCT0_OU  
FC4_SSEL HS_SPI1_  
SSELN0  
N4  
PIO1_6  
4
T4  
2
FC5_RTS_  
SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC4_SSEL HS_SPI1_  
T5 NP9 SSELN1  
M1  
M5  
PIO1_7  
PIO1_7  
PIO1_7  
5
3
FREQME_ CTIMER_I  
GPIO_CLK NP10  
PIO1_10  
PIO1_10  
PIO1_10  
MCLK  
CLKOUT  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
HS_SPI0_  
SCK  
CTIMER2_  
MAT0  
K13  
K14  
K17  
L16  
M16  
T17  
U16  
T15  
T14  
R13  
R12  
N12  
R14  
P14  
P13  
U14  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_15  
PIO1_18  
PIO1_19  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_24  
PIO1_25  
PIO1_26  
PIO1_27  
PIO1_28  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_15  
PIO1_18  
PIO1_19  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_24  
PIO1_25  
PIO1_26  
PIO1_27  
PIO1_28  
HS_SPI0_  
MISO  
CTIMER2_  
MAT1  
HS_SPI0_  
MOSI  
CTIMER2_  
MAT2  
HS_SPI0_  
SSELN0  
CTIMER2_  
MAT3  
PIO1_15 /  
ISP0  
HS_SPI0_  
SSELN1  
CTIMER3_  
MAT0  
FLEXSPI0 SCT0_GPI  
_SCLK  
CTIMER3_  
MAT3  
PIO1_18  
PIO1_19  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_24  
PIO1_25  
PIO1_26  
PIO1_27  
PIO1_28  
0
FLEXSPI0 SCT0_OU  
_SS0_N T0  
CTIMER4_  
MAT0  
CLKOUT  
FLEXSPI0 SCT0_GPI  
_DATA0  
CTIMER4_  
MAT1  
1
FLEXSPI0 SCT0_OU  
_DATA1 T1  
CTIMER4_  
MAT2  
FLEXSPI0 SCT0_GPI  
_DATA2  
CTIMER4_  
MAT3  
2
FLEXSPI0 SCT0_OU  
_DATA3 T2  
CTIMER_I  
NP8  
FLEXSPI0 SCT0_GPI  
_DATA4  
3
FLEXSPI0 SCT0_OU  
_DATA5 T3  
FLEXSPI0 SCT0_GPI  
_DATA6  
4
FLEXSPI0 SCT0_OU  
_DATA7 T4  
FLEXSPI0 SCT0_GPI  
_DQS  
5
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FLEXSPI0 SCT0_OU UTICK_CA CTIMER_I FLEXSPI0  
U12  
R5  
R6  
U4  
T4  
PIO1_29  
PIO1_30  
PIO1_31  
PIO2_0  
PIO2_1  
PIO2_2  
PIO2_3  
PIO2_4  
PIO2_5  
PIO1_29  
PIO1_30  
PIO1_31  
PIO2_0  
PIO2_1  
PIO2_2  
PIO2_3  
PIO2_4  
PIO2_5  
PIO1_29  
_SS1_N  
T5  
P2  
NP13  
_SCLK_N  
SCT0_GPI  
0
PIO1_30 SD0_CLK  
PIO1_31 SD0_CMD  
SCT0_GPI  
1
SCT0_GPI  
2
SmartDMA  
_PIO0  
PIO2_0  
PIO2_1  
PIO2_2  
PIO2_3  
PIO2_4  
PIO2_5  
SD0_D[0]  
SD0_D[1]  
SD0_D[2]  
SD0_D[3]  
SCT0_GPI  
3
SmartDMA  
_PIO1  
SCT0_OU  
T0  
SmartDMA  
_PIO2  
T7  
SCT0_OU  
T1  
SmartDMA  
_PIO3  
U6  
P6  
P5  
SD0_WR_ SCT0_OU  
SmartDMA  
_PIO4  
SD0_DS  
PRT  
T2  
SCT0_OU  
T3  
SmartDMA  
_PIO5  
SD0_D[4]  
FC8_SCK  
FC8_TXD_  
SCL_MIS  
O_WS  
SCT0_GPI  
4
CTIMER1_  
MAT0  
SmartDMA  
_PIO6  
R4  
P4  
T6  
PIO2_6  
PIO2_7  
PIO2_8  
PIO2_6  
PIO2_7  
PIO2_8  
PIO2_6  
PIO2_7  
PIO2_8  
SD0_D[5]  
SD0_D[6]  
SD0_D[7]  
FC8_RXD  
_SDA_MO  
SI_DATA  
SCT0_GPI  
5
CTIMER1_  
MAT1  
SmartDMA  
_PIO7  
FC8_CTS_  
SDA_SSE  
L0  
SCT0_OU  
T4  
CTIMER1_  
MAT2  
SmartDMA  
_PIO8  
FC8_CTS_  
SDA_SSE  
L1  
SD0_CAR SCT0_OU  
D_DET_N T5  
CTIMER1_  
MAT3  
SmartDMA  
_PIO9  
T3  
N5  
PIO2_9  
PIO2_9  
PIO2_9  
SD0_RES SCT0_GPI  
ET_N  
CTIMER2_ FC8_SSEL  
MAT0  
SmartDMA  
_PIO10  
PIO2_10  
PIO2_10  
PIO2_10  
6
2
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
SD0_VOL SCT0_GPI  
CTIMER2_ FC8_SSEL  
SmartDMA  
_PIO11  
R2  
E15  
D17  
N3  
PIO2_11  
PIO2_11  
PIO2_14  
PIO2_15  
PIO2_24  
PIO2_25  
PIO2_26  
PIO2_11  
PIO2_14  
PIO2_15  
PIO2_24  
PIO2_25  
PIO2_26  
T
7
MAT1  
3
PIO2_14 /  
CMP0_A  
SCT0_OU  
T8  
CTIMER_I  
NP1  
32KHZ_CL  
KOUT  
SmartDMA  
_PIO14  
PIO2_15 /  
CMP0_D  
SCT0_OU  
T9  
SmartDMA  
_PIO15  
CLKIN  
GPIO_INT  
_BMAT  
SmartDMA  
_PIO24  
PIO2_24  
PIO2_25  
PIO2_26  
SWO  
SmartDMA  
_PIO25  
M2  
SWCLK  
SmartDMA  
_PIO26  
M4  
SWDIO  
USB1_OV  
PIO2_27 ERCURRE  
NTN  
SmartDMA  
_PIO27  
M3  
PIO2_27  
PIO2_27  
USB1_PO  
PIO2_28  
SmartDMA  
_PIO28  
P1  
B10  
D10  
C14  
T2  
PIO2_28  
PIO2_29  
PIO2_30  
PIO2_28  
PIO2_29  
PIO2_30  
PIO2_31  
RTPWRN  
SCT0_OU  
T0  
SmartDMA  
_PIO029  
PIO2_29 I3C0_SCL  
PIO2_30 I3C0_SDA  
PIO2_31 I3C0_PUR  
CLKOUT  
CLKIN  
SWO  
SCT0_OU  
T3  
CMP0_OU  
T
SmartDMA  
_PIO30  
PIO2_31 /  
CMP0_B  
SCT0_OU UTICK_CA CTIMER_I  
T7 P3 NP15  
SmartDMA  
_PIO31  
USB1_VB USB1_VB  
US US  
USB1_VD USB1_VD  
D3V3 D3V3  
K5  
T1  
U2  
USB1_DM USB1_DM  
USB1_DP USB1_DP  
PMIC_MO PMIC_MO  
E4  
D3  
DE1  
PMIC_MO PMIC_MO  
DE0 DE0  
DE1  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
PMIC_I2C PMIC_I2C  
K6  
_SDA  
_SDA  
PMIC_I2C PMIC_I2C  
_SCL _SCL  
K4  
D5  
PMIC_IRQ PMIC_IRQ  
_N  
_N  
PMIC_LD  
O_ENABL  
E
LDO_ENA  
BLE  
C5  
B4  
A4  
XTALIN  
XTALIN  
XTALOUT XTALOUT  
RTCXIN RTCXIN  
A2  
B3  
RTCXOUT RTCXOUT  
RESETN RESETN  
C4  
F12  
G12  
VREFP  
VREFN  
VREFP  
VREFN  
FC0_TXD_  
SCL_MIS I3C1_SCL  
O_WS  
PDM_CLK PDM_DAT  
23 A23  
D16  
C16  
PIO3_1  
PIO3_2  
PIO3_1  
PIO3_2  
PIO3_1  
PIO3_2  
FC0_RXD  
_SDA_MO I3C1_SDA  
SI_DATA  
PDM_CLK PDM_DAT  
45 A45  
FC0_CTS_  
SDA_SSE I3C1_PUR  
L0  
PDM_CLK PDM_DAT  
CMP0_OU  
T
D15  
A8  
PIO3_3  
PIO3_8  
PIO3_9  
PIO3_3  
PIO3_8  
PIO3_9  
PIO3_3  
PIO3_8  
LCD_D23  
67  
A67  
CTIMER0_  
MAT0  
FC10_SC  
K
SD1_CLK LCD_D9  
FC10_TXD  
_SCL_MIS  
O
CTIMER0_  
MAT1  
B8  
PIO3_9 SD1_CMD LCD_D10  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC10_RX  
D_SDA_M  
OSI  
CTIMER0_  
MAT2  
C8  
C10  
A6  
PIO3_10  
PIO3_11  
PIO3_10  
PIO3_11  
PIO3_12  
PIO3_10 SD1_D[0] LCD_D11  
PIO3_11 SD1_D[1] LCD_D12  
PIO3_12 SD1_D[2] LCD_D13  
FC10_CTS  
_SDA_SS  
ELN0  
CTIMER0_  
MAT3  
FC10_RTS  
_SCL_SS  
ELN1  
CTIMER_I  
NP0  
PIO3_12  
PIO3_13  
CTIMER_I  
NP1  
FC10_SSE  
LN2  
B7  
D9  
PIO3_13  
PIO3_14  
PIO3_15  
PIO3_13 SD1_D[3] LCD_D14  
SD1_WR_  
PIO3_14 /  
CMP0_E  
CTIMER3_  
MAT0  
FC10_SSE  
LN3  
PIO3_14  
LCD_D15  
SD1_DS  
PRT  
CTIMER3_  
MAT1  
E10  
PIO3_15  
PIO3_15 SD1_D[4] LCD_D16  
PIO3_16 SD1_D[5] LCD_D17  
FC5_SCK  
FC5_TXD_  
SCL_MIS  
O_WS  
CTIMER3_  
MAT2  
C9  
D8  
B6  
PIO3_16  
PIO3_16  
PIO3_17  
PIO3_18  
FC5_RXD  
_SDA_MO  
SI_DATA  
CTIMER3_  
MAT3  
PIO3_17  
PIO3_18  
PIO3_17 SD1_D[6] LCD_D18  
FC5_CTS_  
SDA_SSE  
L0  
CTIMER4_  
MAT0  
PIO3_18 SD1_D[7] LCD_D19  
SD1_CAR  
CTIMER4_  
MAT1  
C6  
D6  
PIO3_19  
PIO3_20  
PIO3_19  
PIO3_20  
PIO3_19  
PIO3_20  
PIO3_21  
LCD_D20  
LCD_D21  
LCD_D22  
MCLK  
D_DET_N  
SD1_RES  
ET_N  
CTIMER4_  
MAT2  
SD1_VOL  
T
CTIMER4_  
MAT3  
GPIO_INT  
_BMAT  
E5  
PIO3_21  
PIO3_25  
PIO3_21  
PIO3_25  
R16  
PIO3_25 FC6_SCK  
FC6_TXD_  
PIO3_26 SCL_MIS  
O_WS  
T16  
PIO3_26  
PIO3_26  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC6_RXD  
N14  
N13  
PIO3_27  
PIO3_27  
PIO3_28  
PIO3_27 _SDA_MO  
SI_DATA  
FC6_CTS_  
PIO3_28 SDA_SSE  
L0  
PIO3_28 /  
ISP1  
FC6_RTS_  
PIO3_29 SCL_SSE  
L1  
PIO3_29 /  
ISP2  
M13  
N15  
M15  
PIO3_29  
PIO4_0  
PIO4_1  
FREQME_  
GPIO_CLK  
PIO4_0  
PIO4_1  
PIO4_0  
FC7_SCK  
CLKOUT  
CLKIN  
FC7_TXD_  
SCL_MIS  
O_WS  
PIO4_1  
FC7_RXD  
M17  
M14  
P17  
P16  
P15  
PIO4_2  
PIO4_3  
PIO4_4  
PIO4_5  
PIO4_6  
PIO4_2  
PIO4_3  
PIO4_4  
PIO4_5  
PIO4_6  
PIO4_2 _SDA_MO  
SI_DATA  
FC7_CTS_  
PIO4_3  
PIO4_4  
PIO4_5  
PIO4_6  
SDA_SSE  
L0  
FC7_RTS_  
SCL_SSE  
L1  
FC1_SCK  
FC1_TXD_  
SCL_MIS  
O_WS  
FC7_SSEL  
2
FC1_RXD  
_SDA_MO  
SI_DATA  
FC7_SSEL  
3
MIPI_DSI_ MIPI_DSI_  
CLKP CLKP  
D2  
D1  
MIPI_DSI_ MIPI_DSI_  
CLKN CLKN  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
MIPI_DSI_ MIPI_DSI_  
B1  
D0P  
D0P  
MIPI_DSI_ MIPI_DSI_  
D0N D0N  
C2  
E3  
F3  
J8  
MIPI_DSI_ MIPI_DSI_  
D1P D1P  
MIPI_DSI_ MIPI_DSI_  
D1N D1N  
MIPI_DSI_ MIPI_DSI_  
VDD11 VD11  
MIPI_DSI_ MIPI_DSI_  
VDD18 VDD18  
F8  
MIPI_DSI_ MIPI_DSI_  
VDDA_CA VDDA_CA  
F5  
P
P
MIPI_DSI_ MIPI_DSI_  
F4  
H2  
VSS  
VSS  
FLEXSPI1  
_SCLK  
PIO4_11  
PIO4_11  
PIO4_11 FC2_SCK  
SD1_CLK  
SD1_CMD  
FC2_TXD_  
PIO4_12 SCL_MIS  
O_WS  
FLEXSPI1  
_DATA0  
H1  
G2  
F1  
PIO4_12  
PIO4_13  
PIO4_14  
PIO4_12  
PIO4_13  
PIO4_14  
FC2_RXD  
PIO4_13 _SDA_MO  
SI_DATA  
FLEXSPI1  
_DATA1  
SD1_D[0]  
SD1_D[1]  
FC2_CTS_  
PIO4_14 SDA_SSE  
L0  
FLEXSPI1  
_DATA2  
FC2_RTS_  
PIO4_15 SCL_SSE  
L1  
FLEXSPI1  
_DATA3  
K3  
H3  
PIO4_15  
PIO4_16  
PIO4_15  
PIO4_16  
SD1_D[2]  
SD1_D[3]  
FC2_SSEL FLEXSPI1  
_DQS  
PIO4_16  
2
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC2_SSEL FLEXSPI1 FLEXSPI1 SD1_WR_  
F2  
E13  
R8  
PIO4_17  
PIO4_17  
PIO4_18  
PIO4_20  
PIO4_17  
PIO4_18  
3
_SS1_N _SCLK_N  
PRT  
PIO4_18 /  
ADC0_6  
FLEXSPI1  
_SS0_N  
SD1_D[4]  
FC11_SC  
K
FLEXIO_D  
0
PIO4_20  
PIO4_20 DBI_CSX  
PIO4_21 DBI_DCX  
SD1_D[6]  
SD1_D[7]  
FC11_TXD  
_SCL_MIS  
O
FLEXIO_D  
1
P10  
U10  
T8  
PIO4_21  
PIO4_21  
PIO4_22  
PIO4_23  
PIO4_24  
FC11_RX  
D_SDA_M  
OSI  
SD1_CAR  
D_DET_N  
FLEXIO_D  
2
PIO4_22  
PIO4_23  
PIO4_24  
PIO4_22  
FC11_CTS  
_SDA_SS  
ELN0  
DBI_RWD LCD_ENA  
SD1_RES  
ET_N  
TRACECL FLEXIO_D  
PIO4_23  
X
BLE  
K
3
FC11_RTS  
_SCL_SS  
ELN1  
LCD_DTC  
LK  
SD1_VOL  
T
TRACEDA FLEXIO_D  
TA[0]  
T10  
PIO4_24 DBI_WRX  
4
LCD_HSY  
NC  
FC11_SSE TRACEDA FLEXIO_D  
LN2 TA[1]  
T11  
T12  
P9  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
DBI_E  
5
LCD_VSY  
NC  
FC11_SSE TRACEDA FLEXIO_D  
LN3  
TA[2]  
6
TRACEDA FLEXIO_D  
LCD_D0  
LCD_D1  
LCD_D2  
DBI_D0  
DBI_D1  
DBI_D2  
TA[3]  
7
FLEXIO_D  
8
U8  
FLEXIO_D  
9
P8  
FC12_TXD  
_SCL_MIS  
O
FLEXIO_D  
10  
N8  
PIO4_30  
PIO4_30  
PIO4_30  
LCD_D3  
DBI_D3  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
PIO4_31  
PIO5_0  
PIO5_1  
PIO5_2  
PIO5_3  
Func 1  
LCD_D4  
LCD_D5  
LCD_D6  
LCD_D7  
Func 2  
DBI_D4  
DBI_D5  
DBI_D6  
DBI_D7  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC12_RX  
D_SDA_M  
OSI  
FLEXIO_D  
11  
N10  
P12  
M9  
PIO4_31  
PIO5_0  
PIO5_1  
PIO5_2  
PIO5_3  
PIO4_31  
PIO5_0  
PIO5_1  
PIO5_2  
PIO5_3  
FC12_CTS  
_SDA_SS  
ELN0  
FLEXIO_D  
12  
FC12_RTS  
_SCL_SS  
ELN1  
FLEXIO_D  
13  
LOW_FRE  
Q_CLKOU  
T
FC12_SSE  
LN2  
FLEXIO_D  
14  
R9  
LOW_FRE  
Q_CLKOU  
T_N  
FC12_SSE  
LN3  
FLEXIO_D  
15  
R10  
LCD_D8  
LCD_D9  
DBI_D8  
DBI_D9  
PDM_CLK  
01  
P2  
P3  
PIO5_4  
PIO5_8  
PIO5_4  
PIO5_8  
PIO5_4  
PIO5_8  
PDM_DAT  
A01  
LCD_D13 DBI_D13  
FC4_CTS_  
SDA_SSE  
L0  
FLEXSPI1  
_DATA4  
H5  
PIO5_15  
PIO5_16  
PIO5_15  
PIO5_16  
PIO5_15 LCD_D20  
PIO5_16 LCD_D21  
FC4_RTS_  
SCL_SSE  
L1  
FLEXSPI1  
_DATA5  
H4  
J3  
FLEXSPI1  
_DATA6  
FC4_SSEL  
2
PIO5_17  
PIO5_18  
PIO5_17  
PIO5_18  
PIO5_17 LCD_D22  
PIO5_18 LCD_D23  
FLEXSPI1  
_DATA7  
FC4_SSEL  
3
J4  
J12,  
J13,K12, VDDIO_0  
M10,M12  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
E9,  
F10,F11, VDDIO_1  
F9,J5 J6  
N6, P7  
M8 N9  
F6, F7  
VDDIO_2  
VDDIO_3  
VDDIO_4  
G9,  
H10,H8,  
H9,J10,  
J11,J9,  
K10,K8,  
K9, L9  
VDDCORE  
VDD_AO1  
V8  
D4, B2  
H13  
VDDA_AD  
C1V8  
VDDA_BIA  
S
E12  
D11, D7  
VSSA  
A1, A17,  
C3, C7,  
C11, C15,  
E7, E11,  
G3, G4,  
G5, G7,  
G8, G10,  
G11, G13,  
G14, G15,  
H11, K7,  
K11, L3,  
L4, L5, L6,  
L7, L8,  
VSS  
L10, L11,  
L12, L13,  
L14, L15,  
Table continues on the next page...  
Part Num  
(249FOW Pin Name DEFAULT  
LP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
M7, M11,  
N7, N11,  
P11, R3,  
R7, R11,  
R15, U1,  
U17  
G6, M6,  
H7, J7,  
VDD1V8  
J14, H6,  
E6  
E8  
VDD1V8_1  
Pinouts  
5.3 i.MX RT500 Pinouts: 141 CSP package  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
97  
NXP Semiconductors  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
PIO0_0  
PIO0_1  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
I2S_BRID  
GE_CLK_I  
N
CTIMER0_  
MAT0  
GPIO_INT  
_BMAT  
J1  
G3  
F1  
E3  
PIO0_0  
PIO0_1  
PIO0_0  
PIO0_1  
FC0_SCK  
FC0_TXD_  
SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_I  
N
CTIMER0_  
MAT1  
FC1_CTS_  
PIO0_10 /  
TDI  
SCT0_GPI SCT0_OU CTIMER1_ FC0_SSEL  
PIO0_10  
PIO0_11  
PIO0_10 SDA_SSE  
L0  
7
T7  
MAT3  
2
FC1_RTS_  
PIO0_11 SCL_SSE  
L1  
PIO0_11 /  
TDO  
SCT0_GPI SCT0_OU CTIMER_I FC0_SSEL  
0
T8  
NP2  
3
PIO0_12 /  
ADC0_1  
FC1_SSEL SCT0_GPI SCT0_OU CTIMER_I  
T2 NP3  
G5  
J2  
PIO0_12  
PIO0_13  
PIO0_12  
PIO0_13  
2
2
PIO0_13 /  
ADC0_9  
FC1_SSEL SCT0_GPI SCT0_OU CTIMER0_  
T3 MAT1  
3
3
I2S_BRID  
GE_CLK_I  
N
SCT0_GPI SCT0_OU CTIMER2_  
K6  
K4  
M3  
M2  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
PIO0_18  
PIO0_14  
PIO0_15  
PIO0_16  
PIO0_17  
PIO0_14 FC2_SCK  
0
T0  
MAT0  
FC2_TXD_  
PIO0_15 SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_I  
N
SCT0_GPI SCT0_OU CTIMER2_  
T1 MAT1  
1
FC2_RXD  
PIO0_16 _SDA_MO  
SI_DATA  
I2S_BRID  
GE_DATA  
_IN  
SCT0_GPI SCT0_OU CTIMER2_  
T2 MAT2  
2
FC2_CTS_  
PIO0_17 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER2_ FC5_SSEL  
T3 MAT3  
3
2
FC2_RTS_  
PIO0_18 SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC5_SSEL  
T6 NP4  
J4  
PIO0_18  
PIO0_19  
6
3
PIO0_19 /  
ADC0_2  
FC2_SSEL SCT0_GPI SCT0_OU CTIMER_I UTICK_CA  
T4 NP5 P0  
H4  
PIO0_19  
2
4
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC0_RXD  
PIO0_2 _SDA_MO  
SI_DATA  
I2S_BRID  
GE_DATA  
_IN  
CTIMER0_  
MAT2  
H2  
M4  
J5  
PIO0_2  
PIO0_21  
PIO0_22  
PIO0_2  
PIO0_21  
PIO0_22  
SCT0_GPI SCT0_OU CTIMER3_ CTIMER_I TRACECL  
PIO0_21 FC3_SCK  
5
T5  
MAT0  
NP11  
K
FC3_TXD_  
PIO0_22 SCL_MIS  
O_WS  
SCT0_GPI SCT0_OU CTIMER3_ CTIMER_I TRACEDA  
T6 MAT1 NP7 TA[0]  
6
FC3_RXD  
PIO0_23 _SDA_MO  
SI_DATA  
SCT0_GPI SCT0_OU CTIMER3_ CTIMER0_ TRACEDA  
T8 MAT2 MAT3 TA[1]  
L5  
L4  
H6  
M6  
J7  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_28  
PIO0_29  
PIO0_3  
PIO0_23  
PIO0_24  
PIO0_25  
PIO0_28  
PIO0_29  
PIO0_3  
7
FC3_CTS_  
PIO0_24 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER3_ FC2_SSEL TRACEDA  
T9 MAT3 TA[2]  
CLKOUT  
CLKIN  
2
2
FC3_RTS_  
PIO0_25 SCL_SSE  
L1  
FREQME_ CTIMER_I FC2_SSEL TRACEDA  
GPIO_CLK  
NP6  
3
TA[3]  
I2S_BRID  
GE_CLK_  
OUT  
CTIMER4_  
MAT0  
PIO0_28 FC4_SCK  
FC4_TXD_  
PIO0_29 SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_O  
UT  
CTIMER4_  
MAT1  
FC0_CTS_  
CTIMER0_ FC1_SSEL  
G2  
L3  
J6  
PIO0_3  
SDA_SSE  
L0  
MAT3  
2
FC4_RXD  
PIO0_30 _SDA_MO  
SI_DATA  
I2S_BRID  
GE_DATA  
_OUT  
CTIMER4_  
MAT2  
PIO0_30  
PIO0_31  
PIO0_30  
PIO0_31  
FC4_CTS_  
PIO0_31 SDA_SSE  
L0  
SCT0_GPI SCT0_OU CTIMER4_ FC3_SSEL  
T6 MAT3  
0
2
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FC0_RTS_  
SCL_SSE  
L1  
CTIMER_I FC1_SSEL  
CMP0_OU  
T
F4  
PIO0_4  
PIO0_4  
PIO0_4  
NP0  
3
PIO0_5 /  
ADC0_0  
FC0_SSEL SCT0_GPI SCT0_OU CTIMER_I  
T0 NP1  
H3  
K1  
PIO0_5  
PIO0_6  
PIO0_5  
PIO0_6  
2
0
PIO0_6 /  
ADC0_8  
FC0_SSEL SCT0_GPI SCT0_OU CTIMER0_  
3
1
T1  
MAT0  
I2S_BRID  
GE_CLK_  
OUT  
PIO0_7 /  
TRST  
SCT0_GPI SCT0_OU CTIMER1_  
E4  
G1  
F3  
L7  
PIO0_7  
PIO0_8  
PIO0_9  
PIO1_0  
PIO0_7  
PIO0_8  
FC1_SCK  
4
T4  
MAT0  
FC1_TXD_  
SCL_MIS  
O_WS  
I2S_BRID  
GE_WS_O  
UT  
PIO0_8 /  
TCK  
SCT0_GPI SCT0_OU CTIMER1_  
T5 MAT1  
5
FC1_RXD  
I2S_BRID  
GE_DATA  
_OUT  
PIO0_9 /  
TMS  
SCT0_GPI SCT0_OU CTIMER1_  
PIO0_9 _SDA_MO  
SI_DATA  
6
T6  
MAT2  
FC4_RTS_  
SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC3_SSEL  
PIO1_0  
PIO1_0  
1
T7  
NP8  
3
HS_SPI0_  
SCK  
CTIMER2_  
MAT0  
D3  
E2  
D2  
C2  
D1  
A5  
D4  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_15  
PIO1_18  
PIO1_19  
PIO1_11  
PIO1_12  
PIO1_13  
PIO1_14  
PIO1_15  
PIO1_18  
PIO1_19  
HS_SPI0_  
MISO  
CTIMER2_  
MAT1  
HS_SPI0_  
MOSI  
CTIMER2_  
MAT2  
HS_SPI0_  
SSELN0  
CTIMER2_  
MAT3  
PIO1_15 /  
ISP0  
HS_SPI0_  
SSELN1  
CTIMER3_  
MAT0  
FLEXSPI0 SCT0_GPI  
_SCLK  
CTIMER3_  
MAT3  
PIO1_18  
PIO1_19  
0
FLEXSPI0 SCT0_OU  
_SS0_N T0  
CTIMER4_  
MAT0  
CLKOUT  
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
FLEXSPI0 SCT0_GPI  
CTIMER4_  
MAT1  
B5  
C5  
D5  
C6  
A6  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_28  
PIO1_3  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_28  
PIO1_3  
PIO1_20  
PIO1_21  
PIO1_22  
PIO1_23  
PIO1_28  
PIO1_3  
_DATA0  
1
FLEXSPI0 SCT0_OU  
_DATA1 T1  
CTIMER4_  
MAT2  
FLEXSPI0 SCT0_GPI  
_DATA2  
CTIMER4_  
MAT3  
2
FLEXSPI0 SCT0_OU  
_DATA3 T2  
CTIMER_I  
NP8  
FLEXSPI0 SCT0_GPI  
_DQS  
5
HS_SPI1_  
SCK  
F11  
FC5_SCK  
FC5_TXD_  
SCL_MIS  
O_WS  
HS_SPI1_  
MISO  
F12  
E12  
E9  
PIO1_4  
PIO1_5  
PIO1_6  
PIO1_4  
PIO1_5  
PIO1_6  
PIO1_7  
PIO1_4  
FC5_RXD  
PIO1_5 _SDA_MO  
SI_DATA  
HS_SPI1_  
MOSI  
FC5_CTS_  
SDA_SSE  
L0  
SCT0_GPI SCT0_OU  
FC4_SSEL HS_SPI1_  
SSELN0  
PIO1_6  
PIO1_7  
PIO1_9  
4
T4  
2
FC5_RTS_  
SCL_SSE  
L1  
SCT0_GPI SCT0_OU CTIMER_I FC4_SSEL HS_SPI1_  
F9  
PIO1_7  
5
T5  
NP9  
3
SSELN1  
PIO1_9 /  
ADC0_12 / PIO1_9  
CMP1_B  
FC5_SSEL SCT0_GPI UTICK_CA CTIMER1_  
HS_SPI1_  
SSELN3  
L2  
3
7
P1  
MAT3  
PIO2_14 /  
PIO2_14  
CMP0_A  
SCT0_OU  
T8  
CTIMER_I  
NP1  
32KHZ_CL  
KOUT  
SmartDMA  
_PIO14  
K2  
L1  
E8  
PIO2_14  
PIO2_15  
PIO2_24  
PIO2_15 /  
PIO2_15  
CMP0_D  
SCT0_OU  
T9  
SmartDMA  
_PIO15  
CLKIN  
GPIO_INT  
_BMAT  
SmartDMA  
_PIO24  
PIO2_24  
PIO2_24  
SWO  
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
SmartDMA  
_PIO25  
F10  
E11  
PIO2_25  
PIO2_26  
PIO2_25  
PIO2_26  
PIO2_25  
PIO2_26  
SWCLK  
SmartDMA  
_PIO26  
SWDIO  
USB1_OV  
PIO2_27 ERCURRE  
NTN  
SmartDMA  
_PIO27  
E10  
PIO2_27  
PIO2_27  
SCT0_OU  
T0  
SmartDMA  
_PIO29  
M7  
K7  
K5  
PIO2_29  
PIO2_30  
PIO2_29  
PIO2_30  
PIO2_31  
PIO2_29 I3C0_SCL  
PIO2_30 I3C0_SDA  
PIO2_31 I3C0_PUR  
CLKOUT  
CLKIN  
SWO  
SCT0_OU  
T3  
CMP0_OU  
T
SmartDMA  
_PIO30  
PIO2_31 /  
CMP0_B  
SCT0_OU UTICK_CA CTIMER_I  
SmartDMA  
_PIO31  
T7  
P3  
NP15  
FC6_CTS_  
PIO3_28 SDA_SSE  
L0  
PIO3_28 /  
ISP1  
A4  
PIO3_28  
FC6_RTS_  
PIO3_29 SCL_SSE  
L1  
PIO3_29 /  
ISP2  
B4  
B8  
B7  
PIO3_29  
PIO4_20  
PIO4_21  
FC11_SC  
K
FLEXIO_D  
0
PIO4_20  
PIO4_21  
PIO4_20 DBI_CSX  
SD1_D[6]  
SD1_D[7]  
FC11_TXD  
_SCL_MIS  
O
FLEXIO_D  
1
PIO4_21 DBI_DCX  
FC11_RX  
D_SDA_M  
OSI  
SD1_CAR  
D_DET_N  
FLEXIO_D  
2
A8  
E7  
C7  
PIO4_22  
PIO4_23  
PIO4_24  
PIO4_22  
PIO4_23  
PIO4_24  
PIO4_22  
FC11_CTS  
_SDA_SS  
ELN0  
DBI_RWD LCD_ENA  
SD1_RES  
ET_N  
TRACECL FLEXIO_D  
PIO4_23  
X
BLE  
K
3
FC11_RTS  
_SCL_SS  
ELN1  
LCD_DTC  
LK  
SD1_VOL  
T
TRACEDA FLEXIO_D  
TA[0]  
PIO4_24 DBI_WRX  
4
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
LCD_HSY  
NC  
FC11_SSE TRACEDA FLEXIO_D  
LN2 TA[1]  
D7  
D6  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
PIO4_25  
PIO4_26  
PIO4_27  
PIO4_28  
PIO4_29  
DBI_E  
5
LCD_VSY  
NC  
FC11_SSE TRACEDA FLEXIO_D  
LN3  
TA[2]  
6
TRACEDA FLEXIO_D  
C8  
LCD_D0  
LCD_D1  
LCD_D2  
DBI_D0  
DBI_D1  
DBI_D2  
TA[3]  
7
FLEXIO_D  
8
B10  
D8  
FLEXIO_D  
9
FC12_TXD  
_SCL_MIS  
O
FLEXIO_D  
10  
C9  
PIO4_30  
PIO4_30  
PIO4_30  
LCD_D3  
DBI_D3  
FC12_RX  
D_SDA_M  
OSI  
FLEXIO_D  
11  
B9  
D9  
PIO4_31  
PIO5_4  
PIO4_31  
PIO5_4  
PIO4_31  
PIO5_4  
LCD_D4  
LCD_D9  
DBI_D4  
DBI_D9  
PDM_CLK  
01  
PDM_DAT  
A01  
C11  
C4  
PIO5_8  
PIO5_8  
PIO5_8  
LCD_D13 DBI_D13  
MCLK  
PIO6_27  
PIO6_27  
PIO6_27  
MIPI_DSI_ MIPI_DSI_  
CLKN CLKN  
J12  
MIPI_DSI_ MIPI_DSI_  
CLKP CLKP  
H11  
H9  
MIPI_DSI_ MIPI_DSI_  
D0N D0N  
MIPI_DSI_ MIPI_DSI_  
H8  
D0P  
D0P  
MIPI_DSI_  
VDD11  
H12  
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
MIPI_DSI_  
VDD18  
G10  
MIPI_DSI_  
K12  
VDDA_CA  
P
MIPI_DSI_  
VSS  
J11  
K9  
PMIC_IRQ PMIC_IRQ  
_N  
PMIC_MO PMIC_MO  
DE0 DE0  
PMIC_MO PMIC_MO  
DE1 DE1  
RESETN RESETN  
RTCXIN RTCXIN  
_N  
K10  
J9  
L11  
J10  
K11  
B11  
B12  
RTCXOUT RTCXOUT  
USB1_DM USB1_DM  
USB1_DP USB1_DP  
USB1_VD USB1_VD  
D10  
K3  
D3V3  
D3V3  
VREFN/  
VSSA  
VREFN  
VREFP/  
VDDA_AD  
C1V8/  
VDDA_BIA  
S
J3  
VREFP  
XTALIN  
L9  
K8  
XTALIN  
XTALOUT XTALOUT  
A3, B1,  
B6, E1, F2, VDDIO_0  
G4  
Table continues on the next page...  
Part Num  
(141WLC Pin Name DEFAULT  
SP)  
Func 0  
Func 1  
Func 2  
Func 3  
Func 4  
Func 5  
Func 6  
Func 7  
Func 8  
Func 15  
D11, G6,  
VDDIO_1  
H5, L6, M5  
NC  
E5  
VDDIO_2  
VDDIO_3  
VDDIO_4  
NC  
A10, B2,  
C1, C3,  
C10, C12,  
E6, F6,  
G7, G12,  
M8  
VDDCORE  
VDD1V8  
A11, L12,  
M11, F5,  
L8  
VDD_AO1  
V8  
L10  
M10  
J8  
VDD1V8_1  
VSSA  
A1, A2,  
A12, B3,  
F7, F8,  
G8, G11,  
H1, H7,  
G9, H10,  
M1, M9,  
M12  
VSS  
Pinouts  
5.4 249-pin FOWLP and 141-pin WLCSP ballmaps  
The following figure shows the 249 FOWLP ballmap for this device.  
1
2
3
4
5
6
PIO3_12  
PIO3_18  
PIO3_19  
PIO3_20  
VDD1V8  
VDDIO_4  
VDD1V8  
VDD1V8  
VDDIO_1  
PMIC_I2C_SDA  
VSS  
7
8
PIO3_8  
9
10  
11  
12  
13  
14  
15  
16  
17  
A
B
C
D
E
F
VSS  
RTCXIN  
XTALOUT  
XTALIN  
PIO1_0  
PIO0_28  
PIO0_14  
PIO0_25  
PIO0_31  
VDDA_BIAS  
VREFP  
PIO0_21  
PIO0_22  
PIO2_31  
PIO0_30  
PIO0_12  
PIO0_0  
VSS  
PIO0_16  
PIO0_18  
PIO3_2  
PIO3_1  
VSS  
MIPI_DSI_D0P  
VDD_AO1V8  
MIPI_DSI_D0N  
MIPI_DSI_CLKP  
RTCXOUT  
VSS  
PIO3_13  
VSS  
PIO3_9  
PIO2_29  
PIO3_11  
PIO2_30  
PIO3_15  
VDDIO_1  
VSS  
PIO0_29  
VSS  
PIO0_15  
VSS  
PIO0_17  
RESETN  
VDD_AO1V8  
PMIC_MODE1  
MIPI_DSI_VSS  
VSS  
LDO_ENABLE  
PMIC_IRQ_N  
PIO3_21  
PIO3_10  
PIO3_16  
PIO3_14  
PIO0_23  
PIO0_24  
PIO4_18  
PIO0_19  
VSS  
MIPI_DSI_CLKN  
PMIC_MODE0  
MIPI_DSI_D1P  
MIPI_DSI_D1N  
VSS  
VSSA  
VSS  
PIO3_17  
VSSA  
VSS  
PIO3_3  
PIO2_14  
PIO0_13  
VSS  
PIO2_15  
PIO0_6  
PIO0_9  
PIO1_13  
PIO4_2  
PIO4_4  
VDD1V8_1  
MIPI_DSI_VDDA18  
VSS  
VDDIO_1  
VDDIO_1  
VDDCORE  
VDDCORE  
VDDCORE  
VDDCORE  
VDDCORE  
PIO5_1  
MIPI_DSI_VDDA_CA  
P
PIO4_14  
PIO4_17  
PIO4_13  
PIO4_11  
VDDIO_4  
VSS  
VDDIO_1  
VSS  
PIO0_5  
PIO0_1  
PIO0_2  
G
H
J
VSS  
PIO5_15  
VDDIO_1  
USB1_VDD3V3  
VSS  
VREFN  
PIO4_12  
PIO4_16  
PIO5_17  
PIO4_15  
VSS  
PIO5_16  
PIO5_18  
PMIC_I2C_SCL  
VSS  
VDD1V8  
VDD1V8  
VSS  
VDDCORE  
MIPI_DSI_VDD11  
VDDCORE  
VSS  
VDDCORE  
VDDCORE  
VDDCORE  
VSS  
VSS  
PIO0_8  
VDDA_ADC1V8  
VDDIO_0  
PIO1_11  
VSS  
PIO0_4  
VDD1V8  
PIO1_12  
VSS  
PIO0_3  
PIO0_7  
PIO0_11  
VSS  
VDDCORE  
VSS  
VDDIO_0  
VDDIO_0  
VSS  
K
L
PIO1_4  
PIO1_3  
PIO1_5  
PIO2_25  
PIO0_10  
PIO1_14  
PIO1_15  
VSS  
VSS  
M
N
P
R
T
PIO1_7  
PIO2_27  
PIO2_24  
PIO5_8  
PIO2_26  
PIO1_6  
PIO1_10  
PIO2_10  
PIO2_5  
VDD1V8  
VDDIO_2  
PIO2_4  
VSS  
VDDIO_3  
PIO4_30  
VDDIO_0  
PIO4_31  
PIO4_21  
PIO5_3  
VSS  
VDDIO_0  
PIO1_24  
PIO5_0  
PIO3_29  
PIO3_28  
PIO1_27  
PIO1_22  
PIO4_3  
PIO3_27  
PIO1_26  
PIO1_25  
PIO1_21  
PIO1_28  
PIO4_1  
PIO4_0  
PIO4_6  
VSS  
VSS  
VDDIO_3  
PIO4_27  
VSS  
PIO2_28  
PIO5_4  
PIO2_11  
PIO2_7  
VDDIO_2  
VSS  
PIO4_29  
VSS  
PIO4_5  
PIO3_25  
PIO3_26  
PIO1_19  
VSS  
PIO2_6  
PIO1_30  
PIO1_31  
PIO2_8  
PIO4_20  
PIO5_2  
VSS  
PIO1_23  
PIO4_26  
PIO1_29  
USB1_DM  
VSS  
USB1_VBUS  
USB1_DP  
PIO2_9  
PIO2_1  
PIO2_2  
PIO4_23  
PIO4_24  
PIO4_22  
PIO4_25  
PIO1_20  
PIO1_18  
VSS  
U
PIO2_0  
PIO2_3  
PIO4_28  
Figure 43. i.MX RT500 249-pin FOWLP ballmap  
The following figure shows the 141-pin WLCSP ballmap for this device.  
1
2
3
PIO0_16  
PIO0_30  
VSSA  
4
5
6
7
8
VDDCORE  
VDD1V8  
XTALOUT  
VSSA  
9
10  
11  
12  
M
L
VSS  
PIO0_17  
PIO1_9  
PIO2_14  
PIO0_13  
PIO0_2  
PIO0_3  
VDDIO_0  
PIO1_12  
PIO1_13  
PIO1_14  
VDDCORE  
VSS  
PIO0_21  
PIO0_24  
PIO0_15  
PIO0_18  
PIO0_19  
VDDIO_0  
PIO0_4  
VDDIO_1  
PIO0_23  
PIO2_31  
PIO0_22  
VDDIO_1  
PIO0_12  
VDD1V8  
VDDIO_3  
PIO1_22  
PIO1_21  
PIO1_20  
PIO1_18  
PIO0_28  
VDDIO_1  
PIO0_14  
PIO0_31  
PIO0_25  
VDDIO_1  
VDDCORE  
VDDCORE  
PIO4_26  
PIO1_23  
VDDIO_0  
PIO1_28  
PIO2_29  
PIO1_0  
PIO2_30  
PIO0_29  
VSS  
VSS  
VDD1V8_1  
VDD_AO1V8  
PMIC_MODE0  
RTCXIN  
VDD1V8  
RESETN  
VSS  
PIO2_15  
PIO0_6  
PIO0_0  
VSS  
XTALOUT  
PMIC_IRQ  
PMIC_MODE1  
MIPI_DSI_D0N  
VSS  
VDD1V8  
MIPI_DSI_VDDA_CA  
P
K
J
RTCXOUT  
MIPI_DSI_VSS  
MIPI_DSI_CLKP  
VSS  
VDDA_ADC1V8  
PIO0_5  
MIPI_DSI_CLKN  
MIPI_DSI_VDD11  
VDDCORE  
H
G
F
MIPI_DSI_D0P  
VSS  
VSS  
PIO0_8  
PIO0_10  
VDDIO_0  
PIO1_15  
VDDCORE  
VDDIO_0  
VSS  
PIO0_1  
VDDCORE  
VSS  
MIPI_DSI_VDD18  
PIO2_25  
PIO0_9  
VSS  
PIO1_7  
PIO1_3  
PIO1_4  
E
D
C
B
A
PIO0_11  
PIO1_11  
VDDCORE  
VSS  
PIO0_7  
PIO4_23  
PIO4_25  
PIO4_24  
PIO4_21  
PIO2_24  
PIO4_29  
PIO4_27  
PIO4_20  
PIO4_22  
PIO1_6  
PIO2_27  
PIO2_26  
PIO1_5  
PIO1_19  
PIO6_27  
PIO3_29  
PIO3_28  
PIO5_4  
USB1_VDD3V3  
VDDCORE  
PIO4_28  
VDDIO_1  
PIO5_8  
PIO4_30  
PIO4_31  
VDDCORE  
USB0_DP  
VSS  
USB0_DM  
VDD1V8  
VDDIO_0  
VDDCORE  
Figure 44. i.MX RT500 141-pin CSP ballmap  
106  
NXP Semiconductors  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
Pinouts  
5.5 Termination of unused pins  
The following table shows how to terminate pins that are not used in the application.  
In many cases, unused pins should be connected externally or configured correctly by  
software to minimize the overall power consumption of the part.  
Unused pins with GPIO function should be configured as outputs set to LOW with  
their internal pull-up disabled. To configure a GPIO pin as output and drive it LOW,  
select the GPIO function in the IOCON register, select output in the GPIO DIR  
register, and write a 0 to the GPIO PORT register for that pin. Disable the pull-up in  
the pin’s IOCON register.  
In addition, it is recommended to configure all GPIO pins that are not bonded out on  
smaller packages as outputs driven LOW with their internal pull-up disabled.  
Table 50. Termination of unused pins  
Pin  
Default state1  
Recommended termination of  
unused pins  
All PIOn pins  
Most are Z, a few are PU  
Can be left unconnected if configured  
by software as an output with pull-up  
disabled and driven LOW.  
PMIC_I2C_SCL/SDA  
PMIC_IRQ_N  
Z
Z
Leave unconnected  
Tie to VDD_AO1V8 if not used in the  
system.  
PMIC_MODEn  
RESETN  
0
I
Leave unconnected.  
Tie high if not used in the system.  
Tie to ground.  
RTCXIN  
-
RTCXOUT  
USB1_DM/DP  
-
Leave unconnected.  
F
Can be left unconnected. If the USB  
interface is not used, these pins can be  
left unconnected except in deep power-  
down mode where they must be  
externally pulled low. When the USB  
PHY is disabled, the pins are floating.  
USB1_VBUS  
VDD1V8  
F
F
F
Leave unconnected.  
Leave unconnected.  
VDD_1V8_1  
Tie to 1.8V power during active. Can  
be powered off during deep sleep  
mode to reduce current consumption  
by approximately 22 uA.  
USB1_VDD3V3  
VDD_AO1V8  
F
F
F
Leave unconnected.  
Tie to 1.8V power.  
Tie to 1.8V power.  
VDDA_ADC1V8  
Table continues on the next page...  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
107  
NXP Semiconductors  
 
Power supply for pins  
Table 50. Termination of unused pins (continued)  
Pin  
Default state1  
Recommended termination of  
unused pins  
VDDA_BIAS  
VREFN  
F
F
F
F
F
F
F
-
Tie to 1.8V power.  
Tie to VSS.  
VREFP  
Tie to VDDA_ADC1V8 analog supply  
10 kΩ resistor to ground  
10 kΩ resistor to ground  
Leave unconnected  
Tie to VSS  
MIPI_DSI_VDD11  
MIPI_DSI_VDD18  
MIPI_DSI_VDDA_CAP  
MIPI_DSI_VSS  
VSSA  
Tie to VSS.  
XTALIN  
-
Tie to ground.  
XTALOUT  
-
Leave unconnected.  
1. Z = Input, pull-up, and pull-down disabled; PU = Pull-Up enabled; F = Floating, High-Z  
5.6 Pin states in different power modes  
Table 51. Pin states in different power modes  
Pin  
Active  
Sleep  
Deep-sleep  
Deep power-down  
Floating  
All PIOn pins  
As configured in IOCON1. Default is Z (input, pull-up, and pull-down  
disabled), except for a few pins where the pull-up and input are enabled.  
1. Default and programmed pin states are retained in sleep and deep-sleep.  
5.7 Obtaining package dimensions  
Package dimensions are provided in package drawings.  
To find a package drawing, go to nxp.com and perform a keyword search for the  
drawing’s document number:  
If you want the drawing for this package  
249-pin FOWLP  
Then use this document number  
98ASA01357D  
141-pin WLCSP  
98ASA01653D  
6 Power supply for pins  
108  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
Power supply for pins  
The following table shows the GPIOs belonging to the specific VDDIO groups and  
VDD_AO1V8 domain.  
VDDIO_0, 1, 2, and 4 supply pins can ONLY be powered from 1.71V to 1.98V. The  
VDDIO_3 supply pin can be powered between 1.71V to 3.6V.  
Table 52. Power supply for pins  
Pin  
GPIO pins  
PIO0_0 to PIO0_13 (Fail Safe Pads)  
PIO1_11 to PIO1_15 (Fail Safe Pads)  
PIO1_18 to PIO1_29 (High Speed Pads)  
PIO2_14 to PIO2_15 (Fail Safe Pads)  
PIO3_25 to PIO3_29 (Fail Safe Pads)  
PIO4_0 to PIO4_6 (Fail Safe Pads)  
VDDIO_0  
VDDIO_1  
PIO0_14 to PIO0_19 (Fail Safe Pads)  
PIO0_21 to PIO0_25 (Fail Safe Pads)  
PIO0_28 to PIO0_31 (Fail Safe Pads)  
PIO1_0 (Fail Safe Pads)  
PIO1_2 to PIO1_7 (Fail Safe Pads)  
PIO1_10 (Fail Safe Pad)  
PIO2_24 to PIO2_31 (High Speed Pads)  
PIO3_1 to PIO3_3 (Fail Safe Pads)  
PIO4_11 to PIO4_17 (High Speed Pads)  
PIO4_18 (Fail Safe Pad)  
PIO5_15 to PIO5_18 (High Speed)  
PMIC_I2C_SCL  
PMIC_I2C_SDA  
VDDIO_2  
PIO1_30 to PIO1_31 (High Speed Pads)  
PIO2_0 to PIO2_8 (High Speed Pads)  
PIO2_9 to PIO2_11 (Fail Safe Pads)  
PIO4_20 to PIO4_31 (Fail Safe Pads)  
PIO5_0 to PIO5_4, PIO5_8 (Fail Safe Pads)  
PIO3_8 to PIO3_18 (High Speed Pads)  
PIO3_19 to PIO3_21 (Fail Safe Pads)  
RESETN  
VDDIO_3  
VDDIO_4  
VDD_AO1V8  
LDO_ENABLE  
PMIC_IRQ_N  
PMIC_MODE0 and PMIC_MODE1  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
109  
NXP Semiconductors  
 
Revision history  
7 Revision history  
Table 53. Revision history  
Rev. No.  
Date  
Substantial changes  
0
02/2021  
Initial public release  
110  
i.MX RT500 Low-Power Crossover Processor, Rev. 0, 02/2021  
NXP Semiconductors  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,  
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,  
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved.  
©
NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 02/2021  
Document identifier: IMXRT500EC  
NXP Semiconductors  
Data Sheet Addendum  
Document Number: IMXRT500ECAD  
Rev. 0, 04/2021  
Addendum to Rev. 0 of the i.MX  
RT500 Low-Power Crossover  
Processor Data Sheet  
This addendum identifies changes to Rev. 0 of the i.MX RT500 Low-Power Crossover Processor Data  
Sheet. The changes described in this addendum have not been implemented in the specified pages.  
1 Update the table “General operating conditions”  
Location: Section 1.1.6, Table 5, Page 14  
Add the following row to Table 5, “General operating conditions”  
Symbol  
Parameter Conditions  
Min.  
Typ.  
Max.  
Unit  
fotp_clk  
OTP clock For OTP  
frequency programmin  
g only  
-
-
120  
MHz  
(fclk/OTP_CLK_DIV[DIV])  
© 2021 NXP B.V.  
Update the section “Termination of unused pins”  
2 Update the section “Termination of unused pins”  
Location: Section 5,5, Page 107  
Replace the paragraph text within the section “Termination of unused pins” with the text below.  
The following table shows how to terminate pins on functions that are not used in the application. In many  
cases, unused pins should be connected externally or configured correctly by software to minimize the  
overall power consumption of the part.  
By default, unused pins with GPIO functions are tri-stated with the input buffer disabled and can remain  
floating.  
All power pins in the domains listed below must be connected to the recommended voltage.  
3 Update the table “Termination of unused pins”  
Location: Section 5.5, Table 50, Page 107  
Replace Table 50 “Termination of unused pins” with the following table.  
Function  
Pin Name  
Default Recommended termination of unused pins  
state1  
GPIO  
All PIOn pins  
Z
Z
Leave unconnected.  
PMIC Control  
PMIC Control  
PMIC Control  
Control  
PMIC_I2C_SCL/SDA  
PMIC_IRQ_N  
PMIC_MODEn  
LDO_ENABLE  
RESETN  
Leave unconnected.  
I, Z  
O
I
10 kΩ resistor to VDD_AO1V8.  
Leave unconnected.  
10 kΩ resistor to ground.  
100 kΩ resistor to VDD_AO1V8.  
Control  
I
Addendum to i.MX RT500 Low-Power Crossover Processor Data Sheet, Rev. 0  
NXP Semiconductors  
Update the table “Termination of unused pins”  
Oscillator  
Oscillator  
Oscillator  
Oscillator  
USB1  
RTCXIN  
I
-
I
Connect to ground.  
RTCXOUT  
Leave unconnected.  
Connect to ground.  
XTALIN  
XTALOUT  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
Leave unconnected.  
Leave unconnected.  
Leave unconnected.  
Leave unconnected.  
10 kΩ resistor to ground.  
10 kΩ resistor to ground.  
Leave unconnected.  
Connect to ground.  
USB1_DM/DP  
USB1_VBUS  
USB1_VDD3V3  
MIPI_DSI_VDD11  
MIPI_DSI_VDD18  
MIPI_DSI_VDDA_CAP  
MIPI_DSI_VSS  
MIPI_DSI_D0N/D0P  
MIPI_DSI_D1N/D1P  
MIPI_DSI_CLKP  
MIPI_DSI_CLKN  
VREFP  
USB1  
USB1  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
MIPI_DSI  
Analog  
Leave unconnected.  
Leave unconnected.  
Leave unconnected.  
Leave unconnected.  
Connect to VDDA_ADC1V8.  
Connect to ground.  
Analog  
VREFN  
Power  
VDDCORE  
Connect to 1.0V power.  
Connect to 1.8V power.  
Power  
VDD1V8  
Power  
VDD_1V8_1  
Connect to 1.8V power during active. Can be powered off  
during deep sleep mode to reduce current consumption by  
approximately 22 uA.  
Power  
Power  
Power  
Power  
Power  
Power  
VDD_AO1V8  
VDDIO_n  
VDDA_ADC1V8  
VDDA_BIAS  
VSSA  
-
Connect to 1.8V power.  
Connect to 1.8V power.  
Connect to 1.8V power.  
Connect to 1.8V power.  
Connect to ground.  
-
-
-
-
VSS  
Connect to ground.  
1
Z = high impedance; I = Input; O = Output  
Addendum to i.MX RT500 Low-Power Crossover Processor Data Sheet, Rev. 0  
NXP Semiconductors  
 
Update the table “Power supply for pins”  
4 Update the table “Power supply for pins”  
Location: Section 6, Table 52, Page 109  
Add the following rows to Table 52 “Power supply for pins”.  
Pin  
GPIO pins  
VDDIO_0  
PIO6_27 (Fail Safe Pad)  
VDDIO_1 PIO5_4 and PIO5_8 (Fail Safe Pads)  
Replace the following rows in Table 52 “Power supply for pins”, with the ones shown in the table.  
VDDIO_1: PIO1_2 to PIO1_7 (Fail Safe Pads)  
VDDIO_1: PIO1_10 (Fail Safe Pads)  
VDDIO_3: PIO5_0 to PIO5_4, PIO5_8 (Fail Safe Pads)  
Pin  
GPIO pins  
VDDIO_1 PIO1_3 to PIO1_7 (Fail Safe Pads)  
PIO1_9 to PIO1_10 (Fail Safe Pads)  
VDDIO_3  
PIO5_0 to PIO5_3 (Fail Safe Pads)  
Addendum to i.MX RT500 Low-Power Crossover Processor Data Sheet, Rev. 0  
NXP Semiconductors  
How To Reach Us  
Home Page:  
Limited warranty and liability — Information in this document is believed to be accurate and reliable. However,  
NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the consequences of use of such information. NXP  
Semiconductors takes no responsibility for the content in this document if provided by an information source outside  
of NXP Semiconductors. In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special  
or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related  
to the removal or replacement of any products or rework charges) whether or not such damages are based on tort  
(including negligence), warranty, breach of contract or any other legal theory.  
nxp.com  
Web Support:  
nxp.com/support  
Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors’ aggregate  
and cumulative liability towards customer for the products described herein shall be limited in accordance with the  
Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this  
document, including without limitation specifications and product descriptions, at any time and without notice. This  
document supersedes and replaces all information supplied prior to the publication hereof.  
Security — Customer understands that all NXP products may be subject to unidentified or documented vulnerabilities.  
Customer is responsible for the design and operation of its applications and products throughout their lifecycles to  
reduce the effect of these vulnerabilities on customer’s applications and products. Customer’s responsibility also  
extends to other open and/or proprietary technologies supported by NXP products for use in customer’s applications.  
NXP accepts no liability for any vulnerability. Customer should regularly check security updates from NXP and follow  
up appropriately.  
Customer shall select products with security features that best meet rules, regulations, and standards of the intended  
application and make the ultimate design decisions regarding its products and is solely responsible for compliance  
with all legal, regulatory, and security related requirements concerning its products, regardless of any information or  
support that may be provided by NXP. NXP has a Product Security Incident Response Team (PSIRT) (reachable  
at PSIRT@nxp.com) that manages the investigation, reporting, and solution release to security vulnerabilities of  
NXP products.  
Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use  
in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of  
an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property  
or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors  
product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in  
accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion  
and/or use of non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in automotive applications to automotive  
specifications and standards, customer (a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b) whenever customer uses the product for  
automotive applications beyond NXP Semiconductors’ specifications such use shall be solely at customer’s own risk,  
and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting  
from customer design and use of the product for automotive applications beyond NXP Semiconductors’ standard  
warranty and NXP Semiconductors’ product specifications.  
Applications — Applications that are described herein for any of these products are for illustrative purposes only.  
NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use  
without further testing or modification.  
Customers are responsible for the design and operation of their applications and products using NXP Semiconductors  
products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product  
Table continues on the next page...  
design. It is customer’s sole responsibility to determine whether the NXP Semiconductors product is suitable and fit  
for the customer’s applications and products planned, as well as for the planned application and use of customer’s  
third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks  
associated with their applications and products.  
NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on  
any weakness or default in the customer’s applications or products, or the application or use by customer’s third party  
customer(s). Customer is responsible for doing all necessary testing for the customer’s applications and products using  
NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or  
use by customer’s third party customer(s). NXP does not accept any liability in this respect.  
Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of  
IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation  
of the device at these or any other conditions above those given in the Recommended operating conditions section (if  
present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting  
values will permanently and irreversibly affect the quality and reliability of the device.  
Terms and conditions of commerical sale — NXP Semiconductors products are sold subject to the general terms  
and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a  
valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the  
respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer’s general  
terms and conditions with regard to the purchase of NXP Semiconductors products by customer.  
Hazardous voltage — Although basic supply voltages of the product may be much lower, circuit voltages up to 60 V  
may appear when operating this product, depending on settings and application. Customers incorporating or otherwise  
using these products in applications where such high voltages may appear during operation, assembly, test etc. of such  
application, do so at their own risk. Customers agree to fully indemnify NXP Semiconductors for any damages resulting  
from or in connection with such high voltages. Furthermore, customers are drawn to safety standards (IEC 950, EN 60  
950, CENELEC, ISO, etc.) and other (legal) requirements applying to such high voltages.  
Export control — This document as well as the item(s) described herein may be subject to export control regulations.  
Export might require a prior authorization from competent authorities.  
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, EdgeLock, are trademarks of  
NXP B.V. All other product or service names are the property of their respective owners. AMBA, Arm, Arm7,  
Arm7TDMI, Arm9, Arm11, Artisan, big.LITTLE, Cordio, CoreLink, CoreSight, Cortex, DesignStart, DynamIQ, Jazelle,  
Keil, Mali, Mbed, Mbed Enabled, NEON, POP, RealView, SecurCore, Socrates, Thumb, TrustZone, ULINK, ULINK2,  
ULINK-ME, ULINK-PLUS, ULINKpro, µVision, Versatile are trademarks or registered trademarks of Arm Limited (or its  
subsidiaries) in the US and/or elsewhere. The related technology may be protected by any or all of patents, copyrights,  
designs and trade secrets. All rights reserved.  
©
NXP B.V. 2021.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 04/2021  
Document identifier: IMXRT500EC  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY