PN7360AUEV/C300Y [NXP]

RISC Microcontroller;
PN7360AUEV/C300Y
型号: PN7360AUEV/C300Y
厂家: NXP    NXP
描述:

RISC Microcontroller

微控制器
文件: 总108页 (文件大小:1024K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PN7462 family  
NFC Cortex-M0 microcontroller  
Rev. 4.1 — 28 June 2018  
406341  
Product data sheet  
COMPANY PUBLIC  
1 General description  
The PN7462 family is a family of 32-bit ARM Cortex-M0-based NFC microcontrollers  
offering high performance and low power consumption. It has a simple instruction set and  
memory addressing along with a reduced code size compared to existing architectures.  
PN7462 family offers an all in one solution, with features such as NFC, supporting all  
NFC Forum modes, microcontroller, optional contact smart card reader, and software in a  
single chip. It operates at CPU frequencies of up to 20 MHz.  
Table 1.ꢀComparison of the PN7462 family members  
PN7462AUHN PN7462AUEV PN7412AUHN PN7362AUHN PN7362AUEV PN7360AUHN PN7360AUEV  
Contact  
smart card  
reader  
Class A, B, C No  
Class A, B, C No  
No  
No  
No  
ISO/IEC 7816 Yes  
Yes  
Yes  
No  
No  
No  
No  
UART  
Contactless Yes  
interface  
Yes  
No  
Yes  
Yes  
Yes  
80 kB  
Yes  
80 kB  
Available  
Flash  
160 kB  
160 kB  
160 kB  
160 kB  
160 kB  
memory  
SRAM data  
memory  
12 kB  
12 kB  
12 kB  
12 kB  
12 kB  
12 kB  
12 kB  
General  
purposes I/O  
12 up-to 21  
HVQFN64  
14 up-to 21  
VFBGA64  
12 up-to 21  
HVQFN64  
14 up-to 21  
HVQFN64  
14 up-to 21  
VFBGA64  
14 up-to 21  
HVQFN64  
14 up-to 21  
VFBGA64  
Package  
type  
Having the differences listed in the table above, all products within the PN7462 family  
are equipped with 12 kB of SRAM data memory and 4 kB EEPROM. All products within  
the family also include one host interface with either high-speed mode I2C-bus, SPI, USB  
or high-speed UART, and two master interfaces, SPI and Fast-mode Plus I2C-bus. Four  
general-purpose counter/timers, a random number generator, one CRC coprocessor and  
up to 21 general-purpose I/O pins.  
The PN7462 family NFC microcontroller offers a one chip solution to build contactless, or  
contact and contactless applications. It is equipped with a highly integrated high-power  
output NFC-IC for contactless communication at 13.56 MHz enabling EMV-compliance  
on RF level, without additional external active components.  
By integrating a contact ISO/IEC 7816 interface on a single chip, the PN7462AUHN  
provides a solution for dual interface smart card readers. Whereas the PN7412AUHN  
offers a solution for a contact reader only. The PN7462AUHN and PN7412AUHN contact  
interfaces offer a high level of security for the card by performing current limiting, short-  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
circuit detection, ESD protection as well as supply supervision. On PN7462AUHN,  
PN7412AUHN and PN7462AUEV, an additional UART output is also implemented to  
address applications where more than one contact card slot is needed. It enables an  
easy connection to multiple smart card slot interfaces like TDA8026.  
PN7462AUHN and PN7412AUHN provide thermal and short-circuit protection on all card  
contacts. It also provides automatic activation and deactivation sequences initiated by  
software or hardware.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
2 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
2 Features and benefits  
2.1 Integrated contact interface frontend  
This chapter applies to the products with contact interface only.  
Class A, B, and C cards can work on 1.8 V, 3 V, and 5 V supply  
Specific ISO UART, variable baud rate through frequency or division ratio  
programming, error management at character level for T = 0, and extra guard time  
register  
DC-to-DC converter for class A support starting at 3 V, and class B support starting at  
2.7 V  
Thermal and short-circuit protection on contact cards  
Automatic activation and deactivation sequence, initiated by software or by hardware in  
case of short-circuit, card removal, overheating, and VDD or VDD drop-out  
Enhanced ESD protection (> 12 kV)  
ISO/IEC 7816 compliant  
Compliance with EMV contact protocol specification  
Clock generation up to 13.56 MHz  
Synchronous card support  
Possibility to extend the number of contact interfaces, with the addition of slot  
extenders such as TDA8026  
2.2 Integrated ISO/IEC 7816-3&4 UART interface  
This chapter applies to the products with Integrated ISO/IEC 7816 UART interface  
only.  
The PN7462 family offers the possibility to extend the number of contact interfaces  
available. It uses an I/O auxiliary interface to connect a slot extension (TDA8035 - 1 slot,  
TDA8020 - 2 slots, and TDA8026 - 5 slots).  
Class A (5 V), class B (3 V), and class C (1.8 V) smart card supply  
Protection of smart card  
Three protected half-duplex bidirectional buffered I/O lines (C4, C7, and C8)  
Compliant with ISO/IEC 7816 and EMVCo standards  
2.3 Integrated contactless interface frontend  
This chapter applies to the products with integrated contactless interface only.  
High RF output power frontend IC for transfer speed up to 848 kbit/s  
NFC IP1 and NFC IP2 support  
Full NFC Forum tag support (type 1, type 2, type 3, type 4A, type 4B and type 5)  
P2P active and passive, target, and initiator  
Card emulation ISO14443 type A  
ISO/IEC 14443 type A and type B  
MIFARE products using Crypto 1  
ISO/IEC 15693, and ISO/IEC 18000-3 mode 3  
Low-power card detection  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
3 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Dynamic Power Control (DPC)  
Adaptive Wave Control (AWC)  
Adaptive Range Control (ARC)  
Compliance with EMV contactless protocol specification  
2.4 Cortex-M0 microcontroller  
Processor core  
ARM Cortex: 32-bit M0 processor  
Built-in Nested Vectored Interrupt Controller (NVIC)  
Non-maskable interrupt  
24-bit system tick timer  
Running frequency of up to 20 MHz  
Clock management to enable low power consumption  
Memory  
Flash: 160 kB / 80 kB  
SRAM: 12 kB  
EEPROM: 4 kB  
40 kB boot ROM included, including USB mass storage primary boot loader for code  
download  
Debug option  
Serial Wire Debug (SWD) interface  
Peripherals  
Host interface:  
USB 2.0 full speed with USB 3.0 hub connection capability  
HSUART for serial communication, supporting standards speeds from 9600 bauds to  
115200 bauds, and faster speed up to 1.288 Mbit/s  
SPI with half-duplex and full duplex capability with speeds up to 7 Mbit/s  
I2C supporting standard mode, fast mode, and high-speed mode with multiple  
address supports  
Master interface:  
SPI with half-duplex capability from 1 Mbit/s to 6.78 Mbit/s  
I2C supporting standard mode, fast mode, fast mode plus, and clock stretching  
Up to 21 General-Purpose I/O (GPIO) with configurable pull-up/pull-down resistors  
GPIO1 to GPIO12 can be used as edge and level sensitive interrupt sources  
Power  
Two reduced power modes: standby mode and hard power-down mode  
Supports suspend mode for USB host interface  
Processor wake-up from hard power-down mode, standby mode, suspend mode via  
host interface, GPIOs, RF field detection  
Integrated PMU to adjust internal regulators automatically, to minimize the power  
consumption during all possible power modes  
Power-on reset  
RF supply: external, or using an integrated LDO (TX LDO, configurable with 3 V, 3.3  
V, 3.6 V, 4.5 V, and 4.75 V)  
Pad voltage supply: external 3.3 V or 1.8 V, or using an integrated LDO (3.3 V  
supply)  
Timers  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
4 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Four general-purpose timers  
Programmable Watchdog Timer (WDT)  
CRC coprocessor  
Random number generator  
Clocks  
Crystal oscillator at 27.12 MHz  
Dedicated PLL at 48 MHz for the USB  
Integrated HFO 20 MHz and LFO 365 kHz  
General  
HVQFN64 package  
VFBGA64 package  
Temperature range: -40 °C to +85 °C  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
5 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
3 Applications  
Physical access control  
Gaming  
USB NFC reader, including dual interface smart card readers  
Home banking, payment readers EMVCo compliant  
High integration devices  
NFC applications  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
6 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
4 Quick reference data  
Table 2.ꢀQuick reference data  
Operating range: -40 °C to +85 °C unless specified; contact interface: VDDP(VBUSP) = VDDP(VBUS); contactless interface:  
internal LDO not used  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VDDP(VBUS)  
power supply voltage  
on pin VBUS  
card emulation, passive target  
(PLM)  
2.3  
-
5.5  
V
all RF modes; class B and class 2.7  
C contact interface support  
-
-
5.5  
5.5  
V
V
all RF modes; class A, class B  
and class C contact interface  
support  
3
VDD(PVDD)  
PVDD supply voltage  
1.8 V  
3.3 V  
1.65  
1.8  
3.3  
12  
1.95  
3.6  
18  
V
3
-
V
IDDP(VBUS)  
power supply current on in hard power-down mode; T  
μA  
pin VBUS  
= 25 °C; VDDP(VBUS) = 5.5 V;  
RST_N = 0  
stand by mode; T = 25 °C;  
VDDP(VBUS) = 3.3 V; external  
PVDD LDO used  
-
-
-
-
18  
55  
120  
-
-
μA  
μA  
µA  
mA  
stand by mode; T = 25 °C;  
VDDP(VBUS) = 5.5 V; internal  
PVDD LDO used  
-
suspend mode, USB interface;  
VDDP(VBUS) = 5.5 V; external  
PVDD supply; T = 25 °C  
250  
250  
IDD(TVDD)  
TVDD supply current  
on pin TVDD_IN; maximum  
supported current by the  
contactless interface  
Pmax  
Tamb  
maximum power  
dissipation  
-
-
-
1050  
+85  
mW  
°C  
ambient temperature  
JEDEC PCB  
-40  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
7 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
5 Ordering information  
The table below lists the ordering information of the PN7462 family.  
Table 3.ꢀOrdering information  
Type number  
Package  
Name  
Description  
Version  
PN7462AUHN  
PN7462AUEV  
PN7412AUHN  
PN7362AUHN  
PN7362AUEV  
PN7360AUHN  
PN7360AUEV  
HVQFN64  
160 kB memory; contact interface; ISO/IEC 7816-3&4  
UART interface;  
SOT804-4  
SOT1307-2  
SOT804-4  
SOT804-4  
SOT1307-2  
SOT804-4  
SOT1307-2  
plastic thermal enhanced very thin quad flat package; no  
leads; 64 terminals; body 9 × 9 × 0.85 mm  
VFBGA64  
HVQFN64  
HVQFN64  
VFBGA64  
HVQFN64  
VFBGA64  
160 kB memory; no contact interface; ISO/IEC  
7816-3&4 UART interface;  
plastic very thin fine-pitch ball grid array package; 64  
balls; 4.5 mm x 4.5 mm x 0.80 mm  
160 kB memory; contact interface; ISO/IEC 7816-3&4  
UART interface; no contactless interface  
plastic thermal enhanced very thin quad flat package; no  
leads; 64 terminals; body 9 × 9 × 0.85 mm  
160 kB memory; no contact interface; no ISO/IEC  
7816-3&4 UART interface;  
plastic thermal enhanced very thin quad flat package; no  
leads; 64 terminals; body 9 × 9 × 0.85 mm  
160 kB memory; no contact interface; no ISO/IEC  
7816-3&4 UART interface;  
plastic very thin fine-pitch ball grid array package; 64  
balls; 4.5 mm x 4.5 mm x 0.80 mm  
80 kB memory; no contact interface; no ISO/IEC  
7816-3&4 UART interface;  
plastic thermal enhanced very thin quad flat package; no  
leads; 64 terminals; body 9 × 9 × 0.85 mm  
80 kB memory; no contact interface; no ISO/IEC  
7816-3&4 UART interface;  
plastic very thin fine-pitch ball grid array package; 64  
balls; 4.5 mm x 4.5 mm x 0.80 mm  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
8 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
6 Block diagram  
6.1 Block diagram PN7462 HVQFN64  
ARM-CORTEX M0  
SRAM  
12 kB  
EEPROM  
4 kB  
ROM  
40 kB  
SWD  
FLASH  
160 kB  
CODE PATCH  
slave  
system  
bus  
slave  
slave  
AHB LITE  
master slave  
master  
master  
POWER, CLOCK  
AND RESET  
USB  
GPIO  
XTAL  
CLOCK GENERATORS  
HFO  
LFO  
I2C  
SPI  
USB PLL  
PMU  
HSU  
MAIN LDO  
TX LDO  
PVDD LDO  
VCC LDO  
DC-DC  
HOST INTERFACES  
SC LDO  
CLIF  
TEMPERATURE SENSOR  
SPI MASTER  
TIMERS  
TIME 0, 1, 2, 3  
WATCHDOG  
I2C MASTER  
CTIF  
ISO7816 UART  
RNG  
CRC  
I/O AUX  
aaa-021334  
Figure 1.ꢀBlock diagram  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
9 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
6.2 Block diagram PN7462 VFBGA64  
ARM-CORTEX M0  
SRAM  
12 kB  
EEPROM  
4 kB  
ROM  
40 kB  
SWD  
FLASH  
160 kB  
CODE PATCH  
slave  
system  
bus  
slave  
slave  
AHB LITE  
master slave  
master  
master  
POWER, CLOCK  
AND RESET  
USB  
GPIO  
XTAL  
CLOCK GENERATORS  
HFO  
LFO  
I2C  
SPI  
USB PLL  
PMU  
HSU  
MAIN LDO  
TX LDO  
PVDD LDO  
VCC LDO  
DC-DC  
HOST INTERFACES  
SC LDO  
CLIF  
TEMPERATURE SENSOR  
SPI MASTER  
TIMERS  
TIME 0, 1, 2, 3  
WATCHDOG  
I2C MASTER  
ISO7816 UART  
RNG  
CRC  
I/O AUX  
aaa-029225  
Figure 2.ꢀBlock diagram  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
10 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
6.3 Block diagram PN7412 HVQFN64  
ARM-CORTEX M0  
SRAM  
12 kB  
EEPROM  
4 kB  
ROM  
40 kB  
SWD  
FLASH  
160 kB  
CODE PATCH  
slave  
system  
bus  
slave  
slave  
AHB LITE  
master slave  
master  
POWER, CLOCK  
AND RESET  
USB  
GPIO  
XTAL  
CLOCK GENERATORS  
HFO  
LFO  
I2C  
SPI  
USB PLL  
PMU  
HSU  
MAIN LDO  
TX LDO  
PVDD LDO  
VCC LDO  
DC-DC  
HOST INTERFACES  
SC LDO  
TEMPERATURE SENSOR  
SPI MASTER  
TIMERS  
TIME 0, 1, 2, 3  
WATCHDOG  
I2C MASTER  
CTIF  
ISO7816 UART  
RNG  
CRC  
I/O AUX  
aaa-030118  
Figure 3.ꢀBlock diagram  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
11 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
6.4 Block diagram PN736X  
ARM-CORTEX M0  
SRAM  
12 kB  
EEPROM  
4 kB  
ROM  
40 kB  
SWD  
FLASH  
160 / 80 kB  
CODE PATCH  
slave  
system  
bus  
slave  
slave  
AHB LITE  
master slave  
master  
master  
POWER, CLOCK  
AND RESET  
USB  
GPIO  
XTAL  
CLOCK GENERATORS  
HFO  
LFO  
I2C  
SPI  
USB PLL  
PMU  
HSU  
HOST INTERFACES  
MAIN LDO  
TX LDO  
PVDD LDO  
CLIF  
TEMPERATURE SENSOR  
SPI MASTER  
TIMERS  
TIME 0, 1, 2, 3  
WATCHDOG  
I2C MASTER  
RNG  
CRC  
aaa-025625  
Figure 4.ꢀBlock diagram  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
12 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
7 Pinning information  
7.1 Pinning HVQFN64  
terminal 1  
index area  
terminal 1  
index area  
l2CM_SDA  
GPIO14  
GPIO15  
GPIO16  
n.c.  
1
2
3
4
5
6
7
8
9
48 VBUSP  
47 n.c.  
l2CM_SDA  
CLK_AUX  
IO_AUX  
INT_AUX  
PRES  
1
2
3
4
5
6
7
8
9
48 VBUSP  
47 SCVDD  
46 SAM  
46 n.c.  
45 GNDP  
44 PVDD_OUT  
43 VBUS  
42 RST_N  
41 XTAL2  
40 XTAL1  
39 VDD  
45 GNDP  
44 PVDD_OUT  
43 VBUS  
ATX_A  
ATX_B  
ATX_C  
ATX_D  
ATX_A  
ATX_B  
42 RST_N  
ATX_C  
41 XTAL2  
PN7462AU  
PN736XAU  
ATX_D  
40 XTAL1  
PVDD_IN 10  
DVDD 11  
PVDD_IN 10  
DVDD 11  
39 VDD  
38 VUP_TX  
37 TVDD_OUT  
36 ANT2  
38 VUP_TX  
37 TVDD_OUT  
DWL_REQ 12  
IRQ 13  
DWL_REQ 12  
IRQ 13  
GND  
GND  
36 ANT2  
35 ANT1  
34 TVDD_IN  
33 TX1  
SWDCLK 14  
SWDIO 15  
GPIO1 16  
35 ANT1  
SWDCLK 14  
SWDIO 15  
GPIO1 16  
34 TVDD_IN  
33 TX1  
aaa-025629  
aaa-021124  
Transparent top view  
Transparent top view  
Figure 5.ꢀPin configuration PN736X  
Figure 6.ꢀPin configuration PN7462  
terminal 1  
index area  
l2CM_SDA  
CLK_AUX  
IO_AUX  
INT_AUX  
PRES  
1
2
3
4
5
6
7
8
9
48 VBUSP  
47 SCVDD  
46 SAM  
45 GNDP  
44 PVDD_OUT  
43 VBUS  
42 RST_N  
41 XTAL2  
40 XTAL1  
39 VDD  
ATX_A  
ATX_B  
ATX_C  
PN7412AU  
ATX_D  
PVDD_IN 10  
DVDD 11  
38 VUP_TX  
37 TVDD_OUT  
36 n.c.  
DWL_REQ 12  
IRQ 13  
GND  
SWDCLK 14  
SWDIO 15  
GPIO1 16  
35 n.c.  
34 n.c.  
33 n.c.  
aaa-030468  
Transparent top view  
Figure 7.ꢀPin configuration PN7412  
Important note: the inner leads below the package are internally connected to the PIN.  
Special care needs to be taken during the design so that no conductive part is present  
under these PINs, which could cause short cuts.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
13 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
7.2 Pin description HVQFN64  
Table 4.ꢀPin description  
Pin Symbol Description PN736X  
PN736X  
Symbol Description PN7462  
PN7462  
Symbol Description PN7412  
PN7412  
1
2
3
4
I2CM_S I2C-bus serial data I/O  
DA master/GPIO13  
I2CM_S I2C-bus serial data I/O  
I2CM_S I2C-bus serial data I/O  
DA  
master/GPIO13  
DA  
master/GPIO13  
CLK_A GPIO14  
UX  
CLK_A auxiliary card contact clock/ CLK_A auxiliary card contact clock/  
UX GPIO14 UX GPIO14  
IO_AUX GPIO15  
IO_AUX auxiliary card contact I/O/  
GPIO15  
IO_AUX auxiliary card contact I/O/  
GPIO15  
INT_AU GPIO16  
X
INT_AU auxiliary card contact  
INT_AU auxiliary card contact  
X
interrupt/GPIO16  
X
interrupt/GPIO16  
5
6
n.c.  
not connected  
PRES  
card presence  
PRES  
card presence  
ATX_A SPI slave select input  
(NSS_S)/I2C-bus serial  
clock input (SCL_S)/  
HSUART RX  
ATX_A SPI slave select input  
(NSS_S)/I2C-bus serial  
clock input (SCL_S)/  
HSUART RX  
ATX_A SPI slave select input  
(NSS_S)/I2C-bus serial  
clock input (SCL_S)/  
HSUART RX  
7
8
9
ATX_B SPI slave data input  
(MOSI_S)/I2C-bus serial  
data I/O (SDA_S)/HSUART  
TX  
ATX_B SPI slave data input  
(MOSI_S)/I2C-bus serial  
data I/O (SDA_S)/HSUART  
TX  
ATX_B SPI slave data input  
(MOSI_S)/I2C-bus serial  
data I/O (SDA_S)/HSUART  
TX  
ATX_C USB D+/SPI slave data  
output (MISO_S)/I2C-bus  
address bit0 input/HSUART  
RTS  
ATX_C USB D+/SPI slave data  
output (MISO_S)/I2C-bus  
address bit0 input/HSUART  
RTS  
ATX_C USB D+/SPI slave data  
output (MISO_S)/I2C-bus  
address bit0 input/HSUART  
RTS  
ATX_D USB D-/SPI clock input  
(SCK_S)/I2C-bus address  
bit1 input/HSUART CTS  
ATX_D USB D-/SPI clock input  
(SCK_S)/I2C-bus address  
bit1 input/HSUART CTS  
ATX_D USB D-/SPI clock input  
(SCK_S)/I2C-bus address  
bit1 input/HSUART CTS  
10 PVDD_ pad supply voltage input  
IN  
PVDD_ pad supply voltage input  
IN  
PVDD_ pad supply voltage input  
IN  
11 DVDD  
digital core logic supply  
voltage input  
DVDD  
digital core logic supply  
voltage input  
DVDD  
digital core logic supply  
voltage input  
12 DWL_R entering in download mode DWL_R entering in download mode DWL_R entering in download mode  
EQ  
EQ  
EQ  
13 IRQ  
interrupt request output  
IRQ  
interrupt request output  
IRQ  
interrupt request output  
14 SWDC SW serial debug line clock SWDC SW serial debug line clock SWDC SW serial debug line clock  
LK LK LK  
15 SWDIO SW serial debug line input/ SWDIO SW serial debug line input/ SWDIO SW serial debug line input/  
output  
output  
output  
16 GPIO1 general-purpose I/O/SPI  
master select2 output  
GPIO1 general-purpose I/O/SPI  
master select2 output  
GPIO1 general-purpose I/O/SPI  
master select2 output  
17 GPIO2 general-purpose I/O  
18 GPIO3 general-purpose I/O  
19 GPIO4 general-purpose I/O  
20 GPIO5 general-purpose I/O  
GPIO2 general-purpose I/O  
GPIO3 general-purpose I/O  
GPIO4 general-purpose I/O  
GPIO5 general-purpose I/O  
GPIO2 general-purpose I/O  
GPIO3 general-purpose I/O  
GPIO4 general-purpose I/O  
GPIO5 general-purpose I/O  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
14 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Pin Symbol Description PN736X  
PN736X  
Symbol Description PN7462  
PN7462  
Symbol Description PN7412  
PN7412  
21 GPIO6 general-purpose I/O  
22 GPIO7 general-purpose I/O  
23 GPIO8 general-purpose I/O  
24 GPIO9 general-purpose I/O  
25 GPIO10 general-purpose I/O  
26 GPIO11 general-purpose I/O  
27 GPIO12 general-purpose I/O  
GPIO6 general-purpose I/O  
GPIO7 general-purpose I/O  
GPIO8 general-purpose I/O  
GPIO9 general-purpose I/O  
GPIO10 general-purpose I/O  
GPIO11 general-purpose I/O  
GPIO12 general-purpose I/O  
GPIO6 general-purpose I/O  
GPIO7 general-purpose I/O  
GPIO8 general-purpose I/O  
GPIO9 general-purpose I/O  
GPIO10 general-purpose I/O  
GPIO11 general-purpose I/O  
GPIO12 general-purpose I/O  
28 RXN  
29 RXP  
30 VMID  
receiver input  
RXN  
RXP  
VMID  
receiver input  
n.c.  
n.c.  
n.c.  
See UM10858 for  
connection details  
receiver input  
receiver input  
See UM10858 for  
connection details  
receiver reference voltage  
input  
receiver reference voltage  
input  
See UM10858 for  
connection details  
31 TX2  
antenna driver output  
TX2  
antenna driver output  
n.c.  
keep unconnected  
32 TVSS  
ground for antenna power  
supply  
TVSS  
ground for antenna power  
supply  
TVSS  
ground for antenna power  
supply  
33 TX1  
antenna driver output  
TX1  
antenna driver output  
n.c.  
n.c.  
keep unconnected  
Connect to GND  
34 TVDD_ antenna driver supply  
TVDD_ antenna driver supply  
IN  
voltage input  
IN  
voltage input  
35 ANT1  
antenna connection for  
load modulation in card  
emulation and P2P passive  
target modes  
ANT1  
antenna connection for  
load modulation in card  
emulation and P2P passive  
target modes  
n.c.  
See UM10858 for  
connection details  
36 ANT2  
antenna connection for  
load modulation in card  
emulation and P2P passive  
target modes  
ANT2  
antenna connection for  
load modulation in card  
emulation and P2P passive  
target modes  
n.c.  
See UM10858 for  
connection details  
37 TVDD_ antenna driver supply,  
OUT output of TX_LDO  
TVDD_ antenna driver supply,  
OUT output of TX_LDO  
TVDD_ antenna driver supply,  
OUT output of TX_LDO  
38 VUP_T supply of the contactless  
VUP_T supply of the contactless  
VUP_T supply of the contactless  
X
TX_LDO  
X
TX_LDO  
X
TX_LDO  
39 VDD  
1.8 V regulator output for  
digital blocks  
VDD  
1.8 V regulator output for  
digital blocks  
VDD  
1.8 V regulator output for  
digital blocks  
40 XTAL1 27.12 MHz clock input for  
crystal  
XTAL1 27.12 MHz clock input for  
crystal  
XTAL1 27.12 MHz clock input for  
crystal  
41 XTAL2 27.12 MHz clock input for  
crystal  
XTAL2 27.12 MHz clock input for  
crystal  
XTAL2 27.12 MHz clock input for  
crystal  
42 RST_N reset pin  
RST_N reset pin  
RST_N reset pin  
43 VBUS  
main supply voltage input of VBUS  
microcontroller  
main supply voltage input of VBUS  
microcontroller  
main supply voltage input of  
microcontroller  
44 PVDD_ output of PVDD_LDO for  
OUT pad voltage supply  
PVDD_ output of PVDD_LDO for  
PVDD_ output of PVDD_LDO for  
OUT  
pad voltage supply  
OUT  
pad voltage supply  
45 GNDP Ground  
GNDP Ground  
GNDP Ground  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
15 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Pin Symbol Description PN736X  
PN736X  
Symbol Description PN7462  
PN7462  
Symbol Description PN7412  
PN7412  
46 n.c.  
not connected  
SAM  
DC-to-DC converter  
connection  
SAM  
DC-to-DC converter  
connection  
47 n.c.  
not connected  
SCVDD input LDO for DC-to-DC  
converter  
SCVDD input LDO for DC-to-DC  
converter  
48 VBUSP Connected to VBUS  
VBUSP main supply for the contact VBUSP main supply for the contact  
interface  
interface  
49 n.c.  
50 n.c.  
not connected  
not connected  
SAP  
VUP  
DC-to-DC converter  
connection  
SAP  
VUP  
DC-to-DC converter  
connection  
reserved; connected to  
GND through a decoupling  
capacitance  
reserved; connected to  
GND through a decoupling  
capacitance  
51 n.c.  
not connected  
VCC  
card supply output of  
contact interface  
VCC  
card supply output of  
contact interface  
52 n.c.  
53 n.c.  
not connected  
not connected  
RST  
CLK  
reset pin of contact interface RST  
reset pin of contact interface  
clock pin of contact  
interface  
CLK  
clock pin of contact  
interface  
54 GNDC connected to the ground  
GNDC connected to the ground  
GNDC connected to the ground  
55 n.c.  
56 n.c.  
57 n.c.  
not connected  
not connected  
not connected  
AUX1  
AUX2  
IO  
C4 card I/O pin of contact  
interface  
AUX1  
AUX2  
IO  
C4 card I/O pin of contact  
interface  
C8 card I/O pin of contact  
interface  
C8 card I/O pin of contact  
interface  
card I/O  
card I/O  
58 USB_V used for USB VBUS  
BUS detection  
USB_V used for USB VBUS  
BUS detection  
USB_V used for USB VBUS  
BUS detection  
59 PVDD_ pad supply voltage input for PVDD_ pad supply voltage input for PVDD_ pad supply voltage input for  
M_IN master interfaces M_IN master interfaces M_IN master interfaces  
60 SPIM_S SPI master select 1 output/ SPIM_S SPI master select 1 output/ SPIM_S SPI master select 1 output/  
SN GPIO17 SN GPIO17 SN GPIO17  
61 SPI_SC SPI master clock output/ SPI_SC SPI master clock output/ SPI_SC SPI master clock output/  
LK GPIO18 LK GPIO18 LK GPIO18  
62 SPIM_ SPI master data output/ SPIM_ SPI master data output/ SPIM_ SPI master data output/  
MOSI GPIO19 MOSI GPIO19 MOSI GPIO19  
63 SPIM_ SPI master data input/ SPIM_ SPI master data input/ SPIM_ SPI master data input/  
MISO GPIO20 MISO GPIO20 MISO GPIO20  
64 I2CM_S I2C-bus serial clock output I2CM_S I2C-bus serial clock output I2CM_S I2C-bus serial clock output  
CL  
master/GPIO21  
CL  
master/GPIO21  
CL  
master/GPIO21  
Die GND  
pad  
Ground  
GND  
Ground  
GND  
Ground  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
16 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
7.3 Pinning VFBGA64  
H
G
F
E
D
C
B
A
ball A1  
index area  
1
2
3
4
5
6
7
8
aaa-027834  
Figure 8.ꢀPin configuration VFBGA64  
7.4 Pin description VFBGA64  
Table 5.ꢀPin description  
Pin  
Symbol  
PN736X  
Description PN736X  
Symbol  
PN7462  
Description PN7462  
A1  
A2  
A3  
I2CM_SDA  
I2C-bus serial data I/O master/GPIO13  
I2CM_SDA  
I2C-bus serial data I/O master/GPIO13  
SPIM_MISO SPI master data input/GPIO20  
SPIM_MISO SPI master data input/GPIO20  
PVDD_M_IN pad supply voltage input for master  
interfaces  
PVDD_M_IN pad supply voltage input for master  
interfaces  
A4  
A5  
VBUSP  
VBUS  
Connected to VBUS  
VBUSP  
VBUS  
Connected to VBUS  
main supply voltage input of  
microcontroller  
main supply voltage input of  
microcontroller  
A6  
A7  
PVSS  
Pad ground  
PVSS  
Pad ground  
PVDD_OUT output of PVDD_LDO for pad voltage  
supply  
PVDD_OUT output of PVDD_LDO for pad voltage  
supply  
A8  
B1  
B2  
XTAL2  
27.12 MHz clock input for crystal  
GPIO16  
SPI slave select input (NSS_S)/I2C-bus  
serial clock input (SCL_S)/HSUART RX  
XTAL2  
27.12 MHz clock input for crystal  
INT_AUX  
ATX_A  
INT_AUX  
ATX_A  
auxiliary card contact interrupt/GPIO16  
SPI slave select input (NSS_S)/I2C-bus  
serial clock input (SCL_S)/HSUART RX  
B3  
B4  
B5  
B6  
B7  
B8  
C1  
C2  
SPIM_MOSI SPI master data output/GPIO19  
SPIM_SSN SPI master select 1 output/GPIO17  
USB_VBUS used for USB VBUS detection  
SPIM_MOSI SPI master data output/GPIO19  
SPIM_SSN SPI master select 1 output/GPIO17  
USB_VBUS used for USB VBUS detection  
PVSS  
Pad ground  
PVSS  
Pad ground  
PVSS  
Pad ground  
PVSS  
Pad ground  
XTAL1  
CLK_AUX  
ATX_B  
27.12 MHz clock input for crystal  
GPIO14  
SPI slave data input (MOSI_S)/I2C-bus  
serial data I/O (SDA_S)/HSUART TX  
XTAL1  
CLK_AUX  
ATX_B  
27.12 MHz clock input for crystal  
auxiliary card contact clock/GPIO14  
SPI slave data input (MOSI_S)/I2C-bus  
serial data I/O (SDA_S)/HSUART TX  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
17 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Pin  
Symbol  
PN736X  
Description PN736X  
Symbol  
PN7462  
Description PN7462  
C3  
I2CM_SCL  
I2C-bus serial clock output master/  
GPIO21  
I2CM_SCL  
I2C-bus serial clock output master/  
GPIO21  
C4  
C5  
C6  
C7  
C8  
D1  
D2  
SPI_SCLK  
DVSS  
SPI master clock output/GPIO18  
Digital ground  
SPI_SCLK  
DVSS  
SPI master clock output/GPIO18  
Digital ground  
PVSS  
Pad ground  
PVSS  
Pad ground  
RST_N  
VDD  
reset pin  
RST_N  
VDD  
reset pin  
1.8 V regulator output for digital blocks  
pad supply voltage input  
1.8 V regulator output for digital blocks  
pad supply voltage input  
PVDD_IN  
ATX_C  
PVDD_IN  
ATX_C  
USB D+/SPI slave data output  
(MISO_S)/I2C-bus address bit0 input/  
HSUART RTS  
USB D+/SPI slave data output  
(MISO_S)/I2C-bus address bit0 input/  
HSUART RTS  
D3  
D4  
D5  
D6  
D7  
D8  
E1  
E2  
IRQ  
interrupt request output  
GPIO15  
IRQ  
interrupt request output  
auxiliary card contact I/O/GPIO15  
Digital ground  
IO_AUX  
DVSS  
PVSS  
PVSS  
VUP_TX  
DVDD  
ATX_D  
IO_AUX  
DVSS  
PVSS  
PVSS  
VUP_TX  
DVDD  
Digital ground  
Pad ground  
Pad ground  
Pad ground  
Pad ground  
supply of the contactless TX_LDO  
digital core logic supply voltage input  
USB D-/SPI clock input (SCK_S)/I2C-bus ATX_D  
address bit1 input/HSUART CTS  
supply of the contactless TX_LDO  
digital core logic supply voltage input  
USB D-/SPI clock input (SCK_S)/I2C-bus  
address bit1 input/HSUART CTS  
E3  
GPIO1  
general-purpose I/O/SPI master select2 GPIO1  
output  
general-purpose I/O/SPI master select2  
output  
E4  
E5  
E6  
E7  
GPIO5  
DVSS  
AVSS  
ANT2  
general-purpose I/O  
Digital ground  
GPIO5  
DVSS  
AVSS  
general-purpose I/O  
Digital ground  
Analog ground  
Analog ground  
antenna connection for load modulation ANT2  
in card emulation and P2P passive target  
modes  
antenna connection for load modulation  
in card emulation and P2P passive target  
modes  
E8  
F1  
F2  
F3  
F4  
F5  
F6  
F7  
TVDD_OUT antenna driver supply, output of TX_LDO TVDD_OUT antenna driver supply, output of TX_LDO  
DWL_REQ  
SWDIO  
GPIO6  
GPIO9  
GPIO12  
AVSS  
entering in download mode  
SW serial debug line input/output  
general-purpose I/O  
DWL_REQ  
SWDIO  
GPIO6  
entering in download mode  
SW serial debug line input/output  
general-purpose I/O  
general-purpose I/O  
GPIO9  
general-purpose I/O  
general-purpose I/O  
GPIO12  
AVSS  
general-purpose I/O  
Analog ground  
Analog ground  
ANT1  
antenna connection for load modulation ANT1  
in card emulation and P2P passive target  
modes  
antenna connection for load modulation  
in card emulation and P2P passive target  
modes  
F8  
TVDD_IN  
antenna driver supply voltage input  
TVDD_IN  
antenna driver supply voltage input  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
18 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Pin  
Symbol  
PN736X  
Description PN736X  
Symbol  
PN7462  
Description PN7462  
G1  
G2  
G3  
G4  
G5  
G6  
G7  
G8  
H1  
H2  
H3  
H4  
H5  
H6  
H7  
H8  
SWDCLK  
GPIO4  
GPIO7  
GPIO8  
GPIO10  
GPIO11  
AVSS  
TX1  
SW serial debug line clock  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
Analog ground  
SWDCLK  
GPIO4  
GPIO7  
GPIO8  
GPIO10  
GPIO11  
AVSS  
TX1  
SW serial debug line clock  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
general-purpose I/O  
Analog ground  
antenna driver output  
general-purpose I/O  
general-purpose I/O  
receiver reference voltage input  
receiver input  
antenna driver output  
general-purpose I/O  
general-purpose I/O  
receiver reference voltage input  
receiver input  
GPIO3  
GPIO2  
VMID  
GPIO3  
GPIO2  
VMID  
RXN  
RXN  
RXP  
receiver input  
RXP  
receiver input  
TVSS  
TX2  
Antenna driver ground  
antenna driver output  
Antenna driver ground  
TVSS  
TX2  
Antenna driver ground  
antenna driver output  
Antenna driver ground  
TVSS  
TVSS  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
19 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8 Functional description  
8.1 ARM Cortex-M0 microcontroller  
The PN7462 family is an ARM Cortex-M0-based 32-bit microcontroller, optimized for low-  
cost designs, high energy efficiency, and simple instruction set.  
The CPU operates on an internal clock, which can be configured to provide frequencies  
such as 20 MHz, 10 MHz, and 5 MHz.  
The peripheral complement of the PN7462 family includes a 160 kB flash memory, a 12  
kB SRAM, and a 4 kB EEPROM. It also includes one configurable host interface (Fast-  
mode Plus and high-speed I2C, SPI, HSUART, and USB), two master interfaces (Fast-  
mode Plus I2C, SPI), 4 timers, 12 general-purpose I/O pins, one ISO/IEC 7816 contact  
card interface (PN7462AUHN only), one ISO/IEC 7816-3&4 UART (PN7462AUHN and  
PN7462AUEV only) and one 13.56 MHz contactless interface.  
8.2 Memories  
8.2.1 On-chip flash programming memory  
The PN7462 family contains160 / 80 kB on-chip flash program memory depending on  
the version. The flash can be programmed using In-System Programming (ISP) or In-  
Application Programming (IAP) via the on-chip boot loader software.  
The flash memory is divided into two instances of 80 kB each, with each sector  
consisting of individual pages of 64 bytes.  
8.2.1.1 Memory mapping  
The flash memory mapping is described in Figure 9.  
0x0021 6FFF  
0x0022 AFFF  
0x0022 A7FF  
2
RESERVED  
KBytes  
user  
application  
80  
KBytes  
FLASH  
user  
158  
application  
KBytes  
0x0020 3000  
0x0020 3000  
PN7360  
PN7362 / PN7462  
aaa-025626  
Figure 9.ꢀFlash memory mapping  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
20 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.2.2 EEPROM  
The PN7462 family embeds 4 kB of on-chip byte-erasable and byte-programmable  
EEPROM data memory.  
The EEPROM can be programmed using In-System Programming (ISP).  
8.2.2.1 Memory mapping  
0x201FFF  
3.5  
KBytes  
user space  
0x201200  
512  
Bytes  
RESERVED  
0x201000  
aaa-021125  
Figure 10.ꢀEEPROM memory mapping  
8.2.3 SRAM  
The PN7462 family contains a total of 12 kB on-chip static RAM memory.  
8.2.3.1 Memory mapping  
The SRAM memory mapping is shown in Figure 11.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
21 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
RAM_Sys_End = 0x00102FFF  
RAM_Sys_Start = 0x00102F00  
256  
Bytes  
RAM_SYSTEM  
RESERVED  
12000  
Bytes  
RAM USER RW  
RAM_User_Start = 0x00100020  
RAM_User_RO_Start = 0x100000  
32  
Bytes  
RESERVED  
aaa-021126  
Figure 11.ꢀSRAM memory mapping  
8.2.4 ROM  
The PN7462 family contains 40 kB of on-chip ROM memory. The on-chip ROM contains  
boot loader, USB mass storage primary download, and the following Application  
Programming Interfaces (APIs):  
In-Application Programming (IAP) support for flash  
Lifecycle management of debug interface, code write protection of flash memory and  
USB mass storage primary download  
USB descriptor configuration  
Configuration of timeout and source of pad supply  
8.2.5 Memory map  
The PN7462 family incorporates several distinct memory regions. Figure 12 shows the  
memory map, from the user program perspective, following reset.  
The APB peripheral area is 512 kB in size, and is divided to allow up to 32 peripherals.  
Only peripherals from 0 to 15 are accessible. Each peripheral allocates 16 kB, which  
simplifies the address decoding for the peripherals. APB memory map is described in  
Figure 13 and Figure 14.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
22 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
4 GB  
0xFFFF FFFF  
4 GB  
0xFFFF FFFF  
RESERVED  
RESERVED  
PRIVATE PERIPHERAL BUS  
RESERVED  
0xE0FF FFFF  
0xE000 0000  
0xE0FF FFFF  
PRIVATE PERIPHERAL BUS  
0xE000 0000  
RESERVED  
0x4007 FFFF  
0x4000 0000  
0x4007 FFFF  
APB PERIPHERAL  
APB PERIPHERAL  
RESERVED  
0x4000 0000  
1 GB  
1 GB  
RESERVED  
0x0022 AFFF  
0x0020 3000  
0x0022 AFFF  
160 kB FLASH  
80 kB FLASH  
0x0020 3000  
RESERVED  
RESERVED  
0x0020 1FFF  
0x0020 1000  
0x0020 1FFF  
4 kB EEPROM  
4 kB EEPROM  
0x0020 1000  
EEPROM REG  
RESERVED  
EEPROM REG  
0x0020 0000  
0x0020 0000  
2 MB  
2 MB  
RESERVED  
0x0010 2FFF  
0x0010 0000  
0x0010 2FFF  
12 kB SRAM  
12 kB SRAM  
RESERVED  
0x0010 0000  
1 MB  
0 MB  
1 MB  
0 MB  
RESERVED  
0x0000 9FFF  
0x0000 0000  
0x0000 9FFF  
40 kB ROM  
40 kB ROM  
0x0000 0000  
PN7360  
PN7362 / PN7462  
aaa-025628  
Figure 12.ꢀPN7462 family memory map  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
23 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
APB ID  
APB IF name  
Connected IP  
0x4004 8000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
aaa-021127  
Reserved  
Reserved  
Reserved  
16 to 31  
15  
14  
13  
12  
11  
10  
9
SPIMASTER_APB  
I2CMASTER_APB  
SPI Master IF  
I2C Master IF  
Reserved  
USB_APB  
PCR_APB  
HostIF (USB) IP  
PowerClockResetModule IP  
HostIF (I2C/SPI/HSU/BufMgt) IP  
Timer IP  
8
HOST_APB  
TIMERS_APB  
RNG_APB  
7
6
RNG IP  
Reserved  
5
CLOCKGEN_APB  
CRC_APB  
Clock Gen module  
CRC IP  
4
3
2
PMU_APB  
PMU modules  
Contactless IP  
1
0
CL_APB  
Reserved  
Figure 13.ꢀAPB memory map PN736X  
APB ID  
APB IF name  
Connected IP  
0x4004 8000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
aaa-028697  
Reserved  
Reserved  
Reserved  
16 to 31  
15  
14  
13  
12  
11  
10  
9
SPIMASTER_APB  
I2CMASTER_APB  
SPI Master IF  
I2C Master IF  
Reserved  
USB_APB  
PCR_APB  
HostIF (USB) IP  
PowerClockResetModule IP  
HostIF (I2C/SPI/HSU/BufMgt) IP  
Timer IP  
8
HOST_APB  
TIMERS_APB  
RNG_APB  
7
6
RNG IP  
5
CTUART_APB  
CLOCKGEN_APB  
CRC_APB  
Contact UART IP  
Clock Gen module  
CRC IP  
4
3
2
PMU_APB  
PMU modules  
1
0
CL_APB  
Contactless IP  
Reserved  
Figure 14.ꢀAPB memory map PN7462  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
24 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
APB ID  
APB IF name  
Connected IP  
0x4004 8000  
0x4004 0000  
0x4003 C000  
0x4003 8000  
0x4003 4000  
0x4003 0000  
0x4002 C000  
0x4002 8000  
0x4002 4000  
0x4002 0000  
0x4001 C000  
0x4001 8000  
0x4001 4000  
0x4001 0000  
0x4000 C000  
0x4000 8000  
0x4000 4000  
0x4000 0000  
aaa-030119  
Reserved  
Reserved  
Reserved  
16 to 31  
15  
14  
13  
12  
11  
10  
9
SPIMASTER_APB  
I2CMASTER_APB  
SPI Master IF  
I2C Master IF  
Reserved  
USB_APB  
PCR_APB  
HostIF (USB) IP  
PowerClockResetModule IP  
HostIF (I2C/SPI/HSU/BufMgt) IP  
Timer IP  
8
HOST_APB  
TIMERS_APB  
RNG_APB  
7
6
RNG IP  
5
CTUART_APB  
CLOCKGEN_APB  
CRC_APB  
Contact UART IP  
Clock Gen module  
CRC IP  
4
3
2
PMU_APB  
PMU modules  
1
0
Reserved  
Reserved  
Figure 15.ꢀAPB memory map PN7412  
8.3 Nested Vectored Interrupt Controller (NVIC)  
Cortex-M0 includes a Nested Vectored Interrupt Controller (NVIC). The tight coupling to  
the CPU allows for low interrupt latency and efficient processing of late arriving interrupts.  
8.3.1 NVIC features  
System exceptions and peripheral interrupts control  
Support 32 vectored interrupts  
Four interrupt priority levels with hardware priority level masking  
One Non-Maskable Interrupt (NMI) connected to the watchdog interrupt  
Software interrupt generation  
8.3.2 Interrupt sources  
The following table lists the interrupt sources available in the PN7462 family  
microcontroller.  
Table 6.ꢀInterrupt sources  
EIRQ# Source  
Description  
0
1
2
3
4
5
6
timer 0/1/2/3 general-purpose timer 0/1/2/3 interrupt  
-
reserved  
CLIF  
contactless interface module interrupt  
EECTRL  
EEPROM controller  
-
reserved  
-
reserved  
host IF  
TX or RX buffer from I2C, SPI, HSU, or USB module  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
25 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
EIRQ# Source  
Description  
7
8
9
contact IF  
ISO7816 contact module interrupt  
reserved  
-
PMU  
power management unit (temperature sensor, over current, overload,  
and VBUS level)  
10  
11  
12  
SPI master  
I2C master  
PCR  
TX or RX buffer from SPI master module  
TX or RX buffer from I2C master module  
high temperature from temperature sensor 0 and 1; interrupt to CPU  
from PCR to indicate wake-up from suspend mode; out of standby; out  
of suspend; event on GPIOs configured as inputs  
13  
14  
PCR  
PCR  
interrupt common GPIO1 to GPIO12  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO1  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
PCR  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO2  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO3  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO4  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO5  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO6  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO7  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO8  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO9  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO10  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO11  
interrupt (rise/fall/both-edge/level-high/level-low interrupt as  
programmed) GPIO12  
26  
-
reserved  
27  
-
reserved  
28  
-
reserved  
29  
-
reserved  
30  
-
reserved  
31  
-
reserved  
NMI[1]  
WDT  
watchdog interrupt is connected to the non-maskable interrupt pin  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
26 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
[1] The NMI is not available on an external pin.  
8.4 GPIOs  
The PN7462 family has up to 21 general-purpose I/O (GPIO) with configurable pull-up  
and pull-down resistors, up to 9 of those GPIOs are multiplexed with SPI master, I2C-bus  
master and AUX pins (if available).  
Pins can be dynamically configured as inputs or outputs. GPIO read/write are made by  
the FW using dedicated registers that allow reading, setting, or clearing inputs. The value  
of the output register can be read back, as well as the current state of the input pins.  
8.4.1 GPIO features  
Dynamic configuration as input or output  
3.3 V and 1.8 V signaling  
Programmable weak pull-up and weak pull-down  
Independent interrupts for GPIO1 to GPIO12  
Interrupts: edge or level sensitive  
GPIO1 to GPIO12 can be programmed as wake-up sources  
Programmable spike filter (3 ns)  
Programmable slew rate (3 ns and 10 ns)  
Hysteresis receiver with disable option  
8.4.2 GPIO configuration  
The GPIO configuration is done through the PCR module (power, clock, and reset).  
8.4.3 GPIO interrupts  
GPIO1 to GPIO12 can be programmed to generate an interrupt on a level, a rising or  
falling edge or both.  
8.5 CRC engine 16/32 bits  
The PN7462 family has a configurable 16/32-bit parallel CRC co-processor.  
The 16-bit CRC is compliant to X.25 (CRC-CCITT, ISO/IEC 13239) standard with a  
generator polynome of:  
The 32-bit CRC is compliant to the ethernet/AAL5 (IEEE 802.3) standard with a  
generator polynome of:  
CRC calculation is performed in parallel, meaning that one CRC calculation is performed  
in one clock cycle. The standard CRC 32 polynome is compliant with FIPS140-2.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
27 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Note: No final XOR calculation is performed.  
Following are the CRC engine features:  
Configurable CRC preset value  
Selectable LSB or MSB first  
CRC 32 calculation based on 32-bit, 16-bit, and 8-bit words  
CRC16 calculation based on 32-bit, 16-bit, and 8-bit words  
Supports bit order reverse  
8.6 Random Number Generator (RNG)  
The PN7462 family integrates a random number generator. It consists of an analog True  
Random Number Generator (TRNG), and a digital Pseudo Random Number Generator  
(PRNG). The TRNG is used for loading a new seed in the PRNG.  
The random number generator features:  
8-bit random number  
Compliant with FIPS 140-2  
Compliant with BSI AIS20 and SP800-22  
8.7 Master interfaces  
8.7.1 I2C master interface  
The PN7462 family contains one I2C master and one I2C slave controller. This chapter  
describes the master interface. For more information on the I2C slave controller, refer to  
Section 8.8.2.  
The I2C-bus is bidirectional for inter-IC control using only two wires: a Serial Clock Line  
(SCL) and a Serial Data Line (SDA). Each device has a unique address. The device can  
operate either as a receive-only device (such as LCD driver) or a transmitter with the  
capability to both receive and send information (such as memory).  
8.7.1.1 I2C features  
The I2C master interface supports the following features:  
Standard I2C-compliant bus interface with open-drain pins  
Standard-mode, fast mode, and fast mode plus (up to 1 Mbit/s).  
Support I2C master mode only.  
Programmable clocks allowing versatile rate control.  
Clock stretching  
7-bit and 10-bit I2C slave addressing  
LDM/STM instruction support  
Maximum data frame size up to 1024 bytes  
8.7.2 SPI interface  
The PN7462 family contains one SPI master controller and one SPI slave controller.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
28 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The SPI master controller transmits the data from the system RAM to the SPI external  
slaves. Similarly, it receives data from the SPI external slaves and stores them into the  
system RAM. It can compute a CRC for received frames and automatically compute and  
append CRC for outgoing frames (optional feature).  
8.7.2.1 SPI features  
The SPI master interface provides the following features:  
SPI master interface: synchronous, half-duplex  
Supports Motorola SPI frame formats only (SPI block guide V04.0114 (Freescale)  
specification)  
Maximum SPI data rate of 6.78 Mbit/s  
Multiple data rates such as 1, 1.51, 2.09, 2.47, 3.01, 4.52, 5.42 and 6.78 Mbit/s  
Up to two slaves select with selectable polarity  
Programmable clock polarity and phase  
Supports 8-bit transfers only  
Maximum frame size: 511 data bytes payload + 1 CRC byte  
Optional 1 byte CRC calculation on all data of TX and RX buffer  
AHB master interface for data transfer  
8.8 Host interfaces  
The PN7462 family embeds four different interfaces for host connection: USB, HSUART,  
I2C, and SPI.  
The four interfaces share the buffer manager and the pins; see Table 7.  
Table 7.ꢀPin description for host interface  
Name  
SPI  
I2C  
USB  
-
HSU  
ATX_A  
ATX_B  
ATX_C  
ATX_D  
NSS_S  
MOSI_S  
MISO_S  
SCK_S  
SCL_S  
SDA_S  
I2C_ADR0  
I2C_ADR1  
HSU_RX  
HSU_TX  
-
DP  
DM  
HSU_RTS_N  
HSU_CTS_N  
The interface selection is done by configuring the Power Clock Reset (PCR) registers.  
Note: The host interface pins should not be kept floating.  
8.8.1 High-speed UART  
The PN7462 family has a high-speed UART which can operate in slave mode only.  
Following are the HSUART features:  
Standard bit-rates are 9600, 19200, 38400, 57600, 115200, and up to 1.288 Mbit/s  
Supports full duplex communication  
Supports only one operational mode: start bit, 8 data bits (LSB), and stop bits  
The number of "stop bits" programmable for RX and TX is 1 stop bit or 2 stop bits  
Configurable length of EOF (1-bit to 122-bits)  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
29 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 8.ꢀHSUART baudrates  
Bit rate (kBd)  
9.6  
19.2  
38.4  
57.6  
115.2  
230.4  
460.8  
921.6  
1288 K  
8.8.2 I2C host interface controller  
The PN7462 family contains one I2C master and one I2C slave controller. This section  
describes the slave interface used for host communication. For more information on the  
I2C master controller, refer to Section 8.7.1.  
The I2C-bus is bidirectional and uses only two wires: a Serial Clock Line (SCL) and a  
Serial Data Line (SDA). I2C standard mode (100 kbit/s), fast mode (400 kbit/s and up to 1  
Mbit/s), and high-speed mode (3.4 Mbit/s) are supported.  
8.8.2.1 I2C host interface features  
The PN7462 family I2C slave interface supports the following features:  
Support slave I2C bus  
Standard mode, fast mode (extended to 1 Mbit/s support), and high-speed modes  
Supports 7-bit addressing mode only  
Selection of the I2C address done by two pins  
It supports multiple addresses  
The upper bits of the I2C slave address are hard-coded. The value corresponds to  
the NXP identifier for I2C blocks. The value is 0101ꢀ0XXb.  
General call (software reset only)  
Software reset (in standard mode and fast mode only)  
Table 9.ꢀI2C interface addressing  
I2C_ADR1 I2C_ADR0 I2C address (R/W = 0, write)  
I2C address (R/W = 0, read)  
0
0
1
1
0
1
0
1
0 × 28  
0 × 29  
0 × 2A  
0 × 2B  
0 × 28  
0 × 29  
0 × 2A  
0 × 2B  
8.8.3 SPI host/Slave interface  
The PN7462 family host interface can be used as SPI slave interface.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
30 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The SPI slave controller operates on a four wire SSI: Master In Slave Out (MISO), Master  
Out Slave In (MOSI), Serial Clock (SCK), and Not Slave Select (NSS). The SPI slave  
select polarity is fixed to positive polarity.  
8.8.3.1 SPI host interface features  
The SPI host/slave interface has the following features:  
SPI speeds up to 7 Mbit/s  
Slave operation only  
8-bit data format only  
Programmable clock polarity and phase  
SPI slave select polarity selection fixed to positive polarity  
Half-duplex in HDLL mode  
Full-duplex in native mode  
If no data is available, the MISO line is kept idle by making all the bits high (0xFF).  
Toggling the NSS line indicates a new frame.  
Note: Programmable echo-back operation is not supported.  
Table 10.ꢀSPI configuration  
connection  
CPHA switch: Clock phase: Defines the sampling edge of MOSI data  
CPHA = 1: Data are sampled on MOSI on the even clock edges of SCK, after NSS goes low  
CPHA = 0: Data are sampled on MOSI on the odd clock edges of SCK, after NSS goes low  
CPOL switch: Clock polarity  
IFSEL1 = 0: The clock is idle low, and the first valid edge of SCK is a rising one  
IFSEL1 = 0: The clock is idle high, and the first valid edge of SCK is a falling one  
8.8.4 USB interface  
The Universal Serial Bus (USB) is a 4-wire bus that supports communication between  
a host and up to 127 peripherals. The host controller allocates the USB bandwidth to  
attached devices through a token-based protocol. The bus supports hot-plugging and  
dynamic configuration of devices. The host controller initiates all transactions. The  
PN7462 family USB interface consists of a full-speed device controller with on-chip PHY  
(physical layer) for device functions.  
8.8.4.1 Full speed USB device controller  
The PN7462 family embeds a USB device peripheral, compliant with USB 2.0  
specification, full speed. It is interoperable with USB 3.0 host devices.  
The device controller enables 12 Mbit/s data exchange with a USB host controller. It  
consists of a register interface, serial interface engine, and endpoint buffer memory. The  
serial interface engine decodes the USB data stream and writes data to the appropriate  
endpoint buffer.  
The status of a completed USB transfer or error condition is indicated via status registers.  
If enabled, an interrupt is generated.  
Following are the USB interface features:  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
31 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Fully compliant with USB 2.0 specification (full speed)  
Dedicated USB PLL available  
Supports 14 physical (7 logical) endpoints including one control endpoint  
Each non-control endpoint supports bulk, interrupt, or isochronous endpoint types  
Single or double buffering allowed  
Support wake-up from suspend mode on USB activity and remote wake-up  
Soft-connect supported  
8.9 Contact interface  
Note: This following chapter applies to PN7462AUHN, PN7412AUHN and PN7462AUEV  
only. PN7462AUHN and PN7412AUHN embed a contact interface and I/O auxiliary  
interface. PN7462AUEV embeds the I/O auxiliary interface only.  
The PN7462 and PN7412 integrate an ISO/IEC 7816 interface to enable the  
communication with a contact smart card. It does not require addition of an external  
contact frontend for reading payment cards, SAM for secure applications, etc. It offers a  
high level of security for the card by performing current limitation, short-circuit detection,  
ESD protection as well as supply supervision.  
PN7462 and PN7412 also offer the possibility to extend the number of contact interfaces  
available. They use an I/O auxiliary interface to connect a slot extension (TDA8035 - 1  
slot, TDA8020 - 2 slots, and TDA8026 - 5 slots).  
Class A (5 V), class B (3 V), and class C (1.8 V) smart card supply  
Protection of smart card  
Three protected half-duplex bidirectional buffered I/O lines (C4, C7, and C8)  
Compliant with ISO/IEC 7816 and EMVCo 4.3 standards  
8.9.1 Contact interface features and benefits  
Protection of the smart card  
Thermal and current limitation in the event of short-circuit (pins I/O, VCC  
)
VCC regulation: 5 V, 3 V, and 1.8 V  
Automatic deactivation initiated by hardware in the event of a short-circuit, card take-  
off, overheating, falling of PN7462 supply  
Enhanced card-side ElectroStatic Discharge (ESD) protection of greater than 8 kV  
Support of class A, class B, and class C contact smart cards  
DC-to-DC converter for VCC generation to enable support of class A and class B cards  
with low input voltages  
Built-in debouncing on card presence contact  
Compliant with ISO/IEC 7816 and EMVCo 4.3 standards  
Card clock generation up to 13.56 MHz using external crystal oscillator (27.12 MHz);  
provides synchronous frequency changes of fXTAL / 2, fXTAL / 3, fXTAL / 4, fXTAL / 5, fXTAL  
/ 6, fXTAL / 8, and fXTAL / 16  
Specific ISO/IEC UART with APB access for automatic convention processing, variable  
baud rate through frequency or division ratio programming, error management at  
character level for T = 0 and extra guard time register  
FIFO 1 character to 32 characters in both reception and transmission mode  
Parity error counter in reception mode and transmission mode with automatic  
retransmission  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
32 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Cards clock stop (at HIGH or LOW level)  
Automatic activation and deactivation sequence through a sequencer  
Supports the asynchronous protocols T = 0 and T = 1 in accordance with ISO/IEC  
7816 and EMV  
Versatile 24-bit timeout counter for Answer To Reset (ATR) and waiting times  
processing  
Specific Elementary Time Unit (ETU) counter for Block Guard Time (BGT); 22 ETU in  
T = 1 and 16 ETU in T = 0  
Supports synchronous cards  
8.9.2 Voltage supervisor  
The PN7462 integrates a voltage monitor to ensure that sufficient voltage is available for  
the contact interface; see Section 8.15.4 and Section 9.1.3.  
In order to provide the right voltage needed for the various ISO/IEC 7816 contact card  
classes (A, B, or C), the following voltages are needed:  
VDDP(VBUSP) > 2.7 V for support of class B and class C contact cards  
VDDP(VBUSP) > 3 V for support of class A contact cards  
• Remark: To support class A cards, DC-to-DC converter is used in doubler mode. To  
support class B cards with VDDP(VBUSP) < 3.9 V, DC-to-DC converter is used in doubler  
mode. To support class B cards with VDDP(VBUSP) > 3.9 V, DC-to-DC converter is used  
in follower mode.  
Figure 16 shows the classes that are supported, depending on VDDP(VBUSP)  
.
class A  
cards  
class B  
cards  
class C  
cards  
V
DDP(VBUSP)  
3.9 V  
DC-to-DC converter  
needed in doubler mode  
DC-to-DC converter  
needed in follower mode  
V
DDP(VBUSP)  
threshold value  
card deactivation to be  
performed when  
3.0 V  
2.7 V  
V
is going  
DDP(VBUSP)  
below the threshold value  
aaa-021128  
Figure 16.ꢀVDDP(VBUS), supported contact cards classes, and card deactivation  
When the VDDP(VBUSP) is going below the threshold value, in the one of the conditions  
indicated below, a card deactivation is performed:  
Class A card activated, and VDDP(VBUSP) going below 3 V  
Class B card activated, and VDDP(VBUSP) going below 3.9 V (DC-to-DC converter in  
follower mode)  
Class B card activated, and VDDP(VBUSP) going below 2.7 V (DC-to-DC converter in  
doubler mode)  
Class C card activated, and VDDP(VBUSP) going below 2.7 V  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
33 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The VBUSP voltage monitor can be configured so that an automatic "card deactivation"  
sequence is performed automatically when VDDP(VBUSP) is going below the threshold  
value.  
8.9.3 Clock circuitry  
The card clock is generated from the crystal oscillator, connected on the pin XTAL1 and  
XTAL2.  
The card frequency is configured through the contact interface registers. The following  
value can be chosen: fXTAL / 2, fXTAL / 3, fXTAL / 4, fXTAL / 5, fXTAL / 6, fXTAL / 8, and fXTAL  
16.  
/
It is possible to put the card clock to a logical level 0 or 1 (clock stop feature).  
The duty cycle on the pin CLK is between 45 % and 55 %, for all the available clock  
dividers.  
8.9.4 I/O circuitry  
The three data lines I/O, AUX1, and AUX2 are identical.  
I/O is referenced to VCC. To enter in the idle state, the I/O line is pulled HIGH via a 10 kΩ  
resistor (I/O to VCC).  
The active pull-up feature ensures fast LOW to HIGH transitions. At the end of the active  
pull-up pulse, the output voltage depends on the internal pull-up resistor and the load  
current.  
The maximum frequency on these lines is 1.5 MHz.  
8.9.5 VCC regulator  
VCC regulator delivers up to 60 mA for class A cards (0 V to 5 V). It also delivers up to  
55 mA for class B cards (0 V to 3 V) and up to 35 mA for class C cards (from 0 V to 1.8  
V).  
The VCC has an internal overload detection at approximately 110 mA for class A and B,  
and 90 mA for class C.  
This detection is internally filtered, allowing the card to draw spurious current pulses as  
defined in EMVCo specification, without causing a deactivation. The average current  
value must remain below the maximum.  
8.9.6 Activation sequence  
The presence of a contact card is indicated to PN7462 through PRESN signal. If all  
supply conditions are met, the PN7462 may start an activation sequence. Figure 17  
shows the activation sequence.  
The sequencer clock is based on the crystal oscillator: fseq = fXTAL /10. When the contact  
interface is active, the period for activation phases is: T = 64/fseq = 23.6 μs.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
34 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
T / 2  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26  
Start  
VUP  
VCC  
IO  
CLK  
RST  
t
t
t
t
t
4
t
5
aaa-021129  
0
1
2
3
Figure 17.ꢀContact interface - activation sequence  
Once the activation sequence is triggered, the following sequence takes place:  
Contact LDOs and DC-to-DC converter (when relevant) starts at t1  
VCC starts rising from 0 to the required voltage (5 V, 3 V, and 1.8 V) at t2  
IO rises to VCC at t3  
CLK starts at t4  
RST pin is enabled at t5  
8.9.7 Deactivation sequence  
When triggered by the PN7462, the deactivation following sequence takes place:  
Card reset (pin RST) status goes LOW  
Clock (CLK) stopped at LOW level  
Pin IO falls to 0 V  
VCC falls to 0 V  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
35 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
T / 2  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14  
Start  
RST  
CLK  
IO  
VCC  
DC-to-DC converter/  
LDOs  
aaa-021130  
t
t
t
t
t
4
0
1
2
3
Figure 18.ꢀDeactivation sequence for contact interface  
The deactivation sequence is performed in the following cases:  
Removal of card; generated automatically by the PN7462  
Overcurrent detection on pin VCC; generated automatically by the PN7462  
Overcurrent detection on pin IO; generated automatically by the PN7462  
Detection for overheating; generated automatically by the PN7462  
Pin VBUSP going below relevant voltage threshold (optional); part of the pin VBUSP  
monitor  
Reset request through software  
8.9.8 I/O auxiliary - connecting TDA slot extender  
To address applications where multiple ISO/IEC 7816 interfaces are needed, the PN7462  
integrates the possibility to connect contact slot extenders like TDA8026, TDA8020, or  
TDA8035.  
The following pins are available:  
INT_AUX  
CLK_AUX  
IO_AUX  
For more details about the connection, refer to the slot extender documentation.  
8.10 Contactless interface - 13.56 MHz  
This chapter applies to the products with contactless interface only.  
The PN7462 family embeds a high power 13.56 MHz RF frontend. The RF interface  
implements the RF functionality like antenna driving, the receiver circuitry, and all the  
low-level functionalities. It helps to realize an NFC forum or an EMVCo compliant reader.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
36 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The PN7462 family allows different voltages for the RF drivers. For information related to  
the RF interface supply, refer Section 8.15.  
The PN7462 family uses an external oscillator, at 27.12 MHz. It is a clock source for  
generating RF field and its internal operation.  
Key features of the RF interface are:  
ISO/IEC 14443 type A & B compliant  
MIFARE functionality, including MIFARE Classic encryption in read/write mode  
ISO/IEC 15693 compliant  
NFC Forum - NFCIP-1 & NFCIP-2 compliant  
P2P, active and passive mode  
reading of NFC forum tag types 1, 2, 3, 4, and 5  
FeliCa  
ISO/IEC 18000-3 mode 3  
EMVCo contactless 2.6  
RF level can be achieved without the need of booster circuitry (for some antenna  
topologies the EMV RF-level compliance might physically not be achievable)  
Card mode - enabling the emulation of an ISO/IEC 14443 type A card  
Supports Passive Load Modulation (PLM) and Active Load Modulation (ALM)  
Low Power Card Detection (LPCD)  
Adjustable RX-voltage level  
A minimum voltage of 2.3 V helps to use card emulation, and P2P passive target  
functionality in passive load modulation.  
A voltage above 2.7 V enables all contactless functionalities.  
8.10.1 RF functionality  
8.10.1.1 Communication mode for ISO/IEC 14443 type A and for MIFARE Classic  
The physical level of the communication is shown in Figure 19.  
(1)  
ISO/IEC 14443 A  
ISO/IEC 14443 A CARD  
READER  
(2)  
001aam268  
1. Reader to Card: 100 % ASK; modified miller coded; transfer speed 106 kbit/s to 848 kbit/s  
2. Card to Reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106  
kbit/s to 848 kbit/s  
Figure 19.ꢀRead/write mode for ISO/IEC 14443 type A and read/write mode for MIFARE  
Classic  
The physical parameters are described in Table 11  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
37 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 11.ꢀCommunication overview for ISO/IEC 14443 type A and read/write mode for MIFARE Classic  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
reader to card (send  
reader side  
100 % ASK  
100 % ASK  
100 % ASK  
100 % ASK  
data from the PN7462 modulation  
family to a card)  
bit encoding  
modified miller  
encoding  
modified miller  
encoding  
modified miller  
encoding  
modified miller  
encoding  
fc = 13.56 MHz  
bit rate (kbit/s)  
fc / 128  
fc / 64  
fc / 32  
fc / 16  
card to reader (PN7462 card side  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
family receives data  
from a card)  
modulation  
subcarrier  
frequency  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
bit encoding  
Manchester  
encoding  
BPSK  
BPSK  
BPSK  
Figure 20 shows the data coding and framing according to ISO/IEC 14443 A.  
ISO/IEC 14443 A framing at 106 kBd  
start  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
odd  
parity  
parity  
parity  
start bit is 1  
ISO/IEC 14443 A framing at 212 kBd, 424 kBd and 848 kBd  
start  
even  
parity  
8-bit data  
8-bit data  
8-bit data  
odd  
odd  
parity  
parity  
start bit is 0  
burst of 32  
subcarrier clocks  
even parity at the  
end of the frame  
001aak585  
Figure 20.ꢀData coding and framing according to ISO/IEC 14443 A card response  
The internal CRC coprocessor calculates the CRC value based on the selected protocol.  
In card mode for higher baudrates, the parity is automatically inverted as end of  
communication indicator.  
8.10.1.2 ISO/IEC14443 B functionality  
The physical level of the communication is shown in Figure 21  
(1)  
ISO/IEC 14443 B  
ISO/IEC 14443 B CARD  
READER  
(2)  
001aal997  
1. Reader to Card: NRZ; transfer speed 106 kbit/s to 848 kbit/s  
2. Card to reader: Subcarrier load modulation Manchester coded or BPSK, transfer speed 106 kbit/s to 848 kbit/s  
Figure 21.ꢀISO/IEC 14443 B read/write mode communication diagram  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
38 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The physical parameters are described in Table 12  
Table 12.ꢀCommunication overview for ISO/IEC 14443 B reader/writer  
Communication  
direction  
Signal type  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
848 kbit/s  
reader to card (send  
reader side  
10 % ASK  
10 % ASK  
10 % ASK  
10 % ASK  
data from the PN7462 modulation  
family to a card)  
bit encoding  
NRZ  
NRZ  
64/fc  
NRZ  
32/fc  
NRZ  
16/fc  
fc = 13.56 MHz  
bit rate [kbit/s]  
128/fc  
card to reader (PN7462 card side  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
sub carrier load  
modulation  
family receives data  
from a card)  
modulation  
sub carrier  
frequency  
fc / 16  
fc / 16  
fc / 16  
fc / 16  
bit encoding  
BPSK  
BPSK  
BPSK  
BPSK  
8.10.1.3 FeliCa functionality  
The FeliCa mode is a general reader/writer to card communication scheme, according to  
the FeliCa specification. The communication on a physical level is shown in Figure 22.  
1. PCD to PICC 8-30 % ASK  
Manchester Coded,  
baudrate 212 to 424 kbaud  
FeliCa CARD  
(PICC)  
FeliCa READER  
(PCD)  
2. PICC to PCD, > Load modulation  
Manchester Coded,  
baudrate 212 to 424 kbaud  
001aam271  
Figure 22.ꢀFeliCa read/write communication diagram  
The physical parameters are described in Table 13.  
Table 13.ꢀCommunication overview for FeliCa reader/writer  
Communication direction  
Signal type  
Transfer speed FeliCa  
FeliCa higher transfer  
speeds  
212 kbit/s  
424 kbit/s  
reader to card (send data  
from the PN7462 family to a  
card)  
reader side modulation  
bit encoding  
8 % to 30 % ASK  
Manchester encoding  
fc / 64  
8 % to 30 % ASK  
Manchester encoding  
fc / 32  
bit rate  
fc = 13.56 MHz  
card to reader (PN7462  
family receives data from a  
card)  
card side modulation  
bit encoding  
load modulation  
Manchester encoding  
load modulation  
Manchester encoding  
Note: The PN7462 family does not manage FeliCa security aspects.  
PN7462 family supports FeliCa multiple reception cycles.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
39 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
PayLoad  
32 byte  
XXX  
Status  
RFU  
[15:13]  
RFU  
RFU [31:24]  
RFU [23:16]  
Len [4:0]  
[7:5]  
4 byte  
aaa-021253  
Figure 23.ꢀMultiple reception cycles - data format  
8.10.1.4 ISO/IEC 15693 functionality  
The physical level of the communication is shown in Figure 24.  
(1)  
ISO / IEC 15693  
READER  
ISO / IEC 15693  
CARD  
(2)  
aaa-021138  
1. Reader to Card: 1/256 and 1/4 encoding  
2. Card to Reader: Manchester coding  
Figure 24.ꢀISO/IEC 15693 read/write mode communication diagram  
The physical parameters are described in Table 14.  
Table 14.ꢀCommunication overview for ISO/IEC 15693 reader to label  
Communication direction  
Signal type  
Transfer speed  
fc / 8192 kbit/s  
fc / 512 kbit/s  
reader to label (send data  
from the PN7462 family to a  
card)  
reader side modulation  
10 % to 30 % ASK or  
100 % ASK  
10 % to 30 % ASK or 90 % to  
100 % ASK  
bit encoding  
bit length  
1/256  
1/4  
4.833 μs  
302.08 μs  
Table 15.ꢀCommunication overview for ISO/IEC 15693 label to reader  
Communication  
direction  
Signal type  
Transfer speed  
6.62 kbit/s  
13.24 kbit/s[1]  
26.48 kbit/s  
52.96 kbit/s  
label to reader  
card side  
not supported  
not supported  
single (dual)  
single sub carrier  
(PN7462 family  
receives data from a  
card) fc = 13.56 MHz  
modulation  
sub carrier load  
modulation ASK  
load modulation ASK  
bit length (μs)  
bit encoding  
-
-
-
-
-
-
37.76  
18.88  
Manchester coding  
fc / 32  
Manchester coding  
fc / 32  
subcarrier  
frequency (MHz)  
[1] Fast inventory (page) read command only (ICODE proprietary command).  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
40 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
pulse  
modulated  
carrier  
~9.44 µs  
~18.88 µs  
0 1 2 3 4  
.
.
.
2
2
5
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
2 2 2 2  
5 5 5 5  
2 3 4 5  
~4,833 ms  
001aam272  
Figure 25.ꢀData coding according to ISO/IEC 15693 standard mode reader to label  
8.10.1.5 ISO/IEC18000-3 mode 3 functionality  
The ISO/IEC 18000-3 mode 3 is not described in this document. For a detailed  
explanation of the protocol, refer to the ISO/IEC 18000-3 standard.  
PN7462 family supports the following features:  
TARI = 9.44 μs or 18.88 μs  
Downlink: Four subcarrier pulse Manchester and two subcarrier pulse Manchester  
Subcarrier: 423 kHz (fc / 32) with DR = 0 kHz and 847 kHz (fc / 16) with DR = 1  
8.10.1.6 NFCIP-1 modes  
The NFCIP-1 communication differentiates between an active and a passive  
communication mode.  
In active communication mode, both initiator and target use their own RF field to  
transmit data  
In passive communication mode, the target answers to an initiator command in a load  
modulation scheme. The initiator is active in terms of generating the RF field  
The initiator generates RF field at 13.56 MHz and starts the NFCIP-1 communication  
In passive communication mode, the target responds to initiator command in load  
modulation scheme. In active communication mode, it uses a self-generated and self-  
modulated RF field.  
PN7462 family supports NFCIP-1 standard. It supports active and passive  
communication mode at transfer speeds of 106 kbit/s, 212 kbit/s, and 424 kbit/s, as  
defined in the NFCIP-1 standard.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
41 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Initial command  
host  
host  
NFC INITIATOR  
NFC TARGET  
1. initiator starts communication at  
selected transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
response  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. target answers at  
the same transfer speed  
powered for digital  
processing  
powered to  
generate RF field  
001aan216  
Figure 26.ꢀActive communication mode  
Table 16.ꢀCommunication overview for active communication mode  
Communication  
direction  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
initiator to target  
target to initiator  
according to ISO/IEC 14443  
A 100 % ASK, modified miller  
coded  
according to  
FeliCa, 8-30 %  
ASK Manchester  
coded  
according to  
FeliCa, 8-30 %  
ASK Manchester  
coded  
Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.  
1. initiator starts communication  
at selected transfer speed  
host  
host  
NFC INITIATOR  
NFC TARGET  
2. targets answers using  
load modulated data  
at the same transfer speed  
powered to  
powered for  
generate RF field  
digital processing  
001aan217  
Figure 27.ꢀPassive communication mode  
Table 17.ꢀCommunication overview for passive communication mode  
Communication  
direction  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
initiator to target  
according to ISO/IEC  
14443 A 100 % ASK,  
modified miller coded  
according to  
FeliCa, 8-30 % ASK  
Manchester coded  
according to  
FeliCa, 8-30 % ASK  
Manchester coded  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
42 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Communication  
direction  
Transfer speed  
106 kbit/s  
212 kbit/s  
424 kbit/s  
target to initiator  
according to ISO/IEC  
14443 A @106 kB  
according to FeliCa, > according to FeliCa, >  
12 % ASK Manchester 12 % ASK Manchester  
modified miller coded  
coded  
coded  
The NFCIP-1 protocol is managed in the PN7462 family customer application firmware.  
Note: Transfer speeds above 424 kbit/s are not defined in the NFCIP-1 standard.  
ISO/IEC14443 A card operation mode  
PN7462 family can be addressed as a ISO/IEC 14443 A card. It means that it can  
generate an answer in a load modulation scheme according to the ISO/IEC 14443 A  
interface description.  
Note: PN7462 family components do not support a complete card protocol. The NFC  
controller customer application firmware handles it.  
The following table describes the physical layer of a ISO/IEC14443 A card mode:  
Table 18.ꢀISO/IEC14443 A card operation mode  
Communication direction  
ISO/IEC 14443 A (transfer speed: 106 kbit per second)  
reader/writer to PN7462 family  
modulation on reader side  
bit coding  
100 % ASK  
modified miller  
128/fc  
bit length  
PN7462 family to reader/writer  
modulation on PN7462  
family side  
sub carrier load modulation  
subcarrier frequency  
bit coding  
fc / 16  
Manchester coding  
NFCIP-1 framing and coding  
The NFCIP-1 framing and coding in active and passive communication mode is defined  
in the NFCIP-1 standard.  
PN7462 family supports the following data rates:  
Table 19.ꢀFraming and coding overview  
Transfer speed  
106 kbit/s  
Framing and coding  
according to the ISO/IEC 14443 A/MIFARE scheme  
according to the FeliCa scheme  
according to the FeliCa scheme  
212 kbit/s  
424 kbit/s  
NFCIP-1 protocol support  
The NFCIP-1 protocol is not elaborated in this document. The PN7462 family component  
does not implement any of the high-level protocol functions. These high-level protocol  
functions are implemented in the microcontroller. For detailed explanation of the protocol,  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
43 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
refer to the NFCIP-1 standard. However, the datalink layer is according to the following  
policy:  
Speed shall not be changed while there is continuous data exchange in a transaction.  
Transaction includes initialization, anticollision methods, and data exchange (in a  
continuous way means no interruption by another transaction).  
In order not to disturb current infrastructure based on 13.56 MHz, the following general  
rules to start NFCIP-1 communication are defined:  
1. By default, NFCIP-1 device is in target mode. It means that its RF field is switched off.  
2. The RF level detector is active.  
3. Only if the application requires, the NFCIP-1 device switches to initiator mode.  
4. An initiator shall only switch on its RF field if the RF level detector does not detect  
external RF field during a time of TIDT  
.
5. The initiator performs initialization according to the selected mode.  
8.10.2 Contactless interface  
8.10.2.1 Transmitter (TX)  
The transmitter is able to drive an antenna circuit connected to outputs TX1 and TX2  
with a 13.56 MHz carrier signal. The signal delivered on pins TX1 and pin TX2 is a 13.56  
MHz carrier, modulated by an envelope signal for energy and data transmission. It can  
be used to drive an antenna directly, using a few passive components for matching and  
filtering. For a differential antenna configuration, either TX1 or TX2 can be configured to  
put out an inverted clock.  
100 % modulation and several levels of amplitude modulation on the carrier can be  
performed to support 13.56 MHz carrier-based RF-reader/writer protocols. The standards  
ISO/IEC14443 A and B, FeliCa, and ISO/IEC18092 define the protocols.  
The PN7462 family embeds an overshoot and undershoot protection. It is used to  
configure additional signals on the transmitter output, for controlling the signal shape at  
the antenna output.  
TVDD  
envelope  
hs_gate  
M2  
clk_highside  
clk_lowside  
TX1  
TVDD  
ls_gate<14:0>  
M1<  
PRE-DRIVERS  
aaa-021254  
Figure 28.ꢀPN7462 family output driver  
8.10.2.2 Receiver (RX)  
In reader mode, the response of the PICC device is coupled from the PCB antenna to  
the differential input RXP/RXN. The reader mode receiver extracts this signal by first  
removing the carrier in passive mixers (direct conversion for I and Q). It then filters  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
44 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
and amplifies the baseband signal before converting to digital values. The conversion  
to digital values is done with two separate ADCs, for I and Q channels. Both I and Q  
channels have a differential structure, which improves the signal quality.  
The I/Q mixer mixes the differential input RF-signal down to the baseband. The mixer has  
a bandwidth of 2 MHz.  
The down-mixed differential RX input signals are passed to the BBA and a band-pass  
filter. For considering all the protocols (type A/B, FeliCa), the high-pass cut-off frequency  
of BBA is configured between 45 kHz and 250 kHz. The configuration is done in four  
different steps. The low-pass cut-off frequency is greater than 2 MHz.  
The output of band-pass filter is further amplified with a gain factor which is configurable  
between 30 dB and 60 dB. The baseband amplifier (BBA)/ADC I-channel and Q-channel  
can be enabled separately. It is required for ADC-based card mode functionality as only  
the I-channel is used in this case.  
BBA  
RXP  
DATA  
I-CLK  
AGC  
MIX  
CLK  
VMID  
Q-CLK  
BBA  
DATA  
RXN  
aaa-021388  
Figure 29.ꢀReceiver block diagram  
VMID  
A resistive divider between AVDD and GND generates VMID. The resistive divider is  
connected to the VMID pin. An external blocking capacitor of typical value 100 nF is  
connected.  
Automatic Gain Control (AGC)  
The contactless interface AGC is used to control the amplitude of 13.56 MHz sine-wave  
input signal received. The signal is received at the antenna connected between the pins  
RXP and RXN. A comparator is used to compare the peak value of the input signal with a  
reference voltage.  
A voltage divider circuit is used to generate the reference voltage. An external resistor  
(typically 3.3 kΩ) is connected to the RX input, which forms a voltage divider with an on-  
chip variable resistor. The voltage divider circuit so formed has a 10-bit resolution.  
Note: The comparator monitors the RXP signal only.  
By varying the on-chip resistor, the amplitude of the input signal can be modified. The  
value of on-chip resistor is increased or decreased, depending on the output of the  
sampled comparator. The on-chip resistor value is adjusted until the peak of the input  
signal matches the reference voltage. Thus, the AGC circuit automatically controls the  
amplitude of the RX input.  
The internal amplitude controlling resistor in the AGC has a default value of 10 KΩ. It  
means that, when the resistor control bits in AGC_VALUE_REG <9:0> are all 0, the  
resistance is 10 KΩ. As the control bits are increased, resistors are switched in parallel to  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
45 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
the 10 KΩ resistor. It lowers the resultant resistance value to 5 kΩ (AGC_VALUE_REG  
<9:0>, all bits set to 1).  
Mode detector  
The mode detector is a functional block of the PN7462 family which senses for an RF  
field generated by another device. The mode detector facilitates to distinguish between  
type Aꢁand FeliCa target mode. The host responds depending on the recognized  
protocol generated by an initiator peer device.  
Note: The PN7462 family emulates type A cards and peer-to-peer active target modes  
according to ISO / IEC18092.  
8.10.3 Low-Power Card Detection (LPCD)  
The low-power card detection is an energy saving feature of the PN7462 family. It  
detects the presence of a card without starting a communication. Communication  
requires more energy to power the card and takes time, increasing the energy  
consumption.  
It is based on antenna detuning detection. When a card comes close to the reader, it  
affects the antenna tuning, which is detected by PN7462 family.  
The sensitivity can be varied for adjusting to various environment and applications  
constraints.  
Remark: Reader antenna detuning may have multiple sources such as cards and metal  
near the antenna. Hence it is important to adjust the sensitivity with care to optimize the  
detection and power consumption. As the generated field is limited, distance for card  
detection might be reduced compared to normal reader operation. Performances depend  
on the antenna and the sensitivity used.  
8.10.4 Active Load Modulation (ALM)  
When PN7462 family is used in card emulation mode or P2P passive target mode, it  
modulates the field emitted by the external reader or NFC passive initiator.  
(1)  
PN7462 family  
CARD TYPE A EMULATION  
(2)  
OR  
P2P PASSIVE TARGET  
aaa-021139  
1. Type A reader or NFC passive initiator generate the RF and sends commands  
2. PN7462 family modulates the field of reader for sending its answer  
Figure 30.ꢀCommunication in card emulation of NFC passive target  
To modulate the field, PN7462 family offers two possibilities:  
Passive Load Modulation (PLM): The PN7462 family modifies the antenna  
characteristics, which are detected by the reader through antenna coupling.  
Active Load Modulation (ALM): The PN7462 family generates a small field, in phase  
opposition with the field emitted by the reader. This modulation is detected by the  
reader reception stage.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
46 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
The modulation type to use depends on the external reader and the antenna of PN7462  
family and the application.  
8.10.5 Dynamic Power Control (DPC)  
The PN7462 family supports the Dynamic Power Control (DPC) feature.  
A lookup table is used to configure the output voltage and to control the transmitter  
current. In addition to the control of the transmitter current, wave shaping settings can be  
controlled as well, depending on the selected protocol and the measured antenna load.  
8.10.5.1 RF output control  
The DPC controls the RF output current and output voltage depending on the loading  
condition of the antenna.  
8.10.5.2 Adaptive Waveform Control (AWC)  
The DPC includes the Adaptive Waveform Control (AWC) feature.  
Depending on the level of detected detuning on the antenna, RF wave shaping related  
register settings can be automatically updated, according to the selected protocol. A  
lookup table is used to configure the modulation index, the rise time and the fall time.  
8.11 Timers  
The PN7462 family includes two 12-bit general-purpose timers (on LFO clock domain)  
with match capabilities. It also includes two 32-bit general-purpose timers (on HFO clock  
domain) and a Watchdog Timer (WDT).  
The timers and WDT can be configured through software via a 32-bit APB slave  
interface.  
Table 20.ꢀTimer characteristics  
Name  
Clock  
source  
Frequency Counter  
length  
Resolution Maximum  
delay  
Chaining  
Timer 0  
Timer 1  
Timer 2  
Timer 3  
Watchdog  
LFO/2  
LFO/2  
HFO  
182.5 kHz  
182.5 kHz  
20 MHz  
12 bit  
12 bit  
32 bit  
32 bit  
10 bit  
300 μs  
300 μs  
50 ns  
1.2 s  
1.2 s  
214 s  
214 s  
22 s  
No  
Yes  
No  
No  
No  
HFO  
20 MHz  
50 ns  
LFO/128  
2.85 kHz  
21.5 ms  
8.11.1 Features of timer 0 and timer 1  
12-bit counters  
One match register per timer, no capture registers and capture trigger pins are needed  
One common output line gathering the four timers (Timer 0, Timer 1, Timer 2, and  
Timer 3)  
Interrupts  
Timer 0 and timer 1 can be concatenated (multiplied)  
Timer 0 and timer 1 have two count modes: single-shot or free-running  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
47 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Timer 0 and timer 1 timeout interrupts can be individually masked  
Timer 0 and timer 1 clock source is LFO clock (LFO/2 = 182.5 kHz)  
Remark: The timers are dedicated for RF communication.  
8.11.2 Features of timer 2 and timer 3  
32-bit counters  
1 match register per timer, no capture registers and capture trigger pins are needed  
1 common output line gathering four timers (Timer 0, Timer 1, Timer 2, and Timer 3)  
Interrupts  
Timer 2 and timer 3 have two count modes: single-shot and free-running  
Timer 2 and timer 3 timeout interrupts can be individually masked  
Timer 2 and timer 3 clock source is the system clock  
8.12 System tick timer  
The PN7462 family microcontroller includes a system tick timer (SYSTICK) that  
generates a dedicated SYSTICK exception at a fixed time interval (10 ms).  
8.13 Watchdog timer  
If the microcontroller enters an erroneous state, the watchdog timer resets the  
microcontroller. When the watchdog timer is enabled, if the user program fails to  
"feed" (reload) the watchdog timer within a predetermined time, it generates a system  
reset.  
The watchdog timer can be enabled through software. If there is a watchdog timeout  
leading to a system reset, the timer is disabled automatically.  
10-bit counter  
Based on a 2.85 kHz clock  
Triggers an interrupt when a predefined counter value is reached  
Connected to the ARM subsystem NMI (non-maskable interrupt)  
If the watchdog timer is not periodically loaded, it resets PN7462 family  
8.14 Clocks  
The PN7462 family clocks are based on the following clock sources:  
27.12 MHz external quartz  
27.12 MHz crystal oscillator  
Internal oscillator: 20 MHz High Frequency Oscillator (HFO)  
Internal oscillator: 365 kHz Low Frequency Oscillator (LFO)  
Internal PLL at 48 MHz for the USB interface  
Figure 31 indicates the clocks used by each IP.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
48 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
clif_pll_in_sel  
dk_input_buffer  
PLL I/P  
BUFFER  
XTAL1  
00  
01  
10  
11  
clk_xtal  
tie `'0''  
tie `'0''  
pll_bypass  
pll_clkout  
pll_clkin  
CLIF PLL  
10  
00  
pll_clkout2  
CLIF_DIG  
pll_clkout2  
pll_clkin  
PLL_INPUT_BUFFER_BYPASS  
XTAL_SEL_EXTERNAL_CLOCK  
11  
01  
CLIF_PLL_REF_CLK_SELECT[1:0]  
clk_pll_27m12  
CLIF_ANA  
PCR  
XTAL2  
clk_xtal  
XTAL  
clk_pll_27m12  
usb_pll_clkin  
1
0
clk_ip_27m12  
CLIF_PLL_CLOCK_SELECT[1:0]  
usb_pll_in_sel  
tie `'0''  
PCR_CLK_CFG2.EXT_CLK_SEL  
11  
tie `'0''  
clk_xtal  
10 usb_pll_clkin  
clk_usb_48 MHz  
USB PLL  
00  
01  
00  
tie `'0''  
clk_input_buffer  
10  
01  
11  
usb_pll_clkout_div2  
/2  
tie `'0''  
USB_PLL_REF_CLK_SELECT[1:0]  
USB_PLL_CLKOUT_SELECT[1:0]  
usb_pll_clkout  
aaa-021248  
Figure 31.ꢀClocks and IP overview  
8.14.1 Quartz oscillator (27.12 MHz)  
The 27.12 MHz quartz oscillator is used as a reference for all operations where the  
stability of the clock frequency is important for reliability. It includes contactless interface,  
SPI and I2C master interfaces, USB PLL for the USB interface, and HSUART.  
Regular and low-power crystals can be used. Figure 32 shows the circuit for generating  
stable clock frequency. The quartz and trimming capacitors are off-chip.  
PN7462 family  
XTAL1  
crystal  
XTAL2  
27.12 MHz  
C
C
aaa-021140  
Figure 32.ꢀCrystal oscillator connection  
Table 21 describes the levels of accuracy and stability required on the crystal.  
Table 21.ꢀCrystal requirements  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
fxtal  
crystal frequency  
ISO/IEC and FCC  
compliancy  
-
27.12  
-
MHz  
[1]  
Δfxtal  
ESR  
crystal frequency accuracy  
equivalent series resistance  
-50  
-
-
+50  
100  
ppm  
Ω
50  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
49 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
10  
-
Max  
-
Unit  
pF  
CL  
load capacitance  
drive power  
-
-
Pdrive  
100  
μW  
[1] This requirement is according to FCC regulations requirements. The frequency should be +/- 14 kHz to meet ISO/IEC  
14443 and ISO/IEC 18092.  
8.14.2 USB PLL  
The PN7462 family integrates a dedicated PLL to generate a low-noise 48 MHz clock, by  
using the 27.12 MHz from the external crystal. The 48 MHz clock generated is used as  
the USB main clock.  
Following are the USB PLL features:  
Low-skew, peak-to-peak cycle-to-cycle jitter, 48 MHz output clock  
Low power in active mode, low power-down current  
On-chip loop filter, external RC components not needed  
8.14.3 High Frequency Oscillator (HFO)  
The PN7462 family has an internal low-power High Frequency Oscillator (HFO) that  
generates a 20 MHz clock. The HFO is used to generate the system clock. The system  
clock default value is 20 MHz, and it can be configured to 10 MHz and 5 MHz for  
reducing power consumption.  
8.14.4 Low Frequency Oscillator (LFO)  
The PN7462 family has an internal low-power Low Frequency Oscillator (LFO) that  
generates a 365 kHz clock. The LFO is used by EEPROM, POR sequencer, contactless  
interface, timers, and watchdog.  
8.14.5 Clock configuration and clock gating  
In order to reduce the overall power consumption, the PN7462 family facilitates  
adjustment of system clock. It integrates clock gating mechanisms.  
The system clock can be configured to the following values: 20 MHz, 10 MHz, and 5  
MHz.  
The clock of the following blocks can be activated or deactivated, depending on the  
peripherals used:  
Contactless interface  
Contact interface  
Host interfaces  
I2C master interface  
SPI master interface  
CRC engine  
Timers  
Random generator  
System clock  
EEPROM  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
50 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Flash memory  
8.15 Power management  
8.15.1 Power supply sources  
The PN7462 family is powered using the following supply inputs:  
VBUS: main supply voltage for internal analog modules, digital logic, and memories  
VBUSP: supply voltage for the contact interface  
TVDD_IN: supply for the contactless interface  
PVDD_IN: pad voltage reference and supply of the host interface (HSU, USB, I2C, and  
SPI) and the GPIOs  
PVDD_M_IN: pad voltage reference and supply for the master interface (SPI and I2C)  
DVDD: supply for the internal digital blocks  
8.15.2 PN7462 Power Management Unit (PMU)  
The integrated Power Management Unit (PMU) provides supply for internal analog  
modules, internal digital logic and memories, pads. It also provides supply voltages for  
the contactless and contact interface.  
It automatically adjusts internal regulators to minimize power consumption during all  
possible power states.  
The power management unit embeds a mechanism to prevent the IC from overheat,  
overconsumption, or overloading the DC-to-DC converter:  
TXLDO 5 V monitoring  
VCC current limiter  
DC-to-DC converter current overload  
SCVDD current overload  
Temperature sensor  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
51 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
VUP  
SC_LDO  
VCC_LDO  
VBUSP  
VCC  
DC-to-DC  
converter  
DVDD  
Digital logic and memories  
internal analog blocks  
mandatory  
VDD  
MILDO  
VBUS  
PVDD_LDO  
PVDD_OUT  
optional  
PVDD_IN  
pad supply  
PVDD_M_IN  
master interface pads  
TX_LDO  
VUP_TX  
TVDD_OUT  
TVDD_IN  
RF transmitter  
aaa-021141  
Figure 33.ꢀPN7462 LDOs and power pins overview  
PN7462 embeds five Low Drop-Out regulators (LDO) for ensuring the stability of power  
supply, while the application is running.  
MLDO (main LDO): It provides 1.8 V supply for internal analog, digital and memory  
modules  
TXLDO: This LDO can be used to supply the RF transmitter  
PVDD_LDO: PVDD_LDO provides 3.3 V that can be used for all pads supply  
SCLDO: This LDO provides a 2.4 V output to be used for contact card supply. The  
main aim is to be able to address class B operation when the voltage available is  
below 3.9 V. It is achieved by providing a stable input voltage to the internal DC-to-DC  
converter.  
VCC_LDO: the VCC_LDO provides the supply for the contact smart card  
Some are used while some are optional, like the TX_LDO which is proposed for the RF  
interface. It is up to the application designer to decide whether LDOs should be used.  
8.15.2.1 Main LDO  
The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory  
modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage  
to the output transistors.  
Output supply is available on VDD pin which must be connected externally to the DVDD  
pin.  
Following are the main LDO features:  
Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)  
Current limiter to avoid damaging the output transistors  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
52 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.15.2.2 PVDD_LDO  
The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also  
be used to provide 3.3 V power to external components, avoiding an external LDO. It is  
supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a  
maximum of 30 mA.  
The output pin for PVDD_LDO is PVDD_OUT.  
PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad  
supply for master interfaces).  
When an external supply is used, PVDD_OUT must be connected to the ground. When  
the LDO output is connected to the ground, the chip switches off the PVDD_LDO.  
The PVDD_LDO has a low-power mode, which is used automatically when the chip is in  
standby mode or suspend mode. It facilitates supply to HOST pads and GPIOS, and to  
detect wake-up signals coming from these interfaces.  
Following are the PVDD_LDO features:  
Low-Drop-Out voltage regulator powered by VDDP(VBUS) (external supply)  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance when the LDO is powered up  
Current limiter to avoid damaging the output transistors  
Note: When PVDD_LDO is used, there must not be any load current drawn from  
PVDD_LDO during the soft start of the PVDD_LDO.  
8.15.2.3 Contact interface - SCLDO LDO  
The SCLDO provides a regulated voltage to the DC-to-DC converter, to enable class B  
operation when VDDP(VBUS) is in between 2.7 V to 3.9 V.  
Following are the contact interface features:  
Current limiter for short circuit protection  
Supports soft-start mode to limit the inrush current during the initial charge of the  
external capacitance when the LDO is powered up  
8.15.2.4 Contact interface DC-to-DC converter  
The PN7462 includes a DC-to-DC converter that supports class A and class B cards,  
when the input voltage VDDP(VBUSP) is not sufficient.  
The DC-to-DC converter is a capacitance voltage doubler. It takes power from the  
SCLDO. The DC-to-DC converter can be bypassed. Its output (VUP) is regulated  
between 3.3 V to 5.5 V.  
The DC-to-DC converter can work in the following modes:  
Follower mode: This mode is used when VDDP(VBUSP) is high enough to provide the  
desired power to the VCC LDO  
Doubler mode: This mode is used when VDDP(VBUSP) is not high enough to supply the  
requested VCC output  
The doubler mode is used in the following conditions:  
Class A cards support  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
53 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Class B cards support, when VDDP(VBUSP) is less than 3.9 V  
For class C cards, the DC-to-DC converter is always in a follower mode.  
An external capacitor (470 nF) should be connected between SAM and SAP pins, to  
ensure the functioning of the DC-to-DC converter.  
Table 22.ꢀSCLDO and DC-to-DC converter modes  
Supported card VDDP(VBUSP)  
SCLCO mode  
DC-to-DC converter  
mode  
Class A  
Class B  
Class B  
Class C  
> 3 V  
follower mode  
doubler mode  
doubler mode  
follower mode  
follower mode  
2.7 V < VDDP(VBUSP) < 3.9 V LDO mode  
> 3.9 V  
> 2.7 V  
follower mode  
follower mode  
8.15.2.5 VCC LDO  
The VCC LDO supplies contact interface supply VCC  
.
Following are the VCC LDO features:  
Low drop-out voltage regulator  
Current limiter for chip and card protection  
Automatic deactivation in case of overload  
8.15.2.6 TXLDO  
The PN7462 family consists of an internal transmitter supply LDO. The TXLDO can be  
used to maintain a constant output voltage for the RF interface.  
The TXLDO is designed to protect the chip from voltage ripple introduced by the power  
supply on the pin VUP_TX. It is powered through the pin VUP_TX.  
The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.  
For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words,  
to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the  
voltage is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the  
pin VUP_TX, lowered of 0.3 V.  
When it is not used, TVDD_OUT shall be connected to TVDD_IN, and TX_LDO shall be  
turned off.  
Following are the TXLDO features:  
Low-Drop-Out (TXLDO) voltage regulator  
Current load up to 180 mA  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance  
Current limiter to avoid damaging the output transistors  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
54 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.15.3 PN736X Power Management Unit (PMU)  
The integrated Power Management Unit (PMU) provides supply for internal analog  
modules, internal digital logic and memories, pads. It also provides supply voltages for  
the contactless interface.  
It automatically adjusts internal regulators to minimize power consumption during all  
possible power states.  
The power management unit embeds a mechanism to prevent the IC from overheat,  
overconsumption, or overloading the DC-to-DC converter:  
TXLDO 5 V monitoring  
Temperature sensor  
DVDD  
Digital logic and memories  
internal analog blocks  
mandatory  
MILDO  
VBUS  
VDD  
PVDD_LDO  
PVDD_OUT  
PVDD_IN  
optional  
pad supply  
PVDD_M_IN  
master interface pads  
TX_LDO  
VUP_TX  
TVDD_OUT  
TVDD_IN  
RF transmitter  
aaa-025627  
Figure 34.ꢀPN736X LDOs and power pins overview  
PN736X embeds three Low Drop-Out regulators (LDO) for ensuring the stability of power  
supply, while the application is running.  
MLDO (main LDO): It provides 1.8 V supply for internal analog, digital and memory  
modules  
TXLDO: This LDO can be used to supply the RF transmitter  
PVDD_LDO: PVDD_LDO provides 3.3 V that can be used for all pads supply  
Some are used while some are optional, like the TX_LDO which is proposed for the RF  
interface. It is up to the application designer to decide whether LDOs should be used.  
8.15.3.1 Main LDO  
The Main LDO (MLDO) provides a 1.8 V supply for all internal, digital and memory  
modules. It takes input from VBUS. MLDO includes a current limiter that avoids damage  
to the output transistors.  
Output supply is available on VDD pin which must be connected externally to the DVDD  
pin.  
Following are the main LDO features:  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
55 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Main Low-Drop-Out (MLDO) voltage regulator powered by VBUS (external supply)  
Current limiter to avoid damaging the output transistors  
8.15.3.2 PVDD_LDO  
The PVDD_LDO provides 3.3 V supply, that can be used for all digital pads. It may also  
be used to provide 3.3 V power to external components, avoiding an external LDO. It is  
supplied by VBUS, and requires a minimum voltage of 4 V to be functional. It delivers a  
maximum of 30 mA.  
The output pin for PVDD_LDO is PVDD_OUT.  
PVDD_LDO is used to provide the necessary supply to PVDD_IN and PVDD_M_IN (pad  
supply for master interfaces).  
When an external supply is used, PVDD_OUT must be connected to the ground. When  
the LDO output is connected to the ground, the chip switches off the PVDD_LDO.  
The PVDD_LDO has a low-power mode, which is used automatically when the chip is in  
standby mode or suspend mode. It facilitates supply to HOST pads and GPIOS, and to  
detect wake-up signals coming from these interfaces.  
Following are the PVDD_LDO features:  
Low-Drop-Out voltage regulator powered by VDDP(VBUS) (external supply)  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance when the LDO is powered up  
Current limiter to avoid damaging the output transistors  
Note: When PVDD_LDO is used, there must not be any load current drawn from  
PVDD_LDO during the soft start of the PVDD_LDO.  
8.15.3.3 TXLDO  
The PN7462 family consists of an internal transmitter supply LDO. The TXLDO can be  
used to maintain a constant output voltage for the RF interface.  
The TXLDO is designed to protect the chip from voltage ripple introduced by the power  
supply on the pin VUP_TX. It is powered through the pin VUP_TX.  
The programmable output voltages are: 3.0 V, 3.3 V, 3.6 V, 4.5 V, and 4.75 V.  
For a given output voltage, VUP_TX shall always be higher than 0.3 V. In other words,  
to supply a 3 V output, the minimum voltage to be applied on VUP_TX is 3.3 V. If the  
voltage is not sufficient, then the voltage at the pin TVDD_OUT follows the voltage at the  
pin VUP_TX, lowered of 0.3 V.  
When it is not used, TVDD_OUT shall be connected to TVDD_IN, and TX_LDO shall be  
turned off.  
Following are the TXLDO features:  
Low-Drop-Out (TXLDO) voltage regulator  
Current load up to 180 mA  
Supports soft-start mode to limit inrush current during the initial charge of the external  
capacitance  
Current limiter to avoid damaging the output transistors  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
56 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.15.4 Power modes  
The PN7462 family offers four different power modes, that enable the user to optimize its  
energy consumption. They are:  
Hard power-down mode  
Standby mode  
USB suspend mode  
Active mode  
8.15.4.1 Active mode  
In active mode, all functionalities are available and all IPs can be accessed. It is possible  
to configure the various clocks (IP clock, system clock) using register settings so that  
chip consumption is reduced. If IPs are not used, they can be disabled.  
8.15.4.2 Standby mode  
In standby mode, only a reduced part of the digital and the analog is active. It reduces  
the chip power consumption. The possible wake-up sources are still powered.  
The LFO clock is used to lower the energy needs.  
Active part in standby mode: Main LDO is active, in a low-power mode, plus all  
configured wake-up sources.  
Depending on the application requirements, it is possible to configure PVDD_LDO in  
active mode, low-power mode or shut down mode when PN7462 family is going to  
standby mode. PVDD_LDO is active in a low-power mode by default.  
Entering in standby mode: The application code triggers standby mode. Before  
entering in standby mode, the PN7462 manages the deactivation of the contact card.  
The PN7462 family has two internal temperature sensors. If these sensors detect an  
overheat, the chip is put into standby mode by the application firmware. It leaves the  
standby mode when both temperature sensors indicate that the temperature has come  
below the configured limit.  
Limitations: Standby mode is not possible in the following cases:  
A host communication is in progress.  
A wake-up condition is fulfilled. For example, external RF field presence is a wake-up  
source, and a field is detected.  
The RF field detector is a possible wake-up source, and the RF field detector is  
disabled.  
PVDD is not present.  
8.15.4.3 Suspend mode  
In suspend mode, clock sources are stopped except LFO. It reduces the chip power  
consumption.  
Entering in suspend mode: An interrupt indicates to the application firmware when no  
activity has been detected on the USB port for more that 3 ms. The application code  
triggers the suspend mode.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
57 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Before entering in suspend mode, the PN7462 manages automatically, the deactivation  
of the contact card.  
Limitations: Suspend mode is prevented in the following cases:  
A host communication is in progress.  
A wake-up condition is fulfilled. For example, external RF field presence is a wake-up  
source, and a field is detected.  
The RF field detector is a possible wake-up source, and the RF field detector is  
disabled.  
No voltage at pin PVDD.  
8.15.4.4 Wake-up from standby mode and suspend mode  
PN7462 family can be woken-up from standby mode, and suspend mode, using the  
following means:  
Host Interface: SPI, HSUART, I2C, and USB if already selected before standby mode  
(SPI, HSUART, and I2C) or suspend mode (USB).  
RF field detection (presence of a reader or an NFC device in reader mode or P2P  
initiator)  
GPIO  
Contact card insertion, contact card removal (PN7462AUHN only)  
Interrupt generated on the auxiliary UART interface, through the interrupt pin  
(PN7462AUHN and PN7462AUEV only)  
Wake-up counter, for example to timely check for the presence of any contact or  
contactless card  
Current overconsumption on the PVDD_OUT, voltage above 5 V on TVDD_IN  
Temperature sensor: When the chip goes in to standby mode because of over-heating,  
and when the temperature goes below the sensor configured value, it wakes-up  
automatically. Each temperature sensor can be configured separately.  
It is possible to configure the sources as enabled or disabled.  
8.15.4.5 Hard Power-Down (HPD) mode  
The Hard Power-Down (HPD) reduces the chip power consumption, by powering down  
most of its blocks. All clocks and LDOs are turned off, except the main LDO which is set  
in low-power mode.  
Entering in HPD mode: If the RST_N pin is set to low, the NFC controller enters in to  
Hard Power Down (HPD) mode. It also enters in to HPD mode if the VDDP(VBUS) goes  
below the critical voltage necessary for the chip to work (2.3 V) and the auto HPD feature  
is enabled.  
Exiting the HPD mode: The NFC controller leaves the HPD mode, when both RST_N  
pin is set to high level and the VDDP(VBUS) voltage is above 2.3 V.  
8.15.5 Voltage monitoring  
The voltage monitoring mode detects whether the voltage is within the operational  
conditions to enable a proper operation of the RF interface or the contact interface. The  
following power supplies are monitored: VBUS (two voltage monitors), VBUS_P (one  
voltage monitor).  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
58 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Section 9.1.2 discusses about the minimum voltages necessary for contactless interface  
operation and Section 9.1.3 for the contact interface operation.  
Table 23.ꢀThreshold configuration for voltage monitor  
Voltage monitor  
VBUSMON1  
VBUSMON2  
VBUSP  
Threshold 1  
2.3 V  
Threshold 2  
2.7 V  
Threshold 3  
n.a.[1]  
n.a.[1]  
2.7 V  
4.0 V  
2.7 V  
3.0 V  
3.9 V  
[1] n.a. means not applicable.  
8.15.5.1 VBUS monitor  
The PN7462 family includes up to two levels (2.3 V or 2.7 V) for monitoring the voltage  
on the VBUS pin. If this voltage falls below one of the selected levels, the BOD asserts  
an interrupt signal to the PCR. This signal may be enabled for interrupt in the interrupt  
enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor  
the signal by reading a dedicated status register. Two threshold levels (2.3 V or 2.7 V)  
can be selected to cause a forced Hard Power-Down (HPD) of chip.  
8.15.5.2 VBUSP monitor  
The PN7462 family includes three levels (2.7 V, 3.0 V, and 3.9 V) for monitoring the  
voltage on the VBUSP pin.  
In addition to the above, the following applies to products with contact interface: When  
the voltage falls below the selected threshold value, and CT automatic deactivation  
is enabled in the PCR system register, hardware automatically de-activates the CT  
interface. An interrupt signal is also asserted to the PCR. This signal can be enabled for  
interrupt in the interrupt enable register in the PCR, to cause a CPU interrupt. Software  
must check VBUSP monitor levels by reading dedicated status registers before starting  
card activation sequence.  
8.15.5.3 PVDD LDO supply monitor  
The PN7462 family includes up to two levels (VBUSMON2: 2.7 V or 4.0 V) for monitoring  
the voltage on the PVDD LDO input supply. If supply voltage is 4.0 V or above, PVDD  
LDO can be enabled. The software has to check whether the voltage is sufficient before  
enabling the LDO.  
8.15.6 Temperature sensor  
The PN7462 family power management unit provides temperature sensors, associated  
to the TX_LDO and the contact interface DC-to-DC converter. It detects problems that  
would result in high power consumption and heating, which could damage the chip and  
the user device.  
Triggering levels are configurable. Following temperatures can be chosen: 135 °C, 130  
°C, 125 °C, and 120 °C. By default, the temperature sensor is set to 120 °C.  
When one of the temperature sensors detects an increase in temperature above the  
configured level, an interrupt is generated. The application can then decide to go  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
59 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
into standby or suspend mode. The PN registers indicate which temperature sensor  
generated the interrupt.  
When the temperature goes below the configured threshold temperature, the NFC  
controller wakes up automatically.  
8.16 System control  
8.16.1 Reset  
PN7462 family has six possible sources for reset. The list of sources is described in  
Table 21.  
Table 24.ꢀReset sources  
Source  
Description  
software - PCR  
software - ARM  
I2C interface  
watchdog  
soft reset from the PCR peripheral  
software reset form the ARM processor  
I2C Standard 3.0 defines a method to reset the chip via an I2C command[1]  
reset the chip if the watchdog threshold is not periodically reloaded  
power-on reset sequence; if the voltage is above 2.3 V, reset the chip  
VBUS voltage  
[1] This feature can be disabled.  
The watchdog reset, I2C reset and soft resets from PCR and ARM processor resets the  
chip except the PCR and the ARM debug interface. The Power-On Reset (POR) resets  
the complete chip including the PCR and ARM debug interface.  
Upon reset, the processor executes the first instruction at address 0, which is initially the  
reset vector mapped from the boot block. At that point, all the processor and peripheral  
registers are initialized to predetermined values.  
8.16.2 Brown-Out Detection (BOD)  
The PN7462 family includes up to two levels for monitoring the voltage on the VBUS pin.  
If this voltage falls below one of the selected voltages (2.3 V or 2.7 V), the BOD asserts  
an interrupt signal to the PCR. This signal can be enabled for interrupt in the interrupt  
enable register in the PCR, to cause a CPU interrupt. Alternatively, software can monitor  
the signal by reading a dedicated status register. Two threshold levels (2.3 V and 2.7 V)  
can be selected to cause a forced Hard Power-Down (HPD) of the chip.  
8.16.3 APB interface and AHB-Lite  
All APB peripherals are connected to one APB bus.  
The AHB-Lite connects the AHB masters. The AHB masters include the CPU bus of the  
ARM Cortex-M0, host interface, contactless interface, SPI interface to the flash memory.  
It also includes EEPROM memory, SRAM, ROM, and AHB to APB bridge.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
60 / 108  
 
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.16.4 External interrupts  
PN7462 family enables the use of 12 GPIOs as edge or level sensitive inputs (GPIO1 to  
GPIO12).  
8.17 SWD debug interface  
The Cortex-M0 processor-based devices use serial wire ARM CoreSightTM Debug  
technology. The PN7462 family is configured to support four break points and two watch  
points.  
The SWD interface can be disabled for having code (or data) read/write access  
protection. A dedicated SWD disable bit is available in the protected area of the  
EEPROM memory. Once the SWD interface is disabled, it is not possible to enable it  
anymore.  
8.17.1 SWD interface features  
Run control of the processor allowing to start and stop programs  
Single step one source or assembler line  
Set breakpoints while the processor is running  
Read/write memory contents and peripheral registers on-the-fly  
"printf" like debug messages through the SWD interface  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
61 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
9 Application design-in information  
9.1 Power supply connection  
The following table indicates the power sources for all the PN7462 family power inputs.  
Table 25.ꢀPower supply connection  
Power inputs Power sources  
Comment  
VBUS  
external source  
chosen according to the expected performances  
(contact interface and Class A/B/C support, RF  
power when TX_LDO is used, global power  
consumption)  
VBUSP  
external source; connected to  
VBUS  
VBUSP is connected to VBUS, with the addition  
of a decoupling capacitor  
TVDD_IN  
PVDD_IN  
external supply or using the  
TX_LDO  
external supply can be used (up to 5.5 V) to  
increase RF power  
external supply or using  
PVDD_LDO  
PVDD_LDO can be used, when VDDP(VBUS) > 4  
V. It makes a regulated 3.3 V supply available  
to GPIO and host interface pads, without the  
addition of an external LDO  
for 1.8 V, external supply is used  
PVDD_M_IN external supply or using  
PVDD_LDO  
PVDD_LDO can be used, when VDDP(VBUS) > 4  
V. It makes a regulated 3.3 V supply available  
to GPIO and host interface pads, without the  
addition of an external LDO  
external supply is used for 1.8 V  
DVDD  
connected to the VDD output  
VDD provides 1.8 V stabilized supply, out of the  
MAIN_LDO  
1. When external supply and PVDD_OUT are not used, PVDD_OUT must be connected  
to the ground, with a ground resistance of less than 10 Ω.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
62 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
9.1.1 Powering up the microcontroller  
(1)  
VBUS  
V
,
DDP(VBUS)  
GND  
VBUSP  
I
DDP(VBUS)  
TVSS  
GNDC  
GNDP  
PN7462 family  
VDD  
DVDD  
(2)  
(3)  
VBUS  
VBUS  
V
I
,
V
,
DDP(VBUS)  
DDP(VBUS)  
DDP(VBUS)  
I
DDP(VBUS)  
VBUSP  
VBUSP  
PVDD_OUT  
PVDD_OUT  
PN7462 family  
PN7462 family  
PVDD_IN  
PVDD_IN  
external supply  
PVDD_M_IN  
PVDD_M_IN  
aaa-025630  
1. Powering up the microcontroller and the digital blocks (DVDD).  
2. Two possibilities for powering the pad interfaces (PVDD_IN and PVDD_M_IN (3)).  
Remark: The capacitance must be chosen so that the capacitance value is correct at 5 V  
Figure 35.ꢀPowering up the microcontroller  
The schematics in Figure 35 describe the power supply of the chip (VDDP(VBUS)),  
including the digital blocks supply (DVDD). It indicates two possibilities to supply the  
pads, using the internal LDO, or using an external supply. The internal LDO requires that  
VDDP(VBUS) > 4 V. It avoids the requirement of a separate LDO when VDDP(VBUS) has a  
sufficient voltage.  
Power supply is available to pads through PVDD_IN (host interface). Similarly, power  
supply is available to master interface pads through PVDD_M_IN. When PVVD _LDO is  
used, maximum total current available from PVDD_OUT for the pads supply is 30 mA.  
When an external source is used for PVDD_IN and PVDD_M_IN, PVDD_OUT must be  
connected to the ground, with a ground resistance of less than 10 Ω.  
9.1.2 Powering up the contactless interface  
Powering of contactless interface is done though TVDD_IN. Internal LDO (TXLDO) or  
external supply can be used.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
63 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
(1)  
(2)  
VBUS  
VBUS  
PN7462 family  
supply  
PN7462 family  
supply  
TX2  
TX2  
TX1  
antenna  
supply  
antenna  
supply  
VUP_TX  
VUP_TX  
TX1  
PN7462 family  
PN7462 family  
TVDD_OUT  
TVDD_IN  
TVDD_OUT  
TVDD_IN  
TVSS  
TVSS  
aaa-021143  
The capacitance value must be chosen so that the capacitance value is correct at 5 V.  
1. Using TXLDO  
2. Without using TXLDO  
Figure 36.ꢀPowering up the contactless interface using a single power supply  
(1)  
(2)  
VBUS  
VBUS  
PN7462 family  
supply  
PN7462 family  
supply  
TX2  
TX1  
TX2  
TX1  
antenna  
supply  
antenna  
supply  
PN7462 family  
RF transmitter  
supply  
VUP_TX  
VUP_TX  
PN7462 family  
PN7462 family  
TVDD_OUT  
TVDD_IN  
TVDD_OUT  
TVDD_IN  
PN7462 family  
RF transmitter  
supply  
TVSS  
TVSS  
aaa-021144  
The capacitance value must be chosen so that the capacitance value is correct at 5 V.  
1. Using TXLDO.  
2. Without using TXLDO.  
Figure 37.ꢀPowering up the contactless interface using an external RF transmitter supply  
Note: The TVDD_OUT pin must not be left floating. It should be at the same voltage as  
the TVDD_IN pin.  
The power design must be designed properly to be able to deliver a clean power supply  
voltage.  
In any case (external TVDD or internal TX_LDO internal supply), TVDD_IN supply must  
be stable before turning on the RF field. The capacitor shall be 6.8 μF or higher (up to 10  
μF)  
Every noise level on top of the supply voltage can disturb the RF communication  
performance of the PN7462 family. Therefore, special attention must be paid to the  
filtering circuit.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
64 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
When powering up the device through the USB interface, TVDD capacitor value  
shall be chosen so that the maximum capacitance on VBUS remains as per the USB  
specification.  
9.1.3 Powering up the contact interface  
SAM  
SCVDD  
SAP  
VUP  
GDNP  
VBUSP  
PN7462  
VCC  
VBUS  
GNDC  
V
I
,
DDP(VBUS)  
DDP(VBUS)  
aaa-021145  
1. The capacitances values must be chosen so that the capacitance values are correct at 5.6 V.  
Figure 38.ꢀPowering up the contact interface  
Contact interface is powered through VBUSP. VBUSP must be connected to VBUS, as  
per the schematic in Figure 38.  
In order to provide the right voltage needed for the various ISO/IEC 7816 contact card  
classes (A, B, or C), the following voltages are needed:  
VDDP(VBUSP) > 2.7 V: Support of class B and class C contact cards  
VDDP(VBUSP) > 3 V: Support of class A contact cards  
Remark: To support class A cards, DC-to-DC converter is used. To support class B  
cards with VDDP(VBUSP) < 3.9 V, DC-to-DC converter is used.  
Figure 39 indicates the method to connect the pins related to contact interfaces, when no  
contact interface is used.  
SAM  
SCVDD  
GDNP  
n.c.  
n.c.  
SAP  
VUP  
n.c.  
n.c.  
PN7462  
VBUSP  
VBUS  
VCC  
n.c.  
GNDC  
V
I
,
DDP(VBUS)  
DDP(VBUS)  
connections when CT interface  
is not used  
aaa-021146  
Figure 39.ꢀContact interface power supply connection when contact interface is not used  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
65 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
9.2 Connecting the USB interface  
(1)  
Cp = 10 nF  
USB  
connector  
Rs = 1 kΩ  
USB_VBUS  
USB_DP  
USB_DM  
PN7462 family  
aaa-021147  
1. Cp is optional.  
Figure 40.ꢀUSB interface on a bus-powered device  
When the USB interface is not used, the USB_VBUS pin shall be connected to the  
ground.  
9.3 Connecting the contact interface  
The following diagrams indicate the method to connect the contact interface, when the  
contact interface is used, and when it is not used.  
PRES  
AUX1  
CLK  
RST  
C1 C2 C3 C4  
PRES  
(1)  
C = 100 nF  
PN7462  
V
PVDD_IN  
GNDC  
C5 C6 C7 C8  
(2)  
C = 470 nF  
R = 0 Ω  
VCC  
IO  
AUX2  
aaa-021148  
1. To place close to C1 (VCC) pin of the card connector, with good connection to the ground.  
2. Place close to VCC pin, with good connection to GNDC.  
Figure 41.ꢀConnecting the contact interface  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
66 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
PRES  
AUX1  
CLK  
n.c.  
n.c.  
n.c.  
n.c.  
RST  
PN7462  
GNDC  
VCC  
IO  
n.c.  
n.c.  
n.c.  
AUX2  
connections when CT interface  
is not used  
aaa-021149  
Figure 42.ꢀConnection of contact interface when not used  
9.4 Connecting the RF interface  
Cant  
ANT1  
C3=1 nF  
RX1  
R
C1  
L
TX1  
antenna  
antenna  
C0  
C0  
C2  
C2  
TVSS  
TX2  
PN7462 family  
L
C1  
R
C3=1 nF  
RX2  
Cant  
ANT2  
VMID  
C=100 nF  
aaa-021150  
Figure 43.ꢀRF interface - example of connection to an antenna  
9.5 Unconnected I/Os  
When not used, the following pins need to be "not connected":  
I2C Master interface: I2CM_SDA, I2CM_SCL  
SPI Master interface: SPIM_SSN, SPIM_SCLK, SPIM_MOSI, SPIM_MISO  
AUX interface: INT_AUX, IO_AUX, CLK_AUX (PN7462 only)  
Pads have to be configured in GPIO mode, pad input and output driver need to be  
disabled.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
67 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
10 Limiting values  
Table 26.ꢀLimiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VESD  
electrostatic discharge voltage  
Human Body Model (HBM)  
[1]  
[1]  
on card pins IO, RST, VCC,  
AUX1, CLK, AUX2, PRESN  
-12  
-2  
+12  
+2  
kV  
kV  
on all pins except contact  
interface pins  
Charged Device Model (CDM)  
on all pins  
[1]  
-1  
-55  
-
+1  
kV  
Tstg  
storage temperature  
non-operating  
+150  
+125  
1050  
°C  
Tj(max)  
Ptot  
maximum junction temperature  
total power dissipation  
°C  
reader mode; VDDP(VBUS) = 5.5 V  
-
mW  
[1] EIA/JESD22-A114-D.  
Table 27.ꢀLimiting values for GPIO1 to GPIO12  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
-0.3  
4.2  
V
Table 28.ꢀLimiting values for I2C master pins (i2cm_sda, i2cm_scl)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
-0.3  
4.2  
V
Table 29.ꢀLimiting values for SPI master pins ( spim_nss, spim_miso, spim_mosi and spi_clk)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
-0.3  
4.2  
V
Table 30.ꢀLimiting values for host interfaces atx_a, atx_b, atx_c, atx_d in all configurations (USB, HSUART, SPI and  
I2C)  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
-0.3  
4.2  
V
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
68 / 108  
 
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 31.ꢀLimiting values for crystal oscillator  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
high-level input voltage  
XTAL1, XTAL2  
0
2.2  
V
Table 32.ꢀLimiting values for power supply  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter Conditions  
Min  
-0.3  
-0.3  
Max  
6
Unit  
V
[1]  
[1]  
VDDP(VBUS) power supply voltage on pin VBUS  
VDDP(VBUSP) power supply voltage on pin VBUSP  
6
V
pin supply voltage for host interface and GPIOs (on pin PVDD_IN)  
[1]  
[1]  
VDD(PVDD)  
PVDD supply voltage  
on pin PVDD_IN; power supply  
for host interfaces and GPIOs  
-0.3  
-0.3  
4.2  
4.2  
V
V
pin supply voltage for master interfaces (on pin PVDD_M_IN)  
VDD(PVDD)  
PVDD supply voltage  
on pin PVDD_M_IN; power  
supply for master interfaces  
RF interface LDO (pin VUP_TX)  
VI(LDO) LDO input voltage  
RF transmitter (pin TVDD_IN)  
VDD(TVDD) TVDD supply voltage  
[1]  
[1]  
for RF interface LDO  
-0.3  
-0.3  
6
6
V
V
for RF interface transmitter  
[1] Maximum/minimum voltage above the maximum operating range and below ground that can be applied for a short time (< 10 ms) to a device without  
leading to irrecoverable failure. Failure includes the loss of reliability and shorter life time of the device.  
Table 33.ꢀLimiting values for contact interface  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VIH  
high-level input voltage  
on card pins IO, RST, AUX1,  
AUX2, CLK  
-0.3  
5.75  
V
Table 34.ꢀProtection and limitations for contact interface  
Symbol  
IOlim  
Parameter  
Conditions  
Min  
5
Typ  
Max Unit  
output current limit on IO, C4, C8  
shutdown current  
class A, B, C  
8
15  
mA  
mA  
mA  
mA  
mA  
Isd  
on pin VCC = 5 V  
70  
75  
75  
60  
85  
90  
90  
70  
110  
110  
110  
90  
on pin VCC = 3 V (doubler mode)  
on pin VCC = 3 V (follower mode)  
on pin VCC = 1.8 V  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
69 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 35.ꢀLimiting values for RF interface  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vi  
input voltage  
on pins RXN and RXP  
0
2.2  
V
1. Maximum/minimum voltage above the maximum operating range and below  
ground that can be applied for a short time (< 10 ms) to a device without leading to  
irrecoverable failure. Failure includes the loss of reliability and shorter life time of the  
device.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
70 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
11 Recommended operating conditions  
Table 36.ꢀOperating conditions  
Symbol  
Tamb  
Parameter  
Conditions  
Min  
-40  
2.3  
Typ  
25  
-
Max Unit  
ambient temperature  
JDEC PCB - 0.5  
85  
°C  
V
VDDP(VBUS)  
power supply voltage on pin VBUS external PVDD supply, card  
5.5  
emulation and passive target  
(PLM)  
external PVDD supply, reader  
mode, NFC initiator and passive/  
active target mode (ALM and  
PLM)  
2.7  
4
-
-
5.5  
5.5  
V
V
internal PVDD_LDO supply,  
reader mode, NFC initiator and  
passive/active target mode (ALM  
and PLM)  
VDDP(VBUSP) power supply voltage on pin VBUSP class B and class C contact card  
2.7  
3
-
-
5.5  
5.5  
V
V
class A, class B, and class C  
contact card  
host interface and GPIOs pin power supply (pin PVDD_IN)  
VDD(PVDD)  
PVDD supply voltage  
for digital pins  
1.8 V pin supply  
3.3 V pin supply  
1.65 1.8  
3.3  
1.95  
3.6  
V
V
3
SPI master and I2C master interfaces pin power supply (on pin PVDD_M_IN)  
VDD(PVDD)  
PVDD supply voltage  
for master pins  
1.8 V pin supply  
3.3 V pin supply  
1.65 1.8  
1.95  
3.6  
V
V
3
3.3  
RF interface LDO (pin VUP_TX)  
VI(LDO) LDO input voltage  
TX_LDO supply for powering up  
RF interface  
3
5
5.5  
V
RF interface transmitter  
IDD(TVDD)  
TVDD supply current  
on pin TVDD_IN  
-
-
250  
mA  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
71 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
12 Thermal characteristics  
Table 37.ꢀThermal characteristics  
Symbol  
Parameter  
Conditions  
Typical VFBGA64  
package  
Typical HVQFN64  
package  
Unit  
Rth(j-a)  
thermal resistance in free air with exposed pad  
53.4  
40.0  
°K/W  
from junction to  
ambient  
soldered on a four-layer JEDEC  
PCB  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
72 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
13 Characteristics  
13.1 Static characteristics  
Table 38.ꢀStatic characteristics for RST_N input pin  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
VIH  
Parameter  
Conditions  
Min  
1.1  
0
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
-
VDDP(VBUS)  
VIL  
-
0.4  
V
IIH  
high-level input current Vi = VDDP(VBUS)  
low-level input current Vi = 0 V  
input capacitance  
-
-
1
-
μA  
μA  
pF  
IIL  
-1  
-
-
Cin  
5
-
Table 39.ꢀStatic characteristics for IRQ output pin  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
VPVDD_IN  
0.4  
-
-
VPVDD_IN  
V
VOL  
low-level output  
voltage  
IOL < 3 mA  
0
-
0.4  
V
CL  
load capacitance  
extra pull down  
-
-
-
20  
pF  
Rpull-down  
extra pull-down is  
activated in HDP  
0.45  
0.8  
MΩ  
Table 40.ꢀStatic characteristics for DWL_REQ  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH  
high-level input voltage VVPVDD_IN= 1.8 V  
0.65 ×  
-
-
V
VPVDD_IN  
VIL  
high-level input voltage VVPVDD_IN= 1.8 V  
-
-
0.35 ×  
V
VPVDD_IN  
VIH  
VIL  
IIH  
high-level input voltage VVPVDD_IN = 3.3 V  
high-level input voltage VVPVDD_IN = 3.3 V  
high-level input current VI = PVDD_IN  
low-level input current VI = 0 V  
load capacitance  
2
-
-
-
V
-
0.8  
V
-
-
1
-
μA  
μA  
pF  
IIL  
-1  
-
-
CL  
5
-
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
73 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
13.1.1 GPIO static characteristics  
Table 41.ꢀStatic characteristics for GPIO1 to GPIO21  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
VPVDD_IN  
0.4  
-
-
VPVDD_IN  
V
VOL  
VIH  
low-level output  
voltage  
IOH < 3 mA  
0
-
0.4  
V
high-level input voltage VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
2
-
-
-
-
V
V
0.65 ×  
VPVDD_IN  
VIL  
low-level input voltage VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
-
-
-
-
0.8  
V
V
0.35 ×  
VPVDD_IN  
Vhys  
IOZ  
hysteresis voltage  
VPVDD_IN = 1.8 V and  
VPVDD_IN = 3.3 V  
0.1 ×  
VPVDD_IN  
-
-
-
V
OFF-state output  
current  
VO = 0 V; VO =  
-
1000  
nA  
VPVDD_IN; on-chip pull-  
up/pull-down resistors  
disabled  
Rpd  
Rpu  
IOSH  
pull-down resistance  
pull-up resistance  
VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
VPVDD_IN = 3.3 V  
VPVDD_IN = 1.8 V  
65  
65  
65  
65  
-
90  
90  
90  
90  
-
120  
120  
120  
120  
58  
kΩ  
kΩ  
kΩ  
kΩ  
mA  
short circuit current  
output high  
Drive high; cell  
connected to ground;  
VPVDD_IN = 3.3 V  
Drive low; cell  
connected to  
-
-
30  
mA  
PVDD_IN; VPVDD_IN  
1.8 V  
=
IOSL  
short circuit current  
output low  
VOH = VPVDD_IN = 3.3  
V
-
-
-
-
54  
37  
mA  
mA  
VOH = VPVDD_IN = 1.8  
V
IIL  
low-level input current VI = 0 V  
-1  
-
-
-
-
-
µA  
µA  
mA  
IIH  
IOH  
high-level input current VI = VPVDD_IN  
1
3
high-level output  
current  
VOH = VPVDD_IN  
-
IOL  
low-level output  
current  
VOL = 0 V  
-
-
3
mA  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
74 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
13.1.2 Static characteristics for I2C master  
Table 42.ꢀStatic characteristics for I2CM_SDA, I2CM_SCL - S  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOH  
high-level output  
voltage  
IOH < 3 mA  
0.7 ×  
VPVDD_M_IN  
-
VPVDD_M_IN  
V
VOL  
low-level output  
voltage  
IOL < 3 mA  
0
-
0.4  
V
CL  
load capacitance  
-
-
-
10  
-
pF  
V
VIH  
High-level input  
voltage  
0.7 ×  
VPVDD_M_IN  
VIL  
low-level input voltage  
-
-
0.3 ×  
V
VPVDD_M_IN  
IIH  
IIL  
high-level input current VI = VPVDD_M_IN  
low-level input current VI = 0 V  
input capacitance  
-
-
1
-
μA  
μA  
pF  
-1  
-
-
Cin  
5
-
13.1.3 Static characteristics for SPI master  
Table 43.ꢀStatic characteristics for SPIM_MOSI  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN - 0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load Capacitance  
IOL< 3 mA  
0
-
0.4  
20  
V
CL  
pF  
Table 44.ꢀStatic characteristics for SPIM_NSS  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN - 0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load Capacitance  
IOL < 3 mA  
0
-
0.4  
20  
V
CL  
pF  
Table 45.ꢀStatic characteristics for SPIM_MISO  
Symbol  
VIH  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
input capacitance  
VPVDD_M_IN = 1.8 V  
VPVDD_M_IN = 1.8 V  
VPVDD_M_IN = 3.3 V  
VPVDD_M_IN = 3.3 V  
Vi = VPVDD_M_IN  
Vi = 0 V  
0.65 × VPVDD_M_IN  
-
-
-
-
-
-
5
-
-
0.35 × VPVDD_M_IN  
V
VIH  
VIL  
2
-
-
V
0.8  
V
IIH  
-
1
-
µA  
µA  
pF  
IIL  
-1  
-
Cin  
-
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
75 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 46.ꢀStatic characteristics for SPI_SCLK  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
VPVDD_M_IN - 0.4  
-
-
-
VPVDD_M_IN  
VOL  
low-level output voltage  
load capacitance  
IOL < 3 mA  
0
-
0.4  
20  
V
CL  
pF  
13.1.4 Static characteristics for host interface  
Table 47.ꢀStatic characteristics for ATX_ used as SPI_NSS, ATX_ used as I2CADR0, ATX_ used as SPI_SCK, ATX_  
used as SPI_MOSI  
Symbol  
VIH  
VIL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level input voltage  
low-level input voltage  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
input capacitance  
VPVDD_IN = 1.8 V  
VPVDD_IN = 1.8 V  
VPVDD_IN = 3.3 V  
VPVDD_IN = 3.3 V  
Vi = VPVDD_IN  
Vi = 0 V  
0.65 × VPVDD_M_IN  
-
-
-
-
-
-
5
-
-
0.35 × VPVDD_M_IN  
V
VIH  
VIL  
2
-
-
V
0.8  
V
IIH  
-
1
-
µA  
µA  
pF  
IIL  
-1  
-
Cin  
-
Table 48.ꢀStatic characteristics of ATX_ used as I2CSDA, ATX_ used as I2CSCL  
Symbol  
VOH  
VOL  
CL  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
high-level output voltage IOH < 3 mA  
0.7 × VPVDD_IN  
-
-
-
-
-
-
-
5
VPVDD_IN  
low-level output voltage  
load capacitance  
IOL < 3 mA  
0
0.4  
V
-
10  
pF  
V
VIH  
high-level input voltage  
low-level input voltage  
high-level input current  
low-level input current  
Input capacitance  
0.7 × VPVDD_IN  
-
VIL  
-
0.3 × VPVDD_IN  
V
IIH  
Vi = VPVDD_IN  
Vi = 0 V  
-
1
-
μA  
μA  
pF  
IIL  
-1  
-
Cin  
-
Table 49.ꢀStatic characteristics of ATX_ used as SPIMISO  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
VPVDD_IN  
0.4  
Unit  
V
high-level output voltage IOH < 3 mA  
low-level output voltage IOL < 3 mA  
load capacitance  
VPVDD_IN - 0.4  
-
-
-
VOL  
0
-
V
CL  
20  
pF  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
76 / 108  
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Table 50.ꢀUSB characteristics  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
-10  
4
Typ  
Max  
10  
Unit  
μA  
V
IOZ  
OFF-state output current 0 V < Vi < 3.3 V  
-
-
VDDP(VBUS) power supply voltage on  
pin VBUS  
5.5  
VDI  
differential input  
sensitivity voltage  
(D+) - (D-)  
0.2  
0.8  
0.8  
-
-
-
-
V
V
V
VCM  
differential common  
mode voltage range  
includes VDI range  
2.5  
2
Vth(rs)se  
single-ended receiver  
switching threshold  
voltage  
VOL  
low-level output voltage for low-speed or full-  
-
-
-
0.3  
V
V
speed; RL of 1.5 kΩ to  
3.6 V  
VOH  
high-level output voltage driven; for low- speed  
or full-speed;  
2.8  
VPVDD_IN  
RL of 15 kΩ to GND  
Ctrans  
ZDRV  
transceiver capacitance pin to GND  
-
15  
-
-
pF  
Ω
driver output impedance with 33 Ω series  
28  
44  
for driver which is not  
high-speed capable  
resistor; steady state  
drive  
VCRS  
output signal crossover  
voltage  
1.3  
-
2
V
Table 51.ꢀStatic characteristics of HSU_TX and HSU RTS pin  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
VOH  
Parameter  
Conditions  
Min  
Typ  
Max  
VPVDD_IN  
0.4  
Unit  
V
high-level output voltage IOH < 3 mA  
low-level output voltage IOL < 3 mA  
load capacitance  
VPVDD_IN - 0.4  
-
-
-
VOL  
0
-
V
CL  
20  
pF  
Table 52.ꢀStatic characteristics of HSU_RX, HSU_CTS  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
VIH  
Parameter  
high-level input voltage VPVDD_M_IN = 1.8 V  
low-level input voltage VPVDD_M_IN = 1.8 V  
high-level input voltage VPVDD_M_IN = 3.3 V  
Conditions  
Min  
Typ  
Max  
Unit  
V
0.65 × VPVDD_IN  
-
-
-
-
-
-
-
VIL  
-
0.35 × VPVDD_IN  
V
VIH  
2
-
-
V
VIL  
low-level input voltage  
high-level input current  
low-level input current  
VPVDD_M_IN = 3.3 V  
0.8  
1
V
IIH  
-
μA  
μA  
IIL  
-1  
-
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
77 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CL  
load capacitance  
-
5
-
pF  
13.1.5 Clock static characteristics  
Table 53.ꢀStatic characteristics of XTAL pin (XTAL1, XTAL2)  
Tamb = -40 °C to +85°C  
Symbol  
Parameter[1]  
Conditions  
Min  
Typ[2] Max  
Unit  
Input clock characteristics on XTAL1 when using PLL  
Vi(p-p)  
peak-to-peak input  
voltage  
0.2  
-
1.65  
V
XTAL pin characteristics XTAL PLL input  
IIH  
high-level input current  
low-level input current  
input voltage  
Vi = VDD  
Vi = 0 V  
-
-
1
μA  
μA  
V
IIL  
-1  
-
-
Vi  
-
-
VDD  
VAL  
Cin  
input voltage amplitude  
input capacitance  
200  
-
-
-
-
mV  
pF  
all power modes  
2
Pin characteristics for 27.12 MHz crystal oscillator  
Cin  
Cin  
input capacitance  
input capacitance  
pin XTAL1  
pin XTAL2  
-
-
2
2
-
-
pF  
pF  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.  
13.1.6 Static characteristics - power supply  
Table 54.ꢀStatic characteristics for power supply  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDDP(VBUSP)  
power supply current  
on pin VBUSP  
external supply current for  
contact interface, in operating  
mode  
-
-
200  
mA  
pin supply: PVDD_LDO  
VO(LDO)  
LDO output voltage  
VDDP(VBUS) >= 4.0 V, IPVDDOUT  
<= 30 mA  
3
-
3.3  
-
3.6  
30  
V
IDD(PVDD_OUT) maximum supply  
current  
for pin PVDD_OUT  
mA  
pin supply for host interface and GPIOs (on pin PVDD_IN)  
IDD(PVDD) PVDD supply current  
pin supply for master interfaces (on pin PVDD_M_IN)  
IDD(PVDD) PVDD supply current  
contactless interface: TX_LDO (pins VUP_TX, TVDD_OUT)  
-
-
-
-
25  
25  
5.5  
mA  
mA  
V
-
VI(LDO)  
LDO input voltage  
3
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
78 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IL(LDO)(max)  
maximum LDO load  
current  
-
-
180  
mA  
VO(LDO)  
LDO output voltage  
DC output voltage (target: 3.0 V)  
5.5 V > VI(LDO) > 3.3 V  
2.8  
-
3
3.25  
-
V
DC output voltage (target: 3.0 V)  
3.3 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
-
-
-
V
DC output voltage (target: 3.3 V)  
5.5 V > VI(LDO) > 3.6 V  
3.1  
-
3.3  
3.55  
-
V
DC output voltage (target: 3.3 V)  
3.6 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
V
DC output voltage (target: 3.6 V)  
5.5 V > VI(LDO) > 3.9 V  
3.4  
-
3.6  
3.95  
-
V
DC output voltage (target: 3.6 V)  
3.9 V > VI(LDO) > 2.7 V  
VI(LDO)  
0.3  
V
DC output voltage (target: 4.5 V)  
5.5 V > VI(LDO) > 5.0 V  
4.3  
4.55  
-
4.5  
4.75  
-
4.9  
5.2  
180  
V
DC output voltage (target: 4.7 V)  
5.5 V > VI(LDO) > 5.0 V  
V
IO(LDO)  
LDO output current  
VI(LDO) = 5.5 V  
mA  
Contactless interface: RF transmitter (on pin TVDD_IN)  
IDD(TVDD)  
TVDD supply current  
maximum current supported by  
the RF transmitter  
-
-
250  
mA  
nF  
Contact Interface: smart card power supply (pin VCC)  
Cdec decoupling capacitance connected on pin VCC (220 nF  
396  
570  
1000  
+ 220 nF 10 %)  
VCC  
supply voltage  
class A; ICC < 60 mA  
class B; ICC < 50 mA  
class C; ICC < 30 mA  
4.75  
2.85  
1.71  
4.6  
5
5.25  
3.15  
1.89  
5.4  
V
V
V
V
3
1.8  
-
class A; current pulses of 40 nA  
with ICC < 200 mA, tw < 400 ns  
class B; current pulses of 40 nA  
with ICC < 200 mA, tw < 400 ns  
2.76  
1.66  
-
-
-
-
3.24  
1.94  
350  
V
class C; current pulses of 12 nA  
with ICC < 200 mA, tw < 400 ns  
V
Vripple(p-p)  
SR  
peak-to-peak ripple  
voltage  
from 20 kHz to 200 MHz  
mV  
slew rate on pin VCC  
5 V, class A cards  
3 V, class B cards  
1.8 V, class C cards  
class A  
0.02  
-
-
-
-
-
0.025  
0.015  
0.009  
60  
V/μs  
V/μs  
V/μs  
mA  
0.012  
0.0072  
ICC  
supply current  
-
-
class B  
55  
mA  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
79 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
35  
Unit  
mA  
mA  
class C  
-
-
-
-
Pin VCC shorted to ground  
110  
Contact interface: DC-to-DC converter  
VSAP SAP (DC-to-DC  
VDDP(VBUSP) = 5 V, VCC = 5 V;  
-
-
-
-
-
-
-
-
9
V
V
V
V
V
V
V
converter) - high-level ICC < 60 mA DC  
output voltage  
VDDP(VBUSP) = 5 V, VCC = 3 V;  
ICC < 55 mA DC  
-
5
VDDP(VBUSP) = 5 V, VCC = 1.8 V;  
ICC < 35 mA DC  
-
5
VDDP(VBUSP) = 3.3 V, VCC = 5 V;  
ICC < 60 mA DC  
-
9
VDDP(VBUSP) = 3.3 V, VCC = 3 V;  
ICC < 55 mA DC  
-
9
VDDP(VBUSP) = 3.3 V, VCC = 1.8  
V; ICC < 35 mA DC  
-
3.3  
5.9  
VUP  
VUP - high-level output Class A; VDDP(VBUSP) = 3 V to 5  
5.35  
voltage  
V, ICC < 60 mA  
Class B; ICC < 55 mA  
3.53  
2.4  
-
-
5.5  
5.5  
V
V
Class C, VDDP(VBUSP) = 2.7 V to  
5.5 V, ICC < 35 mA DC  
CSAPSAM  
DC-to-DC converter  
capacitance  
connected between SAP and  
SAM with VDDP(VBUSP) = 3 V  
300  
1.5  
470  
2.7  
600  
4.7  
nF  
µF  
CVUP  
DC-to-DC converter  
capacitance  
connected on pin VUP  
Voltage detector for the DC-to-DC converter  
Vdet  
detection voltage  
on pin VBUSP for doubler  
selection, follower/doubler for  
class B card  
3.775  
3.9  
4.2  
V
Table 55.ꢀStatic characteristics for voltage monitors  
Tamb = -40 °C to +85 °C  
Symbol  
Parameter  
Conditions  
VBUS monitor  
set to 2.3 V  
set to 2.7 V  
set to 4.0 V  
VBUS monitor  
set to 2.3 V  
set to 2.7 V  
set to 4.0 V  
Min  
Typ  
Max  
Unit  
V(th)HL  
negative-going  
threshold voltage  
2.15  
2.6  
2.3  
2.45  
2.95  
3.9  
V
V
V
2.75  
3.8  
3.6  
Vhys  
hysteresis voltage  
100  
100  
40  
150  
150  
80  
200  
200  
100  
mV  
mV  
mV  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
80 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
VBUSP monitor  
set to 2.7 V  
set to 3.0 V  
set to 3.9 V  
VBUSP monitor  
set to 2.7 V  
set to 3.0 V  
set to 3.9 V  
Min  
Typ  
Max  
Unit  
V(th)HL  
negative-going  
threshold voltage  
2.45  
2.68  
3.7  
2.56  
2.825  
3.9  
2.65  
2.95  
4.1  
V
V
V
Vhys  
hysteresis voltage  
12  
14  
20  
25  
30  
35  
35  
40  
55  
mV  
mV  
mV  
13.1.7 Static characteristics for power modes  
Table 56.ꢀStatic characteristics for power modes  
Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IDDP(VBUS) power supply current on  
pin VBUS  
active mode; VDDP(VBUS) = 5.5 V,  
external PVDD, external TVDD, all  
IP clocks disabled  
-
6.5  
-
mA  
code  
while(1){}  
executed from flash;  
active mode; VDDP(VBUS) = 5.5 V,  
external PVDD, external TVDD, all  
IP clocks enabled  
-
8.5  
-
mA  
code  
while(1){}  
executed from flash;  
suspend mode; VDDP(VBUS) = 5.5 V,  
external PVDD, T = 25 °C  
-
-
120  
360  
250  
440  
μA  
µA  
VBUS = 5.5 V, T = 25 °C, internal  
PVDD LDO, including D+ and D-  
pull-up  
standby mode; VDDP(VBUS) = 3.3 V;  
external PVDD supply; Tamb = 25 °C  
-
-
-
18  
55  
12  
-
μA  
μA  
μA  
standby mode; VDDP(VBUS) = 5.5 V;  
Vinternal PVDD supply; Tamb = 25 °C  
-
hard power down; VDDP(VBUS)  
=
18  
5.5 V; RST_N = 0 V; Tamb = 25 °C  
13.1.8 Static characteristics for contact interface  
Table 57.ꢀStatic characteristics for contact interface  
Tamb = -40 °C to +80 °C  
Symbol Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Data lines (pins IO, AUX1, AUX2)  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
81 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
0
Typ  
Max  
Unit  
V
Vo  
output voltage on pin IO  
inactive mode, no load  
inactive mode, II/O = 1 mA  
pin IO Configured as output  
-
-
-
0.1  
0
0.3  
V
VOL  
low-level output voltage  
0
0.15 × VCC  
V
IOL = 1 mA (class A,B), 500 μA  
(class C)  
pin IO configure as output, IOL < 15  
mA  
0
-
-
0.4  
V
V
VOH  
high-level output voltage pin IO configure as output, IOH  
<
0.9 × VCC  
VCC  
-200 µA, VCC = 5 V, 3 V and 1.8 V;  
active pull-up  
pin IO configure as output, IOH < -20  
μA; VCC = 1.8 V  
0.8 × VCC  
0
-
-
VCC  
0.4  
V
V
pin IO configure as output, IOH < 15  
mA  
VIL  
VIH  
Vhys  
IIL  
low-level input voltage  
high-level input voltage  
hysteresis voltage  
pin IO configure as input  
0
-
0.2 × VCC  
VCC  
V
0.6 × VCC  
-
V
on pin IO  
20  
-
75  
-
120  
mV  
μA  
μA  
kΩ  
low-level input current  
on pin IO; VIL = 0 V  
750  
ILH  
high-level leakage current on pin IO; VIH = VCC  
-
-
10  
Rpu  
pull-up resistance  
connected to VCC  
7
10  
13  
Reset output to the card  
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io = 1 mA  
0
0
0
-
-
-
0.1  
0.3  
0.3  
V
V
V
VOL  
low-level output voltage  
IOL = 200 µA, VCC = 5 V and VCC  
3 V  
=
IOL = 200 µA, VCC = 1.8 V  
0
-
-
0.1 × VCC  
VCC  
V
V
VOH  
high-level output voltage IOH = -200 μA  
0.9 × VCC  
Clock output to the card  
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io = 1 mA  
IOL = 200 μA  
0
0
0
-
-
-
0.1  
V
V
V
0.3  
VOL  
low-level output voltage  
minimum  
(0.1 × VCC  
0.3)  
;
VOH  
high-level output voltage IOH = -200 μA  
0.9 × VCC  
-0.3  
-
VCC  
V
Card presence input  
VIL  
low-level input voltage  
-
-
-
0.3 ×  
VPVDD_IN  
V
V
V
VIH  
Vhys  
high-level input voltage  
hysteresis voltage  
0.7 ×  
VPVDD_IN  
VPVDD_IN  
0.3  
+
0.03 ×  
-
VPVDD_IN  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
82 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
ILL  
Parameter  
Conditions  
Min  
Typ  
Max  
1
Unit  
μA  
low-level leakage current VIL = 0  
-
-
-
-
ILH  
high-level leakage current VIH = VPVDD_IN  
5
μA  
13.1.9 Static characteristics RF interface  
Table 58.ꢀStatic characteristics for RF interface  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pins ANT1 and ANT2  
Z
impedance  
between ANT1 and ANT2;  
low impedance  
-
10  
17  
Ω
pins RXN and RXP  
Vi(dyn)  
Cin  
dynamic input voltage  
on pins RXN and RXP  
on pins RXN and RXP  
-
-
VDD - 0.05  
V
input pin capacitance  
impedance  
-
12  
-
-
pF  
kΩ  
Z
between pins RX to VMID;  
reader, card emulation and  
P2P modes  
0
15  
Vdet  
detection voltage  
card emulation and target  
modes; configuration for 19  
mV threshold  
-
-
30  
mV(p-p)  
pins TX1 and TX2  
VOH  
VOL  
ROL  
high-level output voltage pins TX1 and TX2; TVDD_IN  
3.1 V and IOH = 30 mA  
=
=
VTVDD_IN  
- 150  
-
-
-
-
-
-
mV  
mV  
Ω
low-level output voltage pins TX1 and TX2; TVDD_IN  
3.1; ITX = 30 mA  
-
-
-
-
200  
80  
10  
10  
low-level output  
resistance  
VTX = VTVDD - 100 mV;  
CWGsN = 01h  
VTX = VTVDD - 100 mV;  
CWGsN = 0Fh  
Ω
ROH  
high-level output  
resistance  
VTX = VTVDD - 100 mV  
Ω
13.2 Dynamic characteristics  
Table 59.ꢀDynamic characteristics for IRQ output pin  
Data are given for Tamb = -40 °C to +85 °C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time  
high speed; CL = 12 pF;  
VPVDD_IN = 3.3 V  
1
-
3.5  
ns  
high speed; CL = 12 pF;  
VPVDD_IN = 1.8 V  
1
3
-
-
3.5  
10  
ns  
ns  
tf  
fall time  
slow speed; CL = 12 pF;  
VPVDD_IN = 3.3 V  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
83 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
slow speed; CL = 12 pF;  
VPVDD_IN = 1.8 V  
2
-
10  
ns  
tr  
rise time  
high speed: CL = 12 pF;  
VPVDD_IN = 3.3 V  
1
1
3
2
-
-
-
-
3.5  
3.5  
10  
ns  
ns  
ns  
ns  
high speed: CL = 12 pF;  
VPVDD_IN = 1.8 V  
tr  
rise time  
slow speed: CL = 12 pF;  
VPVDD_IN = 3.3 V  
slow speed: CL = 12 pF;  
VPVDD_IN = 1.8 V  
10  
13.2.1 Flash memory dynamic characteristics  
Table 60.ꢀDynamic characteristics for flash memory  
Symbol  
tprog  
Parameter  
Conditions  
Min  
Typ  
-
Max  
Unit  
programming time  
endurance  
1 page (64 bytes); slow clock  
-
2.5  
ms  
NEndu  
tret  
200  
-
500  
20  
-
-
kcycles  
years  
retention time  
13.2.2 EEPROM dynamic characteristics  
Table 61.ꢀDynamic characteristics for EEPROM  
Symbol  
tprog  
Parameter  
Conditions  
Min  
Typ  
2.8  
500  
20  
Max  
Unit  
programming time  
endurance  
1 page (64 bytes)  
-
-
-
-
ms  
NEndu  
tret  
300  
-
kcycles  
years  
retention time  
13.2.3 GPIO dynamic characteristics  
80 %  
80 %  
50 %  
20 %  
50 %  
20 %  
gnde  
t
t
r
f
aaa-021151  
Figure 44.ꢀOutput timing measurement condition for GPIO  
Table 62.ꢀDynamic characteristics for GPIO1 to GPIO21  
Tamb = -40 °C to +85 °C  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
tr  
rise time  
CL = 12 pF; PVDD = 1.8 V; slow  
speed  
2.0  
10.0  
ns  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
84 / 108  
 
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
1.0  
3.0  
Max  
3.5  
Unit  
ns  
CL = 12 pF; PVDD = 1.8 V; fast speed  
CL = 12 pF; PVDD = 3.3 V; slow  
speed  
10.0  
ns  
CL = 12 pF; PVDD = 3.3 V; fast speed  
1.0  
2.0  
3.5  
ns  
ns  
tf  
fall time  
CL = 12 pF; PVDD = 1.8 V; slow  
speed  
10.0  
CL = 12 pF; PVDD = 1.8 V; fast speed  
1.0  
3.0  
3.5  
ns  
ns  
CL = 12 pF; PVDD = 3.3 V; slow  
speed  
10.0  
CL = 12 pF; PVDD = 3.3 V; fast speed  
1.0  
3.5  
ns  
13.2.4 Dynamic characteristics for I2C master  
t
t
DA  
t
DA  
HD;DAT  
SDA  
SCL  
t
t
t
HIGH  
SU;STA  
HD;STA  
t
SU;DAT  
t
LOW  
aaa-021152  
²
Figure 45.ꢀI C-bus pins clock timing  
Table 63.ꢀTiming specification for fast mode plus I2C  
Tamb = -40 °C to +85 °C  
Symbol  
fSCL  
Parameter  
Conditions  
Min  
0
Max  
Unit  
MHz  
ns  
SCL clock frequency  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
1
-
tSU;STA  
set-up time for a  
(repeated) START  
condition  
260  
tHD;STA  
tLOW  
hold time (repeated)  
START condition  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
260  
500  
260  
-
-
-
ns  
ns  
ns  
low period of the SCL  
clock  
tHIGH  
high period of the SCL  
clock  
tSU;DAT  
tHD;DAT  
tr(SDA)  
tf(SDA)  
data set-up time  
data hold time  
SDA rise time  
SDA fall time  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
50  
0
-
-
ns  
ns  
ns  
ns  
-
120  
120  
-
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
85 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vhys  
hysteresis of Schmitt  
trigger inputs  
fast mode plus; Cb < 100 pF  
0.1 ×  
VPVDD_M_IN  
-
V
Table 64.ꢀTiming specification for fast mode I2C  
Tamb = -40 °C to +85 °C  
Symbol  
fSCL  
Parameter  
Conditions  
Min  
0
Max  
Unit  
kHz  
ns  
SCL clock frequency  
fast mode; Cb < 400 pF  
400  
-
tSU;STA  
set-up time for a (repeated) START fast mode; Cb < 400 pF  
condition  
600  
tHD;STA  
hold time (repeated) START  
condition  
fast mode; Cb < 400 pF  
600  
-
ns  
tLOW  
low period of the SCL clock  
high period of the SCL clock  
data set-up time  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode; Cb < 400 pF  
fast mode plus; Cb < 100 pF  
fast mode plus; Cb < 100 pF  
1.3  
600  
100  
0
-
μs  
ns  
ns  
ns  
ns  
ns  
V
tHIGH  
-
tSU;DAT  
tHD;DAT  
tr(SDA)  
tf(SDA)  
Vhys  
-
data hold time  
900  
250  
250  
-
SDA rise time  
30  
SDA fall time  
30  
hysteresis of Schmitt trigger inputs fast mode; Cb < 400 pF  
0.1 ×  
VPVDD_IN  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
86 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
13.2.5 Dynamic characteristics for SPI  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
MOSI  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
CPHA = 1  
t
t
DH  
DS  
DATA VALID  
MISO  
DATA VALID  
t
t
h(Q)  
v(Q)  
DATA VALID  
DATA VALID  
t
MOSI  
MISO  
t
CPHA = 0  
DS  
DH  
DATA VALID  
DATA VALID  
002aae829  
Figure 46.ꢀSPI master timing  
Table 65.ꢀDynamic characteristics and Timing specification for SPI master interface  
Symbol  
fSCK  
tDS  
Parameter  
Conditions  
Min  
0
Max  
6.78  
-
Unit  
MHz  
ns  
SCK frequency  
data set-up time  
data hold time  
controlled by the host  
25  
25  
-
tDH  
-
ns  
tv(Q)  
data output valid time  
data output hold time  
25  
25  
ns  
th(Q)  
-
ns  
Dynamic characteristics for SPI_SCLK, SPIM_NSS, SPIM_MOSI  
tf  
tr  
tf  
fall time  
rise time  
fall time  
rise time  
CL = 12 pF; high speed; VPVDD_IN = 3.3 V  
1
3
3.5  
10  
ns  
ns  
CL = 12 pF; slow speed; VPVDD_IN = 3.3  
V
CL = 12 pF; high speed; VPVDD_IN = 3.3 V  
1
3
3.5  
10  
ns  
ns  
CL = 12 pF; slow speed; VPVDD_IN = 3.3  
V
CL = 12 pF; high speed; VPVDD_IN = 1.8 V  
1
2
3.5  
10  
ns  
ns  
CL = 12 pF; slow speed; VPVDD_IN = 1.8  
V
tr  
CL = 12 pF; high speed; VPVDD_IN = 1.8 V  
1
3.5  
ns  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
87 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
CL = 12 pF; slow speed; VPVDD_IN = 1.8  
V
2
10  
ns  
13.2.6 Dynamic characteristics of host interface  
t
t
DA  
t
DA  
HD;DAT  
SDA  
SCL  
t
t
t
HIGH  
SU;STA  
HD;STA  
t
SU;DAT  
t
LOW  
aaa-021153  
Figure 47.ꢀI2C-bus pins clock timing  
Table 66.ꢀTiming specification for I2C high speed  
Tamb = -40 °C to +85 °C  
Symbol  
fscl  
Parameter  
Conditions  
high speed; Cb < 100 pF  
Min  
Max  
3.4  
-
Unit  
MHz  
ns  
clock frequency  
0
tSU;STA  
set-up time for a (repeated) high speed; Cb < 100 pF  
START condition  
160  
tHD;STA  
hold time (repeated) START high speed; Cb < 100 pF  
condition  
160  
-
ns  
tLOW  
low period of the SCL clock high speed; Cb < 100 pF  
high period of the SCL clock high speed; Cb < 100 pF  
160  
60  
10  
0
-
ns  
ns  
ns  
μs  
ns  
ns  
V
tHIGH  
-
tSU;DAT  
tHD;DAT  
tr(SDA)  
tf(SDA)  
Vhys  
data set-up time  
data hold time  
SDA rise time  
SDA fall time  
high speed; Cb < 100 pF  
high speed; Cb < 100 pF  
high speed; Cb < 100 pF  
high speed; Cb < 100 pF  
-
-
10  
10  
80  
80  
-
hysteresis of Schmitt trigger high speed; Cb < 100 pF  
inputs  
0.1 ×  
VPVDD_IN  
Table 67.ꢀDynamic characteristics for the I2C slave interface: ATX_B used as I2C_SDA, ATX_A used as I2C_SCL  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf  
fall time  
CL = 100 pF, Rpull-up = 2 K,  
standard and fast mode  
30  
-
250  
ns  
CL = 100 pF, Rpull-up = 1 K, high  
speed  
10  
-
80  
ns  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
88 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tr  
rise time  
CL = 100 pF, Rpull-up = 2 K,  
standard and fast mode  
30  
-
250  
ns  
CL = 100 pF, Rpull-up = 1 K, high  
speed  
10  
-
100  
ns  
T
cy(clk)  
SCK (CPOL = 0)  
SCK (CPOL = 1)  
t
t
DS  
DH  
MOSI  
MISO  
DATA VALID  
DATA VALID  
t
t
h(Q)  
v(Q)  
CPHA = 1  
DATA VALID  
DATA VALID  
t
t
DH  
DS  
MOSI  
MISO  
DATA VALID  
DATA VALID  
DATA VALID  
t
t
h(Q)  
CPHA = 0  
v(Q)  
DATA VALID  
002aae830  
Figure 48.ꢀSPI slave timings  
Table 68.ꢀDynamic characteristics for SPI slave interface  
Symbol  
fSCK  
tDS  
Parameter  
Conditions  
Min  
0
Max  
7
Unit  
MHz  
ns  
SCK frequency  
data set-up time  
data hold time  
controlled by the host  
25  
25  
-
-
tDH  
-
ns  
tv(Q)  
data output valid time  
data output hold time  
25  
25  
ns  
th(Q)  
-
ns  
Table 69.ꢀDynamic characteristics for SPI slave interface: ATX_C as SPI_MISO  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ns  
tf  
fall time  
CL = 12 pF; high speed;  
VPVDD_IN = 3.3 V  
1
-
3.5  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
89 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CL = 12 pF; slow speed;  
VPVDD_IN = 3.3 V  
3
-
10  
ns  
tr  
rise time  
CL = 12 pF; high speed;  
VPVDD_IN = 3.3 V  
1
3
1
2
1
2
-
-
-
-
-
-
3.5  
10  
ns  
ns  
ns  
ns  
ns  
ns  
CL = 12 pF; slow speed;  
VPVDD_IN = 3.3 V  
tf  
fall time  
rise time  
CL = 12 pF; high speed;  
VPVDD_IN = 1.8 V  
3.5  
10  
CL = 12 pF; slow speed;  
VPVDD_IN = 1.8 V  
tr  
CL = 12 pF; high speed;  
VPVDD_IN = 1.8 V  
3.5  
10  
CL = 12 pF; slow speed;  
VPVDD_IN = 1.8 V  
Table 70.ꢀDynamic characteristics for HSUART ATX_ as HSU_TX, ATX_ as HSU_RTS  
Symbol  
Parameter  
Conditions[1]  
Min  
1
Typ  
Max  
3.5  
10  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tf  
fall time  
high speed; VPVDD_IN = 3.3 V  
slow speed; VPVDD_IN = 3.3 V  
high speed; VPVDD_IN = 3.3 V  
slow speed; VPVDD_IN = 3.3 V  
high speed; VPVDD_IN = 1.8 V  
slow speed; VPVDD_IN = 1.8 V  
high speed; VPVDD_IN = 1.8 V  
slow speed; VPVDD_IN = 1.8 V  
-
-
-
-
-
-
-
-
3
tr  
tf  
tr  
rise time  
fall time  
rise time  
1
3.5  
10  
3
1
3.5  
10  
2
1
3.5  
10  
2
[1] CL=12 pF maximum.  
Table 71.ꢀDynamic characteristics for USB interface  
CL = 50 pF; Rpu = 1.5 kΩ on D+ to VBUS  
Symbol  
Parameter  
rise time  
fall time  
Conditions  
10 % to 90 %  
10 % to 90 %  
tr / tf  
Min  
Typ  
Max  
20  
Unit  
ns  
tr  
4
4
-
-
-
-
tf  
20  
ns  
tFRFM  
differential rise and fall time  
matching  
109  
%
VCRS  
output signal crossover voltage  
source SE0 interval of EOP  
1.3  
160  
-2  
-
-
-
2
V
tFEOPT  
tFDEOP  
T = 25 °C; see Figure 49  
175  
+5  
ns  
ns  
source jitter for differential transition T = 25 °C; see Figure 49  
to SE0 transition  
tJR1  
receiver jitter to next transition  
T = 25 °C  
-18.5  
-
+18.5 ns  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
90 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
tJR2  
Parameter  
Conditions  
Min  
-9  
Typ  
Max  
+9  
-
Unit  
ns  
receiver jitter for paired transitions  
receiver SE0 interval of EOP  
10 % to 90 %; T = 25 °C  
-
-
tFEOPR  
must accept as EOP; see  
Figure 49  
82  
ns  
T
PERIOD  
crossover point  
extended  
crossover point  
differential  
data lines  
source EOP width: t  
FEOPT  
differential data to  
SE0/EOP skew  
n × T  
+ t  
PERIOD  
FDEOP  
receiver EOP width: t  
, t  
EOPR1 EOPR2  
002aab561  
Figure 49.ꢀUSB interface differential data-to-EOP transition skew and EOP width  
13.2.7 Clock dynamic characteristics  
Table 72.ꢀDynamic characteristics for internal oscillators  
Tamb = -40 °C to +85 °C  
Symbol  
low frequency oscillator  
Parameter[1]  
Conditions  
Min  
300  
18  
Typ[2] Max  
Unit  
kHz  
fosc(int)  
internal oscillator frequency  
VDDP(VBUS) = 3.3 V  
365  
20  
400  
22  
high frequency oscillator  
fosc(int)  
internal oscillator frequency  
VDDP(VBUS) = 3.3 V  
MHz  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.  
Table 73.ꢀDynamic characteristics for PLL  
Tamb = -40 °C to +85°C  
Symbol  
Parameter[1]  
Conditions  
Min  
Typ[2] Max  
50  
Unit  
Δf  
frequency deviation  
deviation added to  
CLK_XTAL1 frequency on RF  
frequency generated using  
PLL  
-50  
-
ppm  
[1] Parameters are valid over operating temperature range unless otherwise specified.  
[2] Typical ratings are not guaranteed. The values listed are at room temperature (25 °C) with nominal supply voltages.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
91 / 108  
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
13.2.8 Dynamic characteristics for power supply  
Table 74.ꢀDynamic characteristics for power supply  
Symbol  
DC-to-DC internal oscillator  
fosc(int) internal oscillator frequency  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
DC-to-DC converter  
-
3.39  
-
MHz  
13.2.9 Dynamic characteristics for boot and reset  
Table 75.ꢀDynamic characteristics for boot and reset  
Symbol  
twL(RST_N) RST_N Low pulse width time  
tboot boot time  
Parameter  
Conditions  
Min  
10  
-
Typ  
Max  
-
Unit  
μs  
-
-
external PVDD supply; supply  
is stable at reset  
320  
µs  
internal PVDD_LDO supply;  
supply is stable at reset  
-
-
2.2  
ms  
13.2.10 Dynamics characteristics for power mode  
Table 76.ꢀPower modes - wake-up timings  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
500  
150  
Unit  
μs  
[1]  
[1]  
twake  
wake-up time  
standby mode  
suspend mode  
-
-
-
-
μs  
[1] Wake-up timings are measured from the wake-up event to the point in which the user application code reads the first instruction.  
13.2.11 Dynamic characteristics for contact interface  
Table 77.ꢀDynamic characteristics for contact interface  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Data lines (pins IO, AUX1, AUX2)  
fdata  
tr(i)  
data rate  
on data lines  
-
-
-
-
1.5  
1.2  
Mbps  
μs  
input rise time  
from VIL maximum to VIH  
minimum  
tf(i)  
input fall time  
from VIL maximum to VIH  
minimum  
-
-
-
-
-
1.2  
0.1  
0.1  
-
μs  
μs  
μs  
ns  
tr(o)  
tf(o)  
tw(pu)  
output rise time  
output fall time  
pull-up pulse width  
CL < = 80 pF; 10 % to 90 %  
from 0 to VCC  
-
CL < = 80 pF; 10 % to 90 %  
from 0 to VCC  
-
295  
Reset output to the card  
tr  
tf  
rise time  
fall time  
CL = 100 pF  
CL = 100 pF  
-
-
-
-
0.1  
0.1  
μs  
μs  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
92 / 108  
 
 
 
 
 
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Clock output to the card (CLK)  
[1]  
[1]  
[1]  
[1]  
tr  
rise time  
CL = 30 pF; fCLK = 10 MHz  
CL = 30 pF; fCLK = 5 MHz  
CL = 30 pF; fCLK = 10 MHz  
CL = 30 pF; fCLK = 5 MHz  
operational  
-
-
-
-
-
-
-
-
8
ns  
ns  
ns  
ns  
tr  
rise time  
-
16  
8
tf  
fall time  
-
tf  
fall time  
-
16  
fCLK  
δ
frequency on pin CLK  
duty cycle  
slew rate  
0
13.56 MHz  
[1]  
CL = 30 pF  
45  
0.2  
55  
-
%
SR  
rise and fall; CL = 30 pF; VCC  
+5 V  
=
=
=
V/ns  
rise and fall; CL = 30 pF; VCC  
+3 V  
0.12  
-
-
-
-
V/ns  
V/ns  
rise and fall; CL = 30 pF; VCC  
+1.8 V  
0.072  
PRESN  
tdeb  
debounce time  
on pin PRESN  
-
6
-
ms  
Timings  
tact  
activation time  
see figure below; T = 25 °C  
see figure below; T = 25 °C  
11  
60  
-
22  
ms  
μs  
tdeact  
deactivation time  
100  
250  
[1] The transition time and duty factor definitions are shown in Figure below.  
t
t
r
f
V
OH  
90%  
90%  
(V  
+ V ) /2  
OL  
OH  
10%  
10%  
V
OL  
t
t
2
1
fce666  
Figure 50.ꢀDefinition of output and input transition times  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
93 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
14 Marking  
14.1 Marking HVQFN64  
Table 78.ꢀMarking codes  
Type number  
PN7462AUHN  
PN7362AUHN  
PN7360AUHN  
PN7412AUHN  
Common  
Line  
Marking code  
PN7462AU-00  
PN7362AU-00  
PN7360AU-00  
PN7412AU-00  
Line A  
Line B  
Line C  
Diffusion Batch ID, Assembly Sequence ID  
Characters: Diffusion and assembly location, date code,  
product version (indicated by mask version), product life cycle  
status. This line includes the following elements at 8 positions:  
1. Diffusion center code: Z  
2. Assembly center code: S  
3. RHF-2006 indicator: D "Dark Green"  
4. Year code (Y) 1  
5. Year code (Y) 2  
6. Week code (W) 1  
7. Week code (W) 2  
8. HW version  
Line D  
Line E  
Empty  
Empty  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
94 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
14.1.1 Package marking drawing  
Terminal 1 index area  
A
B
C
D
E
0
5
aaa-021255  
Figure 51.ꢀMarking in HVQFN64  
14.2 Marking VFBGA64  
Table 79.ꢀMarking codes  
Type number  
Line  
Marking code  
PN7462AUEV  
Line A  
7462x  
x: means version number  
PN7362AUEV  
PN7360AUEV  
Common  
7362x  
x: means version number  
7360x  
x: means version number  
Line B  
Line C  
DBID+ASID  
Diffusion batch, 2 digits + Assembly batch, 2digits  
ZSDyywwX  
Manufacturing code including:  
Diffusion center code, 1 digit (Z for SSMC)  
Assembly center code, 1 digit (S for ATKH)  
RoHS compliancy indicator, 1 digit (D: Dark Green; fully  
compliant RoHS and no halogen and antimony)  
Manufacturing year and week, digits:  
YY: production year  
WW: production week code  
Product life cycle status code, 1 digit:  
X: means not qualified product  
nothing means released product  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
95 / 108  
 
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
14.2.1 Package marking drawing  
terminal 1  
index area  
A : 5  
B : 5  
C : 8  
M497  
0
5
aaa-028642  
Figure 52.ꢀMarking in VFBGA64  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
96 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
15 Package outline HVQFN64  
HVQFN64: plastic thermal enhanced very thin quad flat package; no leads;  
64 terminals; body 9 x 9 x 0.85 mm  
SOT804-4  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
C
e
v
C
C
A B  
1/2 e  
b
L
y
1
y
w
C
L
1
17  
32  
16  
33  
E
t
e
E
s
E
e
2
h
1/2 e  
1
48  
X
terminal 1  
index area  
64  
49  
L
D
D
D
t
s
h
2
0
2.5  
5 mm  
scale  
Dimensions  
Unit  
(1)  
(1)  
A
A
b
c
D
D
h
D
s
D
t
E
E
E
E
e
e
e
2
L
L
1
L
2
v
w
y
y
1
1
h
s
t
1
max 1.00 0.05 0.30  
mm nom 0.85 0.02 0.21 0.2 9.0 5.10 0.14 0.45 9.0 5.10 0.14 0.45 0.5 7.5 7.5 0.4 0.25 0.25 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 8.9 4.95 0.09 0.40 8.9 4.95 0.09 0.40 0.3  
9.1 5.25 0.19 0.50 9.1 5.25 0.19 0.50  
0.5  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
sot804-4_po  
Issue date  
References  
Outline  
version  
European  
projection  
IEC  
- - -  
JEDEC  
- - -  
JEITA  
- - -  
10-05-26  
10-05-27  
SOT804-4  
Figure 53.ꢀPackage outline HVQFN64  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
97 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Footprint information for reflow soldering of HVQFN64 package  
SOT804-4  
Hx  
Gx  
D
P
0.105  
0.125  
C
Ø 0.3 drilled vias (41x)  
SPx  
SPy  
Hy Gy  
SPy tot  
SLy By Ay  
0.065  
0.065  
SPx tot  
0.065  
SLx  
Bx  
0.065  
X
0.29  
Ax  
0.24  
Recommended stencil thickness: 0.1 mm  
detail X  
0.85 0.9  
solder land  
solder land plus solder paste  
solder resist opening  
occupied area  
solder paste deposit  
Dimensions in mm  
Ax  
P
Ay  
Bx  
By  
SLx  
SLy  
SPx  
0.70  
SPy SPx tot SPy tot  
0.70 3.50 3.50  
C
D
Gx  
Gy  
Hx  
Hy  
0.50 10.00  
8.20  
8.20  
5.10  
5.10  
0.90  
0.29  
9.25  
9.25 10.25 10.25  
10.00  
15-12-15  
15-12-22  
sot804-4_fr  
Issue date  
Figure 54.ꢀFootprint information for reflow soldering of HVQFN64  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
98 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
16 Package outline VFBGA64  
Figure 55.ꢀPackage outline VFBGA64  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
99 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
17 Packing information  
17.1 Packing information HVQFN64  
Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC  
J-STD-020C. MSL for this package is level 3 which means 260 °C Pb-free convection  
reflow maximum temperature peak.  
Dry packing is required with following floor conditions: 168 hours out of bag floor life at  
maximum ambient temperature 30 °C/60 % RH.  
For information on packing, refer to the PIP relating to this product at http://  
www.nxp.com.  
17.2 Packing information VFBGA64  
Moisture Sensitivity Level (MSL) evaluation has been performed according to JEDEC  
J-STD-020C. MSL for this package is level 3 which means 260 °C Pb-free convection  
reflow maximum temperature peak.  
Dry packing is required with following floor conditions: 168 hours out of bag floor life at  
maximum ambient temperature 30 °C/60 % RH.  
For information on packing, refer to the PIP relating to this product at http://  
www.nxp.com.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
100 / 108  
 
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
18 Abbreviations  
Table 80.ꢀAbbreviations  
Acronym  
ADC  
ALM  
ASK  
Description  
Analog to Digital Convertor  
Active Load Modulation  
Amplitude Shift Keying  
Binary Phase Shift Keying  
Contactless Interface  
Cyclic Redundancy Check  
Dynamic Power Control  
BPSK  
CLIF  
CRC  
DPC  
EEPROM  
GPIO  
I2C  
Electrically Erasable Programmable Read-Only Memory  
General-Purpose Input Output  
Inter-Interchanged Circuit  
Integrated Circuit  
IC  
IAP  
In-Application Programming  
In-System Programming  
Low DropOut  
ISP  
LDO  
LPCD  
MSL  
NFC  
NRZ  
NVIC  
P2P  
Low-Power Card Detection  
Moisture Sensitivity Level  
Near Field Communication  
Non-Return to Zero  
Nested Vectored Interrupt Controller  
Peer-to-Peer  
PLL  
Phase-Locked Loop  
PLM  
SPI  
Passive Load Modulation  
Serial Peripheral Interface  
Serial Wire Debug  
SWD  
UART  
USB  
Universal Asynchronous Receiver Transmitter  
Universal Serial Bus  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
101 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
19 Revision history  
Table 81.ꢀRevision history  
Document ID  
Release date  
20180628  
Data sheet status  
Change notice  
Supersedes  
PN7462_FAM v. 4.1  
Product data sheet  
-
PN7462_FAM v. 4.0  
and PN7462_FAM incl  
PN7412 v.3.0  
Modifications:  
New type PN7412AUHN added  
Combined data sheets PN7462_FAM and PN7462_FAM incl PN7412  
PN7462_FAM v. 4.0  
Modifications:  
20180201 Product data sheet  
-
PN7462 v. 3.2 and  
PN736X v. 3.3  
Combined data sheets PN736X and PN7462.  
Added description about VFBGA64 package versions.  
PN736X v. 3.3  
Modifications:  
20170907 Product data sheet  
-
PN736X v.3.2  
Removed chapter 8.9 "I/O auxiliary - ISO/IEC 7816 UART" which is not available on the  
product.  
Updated Pin description, removed pin fuinctionality INT_AUX , CLK_AUX and IO_AUX  
Updated Section 9.5 "Unconnected I/O's", removed description of AUX interface INT_AUX,  
IO_AUX, CLK_AUX which is not available on the product  
PN736X v. 3.2  
Modifications:  
20161213  
Product data sheet  
-
-
-
PN746X_736X v.3.1  
Product name title and Descriptive title updated  
Editorial changes  
PN746X_736X v.3.1  
Modifications:  
20160405  
Product data sheet  
PN746X_736X v.3.0  
Descriptive title updated  
Section 1 "General description": updated  
PN746X_736X v.3.0  
20160330  
Product data sheet  
-
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
102 / 108  
 
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
20 Legal information  
20.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Definition  
Objective [short] data sheet  
Development  
This document contains data from the objective specification for product  
development.  
Preliminary [short] data sheet  
Product [short] data sheet  
Qualification  
Production  
This document contains data from the preliminary specification.  
This document contains the product specification.  
[1] Please consult the most recently issued document before initiating or completing a design.  
[2] The term 'short data sheet' is explained in section "Definitions".  
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple  
devices. The latest product status information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
20.2 Definitions  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
Draft — The document is a draft version only. The content is still under  
to result in personal injury, death or severe property or environmental  
internal review and subject to formal approval, which may result in  
damage. NXP Semiconductors and its suppliers accept no liability for  
modifications or additions. NXP Semiconductors does not give any  
inclusion and/or use of NXP Semiconductors products in such equipment or  
representations or warranties as to the accuracy or completeness of  
applications and therefore such inclusion and/or use is at the customer’s own  
information included herein and shall have no liability for the consequences  
risk.  
of use of such information.  
Applications — Applications that are described herein for any of these  
Short data sheet — A short data sheet is an extract from a full data sheet  
products are for illustrative purposes only. NXP Semiconductors makes  
with the same product type number(s) and title. A short data sheet is  
no representation or warranty that such applications will be suitable  
intended for quick reference only and should not be relied upon to contain  
for the specified use without further testing or modification. Customers  
detailed and full information. For detailed and full information see the  
are responsible for the design and operation of their applications and  
relevant full data sheet, which is available on request via the local NXP  
products using NXP Semiconductors products, and NXP Semiconductors  
Semiconductors sales office. In case of any inconsistency or conflict with the  
accepts no liability for any assistance with applications or customer product  
short data sheet, the full data sheet shall prevail.  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications  
Product specification — The information and data provided in a Product  
and products planned, as well as for the planned application and use of  
data sheet shall define the specification of the product as agreed between  
customer’s third party customer(s). Customers should provide appropriate  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
design and operating safeguards to minimize the risks associated with  
customer have explicitly agreed otherwise in writing. In no event however,  
their applications and products. NXP Semiconductors does not accept any  
shall an agreement be valid in which the NXP Semiconductors product  
liability related to any default, damage, costs or problem which is based  
is deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
on any weakness or default in the customer’s applications or products, or  
the application or use by customer’s third party customer(s). Customer is  
responsible for doing all necessary testing for the customer’s applications  
and products using NXP Semiconductors products in order to avoid a  
default of the applications and the products or of the application or use by  
20.3 Disclaimers  
Limited warranty and liability — Information in this document is believed  
customer’s third party customer(s). NXP does not accept any liability in this  
respect.  
to be accurate and reliable. However, NXP Semiconductors does not  
Limiting values — Stress above one or more limiting values (as defined in  
give any representations or warranties, expressed or implied, as to the  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
accuracy or completeness of such information and shall have no liability  
damage to the device. Limiting values are stress ratings only and (proper)  
for the consequences of use of such information. NXP Semiconductors  
operation of the device at these or any other conditions above those  
takes no responsibility for the content in this document if provided by an  
given in the Recommended operating conditions section (if present) or the  
information source outside of NXP Semiconductors. In no event shall NXP  
Characteristics sections of this document is not warranted. Constant or  
Semiconductors be liable for any indirect, incidental, punitive, special or  
repeated exposure to limiting values will permanently and irreversibly affect  
consequential damages (including - without limitation - lost profits, lost  
the quality and reliability of the device.  
savings, business interruption, costs related to the removal or replacement  
of any products or rework charges) whether or not such damages are based  
on tort (including negligence), warranty, breach of contract or any other  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
legal theory. Notwithstanding any damages that customer might incur for  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
any reason whatsoever, NXP Semiconductors’ aggregate and cumulative  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
liability towards customer for the products described herein shall be limited  
in accordance with the Terms and conditions of commercial sale of NXP  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
Semiconductors.  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or  
notice. This document supersedes and replaces all information supplied prior  
the grant, conveyance or implication of any license under any copyrights,  
to the publication hereof.  
patents or other industrial or intellectual property rights.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
103 / 108  
 
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
20.4 Licenses  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Purchase of NXP ICs with ISO/IEC 14443 type B functionality  
This NXP Semiconductors IC is ISO/IEC  
14443 Type B software enabled and is  
licensed under Innovatron’s Contactless  
Card patents license for ISO/IEC 14443 B.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor  
tested in accordance with automotive testing or application requirements.  
NXP Semiconductors accepts no liability for inclusion and/or use of non-  
automotive qualified products in automotive equipment or applications. In  
the event that customer uses the product for design-in and use in automotive  
applications to automotive specifications and standards, customer (a) shall  
use the product without NXP Semiconductors’ warranty of the product for  
such automotive applications, use and specifications, and (b) whenever  
customer uses the product for automotive applications beyond NXP  
Semiconductors’ specifications such use shall be solely at customer’s own  
risk, and (c) customer fully indemnifies NXP Semiconductors for any liability,  
damages or failed product claims resulting from customer design and use  
of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
The license includes the right to use the IC  
in systems and/or end-user equipment.  
RATP/Innovatron  
Technology  
Purchase of NXP ICs with NFC technology  
Purchase of an NXP Semiconductors IC that complies with one of the  
Near Field Communication (NFC) standards ISO/IEC 18092 and ISO/  
IEC 21481 does not convey an implied license under any patent right  
infringed by implementation of any of those standards. Purchase of NXP  
Semiconductors IC does not include a license to any NXP patent (or other  
IP right) covering combinations of those products with other products,  
whether hardware or software.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
20.5 Trademarks  
Notice: All referenced brands, product names, service names and  
trademarks are the property of their respective owners.  
I2C-bus — logo is a trademark of NXP B.V.  
MIFARE — is a trademark of NXP B.V.  
ICODE and I-CODE — are trademarks of NXP B.V.  
MIFARE Classic — is a trademark of NXP B.V.  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
104 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Tables  
Tab. 1.  
Tab. 2.  
Tab. 3.  
Tab. 4.  
Tab. 5.  
Tab. 6.  
Tab. 7.  
Tab. 8.  
Tab. 9.  
Comparison of the PN7462 family members .....1  
Tab. 42. Static characteristics for I2CM_SDA,  
I2CM_SCL - S .................................................75  
Tab. 43. Static characteristics for SPIM_MOSI ............. 75  
Tab. 44. Static characteristics for SPIM_NSS ............... 75  
Tab. 45. Static characteristics for SPIM_MISO ............. 75  
Tab. 46. Static characteristics for SPI_SCLK ................ 76  
Tab. 47. Static characteristics for ATX_ used as  
SPI_NSS, ATX_ used as I2CADR0, ATX_  
used as SPI_SCK, ATX_ used as SPI_MOSI .. 76  
Tab. 48. Static characteristics of ATX_ used as  
I2CSDA, ATX_ used as I2CSCL .....................76  
Tab. 49. Static characteristics of ATX_ used as  
SPIMISO ..........................................................76  
Tab. 50. USB characteristics .........................................77  
Tab. 51. Static characteristics of HSU_TX and HSU  
RTS pin ........................................................... 77  
Quick reference data .........................................7  
Ordering information ..........................................8  
Pin description .................................................14  
Pin description .................................................17  
Interrupt sources ............................................. 25  
Pin description for host interface .....................29  
HSUART baudrates .........................................30  
I2C interface addressing ................................. 30  
Tab. 10. SPI configuration .............................................31  
Tab. 11. Communication overview for ISO/IEC 14443  
type A and read/write mode for MIFARE  
Classic .............................................................38  
Tab. 12. Communication overview for ISO/IEC 14443  
B reader/writer .................................................39  
Tab. 13. Communication overview for FeliCa reader/  
writer ................................................................39  
Tab. 14. Communication overview for ISO/IEC 15693  
reader to label .................................................40  
Tab. 15. Communication overview for ISO/IEC 15693  
label to reader .................................................40  
Tab. 52. Static  
characteristics  
of  
HSU_RX,  
HSU_CTS ........................................................77  
Tab. 53. Static characteristics of XTAL pin (XTAL1,  
XTAL2) ............................................................ 78  
Tab. 54. Static characteristics for power supply ............ 78  
Tab. 55. Static characteristics for voltage monitors ....... 80  
Tab. 56. Static characteristics for power modes ............81  
Tab. 57. Static characteristics for contact interface ....... 81  
Tab. 58. Static characteristics for RF interface ..............83  
Tab. 59. Dynamic characteristics for IRQ output pin ..... 83  
Tab. 60. Dynamic characteristics for flash memory .......84  
Tab. 61. Dynamic characteristics for EEPROM .............84  
Tab. 62. Dynamic characteristics for GPIO1 to  
GPIO21 ............................................................84  
Tab. 63. Timing specification for fast mode plus I2C .....85  
Tab. 64. Timing specification for fast mode I2C ............ 86  
Tab. 65. Dynamic characteristics and Timing  
specification for SPI master interface ..............87  
Tab. 66. Timing specification for I2C high speed ...........88  
Tab. 67. Dynamic characteristics for the I2C slave  
interface: ATX_B used as I2C_SDA, ATX_A  
Tab. 16. Communication  
overview  
for  
active  
communication mode ...................................... 42  
Tab. 17. Communication overview for passive  
communication mode ...................................... 42  
Tab. 18. ISO/IEC14443 A card operation mode ............43  
Tab. 19. Framing and coding overview ......................... 43  
Tab. 20. Timer characteristics ....................................... 47  
Tab. 21. Crystal requirements ....................................... 49  
Tab. 22. SCLDO and DC-to-DC converter modes .........54  
Tab. 23. Threshold configuration for voltage monitor .... 59  
Tab. 24. Reset sources ................................................. 60  
Tab. 25. Power supply connection ................................ 62  
Tab. 26. Limiting values ................................................ 68  
Tab. 27. Limiting values for GPIO1 to GPIO12 ............. 68  
Tab. 28. Limiting values for I2C master pins  
(i2cm_sda, i2cm_scl) .......................................68  
Tab. 29. Limiting values for SPI master pins  
( spim_nss, spim_miso, spim_mosi and  
used as I2C_SCL ............................................88  
Tab. 68. Dynamic characteristics for SPI slave  
interface ...........................................................89  
spi_clk) ............................................................ 68  
Tab. 30. Limiting values for host interfaces atx_a,  
atx_b, atx_c, atx_d in all configurations  
Tab. 69. Dynamic characteristics for SPI slave  
interface: ATX_C as SPI_MISO ...................... 89  
(USB, HSUART, SPI and I2C) ........................ 68  
Tab. 70. Dynamic characteristics for HSUART ATX_  
as HSU_TX, ATX_ as HSU_RTS ....................90  
Tab. 71. Dynamic characteristics for USB interface ...... 90  
Tab. 31. Limiting values for crystal oscillator .................69  
Tab. 32. Limiting values for power supply .....................69  
Tab. 33. Limiting values for contact interface ................69  
Tab. 34. Protection and limitations for contact  
interface ...........................................................69  
Tab. 35. Limiting values for RF interface .......................70  
Tab. 36. Operating conditions ....................................... 71  
Tab. 37. Thermal characteristics ................................... 72  
Tab. 38. Static characteristics for RST_N input pin ....... 73  
Tab. 39. Static characteristics for IRQ output pin .......... 73  
Tab. 40. Static characteristics for DWL_REQ ................73  
Tab. 41. Static characteristics for GPIO1 to GPIO21 .....74  
Tab. 72. Dynamic  
characteristics  
for  
internal  
oscillators .........................................................91  
Tab. 73. Dynamic characteristics for PLL ......................91  
Tab. 74. Dynamic characteristics for power supply ....... 92  
Tab. 75. Dynamic characteristics for boot and reset ......92  
Tab. 76. Power modes - wake-up timings .....................92  
Tab. 77. Dynamic characteristics for contact interface ...92  
Tab. 78. Marking codes .................................................94  
Tab. 79. Marking codes .................................................95  
Tab. 80. Abbreviations .................................................101  
Tab. 81. Revision history .............................................102  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
105 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Figures  
Fig. 1.  
Fig. 2.  
Fig. 3.  
Fig. 4.  
Fig. 5.  
Fig. 6.  
Fig. 7.  
Fig. 8.  
Fig. 9.  
Block diagram ................................................... 9  
Fig. 30. Communication in card emulation of NFC  
passive target ..................................................46  
Block diagram ................................................. 10  
Block diagram ................................................. 11  
Block diagram ................................................. 12  
Pin configuration PN736X ...............................13  
Pin configuration PN7462 ............................... 13  
Pin configuration PN7412 ............................... 13  
Pin configuration VFBGA64 ............................ 17  
Flash memory mapping ...................................20  
Fig. 31. Clocks and IP overview ...................................49  
Fig. 32. Crystal oscillator connection ............................49  
Fig. 33. PN7462 LDOs and power pins overview .........52  
Fig. 34. PN736X LDOs and power pins overview ........ 55  
Fig. 35. Powering up the microcontroller ......................63  
Fig. 36. Powering up the contactless interface using  
a single power supply ..................................... 64  
Fig. 10. EEPROM memory mapping ............................21  
Fig. 11. SRAM memory mapping .................................22  
Fig. 12. PN7462 family memory map ...........................23  
Fig. 13. APB memory map PN736X .............................24  
Fig. 14. APB memory map PN7462 .............................24  
Fig. 15. APB memory map PN7412 .............................25  
Fig. 16. VDDP(VBUS), supported contact cards  
classes, and card deactivation ........................33  
Fig. 17. Contact interface - activation sequence .......... 35  
Fig. 18. Deactivation sequence for contact interface ....36  
Fig. 19. Read/write mode for ISO/IEC 14443 type A  
and read/write mode for MIFARE Classic ....... 37  
Fig. 37. Powering up the contactless interface using  
an external RF transmitter supply ................... 64  
Fig. 38. Powering up the contact interface ...................65  
Fig. 39. Contact interface power supply connection  
when contact interface is not used ..................65  
Fig. 40. USB interface on a bus-powered device ......... 66  
Fig. 41. Connecting the contact interface .....................66  
Fig. 42. Connection of contact interface when not  
used .................................................................67  
Fig. 43. RF interface - example of connection to an  
antenna ............................................................67  
Fig. 44. Output timing measurement condition for  
GPIO ................................................................84  
Fig. 20. Data coding and framing according to ISO/  
IEC 14443 A card response ............................38  
Fig. 45. I²C-bus pins clock timing .................................85  
Fig. 46. SPI master timing ............................................87  
Fig. 47. I2C-bus pins clock timing ................................88  
Fig. 48. SPI slave timings ............................................ 89  
Fig. 49. USB interface differential data-to-EOP  
transition skew and EOP width ....................... 91  
Fig. 21. ISO/IEC 14443  
B
read/write mode  
communication diagram .................................. 38  
Fig. 22. FeliCa read/write communication diagram ...... 39  
Fig. 23. Multiple reception cycles - data format ............40  
Fig. 24. ISO/IEC  
15693  
read/write  
mode  
communication diagram .................................. 40  
Fig. 25. Data coding according to ISO/IEC 15693  
standard mode reader to label ........................ 41  
Fig. 26. Active communication mode ........................... 42  
Fig. 27. Passive communication mode .........................42  
Fig. 28. PN7462 family output driver ............................44  
Fig. 29. Receiver block diagram ...................................45  
Fig. 50. Definition of output and input transition times ...93  
Fig. 51. Marking in HVQFN64 ......................................95  
Fig. 52. Marking in VFBGA64 ...................................... 96  
Fig. 53. Package outline HVQFN64 ............................. 97  
Fig. 54. Footprint information for reflow soldering of  
HVQFN64 ........................................................98  
Fig. 55. Package outline VFBGA64 ............................. 99  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
106 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
Contents  
1
2
2.1  
2.2  
General description ............................................ 1  
8.9.3  
8.9.4  
8.9.5  
8.9.6  
8.9.7  
8.9.8  
8.10  
Clock circuitry .................................................. 34  
I/O circuitry ...................................................... 34  
VCC regulator ..................................................34  
Activation sequence .........................................34  
Deactivation sequence .................................... 35  
I/O auxiliary - connecting TDA slot extender ....36  
Contactless interface - 13.56 MHz ...................36  
RF functionality ................................................37  
Features and benefits .........................................3  
Integrated contact interface frontend ................. 3  
Integrated ISO/IEC 7816-3&4 UART  
interface ............................................................. 3  
Integrated contactless interface frontend ...........3  
Cortex-M0 microcontroller ................................. 4  
Applications .........................................................6  
Quick reference data .......................................... 7  
Ordering information .......................................... 8  
Block diagram ..................................................... 9  
Block diagram PN7462 HVQFN64 .................... 9  
Block diagram PN7462 VFBGA64 ...................10  
Block diagram PN7412 HVQFN64 .................. 11  
Block diagram PN736X ................................... 12  
Pinning information .......................................... 13  
Pinning HVQFN64 ........................................... 13  
Pin description HVQFN64 ............................... 14  
Pinning VFBGA64 ............................................17  
Pin description VFBGA64 ................................17  
Functional description ......................................20  
ARM Cortex-M0 microcontroller ...................... 20  
Memories ......................................................... 20  
On-chip flash programming memory ............... 20  
Memory mapping .............................................20  
EEPROM ......................................................... 21  
Memory mapping .............................................21  
SRAM ...............................................................21  
Memory mapping .............................................21  
ROM .................................................................22  
Memory map ....................................................22  
Nested Vectored Interrupt Controller (NVIC) ....25  
NVIC features ..................................................25  
Interrupt sources ..............................................25  
GPIOs .............................................................. 27  
GPIO features ..................................................27  
GPIO configuration .......................................... 27  
GPIO interrupts ................................................27  
CRC engine 16/32 bits .................................... 27  
Random Number Generator (RNG) .................28  
Master interfaces ............................................. 28  
I2C master interface ........................................ 28  
I2C features .....................................................28  
SPI interface ....................................................28  
SPI features .....................................................29  
Host interfaces .................................................29  
High-speed UART ............................................29  
I2C host interface controller .............................30  
I2C host interface features .............................. 30  
SPI host/Slave interface .................................. 30  
SPI host interface features .............................. 31  
USB interface .................................................. 31  
Full speed USB device controller .................... 31  
Contact interface ............................................. 32  
Contact interface features and benefits ........... 32  
Voltage supervisor ...........................................33  
2.3  
2.4  
3
4
5
6
6.1  
6.2  
6.3  
6.4  
7
7.1  
7.2  
7.3  
7.4  
8
8.10.1  
8.10.1.1 Communication mode for ISO/IEC 14443  
type A and for MIFARE Classic .......................37  
8.10.1.2 ISO/IEC14443 B functionality .......................... 38  
8.10.1.3 FeliCa functionality .......................................... 39  
8.10.1.4 ISO/IEC 15693 functionality .............................40  
8.10.1.5 ISO/IEC18000-3 mode 3 functionality ..............41  
8.10.1.6 NFCIP-1 modes ...............................................41  
8.10.2  
Contactless interface ....................................... 44  
8.10.2.1 Transmitter (TX) .............................................. 44  
8.10.2.2 Receiver (RX) ..................................................44  
8.10.3  
8.10.4  
8.10.5  
8.10.5.1 RF output control .............................................47  
8.10.5.2 Adaptive Waveform Control (AWC) ................. 47  
8.11  
8.11.1  
8.11.2  
8.12  
8.13  
8.14  
8.14.1  
8.14.2  
8.14.3  
8.14.4  
8.14.5  
8.15  
Low-Power Card Detection (LPCD) .................46  
Active Load Modulation (ALM) ........................ 46  
Dynamic Power Control (DPC) ........................47  
8.1  
8.2  
8.2.1  
8.2.1.1  
8.2.2  
8.2.2.1  
8.2.3  
8.2.3.1  
8.2.4  
8.2.5  
8.3  
8.3.1  
8.3.2  
8.4  
8.4.1  
8.4.2  
8.4.3  
8.5  
Timers ..............................................................47  
Features of timer 0 and timer 1 ....................... 47  
Features of timer 2 and timer 3 ....................... 48  
System tick timer .............................................48  
Watchdog timer ............................................... 48  
Clocks .............................................................. 48  
Quartz oscillator (27.12 MHz) ..........................49  
USB PLL ..........................................................50  
High Frequency Oscillator (HFO) .................... 50  
Low Frequency Oscillator (LFO) ......................50  
Clock configuration and clock gating ............... 50  
Power management .........................................51  
Power supply sources ..................................... 51  
PN7462 Power Management Unit (PMU) ........ 51  
8.15.1  
8.15.2  
8.15.2.1 Main LDO ........................................................ 52  
8.15.2.2 PVDD_LDO ......................................................53  
8.15.2.3 Contact interface - SCLDO LDO ..................... 53  
8.15.2.4 Contact interface DC-to-DC converter .............53  
8.15.2.5 VCC LDO .........................................................54  
8.15.2.6 TXLDO .............................................................54  
8.6  
8.7  
8.7.1  
8.7.1.1  
8.7.2  
8.7.2.1  
8.8  
8.8.1  
8.8.2  
8.8.2.1  
8.8.3  
8.8.3.1  
8.8.4  
8.8.4.1  
8.9  
8.15.3  
PN736X Power Management Unit (PMU) ........55  
8.15.3.1 Main LDO ........................................................ 55  
8.15.3.2 PVDD_LDO ......................................................56  
8.15.3.3 TXLDO .............................................................56  
8.15.4  
Power modes ...................................................57  
8.15.4.1 Active mode .....................................................57  
8.15.4.2 Standby mode ................................................. 57  
8.15.4.3 Suspend mode ................................................ 57  
8.15.4.4 Wake-up from standby mode and suspend  
mode ................................................................58  
8.15.4.5 Hard Power-Down (HPD) mode ...................... 58  
8.15.5  
8.15.5.1 VBUS monitor ..................................................59  
8.9.1  
8.9.2  
Voltage monitoring ...........................................58  
PN7462_FAM  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2018. All rights reserved.  
Product data sheet  
COMPANY PUBLIC  
Rev. 4.1 — 28 June 2018  
406341  
107 / 108  
NXP Semiconductors  
PN7462 family  
NFC Cortex-M0 microcontroller  
8.15.5.2 VBUSP monitor ............................................... 59  
8.15.5.3 PVDD LDO supply monitor ..............................59  
19  
20  
Revision history .............................................. 102  
Legal information ............................................103  
8.15.6  
8.16  
Temperature sensor ........................................ 59  
System control .................................................60  
Reset ................................................................60  
Brown-Out Detection (BOD) ............................ 60  
APB interface and AHB-Lite ............................ 60  
External interrupts ............................................61  
SWD debug interface ...................................... 61  
SWD interface features ................................... 61  
Application design-in information ...................62  
Power supply connection .................................62  
Powering up the microcontroller ...................... 63  
Powering up the contactless interface ............. 63  
Powering up the contact interface ................... 65  
Connecting the USB interface ......................... 66  
Connecting the contact interface ..................... 66  
Connecting the RF interface ............................67  
Unconnected I/Os ............................................67  
Limiting values ..................................................68  
Recommended operating conditions .............. 71  
Thermal characteristics ....................................72  
Characteristics .................................................. 73  
Static characteristics ........................................73  
GPIO static characteristics .............................. 74  
Static characteristics for I2C master ................75  
Static characteristics for SPI master ................75  
Static characteristics for host interface ............ 76  
Clock static characteristics .............................. 78  
Static characteristics - power supply ............... 78  
Static characteristics for power modes ............ 81  
Static characteristics for contact interface ........81  
Static characteristics RF interface ................... 83  
Dynamic characteristics ...................................83  
Flash memory dynamic characteristics ............84  
EEPROM dynamic characteristics ...................84  
GPIO dynamic characteristics ......................... 84  
Dynamic characteristics for I2C master ........... 85  
Dynamic characteristics for SPI .......................87  
Dynamic characteristics of host interface ........ 88  
Clock dynamic characteristics ......................... 91  
Dynamic characteristics for power supply ........92  
Dynamic characteristics for boot and reset ......92  
8.16.1  
8.16.2  
8.16.3  
8.16.4  
8.17  
8.17.1  
9
9.1  
9.1.1  
9.1.2  
9.1.3  
9.2  
9.3  
9.4  
9.5  
10  
11  
12  
13  
13.1  
13.1.1  
13.1.2  
13.1.3  
13.1.4  
13.1.5  
13.1.6  
13.1.7  
13.1.8  
13.1.9  
13.2  
13.2.1  
13.2.2  
13.2.3  
13.2.4  
13.2.5  
13.2.6  
13.2.7  
13.2.8  
13.2.9  
13.2.10 Dynamics characteristics for power mode ....... 92  
13.2.11 Dynamic characteristics for contact interface ... 92  
14  
Marking ...............................................................94  
Marking HVQFN64 .......................................... 94  
Package marking drawing ............................... 95  
Marking VFBGA64 ...........................................95  
Package marking drawing ............................... 96  
Package outline HVQFN64 ............................... 97  
Package outline VFBGA64 ............................... 99  
Packing information ........................................100  
Packing information HVQFN64 ......................100  
Packing information VFBGA64 ...................... 100  
Abbreviations .................................................. 101  
14.1  
14.1.1  
14.2  
14.2.1  
15  
16  
17  
17.1  
17.2  
18  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section 'Legal information'.  
© NXP B.V. 2018.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 28 June 2018  
Document identifier: PN7462_FAM  
Document number: 406341  

相关型号:

PN7360AUHN/C300E

PN7462AU - NFC Cortex-M0 microcontroller QFN 64-Pin
NXP

PN7362

First all-in-one full NFC controller solution
NXP

PN7362AUEV/C300E

RISC Microcontroller
NXP

PN7362AUEV/C300Y

RISC Microcontroller
NXP

PN7362AUHN

RISC MICROCONTROLLER
NXP

PN7362AUHN/C300E

PN7462AU - NFC Cortex-M0 microcontroller QFN 64-Pin
NXP

PN7362AUHN/C300Y

PN7462AU - NFC Cortex-M0 microcontroller QFN 64-Pin
NXP

PN7370

20 MHz - 250 MHz RF/MICROWAVE WIDE BAND MEDIUM POWER AMPLIFIER, SM-11, 4 PIN
APITECH

PN7371

Wide Band Low Power Amplifier, 5MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH

PN7380

Wide Band Low Power Amplifier, 10MHz Min, 200MHz Max, SM-11, 4 PIN
APITECH

PN7381

Wide Band Low Power Amplifier, 20MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH

PN7382

Wide Band Low Power Amplifier, 20MHz Min, 250MHz Max, SM-11, 4 PIN
APITECH