PPC5561MVZ80R [NXP]

Microcontroller Data Sheet;
PPC5561MVZ80R
型号: PPC5561MVZ80R
厂家: NXP    NXP
描述:

Microcontroller Data Sheet

微控制器
文件: 总58页 (文件大小:1736K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Document Number: MPC5561  
Rev. 3, June 2012  
Freescale  
Data Sheet: Technical Data  
MPC5561  
Microcontroller Data Sheet  
Contents  
This document provides electrical specifications, pin  
assignments, and package diagrams for the MPC5561  
microcontroller device. For functional characteristics,  
refer to the MPC5561 Microcontroller Reference  
Manual.  
1
2
3
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.1 Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
3.2 Thermal Characteristics. . . . . . . . . . . . . . . . . . . . . . 5  
3.3 Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
3.4 EMI (Electromagnetic Interference) Characteristics 8  
3.5 ESD (Electromagnetic Static Discharge) Characteris-  
tics9  
1
Overview  
3.6 Voltage Regulator Controller (VRC) and  
The MPC5561 microcontroller (MCU) is a member of  
the MPC5500 family of microcontrollers built on the  
Power-On Reset (POR) Electrical Specifications9  
3.7 Power-Up/Down Sequencing . . . . . . . . . . . . . . . . 10  
3.8 DC Electrical Specifications. . . . . . . . . . . . . . . . . . 14  
3.9 Oscillator and FMPLL Electrical Characteristics . . 20  
3.10 eQADC Electrical Characteristics . . . . . . . . . . . . . 22  
3.11 H7Fa Flash Memory Electrical Characteristics . . . 23  
3.12 AC Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 24  
3.13 AC Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Power Architecture embedded technology. This family  
of parts has many new features coupled with high  
performance CMOS technology to provide substantial  
reduction of cost per feature and significant performance  
improvement over the MPC500 family.  
4
5
Mechanicals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
4.1 MPC5561 324 PBGA Pinouts . . . . . . . . . . . . . . . . 44  
4.2 MPC5561 324-Pin Package Dimensions . . . . . . . 45  
The host processor core of this device complies with the  
Power Architecture embedded category that is 100%  
user-mode compatible (including floating point library)  
with the original PowerPC instruction set.The embedded  
architecture enhancements improve the performance in  
embedded applications. The core also has additional  
instructions, including digital signal processing (DSP)  
instructions, beyond the original PowerPC instruction  
set.  
Revision History for the MPC5561 Data Sheet . . . . . . 47  
5.1 Information Changed Between Revisions 2.0 and 3.0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.2 Information Changed Between Revisions 1.0 and 2.0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
5.3 Information Changed Between Revisions 0.0 and 1.0  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
© Freescale Inc., 2008,2012. All rights reserved.  
Overview  
The MPC5500 family of parts contains many new features coupled with high performance CMOS  
technology to provide significant performance improvement over the MPC565.  
The host processor core of the MPC5561 also includes an instruction set enhancement allowing variable  
length encoding (VLE). This allows optional encoding of mixed 16- and 32-bit instructions. With this  
enhancement, it is possible to significantly reduce the code size footprint.  
The MPC5561 has two levels of memory hierarchy. The fastest accesses are to the 32-kilobytes (KB)  
unified cache. The next level in the hierarchy contains the 192-KB on-chip internal SRAM and one  
megabyte (MB) internal flash memory. The internal SRAM and flash memory hold instructions and data.  
The external bus interface is designed to support most of the standard memories used with the MPC5xx  
family.  
The less complex timer functions of the MPC5561 are performed by the enhanced modular input/output  
system (eMIOS). The eMIOS’ 24 hardware channels are capable of single-action, double-action,  
pulse-width modulation (PWM), and modulus-counter operations. Motor control capabilities include  
edge-aligned and center-aligned PWM.  
Off-chip communication is performed by a suite of serial protocols including controller area networks  
(FlexCANs), enhanced deserial/serial peripheral interfaces (DSPIs), and enhanced serial communications  
interfaces (eSCIs).  
The Parallel Digital Interface (PDI) block provides a glueless interface from the MPC5500 family of  
devices to high speed external parallel devices such as Analog to Digital Convertors (ADCs) and image  
sensors. The PDI module, with its internal Direct Memory Access (DMA) engine, moves external parallel  
data into system memory with minimum intervention from the host processor. The host processor can also  
read data from the PDI via an interrupt directly.  
The MCU has an on-chip enhanced queued dual analog-to-digital converter (eQADC).324 s 40-channels.  
The system integration unit (SIU) performs several chip-wide configuration functions. Pad configuration  
and general-purpose input and output (GPIO) are controlled from the SIU. External interrupts and reset  
control are also determined by the SIU. The internal multiplexer submodule provides multiplexing of  
eQADC trigger sources and external interrupt signal multiplexing.  
The FlexRay controller provides functional node networking, with static and dynamic host access, to  
develop highly dependable automotive control systems that require the full implementation of the FlexRay  
protocol, as published in FlexRay Protocol Specification 2.0. The FlexRay module uses fault-tolerant,  
time-triggered events and clock synchronization mechanisms to maintain the global time of the functional  
nodes. Bus guardian operations are available for each channel in a multi- or redundant-channel  
configuration.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
2
Freescale Semiconductor  
Ordering Information  
2
Ordering Information  
5561  
R
ZQ  
80  
M PC  
M
Qualification status  
Core code  
Device number  
Temperature range  
Package identifier  
Operating frequency (MHz)  
Tape and reel status  
Tape and Reel Status  
R = Tape and reel  
(blank) = Trays  
Operating Frequency  
80 = 80 MHz  
112 = 112 MHz  
132 = 132 MHz  
Package Identifier  
ZQ = 324PBGA SnPb  
VZ = 324PBGA Pb-free  
Temperature Range  
M = –40° C to 125° C  
Qualification Status  
P = Pre qualification  
M = Fully spec. qualified, general market flow  
S = Fully spec. qualified, automotive flow  
Note: Not all options are available on all devices. Refer to Table 1.  
Figure 1. MPC5500 Family Part Number Example  
Unless noted in this data sheet, all specifications apply from T to T .  
L
H
Table 1. Orderable Part Numbers  
Operating Temperature 2  
Speed (MHz)  
Freescale Part Number1  
Package Description  
Nominal  
Max. 3 (fMAX  
)
Min. (TL)  
Max. (TH)  
MPC5561MVZ132  
MPC5561MVZ112  
MPC5561MVZ80  
MPC5561MZQ132  
MPC5561MZQ112  
MPC5561MZQ80  
132  
112  
80  
135  
114  
82  
MPC5561 324 package  
Lead-free (PbFree)  
–40° C  
125° C  
132  
112  
80  
135  
114  
82  
MPC5561 324 package  
Leaded (SnPb)  
–40° C  
125° C  
1
All devices are PPC5561, rather than MPC5561 or SPC5561, until product qualifications are complete. Not all configurations are  
available in the PPC parts.  
2
3
The lowest ambient operating temperature is referenced by TL; the highest ambient operating temperature is referenced by TH.  
Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM).  
82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; and  
135 MHz parts allow for 132 MHz system clock + 2% FM.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
3
Freescale  
Electrical Characteristics  
3
Electrical Characteristics  
This section contains detailed information on power considerations, DC/AC electrical characteristics, and  
AC timing specifications for the MCU.  
3.1  
Maximum Ratings  
1
Table 2. Absolute Maximum Ratings  
Spec  
Characteristic  
1.5 V core supply voltage 2  
Symbol  
Min.  
Max.  
Unit  
1
2
4
5
6
7
8
9
VDD  
VPP  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
–0.3  
1.7  
6.5  
4.6  
1.7  
4.6  
4.6  
4.6  
5.5  
4.6  
6.5  
V
V
V
V
V
V
V
V
V
V
Flash program/erase voltage  
Flash read voltage  
VFLASH  
VSTBY  
VDDSYN  
VDD33  
VRC33  
VDDA  
SRAM standby voltage  
Clock synthesizer voltage  
3.3 V I/O buffer voltage  
Voltage regulator control input voltage  
Analog supply voltage (reference to VSSA  
)
10 I/O supply voltage (fast I/O pads) 3  
11 I/O supply voltage (slow and medium I/O pads) 3  
12 DC input voltage 4  
VDDEH powered I/O pads  
VDDE powered I/O pads  
VDDE  
VDDEH  
VIN  
–1.0 5  
–1.0 5  
6.5 6  
4.6 7  
V
13 Analog reference high voltage (reference to VRL  
)
VRH  
–0.3  
–0.1  
5.5  
0.1  
V
V
V
V
V
V
V
V
14  
15  
V
SS to VSSA differential voltage  
DD to VDDA differential voltage  
VSS – VSSA  
VDD – VDDA  
VRH – VRL  
V
–VDDA  
–0.3  
VDD  
5.5  
16 VREF differential voltage  
17  
18  
V
RH to VDDA differential voltage  
RL to VSSA differential voltage  
VRH – VDDA  
VRL – VSSA  
VDDEH – VDDA  
VDDF – VDD  
–5.5  
5.5  
V
–0.3  
0.3  
19 VDDEH to VDDA differential voltage  
–VDDA  
–0.3  
VDDEH  
0.3  
20  
21  
VDDF to VDD differential voltage  
VRC33 to VDDSYN differential voltage spec has been moved to Table 9 DC Electrical Specifications, Spec 43a.  
22 VSSSYN to VSS differential voltage  
23 RCVSS to VSS differential voltage  
24 Maximum DC digital input current 8  
VSSSYN – VSS  
VRCVSS – VSS  
IMAXD  
–0.1  
–0.1  
–2  
0.1  
0.1  
2
V
V
V
mA  
4
(per pin, applies to all digital pins)  
25 Maximum DC analog input current 9  
(per pin, applies to all analog pins)  
26 Maximum operating temperature range 10  
Die junction temperature  
IMAXA  
TJ  
–3  
TL  
3
mA  
oC  
oC  
150.0  
150.0  
27 Storage temperature range  
TSTG  
–55.0  
MPC5561 Microcontroller Data Sheet, Rev. 3  
4
Freescale Semiconductor  
Electrical Characteristics  
1
Table 2. Absolute Maximum Ratings (continued)  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
28 Maximum solder temperature 11  
Lead free (Pb-free)  
Leaded (SnPb)  
29 Moisture sensitivity level 12  
TSDR  
MSL  
260.0  
245.0  
oC  
3
1
Functional operating conditions are given in the DC electrical specifications. Absolute maximum ratings are stress ratings only,  
and functional operation at the maxima is not guaranteed. Stress beyond any of the listed maxima can affect device reliability  
or cause permanent damage to the device.  
2
3
4
1.5 V 10% for proper operation. This parameter is specified at a maximum junction temperature of 150 oC.  
All functional non-supply I/O pins are clamped to VSS and VDDE, or VDDEH  
.
AC signal overshoot and undershoot of up to 2.0 V of the input voltages is permitted for an accumulative duration of  
60 hours over the complete lifetime of the device (injection current not limited for this duration).  
5
6
7
Internal structures hold the voltage greater than –1.0 V if the injection current limit of 2 mA is met. Keep the negative DC  
voltage greater than –0.6 V on SINB during the internal power-on reset (POR) state.  
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDEH supplies, if the  
maximum injection current specification is met (2 mA for all pins) and VDDEH is within the operating voltage specifications.  
Internal structures hold the input voltage less than the maximum voltage on all pads powered by VDDE supplies, if the maximum  
injection current specification is met (2 mA for all pins) and VDDE is within the operating voltage specifications.  
Total injection current for all pins (including both digital and analog) must not exceed 25 mA.  
Total injection current for all analog input pins must not exceed 15 mA.  
8
9
10 Lifetime operation at these specification limits is not guaranteed.  
11 Moisture sensitivity profile per IPC/JEDEC J-STD-020D.  
12 Moisture sensitivity per JEDEC test method A112.  
3.2  
Thermal Characteristics  
The shaded rows in the following table indicate information specific to a four-layer board.  
Table 3. MPC5561 Thermal Characteristics (Preliminary Values)  
Spec  
MPC5561 Thermal Characteristic  
Symbol  
324 PBGA  
Unit  
1
2
3
4
5
6
7
Junction to ambient 1, 2, natural convection (one-layer board)  
Junction to ambient 1, 3, natural convection (four-layer board 2s2p)  
Junction to ambient (@200 ft./min., one-layer board)  
Junction to ambient (@200 ft./min., four-layer board 2s2p)  
Junction to board (four-layer board 2s2p) 4  
RJA  
RJA  
RJMA  
RJMA  
RJB  
RJC  
JT  
29  
19  
22  
16  
10  
7
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
Junction to case 5  
Junction to package top, natural convection 6  
2
1
Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site (board) temperature,  
ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.  
2
3
4
Per SEMI G38-87 and JEDEC JESD51-2 with the single-layer board horizontal.  
Per JEDEC JESD51-6 with the board horizontal.  
Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on  
the top surface of the board near the package.  
Indicates the average thermal resistance between the die and the case top surface as measured by the cold plate method (MIL  
SPEC-883 Method 1012.1) with the cold plate temperature used for the case temperature.  
Thermal characterization parameter indicating the temperature difference between package top and the junction temperature  
per JEDEC JESD51-2.  
5
6
MPC5561 Microcontroller Data Sheet, Rev. 3  
5
Freescale  
Electrical Characteristics  
3.2.1  
General Notes for Specifications at Maximum Junction Temperature  
An estimation of the device junction temperature, T , can be obtained from the equation:  
J
T = T + (R  
P )  
D
J
A
JA  
where:  
o
T = ambient temperature for the package ( C)  
A
o
R
= junction to ambient thermal resistance ( C/W)  
JA  
P = power dissipation in the package (W)  
D
The thermal resistance values used are based on the JEDEC JESD51 series of standards to provide  
consistent values for estimations and comparisons. The difference between the values determined for the  
single-layer (1s) board compared to a four-layer board that has two signal layers, a power and a ground  
plane (2s2p), demonstrate that the effective thermal resistance is not a constant. The thermal resistance  
depends on the:  
Construction of the application board (number of planes)  
Effective size of the board which cools the component  
Quality of the thermal and electrical connections to the planes  
Power dissipated by adjacent components  
Connect all the ground and power balls to the respective planes with one via per ball. Using fewer vias to  
connect the package to the planes reduces the thermal performance. Thinner planes also reduce the thermal  
performance. When the clearance between the vias leave the planes virtually disconnected, the thermal  
performance is also greatly reduced.  
As a general rule, the value obtained on a single-layer board is within the normal range for the tightly  
packed printed circuit board. The value obtained on a board with the internal planes is usually within the  
normal range if the application board has:  
One oz. (35 micron nominal thickness) internal planes  
Components are well separated  
2
Overall power dissipation on the board is less than 0.02 W/cm  
The thermal performance of any component depends on the power dissipation of the surrounding  
components. In addition, the ambient temperature varies widely within the application. For many natural  
convection and especially closed box applications, the board temperature at the perimeter (edge) of the  
package is approximately the same as the local air temperature near the device. Specifying the local  
ambient conditions explicitly as the board temperature provides a more precise description of the local  
ambient conditions that determine the temperature of the device.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
6
Freescale Semiconductor  
Electrical Characteristics  
At a known board temperature, the junction temperature is estimated using the following equation:  
T = T + (R  
P )  
D
J
B
JB  
where:  
o
T = junction temperature ( C)  
J
o
T = board temperature at the package perimeter ( C/W)  
B
o
R
= junction-to-board thermal resistance ( C/W) per JESD51-8  
JB  
P = power dissipation in the package (W)  
D
When the heat loss from the package case to the air does not factor into the calculation, an acceptable value  
for the junction temperature is predictable. Ensure the application board is similar to the thermal test  
condition, with the component soldered to a board with internal planes.  
The thermal resistance is expressed as the sum of a junction-to-case thermal resistance plus a  
case-to-ambient thermal resistance:  
R
= R  
+ R  
JA  
JC CA  
where:  
o
R
R
R
= junction-to-ambient thermal resistance ( C/W)  
JA  
JC  
CA  
o
= junction-to-case thermal resistance ( C/W)  
o
= case-to-ambient thermal resistance ( C/W)  
R
is device related and is not affected by other factors. The thermal environment can be controlled to  
JC  
change the case-to-ambient thermal resistance, R  
. For example, change the air flow around the device,  
CA  
add a heat sink, change the mounting arrangement on the printed circuit board, or change the thermal  
dissipation on the printed circuit board surrounding the device. This description is most useful for  
packages with heat sinks where 90% of the heat flow is through the case to heat sink to ambient.  
For most packages, a better model is required.  
A more accurate two-resistor thermal model can be constructed from the junction-to-board thermal  
resistance and the junction-to-case thermal resistance. The junction-to-case thermal resistance describes  
when using a heat sink or where a substantial amount of heat is dissipated from the top of the package. The  
junction-to-board thermal resistance describes the thermal performance when most of the heat is  
conducted to the printed circuit board. This model can be used to generate simple estimations and for  
computational fluid dynamics (CFD) thermal models.  
To determine the junction temperature of the device in the application on a prototype board, use the  
thermal characterization parameter () to determine the junction temperature by measuring the  
JT  
temperature at the top center of the package case using the following equation:  
T = T + (  P )  
J
T
JT  
D
where:  
o
T = thermocouple temperature on top of the package ( C)  
T
o
= thermal characterization parameter ( C/W)  
JT  
P = power dissipation in the package (W)  
D
MPC5561 Microcontroller Data Sheet, Rev. 3  
7
Freescale  
Electrical Characteristics  
The thermal characterization parameter is measured in compliance with the JESD51-2 specification using  
a 40-gauge type T thermocouple epoxied to the top center of the package case. Position the thermocouple  
so that the thermocouple junction rests on the package. Place a small amount of epoxy on the thermocouple  
junction and approximately 1 mm of wire extending from the junction. Place the thermocouple wire flat  
against the package case to avoid measurement errors caused by the cooling effects of the thermocouple  
wire.  
References:  
Semiconductor Equipment and Materials International  
3081 Zanker Rd.  
San Jose, CA., 95134  
(408) 943-6900  
MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at  
800-854-7179 or 303-397-7956.  
JEDEC specifications are available on the web at http://www.jedec.org.  
1. C.E. Triplett and B. Joiner, “An Experimental Characterization of a 272 PBGA Within an Automotive  
Engine Controller Module,” Proceedings of SemiTherm, San Diego, 1998, pp. 47–54.  
2. G. Kromann, S. Shidore, and S. Addison, “Thermal Modeling of a PBGA for Air-Cooled Applica-  
tions,” Electronic Packaging and Production, pp. 53–58, March 1998.  
3. B. Joiner and V. Adams, “Measurement and Simulation of Junction to Board Thermal Resistance and  
Its Application in Thermal Modeling,” Proceedings of SemiTherm, San Diego, 1999, pp. 212–220.  
3.3  
Package  
The MPC5561 is available in packaged form. Read the package options in Section 2, “Ordering  
Information.” Refer to Section 4, “Mechanicals,” for pinouts and package drawings.  
3.4  
EMI (Electromagnetic Interference) Characteristics  
1
Table 4. EMI Testing Specifications  
Spec  
Characteristic  
Minimum  
Typical  
Maximum  
Unit  
1
2
3
4
5
6
Scan range  
0.15  
1000  
fMAX  
MHz  
MHz  
V
Operating frequency  
VDD operating voltages  
DDSYN, VRC33, VDD33, VFLASH, VDDE operating voltages  
1.5  
3.3  
5.0  
V
V
VPP, VDDEH, VDDA operating voltages  
Maximum amplitude  
14 2  
32 3  
V
dBuV  
7
Operating temperature  
25  
oC  
1
EMI testing and I/O port waveforms per SAE J1752/3 issued 1995-03. Qualification testing was performed on the MPC5554  
and applied to the MPC5500 family as generic EMI performance data.  
2
3
Measured with the single-chip EMI program.  
Measured with the expanded EMI program.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
8
Freescale Semiconductor  
Electrical Characteristics  
3.5  
ESD (Electromagnetic Static Discharge) Characteristics  
1, 2  
Table 5. ESD Ratings  
Characteristic  
Symbol  
Value  
Unit  
ESD for human body model (HBM)  
HBM circuit description  
2000  
1500  
V
R1  
C
100  
pF  
500 (all pins)  
750 (corner pins)  
ESD for field induced charge model (FDCM)  
V
Number of pulses per pin:  
Positive pulses (HBM)  
Negative pulses (HBM)  
1
1
Interval of pulses  
1
second  
1
All ESD testing conforms to CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.  
2
Device failure is defined as: ‘If after exposure to ESD pulses, the device does not meet the device specification requirements,  
which includes the complete DC parametric and functional testing at room temperature and hot temperature.  
3.6  
Voltage Regulator Controller (V ) and  
Power-On Reset (POR) Electrical Specifications  
RC  
The following table lists the V and POR electrical specifications:  
RC  
Table 6. V and POR Electrical Specifications  
RC  
Spec  
Characteristic  
Negated (ramp up)  
Symbol  
VPOR15  
Min.  
Max. Units  
1.1  
1.1  
1.35  
V
1
1.5 V (VDD) POR 1  
Asserted (ramp down)  
1.35  
Asserted (ramp up)  
Negated (ramp up)  
Asserted (ramp down)  
Negated (ramp down)  
0.0  
2.0  
2.0  
0.0  
0.30  
2.85  
2.85  
0.30  
2
3.3 V (VDDSYN) POR 1  
VPOR33  
V
Negated (ramp up)  
2.0  
2.0  
2.85  
2.85  
RESET pin supply  
(VDDEH6) POR 1, 2  
3
4
5
VPOR5  
V
Asserted (ramp down)  
Before VRC allows the pass  
transistor to start turning on  
VTRANS_START  
VTRANS_ON  
1.0  
2.0  
2.0  
V
V
When VRC allows the pass  
2.85  
VRC33 voltage  
transistor to completely turn on 3, 4  
When the voltage is greater than  
the voltage at which the VRC keeps  
the 1.5 V supply in regulation 5, 6  
–40o C  
25o C  
6
7
8
VVRC33REG  
3.0  
V
Current can be sourced  
by VRCCTL at Tj:  
11.0  
9.0  
mA  
mA  
mA  
7
IVRCCTL  
150o C  
7.5  
Voltage differential during power up such that:  
VDD33 can lag VDDSYN or VDDEH6 before VDDSYN and VDDEH6 reach the  
VPOR33 and VPOR5 minimums respectively.  
VDD33_LAG  
1.0  
V
MPC5561 Microcontroller Data Sheet, Rev. 3  
9
Freescale  
Electrical Characteristics  
Spec  
Table 6. V and POR Electrical Specifications (continued)  
RC  
Characteristic  
Symbol  
Min.  
Max. Units  
9
Absolute value of slew rate on power supply pins  
50  
V/ms  
Required gain at Tj:  
IDD IVRCCTL (@ fsys = fMAX  
– 40o C  
25o C  
60  
)
BETA10  
65  
85  
10  
6, 7, 8, 9  
150o C  
500  
1
The internal POR signals are VPOR15, VPOR33, and VPOR5. On power up, assert RESET before the internal POR negates.  
RESET must remain asserted until the power supplies are within the operating conditions as specified in Table 9 DC Electrical  
Specifications. On power down, assert RESET before any power supplies fall outside the operating conditions and until the  
internal POR asserts.  
2
3
4
5
6
VIL_S (Table 9, Spec15) is guaranteed to scale with VDDEH6 down to VPOR5  
.
Supply full operating current for the 1.5 V supply when the 3.3 V supply reaches this range.  
It is possible to reach the current limit during ramp up—do not treat this event as short circuit current.  
At peak current for device.  
Requires compliance with Freescale’s recommended board requirements and transistor recommendations. Board signal  
traces/routing from the VRCCTL package signal to the base of the external pass transistor and between the emitter of the pass  
transistor to the VDD package signals must have a maximum of 100 nH inductance and minimal resistance  
(less than 1 ). VRCCTL must have a nominal 1 F phase compensation capacitor to ground. VDD must have a 20 F (nominal)  
bulk capacitor (greater than 4 F over all conditions, including lifetime). Place high-frequency bypass capacitors consisting of  
eight 0.01 F, two 0.1 F, and one 1 F capacitors around the package on the VDD supply signals.  
7
8
9
IVRCCTL is measured at the following conditions: VDD = 1.35 V, VRC33 = 3.1 V, VVRCCTL = 2.2 V.  
Refer to Table 1 for the maximum operating frequency.  
Values are based on IDD from high-use applications as explained in the IDD Electrical Specification.  
10 Represents the worst-case external transistor BETA. It is measured on a per-part basis and calculated as (IDD IVRCCTL).  
3.7  
Power-Up/Down Sequencing  
Power sequencing between the 1.5 V power supply and V  
or the RESET power supplies is required  
DDSYN  
if using an external 1.5 V power supply with V  
tied to ground (GND). To avoid power-sequencing,  
RC33  
V
must be powered up within the specified operating range, even if the on-chip voltage regulator  
RC33  
controller is not used. Refer to Section 3.7.2, “Power-Up Sequence (VRC33 Grounded),and  
Section 3.7.3, “Power-Down Sequence (VRC33 Grounded).”  
Power sequencing requires that V  
must reach a certain voltage where the values are read as ones  
DD33  
before the POR signal negates. Refer to Section 3.7.1, “Input Value of Pins During POR Dependent on  
VDD33.”  
Although power sequencing is not required between V  
and V  
during power up, V  
must  
RC33  
RC33  
DDSYN  
not lead V  
by more than 600 mV or lag by more than 100 mV for the V stage turn-on to operate  
DDSYN  
RC  
within specification. Higher spikes in the emitter current of the pass transistor occur if V  
leads or lags  
RC33  
V
by more than these amounts. The value of that higher spike in current depends on the board power  
DDSYN  
supply circuitry and the amount of board level capacitance.  
Furthermore, when all of the PORs negate, the system clock starts to toggle, adding another large increase  
of the current consumed by V . If V lags V by more than 100 mV, the increase in current  
RC33  
RC33  
DDSYN  
consumed can drop V low enough to assert the 1.5 V POR again. Oscillations are possible when the  
DD  
MPC5561 Microcontroller Data Sheet, Rev. 3  
10  
Freescale Semiconductor  
Electrical Characteristics  
1.5 V POR asserts and stops the system clock, causing the voltage on V to rise until the 1.5 V POR  
DD  
negates again. All oscillations stop when V  
is powered sufficiently.  
RC33  
When powering down, V  
and V  
have no delta requirement to each other, because the bypass  
RC33  
DDSYN  
capacitors internal and external to the device are already charged. When not powering up or down, no delta  
between V and V is required for the V to operate within specification.  
RC33  
DDSYN  
RC  
There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current  
spikes, and so on. Therefore, the state of the I/O pins during power up and power down varies depending  
on which supplies are powered.  
Table 7 gives the pin state for the sequence cases for all pins with pad type pad_fc (fast type).  
Table 7. Pin Status for Fast Pads During the Power Sequence  
Pin Status for Fast Pad Output Driver  
VDDE  
VDD33  
VDD  
POR  
pad_fc (fast)  
Low  
Asserted  
Asserted  
Asserted  
Asserted  
Asserted  
Negated  
Low  
VDDE  
VDDE  
VDDE  
VDDE  
VDDE  
Low  
Low  
VDD  
Low  
VDD  
VDD  
High  
High  
Low  
VDD33  
VDD33  
VDD33  
High impedance (Hi-Z)  
Hi-Z  
Functional  
Table 8 gives the pin state for the sequence cases for all pins with pad type pad_mh (medium type) and  
pad_sh (slow type).  
Table 8. Pin Status for Medium and Slow Pads During the Power Sequence  
Pin Status for Medium and Slow Pad Output Driver  
VDDEH  
VDD  
POR  
pad_mh (medium) pad_sh (slow)  
Low  
Asserted  
Asserted  
Asserted  
Negated  
Low  
High impedance (Hi-Z)  
Hi-Z  
VDDEH  
VDDEH  
VDDEH  
Low  
VDD  
VDD  
Functional  
The values in Table 7 and Table 8 do not include the effect of the weak-pull devices on the output pins  
during power up.  
Before exiting the internal POR state, the voltage on the pins go to a high-impedance state until POR  
negates. When the internal POR negates, the functional state of the signal during reset applies and the  
weak-pull devices  
(up or down) are enabled as defined in the device reference manual. If V is too low to correctly  
DD  
propagate the logic signals, the weak-pull devices can pull the signals to V  
and V  
.
DDE  
DDEH  
To avoid this condition, minimize the ramp time of the V supply to a time period less than the time  
DD  
required to enable the external circuitry connected to the device outputs.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
11  
Freescale  
Electrical Characteristics  
During initial power ramp-up, when V  
is 0.6v or above. a typical current of 1-3mA and maximum of  
stby  
4mA may be seen until V is applied. This current will not reoccur until V  
is lowered below V  
DD  
stby  
stby  
min. specification.  
Figure 2 shows an approximate interpolation of the I  
worst-case specification to estimate values at  
STBY  
different voltages and temperatures. The vertical lines shown at 25 C, 60 C, and 150 C in Figure 2 are  
the actual I  
specifications (27d) listed in Table 9.  
DD_STBY  
Figure 2. fI  
Worst-case Specifications  
STBY  
MPC5561 Microcontroller Data Sheet, Rev. 3  
12  
Freescale Semiconductor  
Electrical Characteristics  
3.7.1  
Input Value of Pins During POR Dependent on VDD33  
When powering up the device, V  
must not lag the latest V  
or RESET power pin (V  
) by  
DD33  
DDSYN  
DDEH6  
more than the V  
lag specification listed in Table 6, spec 8. This avoids accidentally selecting the  
DD33  
bypass clock mode because the internal versions of PLLCFG[0:1] and RSTCFG are not powered and  
therefore cannot read the default state when POR negates. V can lag V or the RESET power  
DD33  
DDSYN  
pin (V  
), but cannot lag both by more than the V  
lag specification. This V  
lag specification  
DDEH6  
DD33  
DD33  
applies during power up only. V  
has no lead or lag requirements when powering down.  
DD33  
3.7.2  
Power-Up Sequence (VRC33 Grounded)  
The 1.5 V V power supply must rise to 1.35 V before the 3.3 V V  
power supply and the RESET  
DDSYN  
DD  
power supply rises above 2.0 V. This ensures that digital logic in the PLL for the 1.5 V power supply does  
not begin to operate below the specified operation range lower limit of 1.35 V. Because the internal 1.5 V  
POR is disabled, the internal 3.3 V POR or the RESET power POR must hold the device in reset. Since  
they can negate as low as 2.0 V, V must be within specification before the 3.3 V POR and the RESET  
DD  
POR negate.  
VDDSYN and RESET Power  
VDD  
2.0 V  
1.35 V  
VDD must reach 1.35 V before VDDSYN and the RESET power reach 2.0 V  
Figure 3. Power-Up Sequence (V  
Grounded)  
RC33  
3.7.3  
Power-Down Sequence (VRC33 Grounded)  
The only requirement for the power-down sequence with V  
grounded is if V decreases to less than  
DD  
RC33  
its operating range, V  
or the RESET power must decrease to less than 2.0 V before the V power  
DDSYN  
DD  
increases to its operating range. This ensures that the digital 1.5 V logic, which is reset only by an ORed  
POR and can cause the 1.5 V supply to decrease less than its specification value, resets correctly. See  
Table 6, footnote 1.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
13  
Freescale  
Electrical Characteristics  
3.8  
DC Electrical Specifications  
Table 9. DC Electrical Specifications (T = T to T )  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
1
2
3
4
5
6
8
9
Core supply voltage (average DC RMS voltage)  
Input/output supply voltage (fast input/output) 1  
Input/output supply voltage (slow and medium input/output)  
3.3 V input/output buffer voltage  
VDD  
VDDE  
1.35  
1.62  
3.0  
3.0  
3.0  
4.5  
4.5  
3.0  
0.8  
3.0  
1.65  
3.6  
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
V
VDDEH  
VDD33  
VRC33  
VDDA  
5.25  
3.6  
Voltage regulator control input voltage  
Analog supply voltage 2  
3.6  
5.25  
Flash programming voltage 3  
VPP  
5.25  
Flash read voltage  
VFLASH  
VSTBY  
VDDSYN  
VIH_F  
3.6  
10 SRAM standby voltage 4  
1.2  
11 Clock synthesizer operating voltage  
12 Fast I/O input high voltage  
3.6  
0.65 VDDE  
VSS – 0.3  
VDDE + 0.3  
0.35 VDDE  
VDDEH + 0.3  
0.35 VDDEH  
13 Fast I/O input low voltage  
VIL_F  
14 Medium and slow I/O input high voltage  
15 Medium and slow I/O input low voltage  
16 Fast input hysteresis  
VIH_S  
VIL_S  
0.65 VDDEH  
VSS – 0.3  
VHYS_F  
VHYS_S  
VINDC  
VOH_F  
0.1 VDDE  
0.1 VDDEH  
17 Medium and slow I/O input hysteresis  
18 Analog input voltage  
VSSA – 0.3  
VDDA + 0.3  
19 Fast output high voltage (IOH_F = –2.0 mA)  
0.8 VDDE  
20 Slow and medium output high voltage  
IOH_S = –2.0 mA  
VOH_S  
VOL_F  
VOL_S  
0.80 VDDEH  
0.85 VDDEH  
V
IOH_S = –1.0 mA  
21 Fast output low voltage (IOL_F = 2.0 mA)  
0.2 VDDE  
V
V
22 Slow and medium output low voltage  
IOL_S = 2.0 mA  
0.20 VDDEH  
0.15 VDDEH  
IOL_S = 1.0 mA  
23 Load capacitance (fast I/O) 5  
DSC (SIU_PCR[8:9]) = 0b00  
10  
20  
30  
50  
pF  
pF  
pF  
pF  
= 0b01  
= 0b10  
= 0b11  
CL  
24 Input capacitance (digital pins)  
25 Input capacitance (analog pins)  
CIN  
7
pF  
pF  
CIN_A  
10  
26 Input capacitance:  
(Shared digital and analog pins AN[12]_MA[0]_SDS,  
AN[13]_MA[1]_SDO, AN[14]_MA[2]_SDI, and AN[15]_FCK)  
CIN_M  
12  
pF  
MPC5561 Microcontroller Data Sheet, Rev. 3  
14  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. DC Electrical Specifications (T = T to T ) (continued)  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
27a Operating current 1.5 V supplies @ 135 MHz: 6  
8-way cache 7  
VDD (including VDDF max current) @1.65 V typical use 8, 9  
VDD (including VDDF max current) @1.35 V typical use 8, 9  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
4-way cache 11  
IDD  
IDD  
IDD  
IDD  
620  
440  
670  
490  
mA  
mA  
mA  
mA  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
IDD  
IDD  
610  
430  
mA  
mA  
27b Operating current 1.5 V supplies @ 114 MHz: 6  
8-way cache 7  
VDD (including VDDF max current) @1.65 V typical use 8, 9  
VDD (including VDDF max current) @1.35 V typical use 8, 9  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
4-way cache 11  
IDD  
IDD  
IDD  
IDD  
590  
395  
580  
390  
mA  
mA  
mA  
mA  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
IDD  
IDD  
550  
385  
mA  
mA  
27c Operating current 1.5 V supplies @ 82 MHz: 6  
8-way cache 7  
VDD (including VDDF max current) @1.65 V typical use 8, 9  
VDD (including VDDF max current) @1.35 V typical use 8, 9  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
4-way cache 11  
IDD  
IDD  
IDD  
IDD  
485  
320  
470  
315  
mA  
mA  
mA  
mA  
VDD (including VDDF max current) @1.65 V high use 9, 10  
VDD (including VDDF max current) @1.35 V high use 9, 10  
IDD  
IDD  
400  
310  
mA  
mA  
27d RAM standby current.12  
IDD_STBY @ 25o C  
VSTBY @ 0.8 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
20  
30  
50  
A  
A  
A  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
IDD_STBY @ 60o C  
VSTBY @ 0.8 V  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
70  
100  
200  
A  
A  
A  
IDD_STBY @ 150o C (Tj)  
VSTBY @ 0.8 V  
IDD_STBY  
IDD_STBY  
IDD_STBY  
1200  
1500  
2000  
A  
A  
A  
VSTBY @ 1.0 V  
VSTBY @ 1.2 V  
28 Operating current 3.3 V supplies @ fMAX MHz  
13  
VDD33  
IDD_33  
2 + (values  
derived from  
procedure of  
mA  
footnote 13  
)
VFLASH  
VDDSYN  
IVFLASH  
IDDSYN  
10  
15  
mA  
mA  
MPC5561 Microcontroller Data Sheet, Rev. 3  
15  
Freescale  
Electrical Characteristics  
Table 9. DC Electrical Specifications (T = T to T ) (continued)  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
29 Operating current 5.0 V supplies (12 MHz ADCLK):  
VDDA (VDDA0 + VDDA1  
)
IDD_A  
IREF  
IPP  
20.0  
1.0  
25.0  
mA  
mA  
mA  
Analog reference supply current (VRH, VRL  
)
VPP  
30 Operating current VDDE supplies: 14  
VDDEH1  
VDDE2  
VDDE3  
VDDEH4  
VDDE5  
VDDEH6  
VDDE7  
VDDEH8  
VDDEH9  
IDD1  
IDD2  
IDD3  
IDD4  
IDD5  
IDD6  
IDD7  
IDD8  
IDD9  
Refer to  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
footnote 14  
31 Fast I/O weak pullup current 15  
1.62–1.98 V  
10  
20  
20  
110  
130  
170  
A  
A  
A  
2.25–2.75 V  
3.00–3.60 V  
IACT_F  
Fast I/O weak pulldown current 15  
1.62–1.98 V  
10  
20  
20  
100  
130  
170  
A  
A  
A  
2.25–2.75 V  
3.00–3.60 V  
32 Slow and medium I/O weak pullup/down current 15  
3.0–3.6 V  
4.5–5.5 V  
IACT_S  
10  
20  
150  
170  
A  
A  
33 I/O input leakage current 16  
34 DC injection current (per pin)  
35 Analog input current, channel off 17  
IINACT_D  
IIC  
–2.5  
–2.0  
–150  
2.5  
2.0  
A  
mA  
nA  
IINACT_A  
150  
35a Analog input current, shared analog / digital pins  
(AN[12], AN[13], AN[14], AN[15])  
IINACT_AD  
–2.5  
2.5  
A  
36  
V
SS to VSSA differential voltage 18  
VSS – VSSA  
VRL  
VRL – VSSA  
VRH  
–100  
VSSA – 0.1  
–100  
100  
VSSA + 0.1  
100  
mV  
V
37 Analog reference low voltage  
38 VRL differential voltage  
mV  
V
39 Analog reference high voltage  
VDDA – 0.1  
4.5  
VDDA + 0.1  
5.25  
40 VREF differential voltage  
VRH – VRL  
V
41 VSSSYN to VSS differential voltage  
42 VRCVSS to VSS differential voltage  
43 VDDF to VDD differential voltage  
43a VRC33 to VDDSYN differential voltage  
44 Analog input differential signal range (with common mode 2.5 V)  
VSSSYN – VSS  
VRCVSS – VSS  
VDDF – VDD  
VRC33 – VDDSYN  
VIDIFF  
–50  
50  
mV  
mV  
mV  
V
–50  
50  
–100  
100  
–0.1  
0.1 19  
2.5  
–2.5  
V
MPC5561 Microcontroller Data Sheet, Rev. 3  
16  
Freescale Semiconductor  
Electrical Characteristics  
Table 9. DC Electrical Specifications (T = T to T ) (continued)  
A
L
H
Spec  
Characteristic  
Symbol  
Min  
Max.  
Unit  
45 Operating temperature range, ambient (packaged)  
46 Slew rate on power-supply pins  
TA = (TL to TH)  
TL  
TH  
50  
C  
V/ms  
1
VDDE2 and VDDE3 are limited to 2.25–3.6 V only if SIU_ECCR[EBTS] = 0; VDDE2 and VDDE3 have a range of 1.6–3.6 V if  
SIU_ECCR[EBTS] = 1.  
2
3
4
5
6
7
8
9
| VDDA0 – VDDA1 | must be < 0.1 V.  
VPP can drop to 3.0 V during read operations.  
If standby operation is not required, connect VSTBY to ground.  
Applies to CLKOUT, external bus pins, and Nexus pins.  
Maximum average RMS DC current.  
Eight-way cache enabled (L1CSR0[CORG] = 0b0).  
Average current measured on automotive benchmark.  
Peak currents can be higher on specialized code.  
10 High-use current measured while running optimized SPE assembly code with all code and data 100% locked in cache  
(0% miss rate) with all channels of the eMIOS running autonomously, plus the eDMA transferring data continuously from SRAM to  
SRAM. Higher currents are possible if an ‘idle’ loop that crosses cache lines is run from cache. Write code to avoid this condition.  
11 Four-way cache enabled (L1CSR0[CORG] = 0b1) or (L1CSR0[CORG] = 0b0 with L1CSR0[WAM] = 0b1, L1CSR0[WID] = 0b1111,  
L1CSR0[WDD] = 0b1111, L1CSR0[AWID] = 0b1, and L1CSR0[AWDD] = 0b1).  
12 The current specification relates to average standby operation after SRAM has been loaded with data. For power up current see  
Section 3.7, “Power-Up/Down Sequencing”, Figure 2.  
13 Power requirements for the VDD33 supply depend on the frequency of operation, load of all I/O pins, and the voltages on the I/O  
segments. Refer to Table 11 for values to calculate the power dissipation for a specific operation.  
14 Power requirements for each I/O segment are dependent on the frequency of operation and load of the I/O pins on a particular I/O  
segment, and the voltage of the I/O segment. Refer to Table 10 for values to calculate power dissipation for specific operation. The  
total power consumption of an I/O segment is the sum of the individual power consumptions for each pin on the segment.  
15 Absolute value of current, measured at VIL and VIH.  
16 Weak pullup/down inactive. Measured at VDDE = 3.6 V and VDDEH = 5.25 V. Applies to pad types: pad_fc, pad_sh, and pad_mh.  
17 Maximum leakage occurs at maximum operating temperature. Leakage current decreases by approximately one-half for each 8 oC  
to 12 oC, in the ambient temperature range of 50 oC to 125 oC. Applies to pad types: pad_a and pad_ae.  
18  
V
refers to both VSSA0 and VSSA1. | VSSA0 – VSSA1 | must be < 0.1 V.  
SSA  
19 Up to 0.6 V during power up and power down.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
17  
Freescale  
Electrical Characteristics  
3.8.1  
I/O Pad Current Specifications  
The power consumption of an I/O segment depends on the usage of the pins on a particular segment. The  
power consumption is the sum of all output pin currents for a segment. The output pin current can be  
calculated from Table 10 based on the voltage, frequency, and load on the pin. Use linear scaling to  
calculate pin currents for voltage, frequency, and load parameters that fall outside the values given in  
Table 10.  
1
Table 10. I/O Pad Average DC Current (T = T to T )  
A
L
H
Drive Select /  
Slew Rate  
Control Setting  
Frequency  
(MHz)  
Spec  
Pad Type  
Symbol  
Load2 (pF)  
Voltage (V)  
Current (mA)  
1
25  
10  
2
50  
50  
50  
200  
50  
50  
50  
200  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
5.25  
3.6  
11  
01  
00  
00  
11  
01  
00  
00  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
8.0  
3.2  
0.7  
2.4  
17.3  
6.5  
1.1  
3.9  
2.8  
5.2  
8.5  
11.0  
1.6  
2.9  
4.2  
6.7  
2.4  
4.4  
7.2  
9.3  
1.3  
2.5  
3.5  
5.7  
1.7  
3.1  
5.1  
6.6  
1.0  
1.8  
2.5  
4.0  
2
Slow  
IDRV_SH  
3
4
2
5
50  
20  
3.33  
3.33  
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
6
Medium  
IDRV_MH  
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
Fast  
IDRV_FC  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimates from simulation and are not tested. Currents apply to output pins only.  
All loads are lumped.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
18  
Freescale Semiconductor  
Electrical Characteristics  
3.8.2  
I/O Pad VDD33 Current Specifications  
The power consumption of the V  
supply dependents on the usage of the pins on all I/O segments. The  
DD33  
power consumption is the sum of all input and output pin V  
currents for all I/O segments. The output  
DD33  
pin V  
current can be calculated from Table 11 based on the voltage, frequency, and load on all fast  
DD33  
(pad_fc) pins. The input pin V  
current can be calculated from Table 11 based on the voltage,  
DD33  
frequency, and load on all pad_sh and pad_mh pins. Use linear scaling to calculate pin currents for voltage,  
frequency, and load parameters that fall outside the values given in Table 11.  
1
Table 11. V  
Pad Average DC Current (T = T to T )  
DD33  
A
L
H
Frequency  
(MHz)  
Load 2  
(pF)  
VDD33  
(V)  
VDDE  
(V)  
Drive  
Select  
Current  
(mA)  
Spec  
Pad Type  
Symbol  
Inputs  
1
2
Slow  
I33_SH  
I33_MH  
66  
66  
0.5  
0.5  
3.6  
3.6  
5.5  
5.5  
NA  
NA  
0.003  
0.003  
Medium  
Outputs  
3
66  
66  
66  
66  
66  
66  
66  
66  
56  
56  
56  
56  
56  
56  
56  
56  
40  
40  
40  
40  
40  
40  
40  
40  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
10  
20  
30  
50  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
3.6  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
0.35  
0.53  
0.62  
0.79  
0.35  
0.44  
0.53  
0.70  
0.30  
0.45  
0.52  
0.67  
0.30  
0.37  
0.45  
0.60  
0.21  
0.31  
0.37  
0.48  
0.21  
0.27  
0.32  
0.42  
4
5
3.6  
6
3.6  
7
1.98  
1.98  
1.98  
1.98  
3.6  
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
3.6  
3.6  
3.6  
Fast  
I33_FC  
1.98  
1.98  
1.98  
1.98  
3.6  
3.6  
3.6  
3.6  
1.98  
1.98  
1.98  
1.98  
1
2
These values are estimated from simulation and not tested. Currents apply to output pins for the fast pads only and to input  
pins for the slow and medium pads only.  
All loads are lumped.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
19  
Freescale  
Electrical Characteristics  
3.9  
Oscillator and FMPLL Electrical Characteristics  
Table 12. FMPLL Electrical Specifications  
(VDDSYN = 3.0–3.6 V; VSS = VSSSYN = 0.0 V; TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
PLL reference frequency range: 1  
Crystal reference (20)2  
fref_crystal  
fref_crystal  
fref_ext  
fref_ext  
fref_1:1  
8
> 20  
8
> 20  
24  
20  
40  
20  
40  
Crystal reference (40)3  
1
MHz  
External reference (20)2  
External reference (40)3  
Dual controller (1:1 mode)  
fsys 2  
5
2
3
4
5
System frequency 4  
fsys  
tCYC  
f
ICO(MIN) 2RFD  
fMAX  
MHz  
ns  
System clock period  
100  
7.4  
1 fsys  
1000  
17.5  
Loss of reference frequency 6  
Self-clocked mode (SCM) frequency 7  
EXTAL input high voltage crystal mode 8  
fLOR  
kHz  
MHz  
V
fSCM  
VIHEXT  
VXTAL + 0.4 V  
6
7
All other modes  
[dual controller (1:1), bypass, external reference]  
VIHEXT  
VILEXT  
(VDDE5 2) + 0.4 V  
V
V
EXTAL input low voltage crystal mode 9  
V
XTAL – 0.4 V  
All other modes  
[dual controller (1:1), bypass, external reference]  
VILEXT  
IXTAL  
2
(VDDE5 2) – 0.4 V  
V
8
9
XTAL current 10  
6
mA  
pF  
pF  
pF  
Total on-chip stray capacitance on XTAL  
Total on-chip stray capacitance on EXTAL  
CS_XTAL  
CS_EXTAL  
CL  
1.5  
1.5  
10  
Crystal manufacturer’s recommended capacitive  
load  
Refer to crystal  
specification  
Refer to crystal  
specification  
11  
12  
Discrete load capacitance to connect to EXTAL  
Discrete load capacitance to connect to XTAL  
PLL lock time 12  
CL_EXTAL  
(2 CL)CS_EXTAL  
– CPCB_EXTAL  
pF  
pF  
11  
CL_XTAL  
(2 CL) – CS_XTAL  
13  
14  
15  
11  
– CPCB_XTAL  
tlpll  
750  
2
s  
Dual controller (1:1) clock skew  
tskew  
–2  
ns  
(between CLKOUT and EXTAL) 13, 14  
16  
17  
18  
Duty cycle of reference  
Frequency unLOCK range  
Frequency LOCK range  
tDC  
fUL  
40  
60  
4.0  
2.0  
%
–4.0  
–2.0  
% fSYS  
% fSYS  
fLCK  
MPC5561 Microcontroller Data Sheet, Rev. 3  
20  
Freescale Semiconductor  
Electrical Characteristics  
Table 12. FMPLL Electrical Specifications (continued)  
(VDDSYN = 3.0–3.6 V; VSS = VSSSYN = 0.0 V; TA = TL to TH)  
Spec  
Characteristic  
Symbol  
Minimum  
Maximum  
Unit  
CLKOUT period jitter, measured at fSYS max: 15, 16  
Peak-to-peak jitter (clock edge to clock edge)  
Long term jitter (averaged over a 2 ms interval)  
CJITTER  
%
fCLKOUT  
19  
5.0  
0.01  
Frequency modulation range limit 17  
(do not exceed fsys maximum)  
%fSYS  
20  
CMOD  
0.8  
2.4  
ICO frequency  
21  
22  
fico = [fref_crystal (MFD + 4)] (PREDIV + 1) 18  
fico = [fref_ext (MFD + 4)] (PREDIV + 1)  
fico  
48  
4
fMAX  
MHz  
MHz  
Predivider output frequency (to PLL)  
fPREDIV  
20 19  
1
Nominal crystal and external reference values are worst-case not more than 1%. The device operates correctly if the frequency  
remains within 5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time.  
The designer must thoroughly understand the drift margin of the source clock.  
2
3
The 8–20 MHz crystal or external reference values have PLLCFG[2] pulled low.  
The 20–40 MHz crystal and external reference values have PLLCFG[2] pulled high, and the minimum frequency must be greater  
than 20 MHz. Use the 8–20 MHz setting (PLLCFG[2] pulled low) if a 20 MHz crystal or external reference is required.  
To exit RESET when using 40 MHz, set PLLCFG[2] to 1.  
4
5
6
All internal registers retain data at 0 Hz.  
Up to the maximum frequency rating of the device (refer to Table 1).  
Loss of reference frequency is defined as the reference frequency detected internally, which transitions the PLL into self-clocked  
mode.  
7
The PLL operates at self-clocked mode (SCM) frequency when the reference frequency falls below fLOR. SCM frequency is  
measured on the CLKOUT ball with the divider set to divide-by-two of the system clock.  
NOTE: In SCM, the MFD and PREDIV have no effect and the RFD is bypassed.  
8
9
Use the EXTAL input high voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or  
resonators). (Vextal – Vxtal) must be 400 mV for the oscillator’s comparator to produce the output clock.  
Use the EXTAL input low voltage parameter when using the FlexCAN oscillator in crystal mode (no quartz crystals or  
resonators). (Vxtal – Vextal) must be 400 mV for the oscillator’s comparator to produce the output clock.  
10  
11  
I
is the oscillator bias current out of the XTAL pin with both EXTAL and XTAL pins grounded.  
xtal  
C
and CPCB_XTAL are the measured PCB stray capacitances on EXTAL and XTAL, respectively.  
PCB_EXTAL  
12 This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the  
synthesizer control register (SYNCR). From power up with crystal oscillator reference, the lock time also includes the crystal  
startup time.  
13 PLL is operating in 1:1 PLL mode.  
14  
V
= 3.0–3.6 V.  
DDE  
15 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum fsys  
.
Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise  
injected into the PLL circuitry via VDDSYN and VSSSYN and variation in crystal oscillator frequency increase the jitter percentage  
for a given interval. CLKOUT divider is set to divide-by-two.  
16 Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of (jitter + Cmod).  
17 Modulation depth selected must not result in fsys value greater than the fsys maximum specified value.  
18 f = f (2RFD).  
sys  
ico  
19 Maximum value for dual controller (1:1) mode is (fMAX 2) with the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).  
MPC5561 Microcontroller Data Sheet, Rev. 3  
21  
Freescale  
Electrical Characteristics  
3.10 eQADC Electrical Characteristics  
Table 13. eQADC Conversion Specifications (TA = TL to TH)  
Spec  
Characteristic  
ADC clock (ADCLK) frequency 1  
Symbol  
Minimum  
Maximum  
Unit  
1
FADCLK  
CC  
1
12  
MHz  
Conversion cycles  
Differential  
ADCLK  
cycles  
2
13 + 2 (15)  
14 + 2 (16)  
13 + 128 (141)  
14 + 128 (142)  
Single ended  
3
4
5
6
7
8
9
Stop mode recovery time 2  
Resolution 3  
TSR  
10  
1.25  
–4  
4
s  
mV  
INL: 6 MHz ADC clock  
INL: 12 MHz ADC clock  
DNL: 6 MHz ADC clock  
DNL: 12 MHz ADC clock  
Offset error with calibration  
INL6  
Counts 3  
Counts  
Counts  
Counts  
Counts  
Counts  
mA  
INL12  
DNL6  
DNL12  
OFFWC  
GAINWC  
IINJ  
–8  
8
–3 4  
–6 4  
–4 5  
–8 6  
–1  
3 4  
6 4  
4 5  
8 6  
1
10 Full-scale gain error with calibration  
11 Disruptive input injection current 7, 8, 9, 10  
Incremental error due to injection current. All channels are  
10 k< Rs <100 k  
12  
EINJ  
–4  
4
Counts  
Channel under test has Rs = 10 k,  
IINJ = IINJMAX, IINJMIN  
Total unadjusted error (TUE) for single ended conversions  
13  
TUE  
–4  
4
Counts  
with calibration 11, 12, 13, 14, 15  
1
2
Conversion characteristics vary with FADCLK rate. Reduced conversion accuracy occurs at maximum FADCLK rate. The  
maximum value is based on 800 KS/s and the minimum value is based on 20 MHz oscillator clock frequency divided by a  
maximum 16 factor.  
Stop mode recovery time begins when the ADC control register enable bits are set until the ADC is ready to perform  
conversions.  
3
4
5
6
7
At VRH – VRL = 5.12 V, one least significant bit (LSB) = 1.25, mV = one count.  
Guaranteed 10-bit mono tonicity.  
The absolute value of the offset error without calibration 100 counts.  
The absolute value of the full scale gain error without calibration 120 counts.  
Below disruptive current conditions, the channel being stressed has conversion values of: 0x3FF for analog inputs greater than  
VRH, and 0x000 for values less than VRL. This assumes that VRH VDDA and VRL VSSA due to the presence of the sample  
amplifier. Other channels are not affected by non-disruptive conditions.  
8
9
Exceeding the limit can cause a conversion error on both stressed and unstressed channels. Transitions within the limit do not  
affect device reliability or cause permanent damage.  
Input must be current limited to the value specified. To determine the value of the required current-limiting resistor, calculate  
resistance values using VPOSCLAMP = VDDA + 0.5 V and VNEGCLAMP = – 0.3 V, then use the larger of the calculated values.  
10 This condition applies to two adjacent pads on the internal pad.  
11 The TUE specification is always less than the sum of the INL, DNL, offset, and gain errors due to canceling errors.  
12 TUE does not apply to differential conversions.  
13 Measured at 6 MHz ADC clock. TUE with a 12 MHz ADC clock is: –16 counts < TUE < 16 counts.  
14 TUE includes all internal device errors such as internal reference variation (75% Ref, 25% Ref).  
15 Depending on the input impedance, the analog input leakage current (Table 9. DC Electrical Specifications, spec 35a) can  
affect the actual TUE measured on analog channels AN[12], AN[13], AN[14], AN[15].  
MPC5561 Microcontroller Data Sheet, Rev. 3  
22  
Freescale Semiconductor  
Electrical Characteristics  
3.11 H7Fa Flash Memory Electrical Characteristics  
Table 14. Flash Program and Erase Specifications (T = T to T )  
A
L
H
Initial  
Spec  
Flash Program Characteristic  
Symbol  
Min.  
Typical 1  
Max. 3 Unit  
Max. 2  
3
4
Doubleword (64 bits) program time 4  
Page program time 4  
Tdwprogram  
Tpprogram  
10  
500  
500  
s  
s  
22  
44 5  
400  
400  
500  
1250  
7
16 KB block pre-program and erase time  
48 KB block pre-program and erase time  
64 KB block pre-program and erase time  
128 KB block pre-program and erase time  
T16kpperase  
T48kpperase  
T64kpperase  
T128kpperase  
265  
345  
415  
500  
5000  
5000  
5000  
7500  
ms  
ms  
ms  
ms  
9
10  
8
Minimum operating frequency for program and erase  
operations 6  
11  
25  
MHz  
Typical program and erase times are calculated at 25 oC operating temperature using nominal supply values.  
Initial factory condition: 100program/erase cycles, 25 oC, using a typical supply voltage measured at a minimum system  
1
2
frequency of 80 MHz.  
3
The maximum erase time occurs after the specified number of program/erase cycles. This maximum value is characterized  
but not guaranteed.  
4
5
6
Actual hardware programming times. This does not include software overhead.  
Page size is 256 bits (8 words).  
The read frequency of the flash can range up to the maximum operating frequency. There is no minimum read frequency  
condition.  
Table 15. Flash EEPROM Module Life (T = T to T )  
A
L
H
Spec  
Characteristic  
Symbol  
Min.  
Typical 1 Unit  
cycles  
100,000 cycles  
Number of program/erase cycles per block for 16 KB, 48 KB, and  
64 KB blocks over the operating temperature range (TJ)  
1a  
P/E  
100,000  
Number of program/erase cycles per block for 128 KB blocks over the  
operating temperature range (TJ)  
1b  
2
P/E  
1000  
Data retention  
Retention  
Blocks with 0–1,000 P/E cycles  
Blocks with 1,001–100,000 P/E cycles  
20  
5
years  
Typical endurance is evaluated at 25o C. Product qualification is performed to the minimum specification. For additional  
information on the Freescale definition of typical endurance, refer to engineering bulletin EB619 Typical Endurance for  
Nonvolatile Memory.  
1
MPC5561 Microcontroller Data Sheet, Rev. 3  
23  
Freescale  
Electrical Characteristics  
Table 16 shows the FLASH_BIU settings versus frequency of operation. Refer to the device reference  
manual for definitions of these bit fields.  
1
Table 16. FLASH_BIU Settings vs. Frequency of Operation  
Maximum Frequency (MHz)  
APC  
RWSC  
WWSC DPFEN 2 IPFEN 2  
PFLIM 3  
BFEN 4  
Up to and including 82 MHz 5  
0b001  
0b001  
0b01  
0b01  
0b01  
0b11  
0b00  
0b01  
0b11  
0b00  
0b01  
0b11  
0b000  
to  
0b110  
0b0  
0b1  
Up to and including 102 MHz 6  
Up to and including 135 MHz 7  
Default setting after reset  
0b001  
0b010  
0b111  
0b010  
0b011  
0b111  
0b00  
0b01  
0b11  
0b00  
0b01  
0b11  
0b000  
to  
0b110  
0b0  
0b1  
0b00  
0b01  
0b11  
0b00  
0b01  
0b11  
0b000  
to  
0b110  
0b0  
0b1  
0b00  
0b00  
0b000  
0b0  
1
Illegal combinations exist. Use entries from the same row in this table.  
For maximum flash performance, set to 0b11.  
2
3
4
5
6
7
For maximum flash performance, set to 0b110.  
For maximum flash performance, set to 0b1.  
82 MHz parts allow for 80 MHz system clock + 2% frequency modulation (FM).  
102 MHz parts allow for 100 MHz system clock + 2% FM.  
135 MHz parts allow for 132 MHz system clock + 2% FM.  
3.12 AC Specifications  
3.12.1 Pad AC Specifications  
1
Table 17. Pad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V)  
2, 3, 4  
SRC / DSC  
(binary)  
Out Delay  
(ns)  
Rise / Fall 4, 5  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
26  
82  
15  
60  
50  
200  
50  
11  
01  
00  
11  
01  
00  
75  
40  
1
Slow high voltage (SH)  
137  
377  
476  
16  
80  
200  
50  
200  
260  
8
200  
50  
43  
30  
200  
50  
34  
15  
2
Medium high voltage (MH)  
61  
35  
200  
50  
192  
239  
100  
125  
200  
MPC5561 Microcontroller Data Sheet, Rev. 3  
24  
Freescale Semiconductor  
Electrical Characteristics  
1
Table 17. Pad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V) (continued)  
2, 3, 4  
SRC / DSC  
(binary)  
Out Delay  
(ns)  
Rise / Fall 4, 5  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
00  
01  
10  
11  
2.7  
2.5  
10  
20  
30  
50  
50  
50  
3
Fast  
3.1  
2.4  
2.3  
4
5
Pullup/down (3.6 V max)  
Pullup/down (5.5 V max)  
7500  
9000  
1
These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:  
DD = 1.35–1.65 V; VDDE = 1.62–1.98 V; VDDEH = 4.5–5.25 V; VDD33 and VDDSYN = 3.0–3.6 V; and TA = TL to TH.  
V
2
3
This parameter is supplied for reference and is guaranteed by design (not tested).  
The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock,  
add a maximum of one system clock to the output delay.  
4
5
The output delay and rise and fall are measured to 20% or 80% of the respective signal.  
This parameter is guaranteed by characterization rather than 100% tested.  
1
Table 18. Derated Pad AC Specifications (VDDEH = 3.3 V, VDDE = 3.3 V)  
2, 3, 4  
SRC/DSC  
(binary)  
Out Delay  
(ns)  
Rise / Fall 3, 5  
(ns)  
Load Drive  
(pF)  
Spec  
Pad  
39  
120  
101  
188  
507  
597  
23  
23  
87  
50  
200  
50  
11  
01  
00  
11  
01  
00  
52  
1
Slow high voltage (SH)  
111  
248  
312  
12  
200  
50  
200  
50  
64  
44  
200  
50  
50  
22  
2
3
Medium high voltage (MH)  
90  
50  
200  
50  
261  
305  
123  
156  
2.4  
2.2  
2.1  
2.1  
7500  
9500  
200  
10  
00  
01  
10  
11  
20  
Fast  
3.2  
30  
50  
4
5
Pullup/down (3.6 V max)  
Pullup/down (5.5 V max)  
50  
50  
1
2
These are worst-case values that are estimated from simulation (not tested). The values in the table are simulated at:  
VDD = 1.35–1.65 V; VDDE = 3.0–3.6 V; VDDEH = 3.0–3.6 V; VDD33 and VDDSYN = 3.0–3.6 V; and TA = TL to TH.  
This parameter is supplied for reference and guaranteed by design (not tested).  
MPC5561 Microcontroller Data Sheet, Rev. 3  
25  
Freescale  
Electrical Characteristics  
3
The output delay, and the rise and fall, are calculated to 20% or 80% of the respective signal.  
4
The output delay is shown in Figure 4. To calculate the output delay with respect to the system clock, add a maximum of one  
system clock to the output delay.  
5
This parameter is guaranteed by characterization rather than 100% tested.  
VDD 2  
Pad  
internal data  
input signal  
Rising-edge  
out  
Falling-edge  
out  
delay  
delay  
VOH  
Pad  
output  
VOL  
Figure 4. Pad Output Delay  
3.13 AC Timing  
3.13.1 Reset and Configuration Pin Timing  
1
Table 19. Reset and Configuration Pin Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
RESET pulse width  
tRPW  
tGPW  
tRCSU  
tRCH  
10  
2
tCYC  
tCYC  
tCYC  
tCYC  
RESET glitch detect pulse width  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG setup time to RSTOUT valid  
PLLCFG, BOOTCFG, WKPCFG, RSTCFG hold time from RSTOUT valid  
10  
0
1
Reset timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
26  
Freescale Semiconductor  
Electrical Characteristics  
2
RESET  
1
RSTOUT  
3
PLLCFG  
BOOTCFG  
RSTCFG  
WKPCFG  
4
Figure 5. Reset and Configuration Pin Timing  
3.13.2 IEEE 1149.1 Interface Timing  
1
Table 20. JTAG Pin AC Electrical Characteristics  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
5
6
7
8
9
TCK cycle time  
tJCYC  
tJDC  
100  
40  
5
60  
3
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width (measured at VDDE 2)  
TCK rise and fall times (40% to 70%)  
TMS, TDI data setup time  
tTCKRISE  
tTMSS, TDIS  
tTMSH, TDIH  
tTDOV  
tTDOI  
t
20  
20  
50  
50  
50  
TMS, TDI data hold time  
t
25  
0
TCK low to TDO data valid  
TCK low to TDO data invalid  
TCK low to TDO high impedance  
JCOMP assertion time  
tTDOHZ  
tJCMPPW  
tJCMPS  
tBSDV  
100  
40  
50  
50  
10 JCOMP setup time to TCK low  
11 TCK falling-edge to output valid  
12 TCK falling-edge to output valid out of high impedance  
13 TCK falling-edge to output high impedance (Hi-Z)  
14 Boundary scan input valid to TCK rising-edge  
15 TCK rising-edge to boundary scan input invalid  
tBSDVZ  
tBSDHZ  
tBSDST  
tBSDHT  
1
These specifications apply to JTAG boundary scan only. JTAG timing specified at: VDDE = 3.0–3.6 V and TA = TL to TH.  
Refer to Table 21 for Nexus specifications.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
27  
Freescale  
Electrical Characteristics  
TCK  
2
3
3
2
1
Figure 6. JTAG Test Clock Input Timing  
TCK  
4
5
TMS, TDI  
6
8
7
TDO  
Figure 7. JTAG Test Access Port Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
28  
Freescale Semiconductor  
Electrical Characteristics  
TCK  
10  
JCOMP  
9
Figure 8. JTAG JCOMP Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
29  
Freescale  
Electrical Characteristics  
TCK  
11  
13  
Output  
signals  
12  
Output  
signals  
14  
15  
Input  
signals  
Figure 9. JTAG Boundary Scan Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
30  
Freescale Semiconductor  
Electrical Characteristics  
3.13.3 Nexus Timing  
1
Table 21. Nexus Debug Port Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
4
5
6
7
8
9
MCKO cycle time  
tMCYC  
tMDC  
1 2  
40  
8
tCYC  
%
MCKO duty cycle  
60  
3.0  
3.0  
3.0  
MCKO low to MDO data valid 3  
MCKO low to MSEO data valid 3  
MCKO low to EVTO data valid 3  
EVTI pulse width  
tMDOV  
–1.5  
–1.5  
–1.5  
4.0  
1
ns  
tMSEOV  
tEVTOV  
ns  
ns  
tEVTIPW  
tEVTOPW  
tTCYC  
tTCYC  
tMCYC  
tCYC  
%
EVTO pulse width  
TCK cycle time  
4 4  
TCK duty cycle  
tTDC  
40  
60  
10 TDI, TMS data setup time  
11 TDI, TMS data hold time  
TCK low to TDO data valid  
t
NTDIS, tNTMSS  
8
ns  
t
NTDIH, tNTMSH  
tJOV  
5
ns  
12  
VDDE = 2.25–3.0 V  
DDE = 3.0–3.6 V  
13 RDY valid to MCKO 5  
0
0
12  
10  
ns  
ns  
V
1
2
JTAG specifications apply when used for debug functionality. All Nexus timing relative to MCKO is measured from 50% of  
MCKO and 50% of the respective signal. Nexus timing specified at VDD = 1.35–1.65 V, VDDE = 2.25–3.6 V,  
VDD33 and VDDSYN = 3.0–3.6 V, TA = TL to TH, and CL = 30 pF with DSC = 0b10.  
The Nexus AUX port runs up to 82 MHz. Set NPC_PCR[MCKO_DIV] to divide-by-two if the system frequency  
is greater than 82 MHz.  
3
4
MDO, MSEO, and EVTO data is held valid until the next MCKO low cycle occurs.  
Limit the maximum frequency to approximately 16 MHz (VDDE = 2.25–3.0 V) or 20 MHz (VDDE = 3.0–3.6 V) to meet the timing  
specification for tJOV of [0.2 x tJCYC] as outlined in the IEEE-ISTO 5001-2003 specification.  
5
The RDY pin timing is asynchronous to MCKO and is guaranteed by design to function correctly.  
1
2
MCKO  
4
5
3
MDO  
MSEO  
EVTO  
Output Data Valid  
Figure 10. Nexus Output Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
31  
Freescale  
Electrical Characteristics  
TCK  
10  
11  
TMS, TDI  
12  
TDO  
Figure 11. Nexus TDI, TMS, TDO Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
32  
Freescale Semiconductor  
Electrical Characteristics  
3.13.4 External Bus Interface (EBI) Timing  
lists the timing information for the external bus interface (EBI).  
1
Table 22. Bus Operation Timing  
External Bus Frequency 2, 3  
40 MHz 56 MHz 66 MHz  
Characteristic  
and  
Description  
Spec  
Symbol  
Unit  
Notes  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Signals are measured  
1
CLKOUT period  
TC  
24.4  
17.5  
14.9  
ns  
at 50% VDDE  
.
2
3
4
CLKOUT duty cycle  
CLKOUT rise time  
CLKOUT fall time  
tCDC  
tCRT  
tCFT  
tCOH  
45%  
55%  
45%  
55%  
45% 55% TC  
4
4
4
ns  
ns  
4
4
4
1.08  
1.08  
CLKOUT positive edge to output  
1.08  
EBTS = 0  
EBTS = 1  
signal invalid or Hi-Z (hold time)  
ns  
1.5  
1.5  
1.5  
External bus interface  
CS[0:3]  
ADDR[8:31]  
DATA[0:31] 5  
BDIP  
Hold time selectable  
via SIU_ECCR  
[EBTS] bit.  
5
OE  
RD_WR  
TA  
TEA 6  
TS  
WE/BE[0:3] 7  
CLKOUT positive edge to output  
signal valid (output delay)  
tCOV  
10.08  
7.58  
8.5  
6.08  
7.0  
EBTS = 0  
EBTS = 1  
ns  
11.0  
External bus interface  
CS[0:3]  
ADDR[8:31]  
DATA[0:31] 5  
BDIP  
Output valid time  
selectable via  
SIU_ECCR  
6
[EBTS] bit.  
OE  
RD_WR  
TA  
TEA 6  
TS  
WE/BE[0:3] 7  
MPC5561 Microcontroller Data Sheet, Rev. 3  
33  
Freescale  
Electrical Characteristics  
Characteristic  
1
Table 22. Bus Operation Timing (continued)  
External Bus Frequency 2, 3  
Spec  
and  
Description  
Symbol  
Unit  
Notes  
40 MHz  
56 MHz  
66 MHz  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
Input signal valid to CLKOUT  
positive edge (setup time)  
External bus interface  
ADDR[8:31]  
DATA[0:31] 5  
RD_WR  
TA  
7
tCIS  
10.0  
7.0  
5.0  
ns  
TEA 6  
TS  
CLKOUT positive edge to input  
signal invalid (hold time)  
External bus interface  
ADDR[8:31]  
DATA[0:31] 5  
RD_WR  
TA  
8
tCIH  
1.0  
1.0  
1.0  
ns  
TEA 6  
TS  
1
2
EBI timing specified at: VDDE = 1.6–3.6 V (unless stated otherwise); TA = TL to TH; and CL = 30 pF with DSC = 0b10.  
Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM).  
82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; and  
135 MHz parts allow for 132 MHz system clock + 2% FM.  
3
4
5
6
7
8
The external bus is limited to half the speed of the internal bus.  
Refer to fast pad timing in Table 17 and Table 18 (different values for 1.8 V and 3.3 V).  
Due to pin limitations, the DATA[16:31] signals are not available on the 324 package.  
Due to pin limitations, the TEA signal is not available on the 324 package.  
Due to pin limitations, the WE/BE[2:3] signals are not available on the 324 package.  
SIU_ECCR[EBTS] = 0 timings are tested and valid at VDDE = 2.25–3.6 V only; SIU_ECCR[EBTS] = 1 timings are tested and  
valid at VDDE = 1.6–3.6 V.  
Voh_f  
VDDE 2  
Vol_f  
CLKOUT  
2
3
2
4
1
Figure 12. CLKOUT Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
34  
Freescale Semiconductor  
Electrical Characteristics  
VDDE 2  
CLKOUT  
6
5
VDDE 2  
5
Output  
bus  
VDDE 2  
6
5
5
Output  
signal  
VDDE 2  
6
Output  
signal  
VDDE 2  
Figure 13. Synchronous Output Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
35  
Freescale  
Electrical Characteristics  
CLKOUT  
VDDE 2  
7
8
Input  
bus  
VDDE 2  
7
8
Input  
signal  
VDDE 2  
Figure 14. Synchronous Input Timing  
3.13.5 External Interrupt Timing (IRQ Signals)  
1
Table 23. External Interrupt Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
3
IRQ pulse-width low  
IRQ pulse-width high  
IRQ edge-to-edge time 2  
tIPWL  
TIPWH  
tICYC  
3
3
6
tCYC  
tCYC  
tCYC  
1
2
IRQ timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
Applies when IRQ signals are configured for rising-edge or falling-edge events, but not both.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
36  
Freescale Semiconductor  
Electrical Characteristics  
IRQ  
2
1
3
Figure 15. External Interrupt Timing  
3.13.6 eMIOS Timing  
1
Table 24. eMIOS Timing  
Spec  
Characteristic  
Symbol  
Min.  
Max.  
Unit  
1
2
eMIOS input pulse width  
eMIOS output pulse width  
tMIPW  
4
1 2  
tCYC  
tCYC  
tMOPW  
1
2
eMIOS timing specified at: VDDEH = 3.0–5.25 V and TA = TL to TH.  
This specification does not include the rise and fall times. When calculating the minimum eMIOS pulse width, include the rise  
and fall times defined in the slew rate control field (SRC) in the pad configuration register (PCR).  
2
eMIOS  
output  
eMIOS input  
1
Figure 16. eMIOS Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
37  
Freescale  
Electrical Characteristics  
3.13.7 DSPI Timing  
1
2
Table 25. DSPI Timing ’  
80 MHz  
Symbol  
112 MHz  
132 MHz  
Spec  
Characteristic  
SCK cycle time3, 4  
PCS to SCK delay5  
After SCK delay6  
SCK duty cycle  
Unit  
Min.  
Max.  
Min.  
Max.  
Min.  
Max.  
1
2
3
tSCK  
tCSC  
tASC  
24.4 ns  
23  
2.9 ms  
17.5 ns  
15  
2.1 ms 14.8 ns 1.8 ms  
ns  
ns  
13  
12  
22  
14  
(tSCK 2) (tSCK 2) (tSCK 2) (tSCK 2) (tSCK 2) (tSCK 2)  
4
5
6
tSDC  
tA  
ns  
ns  
ns  
– 2 ns  
+ 2 ns  
– 2 ns  
+ 2 ns  
– 2 ns  
+ 2 ns  
Slave access time  
(SS active to SOUT driven)  
25  
25  
25  
Slave SOUT disable time  
(SS inactive to SOUT Hi-Z, or invalid)  
tDIS  
25  
25  
25  
7
8
PCSx to PCSS time  
PCSS to PCSx time  
tPCSC  
tPASC  
tSUI  
4
5
4
5
4
5
ns  
ns  
Data setup time for inputs  
Master (MTFE = 0)  
20  
2
–4  
20  
20  
2
3
20  
2
6
ns  
ns  
ns  
ns  
9
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
20  
20  
Data hold time for inputs  
Master (MTFE = 0)  
tHI  
tSUO  
tHO  
–4  
7
21  
–4  
–4  
7
14  
–4  
–4  
7
12  
–4  
ns  
ns  
ns  
ns  
10  
11  
12  
Slave  
Master (MTFE = 1, CPHA = 0)7  
Master (MTFE = 1, CPHA = 1)  
Data valid (after SCK edge)  
Master (MTFE = 0)  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
5
25  
18  
5
5
25  
14  
5
5
25  
13  
5
ns  
ns  
ns  
ns  
Data hold time for outputs  
Master (MTFE = 0)  
–5  
5.5  
8
–5  
5.5  
4
–5  
5.5  
3
ns  
ns  
ns  
ns  
Slave  
Master (MTFE = 1, CPHA = 0)  
Master (MTFE = 1, CPHA = 1)  
–5  
–5  
–5  
1
2
3
All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad type M or MH. DSPI signals using pad types  
of S or SH have an additional delay based on the slew rate. DSPI timing is specified at: VDDEH = 3.0–5.25 V;TA = TL to TH;  
and CL = 50 pF with SRC = 0b11.  
Speed is the nominal maximum frequency. Max. speed is the maximum speed allowed including frequency modulation (FM).  
82 MHz parts allow for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM; and  
135 MHz parts allow for 132 MHz system clock + 2% FM.  
The minimum SCK cycle time restricts the baud rate selection for the given system clock rate.  
These numbers are calculated based on two MPC55xx devices communicating over a DSPI link.  
4
5
6
The actual minimum SCK cycle time is limited by pad performance.  
The maximum value is programmable in DSPI_CTARx[PSSCK] and DSPI_CTARx[CSSCK].  
The maximum value is programmable in DSPI_CTARx[PASC] and DSPI_CTARx[ASC].  
MPC5561 Microcontroller Data Sheet, Rev. 3  
38  
Freescale Semiconductor  
Electrical Characteristics  
7
This number is calculated using the SMPL_PT field in DSPI_MCR set to 0b10.  
2
3
PCSx  
1
4
SCK output  
(CPOL=0)  
4
SCK output  
(CPOL=1)  
10  
9
Last data  
SIN  
First data  
Data  
Data  
12  
11  
First data  
Last data  
SOUT  
Figure 17. DSPI Classic SPI Timing—Master, CPHA = 0  
PCSx  
SCK output  
(CPOL=0)  
10  
SCK output  
(CPOL=1)  
9
Data  
Data  
First data  
Last data  
SIN  
12  
11  
SOUT  
Last data  
First data  
Figure 18. DSPI Classic SPI Timing—Master, CPHA = 1  
MPC5561 Microcontroller Data Sheet, Rev. 3  
39  
Freescale  
Electrical Characteristics  
3
2
SS  
1
4
SCK input  
(CPOL=0)  
4
SCK input  
(CPOL=1)  
5
11  
12  
Data  
6
First data  
Last data  
SOUT  
9
10  
First data  
Data  
Last data  
SIN  
Figure 19. DSPI Classic SPI Timing—Slave, CPHA = 0  
SS  
SCK input  
(CPOL=0)  
SCK input  
(CPOL=1)  
11  
5
6
12  
Last data  
Data  
Data  
SOUT  
SIN  
First data  
10  
9
Last data  
First data  
Figure 20. DSPI Classic SPI Timing—Slave, CPHA = 1  
MPC5561 Microcontroller Data Sheet, Rev. 3  
40  
Freescale Semiconductor  
Electrical Characteristics  
3
PCSx  
4
1
2
SCK output  
(CPOL=0)  
4
SCK output  
(CPOL=1)  
9
10  
SIN  
First data  
Last data  
Last data  
Data  
12  
11  
SOUT  
First data  
Data  
Figure 21. DSPI Modified Transfer Format Timing—Master, CPHA = 0  
PCSx  
SCK output  
(CPOL=0)  
SCK output  
(CPOL=1)  
10  
9
SIN  
Last data  
First data  
Data  
12  
Data  
11  
First data  
Last data  
SOUT  
Figure 22. DSPI Modified Transfer Format Timing—Master, CPHA = 1  
MPC5561 Microcontroller Data Sheet, Rev. 3  
41  
Freescale  
Electrical Characteristics  
3
2
SS  
1
SCK input  
(CPOL=0)  
4
4
SCK input  
(CPOL=1)  
12  
11  
6
5
First data  
9
Data  
Data  
Last data  
10  
SOUT  
Last data  
First data  
SIN  
Figure 23. DSPI Modified Transfer Format Timing—Slave, CPHA = 0  
SS  
SCK input  
(CPOL=0)  
SCK input  
(CPOL=1)  
11  
5
6
12  
Last data  
First data  
10  
Data  
Data  
SOUT  
SIN  
9
First data  
Last data  
Figure 24. DSPI Modified Transfer Format Timing—Slave, CPHA = 1  
8
7
PCSS  
PCSx  
Figure 25. DSPI PCS Strobe (PCSS) Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
42  
Freescale Semiconductor  
Electrical Characteristics  
3.13.8 eQADC SSI Timing  
Table 26. EQADC SSI Timing Characteristics  
Spec  
Rating  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
1, 2  
2
3
4
5
6
7
8
FCK period (tFCK = 1 fFCK  
Clock (FCK) high time  
Clock (FCK) low time  
SDS lead / lag time  
)
tFCK  
2
17  
tSYS_CLK  
ns  
tFCKHT  
tFCKLT  
tSDS_LL  
tSDO_LL  
tEQ_SU  
tEQ_HO  
tSYS_CLK 6.5  
9 (tSYS_CLK 6.5)  
tSYS_CLK 6.5  
8 (tSYS_CLK 6.5)  
ns  
–7.5  
–7.5  
22  
+7.5  
+7.5  
ns  
SDO lead / lag time  
ns  
EQADC data setup time (inputs)  
EQADC data hold time (inputs)  
ns  
1
ns  
1
2
SS timing specified at VDDEH = 3.0–5.25 V, TA = TL to TH, and CL = 25 pF with SRC = 0b11. Maximum operating frequency  
varies depending on track delays, master pad delays, and slave pad delays.  
FCK duty cycle is not 50% when it is generated through the division of the system clock by an odd number.  
2
3
4
FCK  
SDS  
5
6
4
5
25th  
1st (MSB)  
2nd  
26th  
SDO  
External device data sample at  
FCK falling-edge  
8
7
1st (MSB) 2nd  
25th  
26th  
SDI  
EQADC data sample at  
FCK rising-edge  
Figure 26. EQADC SSI Timing  
MPC5561 Microcontroller Data Sheet, Rev. 3  
43  
Freescale  
Mechanicals  
4
Mechanicals  
4.1  
MPC5561 324 PBGA Pinouts  
Figure 27 is a pinout for the MPC5561 324 PBGA package.  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
VSSA1 AN1  
AN5  
VRH  
VRL  
AN27 AN28 AN35 VSSA0 AN12 MDO11 MDO10 MDO8 VDD VDD33 VSS  
A
B
VSS  
VDD VSTBY AN37  
AN11 VDDA1  
A
B
C
D
E
F
REF  
BYPC  
AN16  
AN0  
AN4  
AN3  
AN23  
AN26 AN31 AN32 VSSA0 AN13 MDO9 MDO7 MDO4 MDO0  
VSS VDDE7  
VDD33 VSS  
VDD  
VSS  
AN36  
VDD  
VSS  
AN39  
AN8  
AN19  
AN17  
AN38  
ETPUA ETPUA  
30  
AN20 AN21  
AN7  
AN2  
AN22 AN25 AN30 AN33 VDDA0 AN14 MDO5 MDO2 MDO1  
VDDEH  
VSS VDDE7 VDD  
C
D
E
31  
ETPUA ETPUA ETPUA  
28 29 26  
AN9  
AN10 AN18  
AN6  
AN24 AN29  
AN34  
AN15 MDO6 MDO3  
VSS VDDE7 TCK  
VDDE7 TMS TDO  
VDDE7 JCOMP EVTI  
TDI  
VDD  
9
ETPUA ETPUA ETPUA ETPUA  
24 27 25 21  
TEST  
EVTO  
ETPUA ETPUA ETPUA ETPUA  
23  
F
22  
17  
18  
ETPUA ETPUA ETPUA ETPUA  
RDY MCKO MSEO0 MSEO1  
G
H
J
G
H
J
20  
19  
14  
13  
ETPUA ETPUA ETPUA VDDEH  
VDDEH GPIO GPIO  
SINB  
16 15 10  
1
10  
203  
204  
ETPUA ETPUA ETPUA ETPUA  
12 11  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS VDDE7  
SOUTB PCSB3 PCSB0 PCSB1  
PCSA3 PCSB4 SCKB PCSB2  
PCSB5 SOUTA SINA SCKA  
PCSA1 PCSA0 PCSA2 VPP  
PCSA4 TXDA PCSA5 VFLASH  
6
9
ETPUA ETPUA ETPUA ETPUA  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
VSS  
K
K
L
8
7
2
5
ETPUA ETPUA ETPUA ETPUA  
L
4
3
0
1
TCRCLK  
A
VDDE2 VDDE2 VSS  
M
N
P
BDIP  
CS1  
CS0  
M
N
P
R
T
VSS  
VSS  
VSS VDDE2 VSS  
VSS VDDE2 VSS  
CS3  
CS2  
WE1  
WE0  
ADDR ADDR  
RST  
CNTXC RXDA RSTOUT  
CFG  
RD_WR  
VDDE2  
VDD33  
TA  
16  
17  
ADDR ADDR  
WKP  
CNRXC TXDB RESET  
CFG  
R
T
18  
19  
PLL  
CFG2  
ADDR ADDR ADDR  
20 21 12  
BOOT  
CFG1  
VSS  
SYN  
RXDB  
TS  
NC  
Note:  
No connect. Reserved (W18 & Y19 are shorted to each other)  
ADDR ADDR ADDR ADDR  
VDDEH PLL  
BOOT  
EXTAL  
XTAL  
U
V
U
22  
23  
13  
14  
6
CFG1 CFG0  
ADDR ADDR ADDR ADDR  
VRC  
CTL  
PLL  
CFG0  
VDD  
V
24  
25  
15  
31  
ADDR  
26  
ADDR  
30  
DATA DATA DATA EMIOS EMIOS VDDEH EMIOS EMIOS  
VDD  
SYN  
W
VDDE2 VDD33 VDDE2  
VDDE5  
NC  
VSS  
NC  
VDD VRC33  
VSS  
W
Y
VDDE2  
VSS  
VDD  
11  
12  
14  
2
8
4
12  
21  
ADDR ADDR  
28  
DATA DATA DATA GPIO DATA DATA EMIOS EMIOS EMIOS EMIOS EMIOS  
VDDE2  
CNTXA VDDE5  
VDD VDD33  
VSS  
VDD  
VDD  
Y
27  
8
9
10  
207  
13  
15  
6
10  
15  
17  
22  
ADDR  
29  
DATA  
1
GPIO DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
VDDE2  
VDDE2  
VDDE2  
CNRXA VDDE5 CLKOUT VSS  
VDD  
AA  
VSS  
AA  
AB  
206  
5
7
OE  
9
3
5
9
13  
16  
19  
23  
DATA DATA DATA DATA DATA  
EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS EMIOS  
ENG  
CNTXB CNRXB VDDE5  
CLK  
VSS  
22  
AB VSS  
1
VDD VDDE2  
0
2
3
4
6
0
1
4
7
11  
14  
18  
20  
2
3
4
5
6
7
8
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
Figure 27. MPC5561 324 Package  
MPC5561 Microcontroller Data Sheet, Rev. 3  
44  
Freescale Semiconductor  
Mechanicals  
4.2  
MPC5561 324-Pin Package Dimensions  
The package drawings of the MPC5561 324-pin TEPBGA package are shown in Figure 28.  
Figure 28. MPC5561 324 TEPBGA Package  
MPC5561 Microcontroller Data Sheet, Rev. 3  
45  
Freescale  
Mechanicals  
Figure 28. MPC5561 324 TEPBGA Package (continued)  
MPC5561 Microcontroller Data Sheet, Rev. 3  
46  
Freescale Semiconductor  
Revision History for the MPC5561 Data Sheet  
5
Revision History for the MPC5561 Data Sheet  
The history of revisions made to this data sheet are shown in this section. The changes are divided into  
each revision of this document. The substantive changes incorporated in MPC5561 Data Sheet Rev. 0.0 to  
produce Rev. 1.0 of this document are grouped as follows:  
Global and text changes  
Table and figure changes  
Within each group, the changes are listed in sequential order.  
5.1  
Information Changed Between Revisions 2.0 and 3.0  
The following table lists the changes made throughout the document.  
Table 27. Information Changed Between Rev. 2.0 and Rev. 3.0  
Added the following paragraph in Section 3.7, “Power-Up/Down Sequencing”:  
“During initial power ramp-up, when Vstby is 0.6v or above. a typical current of 1-3mA and maximum  
of 4mA may be seen until VDD is applied. This current will not reoccur until Vstby is lowered below  
Vstby min. specification”.  
Section 3.7,  
“Power-Up/Down  
Sequencing”  
Moved Figure 2 (fISTBY Worst-case Specifications) “ISTBY Worst-case Specifications” to  
Section 3.7, “Power-Up/Down Sequencing”.  
Removed the footnote “Figure 3 shows an illustration of the IDD_STBY values interpolated for these  
temperature values”.  
Section 3.8, “DC  
Electrical  
Specifications”  
Changed the footnote attached to IDD_STBY to “The current specification relates to average standby  
operation after SRAM has been loaded with data. For power up current see Section 3.7,  
“Power-Up/Down Sequencing”,Figure 2 (fISTBY Worst-case Specifications).”  
In Table 9 (DC Electrical Specifications (TA = TL to TH)) the Characteristic “Refer to Figure 3 for an  
interpolation of this data” changed to “RAM standby current”.  
5.2  
Information Changed Between Revisions 1.0 and 2.0  
The following table lists the changes made throughout the document.  
Table 28. Information Changed Between Rev. 1.0 and Rev. 2.0  
Location  
Description of Changes  
Section 1, “Overview”  
Added new 11th paragraph about FlexRay. Removed discussion in the SIU and DSPI paragraphs about  
deserialization and serialization, and chaining. Removed reference to SIU_DISR register.  
Table 6 (VRC and POR Electrical Specifications) VCR/POR Electrical Specifications:  
Added to Specs 1, 2 and 3 that reads: On power up, assert RESET before VPOR15, VPOR33, and VPOR5 negate  
(internal POR). RESET must remain asserted until the power supplies are within the operating conditions as  
specified in Table 9 DC Electrical Specifications. On power down, assert RESET before any power supplies fall  
outside the operating conditions and until the internal POR asserts.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
47  
Freescale  
Revision History for the MPC5561 Data Sheet  
Table 28. Information Changed Between Rev. 1.0 and Rev. 2.0 (continued)  
Description of Changes  
Location  
Table 9 (DC Electrical Specifications (TA = TL to TH)) DC Electrical Specifications  
• Added footnote that reads: VDDE2 and VDDE3 are limited to 2.25–3.6 V only if EBTS = 0; VDDE2 and VDDE3 have  
a range of 1.6–3.6 V if EBTS =1.  
• Spec 27a, Operating current 1.5 V supplies @ 135 MHz:  
-- 8-way 1.65 V typical use: from 630 to 620  
-- 8-way 1.35 V typical use: from 500 to 440  
-- 8-way 1.65 V high use: from 785 to 670  
-- 8-way 1.35 V high use: from 630 to 490  
-- 4-way 1.65 V high use: from 710 to 620  
-- 4-way 1.35 V high use: from 550 to 430  
• Spec 27b, Operating current 1.5 V supplies @ 114 MHz:  
-- 8-way 1.65 V typical use: from 600 to 590  
-- 8-way 1.35 V typical use: from 450 to 395  
-- 8-way 1.65 V high use: from 680 to 580  
-- 8-way 1.35 V high use: from 500 to 390  
-- 4-way 1.65 V high use: from 650 to 550  
-- 4-way 1.35 V high use: from 490 to 385  
• Spec 27c, Operating current 1.5 V supplies @ 82 MHz:  
-- 8-way 1.65 V typical use: from 490 to 485  
-- 8-way 1.35 V typical use: from 360 to 320  
-- 8-way 1.65 V high use: from 545 to 470  
-- 8-way 1.35 V high use: from 400 to 315  
-- 4-way 1.65 V high use: from 530 to 460  
-- 4-way 1.35 V high use: from 395 to 310  
• Removed footnote 12 on all these changed values: Preliminary. Specification pending final characterization.  
Table 17 (Pad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V)) Pad AC Specifications  
• Footnote 1, changed ‘VDDEH = 4.5–5.5;’ to ‘VDDEH = 4.5–5.25;’  
• Footnote 1, deleted ‘fSYS = 132 MHz.’  
• Footnote 2, changed from ‘tested’ to ‘(not tested).’  
• Footnote 3, changed from ‘Out delay. . .’ to ‘The output delay. . .,  
• Changed from ‘Add a maximum of one system clock to the output delay to get the output delay with respect to  
the system clock‘ to ‘To calculate the output delay with respect to the system clock, add a maximum of one system  
clock to the output delay.’  
• Footnote 4: changed ‘Delay’ to ‘The output delay.’  
• Footnote 5: deleted ‘before qualification.’  
• Changed from ‘This parameter is supplied for reference and is not guaranteed by design and not tested’ to ‘This  
parameter is supplied for reference and is guaranteed by design and tested.’  
Table 22 (Bus Operation Timing) Bus Operation Timing:  
• External Bus Frequency in the table heading: Added footnote that reads: Speed is the nominal maximum  
frequency. Max. speed is the maximum speed allowed including frequency modulation (FM). 82 MHz parts allow  
for 80 MHz system clock + 2% FM; 114 MHz parts allow for 112 MHz system clock + 2% FM, and 135 MHz parts  
allow for 132 MHz system clock + 2% FM.  
• Spec 1: Changed the values in Min. columns: 40 MHz from 25 to 24.4; 56 MHz from 17.9 to 17.5  
• Specs 7 and 8: Removed from external bus interface: BDIP, OE, TSIZ[0:1], and WE/BE[0:3].  
• Added a footnote each for the DATA[0:31], TEA, and WE/BE[0:3] signals in the table: Due to pin limitations, the  
DATA[16:31], TEA, and WE/BE[2:3] signals are not available on the 324 package.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
48  
Freescale Semiconductor  
Revision History for the MPC5561 Data Sheet  
Table 28. Information Changed Between Rev. 1.0 and Rev. 2.0 (continued)  
Description of Changes  
Location  
Table 24 (eMIOS Timing) eMIOS Timing:  
• Footnote 1, changed ‘VDDEH = 4.5–5.5;’ to ‘VDDEH = 4.5–5.25;’  
• Deleted (MTS) from the heading, table, and footnotes.  
• Footnote 1: Deleted ‘. . .fSYS = 132 MHz. . ., ‘. . .VDD33 and VDDSYN = 3.0–3.6 V. . .’ and ‘ . . .and CL = 200 pF  
with SRC = 0b11.’  
• Added Footnote 2: ‘This specification does not include the rise and fall times. When calculating the minimum  
eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad  
configuration registers (PCR).’  
Table 25 (DSPI Timing’) DSPI Timing:  
• Footnote 1, changed ‘VDDEH = 4.5–5.5;’ to ‘VDDEH = 4.5–5.25;’  
Table Title: Added footnote that reads: Speed is the nominal maximum frequency. Max. speed is the maximum  
speed allowed including frequency modulation (FM). 82 MHz parts allow for 80 MHz system clock + 2% FM;  
114 MHz parts allow for 112 MHz system clock + 2% FM, and 135 MHz parts allow for 132 MHz system clock +  
2% FM.  
Table 26 (EQADC SSI Timing Characteristics) EQADC SSI Timing Characteristics:  
• Footnote 1, changed ‘VDDEH = 4.5–5.5;’ to ‘VDDEH = 4.5–5.25;’  
• Deleted from table title ‘(Pads at 3.3 V or 5.0 V)’  
• Deleted 1st line in table ‘CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.’  
• Spec 1: FCK frequency -- removed.  
• Combined footnotes 1 and 2, and moved the new footnote to Spec 2. Moved old footnote 3 to Spec 2.  
• Footnote 1, deleted ‘VDD = 1.35–1.65 V’ and ‘VDD33 and VDDSYN = 3.0–3.6V.’  
Changed ‘CL = 50 pF’ to ‘CL = 25 pF.’  
• Footnote 2: added ‘cycle’ after ‘duty’ to read: FCK duty cycle is not 50% when . . . .  
Figure 27 (MPC5561 324 Package) MPC5561 324 PBGA Pinouts:  
• Changed ball labels on the 324 PBGA to show only signals available on the device:  
• C1 -> PSCS3, C2 -> PCSC4,  
• D1 -> PCSC1, D2 -> PCSC2, D3 -> IRQ14  
• E1 -> IRQ12, E2 -> IRQ15, E3 -> IRQ13, E4 -> IRQ9  
• F1 -> IRQ11, F2 -> IRQ10, F3 -> PDI_DATA6, F4 -> PDI_DATA7  
• G1 -> IRQ8, G2 -> PDI_DATA8, G3 -> PCSB4, G4 -> PCSB3  
• H1 -> PDI_DATA5, H2 -> PCSB5, H3 -> PDICHSEL2  
• J1 -> PCSB1, J2 -> PDI_DATA0, J3 -> FRN_RX, J4 -> PDICHSEL1  
• K1 -> PDICHSEL0, K2 -> GPIO121, K3 -> PDI_FRAME_VALID, K4 -> FRBTXEN, K19 -> RXDD  
• L1 -> FRBTX, L2 -> PDISNCLK, L3 -> GPIO114, L4 -> PDILINEVALID, L20 -> PCSC5, L21 -> PCSC2,  
L22 -> PCSC1  
• M2 -> IRQ7, M19 -> PCSB2, M20 -> TXDC, M21 -> TXDD  
• N19 -> RXDC, N21 -> PCSB3  
• AB18 -> PCSC3, AB19 -> PCSC4  
5.3  
Information Changed Between Revisions 0.0 and 1.0  
The following table lists the global changes made throughout the document, as well as substantive changes  
to text that is not in a table of figure.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
49  
Freescale  
Revision History for the MPC5561 Data Sheet  
Table 29. Global and Text Changes Between Rev. 0.0 and Rev. 1.0  
Description of Changes  
Location  
Global Changes throughout the document  
• Replaced kilobytes with KB.  
• Replaced megabytes with MB.  
Section 1, “Overview”:  
• First paragraph: text changed from “. . . based on the PowerPC Book E architecture” to “. . . built on the Power  
Architecture embedded technology.”  
• Second paragraph: Changed terminology from PowerPC Book E architecture to Power Architecture terminology.  
• Added new third paragraph about VLE feature.  
• Added new eighth paragraph about the parallel digital interface (PDI).  
• Paragraph nine: changed “the MPC5561 has an on-chip 20-channel enhanced queued analog-to-digital  
converter (eQADC)” to “. . . has an on-chip 40-channel dual enhanced queued . . .”  
• Added the sentence preceding Table 1: ‘Unless noted in this data sheet, all specifications apply from TL to TH.’  
Sections 3.7.1, 3.7.2 and 3.7.3: Reordered sections resulting in the following order and section renumbering:  
Section 3.7.1, “Input Value of Pins During POR Dependent on VDD33,then  
Section 3.7.2, “Power-Up Sequence (VRC33 Grounded),then  
Section 3.7.3, “Power-Down Sequence (VRC33 Grounded).  
Section 3.7.1, “Input Value of Pins During POR Dependent on VDD33,changed:  
From: ‘To avoid accidentally selecting the bypass clock because PLLCFG[0:1] and RSTCFG are not treated as ones  
(1s) when POR negates, VDD33 must not lag VDDSYN and the RESET pin power (VDDEH6) when powering the device  
by more than the VDD33 lag specification in Table 6. VDD33 individually can lag either VDDSYN or the RESET power  
pin (VDDEH6) by more than the VDD33 lag specification. VDD33 can lag one of the VDDSYN or VDDEH6 supplies, but  
cannot lag both by more than the VDD33 lag specification. This VDD33 lag specification only applies during power up.  
VDD33 has no lead or lag requirements when powering down.’  
To:  
‘When powering the device, VDD33 must not lag VDDSYN and the RESET power pin (VDDEH6) by more than the  
VDD33 lag specification listed in Table 6. This avoids accidentally selecting the bypass clock mode because the  
internal versions of PLLCFG[0:1] and RSTCFG are not powered and therefore cannot read the default state when  
POR negates. VDD33 can lag VDDSYN or the RESET power pin (VDDEH6), but cannot lag both by more than the  
VDD33 lag specification. This VDD33 lag specification only applies during power up. VDD33 has no lead or lag  
requirements when powering down.’  
Section 3.7.1, “Input Value of Pins During POR Dependent on VDD33:”  
Added the following text directly before this section and after Table 8 Pin Status for Medium / Slow Pads During the  
Power-on Sequence:  
‘The values in Table 7 and Table 8 do not include the effect of the weak pull devices on the output pins during power  
up.  
Before exiting the internal POR state, the voltage on the pins goes to high-impedance until POR negates. When the  
internal POR negates, the functional state of the signal during reset applies and the weak pull devices (up or down)  
are enabled as defined in the device Reference Manual. If VDD is too low to correctly propagate the logic signals,  
the weak-pull devices can pull the signals to VDDE and VDDEH  
.
To avoid this condition, minimize the ramp time of the VDD supply to a time period less than the time required to  
enable the external circuitry connected to the device outputs.’  
Section 3.7.3, “Power-Down Sequence (VRC33 Grounded)” Deleted the underscore in ORed_POR to become ORed POR.  
Section 3.13.6, “eTPU Timing”  
Deleted entire section, including table and figure, because the MPC5561 does not have the eTPU module.  
The following table describes the changes made to information in tables and figures:  
MPC5561 Microcontroller Data Sheet, Rev. 3  
50  
Freescale Semiconductor  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0  
Description of Changes  
Location  
Figure 1 (MPC5500 Family Part Number Example) MPC5500 Family Part Numbers:  
• Removed the 2 in the tape and reel designator in both the graphic and in the Tape and Reel Status text.  
• Changed Qualification Status by adding ‘, general market flow’ to the M designator, and added an ‘S’ designator  
with the description of ‘Fully spec. qualified, automotive flow.  
• Changed footnote 1 to read: All devices are PPC5561, rather than MPC5561 or SPC5561, until product  
qualifications are complete. Not all configurations are available in the PPC parts.  
Table 1 (Orderable Part Numbers) Orderable Part Numbers:  
• Increased the frequency values in the Maximum column by 2 ns.  
• Changed the maximum operating frequency from 132 MHz to 135 MHz.  
• Reordered rows to group devices by lead-free package types in descending frequency order, and leaded  
package types.  
• Footnote 2: added ‘ambient’ between ‘lowest’ and ‘operating’ and ‘highest’ and ‘operating.’  
• Changed footnote 3 from ‘132 MHz allows only 128 MHz + 2% FM’ to ‘135 MHz allows for 132 MHz + 2% FM’.  
Table 2 (Absolute Maximum Ratings) Absolute Maximum Ratings:  
• Deleted Spec 3, “Flash core voltage.”  
• Spec 12 “DC Input Voltage”: Deleted from second line‘. . .except for eTPUB15 and SINB (DSPI_B_SIN)’ leaving  
VDDEH powered I/O pads. Deleted third line ‘VDDEH powered by I/O pads (eTPUB15 and SINB), including the  
min. and max values of -0.3 and 6.5 respectively, and deleted old footnote 7.  
• Spec 12 “DC Input Voltage”: Added footnote 8 to second line “VDDE powered I/O pads” that reads: ‘Internal  
structures hold the input voltage less than the maximum voltage on all pads powered by the VDDE supplies, if the  
maximum injection current specification is met (s mA for all pins) and VDDE is within the operating voltage  
specifications.  
• Spec 14, column 2, changed: ‘VSS differential voltage’ to ‘VSS to VSSA differential voltage.’  
• Spec 15, column 2, changed: ‘VDD differential voltage’ to ‘VDD to VDDA differential voltage.’  
• Spec 21, Added the name of the spec, ‘VRC33 to VDDSYN differential voltage,as well as the name and cross  
reference to Table 9, DC Electrical Specifications, to which the Spec was moved.  
• Spec 28 “Maximum Solder Temperature”: Added two sublines:  
Lead free (PbFree) and Leaded (SnPb) with maximum values of 260 C and 245 C respectively.  
• Footnote 1, added: ‘any of’ between ‘beyond’ and ‘the listed maxima.’  
• Deleted footnote 2: ‘Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum  
specifications for device stress have not yet been determined.Spec 26 “Maximum Operating Temperature  
Range”: replaced -40 C with TL.  
• Footnote 6 (now footnote 5): Added the following sentence to the end, “Keep the negative DC voltage greater  
than -0.6 V on SINB during the internal power-on reset (POR) state.”  
Table 4 (EMI Testing Specifications) EMI Testing Specifications:  
• Changed the maximum operating frequency to from 132 to fMAX  
.
• Footnote 2: Deleted ‘Refer to Table 1 for the maximum operating frequency.’  
MPC5561 Microcontroller Data Sheet, Rev. 3  
51  
Freescale  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0 (continued)  
Description of Changes  
Location  
Table 5 (ESD Ratings ,) ESD Characteristics: Added (Electromagnetic Static Discharge) in the table title.  
Table 6 (VRC and POR Electrical Specifications) VCR/POR Electrical Specifications:  
• Subscript all symbol names that appear after the first underscore character.  
• Specs 7 and 10: added ‘at Tj ‘at the end of the first line in the second column: Characteristic.  
• Footnote 10: Deleted ‘Preliminary value. Final specification pending characterization.”  
• Added to Spec 2:  
3.3 V (VDDSYN) POR negated (ramp down) Min. 0.0  
3.3 V (VDDSYN) POR asserted (ramp up) Min. 0.0  
Max. 0.30  
Max. 0.30  
V
V
• Spec 3: Added new footnote 3 for both lines: ‘It is possible to reach the current limit during ramp up--do not treat  
this event as a short circuit current.’  
• Spec 5: Changed old Footnote 1 (now footnote 2): ‘User must be able to supply full operating current for the 1.5V  
supply when the 3.3V supply reaches this range.to ‘Supply full operating current for the 1.5 V supply when the  
3.3 V supply reaches this range.”  
• Spec 10:  
• Changed the minimum values of: -40 C = 60; 25 C = 65; 150 C = 85.  
• Added old footnote 5 as new footnote 6.  
• Removed ‘Tj ‘after ‘150 C’ in the last line, second column: Characteristic.  
• Added a new footnote 7, ‘Refer to Table 1 for the maximum operating frequency.’  
• Rewrote old footnote 7(new footnote 9) to: Represents the worst-case external transistor BETA. It is measured  
on a per part basis and calculated as (IDD  IVRCCTL).  
• Added cross-reference to footnote 6: ‘IVRCCTL is measured at the following conditions: VDD = 1.35 V,  
VRC33 = 3.1 V, VVRCCTL = 2.2 V.’ Changed ‘(@ VDD = 1.35 V, fsys = fMAX)‘ to ‘(@ fsys = fMAX).’  
• Added new footnote 1 to Spec 3: “ VIL_S (Table 9, Spec 15) is guaranteed to scale with VDDEH6 down to VPOR5  
• Rewrote old footnote 7(new footnote 9) to: Represents the worst-case external transistor BETA. It is measured  
on a per part basis and calculated as (IDD  IVRCCTL).  
.
• Deleted old footnote 8: ‘Preliminary value. Final specification pending characterization.’  
Table 7 (Pin Status for Fast Pads During the Power Sequence) Power Sequence Pin Status for Fast Pads  
• Changed title to Pin Status for Fast Pads During the Power Sequence  
• Changed preceding paragraph  
From: Although there are no power up/down sequencing requirements to prevent issues like latch-up, excessive  
current spikes, etc., the state of the I/O pins during power up/down varies depending on power. Prior to exiting  
POR, the pads are in a high impedance state (Hi-Z).  
To: There are no power up/down sequencing requirements to prevent issues such as latch-up, excessive current  
spikes, and so on. Therefore, the state of the I/O pins during power up/down varies depending on which supplies  
are powered.  
• Deleted the ‘Comment’ column.  
• Added a POR column after the VDD column.  
• Added row 2:’ VDDE, Low, Low, Asserted, High’ and row 5: VDDE, VDD33, VDD, Asserted, Hi-Z.  
Table 8 (Pin Status for Medium and Slow Pads During the Power Sequence) Power Sequence Pin Status for Medium/Slow Pads:  
• Changed title to Pin Status for Medium and Slow Pads During the Power Sequence  
• Updated preceding paragraph.  
• Deleted the ‘Comment’ column.  
• Added a POR column after the VDD column.  
• Added row 3:’ VDDEH, VDD, Asserted, Hi-Z.’  
MPC5561 Microcontroller Data Sheet, Rev. 3  
52  
Freescale Semiconductor  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0 (continued)  
Description of Changes  
Location  
Table 9 (DC Electrical Specifications (TA = TL to TH)) DC Electrical Specifications:  
• Spelled out meaning of the slash ‘/’ as ‘and’ as well as ‘I/O’ as ‘input/output.Sentence still very confusing.  
Deleted ‘input/output’ from the specs to improve clarity.  
• Spec 20, column 2, Characteristics,Slow and medium output high voltage (IOH_S = –2.0 mA):’  
Created a left-justified second line and moved ‘IOH_S = –2.0 mA’ from the 1st line to the second line and deleted  
the parentheses. Created a left-justified third line that reads ‘IOH_S = –1.0 mA.’  
• Spec 20, column 4, Min.: Added a blank line before and after ‘0.80 VDDEH’ and put ‘0.85 VDDEH’ on the last  
line.  
• Spec 22, column 2,Slow and medium output low voltage (IOL_S = 2.0 mA):’ Created a left-justified second line  
and moved ‘IOL_S = 2.0 mA.from the 1st line to the second line and deleted the parentheses. Created a  
left-justified third line that reads ‘IOL_S = 1.0 mA.’  
• Spec 22, column 5, Max.: Added a blank line before and after ‘0.20 VDDEH’ and put ‘0.15 VDDEH’ on the last  
line.  
• Spec 26: Changed ‘AN[12]_MA[1]_SDO’ to ‘AN[13]_MA[1]_SDO’.  
• Spec 27a: Changed 132 MHz to 135 MHz. Added maximum values for 8-way cache:  
1.65 typical = 630  
1.35 typical = 500  
1.65 high = 785  
1.35 high = 630  
All 8-way cache max values have footnote 11.  
Added 4-way cache with footnote 10:  
1.65 high = 685 with footnote 11  
1.35 high = TBD with footnote 12  
• Spec 27b, Operating current 1.5 V supplies @ 114 MHz: Added maximum values for 8-way cache:  
1.65 typical = 600,  
1.35 typical = 450,  
1.65 high = 680,  
1.35 high = 500.  
All 8-way cache max values have footnote 11.  
Added 4-way cache with footnote 10:  
1.65 and 1.35 high = TBD with footnote 12  
Table 9 (DC Electrical Specifications (TA = TL to TH)) DC Electrical Specifications: (continued)  
• Spec 27c, Operating current 1.5 V supplies @ 82 MHz: Added maximum values for 8-way cache:  
1.65 typical = 490,  
1.35 typical = 360,  
1.65 high = 520,  
1.35 high = 390.  
All 8-way cache max values have footnote 11.  
Added 4-way cache values  
1.65 high = TBD and 1.35 high = TBD, both with footnote 12.  
• Spec 28: Changed 132 MHz to 135 MHz.  
• Spec 29: Deleted frequency information.  
• Corrected footnote 3 to read: If standby operation is not required, connect the VSTBY to ground.  
• Combined old footnotes 11 and 12 for new footnote 6 and added to specs 27a, b, and c on the 8-way cache line  
that reads: Eight-way cache enabled (L1CSR0[CORG] = 0b0).  
• Added footnote 10 to specs 27a, b, and c on the 4-way cache line that reads: Four-way cache enabled  
(L1CSR0[CORG] = 0b1) or (L1CSR0[CORG] = 0b0 with L1CSR0[WAM] = 0b1, L1CSR0[WID] = 0b1111,  
L1CSR0[WDD] = 0b1111, L1CSR0[AWID] = 0b1, and L1CSR0[AWDD] = 0b1).  
• Added footnote 11 to specs 27a, b, and c on the max numeric values: “Preliminary. Specification pending final  
characterization.”  
• Added footnote 12 to specs 27a, b, and c on the max TBD values: “Specification pending final characterization.”  
MPC5561 Microcontroller Data Sheet, Rev. 3  
53  
Freescale  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0 (continued)  
Description of Changes  
Location  
Figure 2 (fISTBY Worst-case Specifications) Added figure to show interpolated IDDSTBY values listed in Table 9 (DC Electrical  
Specifications (TA = TL to TH)).  
Table 12 (FMPLL Electrical Specifications) FMPLL Electrical Characteristics:  
• Added (TA = TL – TH) to the second line of the table title.  
• Spec 1, footnote 1 in column 2: ‘PLL reference frequency range.: Changed to read ‘Nominal crystal and external  
reference values are worst-case not more than 1%. The device operates correctly if the frequency remains within  
5% of the specification limit. This tolerance range allows for a slight frequency drift of the crystals over time.  
The designer must thoroughly understand the drift margin of the source clock.‘  
• Spec 1, added two more lines to the PLL reference frequency range’ to read as follows  
crystal reference (20)  
crystal reference (40)  
external reference (20)  
external reference (40)  
fref_crystal  
fref_crystal  
fref_ext  
8
> 20  
8
 20  
40  
 20  
40  
fref_ext  
> 20  
• Spec 1, footnote 2 in column 2: ‘PLL reference frequency range.: Changed to: ‘The 8–20 MHz crystal or external  
reference values have PLLCFG[2] pulled low’ and applies to spec 1, column 2, crystal reference and external  
reference.  
• Spec 1, footnote 2 in column 2: ‘PLL reference frequency range, Changed to: The 20–40 MHz crystal and  
external reference values have PLLCFG[2] pulled high, and the minimum frequency must be greater than 20  
MHz. Use the 8–20 MHz setting (PLLCFG[2] pulled low) if a 20 MHz crystal or external reference is required. To  
exit RESET when using 40 MHz, set PLLCFG[2] to 1.  
• Specs 12 and 13: Grouped (2 x Cl).  
• Spec 21, column 2: Changed fref_crystal to fref in ICO frequency equation, and  
added the same equation but substituted fref_ext for fref for the external reference clock, giving:  
fico = [ fref_crystal (MFD + 4) ] (PREDIV + 1)  
fico = [ fref_ext (MFD + 4) ] (PREDIV + 1)  
• Spec 21, column 4, Max.: Deleted old footnote 18 that reads:  
The ICO frequency can be higher than the maximum allowable system frequency. For this case, set the CMPLL  
synthesizer control register reduced frequency divider (FMPLL_SYNCR[RFD]) to divide-by-two (RFD = 0b001).  
Therefore, for a 40 MHz maximum device (system frequency), program the FMPLL to generate 80 MHz at the  
ICO output and then divide-by-two the RFD to provide the 40 MHz system clock.’  
• Spec 21: Changed column 5 from ‘82 or 66 MHz’ to: ‘150’.  
• Spec 22: Changed column 4, Max. Value from fMAX to 20, and added footnote 20 to read, ‘Maximum value for  
dual controller (1:1) mode is (fMAX 2) and the predivider set to 1 (FMPLL_SYNCR[PREDIV] = 0b001).’  
Table 13 (eQADC Conversion Specifications (TA = TL to TH)) eQADC Conversion Specifications: Added (TA = TL – TH) to the  
table title.  
Table 14 (Flash Program and Erase Specifications (TA = TL to TH)) Flash Program and Erase Specifications:  
• Added (TA = TL – TH) to the table title.  
• Specs 7, 8, 9, and 10:  
Changed typical values — 48 KB: from 340 to 345; 64 KB: from 400 to 415  
Spec 8, 128KB block pre-program and erase time, Max. column value from 15,000 to 7,500.  
• Moved footnote 1 from the table title to directly after the ‘Typical’ in the column 5 header.  
• Footnote 2: Changed from: ‘Initial factory condition: 100program/erase cycles, 25 oC, typical supply voltage,  
80 MHz minimum system frequency.‘ to: ‘Initial factory condition: 100program/erase cycles, 25 oC, using a  
typical supply voltage measured at a minimum system frequency of 80 MHz.’  
Table 15 (Flash EEPROM Module Life (TA = TL to TH)) Flash EEPROM Module Life:  
• Replaced (Full Temperature Range) with (TA = TL – TH) in the table title.  
• Spec 1b, Min. column value changed from 10,000 to 1,000.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
54  
Freescale Semiconductor  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0 (continued)  
Description of Changes  
Location  
Table 16 (FLASH_BIU Settings vs. Frequency of Operation) FLASH BIU Settings vs. Frequency of Operations:  
• Changed the Maximum Operating Frequency column entry from: Up to and including132 MHz to: Up to and  
including134 MHz.  
• Added footnote 1 to the end of the table title, The footnote reads: ‘Illegal combinations exist. Use entries from the  
same row in this table.’  
• Moved footnote 2:’ For maximum flash performance, set to 0b11’ to the ‘DPFEN’ column header.  
• Deleted the x-refs in the ‘DPFEN’ column for the rows.  
• Created a x-ref for footnote 2 and inserted in the ‘IPFEN’ column header.  
• Deleted the x-refs in the ‘IPFEN’ column for the rows.  
• Moved footnote 3:’ For maximum flash performance, set to 0b110’ to the ‘PFLIM’ column header.  
• Deleted the x-refs in the ‘PFLIM’ column for the rows.  
• Moved footnote 4:’ For maximum flash performance, set to 0b1’ to the ‘BFEN’ column header.  
• Deleted the x-refs in the ‘BFEN’ column for the rows.  
• Changed footnote 6 from: ‘Allows for 128 MHz system clock with 2% frequency modulation’ to: ‘Allows for 132  
MHz system clock with 2% frequency modulation.’  
Table 17 (Pad AC Specifications (VDDEH = 5.0 V, VDDE = 1.8 V)) Pad AC Specifications and Table 18 (Derated Pad AC  
Specifications (VDDEH = 3.3 V, VDDE = 3.3 V)) Derated Pad AC Specifications:  
• Footnote 1, deleted ‘fSYS = 132 MHz.’  
• Footnote 2, changed from ‘tested’ to ‘(not tested).’  
• Footnote 3, changed from ‘Out delay. . .’ to ‘The output delay. . .,  
• Changed from ‘Add a maximum of one system clock to the output delay to get the output delay with respect to  
the system clock‘ to ‘To calculate the output delay with respect to the system clock, add a maximum of one system  
clock to the output delay.’  
• Footnote 4: changed ‘Delay’ to ‘The output delay.’  
• Footnote 5: deleted ‘before qualification.’  
• Changed from ‘This parameter is supplied for reference and is not guaranteed by design and not tested’ to ‘This  
parameter is supplied for reference and is guaranteed by design and tested.’  
Table 19 (Reset and Configuration Pin Timing) Reset and Configuration Pin Timing: Footnote 1, deleted ‘fSYS = 132 MHz.’  
Table 20 (JTAG Pin AC Electrical Characteristics) JTAG Pin AC Electrical Characteristics:  
• Footnote 1, deleted: ‘fSYS = 132 MHz.and ‘, and CL = 30 pF with DSC = 0b10, SRC = 0b11’  
• Footnote 1, changed ‘functional’ to ‘Nexus.’  
Table 21 (Nexus Debug Port Timing) Nexus Debug Port Timing.  
• Changed Spec 12, TCK Low to TDO Data Valid: Changed ‘VDDE = 3.0 to 3.6 volts’ maximum value in column 4  
from 9 to 10. Now reads ‘VDDE = 3.0–3.6 V’ with a max value of 10.  
• Footnote 5, changed from ‘to MCKO. The timing is. . .to: ‘to ‘MCKO and is . . .’  
Table 22 (Bus Operation Timing) Bus Operation Timing:  
• Changed Spec 1 for the minimum 67 MHz column from: 15.2 to 14.9.  
• Specs 5 and 6: corrected format to show the bus timing values for various frequencies with EBTS bit = 0 and  
EBTS bit = 1.  
Table 23 (External Interrupt Timing) External Interrupt Timing:  
• Footnote 1: Deleted ‘fSYS = 132 MHz’, ‘.VDD33 and VDDSYN = 3.0–3.6 V’ and ‘and CL = 200 pF with SRC = 0b11.’  
• Deleted second figure after table ‘External Interrupt Setup Timing.’  
MPC5561 Microcontroller Data Sheet, Rev. 3  
55  
Freescale  
Revision History for the MPC5561 Data Sheet  
Table 30. Table and Figure Changes Between Rev. 0.0 and 1.0 (continued)  
Description of Changes  
Location  
Table 24 eTPU Timing, Figure 16 eTPU Timing and Figure 17 eTPU Input/Output Timing: Deleted – No eTPU in MPC5561.  
Table 24 (eMIOS Timing) eMIOS Timing:  
• Deleted (MTS) from the heading, table, and footnotes.  
• Footnote 1: Deleted ‘. . .fSYS = 132 MHz. . ., ‘. . .VDD33 and VDDSYN = 3.0–3.6 V. . .’ and ‘ . . .and CL = 200 pF  
with SRC = 0b11.’  
• Added Footnote 2: ‘This specification does not include the rise and fall times. When calculating the minimum  
eMIOS pulse width, include the rise and fall times defined in the slew rate control fields (SRC) of the pad  
configuration registers (PCR).’  
Figure 16 (eMIOS Timing) eMIOS Timing Added figure.  
Table 25 (DSPI Timing’) DSPI Timing:  
• Added to beginning of footnote 1 ‘All DSPI timing specifications use the fastest slew rate (SRC = 0b11) on pad  
type M or MH. DSPI signals using pad types of S or SH have an additional delay based on the slew rate.’  
• Footnote 1: Deleted ‘VDD = 1.35–1.65 V’ and ‘VDD33 and VDDSYN = 3.0–3.6 V.  
Table 26 (EQADC SSI Timing Characteristics) EQADC SSI Timing Characteristics:  
• Deleted from table title ‘(Pads at 3.3 V or 5.0 V)’  
• Deleted 1st line in table ‘CLOAD = 25 pF on all outputs. Pad drive strength set to maximum.’  
• Spec 1: FCK frequency -- removed.  
• Combined footnotes 1 and 2, and moved the new footnote to Spec 2. Moved old footnote 3 to Spec 2.  
• Footnote 1, deleted ‘VDD = 1.35–1.65 V’ and ‘VDD33 and VDDSYN = 3.0–3.6V.’  
Changed ‘CL = 50 pF’ to ‘CL = 25 pF.’  
• Footnote 2: added ‘cycle’ after ‘duty’ to read: FCK duty cycle is not 50% when . . . .  
Figure 27 (MPC5561 324 Package) MPC5561 324 Package:  
• Changed ball label T21 from VRCVSS to PLLCFG2.  
• Deleted the version number and date.  
MPC5561 Microcontroller Data Sheet, Rev. 3  
56  
Freescale Semiconductor  
THIS PAGE IS INTENTIONALLY BLANK  
MPC5561 Microcontroller Data Sheet, Rev. 3  
57  
Freescale  
How to Reach Us:  
Information in this document is provided solely to enable system and software  
implementers to use Freescale Semiconductor products. There are no express or  
implied copyright licenses granted hereunder to design or fabricate any integrated  
circuits or integrated circuits based on the information in this document.  
Home Page:  
www.freescale.com  
Web Support:  
http://www.freescale.com/support  
Freescale Semiconductor reserves the right to make changes without further notice to  
any products herein. Freescale Semiconductor makes no warranty, representation or  
guarantee regarding the suitability of its products for any particular purpose, nor does  
Freescale Semiconductor assume any liability arising out of the application or use of any  
product or circuit, and specifically disclaims any and all liability, including without  
limitation consequential or incidental damages. “Typical” parameters that may be  
provided in Freescale Semiconductor data sheets and/or specifications can and do vary  
in different applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer application by  
customer’s technical experts. Freescale Semiconductor does not convey any license  
under its patent rights nor the rights of others. Freescale Semiconductor products are  
not designed, intended, or authorized for use as components in systems intended for  
surgical implant into the body, or other applications intended to support or sustain life,  
or for any other application in which the failure of the Freescale Semiconductor product  
could create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended or  
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and  
its officers, employees, subsidiaries, affiliates, and distributors harmless against all  
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,  
directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that Freescale  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor, Inc.  
Technical Information Center, EL516  
2100 East Elliot Road  
Tempe, Arizona 85284  
+1-800-521-6274 or +1-480-768-2130  
www.freescale.com/support  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
www.freescale.com/support  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
Semiconductor was negligent regarding the design or manufacture of the part.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064  
Japan  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.  
All other product or service names are the property of their respective owners.  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Asia/Pacific:  
© Freescale Semiconductor, Inc. 2008,2012. All rights reserved.  
Freescale Semiconductor China Ltd.  
Exchange Building 23F  
No. 118 Jianguo Road  
Chaoyang District  
RoHS-compliant and/or Pb-free versions of Freescale products have the functionality  
and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free  
counterparts. For further information, see http://www.freescale.com or contact your  
Freescale sales representative.  
Beijing 100022  
China  
+86 10 5879 8000  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Document Number: MPC5561  
Rev. 3  
6/2012  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY